T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

VİCKERS İNDENTASYON DENEYLERİ İLE MALZEME ÖZELLİKLERİNİN TANIMI

YÜKSEK LİSANS TEZİ

Mak Müh. Mustafa BAŞOĞLU

Enstitü Anabilim Dalı	:	MAKİNA MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	MAKİNA TASARIM VE İMALAT
Tez Danışmanı	:	Yrd. Doç. Dr. Erdal KARADENİZ

Ağustos 2009

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

VICKERS İNDENTASYON DENEYLERİ İLE MALZEME ÖZELLİKLERİNİN TAHMİNİ

YÜKSEK LİSANS TEZİ

Mak. Müh. Mustafa BAŞOĞLU

Enstitü Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ

Enstitü Bilim Dalı : MAKİNA TASARIM VE İMALAT

Bu tez 27 / 07 /2009 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Y. Doç. Dr. Erdal KARADENİZ Jüri Başkanı

Doç. Dr. Kenan GENEL Üye

Senol YILMAZ Doc. Dr Üve

ÖNSÖZ

Tasarıma uygun malzeme seçiminde, malzemenin sahip olduğu mekanik özellikler büyük önem taşımaktadır. Malzeme özelliklerini belirlemek için kullanılan yöntemlerden yüksek hassasiyet, kolaylık, çabukluk ve ucuz olması gibi özellikler göstermesi beklenmektir. Diğer yöntemlere kıyasla bu özelliklerin çoğunu bünyesinde bulunduran indentasyon yöntemi, gittikçe artan kullanım alanıyla dikkat çekmektedir. Bu çalışmada, malzemelerin elastisite modülü değerleri ile gerçek gerilme-gerçek birim şekil değişimi eğrilerinin Vickers indentasyon yöntemi ile elde edilebilirliği araştırılmıştır.

Bu çalışmanın gerçekleştirilmesinde yardımlarını esirgemeyen yüksek lisans danışmanım Yrd. Doç. Dr. Erdal Karadeniz'e teşekkürlerimi sunarım.

Deney malzemeleri temini konusundaki yardımlarından dolayı DENET Cıvata San.A.Ş.' ne , çekme deneylerinde gösterdikleri özen ve sağladıkları imkanlar nedeniyle Kutlu Mümessillik Ltd. Şti. çalışanlarına, Vickers indentasyon deneylerinin gerçekleştirilmesinde gösterdikleri kolaylık ve yardımları için Dokuz Eylül Üniversitesi Metalurji Bölümü Başkanlığına teşekkürlerimi sunarım.

Bu çalışma SAÜ Bilimsel Araştırma Projeleri Komisyonu tarafından desteklenmiştir. (Proje no: 2009-50-01-008)

Bu günlere gelmemde emeği olan tüm hocalarıma ve her zaman destek olan aileme sonsuz şükranlarımı sunarım.

Mustafa BAŞOĞLU

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	viii
TABLOLAR LİSTESİ	xi
ÖZET	xiii
SUMMARY	xiv

BÖLÜM 1.

GİRİS	1
0	-

BÖLÜM 2.

İNDENTASYON YÖNTEMİ	
2.1. Giriş	5
2.2. İndentasyon Yönteminde Kullanılan Test Ekipmanı	7
2.3. İndentasyon Yönteminin Çeşitleri	9
2.3.1. Küresel indentasyon yöntemi	9
2.3.2. Vickers ve Berkovick indentasyon yöntemi	11
2.3.3. Knoop indentasyon yöntemi	11
2.3.4. Konik indentasyon yöntemi	13
2.4. Yanal Çıkıntı ve Girinti Etkisi	13

BÖLÜM 3.

VİCKERS İNDENTASYON YÖNTEMİ	16
3.1. Giriş	16

3.2. Vickers İndentasyon Yöntemi ile Malzeme Özelliklerinin	
Belirlenmesi	20
3.2.1. Elastisite modülünün belirlenmesi	20
3.2.2. Akma dayanımının belirlenmesi	25
3.2.3. Gerçek gerilme-gerçek birim şekil değişimi eğrisinin elde	
edilmesi	26

BÖLÜM 4.

DENEYSEL ÇALIŞMALAR	
4.1. Deney Malzemelerinin İncelenmesi	29
4.1.1. Kimyasal analiz çalışmaları	29
4.1.2. Mikroyapı incelemeleri	30
4.2. Çekme Deneyleri	30
4.3. Vickers İndentasyon Deneyleri	32
4.3.1. Gerçek gerilme-gerçek birim şekil değişimi eğrilerinin	
tahmini	34
4.3.1.1. Malzemelere özgü B ve C değerleri tayini	36
4.3.1.2. Malzemelerin K ve n değerlerinin tayini	37
4.3.2. Elastisite modülünün tahmini	37

BÖLÜM 5.

DENEYSEL SONUÇLAR	41
5.1. Mikroyapı Sonuçları	41
5.2. Çekme Deneyi Sonuçları	42
5.2.1. QSt32-3 malzemesi için çekme deneyi sonuçları	43
5.2.2. 20MnB4 malzemesi için çekme deneyi sonuçları	45
5.2.3. 30MnB3 malzemesi için çekme deneyi sonuçları	47
5.2.4. 42CrMo4 malzemesi için çekme deneyi sonuçları	49
5.3. Vicker İndentasyon Deneyi Sonuçları	52
5.3.1. QSt32-3 malzemesi için Vickers indentasyon deneyi	
sonuçları	53
5.3.2. 20MnB4 malzemesi için Vickers indentasyon deneyi	
sonuçları	55

5.3.3. 30MnB3 malzemesi için Vickers indentasyon deneyi	
sonuçları	57
5.3.4. 42CrMo4 malzemesi için Vickers indentasyon deneyi	
sonuçları	59
5.4. σ-ε Eğrileri Tahmin Çalışması Sonuçları	61
5.4.1. QSt32-3 çeliği σ-ε eğrisi tahmin sonuçları	63
5.4.2. 20MnB4 çeliği σ-ε eğrisi tahmin sonuçları	68
5.4.3. 30MnB3 çeliği σ-ε eğrisi tahmin sonuçları	73
5.4.4. 42CrMo4 çeliği σ - ϵ eğrisi tahmin sonuçları	79
5.5. Soğuk Dövme Cıvata Çeliklerinin B ve C Değerlerini Belirlemek	
İçin Önerilen Bir Metot	84
5.6. Elastisite Modülü Tahmin Sonuçları	88
5.7. Tartışma	92
BÖLÜM 6.	
SONUÇLAR VE ÖNERİLER	93
KAYNAKLAR	96
ÖZGEÇMİŞ	101

SİMGELER VE KISALTMALAR LİSTESİ

a	: İz(temas) çemberinin yarıçapı
A_d	: Düzenlenmiş iz alanı
В	: Malzemeye bağlı bir sabit
b.ş.d.	: Birim şekil değişimi
С	: Malzemeye bağlı bir sabit
e	: Mühendislik birim şekil değiştirme
Е	: Elastisite modülü
E_i	: İndentere(batıcı uca) ait elastisite modülü
Er	: İndirgenmiş elastisite modülü
E_{ind}	: Vicker indentasyon yönteminden elde edilen elastisite modülü
3	: Gerçek birim şekil değiştirme
E _{ç.els.}	: Maksimum gerilmedeki elastik b.ş.d.
$\epsilon_{i.els.}$: Vickers indentasyon deneyindeki elastik b.ş.d.
ϵ_{ind}	: Vicker indentasyon yönteminden elde edilen gerçek b.ş.d.
F	: Kuvvet
HV	: Vickers Sertliği
h	: Ölçülen iz derinliği (μm)
h_d	: Düzenlenmiş iz derinliği (µm)
\mathbf{h}_{max}	: Maksimum yükteki batma derinliği(µm)
h_{f}	: Yük sıfırlandıktan sonraki derinlik(plastik derinlik) (µm)
h_c	: Makismum yük altındaki temas derinliği(µm)
Κ	: Mukavemet katsayısı(MPa)
1	: Numune boyu
n	: Pekleşme üssü
Р	: İndentasyon deneyinde uygulanan kuvvet (mN)
\mathbf{P}_{m}	: Ortalama basınç
σ	: Gerçek gerilme

- σ_m : Mühendislik gerilmesi
- σ_{ak} : Akma gerilmesi
- Δl : Birim uzama
- v :Malzemeye ait poisson oranı
- v_i : Batici uca ait poisson orani
- W_p : İndentasyon işlemi için harcanmış (plastik) enerji
- W_e : Yük boşaltma esnasındaki geri kazanılan (elastik) enerji
- W_t : İndentasyon işlemindeki toplam enerji

ŞEKİLLER LİSTESİ

Şekil 2.1.	İndentasyon yönteminde kuvvet-iz derinliği grafiği	6
Şekil 2.2.	İndentasyon parametrelerinin gösterimi	6
Şekil 2.3.	Basit bir indentasyon test cihazının şematik gösterimi	8
Şekil 2.4.	Küresel İndentasyon yöntemi uygulaması	9
Şekil 2.5.	Knoop batıcı ucu(a) ve numune üzerine bıraktığı iz (b)	12
Şekil 2.6.	Konik İndentasyon yöntemi şematiği	13
Şekil 2.7.	İndentasyon uygulamasında oluşan yanal girinti(a) ve yanal	
	çıkıntı(b) davranışı	14
Şekil 2.8.	Yanal çıkıntı sonucu(a) ve yanal girinti(b) sonucu oluşan iz	
	alanı	14
Şekil 3.1.	Vicker İndentasyon yöntemi şematiği	16
Şekil 3.2.	Yükleme ve yük boşaltma evresinden oluşan kuvvet-iz derinliği	
	grafiği	17
Şekil 3.3.	Vickers indentasyonu parametrelerinin gösterimi	17
Şekil 3.4.	İndentasyon sürecinin gösterimi	23
Şekil 4.1.	Çekme deneyi numuneleri	30
Şekil 4.2.	Vickers mikroindentasyon cihazı (DUH-W201S)	33
Şekil 4.3.	Kuvvet –iz derinliği eğrileri	33
Şekil 4.4.	Elastik birim şekil değişimi bölgesinin grafiksel gösterimi	38
Şekil 4.5.	Vickers indentasyon deneyinde oluşan elastik derinliğin	
	grafiksel gösterimi	39
Şekil 5.1.	QSt32-3 mikroyapı fotoğrafi(x500)	41
Şekil 5.2.	20MnB4 mikroyapı fotoğrafi (x500)	41
Şekil 5.3.	30MnB3 mikroyapı fotoğrafi (x500)	41
Şekil 5.4.	42CrMo4 mikroyapı fotoğrafı (x500)	41
Şekil 5.5.	QSt32-3(X2000) SEM	42

Şekil 5.6.	20MnB4 (X2000) SEM	42
Şekil 5.7.	30MnB4 (X2000) SEM	42
Şekil 5.8.	42CrMo4 (X1500) SEM	42
Şekil 5.9.	QSt32-3 çeliği için elde edilen kuvvet-uzama diyagramı	43
Şekil 5.10.	QSt32-3 çeliği için elde edilen gerçek gerilme- gerçek b.ş.d	
	eğrisi	43
Şekil 5.11.	20MnB4 çeliği için elde edilen kuvvet-uzama diyagramı	45
Şekil 5.12.	20MnB4 çeliği için elde edilen gerçek gerilme- gerçek b.ş.d	
	eğrisi	47
Şekil 5.13.	30MnB3 çeliği için elde edilen kuvvet-uzama diyagramı	47
Şekil 5.14.	30MnB3 çeliği için elde edilen gerçek gerilme- gerçek b.ş.d	
	eğrisi	49
Şekil 5.15.	42CrMo4 çeliği için elde edilen kuvvet-uzama diyagramı	49
Şekil 5.16.	42CrMo4 çeliği için elde edilen gerçek gerilme- gerçek b.ş.d	
	eğrisi	51
Şekil 5.17.	Deney numunelerine ait gerçek gerilme-gerçek b.ş.d. eğrileri	52
Şekil 5.18.	QSt32-3 çeliği için kuvvet-iz derinliği grafiği	53
Şekil 5.19.	QSt32-3 çeliği için tekrar yüklemeli kuvvet-iz derinliği grafiği	55
Şekil 5.20.	20MnB4 çeliği için kuvvet-iz derinliği grafiği	55
Şekil 5.21.	20MnB4 çeliği için kuvvet-iz derinliği grafiği	57
Şekil 5.22.	30MnB3 çeliği için kuvvet-iz derinliği grafiği	57
Şekil 5.23.	30MnB3 çeliği için kuvvet-iz derinliği grafiği	59
Şekil 5.24.	42CrMo4 çeliği için kuvvet-iz derinliği grafiği	59
Şekil 5.25.	42CrMo4 çeliği için tekrar yüklemeli kuvvet-iz derinliği grafiği	61
Şekil 5.26.	QSt32-3 çeliğine ait düzenlenmiş iz derinliği–ölçülen iz derinliği	
	ilişkisi	63
Şekil 5.27.	QSt32-3 çeliği için gerilme-birim şekil değişimi ilişkisi	65
Şekil 5.28.	QSt32-3 çeliği için logaritmik eğri	67
Şekil 5.29.	QSt32-3 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin	
	karşılaştırılması	67
Şekil 5.30.	20MnB4 çeliğine ait düzenlenmiş iz derinliği–ölçülen iz	
	derinliği ilişkisi	68
Şekil 5.31.	20MnB4 çeliği için gerilme-birim şekil değişimi ilişkisi	70

Şekil 5.32.	20MnB4 çeliği için logaritmik eğri	72
Şekil 5.33.	20MnB4 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin	
	karşılaştırılması	73
Şekil 5.34.	30MnB3 çeliğine ait düzenlenmiş iz derinliği–ölçülen iz	
	derinliği ilişkisi	74
Şekil 5.35.	30MnB3 çeliği için gerilme-birim şekil değişimi ilişkisi	77
Şekil 5.36.	30MnB3 çeliği için logaritmik eğri	77
Şekil 5.37.	30MnB3 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin	
	karşılaştırılması	79
Şekil 5.38.	42CrMo4 çeliğine ait düzenlenmiş iz derinliği–ölçülen iz	
	derinliği ilişkisi	81
Şekil 5.39.	42CrMo4 çeliği için gerilme-birim şekil değişimi ilişkisi	82
Şekil 5.40.	42CrMo4 çeliği için logaritmik eğri	83
Şekil 5.41.	42CrMo4 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin	
	karşılaştırılması	83
Şekil 5.42.	Deney numuleri için elde edilen B-HV ₁₉₀₀ ilişkisi	85
Şekil 5.43.	Deney numuneleri için elde edilen C-HV ₁₉₀₀ ilişkisi	85
Şekil 5.44.	QSt32-3 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme	
	deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi	86
Şekil 5.45.	20MnB4 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme	
	deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi	86
Şekil 5.46.	30MnB3 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme	
	deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi	87
Şekil 5.47.	42CrMo4 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme	
	deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi	87
Şekil 5.48.	QSt32 çeliği için temas derinliğinin gösterimi	89
Şekil 5.49.	20MnB4 çeliği için temas derinliğinin gösterimi	89
Şekil 5.50.	30MnB3 çeliği için temas derinliğinin gösterimi	90
Şekil 5.51.	42 CrMo4 çeliği için temas derinliğinin gösterimi	90
Şekil 5.52.	Elastisik birim şekil değişimleri arasındaki ilişki	90

TABLOLAR LİSTESİ

Tablo 3.1.	Vickers indentasyon yöntemi ile elastisite modülü tayini için	
	önerilmiş bazı yöntemler	24
Tablo 3.2.	Vickers indentasyon yöntemi ile akma dayanımı tayini için	
	önerilen bazı metotlar	26
Tablo 4.1.	Deney malzemelerinin kimyasal analiz sonuçları	29
Tablo 5.1.	QSt32-3 çeliği için çekme deneyi sonuçları	44
Tablo 5.2.	QSt32-3 çeliği için çekme deneyinden elde edilen bazı değerler	45
Tablo 5.3.	20MnB4 çeliği için çekme deneyi sonuçları	46
Tablo 5.4.	20MnB4 çeliği için çekme deneyinden elde edilen bazı değerler	47
Tablo 5.5.	30MnB3 çeliği için çekme deneyi sonuçları	48
Tablo 5.6.	30MnB3 çeliği için çekme deneyinden elde edilen bazı değerler	49
Tablo 5.7.	42CrMo4 çeliği için çekme deneyi sonuçları	50
Tablo 5.8.	42CrMo4 çeliği çekme deneyinden elde edilen bazı değerler	51
Tablo 5.9.	Deney numuneleri için çekme deneylerinden elde edilen değerler.	51
Tablo 5.10.	QSt32-3 çeliği için Vickers indentasyon deneyi sonuçları	54
Tablo 5.11.	20MnB4 çeliği için Vickers indentasyon deneyi sonuçları	56
Tablo 5.12.	30MnB3 çeliği için Vickers indentasyon deneyi sonuçları	58
Tablo 5.13.	42CrMo4 çeliği için Vickers indentasyon deneyi sonuçları	60
Tablo 5.14.	Deney numunelerinin Vickers indentasyon deneyinden elde	
	edilen sertlik değerleri	61
Tablo 5.15.	QSt32-3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_{c} ,	
	A _d , h _d değerleri	64
Tablo 5.16.	QSt32-3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ ,	
	A _d , h _d değerleri	65
Tablo 5.17.	QSt32-3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log ϵ_{ind} ,	
	log σ değerleri	66

Tablo 5.18.	20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_{c} ,	
	A _d , h _d değerleri	69
Tablo 5.19.	20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ ,	
	A _d , h _d değerleri	70
Tablo 5.20.	20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log	
	ϵ_{ind} , log σ değerleri	71
Tablo 5.21.	30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_{c} ,	
	A _d , h _d değerleri	74
Tablo 5.22.	30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ ,	
	A _d , h _d değerleri	76
Tablo 5.23.	30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log	
	ϵ_{ind} , log σ değerleri	78
Tablo 5.24.	42CrMo4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_{c} ,	
	A', h _d değerleri	80
Tablo 5.25.	42CrMo4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ ,	
	A _d , h _d değerleri	81
Tablo 5.26.	42CrMo4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log	
	ϵ_{ind} , log σ değerleri	82
Tablo 5.27.	Deney numuneleri için elde edilen B,C ve Hv ₁₉₀₀ değerleri	84
Tablo 5.28.	Elastisite modülü tahmini için kullanılan değerler	89
Tablo 5.29.	Deney numunelerinin elastisite modülü tahmin sonuçları	91
Tablo 6.1.	Deney numuneleri için B ve C değerlerinin karşılaştırılması	95

ÖZET

Anahtar Kelimeler: Vickers indentasyon testi, elastisite modülü, gerçek gerilmegerçek birim şekil değişimi eğrileri

İndentasyon testleri geleneksel mekanik testlerin kapasitelerinin önemli bir oranda geliştiği, diğer mekanik testlere nazaran yeni bir metottur. İndentasyon testleri çoğunlukla malzemelerin sertlik ve elastisite modülünü berlirlemek amacıyla kullanılmaktadır.

Bu çalışmada, malzemelerin(QSt32-3,20MnB4, 30MnB3, 42CrMo4) elastisite modülülleri Vickers indentasyon deneyleriyle belirlenmiştir, ayrıca gerçek gerilmegerçek birim şekil değişimi eğrilerinin Vickers indentasyon yöntemi ile bulunabilirliği araştırılmıştır. Sonuç olarak, uygulanan yöntemler elastisite modülü ve gerçek gerilme-gerçek birim şekil değişimi eğrileri için çekme deneyleri sonuçları ile uyumlu sonuçlar vermiştir.

ESTIMATION OF MATERIAL PROPERTIES BY VICKERS INDENTATION TESTS

SUMMARY

Key words: Vickers indentation test, elastic modulus, true stres-true strain curves

Indentation test are a relatively new metod of mechanical testing that significantly expands on the capabilities od traditional mechanical testing. Indentation tests are widely used for determination of hardness and elastic modulus.

In this study elastic modulus of materials (QSt32-3,20MnB4, 30MnB3, 42CrMo4) are determined by Vickers indentation tests, also it is researced that true stres-strain curve can be obtain from Vickers indentation test or not. In conclusion a good estimate of elastic modulus, yield stres and true stres-strain curve of tested materials are given by applied metods.

BÖLÜM 1. GİRİŞ

Mühendislik uygulamaları için malzeme seçimi yapılırken veya seçilen bir malzemenin istenilen görevi yapıp yapamayacağı hesaplanırken malzeme özelliklerinden yararlanılır. Malzemelerin özelliklerini belirlemek amacıyla malzemelere çekme basma, sertlik, kayma vb. çeşitli testler uygulanır. Çekme, basma, kayma vb. testlerin maliyetli oluşu ve zaman kaybına yol açması hem malzeme üreticileri hem de kullanıcılarını etkileyen sorunların başında gelmektedir.

Mikroyapıdaki özelliklerin büyük önem kazandığı ve genel yapıdan ziyade, yapıdaki kritik bölgelerin veya dar bölgelerin mekanik özelliklerinin belirlenmesine ihtiyaç duyulduğu uygulamalar için diğer muayene yöntemlerine nazaran indentasyon testlerinin daha çok kullanılması bu konuda yapılan araştırmaların artmasına neden olmuştur.

Geleneksel mekanik testler, malzemelerin lokal mekanik özelliklerinin belirlenmesi istendiğinde bu isteğe yanıt verememektedirler. Nano ve mikro seviyede ölçüm yapabilen indentasyon testleriyle bu sorun ortadan kalkmaktadır [1].

Son yıllarda yaygınlaşan kullanımıyla beraber indentasyon yöntemleri malzeme özelliklerinin belirlenmesine önemli bir uygulama olarak göze çarpmaktadır. Mikroyapının etkisinin anlaşılmasıyla birlikte malzemenin mekanik özelliklerinin çok küçük ölçeklerden ölçülmesine ihtiyaç duyulmaktadır. Bu da indentasyon testlerinin önemi arttırmakla beraber indentasyon testi ekipmanlarında önemli gelişmelere yol açmaktadır. Günümüzde indentasyon test ekipmanlarının gelişimiyle, deneyler esnasında kuvvet ve iz derinliği verilerinin ikisinin birden yüksek hassasiyet ve doğrulukta görüntülenmesi mümkün olmaktadır. İndentaston testlerinden malzemelerin sertliği [2-5], elastisite modülü [2-6], akma gerilmesi [6,7,8], pekleşme üssü [6,7,9,10], kırılma tokluğu [5,11], malzeme mukavemet katsayısı [9,10], kalıntı gerilmesi [12-16] ve gerçek gerilme - gerçek birim şekil değişimi eğrileri [7,9,10,20,24,25] gibi bir dizi malzeme özelliğinin belirlenmesinde yararlanılmaktadır.

Bu güne kadar indentasyon testleriyle malzeme özelliklerinin belirlenebileceği konusunda çok çeşitli çalışmalar yapılmış ve yeni bir malzeme muayene yöntemi olarak indentasyon testlerinden yararlanılabileceği kanıtlanmıştır.

Yaygın olarak kullanılan indentasyon testleri küresel, konik, Berkovich, Vickers, Knoop indentasyon testleridir.

İndentasyon yönteminin bir çeşidi olan Vickers indentasyon testleri özellikle sert malzemelerin, kaplamaların, ince filmlerin vb. malzemelerin mekanik özelliklerinin elde edilmesiyle amacıyla sıklıkla kullanılan bir yöntem haline gelmiştir. Çünkü emsallerine nazaran daha basit, hızlı, ucuz ve hassastır. Bu çalışma kapsamında Vickers indentasyon yönteminden malzemelerin gerçek gerilme-gerçek birim şekil değişimi eğrilerinin ve elastisite modüllerinin elde edilmesine çalışılmıştır.

İndentasyon testlerindeki uygulanan yük ile yer değiştirme analizlerinden yararlanılarak, numune olarak kullanılan malzemenin mekanik özellikleri, sertliği, elastisite modülü hesaplanabilmektedir [17]. Bununla ilgili olarak ilk ciddi çalışmalar Doerner ve Nix [18], Oliver ve Pharr , Cheng ve Cheng tarafından önerilen metotlar ile elde edilmiştir [17,19].

Doerner ve Nix (1986) kuvvet-iz derinliği eğrisinin yük boşaltma kısmından yararlanarak maksimum yükteki temas alanını tanımlayan bir metot öne sürmüşlerdir. Bu metotta temas alanı yük boşaltma safhasının başlangıcında sabit farz edilmiştir. Oliver ve Pharr Berkovich batıcı ucu kullanarak alüminyumdan safire, bir dizi malzemenin kuvvet-iz derinliği eğrilerini elde etmişler ve temas alanının yük boşaltma safhasının başlangıcından itibaren sürekli olarak değiştiğini bulmuşlardır [20].

Oliver-Pharr ve Doerner-Nix malzemenin sertlik ve elastisite modülü gibi özelliklerinin indentasyon yöntemi ile hesaplanacağını, Cheng-Cheng ve Giannakapoulos-Suresh ise akma gerilmesi ve işleme sertleşmesi üssünün de indentasyon yöntemi ile tahmin edilebileceğini öne sürmüşlerdir [21].

Zheng ve Chui geniş bir malzeme aralığında çalışma yaparak elastisite modülleri 3 ile 650 GPa, sertlikleri ise 0,1 ile 30 GPa arasında değişen on dört farklı malzeme üzerinde çalışmışlar ve bu malzemelerin elastisite modüllerini, pekleşme üssü değerlerini ve akma dayanımlarını Berkovich batıcı uçları kullanarak kuvvet-yer değiştirme eğrilerinden türetmişlerdir. Literatürdeki değerlere oldukça yaklaşılmış sadece iki malzeme için bulunan akma dayanımı değerleri literatürdekinden biraz fazla çıkmıştır [6].

Franco, Pintaude, Sinatora, Pinedo ve Tschiptschin tarafından yapılmış çalışmada ise, farklı malzemeler için Vickers indentasyon yöntemi ile sertliğin ve elastisite modülünün yüksek hassasiyette tespit edilebileceği ortaya konmuştur [2].

Vickers indentasyon yöntemi kullanılarak yapılan başka bir çalışmada Antunes, Cavaleiro, Menezes, Simoes ve Fernandes tarafından gerçekleştirilmiştir ve beş farklı malzemenin elastisite modülleri ve sertliği elde edilmeye çalışılmıştır. Elastisite modülü ve sertliği bulmak için kullanılan temas alanı iki ayrı metotla hesaplanmıştır . Her iki yöntemle bulunan sertlik ve elastisite modülü değerleri literatürdekilere oldukça yakın çıkmıştır [3].

Bunun yanı sıra indentasyon deneyleri ile çekme deneyleri arasında bir bağıntı olabileceğini ilk olarak ortaya koyan Tabor, malzemenin indentasyon deneylerinden elde edilen verilerle malzemenin gerilme ve gerinim değerlerini veren ampirik formüller bulmuştur [22].

Cheng-Cheng konik ve piramit batıcı uçlar için yaptıkları hesaplamalar sonucunda numunelerin farklı akma dayanımı ve pekleşme üssüne sahip oldukları halde aynı kuvvet-iz derinliğini verdiklerini saptamıştır. Böylece konik ve piramit batıcı uçlar kullanılarak elde edilen kuvvet- iz derinliği eğrilerinden, yani farklı akma dayanımı ve pekleşmeye sahip malzemeler için aynı sonuçların elde edildiği kuvvet-iz derinliği grafiklerinden, gerilme-birim şekil değişimi ilişkisinin tam olarak tespit edilemeyeceğini öne sürmüşlerdir [23].

Di Carla, Yang ve Chandrasekar sonlu elemanlar simülasyonu kullanarak, batıcı uç ile numune arasındaki sürtünme katsayısını da dikkate alarak konik batıcı uçlar için gerçeğe oldukça yakın gerçek gerilme- gerçek birim şekil değişimi eğrileri elde etmişlerdir [24].

Demirkol çelik, pirinç ve bakır malzemeler için küresel indentasyon yöntemini ile bu malzemelere ait gerçek gerilme-gerçek birim şekil değişimi eğrilerini ve pekleşme üssü ile mukavemet katsayısı değerlerinin bulunabileceğini öne sürmüştür [9,10].

Vickers indentasyon yöntemi ile yapılan ve gerilme-birim şekil değişimini elde etmeyi amaçlayan bir çalışmada Matsuda tarafından gerçekleştirilmiştir. Matsuda yaptığı bu çalışmada doğrusal pekleşme davranışı gösteren malzemelerin gerilmebirim şekil değişimi eğrilerinin belirli sınırlar içinde tahmin edilebileceğini savunmuştur [25].

Bu çalışmada cıvata imalat sektöründe kullanılan 20MnB4, 30MnB3, 42CrMo4 ve QSt32-3 çelikleri için, başka hiçbir deneye gerek duyulmadan sadece Vickers indentasyon yöntemi ile malzemelerin elastisite modüllerinin ve boyun vermeye kadar ki homojen deformasyon bölgesini veren gerçek gerilme-gerçek birim şekil değişimi eğrilerinin elde edilmesi amaçlanmıştır.

Araştırma sonucunda, plastik deformasyon bölgesinde çekme deneylerinden elde edilen σ - ϵ değerleri ile Vickers indentasyon deneylerinden elde edilen σ - ϵ değerleri arasında QSt32-3 çeliği %95 , 20MnB4 çeliği %99 ,30MnB3 çeliği %97,5 ve 42 CrMo4 çeliği için %97,3 yaklaşıklık elde edilmiştir. Vickers indentasyon testlerindeki veriler kullanılarak hesaplanan elastisite modülü değerleri ise literatürdeki elastisite modülü değerleri ile yaklaşık sonuçlar vermiştir.

BÖLÜM 2. İNDENTASYON YÖNTEMİ

2.1. Giriş

20. yüzyılın başlarında, sertlik hakkında ilk ciddi çalışmalar Brinell tarafından sert bir kürenin uç olarak kullanılması ve bu kürenin numune üzerinde bıraktığı izin optik metot ile kaydedilmesi esasına göre yapılmıştır [17]. Bundan başka, aynı yıllarda Rockwell ve Vickers, deneyde kullanılan batıcı uçların geometrilerini değiştirerek kendi adları ile anılan klasik sertlik ölçme metotlarını geliştirmişlerdir [17]. Bu üç metotta da sertlik ölçümü çentik izinin optik yollar ile ölçülmesi ilkesine dayanmaktadır.

Günümüzde malzeme özelliklerinin çok küçük, hassas ölçeklerde belirlenmesi istenmektedir. Çünkü homojen olmayan bir yapıda bölgesel olarak farklı mekanik özellikler gözükebilir, bunun yanında yapıdaki bazı özel ve kritik bölgelerin mekanik özelliklerinin belirlenmesi istenebilir. Küçük ölçeklerde çalışılması zaten zor olan batıcı ucun numune üzerine bıraktığı izin ölçülmesini daha da güçleştirmiştir. Bununla birlikte son yıllarda malzemenin sertliği ve diğer mekanik özelliklerini belirlemek amacıyla, batıcı ucu uygulanan kuvvet ile ucun numune üzerinde bıraktığı izin derinliğinin ölçülmesine dayanan ölçüm metotları geliştirilmiştir [17,26].

İndentasyon yöntemi, batıca uca uygulanan kuvvet ve numune üzerinde oluşan izin derinliğinin ölçülmesiyle oluşturulan kuvvet-iz derinliği (Şekil 2.1) grafiklerinden yararlanılarak malzemenin mekanik özelliklerinin belirlenmesinde kullanılmaktadır.

Ele alınan süreçte batıcı uca uygulanan kuvvet bir maksimum değere ulaştıktan sonra sıfırlanarak grafik hazırlanır. Kuvvet iz derinliği grafikleri ve oluşturulmuş çeşitli eşitlikler yardımıyla da malzemeye ait özellikler elde edilmektedir.

Şekil 2.1. İndentasyon yönteminde kuvvet-iz derinliği grafiği [27]

Şekil 2.2' de indentasyon parametrelerinin geometrik gösterimi yapılmıştır. Temas çemberinin yarıçapı a ile ifade edilmiştir. Yükün boşaltılmasından sonraki derinliğe (h_f) son derinlik adı verilir. Batıcı ucun malzemeye nüfuz etmesiyle, malzemede hem elastik hem de plastik deformasyonlar oluşur. Bu deformasyonlar göz önünde bulundurularak maksimum yükteki temas derinliği (h_c) tanımlanmıştır. P yüküne maruz batıcı ucun meydana getirdiği en büyük derinlikte h_{max} ile ifade edilmiştir [27,28].

Şekil 2.2. İndentasyon parametrelerinin gösterimi [27]

İndentasyon yöntemi ile malzeme karakterizasyonun kolay, ucuz, diğer yöntemlere göre daha az tahribatsız olması bunun yanı sıra oldukça küçük ölçeklerden ölçüm yapılabilmesi bu yöntemin başlıca avantajları arasındadır [29]. İndentasyon yönteminin en büyük avantajlarından birisi de numune üzerindeki izin ölçülmesine

gerek kalmaması dahası kontak alanı ve malzeme özelliklerinin kuvvet iz derinliği analizlerinden belirlenebilmesidir [17]. Küçük ölçeklerde ölçüm yapılabilmesi sayesinde özellikle ince filmlerin, kaplamaların, ikinci faz taneciklerinin mekanik özelliklerinin belirlenmesinde bunun yanı sıra, malzeme ve yüzey modifiyesinin muayenesinde kullanılmaktadır [5,27,30].

Kuvvet-iz derinliği grafiklerinin elde edildiği indentasyon yöntemi ile çoğunlukla malzemenin sertliğini belirlenmiştir [2-5]. Bu teknik ayrıca aynı verilerden yararlanarak elastisite modülünü de (Young modülü) vermektedir [2-6,39]. Bununla birlikte metallerin akma gerilmesini [6-8,39], pekleşme üssünü [6,7,9,39] değerlendirmek için metotlar kurulmasına olanak sağlamıştır. Ayrıca indentasyon deneyleri sayesinde, malzeme üzerinde indentasyon testi esnasında meydana gelen çatlağın boyu ölçülerek gevrek malzemelerin kırılma tokluğu tahmini de yapılmaktadır [5,10]. Kırılma tokluğunun bulunması için gerçekleştirilen çalışmalarda Vickers, Berkovich veya bunlara nazaran daha sivri batıcı uçlar kullanılmaktadır [5]. İndentasyon yönteminden kalıntı gerilmelerin belirlenmesinde de yararlanılmaktadır [12-16]. Malzemelere ait önemli bir özellik olan ve çekme deneyleriyle elde edilen gerçek gerilme-birim şekil değişimi eğrileri de indentasyon deneyleriyle elde edilebilmektedir [7,9,10,20,24,25].

2.2. İndentasyon Yönteminde Kullanılan Test Ekipmanı

Şekil 2.3'de ana elemanlarıyla bir indentasyon test cihazı gösterilmiştir. Bu cihaz üç temel elemandan meydana gelmektedir. Bunlar; özel geometrili batıcı ucun monte edildiği uygulanan kuvveti ileten rijit sütun, kuvveti uygulamak için aktüatör, batıcı ucun derinliğini ölçmek için sensördür. Bugüne kadar, çoğu indentasyon test cihazı gelişimi küçük ölçeklerde çalışmak için özel dizayn edilmiş aletler kullanılarak gerçekleştirilmiştir [27].

Çeşitli küçük ölçekli indentasyon test sistemleri ticari olarak mevcuttur. Bunların birbirinden ayrıldığı nokta kuvvetin uygulanmasının ve derinliğin ölçülmesinin, değişik yollarla yapılmasıdır. Küçük kuvvetler yay ve mıknatıs tertibatı ile elekromagnetiksel olarak, sabitlenmiş ve hareket eden yüzeyler ile kapasitör

kullanarak elektrostatiksel olarak, piezoelektrik aktüatörler ile uygun bir şekilde oluşturulabilir. Kuvvetlerin büyüklükleri genellikle aktüatöre uygulanmış voltaj ve akımdan anlaşılır. Bununla birlikte piezoelektrik ile çalışan aletlerde, ayrı bir güç ünitesi çoğu kez kuvvetin direkt ölçülmesini sağlamak için dahil edilir. İz derinliği çeşitli araçlar ile ölçülür; kapasitif sensörler, doğrusal değişen diferansiyel transformatörler ve lazer interferometreler. Özel aygıtlar kullanılması ile aletin ölçün aralığı ve çözünürlüğü tanımlanmaktadır [27].

Şekil 2.3. Basit bir indentasyon test cihazının şematik gösterimi [27]

İndentaston deneylerinde kullanılan batıcı uçlar değişik malzemelerden yapılmıştır ve elmas en çok kullanılan malzemedir. Çünkü yüksek sertlik ve elastisite modülü, batıcı ucun kendisinden kaynaklanan yer değişimini minimize etmede katkı sağlar. Batıcı uçlar safir, tungsten karbür veya sertleştirilmiş çelik gibi daha az sertlikteki malzemelerden de yapılabilir. Fakat bu durumda, kuvvet-iz derinliği verileri analiz edilirken batıcı ucun elastik yer değişimi mutlaka göz önünde bulundurulmalıdır [27].

2.3. İndentasyon Yönteminin Çeşitleri

2.3.1. Küresel indentasyon yöntemi

Küre, indentasyon testlerinde kullanılan önemli bir batıcı uç geometrisidir. Küresel temasın, Berkovich ve Vickers batıcı uçlardaki sivri temastan farkı batıcı ucun numuneye nüfuz etme esnasındaki gerilimin gelişimidir. Küresel batıcı uçlar için, temas gerilimi başlangıçta küçüktür ve sadece elastik deformasyon oluşturur, küresel batıcı uç yüzeye batırılmaya devam edildiğinde elastikten plastik deformasyona geçiş meydana gelir. Yüksek kalitedeki kürelerin elde edilmesi için sert ve rijit malzeme kullanılmasında ortaya çıkan zorluklar küresel batıcı uçların mikron ölçeğinde kullanılmasını engeller [27].

Küresel indentayon yöntemi uygulaması Şekil 2.4'de gösterilmektedir. Küresel indentasyon yöntemini diğer indentasyon yöntemlerinden ayıran nokta, batıcı ucun test numunesi üzerindeki aynı noktaya birden fazla yük uygulaması ve yükü boşaltmasıdır. Test sürecinde yükleme- yük boşaltma- tekrar yükleme işlemleri sırasıyla tekrarlanır [7,31-33].

Şekil 2.4. Küresel İndentasyon yöntemi uygulaması [33]

Birim şekil değişimi bölgesi Tabor tarafından temsili birim şekil değişimi (ε_f) olarak gösterilerek d ve D' nin fonksiyonu olarak verilir [7,9,10,31-33].

$$\varepsilon_{\rm f} = \beta({\rm d/D}) \tag{2.1}$$

Burada D; batıcı uç (bilya) çapı ve d; indentasyon (iz) çapıdır.

Tabor' un ampirik bilgileri analiz etmesiyle ε_f ' nin lineer olarak d/D oranı ile değiştiğini ve lineerlik katsayısının (β) 0,2 olduğunu bulmasından sonra, gerçek plastik birim şekil değişimini (ε_p) şu şekilde göstermiştir:

$$\varepsilon_{\rm p} = 0.2(d_{\rm p}/{\rm D}) \tag{2.2}$$

Burada d_p, plastik indentasyon çapıdır [7,9,10,31-33].

Tabor, çalışmalarında gerilme ve ortalama basınç arasında lineer bir ilişki bulmuştur. Ortalama basınç birim temas alanına uygulanan kuvvet olarak tanımlanmıştır.

$$P_m = \alpha \sigma_e \tag{2.3}$$

$$P_m = \frac{F}{\pi d^2 / 4} \tag{2.4}$$

Burada P_m ortalama basıncı, F kuvveti, d iz çapını, α ise kısıtlama faktörü olarak adlandırılan bir sabittir ve çelikler için yaklaşık olarak 3 değerini alır. Çeşitli malzemeler için 2,6 ile 3,4 değerleri arasında değişir [33].

Denklem 2.3 ve 2.4' dan ;

$$\sigma_e = \frac{4F}{\pi d^2 \alpha} \tag{2.5}$$

bulunur.

Denklem 2.2 ve denklem 2.5'ten bulunan temsili gerilme (σ_e) ve temsili birim şekil değişimi (ϵ_e) eğrilerinin denklem formüllerinden faydalanarak birtakım katsayıların bulunmasıyla gerçek gerilme-gerçek birim şekil değişimi eğrilerine geçiş yapılır [9,10].

Küresel indentasyon yöntemi Berkovich ve Vickers ile birlikte kullanımı yaygın olan bir indentasyon yöntemidir. Özellikle kaynak bölgeleri üzerinde, bu bölgelerin mekanik ve kırılma özelliklerini bulmaya yönelik çalışmalarda otomatikleştirilmiş küresel indentasyon tekniğinden yararlanılmıştır. Esas metalin ve kaynağın akma gerilmesi, çekme dayanımı, pekleşme üssü ve mukavemet katsayısı gibi değerleri maksimum %7 hata ile tahmin edilmiştir [34]. Kırılma tokluğunun belirlenmesi üzerine yapılan çalışmalarda da otomatik küresel indentasyon yönteminden sıklıkla yararlanılmıştır [34-36].

2.3.2. Vickers ve Berkovich indentasyon yöntemi

İndentasyon testlerinde çoğunlukla Berkovich batıcı uçları kullanılır. Berkovich üçgen tabanlı bir piramit şeklindedir ve kare tabanlı piramit şeklinde olan Vickers ile aynı derinlik alan ilişkisine sahiptir. Berkovich geometrisi Vickers e göre daha çok tercih edilir, çünkü Berkovich yüzeyde ufak bir nokta oluşturarak çok küçük ölçeklerde kullanılabilir. Vickers kısmen daha büyük ölçekler için kullanılabilir, fakat indentasyon testlerinde küçük ölçeklerde çalışıldığından Vickers batıcı ucunun kullanımı oldukça sınırlıdır [27].

İndentasyon yöntemindeki temel unsur olan kuvvet yer değiştirme grafiğinden yararlanılır. Vickers ve Berkovich indentasyon yönteminin birbirlerinden farkı kullanılan batıcı uçtan meydana gelmektedir. Kullanılan batıcı uç geometrisinin farklı olmasından dolayı bazı formüller ve formüllerdeki katsayılar değişmektedir [27].

2.3.3. Knoop indentasyon yöntemi

Knoop indentasyon yöntemi ile malzemelerin mekanik özelliklerinin belirlenmesinde çoğu indentasyon yönteminde olduğu gibi yükleme-yük boşaltma evrelerinin bulunduğu kuvvet-derinlik grafiğinden yararlanılır.

Şekil 2.5. Knoop batıcı ucu(a) ve numune üzerine bıraktığı iz(b) [36]

Bu yöntemde kullanılan Knoop batıcı uç dört köşeli bir piramit şeklindedir ve Şekil 2.5.a' da gösterildiği gibi birbirine eşit olmayan açılardan oluşur.

Test numunesinin erimiş kuvars olduğu Knoop batıcı uç kullanılarak gerçekleştirilen indentasyon deneylerinden elde edilen sertlik ve elastisite modülü değerlerinin gerçek değerlerin üstünde çıktığı görülmüştür. Bunun nedeni ise yük boşaltmadan sonra kısa diagonalın ekseni boyunca elastik geri kazanım meydana gelmesidir, iz kısa diagonal boyunca bir miktar kısalır (Şekil 2.5.b). Bu sorunu ortadan kaldırmak için Marshall, Noma ve Evans yükleme anındaki uzun diagonalın kısa diagonale oranını da (d/b = 7,11) kullanarak bir eşitlik türetmişlerdir :

$$\frac{b'}{d'} = \frac{b}{d} - \alpha \frac{H}{E}$$
(2.1)

Burda α geometrik bir faktör olup değeri 0,45'tir.

Yük boşaltmadan sonra kısa diagonalde meydana gelen kısalmaya karşın, uzun diagonalde değişim oldukça az olur ve değişmiyor kabul edilir. Sertlik değeri büyük ve elastisite değeri küçük olam malzemeler için kısa diagonaldeki elastik geri kazanım ihmal edilebilir düzeydedir ($\dot{b} \approx b$).

Knoop indentasyon yöntemi genellikle mikrosertlik testlerinde ve yüzeysel, yani derin olmayan ölçümlerde kullanılır [37].

2.3.4. Konik indentasyon yöntemi

Berkovich ve Vickers batıcı uçları gibi bu yöntemde kullanılan konik batıcı uçta sivri batıcı uç sınıfındandır. Konik batıcı ucu daha cazip hale getiren silindirik geometrisidir. Bu silindirik geometri, batıcı ucun sivri kenarlarındaki gerilim konsantrasyonu ile ortaya çıkan zorlukları ortadan kaldırır [27].

İndentasyon yöntemlerinin temel unsuru olan kuvvet-iz derinliği grafiklerinin elde edilmesinde test esnasındaki yükleme ve yükü boşaltma bölümlerinden yararlanılır.

Şekil 2.6'da konik bir batıcı uç gösterilmektedir. Burada θ batıcı ucun tepe açısının yarısını, a_m ise h_m derinliğine sahip izin yarıçapını göstermektedir [38].

Şekil 2.6. Konik İndentasyon yöntemi şematiği [29]

Konik batıcı uçların dolayısıyla konik indentasyon yönteminin kullanımı oldukça azdır. Bunun başlıca nedeni konik elmaslar ile sivri uçların üretiminin zor olmasıdır. Bu nedenle küçük ölçeklerde yapılan indentasyon testlerinde konik uçların kullanımı azdır. Büyük ölçekler için bu sorun ortadan kalkmakta ve büyük ölçekler için kullanılabilmektedir [27].

2.4. Yanal Çıkıntı ve Yanal Girinti Etkisi

İndentasyon testlerinde karşılaşılan en önemli sorunların başında yanal çıkıntı ve yanal girinti olayları gelmektedir. Test numunesine, batıcı ucun nüfuz etmesi ile batıcı uca yakın yüzeyde yukarı doğru bir hareket gözlenir ve buna yanal çıkıntı (pile-up), bu hareketin aşağı olması durumuna ise yanal girinti (sinking-in) adı verilir.

Şekil 2.7. İndentasyon uygulamasında oluşan yanal girinti(a) ve yanal çıkıntı(b) davranışı [27]

Yanal çıkıntı veya yanal girinti oluşumu, temas alanının yanlış hesaplanmasına neden olur. Bu durumda alana bağlı yapılacak hesaplamalarda hatalar çıkması kaçınılmazdır. Örneğin, sertliğin ve elastisite modülünün hesaplanmasında malzemenin göstermiş olduğu yanal çıkıntı veya yanal girinti davranışları göz önünde bulundurulmalıdır.

Şekil 2.8'de yanal çıkıntı ve yanal girinti sonucu malzeme yüzeyinde oluşan iz alanları gösterilmektedir. Ayrıca yanal girinti veya yanal çıkıntı oluşmaması halindeki temas alanı "A", yanal girinti veya yanal çıkıntı oluşması halindeki temas alanı ise "A_s" ile gösterilmektedir.

Şekil 2.8. Yanal çıkıntı sonucu(a) ve yanal girinti(b) sonucu oluşan iz alanı [39]

Sonlu elemanlar analizleri ile malzemelerin yanal çıkıntı ve yanal girinti davranışları incelenmiş ve temas alanının belirlenmesi üzerine etkisi çok sayıda araştırmacı tarafından araştırılmıştır. Yapılan çalışmalar akma gerilmesinin elastisite modülüne

oranı (σ_y /E) ile pekleşme üssü(n) değerinin yanal çıkıntı ve yanal girinti oluşumunda etkin bir rolü olduğunu göstermiştir. Direkt olarak kuvvet-derinlik grafiğinden elde ettiğimiz deneysel parametreler olan elastik derinlik veya kalıcı (son) derinliğin maksimum derinliğe oranı yanal çıkıntı veya yanal girintiyi karakterize eden oldukça kullanışlı bir yöntemdir [40].

Xu ve Rowcliffe, elastik derinlik (h_e) ile maksimum derinlik oranının, malzemenin σ_y /E ve n gibi özelliklerine bağlı olduğunu, bunun yanında h_e/h_{maks} ile pekleşme üssünün (n) yanal çıkıntı ve yanal girinti davranışlarında etkili birer parametre olduğunu öne sürmüşlerdir. Araştırmacılar yanal çıkıntı davranışının sadece n < 0,3 olduğu durumlarda görüleceği sonucuna ulaşmışlardır. Yanal girinti ve yanal çıkıntı davranışı için geçiş noktası olarak h_e/h_{maks} =0,12 değerini belirlenmekle beraber h_e/h_{maks} > 0,12 için sadece yanal girintiden söz edilebileceğini belirtmektedirler. Tüm bu sonuçlara ilaveten sertlik, %10'luk gerçek birim şekil değişimine karşılık gelen gerçek gerilmenin bir fonksiyonu olarak tanımlanmakta ve akma dayanımını ve pekleşme üssünü veren yeni bir metot öne sürülmektedir [21].

İndentasyon yöntemi ile malzeme karakterizasyonu yapılırken yüksek hassasiyette sonuçlara ulaşmak için tanımlayacağımız gerçek temas alanı değeri büyük önem taşımaktadır. Gerek yanal çıkıntı ve yanal girinti etkisi gerekse batıcı ucun şeklinden kaynaklanan hatalar, temas alanı hesaplamalarında ve dolayısıyla buna bağlı birçok özelliğin belirlenmesinde hataya yol açacaktır.

Temas alanının tanımlanması optik mikroskop, taramalı elektron mikroskobu veya atomik kuvvet mikroskobu ile numune yüzeyindeki izin görüntülenmesine ve bu şekilde temas alanının elde edilmesine ilişkin çalışmalarda yapılmıştır [41].

BÖLÜM 3. VİCKERS İNDENTASYON YÖNTEMİ

3.1. Giriş

Klasik sertlik belirleme deneylerinin yerini, son yıllarda indentasyon testlerine bıraktığından önceki bölümlerde bahsedilmiştir. Sağladığı kolaylık, ekonomiklik ve güvenilirlik gibi özellikleriyle malzemenin sadece sertliğinin değil diğer mekanik özelliklerinin de mikron ölçeğindeki iz derinliklerinden belirlenmesinde indentasyon yönteminin bir çeşidi olan Vickers indentasyon yönteminden sıklıkla yaralanılmaktadır.

Vickers indentasyon yöntemi sayesinde, sertlik testi sonrasındaki numune yüzeyindeki izin görüntüsüne ihtiyaç duyulmayarak direkt olarak yük-iz derinliği verilerinden yararlanılarak mekanik özellikler belirlenebilmektedir. Kare tabana sahip piramit batıcı ucu sayesinde Vickers indentasyon yöntemi, numune yüzeyinde küçük iz derinlileri bırakarak hem daha az tahribata neden olur hem de lokal malzeme özelliklerinin analizinde avantaj sağlar. Bunun yanında, yüksek kararlılıktaki test ekipmanları sayesinde mikro ve nano ölçekte ölçümler yapılmaktadır. Sağladığı bu gibi kolaylıklar Vickers indentasyon yönteminin şematik gösterimi Şekil 3.1'de verilmiştir. P, Vickers batıcı ucuna uygulanan kuvveti, d ise temas alanının köşegen uzunluğunu temsil etmektedir.

Şekil 3.1. Vickers indentayon yöntemi şematiği [33]

Vickers batıcı ucuna uygulanan kuvvet ile batıcı ucun numuneye nüfuz etme derinliğinden hareketle Oliver-Pharr sertlik ve esneklik modülü hesaplaması yapabilecek bir metot türetmişlerdir [17]. Bu metotta kuvvetin test numunesine uygulanması ve sıfırlanması ile oluşturulan kuvvet-iz derinliği (P-h) grafiklerinden yararlanılır [17].

Şekil 3.2' de yükleme-yük boşaltma evrelerinden oluşan tipik bir kuvvet-iz derinliği grafiği gösterilmiştir. İndentasyon yönteminde büyük öneme sahip nicelikler gösterilmiştir. Bunlar ; maksimum kuvvet (P_{max}), maksimum batma derinliği (h_{max}), yük tamamen sıfırlandıktan sonraki kalıcı (son) derinlik (h_f), maksimum yükteki temas derinliği (h_c) ve yük boşaltma eğrisinin başlangıç kısmının eğimidir (S=dP/dh) [28,42].

Şekil 3.2. Yükleme ve yük boşaltma evresinden oluşan kuvvet-iz derinliği grafiği [4]

Vickers indentasyon yönteminden elde edilen verilerle malzeme özelliklerini belirlerken sıklıkla kullanılan bazı parametreler yukarıda açıklandığı gibidir ve kuvvet iz derinliği grafiği yöntemin temelini oluşturmaktadır. Önemli parametrelerin bazıları Şekil 3.3'te gösterilmiştir.

Şekil 3.3. Vickers indentasyonu parametrelerinin gösterimi [2]

Diğer bir çok indentasyon yönteme kıyasla Vickers indentasyon yöntemi daha küçük ölçeklerden ölçüm yapabilmekte ve bu küçük bölgelerin analizlerinde kullanılabilmektedir. Vickers indentasyon yöntemi ile küçük ölçeklerde ölçüm yapılabilmesi sayesinde özellikle ince filmlerin, kaplamaların, ikinci faz taneciklerinin mekanik özelliklerinin belirlenmesinde kullanılmaktadır [5,30].

İlk olarak Doerner ve Nix 1986 yılında yaptıkları çalışmada Vickers indentasyon yöntemi ile sertlik ve elastisite modülünün hesaplanabileceğini ortaya koymuşlardır [18]. Bugüne kadar yapılan çalışmalarda hem literatürdeki değerlere yakın sonuçlar elde edebilmek için çeşitli araştırmalar yapılmış hem de elastisite modülü ve sertliğin yanı sıra başka mekanik özelliklerin tespitine çalışılmıştır.

Vickers indentasyon yöntemi kullanılarak mekanik özelliklerin belirlenmesine yönelik Franco ve arkadaşları [2] tarafından yapılan çalışmada, sertlik ve elastisite modülü için literatürdeki değerlere oldukça yakın sonuçlar elde edilmiştir. Sertlik, numune yüzeyindeki çentiğin köşegen uzunluğundan hareketle tanımlanmıştır. Elastisite modülünün hesaplanmasında ise alan Oliver-Pharr tarafından tanımlanmış iteratif bir metottan yararlanılmıştır. Alan için batıcı ucun formundaki düzensizlikleri de hesaba katarak bir eğri oluşturulmuş ve kalıcı temas derinliğine (h_f) bağlı temas alanını veren bir formül tanımlanmıştır. Kalıcı temas derinliği (h_f) eşitlikte yerine yazılarak alan elde edilmiştir [2].

Casals ve Alcala yaptıkları çalışmada sonlu elemanlar simülasyonlarından yararlanarak Vickers ve Berkovich indentasyon yöntemleri için kuvvet-iz derinliği grafiklerinden hareketle malzemenin elastisite modülü, akma dayanımı, pekleşme üssü ve sertlik değerlerinin elde edilebileceğini öne sürmüştür. Ayrıca pekleşme üssü değeri 0,2 civarında olan malzemelerde, yanal çıkıntı veya yanal girinti davranışının hafif görülmesi neticesinde elde edilecek mekanik özelliklerin daha hassas sonuçlar verebileceğini belirtmişlerdir [39].

Antunes, Menezes ve Fernandes tarafından yapılan bir çalışma Vickers indentasyon yöntemi için bazı sorulara net yanıtlar getirmiştir (Örneğin sürtünme katsayının test sürecine etkisi). Nümerik simülasyonlar sonucu üç farklı sürtünme katsayısı için elde ettikleri kuvvet-iz derinliği grafiklerinin aynı olduğunu göstermişler ve sürtünme katsayının kuvvet-iz derinliği grafiklerine etkisinin olmadığı sonucuna ulaşmışlardır. Ayrıca sonlu elemanlar yöntemi kullanarak ve deneysel olarak elde edilen P-h grafikleri incelenmiş, aradaki farkın sadece son derinliğin (h_f) deneysel metotta daha küçük bir değer olduğu sonucuna varılmıştır. Bunun nedeninin deneysel ekipmandan ve elmas batıcı uçtan kaynaklanabileceğini öne sürmüşlerdir. Test numunelerinin elastisite modülünü deneysel olarak %±6 hata aralığında hesaplamışlardır. Yanal çıkıntının ($h_f/h_{maks}>0,9$) kuvvetli bir şekilde etkili olduğu durumlarda malzeme özelliklerinin tahmininde hataların ortaya çıkabileceğini belirtmişlerdir [43]

Vickers indentasyon yöntemiyle malzeme karakterizasyonu için yapılmış başka bir çalışmada B_4C/Al kompozitlerin sertlikleri ve indirgenmiş elastisite modülleri elde edilmiştir. Sertliğin ve indirgenmiş elastisite modülünün tespitinde Oliver-Pharr tarafından öne sürülen metot kullanılmıştır [28].

Farklı bir malzeme türünü incelemek amacıyla yapılmış bir çalışmada, metalik camların Vickers indentasyon testi esnasındaki yüzey deformasyonları incelenmiştir. Yüzeyde oluşan deformasyonların uygulanan yük ile ilişkisi gösterilmiştir [44].

Vickers ve küresel indentasyon yöntemindeki yanal girinti ve yanal çıkıntı davranışları incelenmiş, yanal çıkıntıdan yanal girintiye geçişin pekleşme üssünün (n) yaklaşık 0,2 değerini aldığında gerçekleştiği öne sürülmüştür. Pekleşme üssünün 0,2' den büyük olduğu malzemelerde yanal girintinin hakim olduğundan söz edilmiştir [45].

3.2. Vickers İndentasyon Yöntemi ile Malzeme Özelliklerinin Belirlenmesi

3.2.1. Elastisite modülünün belirlenmesi

Vickers indentasyon yöntemi ile elastisite modülünün belirlenmesi üzerine çeşitli çalışmalar yapılmış ve eşitlikler türetilmiştir. Yapılan bu çalışmaları birbirinden ayıran noktalar bazılarında yük boşaltma eğrisinin başlangıç kısmının eğiminden (S) yaralanılması, bir kısmında ise yükleme ve yük boşaltma eğrileri altında kalan alanların kullanılması veya bazı parametrelerin (temas alanı, indirgenmiş elastiste modülü vb.) farklı şekillerde tanımlanması olarak sıralanabilir.

Sneddon tarafından öne sürülen elastik analizlere dayanarak , Loubet, Doerner-Nix ve Oliver-Pharr elastisite modülü için eşitlikler öne sürmüşlerdir. Bu eşitlikleri birbirinden ayıran nokta temas alanını (A_c) hesap etmek için kullanılan iz derinliğinin farklı şekillerde tanımlanmasıdır [18,46,47]. Bu metotta malzemeye ait elastisite modülü ;

$$\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_i^2}{E_i}$$
(3.1)

eşitliğinden elde edilir. Burada, E_r indirgenmiş elastisite modülü, v ve E malzemeye ait, ve E_i ise batıcı uca ait poisson oranı ve elastisite modülüdür. İndirgenmiş elastisite modülü için ;

$$E_r = \beta \frac{1}{2} \sqrt{\frac{\pi}{A_c}} S \tag{3.2}$$

formülü kullanılır. Burada S, yük boşaltma eğrisinin eğimi, β batıcı uca ait geometrik bir sabittir (Vickers batıcı ucu için β =1,0124) [2]. Temas alanı A_c ise ;

$$A_c = 24.5h_c^{\ 2} \tag{3.3}$$

Eşitlik 3.3'teki teorik indentasyon iz alanının hesaplanmasında; Doerner ve Nix eşitlik 3.4'ten yararlanmaktadır [18].

$$h_c = h_m - \frac{P_{maks}}{S} \tag{3.4}$$

Oliver ve Pharr eşitlik 3.5'i kullanarak maksimum yükteki temas derinliğini (h_c) hesaplar, bu eşitlikteki ε batıcı uç geometrisine bağlı bir sabittir (Vickers batıcı ucu için ε = 0,75) [42].

$$h_c = h_m - \varepsilon \frac{P_{maks}}{S} \tag{3.5}$$

Loubet eşitlik 3.6 ile temas alanını hesaplar, α batıcı uca göre değişen bir katsayısıdır [46].

$$h_c = \alpha (h_m - \frac{P_{maks}}{S}) \tag{3.6}$$

Elastisite modülünü elde etmeye yönelik diğer bir çalışmada ise, indirgenmiş elastisite modülünün (E_r) farklı şekilde tanımlanması ile malzemenin elastisite modülüne ulaşılmaya çalışılmaktadır [48].

$$E_r = \frac{1}{c^* \sqrt{A_{maks}}} S \tag{3.7}$$

Burada c^{*} batıcı uca bağlı bir sabit olmakla beraber, Vickers batıcı ucu için 1,142'dir [48].

Antunes, Cavaleiro, Menezes, Simoes ve Fernandes tarafından gerçekleştirilen bir çalışmada, beş ayrı malzemeye 10 ile 1000 mN arasında yükler uygulanarak oluşturulan çentiğin temas alanı iki ayrı metotla elde edilmektedir. Birinci metot teorik olarak temas alanını veren h_c ile atomik kuvvet mikroskobu yardımıyla ölçülen çentik (iz) derinliğini arasında bir ilişki kurulmasına dayanmaktadır. Bu ilişki sonucunda atomik kuvvet mikroskobu ile ölçülen iz derinliği (h_{AFM}), h_c'ye bağlı bir
fonksiyonla ifade edilmektedir. İkinci metot ise elastisite modülü bilinen farklı malzemeler kullanılarak bulunan iz derinliği (h_L), deneysel olarak elde edilen h_c ile ilişkilendirilerek bir grafik oluşturulur. Bu grafikten hareketle $h_L = Ah_c + B$ şeklinde bir eşitlik elde edilir. Kalibre edilmiş iz derinliklerinden hareketle (h_L , h_{AFM}), eşitlik 3.3,3.2 ve 3.1 kullanılarak test numunelerinin elastisite modülleri hesaplanmıştır . Bu iki metotla elde edilen iz derinlikleri ile bulunan sertlik ve elastisite modülü değerlerinin, Oliver-Pharr tarafından ileri sürülen metotla bulunan iz derinliği kullanılarak elde edilen sonuçlarla karşılaştırılması yapılmaktadır ve bu iki metotla bulunan değerlerin literatürde yer alan sertlik ve elastisite modülü değerlerine daha yakın olduğu sonucuna varılmaktadır [3].

Elastisite modülünün belirlenmesinde, yükleme ve yük boşaltma evrelerindeki enerjiden hareketle türetilmiş eşitliklerde mevcuttur [4,49].

Yükleme eğrisi altında kalan alandan hareketle tanımlanan, toplam enerji (W_t) ile indentasyon uygulaması için harcanmış enerjinin (W_p) birbirlerine oranını sertlik ve indirgenmiş elastisiste modülüne bağlı veren yaklaşık bir tanımlamada mevcuttur. Bu tanımlama farklı işleme sertleşmesine sahip malzemeler kullanılarak ve yanal çıkıntı davranışları dikkate alınarak sonlu elemanlar simülasyonlarından yararlanılarak yapılmıştır [42,49].

$$\frac{W_p}{W_t} \cong 1 - 5 \frac{H}{E_r} \tag{3.8}$$

Elastisite modülü için öne sürülen metotlardan bir diğerinde ise indirgenmiş elastisite modülünü tanımlamaya gerek duyulmamaktadır [4]. Bu metot aşağıda ayrıntılı bir biçimde açıklanmıştır.

Kuvvet-derinlik grafiğindeki yükleme evresi ikinci dereceden bir fonksiyondur ve şu şekilde tanımlanır:

$$P = c_2 h + c_3 h^2 (3.9)$$

Yük boşaltma evresi de aynı şekilde ikinci dereceden bir fonksiyon olarak tanımlanabilir.

Şekil 3.4. İndentasyon sürecinin gösterimi [48]

 W_e yük boşaltma esnasındaki geri kazanılan enerji, W_p ise indentasyon işlemi için harcanmış enerjidir (Şekil 3.4). Toplam enerji bu ikisinin toplamına eşittir.

$$W_t = W_e + W_p \tag{3.11}$$

Yükleme ve yük boşaltma eğrileri için elde ettiğimiz ikinci dereceden fonksiyonlardan hareketle W_t ve W_e tanımlanabilir.

$$W_{t} = \frac{c_{2}}{2}h_{m}^{2} + \frac{c_{3}}{3}h_{m}^{3}$$
(3.12)

$$W_{e} = c_{1}^{*}(h_{m} - h_{f}) + \frac{c_{2}^{*}}{2}(h_{m}^{2} - h_{f}^{2}) + \frac{c_{3}^{*}}{3}(h_{m}^{3} - h_{f}^{3})$$
(3.13)

Burada h_m maksimum iz derinliği, h_f ise kalıcı (son) derinliktir.

Elastisite modülü :

$$E = \alpha c_3 \frac{W_t}{W_e} \tag{3.14}$$

 α ise :

$$\alpha = \frac{2(1-v^2)\gamma^2}{\tan\psi\alpha_0} \tag{3.15}$$

şeklinde tanımlanır. Burada ν deney numunesinin poisson oranı, $\gamma = \pi/2$, ψ batıcı ucun tepe açısının yarısı, α_0 batıcı uç geometrisine bağlı bir sabittir (Vickers batıcı ucu için 2) [4].

Vickers indentasyon yöntemi ile malzemelerin elastisite modülünü belirlemek için öne sürülmüş yukarıda bahsedilen yöntemler Tablo 3.1' de özetlenmiştir.

Doerner&Nix [18]	$h_c = h_m - \frac{P_{maks}}{S}$	$A_{c} = 24.5 h_{c}^{2}$	$E_r = \beta \frac{1}{2} \sqrt{\frac{\pi}{A_c}} S$	$\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_i^2}{E_i}$
Oliver&Pharr	$h - h - c \frac{P_{maks}}{r}$	$A_{c} = 24.5 h_{c}^{2}$	$E \rho^{1} \overline{\pi}_{c}$	$1 - 1 - v^2 + 1 - v_i^2$
[42]	$n_c - n_m = S$		$E_r = \rho \frac{1}{2} \sqrt{\frac{A_c}{A_c}}$	$\overline{E_r}^{-}\overline{E}^{+}\overline{E_i}$
Loubet	$h = \alpha (h - \frac{P_{maks}}{P_{maks}})$	$A_{c} = 24.5 h_{c}^{2}$	$E = \beta \frac{1}{\pi} \sqrt{\pi} S$	$\frac{1}{1} = \frac{1 - v^2}{1 + v_i^2} + \frac{1 - v_i^2}{1 + v_i^2}$
[46]	$r_c \sim c_m (r_m S)$			$E_r E E_i$
Cheng&Cheng	W _n	- H		$1 1 - v^2 1 - v_i^2$
[42,49]	$\frac{V}{W_t} \cong 1$	$-5{E_r}$		$\frac{E_r}{E_r} = \frac{E_r}{E_i} + \frac{E_i}{E_i}$
Antunes	$h_L = Ah_c + B$	$A_{c} = 24.5 h_{L}^{2}$	$ 1 \pi$	$1 1 - v^2 1 - v_i^2$
[3]	h _{AFM}	$A_c=24.5(h_{AFM})^2$	$E_r = \beta \frac{1}{2} \sqrt{\frac{A}{A_c}} S$	$\frac{1}{E_r} = \frac{1}{E} + \frac{1}{E_i}$
Suresh			F _ 1 S	$1 1 - v^2 1 - v_i^2$
[4]	A _{maks} =24.5(h _{mal}		$E_r = \frac{1}{c^* \sqrt{A_{maks}}} S$	$\frac{1}{E_r} = \frac{1}{E} + \frac{1}{E_i}$
Gubicza	2(1	$-\nu^2)\gamma^2$		$E - \alpha c W_t$
[5]	$\alpha = \frac{1}{\tan \alpha}$	$\sin\psi\alpha_0$		$\blacktriangleright L - \alpha c_3 \overline{W_e}$

Tablo 3.1 Vickers indentasyon yöntemi ile elastisite modülü tayini için önerilmiş bazı yöntemler

3.2.2. Akma dayanımının belirlenmesi

İlk olarak Tabor tarafından sertlik ile akma dayanımı arasında bir ilişki olduğundan söz edilmektedir. Pekleşme görülmeyen malzemeler için Vickers sertliği (HV) ile akma dayanımı (σ_{ak}) ilişkisi;

$$HV = c.\sigma_{ak} \tag{3.16}$$

Burada c 2,9 ile 3 arasında değişen bir katsayıdır [51].

Pekleşme görülen malzemeler içinse Tabor benzer bir ifade türetmiştir.

$$HV = c.\sigma_e \tag{3.17}$$

Bu durum için c katsayısı 2,9 değerini alır. σ_{e} , (ϵ_{e}) 0,08 lik plastik şekil değişimine karşılık gelen gerilmedir [51].

Bu konuda yapılan çalışmalarda sonlu elemanlar yöntemleri ile birçok farklı model kullanılarak çeşitli yaklaşımlar yapılmıştır. Tekkaya soğuk şekil verilmiş malzemeler için yaptığı sonlu elamanlar analizlerinde c katsayısını 2,745 ve plastik şekil değişimini 0,112 alarak sonuçlar elde etmiş ve bulunan sonuçlardaki hata %10' un altında, Tabor tarafından öne sürülen metotla bulunan sonuçlardaki hatadan ise %20 daha azdır [51]. Mata ve Alcala c= 2,7 ve ε_e =0,1 değerlerinin elastik-plastik ve tam plastik rejim için geçerli olduğunu öne sürmüştür. Larsson sonlu elemanlar yöntemi ile Vickers indentasyonu için yaptığı çalışmada Tabor' un eşitliğinin sadece tam plastik rejimde olduğunu, c = 2,6 ve ε_e = 0,15 olarak bulmuştur [33].

Casals ve Alcala, Vickers batıcı uçları kullanılan indentasyon testlerinin sonlu elemanlar yöntemi ile analizini yapmıştır. Bu çalışmada akma dayanımı için eşitlik 3.18' den bahsedilmiştir.

$$\sigma_{ak} = \sigma_r^{\frac{1}{(1-n)}} x(\varepsilon_r E)^{\frac{n}{n-1}}$$
(3.18)

Burada, $\varepsilon_r = 0.08$ ve σ_r ise 0.08'lik şekil birim şekil değişimine karşılık gelen gerilmedir [39].

Eşitlik 3.18'den yararlanılarak akma gerilmesini bulmaya yönelik başka bir çalışmada $\varepsilon_r = 0,033$ ve σ_r ise 0.033'lük şekil değişimine karşılık gelen gerilme değeri alınarak sonuca gidilmektedir [48].

Tablo 3.2'de Vickers indentasyon yönteminden hareketle malzemelerin akma dayanımlarının belirlenmesine yönelik önerilmiş bazı metotlar gösterilmektedir.

Tabor [46]	c = 2,9-3	$\sigma_{ak} = HV/c$
Mata&Alcala [32]	$c = 2,7$ $\varepsilon_e = 0,1$	$\sigma_e = HV/c$
Larsson [32]	$c = 2,6$ $\varepsilon_e = 0,15$	$\sigma_e = HV/c$
Tekkaya [46]	$c = 2,745 \epsilon_e = 0,112$	$\sigma_e = HV/c$
Casals&Alcala [38]	$\varepsilon_r = 0,08$	$\sigma_{ak} = \sigma_r^{\frac{1}{(1-n)}} x(\varepsilon_r E)^{\frac{n}{n-1}}$
Giannakopoulos [49]	$\varepsilon_r = 0,033$	$\sigma_{ak} = \sigma_r^{\frac{1}{(1-n)}} x (\varepsilon_r E)^{\frac{n}{n-1}}$

Tablo 3.2 Vickers indentasyon yöntemi ile akma dayanımı tayini için önerilen bazı metotlar

3.2.3. Gerçek gerilme-gerçek birim şekil değişimi eğrisinin elde edilmesi

Vickers indentasyon yöntemi ile gerçek gerilme-gerçek birim şekil değişimi eğrilerinin belirlenmesine yönelik literatürdeki çalışmaların büyük çoğunluğunun sonlu elemanlar simülasyonlarına dayanan araştırmalar olduğu görülmektedir.

Matsuda tarafından ortaya konulan çalışmada, Vickers sertliği, maksimum yanal çıkıntı yüksekliğinin izin köşegen uzunluğuna oranı ve izin merkezinden maksimum yanal çıkıntı kadar olan mesafenin izin köşegen uzunluğuna oranı parametrelerinin ölçülmesi ile gerilme-b.ş.d eğrilerini belirleyecek bir metot önermektedir. Fakat lineer olmayan pekleşme gösteren malzemelerde %10 plastik şekil değişimi

civarında yaklaşık sonuçlar elde edildiğini göstermektedir [25]. Numune üzerindeki çentikte (izde) meydana gelen yanal çıkıntının ölçülmesi özel ekipmanlar gerektirdiğinden kullanışlı bir yöntem değildir.

Vickers indentasyon uygulamalarından σ - ϵ eğrilerini elde etmek için kullanılan metotlarda en önemli kısım kuvvet-iz derinliği grafikleridir. Buradan yola çıkarak aynı elastisite modülüne sahip fakat farklı akma dayanımı ve pekleşme üssüne sahip malzemelerin aynı kuvvet-iz derinliği verdikleri gösterilerek Vickers indentasyon yöntemi ve konik indentasyon yöntemi ile σ - ϵ eğrilerinin belirlenemeyeceği öne sürmektedir [23].

Karadeniz ve Sezer tarafından yapılan çalışmada Vickers indentasyon yöntemi ile gerçek gerilme-gerçek birim şekil değişimi eğrisini elde edebilmek için önerilmiş farklı bir metot kullanılmıştır [52]. Bu metotta birim şekil değişimi için;

$$\varepsilon = \ln \frac{h_0}{h_0 - h} \tag{3.19}$$

formülü kullanılmaktadır. Bu formülde, h yük uygulama esnasındaki iz derinliği, h_0 ise sabit olup Vickers uygulamaları için 40 μ m önerilmektedir [52].

Gerçek birim şekil değişimi değerlerine karşılık gelen gerçek gerilme değerleri için birtakım bağıntılar geliştirilmiştir. Bunun için öncelikle indentasyon deneylerinden elde edilen P-h grafiklerinden elde edilen kuvvet ve iz derinliği verilerinden faydalanılır.

$$\sigma = \frac{F}{A'} \tag{3.20}$$

bağıntısında,

F=İndentasyon yükü,

A'=İndentasyon yük değerlerine karşılık gelmesi gereken temas alanları,

 σ = Çekme deneylerinden elde edilen gerçek gerilme değerleridir.

Bu temas alanları, çekme deneyleri ile aynı birim şekil değişimi değerine karşılık gelen indentasyon deneylerindeki yüklerde aynı gerilme değerini verecek alanlardır.

Denklem 3.20'den bulunan A' değerleri denklem 3.21'de kullanılarak h' değerleri bulunur.

$$h' = \sqrt{\frac{A'}{24,5}}$$
(3.21)

h'= yanal çıkıntı sonucunda oluşan gerçek iz derinliğidir.

Eşitlik 3.21' den elde edilen h' değerleri ile indentasyon deneylerinden elde edilen gerçek h değerleri arasındaki ilişki bir grafikle temsil edilerek bu iki değer arasında bir bağıntı çıkarılır. Bu bağıntı h' = B x h + C şeklindedir. Buradaki B ve C değerleri malzemelere özgü sabitlerdir.

Böylelikle deneylerden elde edilen h değerleri, her malzeme için ayrı bir B ve C değeri ile düzeltilmiş h' değerlerine dönüştürülür. Eşitlik 3.22 kullanılarak deney verilerindeki her h değeri için kullanılacak olan düzeltilmiş temas alanları bulunur.

$$A = 24,5x(B.h+C)^2$$
(3.22)

Eşitlik 3.23 ile de her indentasyon yükünün bu yüke denk gelen düzeltilmiş temas alanına bölünmesi ile indentasyon deneylerinden gerçek gerilme değerleri tayin edilir.

$$\sigma = \frac{F_{indentasyon}}{A} \tag{3.23}$$

BÖLÜM 4. DENEYSEL ÇALIŞMALAR

4.1. Deney Malzemelerinin İncelenmesi

Vickers indentasyon deneylerinden metallerin Elastisite modülü değerleri ve gerçek gerilme-gerçek birim şekil değişimi eğrilerinin elde edilebilirliği ile ilgili çalışmanın gerçekleştirilmesinde Cıvata imalatında yaygın olarak kullanılan küreselleştirme ısıl işlemi görmüş 42CrMo4, 20MnB4 ve 30MnB3 ile perlitik-ferritik QSt32-3 sünek çelikler seçilmiştir. Bu çeliklerin en belirgin özellikleri soğuk dövme yöntemiyle kafa şişirme kabiliyetlerinin yeterince yüksek değerlerde olmasıdır. Diğer bir ifadeyle deneysel çalışmalar soğuk dövme çelikleri ile gerçekleştirilmiştir.

4.1.1. Kimyasal analiz çalışmaları

Tablo 4.1 de üretici firmalardan temin edilen kimyasal analiz sonuçları sunulmaktadır.

ÇELİK	%C	%Si	%Mn	%P	%S	%Cr	%Ni	%Mo	%B
42CrMo4	0,4088	0,0826	0,7533	0,0098	0,006	1,0038	0,0196	0,1813	0,0002
20MnB4	0,2124	0,0417	1,0412	0,0105	0,0101	0,2279	0,0300	0,0051	0,0043
30 MnB3	0,3050	0,0600	0,8300	0,0090	0,0070	0,1800	0,1000	0,0308	0,0018
QSt32-3	0,0493	0,0447	0,3733	0,0126	0,0105	0,0319	0,0133	0,0041	

Tablo 4.1. Deney malzemelerinin kimyasal analiz sonuçları

4.1.2. Mikroyapı incelemeleri

Deneysel çalışmalarda kullanılan cıvata çeliklerinin (42CrMo4, 30MnB3, 20MnB4 ve QSt32-3) optik mikroskop ve SEM incelemeleri yapılarak mikroyapı fotoğrafları çekilmiştir. İncelemelerde kullanılan numuneler hadde yönüne paralel olarak 20 x 14 x 7 mm boyutlarında hazırlanarak sırasıyla 320, 400, 600, 800, 1000 ve 1200' lük zımparalar ile zımparalandıktan sonra parlatmada 0,05 μ ' luk alümina pasta kullanılmıştır. %5' lik nital ile dağlanan yüzeylerden elde edilen mikroyapı fotoğrafları Şekil 5.1–5.8' de sunulmuştur.

4.2. Çekme Deneyleri

Çekme deneyleri Kutlu Mümessillik Ltd. Şti. laboratuarında bulunan 50 ton kapasiteli Zwick/Roell marka çekme cihazında 2,5 mm/dak çekme hızında ve oda sıcaklığında Şekil 4.1' deki boyutlara sahip deney numuneleri kullanılarak gerçekleştirilmiştir. Deney numuneleri hassas bir şekilde CNC torna tezgahında işlenmiştir. Çekme deneylerinde veriler Zwick/Roell marka eksansometre kullanılarak elde edilmiştir. Yapılan çekme testlerinin kuvvet-uzama verileri bilgisayar tarafından kaydedilerek kuvvet-uzama ve gerçek gerilme-gerçek b.ş.d. eğrileri oluşturulmuştur. Sonuçlar Tablo 5.1-5.9 ve Şekil 5.9-5.17 'de sunulmuştur.

Şekil 4.1. Çekme deneyi numuneleri

Çekme deneyleri F- Δ L verilerinden gerçek gerilme-gerçek b.ş.d. verilerinin elde edilmesinde aşağıdaki eşitlikler kullanılmıştır.

Deney numunesinin çekme kuvvetine dik doğrultudaki kesit yüzeyi başlangıçta A_o, deney sırasında F kuvvetinin uygulandığı anda ise A ile gösterilirse, nominal gerilme(veya mühendislik gerilmesi),

$$\sigma_m = \frac{F}{A_o} \tag{4.1}$$

gerçek gerilme,

$$\sigma = \frac{F}{A} \tag{4.2}$$

olarak tanımlanır. Başlangıç ölçü boyu l_o, deneyin herhangi bir anında uygulanan F yükünün etkisi ile l değerini alırsa, çekme doğrultusunda birim şekil değişimi

$$e = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0} \quad \text{olur.}$$
(4.3)

Birim şekil değişimi, yukarıdaki ifadeden de görülebileceği gibi, l_o başlangıç ölçü boyuna bağlı olarak hesaplanmaktadır. Deney sırasında ise ölçü sürekli olarak değişmektedir. Örneğin ölçü boyu çekme deneyinin herhangi bir anında l iken, dl gibi sonsuz küçük bir uzama sonunda birim şekil değişimindeki artış dl/l olacaktır. Bu bakımdan, l_o başlangıç ölçü boyu l değerini alıncaya kadar meydana gelen toplam birim şekil değişimi

$$\varepsilon = \int_{l_0}^{l} \frac{dl}{l} = \ln \frac{l}{l_0}$$
(4.4)

ε, logaritmik veya gerçek şekil değiştirme olarak da anılır.

Denklem 4.3'ten

$$\frac{l}{l_o} = 1 + e \tag{4.5}$$

yazılarak denklem 4.4' e taşınırsa

$$\varepsilon = \ln(1+e) \tag{4.6}$$

bulunur.

$$A_{o}l_{o}=A.1 \tag{4.7}$$

şeklinde ifade edilir.Buradan

$$A = A_0 \frac{l_0}{l} \tag{4.8}$$

yazılarak denklem 4.2' ye taşınırsa

$$\sigma = \frac{F}{A_0} \cdot \frac{l}{l_0} \tag{4.9}$$

buradan da

$$\sigma = \sigma_n (1+e) \tag{4.10}$$

elde edilir. Küçük e değerleri, yani elastik şekil değişimi için $\ln(1+e) \approx e$ alınabileceğinden $\epsilon \cong e$ kabul edilir. e'nin büyük değerleri için ϵ ve e arasındaki fark hızla açılır.

Logaritmik koordinatlardaki log σ -log ε grafiklerinden yararlanılarak elde edilen doğrusal fonksiyon malzemeye ait mukavemet katsayısı (K) ve pekleşme üssü (n) değerlerini belirlemede kullanılır. Bu doğrusal fonksiyon y = nx + k şeklindedir. n değeri pekleşme üssünü, 10^k değeri ise mukavemet katsayısını verir.

4.3. Vickers Indentasyon Deneyleri

Vickers indentasyon deneyleri İzmir Dokuz Eylül Üniversitesi Metalurji Mühendisliği Bölümü laboratuarlarında gerçekleştirilmiştir. Deneylerde kullanılan cihaz Japon Shimadzu marka DUH-W201S (Dynamic Ultra micro Hardness tester) model Şekil 4.2'de gösterilen cihazdır.

Deneylerde 4 farklı malzemeye 0–1900 mN aralığında yükleme uygulanmıştır. Yükleme hızı ise 7,06 mN/saniye olarak gerçekleştirilmiştir. Kullanılan numune boyutları 4 mm yüksekliğinde 14 x 14mm dikdörtgen prizmadır.

Şekil 4.2. Vickers mikroindentasyon cihazı (DUH-W201S)

Her numune üzerinde 3 nokta belirlenerek bu noktalara yük uygulanmıştır. Deney esnasında eş zamanlı olarak bilgisayar ekranından kuvvet-iz derinliği eğrilerini izleme imkanı olmuştur, (Şekil 4.3).

Şekil 4.3. Yükleme –yük boşaltma eğrileri

Bu deneylerden elde edilen P-h grafiklerindeki veriler sünek çelikler için sadece Vickers indentasyon deneylerinden gerçek gerilme - gerçek birim şekil değişimi eğrileri tahmininin gerçekleştirilebilmesini sağlayacak metot ve parametre değerlerinin tayini çalışmalarında kullanılmıştır.

Vickers indentasyon deneylerinden sünek çeliklerin Elastisite modülü ve gerçek gerilme-gerçek birim şekil değişimi eğrilerinin elde edilebilirliği ile ilgili çalışmanın gerçekleştirilmesinde aşağıdaki metodlar kullanılmıştır.

4.3.1. Gerçek gerilme-gerçek birim şekil değişimi eğrilerinin tahmini

Vickers indentasyon deneylerinden elde edilen kuvvet-iz derinliği eğrilerinden yararlanılarak gerçek gerilme - gerçek birim şekil değişimi eğrilerinin elde edilebilirliği için iz derinliği (h) değerlerinin gerçek birim şekil değişimi (ε) değerlerine dönüştürülmesi gereklidir. Bunun için E. Karadeniz ve Ö. Sezer'in önerdiği;

$$\varepsilon_{ind} = \ln (h_0 / (h_0 - h))$$
 (4.11)

eşitliği kullanılmıştır [52]. Bu eşitlikte; ε_{ind} Vickers indentasyon verileriyle hesaplanan gerçek birim şekil değişimini, h₀ Vickers indentasyon deneyi piramid batıcı uç başlangıç ölçü yüksekliğini (E. Karadeniz ve Ö Sezer Vickers indentasyon deneyleri için h₀ = 40 µm değerini önermektedir.) ve h Vickers indentasyon deneylerindeki her bir kuvvet etkisi altındaki Vickers batıcı uç batma derinliği değerlerini ifade etmektedir (µm).

Çekme deneyleri ile Vickers indentasyon deneyleri arasındaki ilişkinin incelenebilmesi için ; Vickers indentasyon deneylerinden elde edilen kuvvet değerlerinin gerçek gerilmeye dönüştürülmesi gerekir.

Gerçek gerilme değerleri çekme ve basma deneylerinde:

$$\sigma = F / A \tag{4.12}$$

eşitliğinden elde edilmektedir. Bu eşitlikte; σ gerçek gerilmeyi, F deney süresince değişen kuvveti ve A ise deneyde uygulanan kuvvetin etkisi altındaki gerçek alanı ifade etmektedir. Bu eşitliğin Vickers indentasyon deneyleri için de geçerli olması için, Vickers indentasyon deneylerindeki kuvvet etkisi altındaki alan olarak iz düşüm alanı alınır. Bundan başka, malzemelerin dayanım ve şekil değişimi özelliklerine bağlı olarak indentasyon deneyleri süresince yük etkisi altındaki bölgelerde yanal çıkıntılar (pile-up) ve yanal girintiler (sink-in) oluşumu nedeniyle gerçek temas alanı farklılık göstermektedir. Bundan dolayı, Vickers indentasyon deneylerindeki deformasyon bölgesi farklılığı alan hesaplamalarını güçleştirmektedir. Sünek çeliklerde ise yanal çıkıntılar oluşmaktadır. Yanal çıkıntılarda batıcı uç geometrisinden bulunan alan değerleri gerçekteki alan değerlerinden küçük değerler olarak gerçekleşmektedir.

Vickers indentasyon deneylerinden alan hesaplamaları için;

$$A = 24,5 \text{ x } \text{h}^2 \tag{4.13}$$

eşitliği kullanılmaktadır [2,18,42]. Fakat, bu denklem ile elde edilen gerçek gerilme sonuçları çekme ve basma deneylerinden elde edilen gerçek gerilme değerleri ile ilişkilendirilebilecek şekilde değildir. Çünkü, Vickers indentasyon deneyinde yük değerleri artışı ile gerçek izdüşüm alanı Vickers batıcı uç geometrisinden elde edilen izdüşüm alanından yanal çıkıntılar nedeniyle büyüktür. Bu nedenle, iz derinliği (h) değerleri düzenlenmiş iz derinliği (h_d) değerlerine dönüştürülerek çekme ve basma deneylerindeki değerlere benzer değerler elde edilebilecek bir alan hesabı önerilmiştir [3]. Bu alan A_d ile ifade edilmiştir:

$$A_d = 24,5 \text{ x} (h_d)^2 \tag{4.14}$$

Denklem (4.14) de, h_d = düzenlenmiş iz derinliğidir ve Vickers indentasyon deneylerinde cihazdan elde edilen iz derinliği h'ın bir fonksiyonu olup h_d = B x h + C şeklinde ifade edilir [3]. B ve C malzemelere özgü değerlerdir. Çekme deneyi sonuçları ile hesaplanan h_d değerleri ile Vickers indentasyon deneyi h değerleri arasındaki ilişkiyi gösteren grafiksel yaklaşımla malzemenin ölçüm noktası için B ve C değerleri bulunmaktadır [52].

Böylelikle, deneylerden elde edilen h değerleri, her malzeme için ayrı bir B ve C ile düzenlenmiş h_d değerlerine dönüştürülür ve deney verilerindeki her h değeri için kullanılacak olan düzenlenmiş temas alanları (A_d) bulunmaktadır. Bunun sonucunda, Vickers indentasyon deneylerinden gerçek gerilme tayini eşitlik 4.15 ile gerçekleştirilir.

$$\sigma = P / A_d \tag{4.15}$$

4.3.1.1. Malzemelere özgü B ve C değerleri tayini

Bir malzemenin B ve C değerlerinin tayini; çekme deneyleri gerçek gerilme–gerçek b.ş.d. (σ – ε) eğrileri ile Vickers indentasyon kuvvet–iz derinliği (P–h) eğrileri arası ilişki üzerine yapılandırılmıştır. Her iki deney verileri arasında bağlantı kurulabilmesi için, aynı ε değerlerine karşılık gelen σ değerleri seçilir.

Vickers indentasyon verilerinden h değerleri kullanılarak eşitlik 4.1 den Vickers indentasyon ε_{ind} değerleri hesaplanır. Hesaplanan ε_{ind} değerleriyle, çekme deneyinin aynı ε değerlerindeki σ değerleri belirlenir. Bundan sonra ise, Vickers indentasyon ε_{ind} değerlerini hesaplamak için kullandığımız h değerlerine karşılık gelen kuvvet (P) değerleri Vickers indentasyon deneyi sonucunda elde ettiğimiz P-h grafiğinden belirlenir. Bu P değerleri ile batıcı uç malzemeye h kadar nüfuz etmiş ve sonuç olarak eşitlik 4.11'den hesaplanan birim şekil değişimi gerçekleşmiştir. Vickers indentasyon deneyi verilerinden belirlenen P ve çekme deneyinden elde ettiğimiz σ değerleri yardımıyla eşitlik 4.15 kullanılarak düzenlenmiş temas alanları (A_d) hesaplanır.

Hesaplanan A_d değerleriyle eşitlik 4.14 kullanılarak düzenlenmiş iz derinliği (h_d) elde edilir. Vickers indentasyon deneyi sonucunda ölçülen h değerleri ve elde edilen h_d değerleri arasındaki ilişki bir grafikle temsil edilerek bu iki değer arasında h_d = B x h + C gibi bir bağıntıya ulaşılır. Böylece malzemeye bağlı sabitler olan B ve C değerleri bulunmuş olur.

4.3.1.2. Malzemelerin K ve n değerlerinin tayini

Malzemelerin gerçek gerilme–gerçek b.ş.d. eğrilerini Vickers indentasyon yöntemi ile tahmin edebilmek için malzemelerin K ve n değerleri belirlenerek eşitlik 4.16'dan yararlanılır.

$$\sigma = K \mathcal{E}^n \tag{4.16}$$

Bulunan B ve C sabitleri kullanılarak $h_d = B \times h + C$ bağıntısı ile h_d değerlerine ulaşılır. Bulunan bu h_d değerleri eşitlik 4.14 ile düzenlenmiş iz alanına dönüştürülür. Hesaplanan bu A_d değerleri ve Vickers indentasyon deney verisi olan P ile eşitlik 4.15'ten σ değerlerine ulaşılır. Bulunan bu σ değerleri ile hesaplanmış ε_{ind} değerleri kullanılarak σ - ε eğrileri çizdirilir. Bu eğriler ε = 0,05 ile yaklaşık maksimum çekme gerilmesine karşılık gelen birim şekil değişimi arasındaki verilerden oluşturulur. Çünkü tarif edilen bu aralık plastik şekil değişimini tanımlayan ideal bir bölgedir. Bu nedenle σ - ε eğrileri düzensizlikler göstermişlerdir. Düzensizlik gösteren bu σ - ε eğrilerinden eğri uydurma yöntemi ile gerilme (σ) birim şekil değişimine (ε) bağlı bir fonksiyon olarak tanımlanır. Tanımlanan bu fonksiyonlarda ε_{ind} değerleri yerlerine konularak yeni σ değerleri bulunur. Yeni σ değerleri ile ε_{ind} değerlerinin, logaritmik (log σ – log ε_{ind}) grafiklerinden hareketle malzemelerin n ve K değerleri elde edilir. Böylece bulunan n ve K, hesaplanmış ε_{ind} değerleri ile malzemelere ait gerçek gerilme–gerçek b.ş.d. eğrileri elde edilir.

Her malzemenin gerçek gerilme-gerçek b.ş.d. eğrileri farklılık göstermekte ve bünye denklemleri farklılık göstermektedir. Bu nedenle bu çalışmada önerilen metot Holomon kanununun geçerli olduğu yani eşitlik 4.16 daki bünye denklemine sahip sünek çelikler için önerilmektedir.

4.3.2. Elastisite modülünün tahmini

Vickers indentasyon yöntemi ile malzemelerin elastisite modüllerini belirlemek için önerilen yöntemlerden bölüm 3' de bahsedilmiştir. Bu çalışmada elastisite modülünü tahmin edebilmek için Vickers indentasyon deneylerinden elde edilen kuvvet-iz derinliği (P-h) eğrileri ile çekme deneylerinden elde edilen gerçek gerilme- gerçek b.ş.d. eğrileri arasında bir benzerlik kurulmuş ve benzerlikten hareketle deney numunelerinin elastisite modülleri tahmin edilmiştir.

Kuvvet-iz derinliği eğrileri ile gerçek gerilme-gerçek b.ş.d. eğrileri arasında benzerlik kurmak için ilk olarak elastisite modülleri ve çekme dayanımları bilinen deney numunelerinin maksimum gerilmedeki elastik birim şekil değişimleri bulunmuştur.

Şekil 4.4. Elastik birim şekil değişimi bölgesinin grafiksel gösterimi

Şekil 4.4.' de görüldüğü üzere oluşturulan üçgenin alt tabanı çekme deneyinin maksimum gerilmedeki elastik b.ş.d. ($\epsilon_{c,els.}$), üçgenin diğer dik kenarı ise çekme dayanımını temsil etmektedir. Elastisite modülü ise $\epsilon_{c,els.} / \sigma_c$ ' den elde edilir. Deney numunelerinin elastisite modülleri ve çekme dayanımları bilindiğinden, çekme deneyindeki elastik birim şekil değişimini bulmak için;

$$\mathcal{E}_{c.els.} = \frac{\sigma_{c}}{E} \tag{4.17}$$

eşitliğinden yararlanılır. Burada deney malzemeleri için E = 207 GPa kabul edilmiştir [3].

Vickers indentasyon deneylerinden elde edilen herhangi bir P-h eğrisi Şekil 4.4' dekine benzeyecek biçimde düzenlenirse Şekil 4.5. elde edilir.

Şekil 4.5. Vickers indentasyon deneyinde oluşan elastik derinliğin grafiksel gösterimi

Her deney numunesi için Şekil 4.5.' e benzer grafikler elde edebilmek için Vickers indentasyon deneylerinde numunelere uygulanan maksimum kuvvet anı esas alınmıştır. Maksimum kuvvette oluşan maksimum derinlik (h_{maks}), S yani yük boşaltma eğrisinin ilk 1/3' lük kısmından oluşturduğumuz doğru ve bu doğru yardımıyla bulunan temas derinliği (h_c) kullanılarak elastik derinlik (h_e) hesaplanır.

$$h_e = h_{maks} - h_c \tag{4.18}$$

Bulunan elastik iz derinlikleri Eşitlik 4.11 kullanılarak Vickers indentasyon deneyleri sonucundaki elastik birim şekil değişimine ($\varepsilon_{i.els.}$) dönüştürülür.

Kullanılan deney numuneleri için hesaplanan $\varepsilon_{i.els}$ değerleri ile $\varepsilon_{c.els.}$ değerleri arasında bir ilişki araştırılmıştır. Bu ilişki $\varepsilon_{c.els}$ değerlerinin $\varepsilon_{i.els}$ bağlı bir fonksiyon olarak tanımlanabileceğini göstermiştir. Vickers indentasyon deneylerinden hesaplanmış elastik birim şekil değişimi değerleri yardımıyla hesaplanan yeni $\varepsilon_{c.els}$ değerleri ile Eşitlik 4.19 kullanılarak her bir numunenin elastisite modülü değerleri tahmin edilmiştir.

$$E_{ind} = \frac{\sigma_{ind}}{\varepsilon_{c.els.}}$$
(4.19)

BÖLÜM 5. DENEYSEL SONUÇLAR

5.1 Mikroyapı Sonuçları

Deneylerde kullanılan numunelere ait x500 büyütme için optik mikroskopta çekilen mikroyapı fotoğrafları Şekil 5.1-5.4' de gösterilmektedir. Bununla birlikte yine aynı malzemelere ait çeşitli büyütmelerde çekilen SEM fotoğrafları Şekil 5.5-5.9' da gösterilmektedir.

Şekil 5.1. QSt32-3 mikroyapı fotoğrafı(x500)

Şekil 5.2. 20MnB4 mikroyapı fotoğrafı (x500)

Şekil 5.3. 30MnB3 mikroyapı fotoğrafi (x500)

Şekil 5.4. 42CrMo4 mikroyapı fotoğrafi (x500)

Şekil 5.5. QSt32-3(X2000)SEM

Şekil 5.6. 20 MnB4 (X2000) SEM

Şekil 5.7. 30 MnB3(X2000) SEM

Şekil 5.8. 42CrMo4 (x1500) SEM

Şekil 5.1 ve 5.5' de QSt32-3 malzemesi için mikroyapı fotoğrafları verilmiştir. Bu malzemenin küreselleştirme işlemi görmediği ve çok az sayıda perlit taneciği içerdiği görülmektedir. Şekil 5.2-5.4 ve Şekil 5.6-5.8' de 20MnB4, 30MnB3 ve 42CrMo4 malzemelerinin küreselleştirme işlemi gördüğü ve çelik cıvata hammaddeleri için gerekli olan sünekliliği sağlayacak bir mikroyapıya sahip oldukları görülmektedir.

5.2. Çekme Deneyi Sonuçları

QSt32-3, 20MnB4, 30MnB3, 42CrMo4 malzemelerine uygulanan çekme deneyleri sonucunda elde edilen kuvvet-uzama (F-ΔL) verilerinden hareketle eşitlik 4.1, 4.3, 4.6, 4.10 kullanılarak deney numunelerinin mühendislik gerilme, birim şekil değişimi, gerçek gerilme, gerçek birim şekil değişimi değerleri hesaplanmıştır.

Elde edilen bu verilerden her deney numunesine ait kuvvet-uzama ve gerçek gerilme-gerçek birim şekil değişimi eğrileri oluşturulmuştur (Şekil 5.9-5.16).

5.2.1. QSt32-3 çeliği için çekme deneyi sonuçları

QSt32-3 çeliği için çekme deneyinden elde edilen F- Δ L verileri ve yapılan hesaplanmalar sonucu elde edilmiş e, σ_m , ε , σ değerleri Tablo 5.1 verilmiştir. Şekil 5.9 ve 5.10' de sırasıyla QSt32-3 malzemesinin kuvvet-uzama, gerçek gerilmegerçek birim şekil değişimi eğrileri gösterilmiştir.

Şekil 5.9. QSt32-3 çeliği için elde edilen kuvvet-uzama diyagramı

Şekil 5.10. QSt32-3 çeliği için elde edilen gerçek gerilme-gerçek b.ş.d. eğrisi

	• • •	• •			
$\Delta L (mm)$	F (N)	e	$\sigma_{\rm m}$ (MPa)	3	σ (MPa)
0	0	0	0	0	0
0,02	3501,49	0,00064	123,859	0,0006398	123,938
0,03	6000,83	0,0011	212,268	0,0010994	212,502
0,05	8691,52	0,00178	307,447	0,0017784	307,994
0,11	8634,42	0,00368	305,427	0,0036733	306,551
0,21	8465,20	0,00696	299,441	0,0069359	301,525
0,30	8212,25	0,01002	290,493	0,0099702	293,404
0,40	8471,28	0,01334	299,656	0,0132518	303,653
0,50	8544,06	0,0167	302,231	0,0165621	307,278
0,60	8638,27	0,02	305,563	0,0198027	311,674
0,70	8710,69	0,02336	308,125	0,0230914	315,323
0,80	8596,27	0,02668	304,077	0,0263303	312,190
0,90	8463,92	0,03	299,396	0,0295588	308,378
1,00	8503,31	0,03334	300,789	0,0327963	310,818
1,10	8539,37	0,03668	302,065	0,0360233	313,144
1,12	8543,87	0,03734	302,224	0,0366598	313,509
1,13	8568,26	0,03768	303,086	0,0369875	314,507
1,14	8588,66	0,038	303,808	0,0372958	315,353
1,15	8627,20	0,03834	305,171	0,0376233	316,872
1,16	8663,26	0,03868	306,447	0,0379507	318,301
1,17	8688,59	0,039	307,343	0,0382587	319,329
1,18	8720,83	0,03934	308,483	0,0385859	320,619
1,40	9071,89	0,04668	320,901	0,0456233	335,881
1,60	9283,67	0,05334	328,393	0,0519661	345,910
1,80	9465,41	0,06	334,822	0,0582689	354,911
2,00	9618,97	0,06668	340,253	0,0645511	362,942
2,20	9751,68	0,07334	344,948	0,0707753	370,246
2,40	9866,36	0,08	349,005	0,0769611	376,925
2,60	9968,27	0,08668	352,609	0,0831272	383,174
2,80	10056,52	0,09334	355,731	0,0892373	388,935
3,00	10133,8	0,1	358,464	0,0953102	394,311
3,20	10199,73	0,10668	360,797	0,1013646	399,287
3,40	10259,33	0,11334	362,905	0,1073645	404,037
3,60	10308,84	0,12	364,656	0,1133287	408,415
3,80	10351,24	0,12668	366,156	0,1192753	412,541
4,00	10388,35	0,13334	367,469	0,1251691	416,467
4,20	10419,85	0,14	368,583	0,1310283	420,185
4,40	10446,07	0,14668	369,511	0,1368708	423,711
4,60	10463,34	0,15334	370,122	0,1426621	426,876
4,80	10475,70	0,16	370,559	0,14842	429,848
5,00	10479,28	0,16668	370,685	0,1541621	432,471
5,20	10472,44	0,17334	370,443	0,1598544	434,656
5,40	10449,83	0,18	369,644	0,1655145	436,180
5,60	10403,68	0,18668	368,011	0,1711595	436,712
5,80	10328,67	0,19334	365,358	0,1767561	435,996
6,00	10222,10	0,2	361,588	0,1823216	433,906
6,42	9905,40	0,214	350,385	0,1939207	425,368
7,3	8851,20	0,2434	313,095	0,2178496	389,303
8,15	7239,66	0,27152	256,089	0,240213	325,623
8,34	6/61,46	0,27796	239,174	0,2452651	305,655
8,47	6399,12	0,28242	226,357	0,248/489	290,285
8,66	5384,07	0,28866	190,451	0,2536029	245,428
8,66	5310,46	0,28872	187,848	0,2536495	242,083
8,00	5203.32	0.28882	1 184.038	0.233/2/1	237.217

Tablo 5.1. QSt32-3 çeliği için çekme deneyi sonuçları

% C oranı düşük bir çelik olan QSt32-3 malzemesi sünek bir yapıya sahiptir, belirgin bir akma göstermesi de sünek bir iç yapıya sahip olduğunu desteklemektedir. Çekme deneylerinden QSt32-3 çeliği için elde edilen bazı değerler Tablo 5.2' de verilmiştir.

Tablo 5.2. QSt32-3 çeliği için çekme deneyinden elde edilen mekanik özellikler

σ_{ak} (MPa)	σ _{maks} (MPa)	n	K (MPa)
304,38	436,7	0,21	644,615

5.2.2. 20MnB4 çeliği için çekme deneyi sonuçları

Küreselleştirme ısıl işlemi görmüş 20MnB4 çeliği için çekme deneyinden elde edilen F- Δ L verileri ve yapılan hesaplanmalar sonucu elde edilmiş e, σ_m , ε , σ değerleri Tablo 5.3 verilmiştir. Şekil 5.11 ve 5.12' de sırasıyla 20MnB4 malzemesinin kuvvetuzama, gerçek gerilme-gerçek birim şekil değişimi eğrileri gösterilmiştir.

Şekil 5.11. 20MnB4 çeliği için kuvvet-uzama diyagramı

		-	-		
$\Delta L (mm)$	F (N)	е	$\sigma_m(MPa)$	3	σ (MPa)
0	0	0	0	0	0
0,006	1334,89	0,0002	47,219	0,0002	47,229
0,008	1702,44	0,000267	60,221	0,000267	60,237
0,01	1793,35	0,000333	63,437	0,000333	63,458
0,02	3546,51	0,00068	125,451	0,00068	125,537
0,03	4765,16	0,00102	168,559	0,001019	168,731
0,04	5647,51	0,00134	199,771	0,001339	200,038
0,05	6616,2	0,00186	234,036	0,001858	234,471
0,07	7168,75	0,00234	253,582	0,002337	254,175
0,08	7408,95	0,0027	262,078	0,002696	262,786
0,09	7563,33	0,0031	267,540	0,003095	268,368
0,10	7642,79	0,00342	270,350	0,003414	271,274
0,17	7860,78	0,0057	278,061	0,005684	279,646
0,23	8036,94	0,00764	284,292	0,007611	286,464
0,27	8199,08	0,00904	290,027	0,008999	292,649
0,30	8322,05	0,01004	294,377	0,00999	297,333
0,42	8774,98	0,01384	310,399	0,013745	314,695
0,52	9153,43	0,01736	323,786	0,017211	329,407
0,62	9481,39	0,02076	335,387	0,020547	342,35
0,71	9737,31	0,02374	344,439	0,023463	352,617
0,84	10030,35	0,02786	354,805	0,027479	364,69
1,01	10445,47	0,03376	369,489	0,033203	381,964
1,61	11430,32	0,05374	404,327	0,052346	426,055
2,23	12036,6	0,0744	425,773	0,071762	457,451
2,90	12436,95	0,09674	439,935	0,092342	482,494
3,44	12645,81	0,1147	447,323	0,108585	498,631
4,03	12799,37	0,1342	452,755	0,125928	513,514
5,10	12950,79	0,17	458,111	0,157004	535,989
6,01	12996,93	0,2004	459,743	0,182655	551,875
7,27	12973,9	0,24234	458,928	0,216997	570,145
8,42	12851,58	0,28072	454,601	0,247422	582,217
9,13	12627,21	0,3044	446,665	0,265743	582,629
10,01	11932,57	0,3337	422,093	0,287957	562,946
10,16	11789,7	0,33786	417,039	0,291071	557,940
10,63	11087,29	0,35448	392,193	0,303418	531,217
11,03	10377,77	0,3675	367,095	0,312984	502,002
11,26	9861,38	0,37548	348,828	0,318803	479,806
11,48	9325,41	0,3828	329,869	0,32411	456,144
11,921	7967,64	0,39736	281,841	0,334585	393,833
11,9214	7958,36	0,39738	281,513	0,334599	393,38
11,922	7945,09	0,3974	281,043	0,334613	392,73
11,9226	7725,66	0,39742	273,281	0,334628	381,889

Tablo 5.3. 20MnB4 çeliği için çekme deneyi sonuçları

Şekil 5.12. 20MnB4 çeliği için gerçek gerilme-gerçek b.ş.d. eğrisi

20MnB4 çeliği için çekme deneyleri sonucunda elde edilen bazı değerler Tablo 5.4' de verilmiştir.

σ_{ak} (MPa)	σ _{maks} (MPa)	n	K (MPa)	
273,08	583	0,215	798,36	

5.2.3. 30MnB3 çeliği için çekme deneyi sonuçları

Küreselleştirme ısıl işlemi görmüş 30MnB3 çeliği için çekme deneyinden elde edilen F- Δ L verileri ve yapılan hesaplanmalar sonucu elde edilmiş e, σ_m , ε , σ değerleri Tablo 5.5 verilmiştir. Şekil 5.13 ve 5.14' de sırasıyla 30MnB3 malzemesinin kuvvet-uzama, gerçek gerilme-gerçek birim şekil değişimi eğrileri gösterilmiştir.

Şekil 5.13. 30MnB3 çeliği için kuvvet-uzama diyagramı

		-	() (D)		
$\Delta L (mm)$	F (N)	e	$\sigma_{\rm m}$ (MPa)	3	σ (MPa)
0	0	0	0	0	0
0,0012	354,56	0,00004	12,542	0,00004	12,542
0,0018	421,07	0,00006	14,895	0,00006	14,895
0,002	482,07	0,00008	17,052	0,00008	17,054
0,003	542,05	0,0001	19,174	0,00010	19,176
0,004	667,49	0,00014	23,611	0,00014	23,615
0,005	910,67	0,00018	32,213	0,00018	32,219
0,006	976,45	0,00022	34,541	0,00022	34,548
0,008	1268,23	0,00028	44,861	0,00028	44,874
0,009	1368,56	0,0003	48,411	0,0003	48,425
0,01	1564,92	0,00033	55,356	0,00033	55,375
0,02	3156,05	0,00067	111,639	0,00067	111,714
0,03	4620,49	0,001	163,442	0,00099	163,605
0,04	6081,87	0,0013	215,135	0,00133	215,422
0,05	7415,19	0,00167	262,299	0,00166	262,736
0,06	8125,52	0,002	287,426	0,00199	288,001
0,08	8782,586	0,00267	310,668	0,00266	311,49
0,1002	8932,02	0,00334	315,954	0,00333	317,009
0,304	9248,9	0,01012	327,163	0,01007	330,474
0,401	9651,771	0,01336	341,414	0,01327	345,975
0,613	10241,61	0,02044	362,278	0,02023	369,683
0,863	11021,44	0,02876	389,864	0,02835	401,076
1	11389,4	0,03334	402,879	0,03279	416,311
2,132	13101,59	0,07108	463,445	0,06867	496,387
3,444	13816,37	0,1148	488,729	0,10868	544,835
4,321	14018,51	0,14402	495,879	0,13455	567,296
5,403	14119,43	0,1801	499,449	0,16559	589,4
6,522	14121,9	0,2174	499,537	0,19671	608,136
7,302	14075,82	0,2434	497,907	0,21784	619,097
8,049	13996,4	0,2683	495,097	0,23767	627,932
8,58	13895,77	0,286	491,538	0,25153	632,117
8,781	13837,78	0,2927	489,486	0,25673	632,759
9,122	13688,56	0,30406	484,208	0,26548	631,436
9,458	13454,69	0,31526	475,935	0,27403	625,979
9,741	13186,72	0,3247	466,456	0,28119	617,915
10,05	12819	0,335	453,452	0,28893	605,359
10,116	12728,58	0,3372	450,251	0,29057	602,075
10,5	12124,04	0,35	428,866	0,30010	578,969
10,74	11666,81	0,358	412,692	0,30601	560,436
11,013	11061,54	0,3671	391,282	0,31269	534,922
11,212	10554,31	0,37372	373,339	0,31752	512,864
11,389	10040,04	0,37964	355,148	0,32182	489,977
11,569	9416,348	0,38562	333,086	0,32614	461,531
11,569	9410,61	0,38564	332,883	0,32616	461,256
11,5698	9379,849	0,38566	331,795	0,32617	459,755

Tablo 5.5. 30MnB3 çeliği için çekme deneyi sonuçları

Şekil 5.14. 30MnB3 çeliği için gerçek gerilme-gerçek b.ş.d. eğrisi

30MnB3 çeliği için çekme deneyleri sonucunda elde edilen bazı değerler Tablo 5.6' de verilmiştir.

Tablo 5.6. 30MnB3 çeliği için çekme deneyinden elde edilen mekanik özellikler

σ_{ak} (MPa)	σ_{maks} (MPa)	n	K (MPa)
319,85	632,8	0,195	837,144

5.2.4. 42CrMo4 çeliği için çekme deneyi sonuçları

Küreselleştirme ısıl işlemi görmüş 42CrMo4 çeliği için çekme deneyinden elde edilen F- Δ L verileri ve yapılan hesaplanmalar sonucu elde edilmiş e, σ_m , ε , σ değerleri Tablo 5.7' de verilmiştir. Şekil 5.13 ve 5.14' de sırasıyla 42CrMo4 malzemesinin kuvvet-uzama, gerçek gerilme-gerçek birim şekil değişimi eğrileri gösterilmiştir.

Şekil 5.15. 42CrMo4 çeliği için kuvvet-uzama diyagramı

ΔL (mm)	F (N)	e	σ_m (MPa)	3	σ (MPa)
0	0	0	0	0	0
0,003	463,04	0,0001	16,379	0,0001	16,381
0,004	624,61	0,00014	22,095	0,00014	22,097
0,006	891,51	0,0002	31,536	0,00019	31,542
0,011	1567,98	0,00034	55,464	0,00034	55,483
0,016	2420,9	0,00052	85,635	0,00052	85,679
0,026	4121,88	0,00088	145,804	0,00088	145,932
0,031	4778,56	0,00102	169,033	0,00102	169,205
0,05	7282,18	0,00168	257,594	0,00168	258,027
0,061	8045,84	0,00202	284,607	0,00202	285,182
0,082	9068,72	0,00272	320,789	0,00272	321,662
0,103	9602,009	0,00342	339,654	0,00341	340,815
0,253	10931,38	0,00842	386,678	0,00839	389,934
0,432	11332,34	0,0144	400,861	0,01429	406,633
0,507	11626,53	0,0169	411,267	0,01676	418,218
0,603	11981,31	0,0201	423,817	0,01990	432,336
0,75	12465,06	0,025	440,929	0,02469	451,952
0,861	12768,58	0,0287	451,665	0,02829	464,628
0,921	12949,07	0,0307	458,050	0,03024	472,112
1,011	13189,4	0,0337	466,551	0,03314	482,274
1,74	14472,05	0,058	511,923	0,05638	541,614
2,205	14891,37	0,0735	526,755	0,07092	565,472
3,024	15278,56	0,1008	540,451	0,09604	594,929
4,5	15498,38	0,15	548,227	0,13976	630,461
5,118	15506,44	0,1706	548,512	0,15751	642,088
5,88	15473,31	0,196	547,340	0,17898	654,619
6,828	15346,65	0,2276	542,860	0,20506	666,415
7,11	15271,44	0,237	540,199	0,21269	668,227
8,28	14423,41	0,276	510,202	0,24373	651,018
9,081	13183,69	0,3027	466,349	0,26444	607,513
9,9	11168,47	0,33	395,064	0,28518	525,436
10,297	9757,99	0,34326	345,171	0,29509	463,655
10,298	9751,312	0,34328	344,935	0,29512	463,344
10,299	9740,709	0,3433	344,560	0,29513	462,847

Tablo 5.7. 42CrMo4 çeliği için çekme deneyi sonuçları

Şekil 5.16. 42CrMo4 çeliği için gerçek gerilme-gerçek b.ş.d. eğrisi

42CrMo4 çeliği için çekme deneyleri sonucunda elde edilen bazı değerler Tablo 5.8' de verilmiştir.

Tablo 5.8. 42CrMo4 çeliği için çekme deneyinden elde edilen bazı değerler

σ _{ak} (MPa)	σ _{maks} (MPa)	n	K (MPa)
356,42	668,2	0,187	914,534

Deney numunesi olarak kullanılan 4 farklı malzeme için çekme deneyleri sonucunda elde edilen akma dayanımı, maksimum çekme dayanımı, elastisite modülü, pekleşme üssü ve mukavemet katsayısı değerleri Tablo 5.9' de verilmiştir. Ayrıca deney numunelerinin gerçek gerilme-gerçek b.ş.d. eğrileri Şekil 5.17' de birlikte gösterilmiştir.

Tablo 5.9. Deney numuneleri için çekme deneylerinden elde edilen mekanik özellikler

Malzeme	σ_{ak} (MPa)	σ_{maks} (MPa)	n	K (MPa)
QSt32-3	304,38	436,7	0,21	644,615
20MnB4	273,08	583	0,215	798,36
30MnB3	319,85	632,8	0,195	837,144
42CrMo4	356,42	668,2	0,187	914,534

Şekil 5.17. Deney numunelerine ait gerçek gerilme-gerçek b.ş.d. eğrileri

Malzemelerin pekleşme üssü değerleriyle şekillendirilebilme kabiliyetleri arasında genellikle doğru orantılı bir ilişki mevcuttur, malzemenin pekleşme üssü değeri ne kadar yüksekse şekillendirilebilme kabiliyeti de o kadar fazla olması beklenir.

Çekme deneylerinden elde edilen sonuçlardan görüldüğü üzere deney numunesi olarak kullanılan malzemeler içinde en mukavemetli malzeme olan 42CrMo4, en düşük pekleşme üssü değerine sahiptir ve dolayısıyla şekillendirilebilme kabiliyeti en az olan malzemedir. Deney sonuçlarından pekleşme üssü değeri arttıkça malzemelerin akma dayanımlarının düştüğü de görülmektedir. QSt32-3 malzemesi çekme deneyi sonucunda bulunan akma dayanımı değeri beklenenden yüksek çıkmıştır.

5.3. Vickers İndentasyon Deneyi Sonuçları

Her bir deney numunesinin üç farklı noktası için yapılan Vickers indentasyon deneyleri sonucunda bu üç noktaya ait kuvvet (P) ve iz derinliği (h) verileri elde edilmiştir. Bu üç iz derinliğinden ortalama iz derinliği hesaplanmıştır. İz derinliğinin gerekli olduğu hesaplamalarda bu ortalama iz derinliği esas alınmıştır. Aynı kuvvet değerine karşılık üç farklı noktadan elde edilen iz derinlikleri ve ortalamaları tablolar

halinde verilmiştir (Tablo 5.10-5.13). Bunun yanı sıra üç deneyin ve ortalamalarının kuvvet-iz derinliği grafikleri gösterilmiştir (Şekil 5.18-5.25). Yükleme ve yükleme boşaltma safhalarından oluşan Vickers indentasyon deneyleri, yükleme, yük boşlatma ve tekrar yükleme safhalarından da oluşabilir. Bu çalışma kapsamında yapılan Vickers indentasyon deneyleri tekrar yüklemeli olarak tanımlanan yükleme-yük boşaltma-tekrar yükleme evrelerinden oluşan yöntemle yapılmıştır. Daha sonra veriler yükleme-yük boşlatma evrelerine sahip kuvvet-iz derinliği verilerine çevrilmiştir. Hem yükleme-yük boşaltma safhalarından oluşan hem de tekrar yüklemeli kuvvet-iz derinliği verileri grafiksel olarak gösterilmiştir.

5.3.1. QSt32-3 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 5.10' da QSt32-3 malzemesine ait Vickers indentasyon deneyi sonucunda elde edilen veriler gösterilmiştir. Deney numunesinin üç farklı noktasına ve bunların ortalamalarına ait P, h değerleri verilmiştir. Bu kuvvet, iz derinliği verileri kullanılarak Şekil 5.18' de QSt32-3 malzemesinin P-h grafiği gösterilmiştir. Yükleme, yük boşaltma ve tekrar yükleme safhalarını içinde bulunan ölçümler sonucunda elde edilmiş grafiği ise Şekil 5.19' da gösterilmektedir.

Şekil 5.18. QSt32-3 çeliği için kuvvet-iz derinliği grafiği

		-	-	
	Deney 1	Deney 2	Deney 3	Ortalama
P(mN)	h (µm)	h (µm)	h (µm)	h (µm)
0	0	0	0	0
40	0,674	0,659	0,623	0,652
80	1,105	1,122	1,046	1,091
120	1,414	1,473	1,401	1,429
160	1,709	1,777	1,696	1,727
180	1,860	1,910	1,831	1,867
200	2,117	2,068	1,968	2,051
241	2,372	2,347	2,212	2,310
283	2,641	2,609	2,451	2,567
322	2,856	2,800	2,658	2,771
350	3,026	2,953	2,800	2,926
380	3,193	3,093	2,955	3,080
451	3,583	3,530	3,347	3,487
549	4,061	3,951	3,825	3,946
650	4,508	4,417	4,214	4,379
751	4,922	4,799	4,597	4,773
851	5,367	5,198	5,050	5,205
951	5,740	5,578	5,425	5,581
1049	6,176	5,894	5,759	5,943
1140	6,473	6,205	6,065	6,248
1250	6,870	6,548	6,451	6,623
1350	7,176	6,858	6,740	6,925
1450	7,535	7,173	7,055	7,254
1560	7,900	7,544	7,410	7,618
1650	8,135	7,771	7,638	7,848
1749	8,403	8,058	7,899	8,120
1849	8,677	8,304	8,143	8,375
1900	8,846	8,478	8,287	8,537
1900	8,899	8,521	8,315	8,578
1794	8,849	8,470	8,261	8,527
1704	8,790	8,418	8,217	8,475
1604	8,734	8,356	8,161	8,417
1414	8,615	8,241	8,054	8,303
1200	8,481	8,112	7,927	8,173
1010	8,360	7,986	7,820	8,055
812	8,228	7,869	7,707	7,935
600	8,093	7,737	7,572	7,801
397	7,947	7,597	7,459	7,668
300	7,883	7,532	7,379	7,598
196	7,806	7,463	7,319	7,529
102	7,728	7,392	7,245	7,455
53	7,689	7,349	7,222	7,420
19	7,656	7,317	7,173	7,382

Tablo 5.10. QSt32-3 çeliği için Vickers indentasyon deneyi sonuçları

Şekil 5.19. QSt32-3 çeliği için tekrar yüklemeli kuvvet-iz derinliği grafiği

5.3.2. 20MnB4 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 5.11' de 20MnB4 malzemesine ait Vickers indentasyon deneyi sonucunda elde edilen veriler gösterilmiştir. Deney numunesinin üç farklı noktasına ve bunların ortalamalarına ait P, h değerleri verilmiştir. Bu kuvvet, iz derinliği verileri kullanılarak Şekil 5.20' de 20MnB4 malzemesinin P-h grafiği gösterilmiştir. Yükleme, yük boşaltma ve tekrar yükleme safhalarını içinde bulunan ölçümler sonucunda elde edilmiş grafiği ise Şekil 5.21' de gösterilmektedir.

Şekil 5.20. 20MnB4 malzemesi için kuvvet-iz derinliği grafiği

	,		· · · · ·	
	Deney 1	Deney 2	Deney 3	Ortalama
Р	h (µm)	h (µm)	h (µm)	h (µm)
0	0	0	0	0
8	0,165	0,187	0,17	0,174
24	0,406	0,445	0,395	0,415
42	0,646	0,677	0,638	0,654
67	0,901	0,928	0,906	0,912
104	1,198	1,244	1,23	1,224
130	1,417	1,445	1,425	1,429
160	1,628	1,649	1,641	1,639
193	1,815	1,849	1,837	1,834
220	1,975	2,023	1,999	1,999
250	2,161	2,198	2,175	2,178
281	2,312	2,354	2,333	2,333
321	2,504	2,539	2,521	2,521
380	2,772	2,817	2,806	2,798
434	3,062	2,952	3,055	3,023
481	3,256	3,149	3,235	3,213
528	3,451	3,328	3,421	3,400
577	3,647	3,503	3,606	3,585
627	3,837	3,694	3,787	3,773
670	3,986	3,834	3,93	3,917
760	4,326	4,131	4,229	4,229
800	4,531	4,231	4,388	4,383
850	4,678	4,379	4,546	4,534
894	4,818	4,514	4,689	4,674
930	4,94	4,62	4,805	4,788
970	5,05	4,739	4,91	4,890
1010	5,172	4,858	5,032	5,021
1066	5,349	5,019	5,189	5,186
1105	5,469	5,131	5,303	5,301
1140	5,566	5,243	5,403	5,404
1189	5,786	5,359	5,533	5,559
1241	5,925	5,497	5,671	5,698
1285	6,05	5,616	5,779	5,815
1330	6,158	5,73	5,883	5,924
13//	6,303	5,8/	6,006	6,060
1422	6,436	5,988	6,114	6,179
1461	6,544	6,081	6,203	6,276
1508	6,668	6,208	6,323	6,399
1549	0,849	6 205	6 191	6,600
1620	0,943	6 502	6 572	6 700
1602	7 1 95	6.644	6 601	6.84
1092	7,165	6 738	6 785	6.034
1776	7 3 8 8	6.842	60	7 0/3
1820	7,500	6 062	7.012	7 166
1876	7.648	7.065	7,012	7,100
1900	7 607	7.12	7 17	7 3 3 2
1577	7 5 8 1	7,13	7 026	7 203
1357	7 46	6 879	6.89	7,205
1035	7 267	6 685	6 699	6 884
474	6916	6 3 3 6	6 3 4 7	6 533
403	6 871	6 288	6 288	6 482
290	6 79	6 211	6 224	6 408
149	6.694	6,116	6.126	6.312
197	6 735	6 1 5 2	6 1 5 2	6 346
45	6.613	6.031	6.042	6.228
19	6 58	6.01	6.01	62

Tablo 5.11. 20MnB4 çeliği için Vickers indentasyon deneyi sonuçları

Şekil 5.21. 20MnB4 malzemesi için tekrar yüklemeli kuvvet-iz derinliği grafiği

5.3.3. 30MnB3 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 5.12'de 30MnB3 malzemesine ait Vickers indentasyon deneyi sonucunda elde edilen veriler gösterilmiştir. Deney numunesinin üç farklı noktasına ve bunların ortalamalarına ait P, h değerleri verilmiştir. Bu kuvvet, iz derinliği verileri kullanılarak Şekil 5.22' de 30MnB3 malzemesinin P-h grafiği gösterilmiştir. Yükleme, yük boşaltma ve tekrar yükleme safhalarını içinde bulunan ölçümler sonucunda elde edilmiş grafiği ise Şekil 5.23' de gösterilmektedir.

Şekil 5.22. 30MnB3 malzemesi için kuvvet-iz derinliği grafiği
, e	,	5 5	,	
	Deney 1	Deney 2	Deney 3	Ortalama
P (mN)	h (µm)	h (µm)	h (µm)	h (µm)
0	0	0	0	0
2	0,043	0,063	0,057	0,054
54	0,759	0,798	0,785	0,781
83	1,027	1,072	1,049	1,049
97	1,1517	1,202	1,166	1,173
162	1,63	1,681	1,6	1,637
181	1,752	1,799	1,704	1,751
275	2,286	2,317	2,216	2,273
331	2,577	2,582	2.48	2,546
381	2,993	2.852	2.75	2,865
441	3 207	3 143	2 969	3 106
460	3 287	3 20275	3 044	3 178
484	3 414	3 306	3 14	3 287
516	3 535	3 423	3 257	3 405
556	3,687	3 587	3 413	3 562
579	3 782	3,507	3.5	3,502
610	3,702	3,072	3 621	3 765
701	J,070 1 200	<i>3,111</i> <i>4</i> 1045	2 0/4	3,703
701	4,200	4,1043	1 062	4,000
802	4,317	4,211	4,005	4,17/
800	4,/33	4,301	4,331	4,322
890	4,990	4,705	4,007	4,789
917	5,085	4,849	4,091	4,8/5
942	5,156	4,921	4,764	4,947
1004	5,349	5,114	4,945	5,136
1044	5,46	5,2205	5,058	5,246
10/5	5,561	5,303	5,144	5,336
1140	5,778	5,519	5,349	5,549
1172	5,989	5,69	5,444	5,708
1260	6,212	5,892	5,656	5,920
1301	6,321	5,999	5,759	6,026
1417	6,634	6,273	6,047	6,318
1480	6,799	6,443	6,205	6,482
1520	6,931	6,574	6,334	6,613
1617	7,267	6,851	6,544	6,887
1698	7,472	7,035	6,721	7,076
1746	7,578	7,147	6,829	7,185
1872	7,878	7,4405	7,098	7,472
1900	7,984	7,535	7,205	7,575
1854	7,97	7,518	7,191	7,560
1778	7,93	7,487	7,148	7,522
1703	7,901	7,4501	7,114	7,488
1600	7,846	7,404	7,059	7,436
1485	7,793	7,34572	7,001	7,380
1280	7,693	7,242	6,893	7,276
1087	7,602	7,142	6,786	7,177
1014	7,556	7,107	6,749	7,137
902	7,504	7,05	6,684	7,079
839	7,484	7,009	6,65	7,048
681	7,388	6,926	6,559	6,958
591	7,338	6,871	6,507	6,905
512	7,296	6,831	6,461	6,863
452	7,258	6,796	6,429	6,828
394	7,226	6,759	6,394	6,793
332	7,194	6,719	6,356	6,756
152	7,078	6,613	6,235	6,642
96	7.032	6.568	6,195	6,598
19	6 970	6.5	6 1 2 9	6 533

Tablo 5.12. 30MnB3 çeliği için Vickers indentasyon deneyi sonuçları

Şekil 5.23. 30MnB3 malzemesi için tekrar yüklemeli kuvvet-iz derinliği grafiği

5.3.4. 42CrMo4 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 5.13' de 42CrMo4 malzemesine ait Vickers indentasyon deneyi sonucunda elde edilen veriler gösterilmiştir. Deney numunesinin üç farklı noktasına ve bunların ortalamalarına ait P, h değerleri verilmiştir. Bu kuvvet, iz derinliği verileri kullanılarak Şekil 5.24' de 42CrMo4 malzemesinin P-h grafiği gösterilmiştir. Yükleme, yük boşaltma ve tekrar yükleme safhalarını içinde bulunan ölçümler sonucunda elde edilmiş grafiği ise Şekil 5.25' de gösterilmektedir.

Şekil 5.24. 42CrMo4 malzemesi için kuvvet-iz derinliği grafiği

	, Danay 1	Danay 2	Donov 2	Ortolomo
D	belley I	belley 2	belley 5	b (um)
P		n (μm)		
0	0 172	0	0	0 100
9	0,172	0,193	0,175	0,180
22	0,3/	0,38	0,385	0,378
41	0,587	0,604	0,617	0,603
53	0,716	0,732	0,733	0,727
99	1,061	1,092	1,111	1,088
146	1,354	1,413	1,401	1,389
202	1,667	1,725	1,722	1,705
292	2,103	2,16	2,162	2,142
379	2,466	2,521	2,55	2,512
452	2,859	2,857	2,782	2,833
539	3,174	3,16	3,099	3,144
660	3,578	3,541	3,505	3,541
759	3,882	3,836	3,824	3,847
846	4,318	4,153	4,055	4,175
949	4,607	4,437	4,335	4,460
1039	4,846	4,667	4,573	4,695
1140	5,115	4,926	4,834	4,958
1240	5,543	5,239	5,095	5,292
1354	5,834	5,495	5,372	5,567
1444	6,042	5,699	5,585	5,775
1520	6,234	5,864	5,76	5,953
1641	6,673	6,209	6,049	6,310
1757	6,938	6,452	6,289	6,559
1900	7,248	6,765	6,597	6,870
1900	7,278	6,794	6,625	6,899
1796	7,248	6,755	6,594	6,866
1702	7,206	6,71	6,55	6,822
1490	7,115	6,617	6,458	6,730
1324	7,041	6,537	6,375	6,651
1014	6,901	6,394	6,227	6,507
698	6,763	6,245	6,074	6,361
299	6,553	6,042	5,862	6,152
140	6,453	5,942	5,771	6,055
48	6,387	5,875	5,697	5,986
19	6,351	5,841	5,626	5,939

Tablo 5.13. 42CrMo4 çeliği için Vickers indentasyon deneyi sonuçları

Şekil 5.25. 42CrMo4 malzemesi için tekrar yüklemeli kuvvet-iz derinliği grafiği

Vickers indentasyon deneylerinde maksimum uygulanan kuvvet 1900 mN'dur. Deney numunelerinin bu maksimum kuvvet değerindeki ortalama sertlik değerleri Tablo 5.14' de verilmiştir. Çekme deneyi eğrileri ile sertlik değerleri karşılaştırıldığında, 30MnB3 hariç diğer malzemeler için, gerilme değerleri artışı ile sertlik değerlerininde artış gösterdiği sonucu görülmektedir. 30MnB3 çeliğinin değerlerinde de olması beklenen bu durumun elde edilememesinin indentasyon deneyindeki ölçme noktası sayısının ve konumlarının yetersizliği nedeniyle oluştuğu düşünülmektedir.

Malzeme	Hv ₁₉₀₀
QSt 32-3	101
20MnB4	136,5
30MnB3	130
42CrMo4	156

Tablo 5.14. Deney numunelerinin Vickers indentasyon deneyinden elde edilen sertlik degerleri

5.4. σ-ε Eğrileri Tahmin Çalışması Sonuçları

Vickers indentasyon deneylerinden elde ettiğimiz kuvvet ve iz derinliği verilerinden deney numunelerine ait gerçek gerilme-gerçek birim şekil değişimi eğrilerini belirlenmekte kullanılacak değerler Tablo 5.15-5.26' da gösterilmektedir. Ayrıca uygulanan metot ta önemli bir yere sahip olan h_d-h ilişkisi her deney malzemesi için

grafiksel olarak verilecektir (Şekil 5.26, 5.30, 5.34 ve 5.38). Malzemelerin Vickers indentasyon yöntemi ile bulunan gerçek gerilme-gerçek birim şekil değişimi eğrileri de grafik olarak gösterilmektedir (Şekil 5.29, 5.33, 5.37 ve 5.41).

Vickers indentasyon yöntemi ile malzemelerin gerçek gerilme-gerçek birim şekil değişimi eğrilerini elde etmek için kullanılacak metottaki işlem adımları aşağıda sırasıyla verilmiştir:

- i. Vickers indentasyon deneyi sonucunda elde edilen P-h değerlerinden, eşitlik
 4.11 ile ε_{ind} değerleri hesaplanır.
- ii. Hesaplanan bu ε_{ind} değerlerine karşılık gelen gerilme değerleri (σ_{c}) çekme deneyinden bulunur.
- iii. A_d değerleri hesaplanır ($A_d=P/\sigma_c$).
- iv. Hesaplanan A_d değerleri kullanılarak h_d değerleri elde edilir. Bu aşamada hesaplanan h_d değerleri B ve C sabitlerini elde edebilmek amacıyla kullanılacaktır. Metodun geri kalan kısmında B ve C yardımıyla hesaplanmış h_d ve A_d değerleri kullanılacaktır.
- v. h_d ile h arasındaki ilişkiden ($h_d = B \times h + C$) Bve C sabitleri belirlenir.
- vi. Bulunan B ve C değerleri $h_d = B x h + C$ bağıntısında kullanılarak yeni h_d değerleri hesaplanır . (Malzemelere ait B ve C değerleri için Eşitlik 5.1 ve 5.2 kullanılırsa, ε_{ind} değerlerinin (i. adımdan) bulunmasından sonra direkt bu işlem adımdan devam edilebilir).
- vii. Vickers indentasyon deneylerinde iz alanını bulmak için kullanılan eşitlik
 4.13 ve yeni h_d (vi. adımdan) değerlerinin yardımıyla düzenlenmiş yeni iz alanları (A_d) elde edilir.
- viii. Eşitlik 4.15'ten gerilme (σ) değerleri elde edilir.
- ix. σ ile ε_{ind} arasındaki ilişkiden ($\sigma = D x \ln(\varepsilon_{ind}) + E$), ε_{ind} değerleri kullanılarak yeni gerilme değerleri belirlenir.
- x. Hesaplanan bu yeni gerilme (x. adımdan) ve ε_{ind} değelerinin logaritmik tabanda grafikleri çizdirilir. Bu sayede malzemelerin K ve n değerleri hesaplanır.
- xi. K,n, ε_{ind} değerleri ile eşitlik 4.18'in yardımıyla indentasyon gerilme (σ_{ind}) değerleri elde edilir.

xii. σ_{ind} - ε_{ind} değerleri ile gerçek gerilme-gerçek birim şekil değişimi eğrisi Vickers indentasyon yönteminden elde edilmiş olur.

5.4.1. QSt32-3 çeliği σ-ε eğrisi tahmin sonuçları

QSt32-3 malzemesinin gerçek gerilme-gerçek birim şekil değişimi eğrisini elde etmek için kullanılan sayısal değerler Tablo 5.15-5.17' de verilmiştir. Yukarıda, σ -ε eğrisini elde edebilmek için izlenmesi gereken işlem adımları sırasıyla belirtilen metot uygulanarak hesaplamalar yapılmış, tablolar oluşturulmuş ve grafikler elde edilmiştir. Şekil 5.26' de B ve C sabitlerinin belirlendiği, uygulanan metotta önemli bir rolü olan h_d-h arasındaki ilişki grafiksel olarak verilmiş, ayrıca bu ilişki bir formülle ifade edilmiştir. QSt32-3 malzemesinin Vickers indentasyon yöntemi ile hesaplanan Kve n değerlerinden hareketle, QSt32-3 malzemesinin gerçek gerilmegerçek birim şekil değişimi eğrisi elde edilmiştir (Şekil 5.28).

Vickers indentasyon deneyi sonucu elde edilmiş h değerlerinden Eşitlik 4.11 ile ε_{ind} değerleri hesaplanmıştır. Bu ε_{ind} değerlerine karşılık gelen gerçek gerilme değerleri (σ_{c}) çekme deneylerinden elde edilmiştir. A_d = P / σ_{c} bağıntısından, A_d değerleri bulunmuştur. Bulunan bu A_d değerleri Eşitlik 4.14' te kullanılarak h_d değerleri hesaplanmıştır (Tablo 5.15). Tablo 5.15' deki A_d ve h_d değerleri B ve C değerlerini bulmak için kullanılmıştır. Daha sonraki hesaplamalarda Tablo 5.16' daki yeni h_d ve yeni A_d değerleri kullanılmıştır.

Şekil 5.26. QSt32-3 çeliğine ait düzenlenmiş iz derinliği-ölçülen iz derinliği ilişkisi

h (µm)	P (mN)	ε _{ind}	σ_{c} (N/mm2)	A _d (mm2)	h _d (µm)
0	0	0	0	0	0
0,652	40	0,01643	307,129	0,00013	2,30561
1,091	80	0,02765	308,562	0,00026	3,25305
1,429	120	0,03639	313,356	0,00038	3,95356
1,727	160	0,04414	333,292	0,00048	4,42654
1,867	180	0,04779	339,500	0,00053	4,65193
2,051	200	0,05264	346,946	0,00058	4,85066
2,310	241	0,05949	356,543	0,00068	5,25254
2,567	283	0,06633	365,058	0,00078	5,62509
2,771	322	0,0718	371,361	0,00088	5,94904
2,926	350	0,07597	375,852	0,00093	6,16513
3,081	380	0,08013	380,129	0,001	6,38768
3,487	451	0,09120	390,663	0,00115	6,86442
3,946	549	0,10385	401,251	0,00137	7,47301
4,380	650	0,11596	410,229	0,00158	8,04194
4,773	751	0,12706	417,685	0,0018	8,56668
5,205	851	0,13941	425,119	0,00200	9,03913
5,581	951	0,15027	430,741	0,00220	9,49291
5,943	1049	0,16084	435,017	0,00241	9,92092
6,248	1140	0,16983	436,714	0,00261	10,32216
6,623	1250	0,18101	434,509	0,00288	10,83609
6,925	1350	0,19009	428,865	0,00315	11,33506
7,254	1450	0,20011	418,586	0,00346	11,89074
7,618	1560	0,21128	401,911	0,00388	12,58677
7,848	1650	0,21841	388,110	0,00425	13,17290
8,122	1749	0,22691	367,757	0,00476	13,93258
8,375	1849	0,23492	344,125	0,00537	14,80905
8,537	1900	0,24007	326,255	0,00582	15,41753

Tablo 5.15. QSt32-3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_c , A_d, h_d değerleri

Şekil 5.26' daki h_d -h arasındaki ilişkiden hareketle Tablo 5.16' de, B = 1,304 ve C = 2,28 ile yeniden hesaplanan h_d değerleri verilmiştir. Eşitlik 4.13' den elde edilen A_d değerleriyle birlikte indentasyon kuvveti (P) değerleri kullanılarak gerilme değerlerine ulaşılmıştır. Şekil 5.27' de gerilme-birim şekil değişimi eğrisi plastik deformasyon bölgesi için elde edilmiş ve bu eğri düzensiz olduğundan eğri uydurma yöntemi kullanılarak eğri düzeltilmeye çalışılmıştır.

h (µm)	h_d (µm)	Ad	P(mN)	Eind	$\sigma(N/mm^2)$
0	2,28	0,00013	0	0	0
0,652	3,13021	0,00024	40	0,01643	166,628
1,091	3,70266	0,00034	80	0,02765	238,174
1,429	4,14385	0,00042	120	0,03639	285,238
1,727	4,53244	0,00050	160	0,04414	317,899
1,867	4,71457	0,00054	180	0,04779	330,539
2,051	4,95450	0,00060	200	0,05264	332,555
2,310	5,29267	0,00069	241	0,05949	351,156
2,567	5,62737	0,00078	283	0,06633	364,762
2,771	5,89382	0,00085	322	0,0718	378,352
2,926	6,09595	0,00091	350	0,07597	384,433
3,080	6,29675	0,00097	380	0,08013	391,187
3,487	6,82661	0,00114	451	0,09120	395,002
3,946	7,42515	0,00135	549	0,10385	406,439
4,380	7,99108	0,00156	650	0,11596	415,466
4,773	8,50356	0,00177	751	0,12706	423,909
5,205	9,06732	0,00201	851	0,13941	422,479
5,581	9,55762	0,00224	951	0,15027	424,927
5,943	10,02967	0,00246	1049	0,16084	425,634
6,248	10,42696	0,00266	1140	0,16983	427,980
6,623	10,91639	0,00292	1250	0,18101	428,140
6,925	11,30976	0,00313	1350	0,19009	430,785
7,254	11,73965	0,00338	1450	0,20011	429,430
7,618	12,21387	0,00365	1560	0,21128	426,827
7,848	12,51379	0,00384	1650	0,21841	430,071
8,121	12,8687	0,00406	1749	0,22691	431,077
8,375	13,20056	0,00427	1849	0,23492	433,098
8,537	13,41225	0,00441	1900	0,24007	431,106

Tablo 5.16. QSt32-3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ , A_d , h_d değerleri

Şekil 5.27. QSt32-3 çeliği için gerilme-birim şekil değişimi ilişkisi

Şekil 5.27' deki $\sigma = 75,71\ln(\varepsilon) + 570,4$ ilişkisi yardımıyla ve ε_{ind} değerleri kullanılarak yeni gerilme (σ) değerleri elde edilmiştir (Tablo 5.17). Bulunan bu gerilme değerleri ve ε_{ind} değerlerinin logaritmik tabanda yazılması ile oluşturulan grafikten K ve n değerleri elde edilmiştir (Şekil 5.28).

ε _{ind}	$\sigma(N/mm^2)$	$\log \epsilon_{ind}$	$\log \sigma$
0	0	0	0
0,0164343	571,6442413	-1,78425	2,413992883
0,0276539	572,4936743	-1,55824	2,47540292
0,0363874	573,1548899	-1,43905	2,504601152
0,0441435	573,7421026	-1,35513	2,524039867
0,0477994	574,018893	-1,32058	2,531798406
0,0526363	574,3850944	-1,27871	2,541015538
0,0594935	574,9042522	-1,22553	2,552450068
0,0663268	575,421601	-1,17831	2,562355899
0,0718004	575,8360068	-1,14387	2,569440481
0,0759725	576,1518802	-1,11934	2,574417227
0,0801351	576,4670264	-1,09618	2,579065487
0,091202	577,3049007	-1,04	2,590135884
0,1038524	578,2626648	-0,98358	2,600974886
0,1159628	579,179545	-0,93568	2,609971044
0,1270572	580,0194974	-0,896	2,617284536
0,1394058	580,9544098	-0,85572	2,624584966
0,1502707	581,776996	-0,82313	2,630403552
0,1608439	582,5774888	-0,7936	2,635608766
0,1698299	583,257822	-0,76999	2,639725974
0,1810124	584,1044499	-0,74229	2,644506244
0,1900917	584,79184	-0,72104	2,648139643
0,2001088	585,5502385	-0,69873	2,651919861
0,2112767	586,3957621	-0,67515	2,655881948
0,2184048	586,9354272	-0,66074	2,658285073
0,2269058	587,5790402	-0,64415	2,661034216
0,234921	588,1858664	-0,62908	2,663518463
0,2400672	588,5754879	-0,61967	2,665062044

Tablo 5.17. QSt32-3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log ϵ_{ind} , log σ değerleri

Şekil 5.28. QSt32-3 çeliği için logaritmik eğri

QSt32-3 çeliği için Şekil 5.28' deki doğrunun formülünden (y = 0,193x + 2,8) n = 0,193 ve K = $10^{2,8}$ = 616,737 N/mm² olarak hesaplanmıştır. Elde edilen K, n değerleri ve ε_{ind} değerleri ile birlikte $\sigma = K\varepsilon^n$ bağıntısından yararlanarak QSt32-3 çeliği için Vickers indentasyon deneyleri ile gerçek gerilme-gerçek b.ş.d. eğrisi elde edilmiştir (Şekil 5.29).

Şekil 5.29' da küreselleştirilmemiş QSt32-3 çeliğinin, çekme deneyinden ve Vickers indentasyon deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrileri gösterilmiştir. Bu iki eğri arasında, plastik şekil değişiminin başlamasından kopmaya kadar ki bölümde %95 yaklaşıklık olduğu sonucu bulunmuştur.

Şekil 5.29. QSt32-3 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin karşılaştırılması

5.4.2. 20MnB4 çeliği σ-ε eğrisi tahmin sonuçları

20MnB4 malzemesinin gerçek gerilme-gerçek birim şekil değişimi eğrisini elde etmek için kullanılan sayısal değerler Tablo 5.18-5.20' de verilmiştir. Yukarıda, σ -ε eğrisini elde edebilmek için izlenmesi gereken işlem adımları sırasıyla belirtilen metot uygulanarak hesaplamalar yapılmış, tablolar oluşturulmuş ve grafikler elde edilmiştir. Şekil 5.30' da B ve C sabitlerinin belirlendiği, uygulanan metotta önemli bir rolü olan h_d-h arasındaki ilişki grafiksel olarak verilmiş, ayrıca bu ilişki bir formülle ifade edilmiştir. 20MnB4 malzemesinin Vickers indentasyon yöntemi ile hesaplanan Kve n değerlerinden hareketle, 20MnB4 malzemesinin gerçek gerilmegerçek birim şekil değişimi eğrisi elde edilmiştir (Şekil 5.32).

Vickers indentasyon deneyi sonucu elde edilmiş h değerlerinden Eşitlik 4.11 ile ε_{ind} değerleri hesaplanmıştır. Bu ε_{ind} değerlerine karşılık gelen gerçek gerilme değerleri (σ_{c}) çekme deneylerinden elde edilmiştir. $A_d = P / \sigma_c$ bağıntısından, A_d değerleri bulunmuştur. Bulunan bu A_d değerleri Eşitlik 4.14' te kullanılarak h_d değerleri hesaplanmıştır (Tablo 5.18). Tablo 5.18' deki A_d ve h_d değerleri B ve C değerlerini bulmak için kullanılmıştır. Daha sonraki hesaplamalarda Tablo 5.19' daki yeni h_d ve yeni A_d değerleri kullanılmıştır.

Şekil 5.30. 20MnB4 malzemesine ait düzenlenmiş iz derinliği-ölçülen iz derinliği ilişkisi

h	Р	E _{ind}	σ_c	$A_d (mm2)$	h _d (μm)
0	0	0	0	0	0
0,174	8	0,004359	275,9357561	2,89923E-05	1,08782231
0,415333	24	0,010438	299,5618036	8,0117E-05	1,80833697
0,653667	42	0,016477	326,2180128	0,000128748	2,2923854
0,911667	67	0,023055	351,2190501	0,000190764	2,7903927
1,224	104	0,031078	375,8538182	0,000276703	3,36065665
1,429	130	0,036379	390,5988968	0,000332822	3,68572669
1,639333	160	0,041847	404,0202414	0,00039602	4,02045668
1,833667	193	0,046926	415,1684096	0,000464872	4,35595578
1,999	220	0,051267	424,0572808	0,000518798	4,60167599
2,178	250	0,055989	432,7211699	0,000577739	4,8560471
2,333	281	0,060095	439,7145008	0,000639051	5,10722186
2,521333	321	0,065108	447,7173392	0,00071697	5,40962944
2,798333	380	0,072526	458,4327932	0,000828911	5,81662302
3,023	434	0,078583	466,4842088	0,000930364	6,16230726
3,213333	481	0,083744	472,801726	0,00101734	6,44391747
3,4	528	0,088831	478,6751083	0,001103045	6,70986059
3,585333	577	0,093908	484,1910849	0,001191678	6,97423328
3,772667	627	0,099066	489,585113	0,001280676	7,22997218
3,916667	670	0,103048	493,433608	0,001357832	7,44457648
4,074	714	0,107418	497,6079851	0,001434864	7,65283577
4,228667	760	0,111733	501,5637811	0,001515261	7,86431083
4,383333	800	0,116066	505,3723403	0,001582991	8,03815205
4,534333	850	0,120314	508,9741894	0,001670026	8,25616837
4,673667	894	0,124251	512,1852959	0,001745462	8,44057754
4,788333	930	0,127502	514,8141724	0,001806477	8,58683633
4,899667	970	0,130669	517,2850724	0,001875175	8,74858573
5,020667	1010	0,134122	519,8950455	0,0019427	8,90471051
5,185667	1066	0,13885	523,409519	0,002036646	9,11747858
5,301	1105	0,142169	525,7430588	0,002101787	9,26213961
5,404	1140	0,145141	527,9230021	0,002159406	9,388238
5,559333	1189	0,149641	531,0278545	0,002239054	9,55980941
5,697667	1241	0,153666	533,7617035	0,002325008	9,74157421
5,815	1285	0,157093	536,06017	0,002397119	9,89149081
5,923667	1330	0,160276	538,1218547	0,002471559	10,0439019
6,059667	1377	0,164275	540,7334849	0,002546541	10,1951189
6,179333	1422	0,167807	542,9537184	0,002619008	10,3391622
6,276	1461	0,17067	544,7261645	0,002682082	10,462921
6,399667	1508	0,174343	546,9261036	0,002757228	10,6084834
6,514667	1549	0,177772	549,0006612	0,00282149	10,7313963
6,608	1595	0,180563	550,6623687	0,002896512	10,8731305
6,709333	1639	0,183602	552,386798	0,002967124	11,0048668
6,84	1692	0,187535	554,6483173	0,003050582	11,1585635
6,933667	1731	0,190364	556,2219275	0,003112067	11,2704547
7,043333	1776	0,193686	558,1156579	0,003182136	11,396627
7,166333	1830	0,197425	560,1506407	0,003266978	11,5475562
7,274	1876	0,20071	561,9129562	0,003338595	11,6734399
7,332333	1900	0,202494	562,829618	0,0033758	11,7383022

Tablo 5.18. 20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_c , A_d, h_d değerleri

Şekil 5.30' daki h_d -h arasındaki ilişkiden hareketle Tablo 5.19' da, B = 1.329 ve C = 2,129 ile yeniden hesaplanan h_d değerleri verilmiştir. Eşitlik 4.13' den elde edilen A_d değerleriyle birlikte kuvvet (P) değerleri kullanılarak gerilme değerlerine ulaşılmıştır. Şekil 5.31' de gerilme-birim şekil değişimi eğrisi plastik deformasyon bölgesi için elde edilmiş ve bu eğri düzensiz olduğundan eğri uydurma yöntemi kullanılarak eğri düzeltilmeye çalışılmıştır.

Şekil 5.31. 20MnB4 malzemesi için gerilme-birim şekil değişimi ilişkisi

h (µm)	h_d (µm)	$A_d (mm2)$	P(mN)	Eind	$\sigma(N/mm^2)$
0	2,129	0,00011	0	0	0
0,174	2,35742	0,00014	8	0,00436	58,756
0,415	2,67839	0,00018	24	0,01044	136,551
0,654	2,99538	0,00022	42	0,01648	191,065
0,912	3,33852	0,00027	67	0,02305	245,359
1,224	3,75392	0,00035	104	0,03108	301,229
1,429	4,02657	0,0004	130	0,03638	327,270
1,639	4,30631	0,00045	160	0,04185	352,162
1,834	4,56478	0,00051	193	0,04693	378,052
1,999	4,78467	0,00056	220	0,05127	392,241
2,178	5,02274	0,00062	250	0,05599	404,476
2,333	5,22889	0,00067	281	0,06009	419,489
2,521	5,47937	0,00074	321	0,06511	436,392
2,798	5,84778	0,00084	380	0,07253	453,560
3,023	6,14659	0,00093	434	0,07858	468,872
3,213	6,39973	0,00100	481	0,08374	479,352
3,4	6,648	0,00108	528	0,08883	487,625
3,585	6,89449	0,00116	577	0,09391	495,456
3,773	7,14365	0,00125	627	0,09907	501,489
3,917	7,33517	0,00132	670	0,10305	508,263
4,074	7,5442	0,00139	714	0,10742	512,012

Tablo 5.19. 20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ , A_d , h_d değerleri

h (µm)	h_d (µm)	A_d (mm2)	P(mN)	Eind	$\sigma(N/mm^2)$
4,229	7,75013	0,00147	760	0,11173	516,452
4,383	7,95583	0,00155	800	0,11607	515,885
4,534	8,15666	0,00163	850	0,12031	521,468
4,674	8,34198	0,00171	894	0,12425	524,365
4,788	8,49448	0,00177	930	0,12750	526,07
4,9	8,64256	0,00183	970	0,13067	530,055
5,021	8,80349	0,0019	1010	0,13412	531,919
5,186	9,02294	0,00199	1066	0,13885	534,436
5,301	9,17633	0,00206	1105	0,14217	535,622
5,404	9,31332	0,00213	1140	0,14514	536,451
5,559	9,51991	0,00222	1189	0,14964	535,488
5,698	9,70389	0,00231	1241	0,15366	537,915
5,815	9,85995	0,00238	1285	0,15709	539,495
5,924	10,00447	0,00245	1330	0,16028	542,371
6,06	10,18536	0,00254	1377	0,16428	541,771
6,179	10,34451	0,00262	1422	0,16781	542,392
6,276	10,47308	0,00269	1461	0,17067	543,67
6,4	10,63756	0,00277	1508	0,17434	543,941
6,515	10,79051	0,00285	1549	0,17778	543,002
6,608	10,91464	0,00292	1595	0,18056	546,482
6,709	11,04941	0,00299	1639	0,18360	547,942
6,84	11,2232	0,00309	1692	0,18753	548,278
6,934	11,34778	0,00315	1731	0,19036	548,668
7,043	11,49363	0,00324	1776	0,19369	548,734
7,166	11,65723	0,00333	1830	0,19742	549,661
7,274	11,80042	0,00341	1876	0,20071	549,885
7,332	11,87800	0,00346	1900	0,20249	549,668

Tablo 5.19.(Devam) 20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ , A_d, h_d değerleri

Şekil 5.31' deki $\sigma = 106,3\ln(\varepsilon) + 735,1$ ilişkisi yardımıyla ve ε_{ind} değerleri kullanılarak yeni gerilme (σ) değerleri elde edilmiştir (Tablo 5.20). Bulunan bu gerilme değerleri ve ε_{ind} değerlerinin logaritmik tabanda yazılması ile oluşturulan grafikten K ve n değerleri elde edilmiştir (Şekil 5.32).

Eind	$\sigma(N/mm^2)$	log e	$\log \sigma$
0	0	0	0
0,004359	156,88774	-2,36056	2,195589
0,010438	249,77275	-1,9814	2,3975451
0,016477	298,34286	-1,78313	2,4747156
0,023055	334,08515	-1,63723	2,5238572
0,031078	365,85302	-1,50755	2,5633066
0,036379	382,60798	-1,43915	2,582754
0,041847	397,50587	-1,37834	2,5993435
0,046926	409,69269	-1,32859	2,6124582
0,051267	419,10633	-1,29016	2,6223242
0,055989	428,47925	-1,2519	2,6319298
0,060095	436,00968	-1,22116	2,6394961
0,065108	444,5329	-1,18637	2,6479039

Tablo 5.20. 20MnB4 çeliğinin $\sigma\text{-}\epsilon$ eğrisi tahmininde kullanılan $\epsilon_{ind},\sigma,\log\epsilon_{ind},\log\sigma$ değerleri

	$(\Delta T/2)$	1	1
Eind	$\sigma(N/mm)$	1 12051	<u>10g σ</u>
0,072526	456,01268	-1,13951	2,6589769
0,078583	464,54689	-1,10467	2,6670296
0,083744	471,31378	-1,07705	2,6733101
0,088831	477,58798	-1,05143	2,6790534
0,093908	483,50068	-1,0273	2,6843971
0,099066	489,18914	-1,00408	2,6894768
0,103048	493,38269	-0,98696	2,6931839
0,107418	497,80117	-0,96892	2,6970559
0,111733	501,99073	-0,95182	2,7006957
0,116066	506,03867	-0,9353	2,7041837
0,120314	509,86351	-0,91968	2,7074539
0,124251	513,28862	-0,9057	2,7103616
0,127502	516,03667	-0,89448	2,7126806
0,130669	518,64686	-0,88383	2,7148718
0,134122	521,42195	-0,8725	2,7171893
0,13885	525,10794	-0,85745	2,7202486
0,142169	527,62059	-0,8472	2,7223217
0,145141	529,82231	-0,83821	2,7241302
0,149641	533,07077	-0,82495	2,7267849
0,153666	535,89436	-0,81342	2,7290792
0,157093	538,24057	-0,80384	2,7309764
0,160276	540,37525	-0,79513	2,7326955
0,164275	542,9972	-0,78443	2,7347976
0,167807	545,2604	-0,77519	2,736604
0,17067	547,05981	-0,76784	2,7380348
0,174343	549,32561	-0,75859	2,7398298
0,177772	551,39746	-0,75014	2,7414648
0,180563	553,0549	-0,74337	2,7427682
0,183602	554,83077	-0,73612	2,7441605
0,187535	557,08558	-0,72692	2,7459219
0,190364	558,67833	-0,72042	2,7471618
0,193686	560,51895	-0,7129	2,7485903
0,197425	562,55326	-0,7046	2,7501636
0,20071	564,3087	-0,69743	2,7515167
0,202494	565,2502	-0,69359	2,7522407

Tablo 5.20.(Devam) 20MnB4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log ϵ_{ind} , log σ değerleri

Şekil 5.32. 20MnB4 malzemesi için logaritmik eğri

20MnB4 çeliği için Şekil 5.32' deki doğrunun formülünden (y = 0,214x + 2,9027) n = 0,214 ve K = $10^{2,9027}$ = 799,2819 N/mm² olarak hesaplanmıştır. Elde edilen K , n değerleri ve ε_{ind} değerleri ile birlikte $\sigma = K\varepsilon^n$ bağıntısından yararlanarak 20MnB4 çeliği için Vickers indentasyon deneyleri ile gerçek gerilme-gerçek b.ş.d. eğrisi elde edilmiştir (Şekil 5.33).

Şekil 5.33. 20MnB4 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin karşılaştırılması

Şekil 5.33' da küreselleştirilmiş 20MnB4 çeliğinin, çekme deneyinden ve Vickers indentasyon deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrileri gösterilmiştir. Bu iki eğri arasında, plastik şekil değişiminin başlamasından kopmaya kadar ki bölümde %99 yaklaşıklık olduğu sonucu bulunmuştur.

5.4.3. 30MnB3 çeliği σ-ε eğrisi tahmin sonuçları

30MnB3 malzemesinin gerçek gerilme-gerçek birim şekil değişimi eğrisini elde etmek için kullanılan sayısal değerler Tablo 5.21-5.23' de verilmiştir. Yukarıda, σ - ϵ eğrisini elde edebilmek için izlenmesi gereken işlem adımları sırasıyla belirtilen metot uygulanarak hesaplamalar yapılmış, tablolar oluşturulmuş ve grafikler elde edilmiştir. Şekil 5.34' de B ve C sabitlerinin belirlendiği, uygulanan metotta önemli bir rolü olan h_d-h arasındaki ilişki grafiksel olarak verilmiş, ayrıca bu ilişki bir formülle ifade edilmiştir. 30MnB3 malzemesinin Vickers indentasyon yöntemi ile hesaplanan K ve n değerlerinden hareketle, 30MnB3 malzemesinin gerçek gerilmegerçek birim şekil değişimi eğrisi elde edilmiştir (Şekil 5.36).

Vickers indentasyon deneyi sonucu elde edilmiş h değerlerinden Eşitlik 4.11 ile ε_{ind} değerleri hesaplanmıştır. Bu ε_{ind} değerlerine karşılık gelen gerçek gerilme değerleri (σ_{c}) çekme deneylerinden elde edilmiştir. A_d = P / σ_{c} bağıntısından, A_d değerleri bulunmuştur. Bulunan bu A_d değerleri Eşitlik 4.14' te kullanılarak h_d değerleri hesaplanmıştır (Tablo 5.21). Tablo 5.21' deki A_d ve h_d değerleri B ve C değerlerini bulmak için kullanılmıştır. Daha sonraki hesaplanmalarda Tablo 5.22' daki yeni h_d ve yeni A_d değerleri kullanılmıştır.

Şekil 5.34. 30MnB3 malzemesine ait düzenlenmiş iz derinliği-ölçülen iz derinliği ilişkisi

h (um)	P (mN)	Eind	σc	A_{d} (mm ²)	h₄ (um)
0	0	0	0	0	0
0,0543	2	0,0013593	218,44028	0,000009	0,611315
0,116	5	0,0029042	314,10799	0,000016	0,80605
0,781	54	0,0197096	367,31768	0,00015	2,44958
1,049	83	0,026581	394,44993	0,00021	2,93062
1,173	97	0,0297696	406,10637	0,00024	3,12236
1,637	162	0,041786	442,47768	0,00036	3,86571
1,752	181	0,0447795	450,04468	0,00040	4,05162
1,992	222	0,0510828	464,4046	0,00048	4,4172
2,273	275	0,0585034	479,10211	0,00057	4,84026
2,546	331	0,0657748	491,74112	0,00067	5,24158
2,865	381	0,0743195	503,24593	0,00076	5,55891
3,032	422	0,0788178	511,04053	0,00083	5,80558
3,106	441	0,0808396	513,74817	0,00086	5,91917
3,178	460	0,0827817	516,27491	0,00089	6,03053

Tablo 5.21. 30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_c , A_d, h_d değerleri

h (µm)	P (mN)	Eind	σ_{c}	$A_d (mm^2)$	h _d (μm)
3,287	484	0,0857395	519,939	0,00093	6,16401
3,405	516	0,0889678	523,864	0,00098	6,34063
3,562	556	0,0932764	528,827	0,00105	6,55084
3,651	579	0,0957219	531,597	0,00108	6,66753
3,765	610	0,0988632	534,947	0,00114	6,82223
3,839	632	0,1008983	537,07	0,00117	6,93042
3,959	666	0,1042223	540,439	0,00123	7,09219
4,086	701	0,1077569	543,903	0,00128	7,25295
4,197	734	0,1108431	546,882	0,00134	7,4014
4,355	760	0,1152799	550,979	0,00137	7,50336
4,522	802	0,1199573	555,199	0,00144	7,67855
4,609	830	0,12242	557,347	0,00148	7,79638
4,716	865	0,125447	559,839	0,00154	7,94132
4,789	890	0,1275304	561,668	0,00158	8,04214
4,875	917	0,1299692	563,578	0,00162	8,14937
4,947	942	0,1320183	565,244	0,00166	8,24753
5,058	979	0,1351994	567,629	0,00172	8,39026
5,136	1004	0,1374247	569,499	0,00176	8,48276
5,246	1044	0,1405896	571,949	0,00182	8,63154
5,336	1075	0,1431778	573,811	0,00187	8,74452
5,549	1140	0,1493318	578,324	0,00197	8,96981
5,708	1172	0,1539644	581,506	0,00201	9,06991
5,819	1220	0,1572193	583,893	0,00208	9,23485
5,92	1260	0,1601688	585,782	0,00215	9,36988
6,026	1301	0,1632937	587,8445	0,00221	9,50439
6,137	1341	0,1665417	590,001	0,00227	9,63174
6,222	1377	0,1690698	591,653	0,00232	9,74653
6,318	1417	0,1719159	593,453	0,00239	9,87207
6,395	1446	0,1742046	594,956	0,00243	9,95998
6,482	1480	0,1768048	596,453	0,00248	10,06374
6,613	1520	0,1807129	598,827	0,00254	10,17860
6,764	1562	0,1852328	601,553	0,00259	10,29485
6,812	1583	0,186681	602,354	0,00262	10,3569
6,887	1617	0,1889636	603,723	0,00268	10,45569
6,938	1633	0,1904797	604,575	0,00270	10,49989
7,076	1698	0,1946776	607,037	0,00279	10,68508
7,185	1746	0,1979836	608,766	0,00286	10,81966
7,307	1799	0,2017338	610,809	0,00294	10,96426
7,354	1821	0,2031724	611,545	0,00297	11,02446
7,472	1872	0,2067833	613,536	0,00305	11,15963
7,575	1900	0,2099394	615,184	0,00309	11,22771

Tablo 5.21.(Devam) 30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_{c} , A_d, h_d değerleri

Şekil 5.34' daki h_d -h arasındaki ilişkiden hareketle Tablo 5.22' de, B = 1,2098 ve C = 2,2053 ile yeniden hesaplanan h_d değerleri verilmiştir. Eşitlik 4.13' den elde edilen A_d değerleriyle birlikte kuvvet (P) değerleri kullanılarak gerilme değerlerine ulaşılmıştır. Şekil 5.35' de gerilme-birim şekil değişimi eğrisi plastik deformasyon bölgesi için elde edilmiş ve bu eğri düzensiz olduğundan eğri uydurma yöntemi kullanılarak eğri düzeltilmeye çalışılmıştır.

h (µm)	h_{d} (µm)	$A_d (mm^2)$	P(mN)	Eind	$\sigma(N/mm^2)$
0	2,2053	0,00012	0	0	0
0,054	2,27103	0,000126	2	0,00135	15,827
0,116	2,34564	0,00013	5	0,00290	37,0921
0,781	3,14975	0,00024	54	0,01970	222,164
1,049	3,47466	0,00029	83	0,02658	280,599
1,173	3,62468	0,00032	97	0,02976	301,346
1,637	4,18574	0,00043	162	0,04178	377,401
1,752	4,32447	0,00046	181	0,04477	395,045
1,992	4,61522	0,00052	222	0,05108	425,404
2,273	4,95517	0,00060	275	0,05850	457,139
2,546	5,28585	0,00068	331	0,06577	483,539
2,865	5,67138	0,00079	381	0,07432	483,483
3,032	5,8/301	0,00084	422	0,07882	499,372
3,106	5,96334	0,00087	441	0,08083	506,166
3,178	6,04994	0,00089	460	0,08278	512,966
3,287	6,18151	0,00093	484	0,085739	516,999
3,405	6,32467	0,00098	516	0,08897	526,511
3,562	6,51501	0,00104	556	0,09328	534,660
3,651	6,62268	0,00107	579	0,09572	538,821
3,765	6,76060	0,00112	610	0,09886	544,744
3,839	6,84972	0,00114	632	0,10089	549,801
3,959	6,99490	0,00119	666	0,10422	555,5784
4,086	7,14874	0,00125	701	0,10776	559,877
4,197	7,28263	0,00129	734	0,11084	564,876
4,355	7,47438	0,00136	760	0,11528	555,260
4,522	7,67561	0,00144	802	0,11996	555,625
4,609	7,78119	0,00148	830	0,12242	559,526
4,716	7,91059	0,00153	865	0,12545	564,198
4,789	7,99944	0,00156	890	0,12753	567,682
4,875	8,10319	0,00160	917	0,12997	570,021
4,947	8,19018	0,00164	942	0,13202	573,189
5,058	8,32487	0,00169	9/9	0,13512	576,582
5,136	8,41883	0,00173	1004	0,13/42	578,181
5,246	8,55211	0,00179	1044	0,14059	582,623
5,336	8,66079	0,00184	10/5	0,14317	584,961
5,549	8,91808	0,00195	1140	0,14933	585,054
5,708	9,110/1	0,00203	11/2	0,15396	576,310
5,819	9,24552	0,00209	1220	0,15722	582,546
5,92	9,36/31	0,00215	1260	0,16017	586,103
6,026	9,49596	0,00221	1301	0,16329	500,209
6,137	9,62924	0,00227	1341	0,16654	590,308
6,222	9,73268	0,00232	13//	0,16907	593,339
6,318	9,84882	0,00238	141/	0,17192	596,260
6,395	9,94197	0,00242	1446	0,17420	597,114
6,482	10,04755	0,00247	1480	0,17681	598,378
6,613	10,20570	0,00255	1520	0,180/1	595,650
0,/04	10,38/862	0,00264	1562	0,18523	590,829
6,812	10,44605	0,00267	1583	0,18668	592,121
6,887	10,53759	0,00272	1617	0,18896	594,375
0,938	10,59828	0,002/5	1633	0,19047	595,401
/,0/6	10,/6584	0,00284	1098	0,1946/	597,964
/,185	10,89/30	0,00291	1/46	0,19/98	600,122
/,308	11,04591	0,00299	1/99	0,20173	601,813
1,555	11,102//	0,00302	1821	0,20317	604,949
1,472	11,24512	0,00309	18/2	0,20678	604,242
1.575	11.36913	0.00316	1900	0.20994	1 599 975

Tablo 5.22. 30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ , A_d, h_d değerleri

Şekil 5.35. 30MnB3 malzemesi için gerilme-birim şekil değişimi ilişkisi

Şekil 5.35' deki $\sigma = 115,4\ln(\epsilon) + 799,9$ ilişki yardımıyla ve ϵ_{ind} değerleri kullanılarak yeni gerilme (σ) değerleri elde edilmiştir (Tablo 5.23). Bulunan bu gerilme değerleri ve ϵ_{ind} değerlerinin logaritmik tabanda yazılması ile oluşturulan grafikten K ve n değerleri elde edilmiştir (Şekil 5.36).

Şekil 5.36. 30MnB3 malzemesi için logaritmik eğri

30MnB3 çeliği için Şekil 5.36' deki doğrunun formülünden (y = 0,2127x + 2,939) n = 0,2127 ve K = $10^{2,939}$ = 868,96 N/mm² olarak hesaplanır. Elde edilen K , n değerleri ve ε_{ind} değerleri ile birlikte $\sigma = K\varepsilon^n$ bağıntısından yararlanarak 30MnB3 çeliği için Vickers indentasyon deneyleri ile gerçek gerilme-gerçek b.ş.d. eğrisi elde edilmiştir (Şekil 5.37).

	ę		0
ε _{ind}	σ(N/mm2)	log ε	log σ
0	0		
0,001359	37,60560536	-2,8666985	1,57525258
0,002904	125,2960331	-2,5369715	2,09793732
0,01971	346,4721736	-1,7053215	2,53966836
0,026581	381,0169753	-1,5754287	2,58094433
0,02977	394,1020323	-1,5262273	2,59560867
0,041786	433,2651037	-1,3789692	2,63675371
0,044779	441,2563586	-1,3489211	2,64469098
0,051083	456,4674694	-1,2917254	2,65940983
0,058503	472,1336383	-1,2328186	2,67406494
0,065775	485,6646854	-1,1819402	2,68633653
0,07432	499,7714404	-1,128897	2,69877143
0,078818	506,5587505	-1,1033759	2,70462982
0,08084	509,48413	-1,0923761	2,70713066
0,082782	512,2261741	-1,0820657	2,70946177
0,085739	516,2809342	-1,0668193	2,71288609
0,088968	520,5500163	-1,050767	2,71646246
0,093276	526,0122884	-1,0302281	2,72099589
0,095722	529,0014444	-1,0189885	2,72345686
0,098863	532,7308401	-1,0049656	2,72650784
0,100898	535,0842848	-0,9961163	2,7284222
0,104222	538,828004	-0,9820395	2,73145016
0,107757	542,6801505	-0,9675549	2,73454394
0,110843	545,9416379	-0,9552913	2,73714622
0,11528	550,4747226	-0,9382463	2,74073738
0,119957	555,0684291	-0,9209734	2,74434653
0,12242	557,4156548	-0,9121476	2,74617916
0,125447	560,2368085	-0,9015397	2,74837164
0,12753	562,1392293	-0,8943863	2,74984389
0,129969	564,3271028	-0,8861596	2,75153091
0,132018	566,133857	-0,879366	2,75291913
0,135199	568,8840166	-0,8690251	2,75502373
0,137425	570,7695381	-0,8619353	2,75646079
0,14059	573,3993443	-0,8520469	2,75845719
0,143178	575,5063141	-0,8441244	2,76005009
0,149332	580,3669427	-0,8258478	2,76370267
0,153964	583,8956232	-0,8125796	2,76633522
0,157219	586,3118548	-0,8034942	2,76812868
0,160169	588,4585947	-0,7954222	2,76971591
0,163294	590,6903666	-0,7870305	2,77135989
0,166542	592,965158	-0,778477	2,77302918
0,16907	594,7052272	-0,7719341	2,77430176
0,171916	596,6333787	-0,764684	2,77570755
0,174205	598,1608771	-0,7589404	2,776818
0,176805	599,8721142	-0,7525059	2,77805867
0,180713	602,3972912	-0,743011	2,77988301
0,185233	605,2506084	-0,7322821	2,78193523
0,186681	606,1501411	-0,7288998	2,78258021
0,188964	607,5537783	-0,7236219	2,78358473
0,19048	608,4768122	-0,7201512	2,78424403
0,194678	610,9945838	-0,7106841	2,78603736
0,197984	612,9395218	-0,7033709	2,78741763
0,201734	615,1068528	-0,6952214	2,78895057
0,203172	615,9276228	-0,6921352	2,78952968
0,206783	617,962322	-0,6844845	2,790962
0 209939	619 7118744	-0 677906	2 79218982

Tablo 5.23. 30MnB3 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log ϵ_{ind} , log σ değerleri

Şekil 5.37. 30MnB3 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin karşılaştırılması

Şekil 5.37' de küreselleştirilmiş 30MnB3 çeliğinin, çekme deneyinden ve Vickers indentasyon deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrileri gösterilmiştir. Bu iki eğri arasında, plastik şekil değişiminin başlamasından kopmaya kadar ki bölümde %97,5 yaklaşıklık olduğu sonucu bulunmuştur.

5.4.4. 42CrMo4 çeliği σ-ε eğrisi tahmin sonuçları

42CrMo4 malzemesinin gerçek gerilme-gerçek birim şekil değişimi eğrisini elde etmek için kullanılan sayısal değerler Tablo 5.24-5.26' da verilmiştir. Yukarıda, σ-ε eğrisini elde edebilmek için izlenmesi gereken işlem adımları sırasıyla belirtilen metot uygulanarak hesaplamalar yapılmış, tablolar oluşturulmuş ve grafikler elde edilmiştir. Şekil 5.38' de B ve C sabitlerinin belirlendiği uygulanan metotta önemli bir rolü olan h_d-h arasındaki ilişki grafiksel olarak verilmiş, ayrıca bu ilişki bir formülle ifade edilmiştir. 42CrMo4 malzemesinin Vickers indentasyon yöntemi ile hesaplanan Kve n değerlerinden hareketle, 42CrMo4 malzemesinin gerçek gerilmegerçek birim şekil değişimi eğrisi elde edilmiştir (Şekil 5.40).

Vickers indentasyon deneyi sonucu elde edilmiş h değerlerinden Eşitlik 4.11 ile ε_{ind} değerleri hesaplanmıştır. Bu ε_{ind} değerlerine karşılık gelen gerçek gerilme değerleri (σ_{ς}) çekme deneylerinden elde edilmiştir. A_d = P / σ_{ς} bağıntısından, A_d değerleri bulunmuştur. Bulunan bu A_d değerleri Eşitlik 4.14' te kullanılarak h_d değerleri hesaplanmıştır (Tablo 5.24). Bulunan bu A_d değerleri Eşitlik 4.14' te kullanılarak h_d değerleri hesaplanmıştır (Tablo 5.24). Tablo 5.15' deki A_d ve h_d değerleri B ve C değerlerini bulmak için kullanılmıştır. Daha sonraki hesaplamalarda Tablo 5.20' daki yeni h_d ve yeni A_d değerleri kullanılmıştır.

h (µm)	P (mN)	e _{ind}	$\sigma_{c} (N/mm^{2})$	$A_d (mm^2)$	$h_{d}(\mu m)$
0	0	0	0	0	0
0,18	9	0,00451	358,946	0,000025	1,01163
0,378	22	0,00950	394,945	0,000055	1,50786
0,603	41	0,01518	410,922	0,000099	2,01804
0,727	53	0,01834	425,429	0,00012	2,25497
1,088	99	0,02758	462,197	0,00021	2,95679
1,389	146	0,03535	489,502	0,00030	3,48912
1,705	202	0,04355	513,164	0,00039	4,00834
2,142	292	0,05503	538,983	0,00054	4,70241
2,512	379	0,06487	556,323	0,00068	5,27318
2,833	452	0,07345	568,899	0,00079	5,69467
3,144	539	0,08187	579,629	0,00093	6,16079
3,541	660	0,09270	591,602	0,00111	6,74798
3,847	759	0,10113	599,785	0,00126	7,18687
4,175	846	0,11024	607,951	0,00139	7,53647
4,460	949	0,11821	614,529	0,00154	7,93924
4,695	1039	0,12486	619,707	0,00168	8,27239
4,958	1140	0,13234	625,295	0,00182	8,62635
5,292	1240	0,14192	631,941	0,00196	8,94931
5,567	1354	0,14986	637,220	0,00212	9,31283
5,775	1444	0,15593	641,159	0,00225	9,58777
5,953	1520	0,16113	644,306	0,00235	9,81279
6,310	1641	0,17169	650,528	0,00252	10,14701

Tablo 5.24. 42CrMo4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ_{c} , A', h_d değerleri

Şekil 5.38' deki h_d -h arasındaki ilişkiden hareketle Tablo 5.25' de, B = 1,332 ve C = 1,924 ile yeniden hesaplanan h_d değerleri verilmiştir. Eşitlik 4.13' den elde edilen A_d değerleriyle birlikte kuvvet (P) değerleri kullanılarak gerilme değerlerine ulaşılmıştır. Şekil 5.39' da gerilme-birim şekil değişimi eğrisi plastik deformasyon bölgesi için elde edilmiş ve bu eğri düzensiz olduğundan eğri uydurma yöntemi kullanılarak eğri düzeltilmeye çalışılmıştır.

Şekil 5.38. 42CrMo4 malzemesine ait düzenlenmiş iz derinliği-ölçülen iz derinliği ilişkisi

		2			1 1
h (µm)	$h_d (\mu m)$	$A_d (mm^2)$	P(mN)	Eind	$\sigma(N/mm^2)$
0	1,924	0,00009	0	0	0
0,18	2,16389	0,00012	9	0,00451	78,453
0,378	2,42820	0,00014	22	0,00950	152,295
0,603	2,72717	0,00018	41	0,01518	225,005
0,727	2,89287	0,00020	53	0,01834	258,494
1,088	3,37398	0,00028	99	0,02758	354,964
1,389	3,77556	0,00035	146	0,03535	418,045
1,705	4,19581	0,00043	202	0,04355	468,332
2,142	4,7782	0,00056	292	0,05503	522,021
2,512	5,27219	0,00068	379	0,06487	556,534
2,833	5,69909	0,00079	452	0,07345	568,016
3,144	6,11445	0,00091	539	0,08187	588,447
3,541	6,64353	0,00108	660	0,09270	610,351
3,847	7,05134	0,00122	759	0,10113	623,063
4,175	7,488467	0,00137	846	0,11024	615,769
4,460	7,8674	0,00152	949	0,11821	625,803
4,695	8,18147	0,00164	1039	0,12486	633,558
4,958	8,53197	0,00178	1140	0,13234	639,205
5,292	8,97709	0,00197	1240	0,14192	628,036
5,567	9,34314	0,00214	1354	0,14986	633,092
5,775	9,62079	0,00227	1444	0,15593	636,766
5,953	9,85712	0,00238	1520	0,16113	638,524
6,310	10,33378	0,00262	1641	0,17169	627,226

Tablo 5.25. 42CrMo4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan h, P, ϵ_{ind} , σ , A_d , h_d değerleri

Şekil 5.39. 42CrMo4 çeliği için gerilme-birim şekil değişimi ilişkisi

Şekil 5.39' daki $\sigma = 112\ln(\epsilon) + 854,9$ ilişkisi yardımıyla ve ϵ_{ind} değerleri kullanılarak yeni gerilme (σ) değerleri elde edilmiştir (Tablo 5.26). Bulunan bu gerilme değerleri ve ϵ_{ind} değerlerinin logaritmik tabanda yazılması ile oluşturulan grafikten K ve n değerleri elde edilmiştir (Şekil 5.40).

Eind	$\sigma(N/mm^2)$	$\log \varepsilon_{ind}$	$\log \sigma$
0	0	0	0
0,00451	250,040551	-2,3458085	2,398010447
0,009503	333,5155477	-2,0221234	2,523116085
0,015181	385,9787846	-1,8186904	2,586563434
0,018342	407,1622682	-1,7365487	2,609767525
0,027577	452,8324599	-1,5594566	2,65593755
0,035351	480,6476082	-1,4515998	2,681826786
0,043551	504,0129228	-1,3609978	2,702441672
0,055028	530,2104031	-1,2594137	2,724448245
0,064867	548,6341803	-1,1879731	2,739282861
0,073449	562,5499606	-1,1340128	2,750161099
0,08187	574,7063593	-1,0868748	2,759446003
0,0927	588,6209861	-1,0329191	2,769835742
0,101129	598,3675786	-0,9951254	2,776968054
0,110243	608,0321365	-0,9576498	2,783926534
0,118211	615,8484181	-0,9273412	2,78947383
0,124864	621,9808929	-0,9035617	2,793777044
0,132342	628,4947128	-0,8783035	2,798301629
0,141919	636,3200154	-0,8479599	2,803675584
0,149864	642,4210043	-0,8243025	2,807819732
0,155933	646,8670411	-0,8070625	2,810815024
0,161128	650,5375256	-0,7928297	2,813272353
0,171688	657,6476326	-0,7652593	2,817993261

Tablo 5.26. 42CrMo4 çeliğinin σ - ϵ eğrisi tahmininde kullanılan ϵ_{ind} , σ , log ϵ_{ind} , log σ değerleri

Şekil 5.40. 42CrMo4 çeliği için logaritmik eğri

42CrMo4 çeliği için Şekil 5.40' daki doğrunun formülünden (y = 0,192x + 2,966) n = 0,192 ve K = $10^{2,966}$ = 925,977 N/mm² olarak hesaplanır. Elde edilen K , n değerleri ve ε_{ind} değerleri ile birlikte $\sigma = K\varepsilon^n$ bağıntısından yararlanarak 42CrMo4 çeliği için Vickers indentasyon deneyleri ile gerçek gerilme-gerçek b.ş.d. eğrisi elde edilmiştir (Şekil 5.41).

Şekil 5.41. 42CrMo4 çeliğinin gerçek gerilme-gerçek b.ş.d. eğrilerinin karşılaştırılması

Şekil 5.41' de küreselleştirilmiş 42CrMo4 çeliğinin, çekme deneyinden ve Vickers indentasyon deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrileri

gösterilmiştir. Bu iki eğri arasında, plastik şekil değişiminin başlamasından kopmaya kadar ki bölümde % 97,3 yaklaşıklık olduğu sonucu bulunmuştur.

5.5. Soğuk Dövme Cıvata Çeliklerinin B ve C Değerlerini Belirlemek İçin Önerilen Metot

Vickers indentasyon deneyleri sonucunda ölçülen iz derinliği yanal çıkıntı oluşumundan dolayı gerçekte oluşan iz derinliğini temsil etmemektedir. Bundan dolayı düzenlenmiş iz derinliği (h_d) adı verilen yeni bir iz derinliği tanımlanmış ve böylece yanal çıkıntı oluşumu göz önüne alınarak gerçek iz derinliğine ulaşılmıştır . Düzenlenmiş iz derinliği ile ölçülen iz derinliği arasındaki ilişkide ise B ve C değerleri büyük bir öneme sahiptir. B ve C değerleri bir grup malzeme için sabitleştirilir veya kolayca elde edebileceğimiz herhangi bir değişken cinsinden formülize edilirse h_d değerlerine ulaşmak oldukça kolaylaşacaktır. İşlem adımlarını azaltmak ve işlemleri kolaylaştırmak amacıyla böyle bir ilişkinin varlığı araştırılmıştır.

Hesapladığımız B ve C değerleri ile deney numunelerinin 1900 mN' daki sertlik değerleri (HV₁₉₀₀) Tablo 5.27' de verilmiştir. Bu değerler kullanılarak B-HV₁₉₀₀ ve C-HV₁₉₀₀ arasındaki ilişki sırasıyla Şekil 5.42 ve 5.43' de gösterilmiştir. Eşitlik 5.1 ile B-HV₁₉₀₀ ilişkisi formülle ifade edilmiştir. Eşitlik 5.2' de ise C-HV₁₉₀₀ arasındaki ilişki formülle gösterilmiştir. B, C değerleri ile HV₁₉₀₀ arasındaki ilişki belirlenirken 30MnB3 numunesinden aldığımız sonuçlar çok fazla sapma gösterdiğinden kullanılmamıştır. Bunun nedenin Vickers indentasyon deneyi sayısının az olmasından kaynaklandığı düşünülmektedir. Daha fazla deney yapılmasıyla 30MnB3 malzemesi için alınan ortalama sonuçlarda iyileşecektir.

Malzeme	B	С	HV ₁₉₀₀
Qst 32-3	1,304	2,28	101
20MnB4	1,33	2,126	136,5
30MnB3	1,2098	2,2053	130
42CrMo4	1,3327	1,924	156

Tablo 5.27. Deney numuneleri için elde edilen B,C ve Hv₁₉₀₀ değerleri

Şekil 5.42. Deney numuleri için elde edilen B-HV₁₉₀₀ ilişkisi

Şekil 5.43. Deney numuneleri için elde edilen C-HV₁₉₀₀ ilişkisi

$$B=0,0005*Hv_{1900}+1,25$$
(5.1)

$$C = (-0,0062) * Hv_{1900} + 2,925$$
(5.2)

Her bir deney numunesi için Vickers indentasyon deneylerinden elde dilen HV_{1900} değerleriyle Eşitlik 5.1 ve 5.2 kullanılarak B ve C değerleri tekrar hesaplanmıştır.

Böylece bölüm 5.4' deki ikinci, üçüncü, dördüncü ve beşinci adımların uygulanmasına gerek kalmamıştır. Birinci işlem adımından sonra altıncı adımla devam edilmiş ve gerçek gerilme-gerçek b.ş.d. eğrileri Eşitlik 5.1 ve 5.2'den yararlanılarak elde edilmiştir. Bu eğriler çekme deneylerinden elde edilen gerçek gerilme-gerçek b.ş.d eğrileri ile karşılaştırılmıştır (Şekil 5.44-5.47).

Şekil 5.44. QSt32-3 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi

Şekil 5.45. 20MnB4 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme deneyinden elde elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi

Şekil 5.46. 30MnB3 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme deneyinden elde elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi

Şekil 5.47. 42CrMo4 çeliğinin Eşt 5.1 ve 5.2 yardımıyla ve çekme deneyinden elde elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrisi

Vickers indentasyon deneyleri verileri ile Eşitlik 5.1 ve 5.2' den yararlanıldığında elde edilmiş gerçek gerilme-gerçek b.ş.d eğrileri, çekme deneyinden elde edilmiş gerçek gerilme-gerçek b.ş.d. eğrileri arasındaki fark QSt32-3 için maksimum %2, 20MnB4 için maksimum %3.5, 30MnB3 için maksimum %10 ve 42 CrMo4 için ise maksimum %3 olarak bulunmuştur.

Elde edilen sonuçlar göstermiştir ki, 5.1 ve 5.2' deki eşitlikler kullanılarak sünek çeliklerin gerçek gerilme-gerçek b.ş.d. eğrileri hassasiyet ile tahmin edilebilecektir. Bu çalışmadan elde edilen sonuçlar, $\sigma = K\epsilon^n$ bünye denkleminin geçerli olduğu sünek çelikler içindir. Benzer çalışmaların ortak bünye denklemleri ve benzer mekanik özellikler gösteren (gerilme-b.ş.d. eğrisi) malzeme grupları ile gerçekleştirilmesi yararlı olacaktır. Bunların sonucunda, farklı malzeme grupları için eşitlik 5.1 ve 5.2' deki gibi B ve C değerlerini veren formüller elde edilerek, ilgili gruba ait malzeme için sadece Vickers indentasyon deneylerindeki P-h eğrilerinden gerçek gerilme-gerçek b.ş.d. eğrileri elde edilebilecektir.

Sonuç olarak malzeme karakterizasyonu çalışmalarında basit bir metot olan Vickers indetasyon yöntemi güvenilir bir metodu olacaktır.

5.6. Elastisite Modülü Tahmin Sonuçları

Elastisite modülü tahmini için gerçek gerilme-gerçek b.ş.d. eğrileri ile kuvvet-uzama eğrileri arasında bir benzerlik kurularak, deney numunelerinin elastisite modüllerinin belirleneceğinden bölüm 4' de bahsedilmiştir. Her bir deney numunesi için elde edilen P-h ve gerçek gerilme-gerçek b.ş.d. eğrileri arasındaki benzerlikten yola çıkılarak bulunan $\varepsilon_{c,els}$ ile $\varepsilon_{i,els}$ değerlerinin korelasyon işlemi sonucunda bir eşitlikle ifade edilebileceği bulunmuştur.

Elastisite modülünü belirlemek için yapılan hesaplamalarda kullanılmış değerler her deney numunesi için Tablo 5.28' de gösterilmiştir. Tablo 5.28 oluşturulurken, çekme deneylerinden elde edilmiş çekme dayanımı değerleri ve Vickers indentasyon deneylerinden elde edilmiş maksimum iz derinliği ve temas derinliği değerlerinden yararlanılmıştır. Hesaplamalarda kullanılan temas derinlikleri (h_c) Şekil 5.48-5.51 grafiksel olarak gösterilmiştir.

	1		1				1
Malzeme	σ_{c} (MPa)	E (MPa)	$\epsilon_{\text{c.els.}}$	$h_{m}(\mu m)$	$h_{c}(\mu m)$	$h_e(\mu m)$	$\epsilon_{i.els.}$
QSt32-3	436,7	207000	0,00211	8,58	7,4759	1,1041	0,027991
20MnB4	583	207000	0,002816	7,33	6,37842	0,95158	0,024077
30MnB3	632,8	207000	0,003057	7,37	6,44116	0,92884	0,023495
42CrMo4	668,2	207000	0,003228	6,9	6,07642	0,82358	0,020804

Tablo 5.28. Elastisite modülü tahmini için kullanılan değerler

Şekil 5.48. QSt32-3 çeliği için temas derinliğinin gösterimi

Şekil 5.49. 20MnB4 çeliği için temas derinliğinin gösterimi

Şekil 5.50. 30MnB3 çeliği için temas derinliğinin gösterimi

Şekil 5.51. 42CrMo4 çeliği için temas derinliğinin gösterimi

Şekil 5.52. Elastik birim şekil değişimleri arasındaki ilişki

Tablo 5.28' deki $\varepsilon_{c,els}$ ve $\varepsilon_{i,els}$ değerleri kullanılarak Şekil 5.52 oluşturulmuştur. $\varepsilon_{c,els}$ ile $\varepsilon_{i,els}$ arasındaki Şekil 5.52' de gösterilen ilişki Eşitlik 5.3' de ifade edilmiştir.

$$\varepsilon_{\text{g.els.}} = \frac{0,04 - \varepsilon_{i.els.}}{5,856}$$
 (5.3)

Eşitlik 5.3 kullanılarak Vickers indentasyon deneylerindeki elastik b.ş.d. değerleri yardımıyla, yeni $\varepsilon_{c,els}$ değerleri hesaplanmış ve Eşitlik 4.19 kullanılarak bu çalışmada kullanılan deney numunelerinin elastisite modülleri hesaplanmıştır.

Tablo 5.29' da deney numunesi olarak kullanılan az ve orta karbonlu soğuk dövme cıvata çelikleri için Vickers indentasyon deneyleriyle elastisite modülü tahmini için kullanılan değerler ve önerilmiş metot ile hesaplanan elastisite modülü (E_{ind}) değerleri verilmiştir.

Malzeme	σ_{ind} (MPa)	E (MPa)	ε _{ç.els} . (Eş. 5.3)	E ind (MPa)
QSt32-3	437,24	207000	0,002051	213206,24
20MnB4	567,9	207000	0,002719	208857,04
30MnB3	623,46	207000	0,002819	221202,65
42CrMo4	660,19	207000	0,003278	201404,51

Tablo 5.29. Deney numunelerinin elastisite modülü tahmin sonuçları

Deney numunelerinin elastisite modüllerini belirlemek amacıyla uygulanmış metotta en büyük elastisite modülü değeri 30MnB3 çeliği için elde edilmiştir. Bunun nedeni ise daha önceden de belirtildiği üzere Vickers indentasyon ölçüm sayısı ve noktalarının yetersizliği olarak yorumlanmaktadır. Sonuçlar Vickers indentasyon yöntemi ile elastisite modülü tahminin önerilen metot kullanılarak yüksek bir hassasiyette yapılabileceğini ortaya koymaktadır.

5.7. Tartışma

Vickers indentasyon deneyleriyle gerçek gerilme-gerçek b.ş.d eğrileri elde etmeye yönelik uygulanan metot sayesinde çekme deneylerinden belirlenen gerçek gerilmegerçek b.ş.d. eğrileriyle plastik şekil değişiminden kopmaya kadarki bölgede yüksek benzerlikte (%95-99) sonuçlar bulunmuştur. Daha önce Sezer tarafından yapılmış çalışmayla aynı benzerlik oranına ulaşılmıştır [52].

B ve C değerlerini hesaplamak için önerilen Eşitlik 5.1 ve 5.2' den yola çıkılarak belirlenen gerçek gerilme-gerçek b.ş.d eğrilerindeki benzerlik (%90-98) daha azdır. Fakat B ve C için önerilen bu eşitlikler çekme deneylerinden elde edilen verilere ihtiyaç duyulmadan sadece Vickers indentasyon deneyleri ile gerçek gerilme-gerçek b.ş.d eğrilerinin tahmin edilebileceğini göstermektedir.

30MnB3 çeliği, Vickers indentasyon deneyleri ile belirlenen gerçek gerilme-gerçek b.ş.d eğrisi %90 ile en az benzerlik gösteren deney numunesi olmuştur. Bu durumun, yapılan Vickers indentasyon deney sayısının azlığından kaynaklandığı düşünülmektedir. 30MnB3 malzemesi için elde edilen verilerin yapılan deney sayısı ile birlikte daha da iyileşecektir. Bu da daha sağlıklı sonuçlara ulaşmayı sağlayacaktır.

Gerçek gerilme-gerçek b.ş.d. eğrileri için elastik bölgedeki hataların, küçük şekil değişimlerinde ortaya çıkan batıcı uç kaynaklı veya yanal çıkıntıdan kaynaklandığı düşünülmektedir.

Yapılan deneysel çalışmalar sonucunda, Vickers indentasyon deneyleri ile elde edilen elastisite modülü değerlerinin literatürdeki elastisite modülü değeri ile yaklaşık sonuçlar olduğu belirlenmiştir. Vickers indentasyon deneyleri ile elastisite modülünü belirlemek için değişik metotların kullanıldığı çalışmalarda ulaşılan başarı bu çalışmadakinden daha düşüktür [3,46]. Bunun nedeni, literatürdeki çalışmalardaki deney numunelerinin çok çeşitli olmasından kaynaklanabilir. Oysaki belirli ortak özelliklere sahip malzeme grupları için yapılan çalışmalar ve türetilen metotlar daha doğru sonuçlar vermektedir.

BÖLÜM 6. SONUÇLAR VE ÖNERİLER

Bu çalışmada, Vickers indentasyon deneyleriyle QSt32-3, 20MnB4, 30MnB3, 42CrMo4 çeliklerinin elastisite modülü değerlerinin ve gerçek gerilme-gerçek b.ş.d. eğrilerinin tahmininde kullanılabilirliği araştırılmıştır.

QSt32-3 çeliği için çekme deneylerinden elde edilen gerçek gerilme-gerçek b.ş.d eğrisi ile Vickers indentasyon deneyi verilerinden hareketle ve hd = 1,304h + 2,28 bağıntısının yardımıyla belirlenen gerçek gerilme-gerçek b.ş.d eğrisi arasında %95' lik bir benzerlik olduğu bulunmuştur. Eşitlik 5.1 ve 5.2 kullanılarak hesaplanan düzenlenmiş iz derinliği (h_d) yardımıyla elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi ise çekme deneyinden belirlenen gerçek gerilme-gerçek b.ş.d. eğrisi ile % 98' lik benzerlik göstermiştir. Bu benzerlikler gerilme-b.ş.d. eğrisindeki plastik şekil değişiminin başlamasından boyun vermeye kadar olan bölge için elde edilmiştir.

20MnB4 çeliği için çekme deneylerinden elde edilen gerçek gerilme-gerçek b.ş.d eğrisi ile Vickers indentasyon deneyi verilerinden hareketle ve hd = 1,33h + 2,126bağıntısının yardımıyla belirlenen gerçek gerilme-gerçek b.ş.d eğrisi arasında %99' lik bir benzerlik olduğu bulunmuştur. Eşitlik 5.1 ve 5.2 kullanılarak hesaplanan düzenlenmiş iz derinliği (h_d) yardımıyla elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi ise çekme deneyinden belirlenen gerçek gerilme-gerçek b.ş.d. eğrisi ile % 96,5' lik benzerlik göstermiştir. Bu benzerlikler gerilme-b.ş.d. eğrisindeki plastik şekil değişiminin başlamasından boyun vermeye kadar olan bölge için elde edilmiştir.
30MnB3 çeliği için çekme deneylerinden elde edilen gerçek gerilme-gerçek b.ş.d eğrisi ile Vickers indentasyon deneyi verilerinden hareketle ve hd = 1,2098h + 2,2053 bağıntısının yardımıyla belirlenen gerçek gerilme-gerçek b.ş.d eğrisi arasında %97,5' lik bir benzerlik olduğu bulunmuştur. Eşitlik 5.1 ve 5.2 kullanılarak hesaplanan düzenlenmiş iz derinliği (h_d) yardımıyla elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisi ise çekme deneyinden belirlenen gerçek gerilmegerçek b.ş.d. eğrisi ile % 90' lık benzerlik göstermiştir. Bu benzerlikler gerilme-b.ş.d. eğrisindeki plastik şekil değişiminin başlamasından boyun vermeye kadar olan bölge için elde edilmiştir.

42CrMo4 çeliği için çekme deneylerinden elde edilen gerçek gerilme-gerçek b.ş.d eğrisi ile Vickers indentasyon deneyi verilerinden hareketle ve hd = 1,2098h + 2,2053 bağıntısının yardımıyla belirlenen gerçek gerilme-gerçek b.ş.d eğrisi arasında %97,3' lük bir benzerlik olduğu bulunmuştur. Eşitlik 5.1 ve 5.2 kullanılarak hesaplanan düzenlenmiş iz derinliği (h_d) yardımıyla elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisi ise çekme deneyinden belirlenen gerçek gerilmegerçek b.ş.d. eğrisi ile % 97' lik benzerlik göstermiştir. Bu benzerlikler gerilme-b.ş.d. eğrisindeki plastik şekil değişiminin başlamasından boyun vermeye kadar olan bölge için elde edilmiştir.

Çekme deneyleri verilerinden yararlanarak bulunan B ve C değerleri ile Eşitlik 5.1 ve 5.2 kullanarak hesaplanan B ve C değerleri Tablo 6.1' de verilmiştir. Birbirine oldukça yaklaşık değerler elde edilmiştir, en büyük fark %8,7 civarındadır. Bu sonuçlar göstermektedir ki Eşitlik 5.1 ve 5.2 çalıştığımız malzeme grubu için B ve C değerlerini iyi bir hassasiyette verebilmektedir. Buradan hareketle, B ve C değerleri için öne sürülmüş sertliğe bağlı Eşitlik 5.1 ve 5.2 sayesinde başka hiçbir deneye gerek kalmadan sadece Vickers indentasyon deneylerinden elde edilen verilerle benzer özelliklere sahip malzemelerin (bünye denklemleri gibi) gerçek gerilmegerçek b.ş.d. eğrilerinin tahmininin yapılabileceği sonucuna varılmıştır.

Malzeme	В	B (Eşt 5.1)	С	C (Eşt 5.2)
QSt 32-3	1,304	1,3005	2,28	2,2988
20MnB4	1,33	1,31825	2,126	2,0787
30MnB3	1,2098	1,315	2,2053	2,119
42CrMo4	1,3327	1,328	1,924	1,9578

Tablo 6.1. Deney numuneleri için B ve C değerlerinin karşılaştırılması

Deney numunelerinin gerçek gerilme-gerçek b.ş.d eğrilerini elde etmek amacıyla Vickers indentasyon yönteminden elde ettiğimiz n değerleri ile çekme deneylerinden ettiğimiz n değerleri arasında fark olduğu halde, K değerleri arasında bulunan farklılık $\sigma = K.\epsilon^n$ bağıntısından oluşturulan eğriyi çekmeden elde edilen gerçek gerilme-gerçek b.ş.d eğrisine yaklaştırmıştır.

Vickers indentasyon yöntemi için elastisite modülünü belirlemek amacıyla önerilen metot ile hesaplanmış elastisite modülü değerleri deney numunelerinin literatürdeki elastisite modülü değerlerine oldukça yakın sonuçlar vermiştir.

Vickers indentasyon yöntemiyle gerilme-b.ş.d eğrisindeki plastik şekil değişiminden kopmaya kadar ki bölgede %90-99 yaklaşıklıkla, dört deney numunesi içinde gerçek gerilme-gerçek b.ş.d. eğrileri elde edilmiştir.

Bu çalışma sonucunda Vickers indentasyon deneylerinin hem malzemelerin elastisite modülü değerlerinin tahmininde hem de gerçek gerilme-gerçek b.ş.d eğrilerinin belirlenmesinde kullanılabileceği sonucuna ulaşılmıştır.

Belirli ortak özellikleri sahip malzeme grupları için B ve C değerlerini veren bağıntılar öneren çalışmalar yapılmasıyla başka hiçbir deneye gerek kalmadan sadece Vickers indentasyon deneyleriyle gerçek gerilme-gerçek b.ş.d. eğrilerini elde etmek mümkün olacaktır.

KAYNAKLAR

- [1] SHAN, Z., GOKHALE, A.M., Utility of micro-indentation technique for characterization of the constitutive behaviour of skin and interior microstructures of die-cast magnesium alloys, Materials Science and Engineering A, 361, pp. 267-274, 2003.
- [2] FRANCO, A.R., PİNTAUDE, G., SINATORA, A., PINEDO, C.E., TSCHIPTSCHIN A.P., The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness, Materials Research, 7, 3, pp. 483-491, 2004.
- [3] ANTUNES, J.M., CAVALERÍO, A., MENEZES, L.F., SIMOES, M.I., FERNANDES, J.V., Ultra-microhardness testing procedure with Vickers indenter, Surface and Coatings Technology, 149, pp. 27-35, 2002.
- [4] GUBICZA, J., JUHASZ, A., TASNADI, P., ARATO, P., VÖRÖS, G., Determination of the hardness and elastic modulus from continuous Vickers indentation testing, Journal of Materials Science, 31, pp. 3109-3114, 1996.
- [5] PHAR, G.M., Measurement of mechanical properties by ultra-low load indentation, Materials Science and Engineering A, 253, pp. 151–159, 1998.
- [6] ZENG, K., CHIU, C., An Analysis of Load-Penetration Curves from Instrumented Indentation, Acta Materialia, 49, pp. 3539-3551, 2001.
- [7] NAYEBI, A., EL ABDI, R., BARTIER, O., MAUVOISIN, G., New procedure to determine steel mechanical parameters from the spherical indentation technique, Mechanics of Materials, 34, pp. 243-254, 2002.
- [8] ZENG, K., SODERLUND, E., GIANNAKOPOULOS, A.E., ROWCLIFFE, D.J., A general approach to determine mechanical properties of brittle materials Acta Mater., 44, 1127,1996.
- [9] DEMiRKOL, M., KISAKÜREK, S.E., On the relations between ball indentation hardness measurements and the tensile flow behaviour of some ferrous and nonferrous metals, Materials Science and Engineering, 59, pp.197-205, 1983.
- [10] DEMiRKOL, M., A study on the relationship between the hardness and the tensile properties of metals., Thesis, Bogazici University,Faculty of

MechanicalEngineering, İstanbul, June 1979.

- [11] SILVA, M.H.P., LEMOS, A.F., FERREIRA, J.M.F., SANTOS, J.D., Mechanical characterisation of porous glass reinforced hydroxyapatite ceramics – Bonelike, Materials Research, 6, 3, 321-325, 2003.
- [12] PAJARES, A., GUIBERTEAU, F., R.W. STEINBRECH, DOMINGUEZ-RODRIGUEZ, A., Residual stresses around Vickers indents, Acta Metall. Mater., 43, 3649, 1995.
- [13] SWADENER, J. G., TALJAT, B., PHARR, G. M., Measurement of residual stress by load and depth sensing indentation with spherical indenters, J. Mater. Res. ,16, 7, pp. 2091-2102, 2001.
- [14] CARLSSON, S., LARSSONT, P.,-L., On the determination of residual stress and strain fields by sharp indentation testing. Part I : Theoretical and numerical analysis, Acta Materialia,49, pp. 2179-2191
- [15] CARLSSON, S., LARSSONT, P.,-L., On the Determination of Residual Stress and Strain Fields by Sharp Indentation Testing. Part II: Experimental Investigation, Acta Mater., 49, pp. 2193–2203, 2001.
- [16] SURESH, S., . GIANNAKOPOULOS, A.E, A new method for estimating residual stresses by instrumented sharp indentation Acta Mater., 46, 5755, 1998.
- [17] ŞAHİN, O., UZUN, O., KÖLEMEN, U., UÇAR, N., Enerji metodu ile sertlik hesaplamaları üzerine matematiksel bir model, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9, 2, 2005.
- [18] DOERNER, M.F., NIX, W.D., Method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res., 1, 4, pp. 601-609, 1986.
- [19] VANLANDINGHAM, M.R., Review of Instrumented Indentation, J. Res. Natl. Stand. Technol., 108, 4, pp. 473-485, 1975.
- [20] JAYARAMAN, S., HAHN, G.T., OLIVER, W.C., RUBIN, C.A., BASTIAS, P.C., Determination of monotonic stres-strain curve of hard materials from ultra-low-indentation tests, Int. J. Solids Structures, 35, 5-6, pp. 365-381, 1998.
- [21] XU,Z.,-H., ROWCLIFFE, D., Method to determine the plastic properties of bulk materials by nanoindentation, Philosophical Magazine A, 82, 10, pp. 1893-1901, 2002.
- [22] TABOR, D., The hardness of metals, Oxford Univ. Pres, 1951.

- [23] CHENG, Y.T., CHENG, C.M., Can stres-strain relationships be obtained from indentation curves using conical and pyramidial indenters?, Journal of Materials Research, 14, 9, pp. 3493-3496, 1999.
- [24] DICARLO, A., YANG, H.T.Y., CHANDRASEKAR, S., ., Prediction of stres-strain relation using cone indentation: effect of friction, Int. J. Numer. Meth. Engng., 60, pp. 661-674, 2004.
- [25] MATSUDA, K., Prediction of stress-strain curves of elastic-plastic materials based on the Vickers indentation, Philosophical Magazine A, 82, 10, pp. 1941-1951, 2002.
- [26] XIZODONG. L., BHUSHAN. B., A review of nanoindentation continuous stiffness measurement technique and its applications, Materials Characterization. 48,pp. 11-36, 2002.
- [27] PHARR, G.M., Instrumented Indentation Testing, University of Tennessee and Oak Ridge National Laboratory
- [28] KIMMARI, E., KOMMEL, L, Application of the continuous indentation test method for the characterization of mechanical properties of B4C/Al composites, Proc. Estonian Acad. Sci. Eng., 12,4, pp. 399-407, 2006.
- [29] GIANNAKOPOULOS, A.E., LARSSON, P.-L., VESTERGAARD, R., Analysis of Vickers Indentation, Int. J. Solids Structures, 31, 19, pp 2679-2708, 1994.
- [30] CARVALHO, S., VAZ F., REBOUTA, L., SCHNEIDER, D.,CAVALEIRO, A., ALVES, E., Elastic properties of (Ti,Al,Si)N nanocomposite films, Surface and Coatings Technology, 142-144, pp. 110-116, 2001.
- [31] DAS, G., GHOSH, S., SAHAY, S.K., Use of ball indentation technique to determine the change of tensile properties of SS316L steel due to cold rolling, Materials Letters, 59, pp. 2246-2251, 2005.
- [32] DAS G., GHOSH SABITA, GHOSH SUKOMAL, Structure-property correlation of EN steel and evaluation of mechanical properties through BIT, NDT&E International, 39, pp.155-161, 2006.
- [33] SÖNMEZ, F.,DEMiR, A.,Analytical relations between hardness and strain for cold formed parts, Journal of Materials Processing Technology, 186, pp.163-173, 2007.
- [34] MURTY, K.L., MIRAGLIA, P. Q., MATHEW, M. D., SHAH, V. N., HAGGAG, F. M., Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation, International Journal of Pressure Vessels and Piping, 76, 6, pp. 361-369, 1999.

- [36] MURTY, K.L., MATHEW, M.D., WANG, Y., SHAH, V.N., HAGGAG, F.M., Nondestructive Determination of Tensile Properties and Fracture Toughness of Cold Worked A36 Steel, Int. J. Pressure Vessels and Piping, 75, pp. 831-840, 1998.
- [37] RIESTER, L., BELL, T.J., FISCHER-CRIPPS, A.C., Analysis of depthsensing indentation tests with a Knoop indenter, J. Mater. Res., 16, 6 pp. 1660-1667, 2001.
- [38] CHOLLACOOP, N., DAO, M., SURESH, S., Depth-sensing instrumented indentation with dual sharp indenters, Acta Materialia, 51, pp. 3713-3729, 2003.
- [39] CASALS, O., ALCALA, J., The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments, Acta Materialia, 53, pp.3545-3561; 2005
- [40] XU, Z-H., AGREN, J., An Analysis of piling-up or sinking-in behaviour of elastic-plastic materials under a sharp indentation, Philosophical Mag., 84, 43, pp. 2367-2380, 2004.
- [41] MEZA, J.M., FARIAS, M.C.M., SOUZA, R.M., RIANO, L.J.C., Using Ratio: Maximum Load over Unload Stiffness Squared, P_m/S_u^2 , on the Evaluation of Machine Stiffness and Area Function of Blunt Indenters on Depth-sensing Indentation Equipment, Materials Research, 10, 4, pp. 437-447, 2007.
- [42] OLIVER, W.C., PHARR, G.M., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 19, 1, pp. 3-20, 2004.
- [43] ANTUNES, J.M., MENEZES, L.F., FERNANDES, J.V., Influence of Vickers tip imperfection on depth sensing indentation tests, Int. J. of Solid and Structures, 44, pp. 2732-2747, 2007.
- [44] JANA, S., RAMAMURTY, U., CHATTOPADHYAY, K., KAWAMURA, Y., Subsurface deformation during Vickers indentation of bulk metallic glasses, Materials Science and Engineering A, 375-377, pp. 1191-1195, 2004.
- [45] ALCALA, J., BARONE, A.C., ANGLADA, M., The influence of plastic hardening on surface deformation modes around Vickers and spherical indents, Acta Materialia, 48, pp. 3451-3464, 2000.

- [46] BUCAILLE, J.L., STAUSS,S., FELDER, E., MİCHLER, J., Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Materialia, 51, pp.1663-1678; 2003.
- [47] DE FAZIO L., SYNGELLAKIS, S., WOOD, R.J.K., FUGIUELE, F.M., SCIUME, G., Nanoindentation of CVD diamond: comparison of an FE model with analytical and experimental data, Diamond and Related Materials, 10, pp. 765-769, 2001.
- [48] GIANNAKOPOULOS, A.E., SURESH, S., Determination of elastoplastic properties by instrumented sharp indentation, Scripta Materialia, 40, 10, pp. 1191-1198, 1999.
- [49] DAO, M., CHOLLACOOP, N., VAN VLIET, K. J., VENKATESH, T. A., SURESH, S., Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta mater., 49, pp. 3899– 3918, 2001.
- [50] CHENG,Y,T., CHENG, C,M., Relationship between hardness, elastic modulus and work of indentation, Apply. Phys. Lett., 73, 614, 1998.
- [51] TEKKAYA, A. E., Improved relationship between Vickers hardness and yield stress for cold formed workpieces, Steel Research, 71, 8, pp. 304-310, 2001.
- [52] SEZER, Ö., Çekme Deneyleri ve Sertlik Deneyleri ile Gerçek Gerilme Tayini, Yüksek Lisans Tezi, SAÜ Fen Bilimleri Enstitüsü, 2007.

ÖZGEÇMİŞ

Mustafa BAŞOĞLU, 17.06.1983 de Adapazarı'nda doğdu. İlk, orta ve lise eğitimini Adapazarı'nda tamamladı. 2001 yılında Sakarya Anadolu Lisesi'nden mezun oldu. 2002 yılında başladığı Uludağ Üniversitesi Makina Mühendisliği Bölümünden 2006 yılında mezun oldu . Sakarya Üniversitesi Makina Mühendisliği EABD Makina Tasarım ve İmalat bilim dalında 2006 yılında yüksek öğrenimine başladı.