T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DİHİDROPİRİDİN VE 3,4-DİHİDROPİRİMİDİN–2-ON BİLEŞİKLERİNİN SENTEZİ VE YÜKTRANSFER KOMPLEKSLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Nurcan BERBER

Enstitü Anabilim Dalı : KİMYA

Tez Danışmanı : Doç. Dr. Mustafa ARSLAN

Haziran 2007

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DİHİDROPİRİDİN VE 3,4-DİHİDROPİRİMİDİN–2-ON BİLEŞİKLERİNİN SENTEZİ VE YÜKTRANSFER KOMPLEKSLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Nurcan BERBER

Enstitü Anabilim Dalı : KİMYA

Tez Danışmanı : Doç. Dr. Mustafa ARSLAN

Bu tez 11 / 06 /2007 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Doç. Dr. Mustafa ARSLAN	Doc.Dr. Mustafa	Yrd.Doc.Dr. Yusuf ATALAY
-	KÜÇÜKİSLAMOĞLU	
Jüri Başkanı	Üye	Üye

TEŞEKKÜR

Bu çalışmayı titizlikle yöneten, çalışma süresince bilgi ve tecrübelerinden yararlandığım değerli hocam Sayın Doç. Dr. Mustafa ARSLAN' a teşekkürlerimi sunarım.

Çalışma boyunca göstermiş oldukları büyük yardımlardan ve bilgilerini esirgemediklerinden dolayı Sayın Öğretim Görevlisi Mustafa ZENGİN, Doç. Dr. Mustafa KÜÇÜKİSLAMOĞLU, Yrd. Doç. Dr. Mehmet NEBİOĞLU, Araştırma Görevlisi Hülya DUYMUŞ ve Öğretim Görevlisi Şenol BEŞOLUK' a ayrı ayrı teşekkür ederim.

Laboratuardaki çalışmalarım sırasında desteklerini gösteren çalışma arkadaşlarım Hayriye GENÇ ve Araştırma Görevlisi Fatih SÖNMEZ' e; çalışmalarımda bana destek ve yardımcı olan eşim Araştırma Görevlisi Ahmet Ali BERBER' e teşekkür ediyorum.

Yaşamım boyunca maddi ve manevi her türlü desteği esirgemeyen aileme teşekkürü bir borç bilirim.

HAZİRAN 2007 Nurcan BERBER

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER ve KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	ix
ÖZET	xi
SUMMARY	xii
BÖLÜM 1.	1
GİRİŞ	1
BÖLÜM 2	3
2.1. Pirimidin Bileşikleri	3
2.2. Dihidropirimidinler(DHPM)	5
2.2.1. Monastrol	8
2.3. 1,4-Dihidropiridinler	8
2.3.1. Nifedipine	9
2.3.2. Nitrendipine	10

BÖLÜM 3.

ULTRAVİYOLE SPEKTROSKOPİSİ	11
3.1. Ultraviyole ve Görünür Alan Spektroskopisi	11
3.2. Elektronik Uyarma	11
3.3. Ultraviyole Spektroskopisinin uygulamaları	12
3.4. Yük Transfer Kompleksleri	13
3.5. Kompleksin Denge Sabitinin Belirlenmesi	14
3.6. Kompleks Stokiometrisinin Belirlenmesi	14

3.7. Komplekslerin Termodinamik Değerlerinin Belirlenmesi	15
BOLUM 4.	
MATERYAL VE METOD	16
4.1. Kullanılan Bileşikler ve Cihazlar	16
4.2. Kullanılan Dihidropirimidin(DHPM) ve Dihidropiridinin	
Sentezi	16
4.2.1. Dihidropirimidin türevi monastrol' ün ASA katalizörü ile	
sentezi	16
4.2.2. 4-(3-Nitrofenil)-2,6-dimetil-1,4-dihidropiridin-3,5-	
dikarboksilikasitdietil ester sentezi (DHP)	17
4.3. Deneyde Kullanılan Bileşiklerin Spektrumlarının Belirlenmesi	17
4.4. Kompleks Oluşumlarının Belirlenmesi	17
4.5. Komplekslerin Stokiometrisinin Belirlenmesi	17
4.6. Komplekslerin Denge Sabitlerinin Belirlenmesi	18
4.7. Komplekslerin Termodinamik Sabitlerinin Belirlenmesi	18

BÖLÜM 5.

DENEYSEL BULGULAR	19
5.1. Deneyde Kullanılan Monastrol ve DHP' in Sentezi	19
5.1.1. Etil 4-(3-hidroksifenil)-6-metil-2-tiyookso-1,2,3,4-	
tetrahidropirimidin-5-karboksilat [monastrol]	19
5.1.2. 4-(3-Nitrofenil)-2,6-dimetil-1,4-dihidropiridin-3,5-	
dikarboksilikasitdietil ester [DHP]	19
5.2. Deneyde Kullanılan Bileşiklerin Spektrumları	20
5.3. Kompleks Oluşum Spektrumları	24
5.4. Komplekslerin Stokiometrileri	27
5.4.1. DHP -TCNE kompleksinin stokiometrisi	27
5.4.2. DHP- DDQ kompleksinin stokiometrisi	28
5.4.3. DHP- Pikrik asit kompleksinin stokiometrisi	28
5.4.4. Monastrol- DDQ kompleksinin stokiometrisi	28
5.4.5. Monastrol- TCNQ kompleksinin stokiometrisi	29
5.4.6. Monastrol- I ₂ kompleksinin stokiometrisi	29

5.5. Komplekslerin Denge Sabitlerinin Belirlenmesi	29
5.5.1. DHP -TCNE kompleksinin denge sabiti	29
5.5.2. DHP – Pikrik asit kompleksinin denge sabiti	31
5.5.3. Monastrol-DDQ kompleksinin denge sabiti	32
5.5.4. Monastrol-TCNQ kompleksinin denge sabiti	33
5.5.5. Monastrol- I ₂ kompleksinin denge sabiti	34
5.6. Komplekslerin Termodinamik Sabitlerinin Belirlenmesi	35
5.6.1. DHP- TCNE kompleksinin termodinamik sabitleri	35
5.6.2. DHP-Pikrik asit kompleksinin termodinamik sabitleri	36
5.6.3. Monastrol- DDQ kompleksinin termodinamik sabitleri	37
5.6.4. Monastrol- TCNQ kompleksinin termodinamik sabitleri	38
5.6.5. Monastrol- I ₂ kompleksinin termodinamik sabitleri	39
BOLUM 6.	40
SONUÇ VE ÖNERİLER	40
6.1. EDA komplekslerinin Absorbsiyon Dalga Boyları	40
6.2. EDA komplekslerinin Stokiometrileri	41
6.3. EDA komplekslerinin Denge sabitleri	44
6.4. Komplekslerin Termodinamik Sabitleri	46
6.5. Öneriler	46
KAYNAKLAR	49
EKLER	52
ÖZGEÇMİŞ	57

SİMGELER VE KISALTMALAR LİSTESİ

λ	: Dalga boyu nm
ΔH	:Reksiyon entalpisi
ΔS	: Reksiyon entropisi
ΔG^{o}	:Serbest Entalpi
3	: Molar absorplama katsayısı
ABS	: Absorbans
DHP	: Dihidropridin
[A]	: Akseptör konsantrasyonu mol/L
[D]	: Donor konsantrasyonu mol/L
DDQ	: 2,3-diklor-5,6-disiyanobenzokinon
EDA	: Elektron donor akseptör
K _{CT}	: Yük transfer kompleksinin denge sabiti
TCNE	: Tetrasiyanoetilen
TCNQ	: 7,7,8,9,-Tetrasiyanokinodimetan
NMR	: Nükleer Magnetik Rezonans

ŞEKİLLER LİSTESİ

Şekil 2.1.	Diazinlerin Yapısı	3
Şekil 2.2.	Primidin Türevler	3
Şekil 2.3.	Primidin Bazları	4
Şekil 2.4.	Thiamin Vitamininin yapısı	4
Şekil 2.5.	Barbitürik asit ve orotik asidin yapısı	4
Şekil 2.6.	Biginelli reaksiyonunun mekanizması	5
Şekil 2.7.	Dihidroprimidin yapısında yer alabilecek substituentler ve	
	yerleşme pozisyonları	6
Şekil 2.8.	Kalsiyum kanalı modülatörü DHPM' lerin yapıları	7
Şekil 2.9.	Hantzsch prosedürüne göre 1,4-DHP sentezi	9
Şekil 5.1.	5.10 ⁻³ M DHP' nin kloroformdaki spektrumu	20
Şekil 5.2.	5.10 ⁻³ M TCNE' nin kloroformdaki spektrumu	21
Şekil 5.3.	5.10 ⁻³ M DDQ' nun kloroformdaki spektrumu	21
Şekil 5.4.	10 ⁻³ M Pikrik Asidin kloroformdaki spektrumu	22
Şekil 5.5.	5.10 ⁻³ M Monastrol' ün asetonitrildeki spektrumu	22
Şekil 5.6.	5.10 ⁻³ M DDQ' nun asetonitrildeki spektrumu	23
Şekil 5.7.	5.10 ⁻³ M TCNQ' nun asetonitrildeki spektrumu	23
Şekil 5.8.	10 ⁻³ M I ₂ ' nin asetonitrildeki spektrumu	24
Şekil 5.9.	DHP- TCNE kompleksinin kloroformdaki spektrumu	24
Şekil 5.10.	DHP- DDQ kompleksinin kloroformdaki spektrumu	25
Şekil 5.11.	DHP- Pikrik asit kompleksinin kloroformdaki spektrumu	25
Şekil 5.12.	Monastrol- DDQ kompleksinin asetonitrildeki spektrumu	26
Şekil 5.13.	Monastrol- TCNQ kompleksinin asetonitrildeki	
	spektrumu	26
Şekil 5.14.	Monastrol- I2 kompleksinin asetonitrildeki	
	spektrumu	27

Şekil 5.15.	DHP-TCNE kompleksinin 500nm'de 22°C(±1)de Benesi-	
	Hildebrand grafiği ile denge sabitinin belirlenmesi	30
Şekil 5.16.	DHP-Pikrik Asit kompleksinin 495nm'de 22°C(±1) de	
	Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi	31
Şekil 5.17.	Monastrol-DDQ kompleksinin 546nm'de 22°C(±1) de	
	Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi	32
Şekil 5.18.	Monastrol-TCNQ kompleksinin 742nm'de 22°C(±1) de	
	Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi	33
Şekil 5.19.	Monastrol-I2 kompleksinin 370 nm'da 22°C(±1) de Benesi-	
	Hildebrand grafiği ile denge sabitinin belirlenmesi	34
Şekil 5.20.	DHP-TCNE kompleksinin 500 nm'de Van't Hoff Grafiği ile	
	termodinamik sabitlerinin belirlenmesi	35
Şekil 5.21.	DHP-pikrik Asit kompleksinin 495nm'de Van't Hoff Grafiği	
	ile termodinamik sabitlerinin belirlenmesi	36
Şekil 5.22.	Monastrol-DDQ kompleksinin 546nm'de Van't Hoff Grafiği	
	ile termodinamik sabitlerinin belirlenmesi	37
Şekil 5.23.	Monastrol-TCNQ kompleksinin 742nm'de Van't Hoff	
	Grafiği ile termodinamik sabitlerinin belirlenmesi	38
Şekil 5.24.	Monastrol-I2 kompleksinin 370nm'de Van't Hoff Grafiği ile	
	termodinamik sabitlerinin belirlenmesi	39
Şekil 6.1.	DHP-TCNE kompleksinin 500 nm de (± 1) de Job Metodu ile	
	stokiometrisinin belirlenmesi	41
Şekil 6.2.	DHP-DDQ kompleksinin 700 nm de (±1) de Job Metodu ile	
	stokiometrisinin belirlenmesi	42
Şekil 6.3.	DHP-Pikrik Asit kompleksinin 495 nm de (±1) de Job	
	Metodu ile stokiometrisinin belirlenmesi	42
Şekil 6.4.	Monastrol-DDQ kompleksinin 546 nm de (±1) de Job	
	Metodu ile stokiometrisinin belirlenmesi	43
Şekil 6.5.	Monastrol-TCNQ kompleksinin 742 nm de (±1) de Job	
	Metodu ile stokiometrisinin belirlenmesi	43
Şekil 6.6.	Monastrol-I ₂ kompleksinin 370 nm de (± 1) de Job Metodu	
	ile stokiometrisinin belirlenmesi	44

Şekil 6.7. DDQ' nun 700 nm de 2 şer dakika ara ile bozunma grafiği.... 45

TABLOLAR LİSTESİ

Tablo 5.1.	5.10 ⁻³ M DHP- 5.10 ⁻³ M TCNE kompleksi Job grafiği için	
	deneysel veriler	27
Tablo 5.2.	5.10 ⁻³ M DHP- 5.10 ⁻³ M DDQ kompleksi Job grafiği için	
	deneysel veriler	28
Tablo 5.3.	10 ⁻³ M DHP- 10 ⁻³ M Pikrik Asit kompleksi Job grafiği için	
	deneysel veriler	28
Tablo 5.4.	5.10 ⁻³ M Monastrol -5.10 ⁻³ M DDQ kompleksi Job grafiği için	
	deneysel veriler	28
Tablo 5.5.	5.10 ⁻³ M Monastrol -5.10 ⁻³ M TCNQ kompleksi Job grafiği için	
	deneysel veriler	29
Tablo 5.6.	10^{-3} M Monastrol - 10^{-3} M I ₂ kompleksi Job grafiği için deneysel	
	veriler	29
Tablo 5.7.	DHP-TCNE kompleksinin denge sabitinin belirlenmesi için	
	deneysel veriler	30
Tablo 5.8.	DHP-Pikrik Asit kompleksinin denge sabitinin belirlenmesi	
	için deneysel veriler	31
Tablo 5.9.	Monastrol-DDQ kompleksinin denge sabitinin belirlenmesi	
	için deneysel veriler	32
Tablo 5.10.	Monastrol-TCNQ kompleksinin denge sabitinin belirlenmesi	
	için deneysel veriler	33
Tablo 5.11.	Monastrol- I2 kompleksinin denge sabitinin belirlenmesi için	
	deneysel veriler	34
Tablo 5.12.	5.10 ⁻³ M DHP-5.10 ⁻³ MTCNE kompleksinin termodinamik	
	sabitlerinin belirlenmesi için kimyasal veriler	35
Tablo 5.13.	5.10 ⁻³ M DHP-5.10 ⁻³ M Pikrik Asit kompleksinin termodinamik	
	sabitlerinin belirlenmesi için kimyasal veriler	36

Tablo 5.14.	5.10 ⁻³ M Monastrol- 5.10 ⁻³ M DDQ kompleksinin termodinamik	
	sabitlerinin belirlenmesi için kimyasal veriler	37
Tablo 5.15.	5.10 ⁻³ M Monastrol- 5.10 ⁻³ M TCNQ kompleksinin	
	termodinamik sabitlerinin belirlenmesi için kimyasal veriler	38
Tablo 5.16.	5.10 ⁻³ M Monastrol-10 ⁻³ M I ₂ kompleksinin termodinamik	
	sabitlerinin belirlenmesi için kimyasal veriler	39
Tablo 6.1.	Elektron donor akseptör komplekslerin maksimum	
	absorbsiyon verdikleri dalga boyları	40
Tablo 6.2.	Komplekslerin denge sabiti değerleri	44
Tablo 6.3.	DDQ' nun 700 nm de 2 şer dakika ara ile bozunma değerleri	45
Tablo 6.4.	Komplekslerin termodinamik sabitleri	46
Tablo 6.5.	Benesi-Hildebrand grafiği deneysel toplu sonuçları	47
Tablo 6.6.	Benesi-Hildebrand grafiği deneysel toplu sonuçları	48

ÖZET

Anahtar Kelimeler: DHP, monastrol, TCNQ, TCNE, DDQ, I₂ ve yük transfer kompleksler.

Bu çalışmanın amacı; Dihidropiridin ve 3,4-dihidropirimidin–2-on bileşiklerinin elektron donor akseptör komplekslerinin nasıl oluşturduğunu incelemektir. Elektron akseptör olan TCNE, DDQ, pikrik asit ve I₂ ile elektron donorlar olan DHP ve Monastrol' ün elektron donor akseptör kompleksleri Spektrofotometrik olarak incelendi. Kompleks stokiometrileri Job Metodu, komplekslerin denge sabitleri Benesi-Hildebrand denklemi ve Termodinamik sabitleri Van't Hoff denklemi ile hesaplandı.

DHP -TCNE Kompleksi 500 nm de maksimum absorbans verdi. Kompleksin denge sabiti 184.162 L mol⁻¹, termodinamik sabitleri Δ H: -4404.17 cal. mol⁻¹, Δ S: -14.3 cal. mol⁻¹, Δ G^o: -3036.2 cal. mol⁻¹ dir. DHP –Pikrik Asit Kompleksi 495 de maksimum absorbans verdi. Kompleksin denge sabiti 12.346 L mol⁻¹, termodinamik sabitleri Δ H: -1906.34 cal. mol⁻¹, Δ S: -4.891 cal. mol⁻¹, Δ G^o: -1463.1 cal. mol⁻¹ dir. Monastrol-DDQ Kompleksi 546 nm de maksimum absorbans vermiştir. Kompleksin denge sabiti 45.95 L mol⁻¹, termodinamik sabitleri Δ H: -588,39 cal. mol⁻¹, Δ S: -4.59 cal. mol⁻¹, Δ G^o: -2228.1 cal. mol⁻¹ dir. Monastrol-TCNQ Kompleksi 742 nm de maksimum absorbans verdi. Kompleksin denge sabiti 491.4 L mol⁻¹, termodinamik sabitleri Δ H: -3619.1 cal. mol⁻¹, Δ S: -15.406 cal. mol⁻¹, Δ G^o: -3607 cal. mol⁻¹ dir. Monastrol- I₂ Kompleksi 370 nm de maksimum absorbans vermiştir. Kompleksin denge sabiti 625 L mol⁻¹, termodinamik sabitleri Δ H: -221.50 cal. mol⁻¹, Δ S: -5.19 cal. mol⁻¹, Δ G^o: -3747.5 cal. mol⁻¹ dir.

SYNTHESISOFDIHIDROPIRIDINAND3,4-DIHIDROPIRIMIDIN-2-ONCOMPOUNDSANDINVESTIGATIONOFCHARGETRANSFERCOMPLEXESSUMMARYSUMMARYSUMMARYSUMMARY

Key Words: DHP, Monastrol, TCNQ, TCNE, DDQ, I₂ ve yük transfer charge transfer complexes.

The purpose of this study is to examine how Dihydropiridine ve 3,4dihydropirimidin–2-on. Electron donor acceptor complexes of DHP and Monastrol as electron donors with TCNE, DDQ, picric acid and I_2 as electron acceptors have been examined spectrophotometricly. Stoichiometries of the complexes were determined by Job's method. Equilibrium constants of the complexes were calculated by Benesi-Hildebrand equation. Thermodynamic constants of the complexes were calculated by Van't Hoff equation.

EDA complexes of DHP –TCNE gave a maximum absorption at 500 nm. Equilibrium constant of the complex is 184.162 L mol⁻¹, thermodynamic constants of the complex; ΔH : -4404.17 cal. mol⁻¹, ΔS : -14.3 cal. mol⁻¹, ΔG° : -3036.2 cal. mol⁻¹. EDA complexes of DHP –Picric Asid gave a maximum absorption at 495 nm. Equilibrium constant of the complex is 12.346 L mol⁻¹, thermodynamic constants of the complex; ΔH : -1906.34 cal. mol⁻¹, ΔS : -4.891 cal. mol⁻¹, ΔG° : -1463.1 cal. mol⁻¹. EDA complexes of Monastrol-DDQ gave a maximum absorption at 546 nm. Equilibrium constant of the complex is 12.346 L mol⁻¹, thermodynamic constants of the complex; ΔH : -588,39 cal. mol⁻¹, ΔS : -4.59 cal. mol⁻¹, ΔG° : -2228.1 cal. mol⁻¹. EDA complexes of Monastrol-TCNQ gave a maximum absorption at 742 nm. Equilibrium constant of the complex is 12.346 L mol⁻¹, ΔG° : -3607 cal. mol⁻¹. EDA complexes of Monastrol-TCNQ gave a maximum absorption at 370 nm. Equilibrium constant of the complex is 625 L mol⁻¹, thermodynamic constants of the complex; ΔH : -221.50 cal. mol⁻¹, ΔS : -5.19 cal. mol⁻¹, ΔG° : -3747.5 cal. mol⁻¹ dir.

BÖLÜM 1. GİRİŞ

Dihidropiridin ve 3,4-dihidropirimidin–2-on bileşikleri antiviral, antitümör, antibakteriyel, antienflamatuar, antihipertansif aktivitelerinden ötürü farmakolojik öneme sahiptir. Bu bileşiklerin kalsiyum iyonu kanalı blokeri, insan α_{1a} adrenerjik reseptörleri seçici inhibitörü, platelet aktive edici faktör inhibitörü ve etkili HIV gp 120 CD 4 inhibitörü olarak etki gösterdikleri belirlenmiştir. Bir dihidropirimidin türevi olan monastrol, mitoz hücre bölünmesini bloke ettiği için yeni bir antikanser ajanı olarak ilgi çekmektedir[1]. Yakın zamanlarda çeşitli sağlık sorunlarının tedavisinde dihidropirimidin ve 3,4-dihidropirimidin-2-on bileşiklerinin kullanılmaya başlanması bu bileşiklerin sentezini önemli hale getirmiştir. Bu bileşiklerin birçoğu Biginelli ve Hantzsch reaksiyonu temel olarak alınıp reaktanlar ve katalizörlerde değişiklikler yapılarak sentezlenebilmektedir. Ancak geliştirilen yöntemlerin çeşitli sorunlara sahip olması bu konuda yeni araştırmaların yapılması ihtiyacını ortaya koymaktadır[2].

İlk defa Biginelli tarafından 1893'de 3,4-Dihidropirimidinlerin one-pot multikomponent sentezi(aynı kapta tek seferde çeşitli reaktanlardan ürün eldesi) gerçekleştirilmiş olmasına rağmen Biginelli' nin adıyla anılan reaksiyon ancak son yıllarda hak ettiği ilgiyi görmüştür. Biginelli, etil asetoasetat, benzaldehit ve üreden asidik şartlarda 3,4-dihidropirimidin–2-on bileşiğinin tek basamakta (aynı kapta) sentezi gerçekleştirmiştir[3].

1,4-dihidropirimidinler ilk olarak Arthur Hantzsch tarafından 1882 'de bulunmuştur ve uygulanmıştır. 1,4-dihidropiridinlerinin çoğu Hantzsch prosedürüne göre hazırlanmıştır. Bu prosedür oldukça basit ve ürünlerin izolasyonu oldukça kolaydır. Ayrıca, prosedür ılımlı olarak simetrik dihidropiridinler de iyi bir şekilde çalışmakta, fakat asimetrik dihidropiridinler de istenilen ürünlerin verimi hızlıca düşmektedir[4]. Bu nedenle de ürün verimi daha yüksek ve uygulanması daha pratik olan yeni 1,4-

dihidropirimidin ve 3,4-dihidropirimidin-2-on bileşikleri sentezlenip, ¹H-NMR, ¹³C-NMR ve Kütle spektrumlarına bakılarak yapıları doğrulanmıştır.

Elde edilen dihidropirimidin ve 3,4-dihidropirimidin-2-on bileşiklerinden, çeşitli akseptörler kullanılarak kompleks yapıları oluşturulup; oluşan komplekslerin stokiometrisi (Job metodu), denge sabiti (Benesi-Hildebrand) ve termodinamik değerleri (Van't Hoff yöntemi) hesaplandı.

BÖLÜM 2. GENEL BİLGİLER

2.1. Pirimidin Bileşikleri

Halka içinde iki azot atomu içeren altı üyeli sistemler diazinler olarak adlandırılırlar, bunlar; pirimidin, piridazin ve pirazin'dir.

Şekil 2.1 Diazinlerin Yapısı

Pirimidin iskeleti içeren çok çeşitli bileşikler vardır, bunlara genel olarak pirimidin türevleri denir. Bunların bir kısmı doğal ürünler iken, diğerleri laboratuarlarda sentezlenmiştir. Halkaya oksijen, kükürt ve amino grubu gibi yapıların bağlanması ile çok çeşitli pirimidin türevleri elde edilebilir. (Şekil 2.2)

2-pirimidon

2-tiyopirimidon 2-

2-aminopirimidin

3,4-dihidropirimidin-2(1H)-on

3,4-dihidropirimidin-2(1H)-tiyon

Şekil 2.2 Pirimidin Türevler

Birçok doğal ürün pirimidinlerden elde edilir. Doğada bulunan en önemli diazinlerden olan timin, sitozin ve urasil gibi pirimidin bazları çekirdek asitlerinin yapısında yer alır(Şekil 2.3)[2].

Timin Sitozin Urasil

Şekil 2.3 Pirimidin Bazları

Bazı pirimidin nükleosit analogları antiviral etki gibi çeşitli biyolojik aktiviteler gösterirler. Ayrıca pirimidin halkası thiamin vitamininin (vitamin B₁) yapısında da yer alır(Şekil 2.4)

Şekil 2.4 Thiamin Vitamininin yapısı

Barbitürik asit ve orotik asitde önemli doğal pirimidin türevleridir, bazı barbitürik asit türevleri (barbitüratlar) tedavi amacıyla kullanılırlar. Orotik asit ise doğal pirimidin türevlerinin biyosentezinde kullanılan anahtar bileşiktir, ayrıca bazı metabolik sorunların giderilmesinde de kullanılırlar (şekil 2.5)[6].

Şekil 2.5. Barbitürik asit ve orotik asidin yapısı

2.2. Dihidropirimidinler (DHPM)

3,4-dihidropirimidin–2(1H)-on bileşiklerinin ilk sentezi 1893 yılında Pietro Biginelli tarafından gerçekleştirildiği için bu bileşikler ve bunların çok çeşitli türevleri Biginelli bileşikleri olarak anılırlar[7]. Biginelli tarafından 1893'de 3,4-Dihidropirimidinlerin one-pot multikomponent sentezi (aynı kapta tek seferde çeşitli reaktanlardan ürün eldesi) gerçekleştirilmiş olmasına rağmen ancak son yıllarda gerekli önemini kazanabilmiştir[3]. Klasik Biginelli reaksiyonu, üç bileşenin asit katalizörlüğünde one-pot (tek kapta) siklokondenzasyonudur. Bir 1,3-dikarbonil bileşiği ile bir aromatik aldehit ve üre yada tiyoüre etanol içinde katalitik miktarda HCl ilave edilerek refluks edilmesi sonucun da bir dihidroprimidon türevi oluşur[8]. Biginelli reaksiyonunun mekanizması çeşitli araştırma grupları tarafından incelenmiş, ilk mekanizma önerisi 1933'de Folkers ve Johnson tarafından yapılmıştır[9].

Şekil 2.6. Biginelli reaksiyonunun mekanizması

Biginelli reaksiyonunun yürütülmesinde çok çeşitli katalizörler kullanılmaktadır; Lewis asitleri, Bronsted asitleri, Mn(OAc)₃, LiBr, amonyum tuzu, katı destekler, kil, NH₂SO₃H(ultrason), CeCl₃, FeCl₃ / Si-MCM-41(mikrodalgada), Lantanit triflatlar, ZnI₂ bunlardan bazılarıdır[10]. Biginelli bileşikleri kalp-damar sistemini, prostat bezi, hücre bölünmesi üzerinde çeşitli etkilere sahiptirler, ayrıca antitümör, antiviral etki gibi çeşitli biyolojik aktiviteler gösterirler. Bu bileşiklerin, biyolojik etkinliği önceden bilinen nifedipin molekülüne yapısal benzerliğinden ötürü benzer etkilerinin olabileceği düşüncesi bu konudaki çalışmaların başlamasına yol açmıştır[11]. 3,4-dihidropirimidin–2(1H)-on bileşikleri de antiviral, antitümör, antibakteriyel, antienflamatuar, antihipertansif aktivitelerinden ötürü farmakolojik öneme sahiptir. Bu bileşiklerin kalsiyum iyonu kanalı blokeri, insan α_{1a} adrenerjik reseptörleri seçici inhibitörü, platelet aktive edici faktör inhibitörü ve etkili HIV gp 120 CD 4 inhibitörü olarak etki gösterdikleri belirlenmiştir. Bir dihidropirimidin türevi olan monastrol, mitoz hücre bölünmesini bloke ettiği için yeni bir anti kanser ajanı olarak ilgi çekmektedir[7].

Dihidropirimidinlerin yapısının, klinik önemi olan dihidropiridinlerden nifedipin türü kalsiyum kanalı blokerlerine benzemesinden ötürü son yirmi yılda bu bileşiklere olan ilginin artmasından dolayı bunların sentezi ve biyolojik aktiviteleri üzerine pek çok çalışma yapılmıştır. Bu çalışmaların önemli bölümünde Biginelli reaksiyonun özüne sadık kalınarak reaktanlarda ve şartlarda değişiklikler yapılarak çok çeşitli dihidropirimidinler elde edilmiştir. Bu bileşiklerin genel formulasyonu şekil 2.7' de gösterilmiştir[12].

Şekil 2.7. Dihidropirimidin yapısında yer alabilecek substituentler ve yerleşme pozisyonları

Klasik Biginelli siklokondensazyon reaksiyonunda yer alan üç bileşende de değişiklikler yapılarak çok çeşitli dihidropirimidin türevleri sentezlenmiştir. Benzaldehit yerine çok çeşitli substitüe aromatik, alifatik ve heterosiklik aldehitler kullanılmıştır. Karbonhidrat türevi aldehitler kullanılarak 4. pozisyonunda şeker türevleri içeren C-nükleosit anologları olan pirimidinlerin elde edilmesi ilgi çekicidir[13]. Standart Biginelli reaksiyonundaki aldehit yerine kullanılabilen maddelerden biriside α - β -dikloroetil eterdir. Böylece dihidropirimidinin 4-klorometil türevi elde edilir[14]. Metilen üre ile etil asetoasetattın reaksiyonu ile 4. pozisyonuna grup takılmamış türev hazırlanmıştır, bazı durumlarda korunmamış aldehitler yerine

aldehit diasetatlar kullanılmıştır[3]. β-ketoester bileşeni olarak sıklıkla kullanılan alkil asetoasetatlardan başka, benzil asetoasetat, (-)-mentil asetoasetat, β-kloroetil asetoasetat, 2-furnilmetil asetoasetat, etiltiyo-asetoasetat, gibi asetoasetik asit esterleri de Biginelli reaksiyonunda kullanılmıştır[15]. Üre bileşeni yerine de substitüe üreler ve tiyoüreler kullanılmıştır[16].

Şekil 2.8. Kalsiyum kanalı modülatörü DHPM' lerin yapıları

Dihidropirimidin bileşikleri ile yükseltgenme, indirgenme, N-alkilasyonu, Salkilasyonu, N-açilasyonu, C-5 pozisyonundaki ester grubunun hidrolizi, C-6 pozisyonun bromlanarak aktive edilmesi, halka dönüşümleri, intramoleküler Friedel-Crafts açilasyonu ve intramoleküler Michael katılması gibi reaksiyonların gerçekleştirilebilmesi sonucunda çok çeşitli dihidropirimidin türevleri elde edilebilmektedir[11]. En yaygın kullanılan kalsiyum kanal blokerleri; verapamil, diltiazem ve nifedipine'dir[17].

2.2.1. Monastrol

Bir dihidropirimidin türevi olan monastrol, mitoz hücre bölünmesini bloke ettiği için yeni bir anti kanser ajanı olarak ilgi çekmektedir[1]. Bu nedenle de yeni bir anti kanser ilacının üretimin de kullanılabilir[18]. Russowsky ve arkadaşları monastrol ve çeşitli türevlerinin antiproliferatif aktivitelerini yedi ayrı insan kanser hücresi türü üzerinde çalışarak etkililiklerini göstermişlerdir[19].

Monastrolun antimitotik aktivitesi çok yüksek olmamakla beraber yapısal benzerleri daha iyi aktivite gösterebilir[20].

Monastrol

2.3.1. 4-Dihidropiridinler

1,4-dihidropirimidinler ilk olarak Arthur Hantzsch tarafından 1882 'de bulunmuştur ve uygulanmıştır[4]. Bu reaksiyon amonyak ve etilasetoasetatın asetik asit veya alkol içerisinde herhangi bir aldehit ile uzun bir süre reflux edilmesiyle gerçekleşmektedir[5,21].

Şekil 2.9 Hantzsch prosedürüne göre 1,4-DHP sentezi

4-aril-1,4-dihidropiridinler, 1975'de klinikal gelişimlerinden bu yana en çok çalışılan organik kalsiyum kanal modülatörü olmuşlardır. Bunlar hipertansiyon veya anjin gibi bir çok hastalıkların tehlikelerini önlemede kullanılırlar[22]. Ayrıca, 4-aril-1,4-dihidropiridinleri içeren ilaçların damar genişletici, bronşları rahatlatıcı ve sinirleri koruyucu etkileri vardır[8].

2.3.1. Nifedipine

En yaygın kalsiyum kanal blokesi olup, arteryel düz kas relaksasyonu ile kan basıncını düşürür[23], damar düz kas hücre membranlarında özellikle voltaja bağımlı kalsiyum kanallarını bloke eder. Damar genişletici etkisi belirgindir. Ayrıca nifedipin türevi ilaçların sodyum ve su artırıcı etkisi vardır[24]. Etkisini; Periferik vasküler direnci azaltarak gösterir[25].

2.3.2. Nitrendipine

DHP türevi vazoselektif bir kalsiyum antogonistidir. Nifedipine benzerlik gösterir. DHP türevi ilaçların vücuttan atılımı kolay olmaktadır. Hipertansiyon tedavisinde kullanılmaktadır[24].

Nitrendipine

BÖLÜM 3. ULTRAVİYOLE SPEKTROSKOPİSİ

3.1. Ultraviyole ve Görünür Alan Spektroskopisi

UV spektrumu 200- 400 nm aralığını kapsamaktadır. Bunun nedeni ise, atmosferdeki karbondioksitin 200 nm nin altında belirgin olmasıdır[26]. Bu spektroskopiler, elektronik spektroskopi olarak da adlandırılır[27]. Elektronik spektroskopi ışınlarının enerjileri, değerlik orbitalleri arasındaki elektron geçişlerinin enerjileri düzeyinde olduğundan, bu bölgedeki fotonların soğurulması ile elektronik enerji düzeyleri arasında geçiş olur ve madde uyarılır. Elektromanyetik dalgaların uygun enerjili fotonunu soğuran maddenin bir elektronu, daha yüksek enerjili bir düzeye çıkar. Bu şekilde de madde uyarılmış olur. Elektronun uyarılması için gerekli enerji, uygun enerjili fotonun soğurulmasından sağlanır. Madde tarafından enerji soğurulduğu için, spektrumun buna karşı gelen dalga boyunda bir soğurma piki oluşur. Soğurma şiddeti, uyarılan atom veya moleküllerin sayısı ile orantılıdır. Soğurma bandının yeri, özellikle soğurmanın en yüksek yerine gelen dalga boyu, soğurmanın şiddeti ve soğurmaya yol açan elektronik geçişin türü hakkında bilgi verir[28].

Elektromanyetik ışınım görünüşte birbiriyle çelişen iki özelliğe birden sahiptir. Yani hem dalga hem de parçacık karakterindedir. Elektromanyetik ışınım, elektrik ve manyetik alanlardan oluşan bir dalga olarak açıklana bildiği gibi, kuant veya foton adı verilen parçacıklardan ibaret olduğu şeklinde de açıklanabilir.

3.2 Elektronik Uyarma

Bir molekül tarafından mor ötesi ışımanın soğurulması, elektronik uyarmaya neden olur ve bir elektron düşük enerjili bir elektronik düzeyden daha yüksek enerjili bir düzeye geçer. Mor ötesi spektrumlarda elektronların türüne göre temel ve uyarılmış düzeyler arasındaki geçişlerin enerjileri farklıdır. Atom gruplarında soğurma yapan değerlik elektronları 3 türlüdür: Bağ yapmış σ (sigma), π (pi) ve bağ yapmamış n elektronları. Uyarılmış düzeyler ^{*} ile işaretlenir. Pek çok molekül için π enerji düzeyleri, σ enerji düzeylerinden daha yüksektir ve bağ yapmamış n elektronları σ elektronlarından daha yüksek enerji düzeyinde bulunur. Temel ve uyarılmış düzeyler arasındaki enerji farkı ΔE ile gösterilirse $\Delta E \ \sigma \rightarrow \sigma^* > \Delta E \ n \rightarrow \sigma^* \sim \Delta E \ \pi - \pi^* > \Delta E \ n - \pi^*$ dir. $\sigma \rightarrow \pi^*$ ve $\pi \rightarrow \sigma^*$ geçişleri önemli değildir[27].

Bu altı geçişten en çok rastlananları ve tayinde kullanılanları π - π^* ve n- π^* geçişleridir. Çünkü bunlar düşük enerji geçişleridir. $\sigma \rightarrow \sigma^*$ geçişi ise çok enerji isteyen bir geçiştir. Bu geçiş çok kısa dalga boylu ışınlarla ve özel olarak yapılmış vakum UV cihazlarıyla gerçekleşir[29].

Sonuç olarak; temel düzeyden uyarılmış düzeye geçiş, basitçe en düşük enerjili boş bir molekül yörüngesinden (LUMO), en yüksek enerjili dolu bir molekül yörüngesine (HOMO) geçişe karşılık gelir. Fakat her bir elektronik düzeye titreşme düzeyleri ve her bir titreşme düzeyine dönme düzeyleri karşılık geldiğinden, elektronik uyarma titreşme ve dönme uyarmasına da yol açar ve sonuçta ince bir mor ötesi soğurma piki yerine, geniş bir mor ötesi bandı elde edilir[27].

3.3. Ultraviyole Spektroskopisinin Uygulamaları

Mor ötesi -görünür bölge spektroskopisi, organik kimyada en çok yapı analizinde ve kantitatif analizde kullanılır. Mor ötesi spektrumları yardımıyla hidrojen bağının şiddeti ölçülebilir, tautomeri dengeleri çalışılabilir ve reaksiyonların hız ve denge sabitleri hesaplanabilir.

Kantitatif analizde mor ötesi görünür bölge spektroskopisi oldukça değerli, basit ve ucuzdur. Burada yapılacak iş, Lambert-Beer yasasına göre (analizi yapılacak bileşiğin çalışılan derişim aralığında yasaya uyduğu kabul edilir.), $A = \varepsilon.l.c$, c derişimine karşı A soğurganlığına karşılık gelen c derişimi bulunur. Eğer bileşik için ε değeri belliyse A soğurganlığı ölçülerek c derişimi hesaplanır. $A = \varepsilon l. c$

A= Absorbans değeri ε= Molar Absorptivite L= Işığın çözelti içerisinde kat ettiği yol C= Işığın geçtiği çözeltinin konsantrasyonu

Bu yolla ilaç ve gıda endüstrisinde kalite ve saflık kontrolü de yapılmaktadır. Vitaminlerin, alkoloidlerin ve steroidler gb. farmasotik preparatların analizinde mor ötesi spektroskopisi çok kullanılır. Çünkü bu bileşiklerde bulunan dien, polien, enon ve dienon gb. konjuge sistemler belirgin mor ötesi soğurmalara neden olular. Proteinin biyolojik analizi için en çok uygulanan yöntem, 280 nm' deki soğurmasının ölçülmesine dayanır. Enzim aktifliği de mor ötesi spektrumunda ölçülmektedir.

Bir bileşik mor ötesi spektrumunda soğurma yapmıyorsa, mor ötesinde soğurma yapan bir başka bileşiğe, bir türevine veya bir kompleksine dönüştürülerek de analizi yapılabilir. Örneğin et ve balığın parçalanması sırasında trimetilamin açığa çıkar. Et ve balığın kalitesinin bulunması için pikrik asit ile etkileştirilir; bu yolla, trimetilamin, 358 nm de soğurma yapan pikrat türevine dönüştürülerek mor ötesi yapılabilir[27].

3.4. Yük Transfer Kompleksleri

Yük-transfer kompleksleri kimyasal reaksiyonlara ilaveten, canlı organizmalarda ve biyolojik ortamlarda da önemli derecede rol oynarlar. Yük transfer komplekslerinin oluşturulması ve yapılarının aydınlatılması, bir çok organik reaksiyonlarda, makromoleküler bileşiklerde ve elektriksel iletkenliklerde son derece önemlidir. Yük transfer komplekslerinin önemi anorganik kimyada özellikle büyüktür. Geçiş metal bileşiklerinin renkli olmalarının d orbitallerindeki elektron geçişlerinden ileri geldiği söylenebilir. Elektron geçişleri ile ilgili enerjinin, ışık spektrumunun görünür bölgesine (720- 400 nm) rastlaması halinde bileşikler renkli olarak görülür. Elektron geçişleri başlıca iki türdür: Bunlardan birincisinde metalin d orbitallerinin birindeki elektron, yine metalin diğer bir d orbitaline geçer. Böyle geçişlere d-d geçişi denir. d-d geçişlerinde, atomdan atoma elektron göçü söz konusu değildir. İkinci tür elektron geçişlerine yük transfer geçişi denir.

Bu geçişlerde iki türdür. Birincisinde akseptör karakterli bir orbitalden donor ağırlıklı bir orbitale (A \rightarrow D) elektron geçişi olur. Diğerinde ise donor ağırlıklı bir orbitalden akseptör ağırlıklı bir orbitale (D \rightarrow A) elektron geçişi vardır. Atomdan atoma elektron geçişi söz konusu olduğundan, bu geçişlere yük transfer geçişleri denir[30]. Bu tür geçişte donor ve akseptör arasındaki etkileşimden hariç elektrostatik bir güç söz konusudur ki bu güç, hidrojen ve kovalent bağdan genellikle daha güçlüdür. Ayrıca bu güç kristal yapıların oluşumu için faydalıdır[31].

Yük transfer geçişlerinde atomların başlangıç ve son hallerindeki yüklerinde önemli derecede değişiklik olur. Yük transfer geçişleri izinli geçişler olduğundan olasılığı fazladır ve buna karşılık olan ışık soğurması çok şiddetlidir. d-d geçişleri ise genelde yasaklı geçişlerdir. Onun içinde ışık soğurması zayıftır. Kaba bir karşılaştırma yapılırsa, d-d geçişleri soluk renklere, yük transfer geçişleri de belirgin renklere neden olur denilebilir[30].

3.5. Kompleksin Denge Sabitinin Belirlenmesi

Denge sabitinin belirlenmesi çeşitli koşullar altında organik yük transfer komplekslerin büyük bir çoğunluğunda uygulanmaktadır[32]. Ayrıca denge sabitin belirlenmesinde çoğunlukla seyreltik çözelti kullanılır. Genel anlamda donor ve akseptör gibi birbirini etkileyen türleri taşıyan çözeltiler yalnızca donor ve akseptörün absorbsiyonunu göstermezler. Genellikle ölçümler bileşen türlerinin zayıf absorblama yaptığı bölgede yapılır. Bir 1:1 EDA kompleksinin oluştuğu ideal bir sistemde kompleksin denge sabiti Benesi-Hildebrand denklemi ile belirlenir[32,33].

3.6. Kompleks Stokiometrisinin Belirlenmesi

Kompleks stokiometrisini bulmak için 3 yöntem vardır;

- 1. Mol oranı yöntemi
- 2. Eğim yöntemi
- 3. Job yöntem

mol oranı yönteminde; stokiometresi bilinmeyen kompleksin donorünün uygun konsantrasyonlarda bir çözelti hazırlanıp spektrumu alınır. Bu yöntemle bir donordan birden fazla kompleksin meydana gelip gelmediğine bakılır. Eğim oranı yöntemi de; oluşan kompleks bir tane ve zayıf olduğu zaman uygulanmaktadır.

Donor ve akseptörden oluşan bileşik için iyi bir çözücü ve iyi bir absorbsiyon maksimumu bulunabilirse böyle bir maddenin kaçar donor ve akseptörden meydana geldikleri bulunabilir. Bunu için donor ve akseptörden oluşan maddenin bir spektrumu alınır, bu spektrumun en şiddetli absorbsiyonunun dalga boyu belirlenir ve cihaz bu dalga boyuna ayarlanır. Donor ve akseptörün aynı konsantrasyonda birer çözeltisi hazırlanır ve farklı oranlarda karıştırılarak absorbsiyonları ölçülür. Ölçülen bu değerlere göre de akseptörün ml değerine karşı grafiğe geçilerek meydana gelen kompleksin 1:1 veya farklı oranlarda olduğu bulunabilir[29].

3.7. Komplekslerin Termodinamik Değerlerinin Belirlenmesi

Yük transfer komplekslerinin termodinamik sabitleri (Δ H, Δ S ve Δ G), komplekslerin oluşumlarının farklı sıcaklıklarda incelenmesiyle bulunabilir. Bunun içinde genellikle Van't Hoff ve Lambert-Beer denkleminden faydalanılır.

 $\ln ABS = -\Delta H/RT + \Delta S/R$

ln ABS ye karşı T⁻¹ (K) çizilen grafiğin eğiminden Δ H doğrusunun kesim noktasından Δ S ve -RTlnK denkleminden de Δ G hesaplanır[32,34].

BÖLÜM 4. MATERYAL VE METOD

4.1. Kullanılan Bileşikler ve Cihazlar

Deneysel çalışmalarda ısı kaynağı olarak IKA Labortechnic ve ISOPAD marka ısıtıcılı karıştırıcılar kullanıldı. Tartımlar OHAUS Analytical marka hassas terazide yapıldı. Merck marka akseptörler (TCNE, DDQ, I₂, TCNQ ve Pikrik Asit) ve çözücüler (Kloroform ve Asetonitril) kullanıldı. Aldehit olarak Fluka marka 3-Nitrobenzaldehit kullanıldı. Bileşiklerin ve komplekslerin spektrumları Shimadzu UV-2401 PC UV-VIS Recording Spektrophotometer marka spektrofotometre kullanılarak alındı. Burada P/N-200-34442 UV okuma küvetleri kullanıldı. Elde edilen bileşiklerin erime noktaları ELECTROTHERMAL IA 9100 marka dijital erime noktası tayin cihazı kullanılarak tespit edildi.¹H NMR ve ¹³C NMR spektrumları VARIAN Mercury Plus model, 300 MHz'lik NMR cihazı ile elde edildi.

4.2. Kullanılan Dihidropirimidin(DHPM) ve Dihidropiridinin Sentezi

4.2.1.Dihidropirimidin türevi monastrol' ün ASA katalizörü ile sentezi

3-hidroksi benzaldehit (3mmol), etil asetoasetat (3mmol), tiyoüre (4.5mmol) ile katalizör (0.2 g; 0.6 mmol) bir test tüp içine alınıp magnetik karıştırıcı kullanılarak oda sıcaklığında 0.5- 2 saat süre ile ortam katılaşıp magnet dönemeyecek hale gelene kadar karıştırıldı. Oluşan katı 50 ml buzlu suya dökülerek karıştırıldı. Çökelti cam krozede süzüldü, artan üreyi uzaklaştırmak için 20 ml soğuk su ile yıkandı ve etil alkolde çözüldü. Çözelti içindeki katalizör süzülerek uzaklaştırıldı. Süzüntü içindeki dihidropirimidinon türevi kristallendirilerek saflaştırıldı. Elde edilen bileşiklerin yapıları ¹H ve ¹³C NMR spektrumları ile doğrulandı ve erime noktaları belirlendi.

4.2.2. 4-(3-Nitrofenil)-2,6-dimetil-1,4-dihidropiridin-3,5-dikarboksilikasitdietil ester sentezi (DHP)

4mmol öğütülmüş üre ve 1.75 gr katalizör bir miktar silika ile güzelce karıştırıldı. Daha sonra etilasetoasetat ve diklorometan da çözülmüş 3-Nitrobenzaldehit beraber silikaya ilave edildi. Çözücü uzaklaştırıldı ve 5 dakika mikrodalga ısıtıldı. Isıtma işlemi bittikten sonra oluşan maddeyi silikadan almak için; diklorometanla çözüp süzüldü. Elde edilen bileşiklerin yapıları ¹H ve ¹³C NMR spektrumları ile doğrulandı ve erime noktaları belirlendi.

4.3. Deneyde Kullanılan Bileşiklerin Spektrumlarının Belirlenmesi

Oda sıcaklığında çözücü olarak kloroform ve asetonitril kullanılarak belirli molaritelerde Monastrol, DHP, TCNE, DDQ, I₂, TCNQ ve Pikrik Asit çözeltileri hazırlandı. Spektrum okunmasında çözücü olarak kloroform ve asetonitril kullanıldı ve 300- 800 nm dalga boyları arasında bileşikler tarandı ve absorbans değerleri alındı.

4.4. Kompleks Oluşumlarının Belirlenmesi

DHP, TCNE, DDQ ve Pikrik Asit' in kloroform da ve tekrardan Monastrol, DDQ, I₂ ve TCNQ' un asetonitrilde belirli molaritelerde çözeltileri hazırlandı. Her bir çözeltiden 1ml alınarak 3 ml' lik UV küvetlerinde toplam hacim 2 ml olacak şekilde DHP- TCNE, DHP- DDQ, DHP- Pikrik Asit, Monastrol- DDQ, Monastrol- TCNQ ve Monastrol-I₂ donor-akseptör çiftleri şeklinde UV küvetlerine doldurularak karışımların spektrumları alındı.

4.5. Komplekslerin Stokiometrisinin Belirlenmesi

DHP' nin, TCNE, DDQ ve Pikrik Asit ile ve Monastrol, DDQ, I₂ ve TCNQ ile oluşturdukları komplekslerin stokiometresi Job Yöntemi kullanılarak belirlendi. Bu yöntem uygulanırken, aynı konsantrasyondaki donor ve akseptörleri toplam hacim

2ml olacak şekilde 3 ml 'lik UV küvetlerine farklı yüzdelik dilimlerde karıştırıldı ve oluşan komplekslerin maksimum absorbsiyonda verdikleri dalga boylarındaki absorbans değerleri akseptörün hacim oranına karşı grafiğe geçirildi. Çizilen grafikte ise, maksimum absorbans değerine karşılık gelen akseptörün mol oranı, kompleksin stokiometrisini verir.

4.6. Komplekslerin Denge Sabitlerinin Belirlenmesi

Komplekslerin denge sabitlerinin belirlenmesinde çözeltiler hazırlanırken D/A veya A/D oranının yaklaşık 100/3 civarında olmasına özen gösterildi. DHP- TCNE için 5 ml 6.10⁻⁴ M TCNE çözeltisi kloroform kullanılarak hazırlandı. Küvete 2.10⁻² M DHP tartıldı. Hazırlanan çözeltiden 2ml alınarak küvette bulunan DHP üzerine ilave edildi ve kompleks oluşumu için bir süre bekledikten sonra maksimum absorbsiyon yaptığı dalga boyunda absorbans değeri kaydedildi. Daha sonra her defasında 0,2ml'lik porsiyonlar halinde TCNE çözeltisinden küvete ilave edilerek aynı işlemler tekrarlandı. Oluşan EDA kompleksinin denge sabiti aşağıda verilen Benesi-Hildebrand denklemi ile hesaplandı.

$$D/Abs = 1/K\varepsilon[A] + 1/\varepsilon$$
 veya $A/Abs = 1/K\varepsilon[D] + 1/\varepsilon$

Bu denklemde [A]/ Abs değerlerinin 1/[D] değerlerine karşılık çizilen grafiğin eğiminden Kɛ değerleri hesaplandı.

4.7. Komplekslerin Termodinamik Sabitlerinin Belirlenmesi

Komplekslerini belirlemek için eşit molaritede donor ve akseptör çözeltileri hazırlandı. Ölçümler 7, 14, 21, 28 ve 35 0 C de yapıldı. UV okumalarında DHP için kloroform Monastrol için asetonitril kullanılarak kör nokta belirlendi. Komplekslerin maksimum absorbsiyon verdikleri dalga boylarındaki absorbans değerleri kaydedildi ve Van't Hoff denklemi gereğince ln [Abs × (dgf)²] ye karşı 1/T (K) grafiği çizildi. Burada dsf: ölçüm yapılan sıcaklıktaki doğrulma faktörüdür. Elde edilen grafiğin eğimi – Δ H/ R, kesim noktası ise Δ S /R değerine karşılık gelir. Burada R: 1,987 cal.

mol⁻¹ olarak alınır. Elde edilen grafiklerden ΔH ve ΔS değerleri hesaplandı. ΔG değeri ise $\Delta G = -RTlnK$ formülü kullanılarak hesaplandı.

BÖLÜM 5. DENEYSEL BULGULAR

5.1. Deneyde Kullanılan Monastrol ve DHP' nin Sentezi

5.1.1. Etil 4-(3-hidroksifenil)-6-metil-2-tiyookso-1,2,3,4-tetrahidropirimidin-5karboksilat [monastrol]

0.366 gr. (3 mmol) 3-hidroksibenzaldehit, 0,39 gr. (3 mmol) etilasetoasetat ve 0.34 gr. (4.5 mmol) tiyoüre kullanarak % 75 verimle 0.658 gr. (2.25 mmol) elde edildi. E.n. 183-184 °C. ¹H NMR ve ¹³C NMR ları Ek 2-3 de verilmiştir. ¹H NMR (300 MHz, DMSO-d₆): δ 1.10 (3H, t, CH₃CH₂O), 2.25 (3H, s, CH₃), 3.97 (2H, q, CH₃CH₂O), 5.06 (1H, s, CH), 6.60-6.64 (3H, m, Ar CH), 7.08 (1H, t, Ar CH), 9.42 (1H, s, -OH, 9.57 (1H, s, NH), 10.27 (1H, s, NH),). ¹³C NMR (75 MHz, DMSO-d₆): δ 14.70, 17.82, 54.61, 60.27, 101.44, 113.89, 115.28, 117.68, 130.16, 145.47, 145.50, 158.11, 165.85, 174.83.

5.1.2. 4-(3-Nitrofenil)-2,6-dimetil-1,4-dihidropiridin-3,5-dikarboksilikasitdietil ester [DHP]

1 gr. (1 mmol) 3-Nitrobenzaldehit, 1.70 gr. (4mmol) öğütülmüş üre, 1.45 gr. etilasetoasetat ve 1.75 gr katalizör kullanılarak %75 verimle 2.80 gr. ürün elde edildi. E.n. 117-118 °C. ¹H NMR ve ¹³C NMR ları Ek 4-5 de verilmiştir. ¹H NMR (300 MHz, CDCl₃): δ 1.10 (6H, t, CH₃CH₂O), 2.25 (6H, s, CH₃), 4.06 (4H, q, CH₃CH₂), 5.06 (1H, s, CH), 5.8 (1H, s, NH), 7.08- 8.1 (1H, Ar CH). ¹³C NMR (75 MHz, DMSO-d₆): δ 14.460, 19.893, 40.189, 60.22, 103.609, 121.561, 123.355, 128.803, 134.752, 144.867, 148.374, 150.114, 167.315.

5.2. Deneyde Kullanılan Bileşiklerin Spektrumları

Deneyde, donor olarak kullanılan DHP ve akseptör olarak kullanılan TCNE, DDQ ve Pikrik asidin kloroformdaki spektrumları ile donor olarak kullanılan Monastrol ve TCNQ, DDQ, I₂ akseptörlerinin asetonitrildeki spektrumları aşağıda şekilde verilmektedir.

DHP, TCNE, DDQ ve Pikrik asidin kloroformdaki spektrumları Şekil 5.1- 5.4 de, Monastrol, DDq, TCNQ ve I_2 nin spektrumları Şekil 5.5-5.8 de verilmiştir.

Şekil 5.1. 5.10⁻³M DHP' nin kloroformdaki spektrumu

Şekil 5.2. 5.10⁻³M TCNE' nin kloroformdaki spektrumu

Şekil 5.3. 5.10⁻³M DDQ' nun kloroformdaki spektrumu

Şekil 5.4. 10⁻³M Pikrik Asidin kloroformdaki spektrumu

Şekil 5.5. 5.10⁻³M Monastrol' ün asetonitrildeki spektrumu

Şekil 5.6. 5.10⁻³M DDQ' nun asetonitrildeki spektrumu

Şekil 5.7. 5.10⁻³M TCNQ' nun asetonitrildeki spektrumu

Şekil 5.8. 10⁻³M I₂' nin asetonitrildeki spektrumu

5.3. Kompleks Oluşum Spektrumları

Donor ve akseptör çözeltilerinin belirli oranlarda karıştırılması ile oluşan EDA komplekslerinin spektrumları aşağıda Şekil 5.9- 5.13 de verilmiştir.

Şekil 5.9. DHP- TCNE kompleksinin kloroformdaki spektrumu

Şekil 5.10. DHP- DDQ kompleksinin kloroformdaki spektrumu

Şekil 5.11. DHP- Pikrik asit kompleksinin kloroformdaki spektrumu

Şekil 5.12. Monastrol- DDQ kompleksinin asetonitrildeki spektrumu

Şekil 5.13. Monastrol- TCNQ kompleksinin asetonitrildeki spektrumu

Şekil 5.14. Monastrol- I2 kompleksinin asetonitrildeki spektrumu

5.4. Komplekslerin Stokiometrileri

5.4.1. DHP -TCNE kompleksinin stokiometresi

DHP -TCNE kompleksinin stokiometrisini belirlemek için deneysel veriler Tablo 5.1 de verilmiştir.

% TCNE	0	10	20	40	50	60	80	90	100
% DHP	100	90	80	60	50	40	20	10	0
ABS	-0,005	0,212	0,79	1,54	2,10	2,52	2,21	1,47	0,01

Tablo 5.1. 5.10⁻³M DHP- 5.10⁻³M TCNE kompleksi Job grafiği için deneysel veriler

5.4.2. DHP- DDQ kompleksinin stokiometresi

DHP –DDQ kompleksinin stokiometrisini belirlemek için deneysel veriler Tablo 5.2 de verilmiştir.

Tablo 5.2. 5.10⁻³M DHP- 5.10⁻³M DDQ kompleksi Job grafiği için deneysel veriler

%DDQ	0	10	20	40	50	60	80	90	100
% DHP	100	90	80	60	50	40	20	10	0
ABS	-0,005	0,5	1,123	1,9	2,32	2,12	1,404	0,77	0,405

5.4.3. DHP- Pikrik asit kompleksinin stokiometresi

DHP–Pikrik Asit kompleksinin stokiometrisini belirlemek için deneysel veriler Tablo 5.3 de verilmiştir.

Tablo 5.3. 10⁻³M DHP- 10⁻³M Pikrik Asit kompleksi Job grafiği için deneysel veriler

%PİKRİK A.	0	10	20	40	50	60	80	90	100
% DHP	100	90	80	60	50	40	20	10	0
ABS	-0,008	0,033	0,08	0,145	0,199	0,16	0,09	0,05	0,03

5.4.4. Monastrol- DDQ kompleksinin stokiometresi

Monastrol-DDQ kompleksinin stokiometrisini belirlemek için deneysel veriler Tablo 5.4 de verilmiştir.

Tablo 5.4. 5.10⁻³M Monastrol -5.10⁻³M DDQ kompleksi Job grafiği için deneysel veriler

% DDQ	0	10	20	40	50	60	80	90	100
% MONASTROL	100	90	80	60	50	40	20	10	0
ABS	-0,003	0,12	0,14	0,18	0,221	0,19	0,152	0,13	0,098

5.4.5. Monastrol- TCNQ kompleksinin stokiometresi

Monastrol- TCNQ kompleksinin stokiometrisini belirlemek için deneysel veriler Tablo 5.5 de verilmiştir.

%TCNQ	0	10	20	40	50	60	80	90	100
% MONASTROL	100	90	80	60	50	40	20	10	0
ABS	-0,021	0,003	0,011	0,02	0,02	0,015	0,01	0,004	-0,02

5.4.6. Monastrol- I₂ kompleksinin stokiometresi

Monastrol- I_2 kompleksinin stokiometrisini belirlemek için deneysel veriler Tablo 5.6 da verilmiştir.

Tablo 5.6. 10^{-3} M Monastrol -10^{-3} M I₂ kompleksi Job grafiği için deneysel veriler

% I ₂	0	10	20	40	50	60	80	90	100
% MONASTROL	100	90	80	60	50	40	20	10	0
ABSORPSİYON	0,012	1,657	2,12	2,92	3,23	2,88	1,94	1,19	0,19

5.5. Komplekslerin Denge Sabitlerinin Belirlenmesi

5.5.1. DHP -TCNE kompleksinin denge sabiti

DHP -TCNE kompleksinin denge sabitini belirlemek için deneysel veriler Tablo 5.7 de, Benesi- Hildebrand grafiği Şekil 5.14 de verilmiştir.

DHP				
mol/ L	Küvet Hacmi	ABS	TCNE/ABS	I/ DHP
2.10 ⁻²	2	0,3542	1,694.10 ⁻³	50
9,09.10 ⁻³	2,2	0,3409	$1,760.10^{-3}$	55
8,33.10 ⁻³	2,4	0,3365	$1,783.10^{-3}$	60
7,69.10 ⁻³	2,6	0,3295	1,8209.10 ⁻³	65
7,14.10 ⁻³	2,8	0,3231	1,857.10 ⁻³	70
6,66.10 ⁻³	3	0,32	$1,875.10^{-3}$	75
6,25.10 ⁻³	3,2	0,3135	1,9138.10 ⁻³	80
5,88.10 ⁻³	3,4	0,3050	1,9672.10 ⁻³	85
5,55.10 ⁻³	3,6	0,2980	2,013.10 ⁻³	90
5,26.10 ⁻³	3,8	0,2956	2,0297.10 ⁻³	95

Tablo 5.7. DHP-TCNE kompleksinin denge sabitinin belirlenmesi için deneysel veriler

Şekil 5.15. DHP-TCNE kompleksinin 500nm'de 22°C(±1)de Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi

5.5.2. DHP –Pikrik asit kompleksinin denge sabiti

DHP–Pikrik Asit kompleksinin denge sabitini belirlemek için deneysel veriler Tablo 5.8 de, Benesi- Hildebrand grafiği Şekil 5.15 de verilmiştir.

DHP mol/ L	Küvet Hacmi	ABS	Pikrik Asit/ABS	1/ DHP
10 ⁻²	2	0,0782	3,8363.10 ⁻³	100
9,09.10 ⁻³	2,2	0,0735	4,08163.10 ⁻³	110
8,33.10 ⁻³	2,4	0,0668	4,4910.10 ⁻³	120
7,69.10 ⁻³	2,6	0,0635	4,7244.10 ⁻³	130
7,14.10 ⁻³	2,8	0,0600	5.10 ⁻³	140
6,66.10 ⁻³	3	0,0567	5,29.10 ⁻³	150
6,25.10 ⁻³	3,2	0,0540	5,555.10 ⁻³	160
5,88.10 ⁻³	3,4	0,0487	6,160.10 ⁻³	170
5,55.10 ⁻³	3,6	0,0456	6,5789.10 ⁻³	180
5,26.10 ⁻³	3,8	0,0428	7,0093.10 ⁻³	190

Tablo 5.8.DHP-Pikrik Asit kompleksinin denge sabitinin belirlenmesi için deneysel veriler

Şekil 5.16. DHP-Pikrik Asit kompleksinin 495nm'de 22°C(±1) de Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi

5.5.3. Monastrol-DDQ kompleksinin denge sabiti

Monastrol-DDQ kompleksinin denge sabitini belirlemek için deneysel veriler Tablo 5.9 da, Benesi- Hildebrand grafiği Şekil 5.16 da verilmiştir.

DDQ mol/ L	Küvet Hacmi	ABS	Monastrol/ABS	1/ DDQ
$2.10^{-2}.10^{-3}$	2	0,3062	9,7975.10 ⁻⁴	100
9,09.10 ⁻³	2,2	0,2954	1,0155.10 ⁻³	110
8,33.10 ⁻³	2,4	0,2805	$1,0695.10^{-3}$	120
7,69.10 ⁻³	2,6	0,2622	$1,1441.10^{-3}$	130
7,14.10 ⁻³	2,8	0,2461	$1,2190.10^{-3}$	140
6,66.10 ⁻³	3	0,2306	$1,30095.10^{-3}$	150
6,25.10 ⁻³	3,2	0,2183	1,37425.10 ⁻³	160
5,88.10 ⁻³	3,4	0,2096	1,4313.10 ⁻³	170
5,55.10 ⁻³	3,6	0,2021	$1,4844.10^{-3}$	180
5,26.10 ⁻³	3,8	0,1953	$1,53609.10^{-3}$	190

Tablo 5.9. Monastrol-DDQ kompleksinin denge sabitinin belirlenmesi için deneysel veriler

Şekil 5.17. Monastrol-DDQ kompleksinin 546nm'de 22°C(±1) de Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi

5.5.4. Monastrol-TCNQ kompleksinin denge sabiti

Monastrol-TCNQ kompleksinin denge sabitini belirlemek için deneysel veriler Tablo 5.10 da, Benesi- Hildebrand grafiği Şekil 5.17 de verilmiştir.

TCNQ mol/ L	Küvet Hacmi	ABS	Monastrol/ABS	1/ TCNQ
9,09.10 ⁻³	2,2	0,0826	3,631.10 ⁻³	110
8,33.10 ⁻³	2,4	0,0802	3,7406.10 ⁻³	120
7,69.10 ⁻³	2,6	0,0784	3,8265.10 ⁻³	130
6,66.10 ⁻³	3	0,0767	3,9113.10 ⁻³	150
6,25.10 ⁻³	3,2	0,0741	4,0485.10 ⁻³	160
5,55.10 ⁻³	3,6	0,0730	4,1095.10 ⁻³	180
5,26.10 ⁻³	3,8	0,0727	4,1265.10 ⁻³	190

Tablo 5.10. Monastrol-TCNQ kompleksinin denge sabitinin belirlenmesi için deneysel veriler

Şekil 5.18. Monastrol-TCNQ kompleksinin 742nm'de 22°C(±1) de Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi

5.5.5. Monastrol- I2 kompleksinin denge sabiti

Monastrol- I_2 kompleksinin denge sabitini belirlemek için deneysel veriler Tablo 5.11 de, Benesi- Hildebrand grafiği Şekil 5.18 de verilmiştir.

I ₂ mol/ L	Küvet Hacmi	ABS	Monastrol/ABS	1/ I ₂
7,69.10 ⁻³	2,6	3,09	9,7087.10 ⁻⁵	130
7,14.10 ⁻³	2,8	3,0686	9,7764.10 ⁻⁵	140
6,66.10 ⁻³	3	3,0181	9,94002.10 ⁻⁵	150
6,25.10 ⁻³	3,2	2,9790	$1,00704.10^{-4}$	160
5,88.10 ⁻³	3,4	2,9341	1,02246.10 ⁻⁴	170
5,55.10 ⁻³	3,6	2,9091	1,03124.10 ⁻⁴	180
5,26.10 ⁻³	3,8	2,8729	1,0442.10 ⁻⁴	190

Tablo 5.11. Monastrol- I2 kompleksinin denge sabitinin belirlenmesi için deneysel veriler

Şekil 5.19. Monastrol-I₂ kompleksinin 370 nm'da 22°C(± 1) de Benesi-Hildebrand grafiği ile denge sabitinin belirlenmesi

5.6. Komplekslerin Termodinamik Sabitlerinin Belirlenmesi

5.6.1. DHP- TCNE kompleksinin termodinamik sabitleri

DHP- TCNE kopleksinin termodinamik sabitlerini hesaplamak için deneysel veriler Tablo 5.12 de verilmiştir. Kompleksin Van't Hoff grafiği Şekil 5.19 da verilmiştir.

Tablo 5.12. 5.10⁻³M DHP-5.10⁻³MTCNE kompleksinin termodinamik sabitlerinin belirlenmesi için kimyasal veriler

$T(^{0}C)$	T (K)	1/ T (K)	ABS	ln(ABS)
7	280	0,00357	2,0759	0,689
14	287	0,00348	1,7420	0,536
21	294	0,00340	1,4154	0,350
28	301	0,00332	1,2136	0,2124
35	308	0,00324	0,9125	-0,053

Şekil 5.20. DHP-TCNE kompleksinin 500 nm'de Van't Hoff Grafiği ile termodinamik sabitlerinin belirlenmesi

5.6.2. DHP-Pikrik asit kopleksinin termodinamik sabitleri

DHP- Pikrik Asit kopleksinin termodinamik sabitlerini hesaplamak için deneysel veriler Tablo 5.13 de verilmiştir. Kompleksin Van't Hoff grafiği Şekil 5.20 de verilmiştir.

Tablo 5.13. 5.10⁻³M DHP-5.10⁻³M Pikrik Asit kompleksinin termodinamik sabitlerinin belirlenmesi için kimyasal veriler

$T(^{0}C)$	T (K)	1/ T (K)	ABS	ln(ABS)
7	280	0,00357	1,7350	0,51321
14	287	0,00348	1,6457	0,48126
21	294	0,00340	1,6087	0,48044
28	301	0,00332	1,4839	0,4147
35	308	0,00324	1,3680	0,3521

Şekil 5.21. DHP-pikrik Asit kompleksinin 495nm'de Van't Hoff Grafiği ile termodinamik sabitlerinin belirlenmesi

5.6.3. Monastrol- DDQ kompleksinin termodinamik sabitleri

Monastrol- DDQ kopleksinin termodinamik sabitlerini hesaplamak için deneysel veriler Tablo 5.14 de verilmiştir. Kompleksin Van't Hoff grafiği Şekil 5.21 de verilmiştir.

Tablo 5.14. 5.10⁻³M Monastrol- 5.10⁻³M DDQ kompleksinin termodinamik sabitlerinin belirlenmesi için kimyasal veriler

$T(^{0}C)$	T (K)	1/ T (K)	ABS	ln(ABS)
7	280	0,00357	0,2809	-1,2697
14	287	0,00348	0,2781	-1,2798
21	294	0,00340	0,2730	-1,2983
28	301	0,00332	0,2630	-1,3341
35	308	0,00324	0,2557	-1,3637

Şekil 5.22. Monastrol-DDQ kompleksinin 546nm'de Van't Hoff Grafiği ile termodinamik sabitlerinin belirlenmesi

5.6.4. Monastrol- TCNQ kompleksinin termodinamik sabitleri

Monastrol- TCNQ kopleksinin termodinamik sabitlerini hesaplamak için deneysel veriler Tablo 5.15 de verilmiştir. Kompleksin Van't Hoff grafiği Şekil 5.22 de verilmiştir.

Tablo 5.15. 5.10⁻³M Monastrol- 5.10⁻³M TCNQ kompleksinin termodinamik sabitlerinin belirlenmesi için kimyasal veriler

$T(^{0}C)$	T (K)	1/ T (K)	ABS	ln(ABS)
7	280	0,00357	0,2463	-1,2870
14	287	0,00348	0,2184	-1,4141
21	294	0,00340	0,1912	-1,5478
28	301	0,00332	0,1671	-1,6875
35	308	0,00324	0,1345	-1,8945

Şekil 5.23. Monastrol-TCNQ kompleksinin 742nm'de Van't Hoff Grafiği ile termodinamik sabitlerinin belirlenmesi

5.6.5. Monastrol- I2 kompleksinin termodinamik sabitleri

Monastrol- I₂ kopleksinin termodinamik sabitlerini hesaplamak için deneysel veriler Tablo 5.16 da verilmiştir. Kompleksin Van't Hoff grafiği Şekil 5.23 de verilmiştir.

Tablo 5.16. 5.10⁻³M Monastrol-10⁻³M I_2 kompleksinin termodinamik sabitlerinin belirlenmesi için kimyasal veriler

$T(^{0}C)$	T (K)	1/ T (K)	ABS	ln(ABS)
7	280	0,00357	3,0314	3,0314
14	287	0,00348	3,0176	3,0176
21	294	0,00340	3,0043	3,0043
28	301	0,00332	2,9979	2,9979
35	308	0,00324	2,9916	2,9916

Şekil 5.24. Monastrol-I₂ kompleksinin 370nm'de Van't Hoff Grafiği ile termodinamik sabitlerinin belirlenmesi

BÖLÜM 6. SONUÇ VE ÖNERİLER

6.1. EDA komplekslerinin Absorpsiyon Dalga Boyları

Elektron donor akseptör komplekslerinin maksimum absorbsiyon yaptığı dalga boyları Tablo 6.1 de verilmektedir.

Kompleks	Maksimum Absorpsiyon Verdiği Dalga Boyu (nm)
DHP-TCNE	500
DHP- DDQ	700
DHP- Pikrik Asit	495
Monastrol- DDQ	546
Monastrol- TCNQ	742
Monastrol- I ₂	370

Tablo 6.1. Elektron donor akseptör komplekslerin maksimum absorbsiyon verdikleri dalga boyları

Elektronca zengin olan madde ile elektronca fakir olan madde etkileştiği zaman EDA kompleksi olarak bilinen zayıf kovalent olmayan etkileşme görülür. DHP ve Monastrol elektronca zengin TCNE, DDQ, TCNQ, Pikrik Asit ve I₂ elektronca fakirdir.

6.2. EDA komplekslerinin Stokiometrileri

Komplekslerin stokiometresi Job metoduyla belirlendi. Job metoduyla elde edilen veriler grafiğe geçirildiğinde DHP ve Monastrol ile DDQ, Pikrik Asit, TCNQ ve I₂ arasında oluşan EDA komplekslerinin stokiometrilerinin 1:1 oranında olduğu bulundu. Ayrıca Mol oranına göre de donor ve akseptörler arasında 1:1 kompleks oluştuğu belirlendi. Ancak; DHP-TCNE kompleksinin stokiometrilerinin 1:2 oranında olduğu bulundu. Kompleks stokiometrilerinin belirlenmesinde kullanılan grafikler aşağıda Şekil 6.1-6.6 de verilmiştir.

Şekil 6.1. DHP-TCNE kompleksinin 500 nm de (± 1) de Job Metodu ile stokiometrisinin belirlenmesi

Şekil 6.2. DHP-DDQ kompleksinin 700 nm de (±1) de Job Metodu ile stokiometrisinin belirlenmesi

Şekil 6.3. DHP-Pikrik Asit kompleksinin 495 nm de (± 1) de Job Metodu ile stokiometrisinin belirlenmesi

Şekil 6.4. Monastrol-DDQ kompleksinin 546 nm de (±1) de Job Metodu ile stokiometrisinin belirlenmesi

Şekil 6.5. Monastrol-TCNQ kompleksinin 742 nm de (±1) de Job Metodu ile stokiometrisinin belirlenmesi

Şekil 6.6. Monastrol-I2 kompleksinin 370 nm de (±1) de Job Metodu ile stokiometrisinin belirlenmesi

6.3. EDA komplekslerinin Denge sabitleri

Komplekslerin denge sabitleri Benesil-Hildebrand formülü ile hesaplandı. Komplekslerin denge sabitleri Tablo 6.2, Deneysel toplu sonuçlar Tablo 6.5 de verilmiştir.

Kompleksler	Denge Sabiti K _{CT} değerleri (L mol ⁻¹)
DHP-TCNE	183,81
DHP-Pikrik Asit	7,057
Monastrol-DDQ	45,92
Monastrol-TCNQ	491,8
Monastrol-I ₂	663,4

Tablo 6.2. Komplekslerin denge sabiti değerleri

Yük transfer komplekslerini etkileyen faktörler; çözücü, donor, akseptör, sıcaklık ve gaz fazında meydana gelen kompleksler için basınçtır[35].

Ayrıca; DHP-DDQ kompleksi durdukça bozunduğundan dolayı denge sabitine bakılamadı, 2 dakika ara ile bozunma değerleri belirlendi. DHP'ler DDQ ile okside olduğundan kompleksleşme kaybolmaktadır. Bu değerler aşağıda Tablo 6.3 ve Şekilde 6.7 de verilmiştir gösterilmiştir.

Tablo 6.3. DDQ' nun 700 nm de 2 şer dakika ara ile bozunma değerleri

DDQ									
Bozunma	2	4	6	8	10	12	14	16	18
Zamanı									
Abs	2,8123	2,4137	1,9205	1,1264	0,5577	0,4234	0,3366	0,2691	0,236

Şekil 6.7. DDQ' nun 700 nm de 2 şer dakika ara ile bozunma grafiği

6.4. Komplekslerin Termodinamik Sabitleri

Komplekslerin termodinamik sabiti değerleri Van't Hoff denklemi ile hesaplandı. Komplekslerin termodinamik sabitleri Tablo 6.4, Deneysel toplu sonuçlar Tablo 6.6 da verilmiştir.

Kompleksler	ΔS (calmol ⁻¹)	$\Delta H (calmol^{-1})$	$\Delta G (calmol^{-1})$
DHP-TCNE	-14,3	-4404,2	-3036,2
DHP-Pikrik Asit	-4,31	-2179,4	-1463,1
Monastrol-DDQ	-4,59	-588,4	-2228,1
Monastrol-TCNQ	-15,41	-3619,1	-3607
Monastrol-I ₂	5,2	-221,5	-3747,5

Tablo 6.4. Komplekslerin termodinamik sabitleri

Burada ΔS değerlerinin negatif olması komplekslerin ekzotermik olduğunu gösteriyor. Komplekslerin stokiometrileri, denge ve termodinamik sabitleri literatür ile uyum içerisindedir[36].

6.5. Öneriler

Bu maddelerin farklı akseptörlerle yük transfer kompleksleri ve bunların fotokimyasal tepkimeleri araştırılabilir.

	Monstrol	TCNQ	742
	Monastrol	DDQ	546
	DHP	Pikrik Asit	495
sysel toplu sonuçları	DHP	TCNE	500
Tablo 6.5. Benesi-Hildebrand grafíği dene		Kompleksler	Maksimum Absorpsiyon da verdikleri dalga boyu λ _{max} (nm)

	DHP	DHP	Monastrol	Monstrol	Monastrol
Kompleksler	TCNE	Pikrik Asit	DDQ	TCNQ	I_2
Maksimum Absorpsiyon da verdikleri dalga boyu λ _{max} (nm)	500	495	546	742	370
Stokiometri	1:1	1:1	1:1	1:1	1:1
Eğim	7,29.10 ⁻⁶	3,5.10 ⁻⁵	6,554.10 ⁻⁶	6,104.10 ⁻⁶	$1,221.10^{-7}$
Kesim Noktası	0,00134	$2,47.10^{-4}$	$3,01.10^{-4}$	$3,002.10^{-3}$	8,1.10 ⁻⁵
r^2	66	66	66	99	66
€ (L.mol ⁻¹ cm ⁻¹)	746,27	4048,6	3322,3	333,1	12345,7
KC	137174,2	28571,4	152557,63	163822	8190008,2
Denge Sabiti K _{CT} (L.mol ⁻¹)	183,81	7,057	45,92	491,82	663,4

5 TILL p **V V**

Tablo 6.6. Benesi-Hildebrand grafiği deneysel toplu sonuçları

Kompleksler	DHP TCNE	DHP Pikrik Asit	Monastrol DDQ	Monstrol TCNQ	Monastrol I ₂
Maksimum Absorpsiyon da verdikleri dalga boyu λ _{max} (nm)	200	495	546	742	370
Eğim	2224,33	1100,7	297,166	1827,83	111,872
Kesim Noktası	-7,2234	-2,177	-2,32	-7,781	2,625
r^2	66	66	66	66	66
Δ H(cal.mol ⁻¹)	-4404,2	-2179,4	-588,4	-3619,1	-221,5
ΔS (cal.mol ⁻¹)	-14,3	- 4,31	-4,59	-15,41	5,2
∆G (cal.mol ⁻¹)	-3036.2	-1463.1	-2228.1	-209	-3747.5

48

KAYNAKLAR

- [1] KAPPE, O.C., "Biologically Active Dhydropyrimidinones of the Biginelli-Type-a Literatue Survey", Eur.J.Med.Chem., 35, 1043- 1052, 2000.
- [2] JOULE, A.J., MILLS, K., "Heterocyclic Chemistry", Blackwell Science, London, 2000.
- [3] KAPPE, O.C., "100 Years of the Biginelli Dihydropyrimidine Synthesis" Tetrahedron, 49, 6937- 6963, 1993.
- [4] ZENOUS, A.M., OSKUİE, M.R., MOLLAZADEH, S. "Synthesis of Novel Asymmetrical 1,4-dihydropyridine Derivatives", Taylor & Francis, 35: 2895-2903, 2005.
- [5] SABİTHA, G., REDDY, K.K., REDDY, S., YADAV, J.S. "Anovel TMSImediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature", Tetrahedron Lett., 44, 4129- 4131, 2003.
- [6] EICHER, T., HAUPTMANN, S., "The Chemistry of Heterocycles", Wiley-VCH, Weinheim, 2003.
- [7] YADAV, J.S., REDDY, B.S.V., REDDY, T. P. "Unprecedented Synthesis of Hantzsch 1,4-dihydropyridines Under Biginelli Reaction Conditions", Synthetic Commun., 31 (3), 425- 430, 2001.
- [8] SİVAMURUGAN, V., VİNU, A., PALANİCHAMY, M., MURUGESAN, V. "Rapid and Cleaner Synthesis of 1,4-dihydropyridines in Aqueous Medium", Heteroatom Chemistry, Volume 17, Number 4, 2006.
- [9] FOLKERS, K., JOHNSON, T.B., "Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction¹", J. Am. Chem. Soc., 55, 3784- 3791, 1993.
- [10] GHOSH, R., MAITI, S., CHAKRABORTY, A., "In(OTf)₃-catalysed One-pot Synthesis of 3,4-dihydropyrimidine-2(H)-ones", J. Mol.Cat. A: Chem., 217, 47- 50, 2004.
- [11] KHANINA, E.L., SILINIECE, G., OZOLS, J., DUBURS, G., KIMENIS, A., Khim.-Farm. Zh., 12, 72-74, 1978.

- [12] GHOSH, R., MAITI, S., CHAKRABORTY, A., "In(OTf)₃ catalysed one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones", J. of Mol. Cat. A: Chemical, 217, 47- 50, 2004.
- [13] VALPUESTRA, F.M., LOPEZ, H.F.J., LUPION, C.T., "Biginelli Type Reactions with Tetroses Derivatives", Heterocyles, 27, 2133- 2140, 1988.
- [14] ERDİK, E., "Organik Kimyada Spektroskopik Yöntemler", Gazi kitabevi, Ekim 1998.
- [15] ASHBY, J., GRIFFITHS, D., J.Chem.Soc., Perkin Trans. 1, 657-662, 1975.
- [16] KAPPE, C.O., "Recent Advences in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog", Acc. Chem. Res., 33, 879-888, 2000.
- [17] GÜZEL, Ö., PERK, E.C. "Köpekler de Genel Anestezi Prosedürü ve İntraoperatif Periyotta Rastlanan Kardiyak Ritim Bozukluklarının Tanısı ve Sağaltımı", İ. Ü.Vet.Fakültesi Cerrahi Anabilim Dalı, Vet.Fak. Dergi yayınları, 13. makale, İstanbul, 2002.
- [18] MAYER, T.U., KAPOOR, T.M., HAGGARTY, S.J., KING, R.W., SCHREIBER, S.Z., MITCHISON, T.J., "Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen", Science, 286, 971- 974, 1999.
- [19] RUSSOWSKY, D., CANTO, R.F.S., SANCHES, S.A.A., D'OCA, M.G.M., de FÂTIMA, Â, PILLI, A.R., KOHN, L.K., ANTÔNIO, M.A., de CARVALHO, E.J., "Synthesis and Differential Antiproliferative Activity of Biginelli Compounds Against Cancer Cell Lines: Monastrol, oxo-monastrol and oxygenated Analogues", Bioorg. Chem., 34, 173-182, 2006.
- [20] KAPPE, C.O., SHISHKIN, O.V., URAY, G., VERDINO, P., "X-Ray Structure, Conformational Analysis, Enantioseperation, and Determination of Absolute Configuration of the Mitotic Kinerin Eg5 Inhibitor Monastrol", Tetrahedron, 56, 1859-1862, 2000.
- [21] CONSTANTIEUX, T., RODRIGUEZ, J. "Utilisation of 1,3-dicarbonyl in Multicomponent Reactions", J. Org. Chem., 4957-4980, 2004.
- [22] KAPPE, C.O., FABIAN, W. M. F. "Conformation Analysis of 4-aryldihydropyrimidine Calcium Channel Modulators, a Comparison of Ab Initio, Semiempirical and X-Ray Crystallographic Studies", Tetrahedron, vol. 53, 8, 2803-2816, 1997.
- [23] DEMİRKAN, O. "Yoğun Bakım da Maternal Mortalite ve Morbidite", Maternal Mortalite ve Morbidite Sempozyumu, 89- 112, İstanbul, 1999.
- [24] KAPLAN, N.M. "Klinik Hipertansiyon", Kanaat basımevi, İstanbul, 41-132,

1998.

- [25] ÇALIŞKAN, S. " Çocuklar da Akut Hipertansiyon ve Tedavisi", Pediatrik Aciller Sempozyumu, 187- 192, İstanbul, 2001.
- [26] UYAR, T. "Organik Kimya", Güneş Yayıncılık, ANKARA, 2001.
- [27] ERDİK, E. "Organik Kimyada Spektroskopik Yöntemler", Gazi Üniversitesi Fen Edebiyat Fakültesi Yayınları, ANKARA, 2005.
- [28] TUNALI, N.K., ÖZKAR, S. "Anorganik Kimya", Gazi Üniversitesi Fen Edebiyat Fakültesi Yayınları, Yayın 59, ANKARA, 1997.
- [29] GÜNDÜZ, T. "İnstrümental Analiz", Bilge Yayıncılık, 59- 88, Ankara, 1997.
- [30] GÖLCÜ, A., DOLAZ, M., SERİN, S. "Kükürt Atomu İçeren Bazı Bileşiklerin Yük- Transfer Komplekslerinin Spektrofotometrik Olarak İncelenmesi", Fen Edebiyat Fakültesi, Kimya Bölümü, Fen ve Mühendislik Dergisi, Cilt 3, Sayı 2, Kahramanmaraş, 2000.
- [31] http://en.wikipedia.org/wiki/Charge_transfer_complex
- [32] FOSTER, R. "Organik Charge Transfer Complexes", Academic Pres, 1-100, Network, 1969.
- [33] TELEB, S.M., REFAT, M.S. "Spectroscopic studies on charge-transfer complexes", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1579-1586, 2004.
- [34] BHATTACHARYA, S., BANERJEE, M., AND MUKHERJEE, A.K. "Spectrophotometric and thermodynamic studies of [60]fullerene/methylbenzene charge transfer complexes", Spectrochimica Acta Part A: Mol. and Biomol. Spectroscopy, 59 (13), 3147-3158, 2003.
- [35] ALKORTA, I., ELGUERO, J. "Charge Transfer Complexes Between Dihalogen Compounds and Electron Donor", J.Phys. Chem. Part A, 102, 9278-9285,1998.
- [36] DUYMUŞ, H., ARSLAN, M., KUCUKİSLAMOGLU, M., ZENGİN, M. "Charge transfer complex studies between some non-steroidal antiinflammatory drugs and π -electron acceptors", Spectrochimica Acta Part A 65 1120–1124, 2006.

EKLER

Ek 1. Deneyde kullanılan Akseptörlerin molekül şekilleri

Şekil A.1. Pikrik asidin molekül şekli

Şekil A.2. Tetrasiyanoetilen' in (TCNE) molekül şekli

Şekil A.3. 2,3-5,6-diklorodisiyanobenzokinon' un (DDQ) molekül şekli

Şekil A.3. 7,7,8,8-Tetrasiyanokinodimetan 'ın (TCNQ) molekül şekli

Ek 2. Etil 4-(3-hidroksifenil)-6-metil-2-tiyookso-1,2,3,4-tetrahidroprimidin-5karboksilat [Monastrol] ün ¹H NMR

Ek 3. Etil 4-(3-hidroksifenil)-6-metil-2-tiyookso-1,2,3,4-tetrahidroprimidin-5karboksilat [Monastrol] ün ¹³C NMR

Ek 4. 4-(3-Nitrofenil)-2,6-dimetil-1,4-dihidropridin-3,5-dikarboksilikasitdietil ester [DHP] ün ¹H NMR

Ek 5. 4-(3-Nitrofenil)-2,6-dimetil-1,4-dihidropridin-3,5-dikarboksilikasitdietil ester [DHP] ün ¹³C NMR

ÖZGEÇMİŞ

Nurcan BERBER, 1983'de Adapazarı'nda doğdu. İlk ve orta öğretimini Yuvalıdere'de, lise öğrenimini Karasu'da tamamladı. 2005 yılında Sakarya Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümünden mezun oldu. 2005-2007 yılları arasında Sakarya Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalında yüksek lisansını tamamladı.