T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BULONLAR İLE BİRLEŞTİRİLMİŞ KOMPOZİT KİRİŞLERİN NEGATİF (-) MOMENT BÖLGESİNDEKİ YAPISAL DAVRANIŞI

YÜKSEK LİSANS TEZİ

İnş. Müh. Ahmet DEGERLİ

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	YAPI
Tez Danışmanı	:	Doç. Dr. Ahmet Necati YELGİN

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BULONLAR İLE BİRLEŞTİRİLMİŞ KOMPOZİT KİRİŞLERİN NEGATİF (-) MOMENT BÖLGESİNDEKİ YAPISAL DAVRANIŞI

YÜKSEK LİSANS TEZİ

İnş.Müh. Ahmet DEGERLİ

Enstitü Anabilim Dalı

İNŞAAT MÜHENDİSLİĞİ

Enstitü Bilim Dalı

YAPI

Bu tez 14 / 09 /2010 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

:

1

		0/1/10	
Prof. Dr. Ahmet APAY	Doç.Dr.Ahmet Necati	Yrd.Dc/Dr.Muhaurem	/
Jüri Başkanı	YELGÎN	AKTAS	
Manager Jaul	1 A		

TEŞEKKÜR

Tez danışmanım değerli hocam ,Doç.Dr. Ahmet Necati YELGİN'e, tezin bütün aşamalarında yardımını hiç esirgemenyen değerli hocam Yrd.Dç.Dr. Muharrem AKTAŞ'a, tezin bütün aşamalarında yardımlarından dolayı Teknik Eğitim Fakültesi Araştırma görevlisi Emine AYDIN'a, manevi desteğinden dolayı değerli aileme, iş hayatımdaki ilk hocam İnş. Müh. Ş.Taner BULUT'a, yüksek lisans tezimin hazırlanmasında desteğini esirgemeyen AZ mimarlık, Görkem Yapı Şirketi, Çamlıca Yapı Denetim ortak ve personeline, İş arkadaşım ve büyük emeği geçen Mimar F.Zeki Ağfal'a, Sakarya Üniversitesinde yüksek lisans yapmamda katkısı olan İnş. Müh. Salih ÖNELGE'ye, şu an ismini sayamadığım bu çalışmanın hazırlanmasında emeği geçen herkese TEŞEKKÜR EDERİM.

Ahmet DEGERLİ

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	iv
ŞEKİLLER LİSTESİ	X
TABLOLAR LİSTESİ	xiii
ÖZET	xiv
SUMMARY	xi

BÖLÜM 1.

GİRİŞ	1
1.1.Konunun Tanımı	1
1.2. Çalışmanın Amacı	5
1.3. Konu Üzerine Yapılmış Çalışmalar	7
1.3.1. Çelik liflerle güçlendirilmiş hazır betonarme plaklı	
kompozit kirişlerin negatif moment bölgesindeki yapısal	
davranışı	7
1.3.2. Gövde betonlu kompozit kirişlerin negatif moment	
bölgesindeki davranışı ve taşıma gücünün	8
incelenmesi	
1.3.3. Çelik levhalar ile takviye edilmiş karma kirişlerin negative	
moment bölgesindeki yapısal davranışları	9
1.3.4. Kompozit döşemelerde Etkili tabla genişliğinin	
incelenmesi	10
1.3.5. Çelik-beton karma kirişlerinin negatif moment etkisi altında	
modellenmesi	10
· ·	

	1.3.6. Negatif moment bölgesinde alt başlığın yanal burkulması ve
	gövde levhasının yanal burkulması
1.4	. Konuyla İlişkin Şartname Kuralları
	1.4.1. Çelik profillerin malzeme narinliği hakkında kurallar
	1.4.2. Beton ile ilgili yönetmelik ve kurallar
	1.4.3. Kayma bağlantıları hakkında kurallar
BÖLÜM	2.
KARMA	KİRİŞLER, YAPISAL DAVRANIŞLARI VE HESAP
YÖNTEM	1LERİ
2.1	. Kompozit Kiriş Türleri
2.2	. Karma Kirişlerin Hesabı
	2.2.1. Çalışan Tabla Genişliği
	2.2.2. Pozitif momentler bölgesinde taşıma gücü
	2.2.3. Negatif momentler bölgesinde taşıma gücü
	2.2.4. Kesme kuvveti – eğilme moment etkileşimi
	2.2.5. Normal kuvvet – eğilme moment etkileşimi
	2.2.6. Şekil değiştirmeler
	2.2.7. Karma kesitlerde kayma bağlantıları
BÖLÜM	3.
DENEYL	ERİN YAPILIŞI VE DENEYLERDE ELDE EDİLEN VERİLER.
3.1	. Deneylerde Kullanılacak Kirişlerin Hazırlanması
	3.1.1. Betonarme plağın oluşturulması
	3.1.2. Betonarme plağın HEB120 profili ile birleştirilmesi
	3.1.3. Deney numunelerinin hazırlanması ve ölçüm aletlerinin
	yerleştirilmesi
3.2	. Deney Düzeneği
3.3	. Deneylerde Elde Edilen Sonuçlar
	3.5.2. DN 1 kirişi
	3.5.3. DN 2 kirişi
	3.5.4. DN 3 kirişi
	3.5.2. DN 4 kirişi
	3.5.3. DN 5 kirişi
	3.5.4. DN 6 kirişi

BÖLÜM 4.

DENEYLERDE KULLANILAN KİRİŞLERİN HESAPLAMALARI VE	
TAHKİKLERİ	72
4.1. Kullanılan Malzeme Bilgileri	72
4.2. Kompozit Kirişin Pozitif Moment Taşıma Gücü Hesabı	74
4.3. Kompozit Kirişin Negatif Moment Taşıma Gücü Hesabı	74
4.4. Kompozit Kirişin Kesme Kuvveti Dikkate Alındığında Oluşan	
Negatif Moment Taşıma Gücü Hesabı	75
4.5. Düşey Yer Değiştirme Hesabı	76
4.6. Kayma Elemanlarının Hesabı (bulon)	77
4.7. Levhalara Gelecek Bulon Mesafelerinin Hesaplanması	79
4.8. Döşeme Plağı Donatı Hesabı	80
BÖLÜM 5.	
SONUÇLAR VE ÖNERİLER	82
KAYNAKLAR	89
FKI FR	91
ÖZGEÇMİŞ	99

SİMGELER VE KISALTMALAR LİSTESİ

A _s	: Bulon Sayısı Hesabı İçin Gerekli Olan Çelik Profilin Alanı
A _c	: Betonarme Kesit İçin Etkili Alan
AISC	: Çelik Konstrüksiyon Yük ve Direnç (Mukavemet) Tasarım Klavuzu
AASHTO	: Karayolları Köprüsü İçin Standart Özellikler
В	: Kirişler Arası Mesafe
BS 5400	: Kompozit Köprüler Yönetmeliği
b _{ao}	: Çelik Profil Üst Başlık Genişliği
b _{eff}	: Çalişan Tabla Genişliği
CP 110	:Yapısal Çelik Ve Betonda Kompozit Yapılar (ingiliz standartlar kurumu)
CP 117	: Yapısal Çelik Ve Betonda Kompozit Yapılar (ingiliz standartlar kurumu)
d	: Tabla Kalınlığı
Da	: Kompozit Çalışmada Çelik Tarafından Taşınan Basınç Kuvveti
D _b	: Kompozit Çalışmada Beton Tarafından Taşınan Basınç Kuvveti
e	: Bulon Aralığı
e ₁	: Kuvvet Doğrultusunda Kenar Uzaklık
e ₂	: Kuvvete Dik Doğrultudaki Kenar Uzaklık
EC 4	: Kompozit Yapıların dizaynı (Eurocode 4)
Ea	: Çelik Elastisite Modülü
E _b	: Beton Elastisite Modülü
Fa	: Çelik Profil Enkesit Alanı
F _a '	: Betonarme Tabla Mesnet Donatisi Alani
F _c	: Bulon Sayısı Hesabı İçin Gerekli Olan Betonarme Tablanın
	Karşilayabildiği Kuvvet
F _{ckn}	: n Günlük Betonun Karakteristik Silindir Basınç Dayanımı
F _s	: Bulon Sayısı Hesabı İçin Gerekli Olan Çelik Profilin Karşılayabildiği
	Kuvvet

$\mathbf{f}_{\mathbf{y}}$: Karakteristik Çelik Dayanımı
\mathbf{f}_{ck}	: Beton Karakteristik Dayanımı
\mathbf{f}_{d}	: Deneysel Sehim
\mathbf{f}_{t}	: Teorik Sehim
\mathbf{f}_1	: Brüt Enkesit Ele Alınarak Belirlenen Sehim
f_{c}	: Çatlamış Kesit Ele Alınarak Belirlenen Sehim
\mathbf{f}_{ort}	: Brüt ve Çatlamış Kesitin Ortalaması Ele Alınarak Belirlenen Sehim
h _a	: Çelik Profil Yüksekliği
h_{ao}	: Çelik Profili İki Eşit Alana Bölen Eksenin Üstündeki Çelik Yüksekliği
\mathbf{h}_{au}	: Çelik Profili İki Eşit Alana Bölen Eksenin Altındaki Çelik Yüksekliği
hg	: Başlıklar Hariç Kiriş Yüksekliği
\mathbf{h}_{t}	: Enkesit Toplam Yüksekliği
h'	: Paspayı
L	:Kiriş Açıklığı
Ι	: Enkesit Atalet Momenti
I_k	:Kompozit Kirişin Atalet Momenti
I_{c}	:Çatlamış Kesitli Kompozit Kirişin Atalet Momenti
I _{ort}	: I _k ile I _ç nin Ortalaması Olan Atalet Momenti
l_x	: Kirişler Arası Aralığı
M _{pa}	: Çelik Profilin Plastik Olarak Taşıyabileceği Moment
M_u	: Enkesitin Plastikleşme Momenti
M_{ud}	: Deneysel Plastikleşme Momenti
M_{ut}	: Teorik Plastikleşme Momenti
n	: Çelik Profil ve Beton Elastisite Modülleri Oranı (=Ea/Eb)
Ν	: Normal Kuvvet
Р	: Epruvete Uygulanan Yük
Pu	: Enkesitin Plastik Taşıma Yükü
P _{Rd}	: Bir Bulonun Taşıdığı Kesme Kuvveti
P _{ud}	: Enkesitin Deneysel Plastik Taşıma Yükü
P _{ut}	: Teorik Plastik Taşıma Yükü
Q	: Kesitte Ağırlıklı Yüke Göre Hesaplanan Kesme Kuvveti
Q _{pa}	: Plastikleşme Kesme Kuvveti

S _x ,Üst	: Çelik Profil Enkesitinde Tarafsız Enkesitin Üstünde Kalan Kısmın Statik
	Momenti
S _x ,Alt	: Çelik Profil Enkesitinde Tarafsız Enkesitin Altında Kalan Kısmın Statik
	Momenti
Т 19	: Çimento – Portlan Çimentolari Hakkinda Yönetmelik
Т 500	: Betonarme Yapıların Tasarım Ve Yapım Kuralları
T 648	: Çelik Yapıların Tasarım Ve Yapım Kuralları
T 706	: Beton Içersinde Kullanilan Agregalar Ile Ilgili Yönetmelik
Т 802	: Beton Karişimi Hesap Esaslari
Т 1247	: Beton Yapım ve Döküm Kuralları
T 1248	: Beton Yapım ve Döküm Kuralları
T 4561	: Çelik Yapıların Plastik Teoriye Göre Hesap Kuralları
t _{bo}	: Çelik Profil Üst Başlık Kalınlığı
t _{bu}	: Çelik Profil Alt Başlık Kalınlığı
tg	: Profilin Et Kalınlığı
t _g '	: tg'nin Kesme Kuvveti Gözönüne Alınarak Hesaplanan Değeri
W_{pa}	: Çelik Profil Plastikleşme Mukavemeti Momenti
у	: Tarafsız Eksenin Yeri
у'	: h _t – (hau + h')'e Eşit Yükseklik
у''	: Z'/2 ts αa σF' e Eşit Yükseklik
Z	: Çelik Profilce Aktarılabilecek Çekme Kuvveti
Z'	: Betonarme Mesnet Donatı Çeliğince Aktarılabilecek Çekme Kuvveti
α_a	: Çelik İçin Güvenlik Katsayısı
α _a '	: Donatı Çeliği için Güvenlik Katsayısı
α_b	: Beton Basınç Mukavemetiyle İlgili Güvenlik Derecesiv
σ_{br}	: Betonun Akma Gerilmesi
$\sigma_{\rm f}$: Çelik Profil Akma Gerilmesi
$\sigma_{\rm f}$: Betonarme Mesnet Donatısı Çeliği Akma Gerilmesi
$\Delta M1$: Mesnet Donatısının Yüzey Ortalayıcısına Göre Katkısı
$\Delta M2$: Eksen Farkı Dengeleme Momenti
υ	: Mmax Taşıyan Kesitlerde Güvenlik Derecesi
γ_{bet}	: Betonun Yoğunluğu

- γ_a : Çelik Emniyet Katsayısı
- γ_c : Çelik Emniyet Katsayısı
- α : Bulonun Boyu ile Çapı Oranına Bağlı Katsayı

ŞEKİLLER LİSTESİ

Şekil 1.1.	Tipik kompozit kiriş kesitleri	2
Şekil 1.2.	Kompozit kirişin aynı taşıma güçlü çelik kirişlerle kıyaslanması	2
Şekil 1.3.	Kısmi etkileşimli kompozit kirişin davranışı	5
Şekil 2.1.	Kompozit kiriş en kesitlerinin biçimleri	16
Şekil 2.2.	Doğrudan dökülen ve hazır betonarme plaklar	17
Şekil 2.3.	Kayma bağlantısı kullanılan kiriş	17
Şekil 2.4.	Kayma elemanları	18
Şekil 2.5.	Karma kirişlerde pozitif moment bölgelerinde gerilme dağılımı	
	ve iç kuvvetler	19
Şekil 2.6.	Karma kirişlerde pozitif moment bölgelerinde gerilme dağılımı	
	ve iç kuvvetler	22
Şekil 2.7.	CP 117 standartında önerilen itip-çıkarma deneyi	26
Şekil 3.1.	Betonarme plağın borular ile görünüşü	28
Şekil 3.2.	Beton dökülmeden önceki betonarme plağın durumu	28
Şekil 3.3.	Beton dökümü esnasında vibratör kullanımı	29
Şekil 3.4.	Betonun üst yüzeyinin düzleştirilmesi işlemi	29
Şekil 3.5.	Spiral ile betonun düzeltilmesi	30
Şekil 3.6.	Bulon ve levhalar	30
Şekil 3.7.	1.set kompozit kirişin alt kısmının görünüşü	31
Şekil 3.7a.	Kompozit kirişin genel görünümü	31
Şekil 3.8.	Berkitme levhası ve pastan temizlenmiş yüzey görünümü	32
Şekil 3.9.	Üst ve alt başlık yatay hareketlerini incelemek için kaynatılan	
	levhanın görünümü	32
Şekil 3.10.	Deney epruvetinin yük yüklenmeden önceki hali	34
Şekil 3.11.	DN1 ve DN2 'de kullanılacak bulon ve levha görünümü	35
Şekil 3.12.	DN1 ve DN2 kompozit kirişlerin kesitleri ve genel görünümleri	36

Şekil 3.13.	DN1 kompozit kirişinin Yük-Sehim grafiği	40
Şekil 3.14.	DN1 kompozit kirişinin Moment – Eğrilik Diyagramı	41
Şekil 3.15.	DN2 kompozit kirişinin Yük-Sehim grafiği	44
Şekil 3.16.	DN2 kompozit kirişinin Straingage-zaman grafiği	44
Şekil 3.17.	DN2 kompozit kirişinin Yük Uzama grafiği	44
Şekil 3.18.	DN2 kompozit kirişinin Moment –Eğrilik Diyagramı	45
Şekil 3.19.	Benzer imal edilmiş DN1 ve DN2 kirişlerine ait yük deplasman	
	grafikleri	45
Şekil 3.20.	Benzer imal edilmiş DN1 ve DN2 kirişlerine ait Moment -	
	Eğrilik Diyagramları	45
Şekil 3.21.	DN3 ve DN4 kompozit kiriş kesit ve genel görünümleri	46
Şekil 3.22.	DN3 ve DN4 'de kullanılacak bulon ve levha görünümü	47
Şekil 3.23.	DN3 kompozit kirişinin Yük-Sehim grafiği	50
Şekil 3.24.	DN3 kompozit kirişinin Straingage-zaman grafiği	51
Şekil 3.25.	DN3 kompozit kirişinin Yük Uzama grafiği	51
Şekil 3.26.	DN3 kompozit kirişinin Moment –Eğrilik Diyagramı	51
Şekil 3.27.	DN4 kompozit kirişinin Yük-Sehim grafiği	54
Şekil 3.28.	DN4 kompozit kirişinin Straingage-zaman grafiği	55
Şekil 3.29.	DN4 kompozit kirişinin Yük Uzama grafiği	55
Şekil 3.30.	DN4 kompozit kirişinin Moment –Eğrilik Diyagramı	55
Şekil 3.31.	Benzer imal edilmiş DN3 ve DN4 kirişlerine ait yük deplasman	
	grafikleri	56
Şekil 3.32.	Benzer imal edilmiş DN3 ve DN4 kirişlerine ait straingage	
	grafikleri	56
Şekil 3.33.	Benzer imal edilmiş DN3 ve DN4 kirişlerine ait Yük - Uzama	
	grafikleri	56
Şekil 3.34.	Benzer imal edilmiş DN3 ve DN4 kirişlerine ait Moment -	
	Eğrilik Diyagramları	57
Şekil 3.35.	Şekil 3.35. DN5 ve DN6 'da kullanılacak bulon görünümü	57
Şekil 3.36.	DN5 ve DN6 kesitleri ve genel görünümleri	57
Şekil 3.37.	DN5 kompozit kirişinin Yük-Sehim grafiği	61
Şekil 3.38.	DN5 kompozit kirişinin Straingage-zaman grafiği	61
Şekil 3.39.	DN5 kompozit kirişinin Yük Uzama grafiği	62

Şekil 3.40.	DN5 kompozit kirişinin Moment-Eğrilik diyagramı	62
Şekil 3.41.	DN6 kompozit kirişinin Yük-Sehim grafiği	65
Şekil 3.42.	DN6 kompozit kirişinin Straingage-zaman grafiği	66
Şekil 3.43.	DN6 kompozit kirişinin Yük Uzama grafiği	66
Şekil 3.44.	DN6 kompozit kirişinin Moment –Eğrilik Diyagramı	66
Şekil 3.45.	Benzer imal edilmiş DN5 ve DN6 kirişlerine ait yük deplasman	
	grafikleri	67
Şekil 3.46.	Benzer imal edilmiş DN5 ve DN6 kirişlerine ait straingage	
	grafikleri	67
Şekil 3.47.	Benzer imal edilmiş DN5 ve DN6 kirişlerine Yük - Uzama	
	grafikleri	67
Şekil 3.48.	Benzer imal edilmiş DN5 ve DN6 kirişlerinde Moment – Eğrilik	
	Diyagramları	68
Şekil 3.49.	Tüm deney Eprüvetlerinin Yük – Sehim Diyagramları	69
Şekil 3.50.	Tüm deney Eprüvetlerinin Moment – Eğrilik Diyagramları	70
Şekil 3.51.	Tüm deney Eprüvetlerinin Moment – Eğrilik Diyagramları	71
Şekil 4.1.	Kompozit Kirişlerin Kesme Kuvveti Ve Eğilme Momenti	
	Diyagramları	73
Şekil 4.2.	Bulon Yerleşimi Gösterimi	79
Şekil 4.3.	Levhalarin Gösterimi	80
Şekil 5.1.	Kirişlerin Simetrik Çatlak Görünüşleri	82
Şekil 5.2.	Beton Çatlaklarının Bulonlar Etrafında Oluşumunun	
	Gösterilmesi	83
Şekil 5.3.	Herbir Deney Eprüvetine Ait Çatlama Yükleri, Deneysel Taşıma	
	ve Teorik Taşıma Yükleri	85
Şekil 5.4.	Herbir Sete Ait Ortalama Çatlama Yükleri Ve Ortalama Taşima	
	Yükleri	86
Şekil 5.5.	Tüm Deney Eprüvetlerinin Yük – Uzama Diyagramları	87
Şekil 5.6.	Tüm Deney Eprüvetlerinin Moment - Eğrilik Diyagramları	88

TABLOLAR LİSTESİ

Tablo 1.1.	Deneylerde kullanılan kirişlerin çatlama ve taşıma yükleri		
Tablo 1.2.	Deneylerde kullanılan kirişlerin deneysel ve teorik taşıma		
	yükleri	9	
Tablo 2.1.	α_a , α_b ve v Güvenlik Derecesi Değerleri	21	
Tablo 3.1.	DN1 kirişine ait değerler	37	
Tablo 3.2.	DN2 kirişine ait değerler	41	
Tablo 3.3.	DN3 kirişine ait değerler	47	
Tablo 3.4.	DN4 kirişine ait değerler	52	
Tablo 3.5.	DN5 kirişine ait değerler	59	
Tablo 3.6.	DN6 kirişine ait değerler	62	
Tablo 4.1.	Deneylerde test edilen kompozit kirişi oluşturan beton, donatı		
	çeliği, profil çeliği ile ilgili değerler	72	
Tablo 4.2.	Bulon yerleşim koşulları	79	
Tablo 5.1.	Numunelere ait bilgiler, çatlama yükleri, deneysel ve teorik		
	taşıma gücü değerleri	84	
Tablo 5.2.	Numunelere Ait Deneysel Sehim Ve Hesaplanan Sehim		
	Miktarları	86	

ÖZET

Anahtar kelimeler: Kompozit Kiriş, Negatif Moment, Bulon, Çelik Levha

Betonarme plak ve çelik profil ile kompozit kiriş oluşturulmuş ve kayma bağlantısı olarak da bulonlar kullanılmıştır. Ayrıca kompozit kirişin alt kısmına her deney eprüvetinde farklı boyutlarda olmak üzere levhalar yerleştirilmiştir. Böylece kompozit çalışma durumu, deney sonuçlarının hesaplarla karşılaştırılması, plağın kalkması (sıyrılma) durumu, bulon ve levhaların farklı şekillerde farklı aralıklarda yerleştirilmesiyle de taşıma gücüne etkisi, çatlak oluşumuna etkisi araştırılmıştır.

Bu çalışma 300x80x12 cm boyuntunda betonarme plağın 300 cm uzunluğunda HE120B profili ile bulonlar ve levhalar kullanılarak birleştirilmiş ve numuneler test edilmiştir. Bu numunelerin her biri 3 set (toplam 6 adet) kompozit kirişlerden oluşturulmuştur.

Kirişler tek açıklıklı şekilde mesnetlerde kolayca dönebilecek şekilde düzenlenmiştir. Açıklık ortasından P tekil yükü ile yüklenmiştir. Taşıma gücü sıyrılmanın olup olmadığını ilk çatlağın görülüğü yük değeri olarak belirlenmiştir.

Deneylerin sonucunda her deney eprüveti için yük-şekil değiştirme, yük-uzama, moment-eğrilik diyagramları çizilmiş ve karşılaştırmalar yapılmıştır. Sonuç olarak plastik hesab yönteminin uygunlu, plağın kalkması durumunun taşıma gücüne etkisinin olduğu, levha kullanımının deplasmanı azalttığı ve çatlama yükünü arttırdığı, bulonların iyi birer kayma bağlantısı olduğu sonucuna varılmıştır.

STRUCTURAL BEHAVIOR IN NEGATIVE MOMENT OF COMPOSITE BEAMS WHICH ARE COMBINED WITH BOLTS

SUMMARY

Key Words : Composite, Beam, Negative Moment, Bolt, Steel Plate

In this study, reinforced concrete plates and steel profiles were joined to find out the effect of placing bolts and plates in different ways and spacing them in different composition over the bearing capacity and possible cracks. In addition to this, the case study of composite, the condition of break away of plates and comparing the experimental results with calculations have been researched.

The size of 300x80x12 of concrete plate and the length of 300 cm HE120B of profile with bolts were joined using plates and the samples were tested. Each of the samples consisted of 3 sets (6 pieces in total) of composite beams. $6\Phi12$ for spacing reinforcement and $\Phi8/19$ for lateral reinforcement stirrups were used in each part of the reinforcement plates in the composite beams.

In order to provide the composite study, bolts and plates are used;

For the first set, there are 4 bolts on each plates therefore, for 10 plates, there are 40 bolts in total.

For the second set, there are 2 bolts on each plates therefore, for 20 plates, there are 40 bolts in total.

For the third set, there are 40 bolts without plates.

Single spacing Beams were designed to be able to turn easily on the rest. The Beams were loaded by P Single Weight in its centre. The bearing capacity were defined as weight volume which were seen as first crack with breaking away.

BÖLÜM 1. GİRİŞ

1.1.Konunun Tanımı

Kompozit yapılar, farklı yapı malzemelerinden (beton, çelik, ahşap vb.) oluşan taşıyıcı elemanların kayma bağlantıları yardımıyla (epoksi reçinesi, çelik profil, bulon, perçin vb.) birleştirilerek beraber çalışmaları sağlanan yapılardır. Birçok örnek verilebileceği gibi üzerinde duracağımız kompozit taşıyıcı sistemimiz çelik-beton kompozit kirişlerdir.

Uygulamada, karma malzeme üretiminde genellikle aşağıdaki özelliklerin bir ya da birkaçının geliştirilmesi amaçlanmaktadır; Bu durumlarda, genel olarak, maliyette de azalma olmaktadır.

- a. Mekanik dayanım, basınç, çekme, eğilme, çarpma dayanımı,
- b. Yorulma dayanımı, aşınma direnci,
- c. Korozyon direnci,
- d. Kırılma tokluğu,
- e. Yüksek sıcaklığa dayanım,
- f. Isı iletkenliği ya da ısıl direnç,
- g. Elektrik iletkenliği ya da elektriksel direnç,
- h. Akustik iletkenlik, ses tutuculuğu ya da ses yutuculuğu,
- i. Rijitlik,
- j. Ağırlık,
- k. Görünüm, vb.[1]b

Kompozit kirişler, betonarme döşeme plakları ile çelik döşeme kirişlerinin değişik kayma bağlantıları yardımıyla bağlanması sonucu oluşmaktadır. Bunun dışında, çelik kirişin tamamen beton içerisine gömülmesi gibi uygulamalar vardır. Ancak, en çok karşılaşılan ve bu çalışmada da esas alınan kesit türü kayma bağlantıları ile birleştirilerek oluşturulan sistemlerdir.

Şekil 1.1 tipik kompozit kiriş kesitleri

Betonarme döşeme plaklarıyla çelik döşeme kirişlerin ya da köprü tabliyesiyle kirişlerin ortak çalıştırılmasıyla ortaya çıkan kompozit kirişler üzerine serbestçe oturan bir betonarme plağı yalnız başlarına taşımaya çalışan çelik kirişe göre çok daha ekonomiktir. Çünkü bir kompozit kirişte, eğilmeden ileri gelen kuvvet çiftinin çekme bileşeni çelik profilce, basınç bileşeni ise ya yalnız betonarme plak tarafından ya da betonarme plak ve çelik profilin bir bölümünce ortak olarak taşınmaktadır. Betonarme plağın ve çelik profilin birlikte çalışması sonucu manivela kolunun büyümesi de kesitin taşıma gücünü arttırır. Kompozit kirişler Şekil 1.2 b' den de görüldüğü gibi, aynı taşıma gücüne sahip çelik kirişlerle kıyaslanırsa; çelik kirişin, aynı konstrüksiyon yüksekliği koşulu altında daha fazla kesit alanına ve daha geniş bir üst başlığa gerek olduğu Şekil 1.2.c'de ki gibi daha yüksek bir profile ihtiyaç vardır.[2]

a-Aynı konstrüksiyon yüksekliğinde çelik kiriş

b-karma kiriş

c-serbest yükseklikli çelik kiriş

Şekil 1.2.kompozit kirişin aynı taşıma güçlü çelik kirişlerle kıyaslanması

Karma kirişlerin çelik kirişlere karşı gösterdikleri bu üstünlük, betonarme kirişlerle kıyaslanmalarında da ortaya çıkar. Bir betonarme kirişe göre her zaman hafif olan karma kirişte kullanılan çelik, konstrüksiyon yüksekliği açısından bir sınırlama mevcutsa, aynı yükseklikteki betonarme kirişte kullanılan çelikten daha azdır. [2]

Kompozit yapılarda, yalın çelik yapılara oranla %20 daha az yapısal çelik kullanılabilmektedir. [2]

Kompozit yapılar, yapısal çelik ile betonarme birlikte kullanılarak yapıldığından yerel, alışılmış inşaat malzemeleri ile daha rahat uyum sağlamakta, pahalı ve az bulunan malzemelerin kullanımını gerektirmemektedir.

Kompozit yapılarda, kalıp çok az olduğu için ahşap kereste kullanımı yok denecek kadar azdır. Bu da çevre dengesi açısında son derece önemli bit duyarlılıktır. [2]

Kompozit yapılar, betonarme yapılara oranla %50 daha az beton tükettikleri için çimento ve betona gelen mevsimsel ve spekülatif fiyat artışlarından daha az etkilenirler. [2]

Bu belirtilen özelliklerden de anlaşılacağı gibi çelik ve betondan oluşmuş kompozit yapı elemanlarında, doğrudan çelik kullanılmasına göre sağlanabilen en büyük ekonomi kirişlerde karşımıza çıkar. Bunun mertebesi, pozitif moment ağırlıklı sistemlerde %50 civarındadır. Sürekli kiriş sistemlerinde orta mesnetlerdeki moment aktarımı sayesinde kiriş açıklık momentleri düşmekte ve mesnetlerde negatif eğilme momentleri oluşmaktadır. [2]

Karma kirişlerin negatif moment bölgelerindeki hesabı için iki görüş mevcuttur:

1) Negatif moment bölgesinde kompozit (karma) çalışmadan kaçınılır ve bu bölgedeki bütün moment gerekirse üst başlığı takviye edilen çelik en kesitle taşınır. Bu görüş, negatif momentler bölgesinde karma çalışmayı reddeder ve yalnız çelik en kesiti göz önüne alır. 2) Karma kesit hesabı negatif moment bölgelerinde de sürdürülür. Bu görüşte, üstteki betonarme plak içine, kirişin boyuna doğrultusunda uzanan mesnet donatıları konur ve betonarme plağın yalnız bu donatılarla çalışmaya katıldığı kabul edilir. Burada karma çalışma etkisi yine önemli bir ekonomi sağlamaktadır ama betonun basınç mukavemetinden yararlanılamaz. [2]

Yukarıda açıklanan iki görüşten, karma çalışmayı negatif momentler bölgesinde de göz önüne alan ikinci görüş, günümüzde köprüler dışında daha çok rağbet görmektedir. [2]

Kayma bağlantıları, kompozit kirişlerde betonarme döşeme plaklarıyla çelik döşeme kirişlerinin tutturulması işlemini yapan elemandır. Çeşitlilik gösterebilmektedir. En çok kullanılanı başlıklı saplamaların kaynaklanarak çelik kirişe tutturulması yahut vidalı saplama kullanılarak saplamaların çelik kirişe vidalanmasıdır.

Böylece daha küçük kesitli, derinliği daha az olan çelik kesitlerin kullanılabilmesine imkân tanınmakta ve hem normal çelik yapıya göre daha ekonomik, hem de yapı düşey yüklerinin azaltılması sağlanarak daha etkin yapı davranışları elde edilebilmektedir.

Kayma bağlantılarının temel amacı, döşeme ile çelik kirişin birlikte çalışabilmesini sağlamak, yani çelikle beton arasında kompozit bir davranış oluşturmaktır. Bu sayede normal çelik yapılardakinden farklı olarak, döşeme betonunun mevcut dayanımının çelik dayanımına katkı yapması sağlanmaktadır.

Kayma etkileşimi deyimiyle anlatılmak istenen, farklı malzemelerden teşkil olunan bir taşıyıcı yapı elemanının, eğilme momentlerine karşı birlikte davranabilme düzeyidir. Eğilme davranışı esnasında farklı malzemelerin birbirleriyle temas yüzeylerinde meydana gelecek yatay kesme kuvvetine karşı, bu temas yüzeyinde sürtünme ve başka etkenlerle oluşturulacak direnç düzeyi, kayma etkileşiminin diğer bir ifadesidir(şekil 1.3).[3]

Sehim Yapmış Şekli Birim Şekil Değiştirme Şekil 1.3. Kısmi Etkileşimli Kompozit Kirişin Davranışı

1.2. Çalışmanın Amacı

Ülkemiz deprem kuşağı içerisinde bulunmaktadır. Bunun yanında ülke nüfusunun ve sanayimizin büyük kısmı 1. ve 2. derece deprem bölgelerinde bulunmaktadır. Betonun gelişimi incelendiğinde, Almanya ülkesinin ismi öne çıkmaktadır. Örneğin hazır beton sektörünün başlangıcı, yüksek fırın cürufunun portland çimentosu ile birlikte betonda kullanımı gibi beton ile ilgili çoğu gelişme bu ülkede olmuştur. Fakat Almanya, güney kısmında önemsiz görülen bölgenin dışında deprem kuşağında değildir. Bu sebeple Almanya, betonu geliştirmekte ve uygulamakta problem yaşamamaktadır. Fakat bu taşıyıcı sistemi aynen alıp deprem kuşağındaki ülkelerde uygulamak Antalya'daki kar yüküyle hesaplanan bir çatının Erzurum'da uygulanması gibidir. Oysa ülkemizde bu durum farklıdır. Bilindiği üzere deprem etkilerine karşı çelik yapılar, betonarme yapılardan daha iyi şekilde cevap verirler. Bu bilgilere rağmen çok katlı çelik iskeletli yapıların yeterli ölçüde kullanılmaması şaşırtıcıdır.

Uygulamadaki bu durum, bazı kereler çelik iskeletli yapıların betonarme iskeletli yapılara göre daha pahalı bir maliyet göstermeleriyle açıklanmaya çalışılır. Ancak, özellikle 15 ila 20 kattan yüksek binalarda, çelik inşaatın betonarme inşaata göre önemli bir yüzdeye varan hafifliği, deprem yüklerinin de buna bağlı olarak azalmasıyla, taşıyıcı sistem boyutlarında ve temellerde çok elverişli koşullar yarattığından, bu gerekçe her zaman geçerli değildir. Belki daha gerçekçi bir neden, çelik iskeletli yapılar hakkında projeleme, tasarım, hesaplama, imalât, montaj ve denetleme aşamalarında bilgi eksikliği ve tecrübesizlik olmasıdır. [2]

Her taşıyıcı sistemin belirli avantaj ve dezavantajları vardır. Mühendislik, imalatın yapılacağı şartlara göre her birisinin avantajlarından maksimum şekilde yararlanmayı gerektirmektedir. Kompozit yapılarda da amaç, yapı malzemelerinden maksimum yararlanmaktır. Beton, yapı tasarımında kullanılan ana malzemelerden biridir. İnşaat malzemesi olarak bazı üstünlüklere sahiptir. Mühendislik açısından kötü tarafları düşük çekme dayanımı, düşük sünekliliği ve az da olsa büzülmesidir. Çelik ise çekme dayanımı yüksek fakat korozyon ve yangın gibi dış etkilere karşı daha zayıftır.

Kompozit yapı elemanlarında, doğrudan çelik kullanılmasına göre sağlanabilen en büyük ekonomi kirişlerde karşımıza çıkar. Bu değer pozitif moment ağırlıklı sistemlerde %50'ye yaklaşabilmektedir. Öte yandan çok katlı çelik iskeletli yapılarda sistemin yangın mukavemetinin arttırılması için veya dış etkenlerden dolayı oluşan taşıyıcı sisteme zarar veren (korozyon vb.) etkileri azaltmak için çelik elemanların betonla örtülmesi çelik yapıda beton kullanımını da mevcut kılmaktadır. Sayılan nedenlerde çeliğin yanında zaten bulunan beton ya da betonarme elemanların basınç mukavemetinden yararlanma fikri kompozit sistemlere götürmektedir. [2]

Kompozit kirişlerin çelik yapılarda sürekli olarak yapılması durumunda mesnet bölgelerinde negatif momentler oluşmaktadır. Negatif moment etkisi altında betonarme plakta çekme gerilmeleri oluşmaktadır. Bilindiği gibi beton çekme gerilmesi altında kolayca çatlamakta ve bu da kullanma sınır durumu açısından istenmeyen bir durum oluşturmaktadır. Bu çalışmanın da amacı; negatif moment oluşan beton plak döşemenin çekme gerilmesine karşı yapılabilecekleri araştırmaktır.

1.3. Konu Üzerine Yapılmış Çalışmalar

1.3.1. Çelik liflerle güçlendirilmiş hazır betonarme plaklı kompozit kirişlerin negatif moment bölgesindeki yapısal davranışı

Ahmet Necati YELGİN ve H.Yaşar YALMAN

Deney numunesi olarak 9 adet 3 m uzunluğunda, pas payları dikkate alınarak 80 cm genişliğinde, 10 cm kalınlığındaki betonarme plak ve 3 m uzunluğunda I 120 profilinin birleşmesiyle 3 gruba ayrılan deney grubunda, ilk olarak 3 numune telsiz (çelik lifsiz), ikinci 3 numune kısa telli ve üçüncü olarak da son 3 numune uzun telli ve kayma elemanı olarak da her numuneye 8 adet U 80 profil kullanılmıştır. Ayrıca her numunede 6 adet \emptyset 12'lik düz donatı ve \emptyset 8/15 etriye kullanılmıştır. Her numuneye 20 tonluk kuvvet uygulanmış ve hangi kuvvette malzemenin yük taşıyamaz hale geldiği ve hangi kuvvette ne kadar deplasman (yer değiştirme) yaptığı tespit edilmiştir. [4]

Kiriş Adı	Çatlama Yükü (kg)	Taşıma Yükü (kg)
DN 1 Telsiz 1	5400	9800
DN 2 Telsiz 2	5600	9800
DN 3 Telsiz 3	5200	9600
telsiz ortalama	5400	9730
DN 7 Telsiz 1	7200	10000
DN 8 Telsiz 2	6400	10200
DN 9 Telsiz 3	6400	10200
kısa telli ortalama	6670	10070
DN 4 Telsiz 1	7600	10200
DN 5 Telsiz 2	6200	10000
DN 6 Telsiz 3	6600	10400
uzun telli ortalama	6800	10200

Tablo 1.1. Deneylerde kullanılan kirişlerin çatlama ve taşıma yükleri

Sonuç olarak çelik lifler arttıkça taşıma gücünde artma olmuş, fakat artışların büyük miktarda olmadığı belirtilmiştir. Burada göze çarpan en önemli artışın, ilk çatlağın görüldüğü yük değerinde olduğu ortaya çıkmıştır. Çelik lifsiz deneylerde kompozit kiriş, taşıma gücünün %55'inde çatlamaya başlamış, 3cm'lik kısa liflerle birlikte taşıma gücü %68 olmuş, 6cm'lik uzun lifler ile birlikte bu oran %70'e kadar çıkmıştır. Ayrıca kirişlerin yer değiştirme değerlerinde de farklı sonuçlar elde edilmiştir. Çelik lifler uzadıkça düşey yer değiştirme miktarı azalmıştır. Fakat bu deneyler sonucunda çelik liflerin betonarme plağın içerisine katılması, kompozit kirişlerin negatif moment bölgelerindeki taşıma gücünü arttırmada etkili olmamıştır. Çelik liflerin daha ziyade beton plaktaki çatlakların oluşmasını ve yayılmasını önlemede etkili olduğu görülmüştür.[4]

1.3.2. Gövde betonlu betonarme-çelik kompozit kirişlerin negatif moment bölgesindeki davranışı ve taşıma gücünün incelenmesi

Tevfik Seno ARDA ve Nermin Mengene

Beş farklı beton kalitesi, dört değisik betonarme mesnet donatısı çeliği, 5m ve 3m gibi birbirinden oldukça farklı iki değişik açıklık, üç değişik boyutlu çelik profil, kolon parçalı ve kolon parçasız olmak üzere sistematik olarak 18 numune test edilmiştir. Hazırlanan numuneler, basit mesnetli olarak açıklık ortasından tekil yükle yüklenmiştir. Uygulanan yük, sıfırdan başlayarak göçme anına kadar kademeli olarak yükseltilmiştir. Her yük kademesinde, açıklık ortasında düşey deplasman ile çelik profil ve boyuna donatıdaki belirli noktaların birim boy değişimleri ölçülmüştür. Yükün küçük değerleri için elastik tasarım metodunda öngörülen sıfır eksenine uzaklığıyla orantılı olan üçgensel şekil değerleri tamamen geçerli olduğu, yükleme arttıkça çelik bölümdeki gerilme dağılımının plastik tasarım dağılımı olan karakteristik ikili dikdörtgensel şekle dönüşme eğilimi gösterdiği belirtilmiştir. Buradan negatif eğilme bölgesindeki gövde betonlu kompozit kirişlerin hesaplanmasında plastik tasarım yönteminin kullanılabileceği görülmüştür. Öte yandan çekme bölgesinde yatay takviye olmasına rağmen, gerilme dağılımı diyagramının sıfır ekseni basınç ucuna daha yakın bulunmaktadır. Bu durum gövde betonunun katkısını göstermektedir.. Düşey yer değiştirmelerin teorik hesabı; brüt kesitin eylemsizlik momenti, çatlamış kesitin eylemsizlik momenti ve son olarak çatlamış ve çatlamamış kesit eylemsizlik momentlerinin ortalamaları dikkate alınarak incelenmiştir. Deneysel değerlere en yakın sonucu, çatlamış kesitin eylemsizlik momentine göre yapılan düşey yer değiştirme hesabının verdiği belirtilmiştir.[5]

1.3.3. Çelik levhalarla takviye edilmiş hazır betonarme plaklı karma kirişlerin negatif moment bölgesindeki yapısal davranışı

Ahmet Necati YELGİN ve Özgür ÇETİN

5 adet, 3 m uzunluğunda, 80 cm genişliğinde, 10 cm kalınlığındaki betonarme plak; 3 m uzunluğunda I 120 profil, kompozit çalışmayı sağlamak üzere 6 adet U 80 profil ve epoksi reçinesi ile birbirlerine yapıştırılmıştır. Çelik lamalarla yapılan bindirme eklerinin boyut ve aralıklarının değişiminin taşıma gücüne etkisi araştırılmıştır. Ayrıca karma kirişin negatif moment altında şekil değiştirmesi sonucu beton plağın çelik profilden ayrılıp kalkmasını ne ölçüde önleyip önlemediği gözlenmiştir. Karma kiriş hazırlanırken betonarme hazır plağın çelik profil ile bağlantısını sağlamak için elektrik ark kaynağı kullanılmıştır. Yapılan bu deneysel çalışma ile; epoksi ile yapıştırılan karma kirişlerin negatif moment bölgelerinde çelik lamaların kullanılıp kullanılmaması durumlarında elde edilen değerler teorik ve deneysel çalışmalarla karşılaştırılmaktadır. [6]

Kiriş	betonun	çelik	çelik	kayma	deneysel t. Y.	teorik t.y
No	boyutu	profil	lama	bağlantısı	(KN)	(KN)
DN1	300.80.10	I 120	6 adet	6	150	149
DN2	300.80.11	I 120	6 adet	6	153	149
DN3	300.80.12	I 120	8 adet	6	188	179
DN4	300.80.13	I 120	8 adet	6	192	179
DN5	300.80.14	I 120	0	6	62	62

Tablo 1.2. Deneylerde kullanılan kirişlerin deneysel ve teorik taşıma yükleri

Sonuç olarak yapılan hesaplarda çekme bölgesinde kullanılan çelik levhaların bu kesit için taşıma gücünü %250 oranında arttırdığı yapılan araştırmada görülmüştür.[6]

1.3.4. Kompozit döşemelerde etkili tabla genişliğinin incelenmesi

Fatih SÜTÇÜ, Kaya ÖZGEN

Kompozit döşemelerde, eksenel kuvvetler ve eğilme etkileri altında, betonarme tablanın, çelik kirişle birlikte çalıştığı kabul edilen kısmı, "etkili tabla genişliği" olarak tanımlanmıştır. SAP2000 sonlu eleman analizi programında ve çeşitli modeller üzerinde, etkili tabla genişliği değerleri araştırılmıştır. Etkili tabla genişliği hesabı için 20 farklı model kullanılmıştır. Bu modeller farklı kiriş açıklığı (L) ve kirişler arası mesafe (B) değerlerine sahiptirler. Modellerdeki kompozit döşeme sistemleri 3 çelik kirişin üzerine oturan betonarme plaktan oluşmaktadır ve iki ucundan basit mesnetle mesnetlenmiştir. Betonarme tablanın kalınlığı, tüm modellerde sabit olacak şekilde 7 cm seçilmiştir. Beton kalitesi C25 seçilmiştir. Betonarme tabla ile çelik kirişler arasında oluşacak kayma kuvvetini karşılamak üzere 16 mm çapında kesme bağlayıcıları (stud) kullanılmıştır. Modeller B ve L değerlerine bağlı olarak isimlendirilmiştir.[7]

Sonuç olarak: Döşeme açıklığının sabit olması halinde, kirişler arasındaki mesafe arttıkça, etkili tabla genişliğinin toplam tabla genişliğine oranının (b_{eff}/B) azaldığı, Kirişler arası mesafenin sabit olması halinde; döşeme açıklığı arttıkça, etkili tabla genişliğinin toplam tabla genişliğine oranının (b_{eff}/B) arttığı görülmektedir.[7]

1.3.5. Çelik – beton karma kirişlerin negatif moment eğilme altında modellenmesi

Gaetano MANFREDÍ, Giovanni FABBROCÍNO, Edoardo COSENZA

Negatif eğilme altında çelik ve beton karma kirişlerin bir modeli olarak sunulmuştur. Hem kiriş-plak ara yüzeyinde hem de çelik güçlendirme betonu ara yüzeyinde gerçekleşen kaymalar açıklanmaktadır. Modelin kapasitesini göstermek için bazı rakamsal sonuçlar elde edilmiştir.[8] Sayısal sonuçlar hem kısmi (kaymalar, eğrilik, kuvvetler) hem de global nicelikleri (plastik rotasyon, yön değiştirmeler) elde edecek yapısal bir modeli öngörür. Genelleştirilmiş moment-eğrilik ilişkisi sadece sayısal problemi değil aynı zamanda karma kirişin her kesitindeki davranışı kontrol eden etkili bir yol sağlamaktadır. Negatif eğilme bölgelerinde rotasyon kapasitesindeki karma kirişin her bileşeninin etkisini yorumlamaya ve takviye çeliğin yumuşama etkisini değerlendirmeye uygun model olduğu görülür.[8]

1.3.6. Negatif moment bölgesinde alt başlığın yanal burkulması ve gövde levhasının yanal burkulması

K. ROİK, W.EHLERT

Negatif moment bölgesinde alt başlığın yanal burkulması ve gövde levhasının yanal burkulması tehlikeleri dolayısıyla, kirişi narin olarak ele almaktadır. Bu tür çelik profilli kirişlerde, negatif moment bölgesinde, alt başlık kritik gerilmeye ulaşınca momentte artış mümkün olmamaktadır. Bu durumda, kalan sistem tarafından alınacak olan eğilme momenti, daha ilerlemiş eğrilikte oluşmaktadır. Mesnet bölgesindeki kesitin taşıma gücünün beton plaktaki farklı donatı yüzdelerine göre değişimi bir deney serisi ile incelenmiştir. Donatı yüzdesinin az olması durumunda çelik kirişin çekmeye çalışan üst başlığında erken zamanlı kısmi plastikleşme gözlenmiştir.[9]

1.4. Konuya İlişkin Şartname Kuralları

1.4.1. Çelik profillerin malzeme ve narinliği hakkında kurallar

Türkiye'de kompozit yapı elemanlarına ilişkin bir Türk standardı yoktur. EC 4'ün ele aldığı gibi, malzeme kalitesi ve en kesit narinlikleri doğrudan çelik yapılarla ilgili standartlara bağlanırsa, TS 648 ve TS 4561 'in bu konulardaki hükümlerinden yararlanmak mümkündür.

EC 4'de profil gövde yüksekliğinin gövde kalınlığına ve başlık genişliğinin başlık kalınlığına bölünmesiyle bulunan en kesit narinlikleri olağan çelik yapılara refere edilmiştir. Bilindiği gibi negatif moment bölgesi oluşturan mesnetler yöresinde yerel burkulma olayları önemli bir rol oynayabildiğinden bu husus çok önemlidir. Aynı zamanda ülkemizde kullanılan ''Çelik Yapıların Hesap ve Yapım Kuralları'' yönetmeliği Deprem Yönetmeliği'ne ek olarak çıkarılan İMO -02'de narinlik konusu işlenmiş malzeme narinlik açısından kompakt, kompakt olmayan ve narin olmak üzere 3 kısma ayrılmıştır.[15]

Çeliklerin mekanik özelikleri için St (Türkiye'de kullanılan, çelik sınıflarına verilen isim) Avrupa standartlarında S olarak kullanılmaktadır. EC 4 'te çeliklerin cinsleri ve kalınlıklarına göre akma gerilmeleri, kopma mukavemetleri, elastisite modülleri, kayma modülleri, lineer 1sı genleşme katsayıları verilmiştir.

1.4.2. Beton ile ilgili yönetmelik ve kurallar

Ülkemizde beton sınıfları ve dayanımları TS 500'de verilmektedir. Bu araştırmada C30 sınıfı Beton kullanılmıştır.Buda TS 500'de 28 günlük küp numune basınç dayanımı minumum 37 MPa (N/mm²) Elastisite modulü de $E_c=32000$ MPa olarak belirlenmiştir.[16]

Beton içersinde kullanılan agregalar TS 706'da çimento türleri hakkındaki bilgi TS19'da beton karışım hesapları TS 802'de ve betonun hazırlanması, taşınması, yerleştirilmesi kürü TS 1247, TS 1248 de verilmektedir.

1.4.3. Kayma bağlantıları hakkındaki kurallar

EC 4, çelik profilin karşılayabildiği kuvvet için $F_s = A_s f_y / \gamma_a$ bağlantısı kullanılmıştır; burada A_s çelik profilin alanı, f_y karakteristik çelik dayanımı ve γ_a çelik emniyet katsayısıdır.[11]

Betonarme tablanın karşılayabildiği kuvvet $F_c = 0.85A_c f_{ck} / \gamma_c$ bağıntısıyla elde edilmiştir. Bu bağıntıda A_c betonarme kesit için etkili alan, f_{ck} beton karakteristik dayanımı ve γ_c beton için emniyet katsayısıdır. A_c çalışan beton kesit alanı değeri için bir ön kabul yapmak gerekmektedir.[11]

Bulunan kuvvetin, kiriş üzerinde, artı momentin maksimum ve sıfır olduğu noktalar arasında, yeterli sayıda bulonla karşılandığı düşünülmektedir. Bir bulonun taşıdığı kesme kuvveti değeri EC 4'e göre

$$P_{_{Rd}}=0,29\alpha d^2\sqrt{\frac{f_{_{ck}}E_{_{cm}}}{\gamma_{_{v}}}}$$

bağıntısıyla hesaplanmıştır. Bu bağıntıda d bulon çapı, f_{ck} beton karakteristik dayanımı, E_{cm} beton için elastisite modülü değeri ve γ_v güvenlik katsayısıdır ve hesaplarda 1,25 alınmıştır. α , bulonun toplam boyunun çapına oranına h/d'ye bağlı olarak belirlenir:

$$\alpha = 0,2[(h/d)+1]$$
 3 $\alpha = 1$ h/d>4

Bir bulonun karşıladığı kuvvet hesaplandıktan sonra, kullanılması gereken bulon sayısı, karşılanması gereken kuvvetin, bulonun taşıyabildiği kuvvete bölünmesiyle hesaplanabilir:

n bulon = $min(Fc;Fs)/P_{Rd}$

Hesaplanan bulon sayısı, artı momentin maksimum ve sıfır olduğu noktalar arasına yerleştirilmesi gereken sayıdır. Döşeme sistemi iki ucundan basit mesnetli olduğu için artı moment değeri açıklık ortasında maksimum değere ulaşır ve mesnetlerde

sıfırdır. Bu durumda kirişteki toplam bulon sayısını hesaplamak için bulunan değer 2 ile çarpılır.[11]

BÖLÜM 2.KARMA KİRİŞLER, YAPISAL DAVRANILARI VE HESAP YÖNTEMLERİ

2.1 Kompozit Kiriş Türleri

Daha önceki bölümlerde yer aldığı gibi Kompozit yapılar, farklı yapı malzemelerinden (beton, çelik, ahşap vb.) oluşan taşıyıcı elemanların kayma bağlantıları yardımıyla (epoksi reçinesi, çelik profil, bulon, perçin vb.) beraber çalışmaları sağlanan yapılardır. Kompozit çalışması düşünülen kirişleri çeşitli şekillerde teşkil etmek mümkündür. Kompozit kirişlerde en kesitin, betonarme tabla plağı altındaki çelik bölümü olağan olarak: çekme başlıkları takviyeli ya da takviyesiz, dar ve geniş başlıklı I bazen de U hadde profilleri (Şekil 2.1.a,b), basınç başlıkları çekme başlıklarından küçük yapay bileşik kesitler (Şekil 2.1.c), betonarme tabla içerisine kısmen gömülü I profili şeklinde de teşkil etmek mümkündür. (Şekil 2.1.d) [2]

Gövde betonlu çift U ve I profiller (Şekil 2.1 .e,f), ters T ya da yarım I profiller (Şekil 2.1.g) ve petek (castella) kesitler (Şekil 2.1.1) genellikle kullanılan kesitlerdir. Bu çalışmada çelik I profili (HEB 120) üzerine oturan betonarme tabla şekli üzerinde durulacaktır.[2][11]

Şekil 2.1. Kompozit kiriş en kesitlerinin biçimleri

Karma kirişlerin basınç başlığını oluşturan betonarme plak, çelik kirişin üzerine betonu doğrudan dökülerek bağlanabilir (şekil 2.2 a) veya önceden dökülmüş hazır bir plak olarak çelik en kesite sonradan da bağlanabilir. Hazır plak durumunda, betonarme plakla çelik profilin bağlantısı, ya küçük mertebede bir yerinde döküm betonla (şekil 2.2 b) ya da yerinde döküm beton kullanılmadan, yüksek mukavemetli ve öngerilmeli bulonlarla doğrudan bulonlama ile (şekil 2.2 c) yapılabilir. Hazır plak durumunda, çelik profile oturan tek plak (şekil 2.2 b) ya da bir kirişten diğerine uzanarak çelik elemana iki yandan oturan çift plak (şekil 2.2 d) olabilir.[2][11]

Kompozit en kesitlerde, beton ve çeliğin beraber çalışması için kayma bağlayıcısı adı verilen elemanlar kullanılarak beton ve çelik kısımlar birbirlerine bağlanmalıdırlar

(Şekil 2.3). Beton tabla içine tamamen yahut kısmen gömülerek teşkil edilen kompozit en kesitlerde ise beraber çalışma, çelik profil ve beton arasında meydana gelecek aderans sayesinde temin edilir.[2][11]

Şekil 2.2. Doğrudan dökülen ve hazır betonarme plaklar (a,b,c,d)

Şekil 2.3. Kayma bağlayıcısı kullanılan kiriş

Kompozit davranışın sağlanması için çelik ve beton malzemelerin temas yüzeyinde meydana gelecek yatay kayma kuvvetinin karşılanması gereklidir. Bu yüzeyde meydana gelen kaymanın karşılanmasının bir yolu kayma bağlayıcısı kullanmaktır.[11]

Şekil 2.4 kayma elemanları

2.2. Karma Kirişlerin Hesabı

2.2.1. Çalışan tabla genişliği

EC 4'e göre mesnet bölgeleri, sürekli kirişlerin iç mesnetlerinde iç mesnedin iki yanındaki açıklıkların 1/4'lerinin toplamı, konsolla biten sürekli kirişlerde ise, konsol uzunluğu artı iç açıklığın yarısını aşmamak şartıyla konsol uzunluğunun 1.5 katı şeklinde belirlenmiştir. Bu noktalardaki çalışan tabla genişliği tanımlanan uzunlukların 1/8' i olarak verilmiştir.[2]

Kompozit köprülere ilişkin BS 5400 negatif moment bölgesindeki tabla genişliğini: yük üniform ise açıklıktaki tabla genişliğinin %18'i, yükün konsol ucunda tekil yük olması durumunda ise açıklıktaki tabla genişliğinin %24'üne kadar indirilebilen ve tabla genişliği/negatif moment bölgesi uzunluğunun fonksiyonu olan bir tablo ile vermektedir.[10][2]

Çalışan tabla genişliği b_{eff} simetrik kesitlerde: l_x kirişler arası aks aralığı, l kiriş açıklığı, d tabla kalınlığı, b_{ao} çelik profil üst başlık genişliği olmak üzere:

a) AISC (binalarda)[12]

$$\mathbf{b}_{\mathrm{eff}} \leq \begin{cases} \mathbf{l}_{\mathrm{x}} \\ \frac{1}{4} \\ 16d + \mathbf{b}_{\mathrm{ao}} \end{cases}$$

b) AASHTO (köprülerde)[13]

$$\mathbf{b}_{\mathrm{eff}} \leq \begin{cases} \mathbf{l}_{\mathrm{x}} \\ \frac{1}{4} \\ 12d + b_{\mathrm{ao}} \end{cases}$$

c) CP117 ve CP110 birlikte ele alınırsa

$$\mathbf{b}_{\rm eff} \le \begin{cases} \mathbf{l}_{\rm x} \\ \frac{1}{3} \\ 12d \end{cases}$$

olmakla birlikte $l_x > l/20$ ise

$$b_{eff} = b_{ao} + \frac{l_x}{\sqrt{1 + 12(2l_x/l)^2}}$$

değerlerinin alınmasını öngörmektedir.[2]

2.2.2. Pozitif momentler bölgesinde taşıma gücü

Plastik hesapta, hem çelik hem de beton için dikdörtgen gerilme diyagramları kabul edilmektedir.[2]

Şekil 2.5 Karma kirşlerde pozitif moment bölgelerinde gerilme dağılımı ve iç kuvvetler

Tarafsız eksenin yeri, α_a ve α_b yönetmeliklere göre değişen azaltıcı iki katsayı, σ_F çelik profil akma sınırı ve σ_{br} beton küp mukavemeti olmak üzere

$$Z = \alpha_a \sigma_F F_a \qquad D = \alpha_a \sigma_{br} b_{eff} y$$
$$y = \frac{\alpha_a \sigma_F F_a}{\alpha_a \sigma_{br} b_{eff}} bağıntılarıyla aranır.$$

Çift simetrik çelik kesitte $h_a/2$ ye eşit alınabilen h_{au} 'nun geneldeki değeri (takviyesiz yapay I profilleri için)

$$\mathbf{h}_{ao} = \mathbf{t}_{bo} + \frac{1}{\mathbf{t}_g} \left[\frac{\mathbf{F}_a}{2} - \mathbf{b}_{ao} \cdot \mathbf{t}_{bo} \right] \mathbf{v} \mathbf{e}$$

 $H_{ao} = h_a - h_{ao}$ olmak üzere

a) $y \leq d$ ise kesitçe taşınabilecek en büyük moment

$$M_{u} = Z_{e} = Z \cdot \left[h_{ao} + d - \frac{y}{2} \right]$$

 b) tarafsız eksen tabla altında, yani y >d durumunda, tarafsız eksenin konumunu belirlemek için

$$D_b = \alpha_b \cdot \sigma_{bf} \cdot b_{eff} \cdot d$$

 $D_a = Z - D_b$

$$F_{ad} = \frac{D_a}{2\alpha_a \sigma_F}$$
$$y_a = \frac{F_{ad}}{b_{ao}}$$

şeklinde hesaplanır.

b1)
$$y_a \le t_{bo}$$
 ise $y = d + y_a$

olup, taşınabilecek moment

$$M_{u} = D_{b} \cdot e_{1} + D_{a} \cdot e_{2} = D_{b} \cdot \left[h_{ao} + \frac{d}{2}\right] + D_{a} \cdot \left[h_{ao} - \frac{y_{a}}{2}\right]$$

bağıntısından belirlenir.
b2)
$$y_a > t_{bo}$$
 durumunda y ve M_u
 $D_{ab} = 2\alpha_b \cdot \sigma_F \cdot b_{ao} \cdot t_{bo}$
 $D_{ag} = D_a - D_{ab}$
 $F_{ag} = \frac{D_{ag}}{2\alpha_a \sigma_F}$
 $y_{ag} = \frac{F_{ag}}{t_g}$

 $y=d \ {+} t_{bo} {+} y_{ag}$

$$\begin{split} Mu &= D_b \cdot e_1 + D_{ab} \cdot e_{2b} + D_{ag} \cdot e_{2g} \\ &= D_b \cdot \left[h_{ao} + \frac{d}{2} \right] + D_{ab} \cdot \left[h_{ao} - \frac{t_{bo}}{2} \right] + D_{ag} \cdot \left[h_{ao} - t_{bo} - \frac{y_{ag}}{2} \right] \end{split}$$

Bağıntılarıyla bulunurlar.

Kesit M_{max} momentini taşıyorsa, güvenlik derecesi

$$\nu = \frac{M_u}{M_{max}}$$

olarak bellidir.[2]

Beton basınç mukavemetiyle ilgili α_{b} , çelik akma sınırıyla ilgili α_{a} kat sayıları ile minumum güvenlik derecesinin, yönetmeliklerde aldıkları değerler bir tabloda özetlenmiştir (tablo 2.1). α_{p} beton silindir ve küp mukavemetleri arasındaki oran olup ACI'ye göre = 0.87 alınabilir.[2]

Yönetmelik υ α_{a} α_{b} 4/9≈0.44 1 1.75 İngiliz A.B.D 1 $0.85 \ \alpha_{P} \approx 0.74$ 2.00 * 0.60 Alman 1 ECSS 0.87-1.0 0.40 *

Tablo 2.1 α_a , α_b ve v Güvenlik Derecesi Değerleri

 M_{max} ölü ve yararlı yükler ağırlıklı katsayılarla çarpılarak elde edilmekte, bu durumda güvenlik derecesi 1.00 alınmaktadır.[2]

Türkiye'de karma (kompozit) yapı elemanlarına ilişkin bir standart yoktur. Ancak TS 4561 ''Çelik Yapıların Plastik Teoriye Göre Hesap Kuralları''nda verilen ağırlıklı katsayı ve çelikle ilgili bölümlerden burada da yararlanılabilir.[2]

2.2.3. Negatif momentler bölgesinde taşıma gücü

Karma kirişlerin sürekli kiriş düzende kullanılmaları durumunda, iç mesnetler yöresinde negatif moment bölgesiyle karşılaşılır. Bu bölgede, betonarme plak içine, kirişin boyuna doğrultuda uzanan mesnet donatıları konulur ve betonarme plağın yalnız bu donatılarla çalışmaya katıldığı kabul edilir. Bu şekilde bir çalışmada, kaymayı önleyici bağlantıların negatif momentler bölgesinde de kullanılması gereklidir. Böyle bir en kesitin gerilme diyagramı (şekil 2.6 a), üç ayrı gerilme diyagramının bileşkesi olarak düşünülebilir.(b) yalnız çelik en kesitin taşıyabileceği M_{pa} plastikleşme momentine ilişkin gerilmelerin yüzey ortalayıcısında işaret değiştirdikleri diyagram, (c) mesnet donatısının yüzey ortalayıcısına göre ΔM_1 katkısı, (d) eksen farkı ΔM_2 dengeleme momenti.buradan hareketle kesitin $-M_u$ negatif moment taşıma gücü, W_{pa} çelik profilin kendisini iki eş alanlı parçaya ayıran eksene göre belirlenmiş plastik mukavemet momenti olmak üzere

Şekil 2.6. Karma kirşlerde negatif moment bölgelerinde gerilme dağılımı ve iç kuvvetler

$$\begin{split} W_{pa} &= \int\limits_{alan} \big| y \big| dF_a = S_{x,\text{ust}} + S_{x,alt} \\ M_{pa} &= \alpha_a \; \sigma_F \; W_{pa} \\ Z' &= \alpha_a' \; \sigma_F' \; F_a' \end{split}$$

$$y' = h_t - (h_{au} - h')$$

$$\Delta M_1 = Z'. y'$$

$$y'' = \frac{Z'}{2t_g \alpha_a \sigma_F}$$

$$\Delta M_2 = \alpha_a \sigma_F t_g y'' |y''|$$

$$|-Mu| = M_{pa} + \Delta M_1 - \Delta M_2$$

olarak belirlenir.

Mesnetlerde plastik dönmelere aşırı ölçüde engel olarak plastik sistem hesabını geçersiz kılmamaları için F_a ' donatısı çok arttırılmamalıdır.[2]

2.2.4. Kesme kuvveti-eğilme momenti etkileşimi

Karma kesitte bulunabilecek Q kesme kuvvetinin, güvenlik tarafında kalan bir yaklaşımla, yalnız çelik profil tarafından taşındığı kabul edilir. Bu durumda TS 4561 kuralları geçerlidir.[14][2]

$$Q_{pa}=0.52 \sigma_F t_g h_g$$

Bu standartta tanımlanan plastikleşme kesme kuvveti ve Q kesitte ağırlıklı yüke göre hesaplanmış kesme kuvveti olmak üzere Q<0.3 Q_{pa}

ise M_u veya |- M_u | değerlerinde bir azaltma yapılmaz. Aksi durumda, yani Q>0.3Q $_{\rm pa}$

ise profil gövde kalınlığı, standart uyarınca, tg yerine

 $t_g' = T \sqrt{1 - \left(\frac{Q}{Q_{pa}}\right)^2}$ Değerinde alınır ve M_u veya |- M_u | bu azaltılmış değer göz önüne

alınarak belirlenir.[2]

2.2.5. Normal kuvveti – eğilme momenti etkileşimi

Kirişlerin, çerçeve elemanı olarak eğilme momentinin yanı sıra bir normal kuvvetin etkisinde kalmaları da mümkündür. Aynı durumla, boyuna doğrultuda: fren, demerraj ve benzeri yükler alan köprü kirişlerinde de karşılaşılabilir. Çerçeve çalışmasından ileri gelen normal kuvvet durumunda, bu kuvvetin etki ekseni olarak, kiriş - kolon bağlantısı genelde çelik elemanlar arasında gerçekleştirildiğinden birleşimin ağırlık merkezi, ya da küçük bir yaklaşıklıkla çelik profilin ekseni alınabilir. Köprü kirişlerinde ise, etki çizgisi genelde köprü tahliyesinin üst kenarında kabul edilir. Normal kuvvet basınç karakterli ise beton tablanın orta noktasına, çekme karakterli ise profilin eşalan merkezine taşınır. Bu taşıma işlemi, ilk konuma göre gösterdiği dış merkezliğe bağlı, (+) veya (-) işaretli bir ΔM_e fark momenti oluşacaktır.[2]

Beton basınç türü normal kuvvet durumunda, beton tablanın beff genişliği

 $b_{eff} = \frac{N}{\alpha_a \sigma_{br} d}$ kadar azaltılarak, M_u taşıma gücü $b_{eff} '= b_{eff} - \Delta b_{eff}$ değerine bağlı olarak hesaplanır ve M + $\Delta M_e \le M_u$ kıyaslaması yapılır.[2]

Çekme türü normal kuvvet durumunda ise, çelik profilin tg gövde kalınlığı

$$\Delta t_{g} = \frac{N}{\alpha_{a}\sigma_{br}h_{g}}$$

kadar azaltılarak, Mu taşıma gücü

$$t_g'' = t_g' - \Delta t_g$$

Değerine bağlı olarak hesaplanır. Az rastlanan t_g '' < 0 özel durumunda, kesit azaltması başlıklara taşırılabilir.[2]

2.2.6. Şekil değiştirmeler

Sehimleri sınırlamak bakımından AASHTO köprülerde[13] $h_t = h_a + d \ge l/25$ $h_a \ge l/30$ minimum yükseklik sınırlamalarını getirmekte, uzun süreli yükler etkisi

durumunda şekil değiştirme hesaplarında, karma kesite eşdeğer çelik kesit hesaplanırken beton kesitin n = E_a/E_b ye değil 3n'e bölünmesi öngörülmektedir. Binalarda geçerli AISC de aynı durumda n'yi 2n'e çıkarmaktadır.[8] Düşey yerdeğiştirme değerleri bu koşullar altında binalarda 1/360 köprülerde 1/800 sınırlarını aşmamalıdır.[2]

Ayrıca statik hesaplarda çubukların eylemsizlik momentleri göz önüne alınırken, I_c karma kesit eylemsizlik momentinin yalnız (+) moment yüklü bölgelerde geçerli olduğu, (-) momentli bölgelerde ise çelikle ilgili eylemsizlik momenti değerinin kullanılması öngörülmektedir.[2]

2.2.7. Karma kirişlerde kayma bağlantıları

Bir karma kirişte, kayma bağlantılarının amacı, çelik enkesitle betonarme plağı birbirine, bir bütün olarak çalışabileceği şekilde bağlamaktır. Bu amaçla, yük altında: beton ve çelik bölümler arasında oluşan kaymayı önlemek, dolayısıyla kayma kuvvetini aktarabilmek, şekil-değiştirmeler sonucu beton plağın çelik parçadan ayrılıp kalkmasını önlemek görevlerini yüklenirler. Kayma kuvvetinin aktarılmasını sağlayacak uygun kayma bağlantısının boyutlarını ve sayısını hesapla bulmak mümkündür. Buna karşın, plağın kalkmasıyla ilgili bir hesap şekli gelişmemiş olup önlemler deneyimlere dayanır. Günümüzde en çok kullanılan kayma bağlantısı türü, otomatikleşmiş imalatı dolayısıyla, kaynaklanmış başlıklı saplamalardır(kama) .[2][11]

Genelde bir kayma bağlantısının taşıma gücü, deneysel olarak istatistiksel yöntemlerle saptanır. Deney genellikle bit itip-çıkarma (push-over) testi,bazen de bir

kiriş deneyidir.Deneylerden çıkarılmış ampirik, ya da deneylerle sınanmış kuramsal bağıntıların kullanıldığı da olur.[2]

Şekil 2.7. CP 117 standardında önerilen itip-çıkarma deneyi (boyutlar mm türündendir)

Bu tezde 1	Kayma	bağlantısı	olarak	bulon	kullanı	lacaktır.	Bulon	hesabı	daha	öncede
belirtildiği	l g	gibi E	EC4'e	ba	ğlı	kalaral	K	hesapla	nacak	tır.[11]

BÖLÜM 3. DENEYLARİN YAPILIŞI VE DENEYLERDEN ELDE EDİLEN VERİLER

3.1. Deneylerde Kullanılacak Karma Kirişlerin Hazırlanması

300x80x12 cm boyutunda betonarme plak, 300 cm uzunluğunda HE120B profili ile bulonlar ve levhalar kullanılarak birleştirilmiş ve bu numuneler test edilmiştir. Numunelerin her biri 3 set (toplam 6 adet) kompozit kirişlerden oluşturulmuştur. Kompozit kirişlerin betonarme plak kısımlarının her birinde açıklık donatısı olarak 6Φ12 ve enine donatı olarak Φ8/15 etriyeler kullanılmıştır. Kompozit çalışmayı sağlamak amacıyla bulon ve levhalar

1.set her levhaya 4 adet bulon gelecek şekilde toplam 10 adet levha 40 adet bulon 2.set her levhaya 2 adet bulon gelecek şekilde toplam 20 adet levha 40 adet bulon 3.set 40 adet levhasız bulon kullanılmıştır. Bu işlemlerde ilk etap betonarme plak kısmının hazırlanması olmuş daha sonra bulonlar kirişlerle birlikte monte edilmiştir.

3.1.1. Betonarme plağın oluşturulması

İlk olarak kompozit kirişi oluşturacak olan betonarme plağın kalıbı hazırlanmıştır. Sistemimizin birleşim aracı bulon olduğu için kalıba bulon genişliğince borular yerleştirilmiştir. Bu bulonlar her farklı deney epruveti için farklı mesafelerde yerleştirilmiştir.

Şekil 3.1 Betonarme plağın borular ile görünüşü

Hazırlanan kalıplara düz donatılar ve etriyeler yerleştirilmiştir. Açıklık donatısı olarak 6Φ12 ve enine Φ8/15 etriyeler kullanılmıştır. Donatıların malzeme özelliği S420 çeliğidir. Donatılar ile ilgili ayrıntılı bilgi Ek.1.'de verilmektedir. Daha sonra kalıplar betonun yapışmaması için yağlanıp, beton dökümüne hazır hale getirilmiştir.

Şekil 3.2. Beton dökülmeden önceki betonarme plağın durumu

Betonun malzeme özelliği C30'dur. Beton ile ilgili ayrıntılı bilgi Ek.2.'de verilmektedir. Beton dökümü esnasında vibratör kullanılmış ve dökümünden sonra kür işlemleri uygulanmıştır.

Şekil 3.3. Beton dökümü esnasında vibratör kullanımı

Şekil 3.4 Betonun üst yüzeyinin düzleştirilmesi işlemi

3.1.2.Betonarme Plağın HEB120 profili ile birleştirilmesi

Betonarme plağın çelik profile denk gelen yüzü spiral taş yardımı ile temizlenmiştir

Kompozit çalışmayı sağlayacak bulonlar ile levhaların boşlukları hazırlanmıştır. 1.set her levhaya 4 adet bulon gelecek şekilde toplam 10 adet levha 40 adet bulon, 2.set her levhaya 2 adet bulon gelecek şekilde toplam 20 adet levha 40 adet bulon, 3.set 40 adet levhasız bulon kullanılmıştır.

Şelik 3.6 Bulon ve levhalar

Şelik 3.7 1.set kompozit kirişin alt kısmının görünüşü

Şekil 3.7a. Kompozit kirişin genel görünümü

3.1.3. Deney numunelerinin hazırlanması ve ölçüm aletlerinin yerleştirilmesi

Profilin tekil yüke maruz kalacak kısmında burkulma ve çarpılma gerçekleşmemesi için berkitme levhası yerleştirilmiştir. Strength yapıştırılacak olan kirişin alt başlığına pas sökücü dökülüp passız bir yüzey oluşturulmuştur. (Şekil 3.8.).

Ayrıca Momen-eğrilik diyagramının çizilebilmesi için çelik profilin üst ve alt başlıklarının yatay hareketlerini gözlemlenmiştir. (Şekil 3.9.)

Şekil 3.8 Berkitme levhası ve pastan temizlenmiş yüzey görünümü

Şekil 3.9 Üst ve alt başlık yatay hareketlerini incelemek için kaynatılan levhanın görünümü

3.2. Deney Düzeneği

Deneyler, Sakarya Üniversitesi Mühendislik Fakültesi Yapı Laboratuarında yapılmıştır. Deneylerde HI – TECK MAGNUS markalı bir çerçeve ve ENERPAC markalı 200 KN basınç yükü verebilecek şekilde tasarlanmış hidrolik pres ile yüklemeler yapılmıştır.

Deneylerde 5 kanaldan okuma alınmıştır.

1.Loadcell (yük verici) P yükü olarak tanımlanmıştır ve açıklık ortasından yüklenmiştir.

2. Lvdt (potansiyometrik cetvel, deplasman ölçer) maksimum deplasmanı ölçmek için kullanılmıştır ve açıklık ortasına yerleştirilmiştir. Lvdt nin okuma aralığı maksimum 150 mm dir. Bu rakam lvtd nin ayaklı aparatından dolayı 130 mm'e kadar inmiştir.

3. ve 4. Elektronik deplasman ölçer (elektronic potansiyometrik cetvel) Yatay yer değiştirmeyi ölçmek, moment - eğrilik diyagramını oluşturabilmek için çelik kirişin üst ve alt başlığına yatay olarak yerleştirilmiştir. Elektronik deplasman ölçer'in maksimum okuma aralığı 50 mm'dir.

5. Straingage (gerilim pulu) çelik kirişteki uzamaları ölçmek için kiriş alt başlığı açıklık ortasına yerleştirilmiştir.

Deneylerde çerçeveye ekstra çaprazlar eklenmiştir. Ayrıca loadcell'in altına yükü aktaracak çelik aparatlar yerleştirilmiştir. Hidrolik presin yanal etkilerden zarar görmemesi için loadcell ile çelik aparatlar arasına mafsallı bir aparat yerleştirilmiştir.

Şekil 3.10. Deney epruvetinin yük yüklenmeden önceki hali

3.3. Deneylerde Elde Edilen Sonuçlar

Bulonlarla birleştirilmiş kompozit kirişlerin negatif moment bölgelerindeki yapısal davranışının incelenmesi için yapılan deneylerde, altı deney numunesi 3 set deneysel araştırma yapılmıştır. Bu bölümde deneylerin yapılışı ve ölçümler ayrıntılı bir şekilde verilmiştir.

3.3.1 DN 1 kirişi

Kompozit kirişlerin betonarme plak kısımlarının her birinde açıklık donatısı olarak $6\Phi 12$ ve enine donatı olarak $\Phi 8/15$ etriyeler kullanılmıştır. Kompozit çalışmayı sağlamak amacıyla her levhaya 4 adet bulon gelecek şekilde toplam 10 adet levha 40 adet bulon kullanılmıştır. Bu deneyde straingage kullanılmamıştır.

Şekil 3.11. DN1 ve DN2 'de kullanılacak bulon ve levha görünümü

Şekil 3.12. DN1 ve DN2 kompozit kirişlerin kesitleri ve genel görünümleri

Şekil 3.12. Devamı :

Deneyde kirişlere yük yüklenmiş (loadcell), sehimleri okunmuş (lvdt), kiriş üst ve alt başlık yatay yer değiştirmesi (elektronik deplasman ölçer) ölçülmüştür.

DN 1 kirişinden alınan değerler Tablo 3.1'de verilmiştir.

	Üst flanş	Alt flanş		
	elektronik	elektronik		
	deplasman ölçer	deplasman ölçer	Lvdt	Loadcell
Zaman(s)	1311(mm)	1213(mm)	1212(mm)	1211(kN)
0	0	0	0	0
10	-0.006	0.0116434	0.954859	5.93155
20	-0.009	0.0248189	1.76462	10.3961
30	-0.012	0.0373815	2.48076	14.0274
40	-0.015	0.0432033	2.8599	15.7299
50	-0.018	0.0487186	3.18286	17.4324
60	-0.01	0.0545403	3.5854	19.6873
70	-0.04	0.061894	4.08624	21.9875
80	-0.07	0.0680221	4.62451	24.5774
90	-0.13	0.0726182	5.16279	26.9319
100	-0.17	0.0766015	5.6449	28.7159
110	-0.24	0.0793592	6.23467	31.0795
120	-0.28	0.0818104	6.76358	33.2982
130	-0.34	0.0848745	7.11932	33.9774
140	-0.37	0.0864065	7.56866	36.3319
150	-0.36	0.0894706	8.16779	39.1663
160	-0.44	0.0922282	8.86053	42.2362
170	-0.45	0.0968243	9.30051	44.1651
180	-0.46	0.00195	10.0401	46.9272

Tablo 3.1. DN1 kirişine ait değerler

Tablo 3.1. Devamı:

200	-0.48	0.13677	11.594	52.8678
210	-0.54	0.19192	12.3523	55.9739
220	-0.61	0.23482	13.1106	59.0891
230	-0.66	0.28691	13.7612	61.6609
240	-0.69	0.339	14.3978	64.0336
250	-0.69	0.39109	15.0531	66.5873
260	-0.69	0.44318	15.7037	68.3441
270	-0.69	0.44527	16.476	69.8202
280	-0.69	0.44736	17.1313	72.3468
290	-0.69	0.48679	17.8006	73.3701
300	-0.75	0.50049	18.4653	75.0997
310	-0.81	0.51419	19.4342	76.8656
320	-0.85	0.52789	20.4171	79.3741
330	-0.84	0.54159	21.3814	81.8373
340	-0.95	0.55529	22.0039	82.3806
350	-0.98	0.59899	22.8979	84.871
360	-0.98	0.64269	23.8153	86.2384
370	-1.01	0.68639	24.1476	85.4052
380	-1.08	0.73009	24.7889	87.4971
390	-1.07	0.76379	25.3646	88.0676
400	-1.11	0.79749	25.4021	87.3522
410	-1.12	0.83119	25.6314	88.2307
420	-1.14	1.04958	26.1603	90.2954
430	-1.14	1.12311	27.1714	91.7805
440	-1.21	1.28133	27.9811	93.3653
450	-1.21	1.44874	29.0735	95.6564
460	-1.22	1.53147	30.097	96.1907
470	-1.25	1.72646	31.0877	96.4352
480	-1.22	1.8571	31.4492	95.6926
490	-1.23	1.91838	32.7967	98.7897
500	-1.28	2.17353	33.7216	97.694
510	-1.27	2.40111	34.9471	100.202
520	-1.29	2.63788	35.487	98.2554
530	-1.29	2.744	35.8438	99.1882
540	-1.29	2.96852	35.872	97.6759
550	-1.29	3.06852	36.1443	98.9346
560	-1.29	3.19916	37.5669	101.597
570	-1.29	3.34512	38.9144	102.385

Tablo 3.1. Devamı:

1				
580	-1.3	3.48189	40.0506	102.285
590	-1.34	3.50334	41.0554	101.66
600	-1.38	3.63091	42.2385	102.231
610	-1.42	3.63704	42.863	103.635
620	-1.46	3.64623	44.2292	103.58
630	-1.5	3.67074	45.68	104.866
640	-1.55	3.69219	46.9618	104.278
650	-1.62	3.69526	48.4032	104.45
660	-1.68	3.70139	49.5065	103.481
670	-1.72	3.71058	50.6662	105.201
680	-1.79	3.71671	52.394	106.478
690	-1.87	3.7596	53.9293	106.442
700	-1.93	3.76267	55.1124	105.428
710	-2.02	3.76267	56.2393	105.772
720	-2.11	3.76267	56.9623	106.415
730	-2.23	3.76267	58.014	107.701
740	-2.36	3.76267	58.7699	106.324
750	-2.39	3.76267	58.8075	105.12
760	-2.39	3.76267	58.8028	104.576
770	-2.39	3.76267	58.8122	104.223
780	-2.39	3.76267	58.8169	103.97
790	-2.39	3.76267	59.6385	108.552
800	-2.4	3.86378	61.2865	108.851
810	-2.43	3.86378	62.5354	108.226
820	-2.44	3.86684	64.0425	108.833
830	-2.45	3.86684	65.5402	109.122
840	-2.46	3.88523	66.9441	109.765
850	-2.47	3.88523	68.6108	111.196
860	-2.5	3.88523	69.3714	111.078
870	-2.65	3.88523	70.8879	110.761
880	-2.7	3.93732	72.4326	112.002
890	-2.7	3.93732	73.4327	111.395
900	-2.7	3.93732	75.1464	112.455
910	-2.7	4.02311	77.3108	112.382
920	-2.68	4.02618	78.6395	110.997
930	-2.68	4.02311	80.2593	113.587
940	-2.68	4.02924	81.7289	112.817
950	-2.68	4.02618	83.067	113.197
960	-2.73	4.0323	84.5647	114.737

970	-2.9	4.02924	85.7479	113.804
980	-3.1	4.02618	87.4052	114.447
990	-3.31	4.02311	89.0344	115.706
1000	-3.5	4.02005	90.7575	116.367
1010	-3.74	3.99247	92.9689	116.892
1020	-3.93	3.98328	94.368	116.222
1030	-4.11	3.98021	95.9972	117.209
1040	-4.3	3.94957	97.725	116.032
1050	-4.53	3.85459	99.6453	116.394
1060	-4.69	3.8454	101.373	117.771
1070	-4.82	3.77186	102.641	118.314

Tablo 3.1. Devamı:

118.31 kN kompozit kirişin maksimum taşıdığı yük olarak kaydedilmiştir. Kirişin orta bölgesindeki maksimum sehim ise 102.80 olarak belirlenmiştir.52 kN' da ilk çatlak sesi duyulmuştur.

Kompozit kirişin orta kısmındaki betonarme çatlağı 9 mm olduğu tespit edilmiştir. Orta çatlağın sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur. Çatlak aralıkları sağdaki 9 cm ve soldaki 9.5 cm olarak tespit edilmiştir. Orta çatlağın boyu 11 cm, sağ çatlağın boyu 10.7 cm ve sol çatlağın boyu 10.4 cm olarak tespit edilmiştir. Ayrıca betonda oluşan çatlakların bulonların olduğu bölgeye doğru hareket ettiği gözlemlenmiştir.

Çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiş ve kayma elemanlarında kopma gözlemlenmemiştir. Ayrıca sıyrılma gözlemlenmemiştir. Çelik profin üst başlığına yerleştirilen mituyota ile alt başlığa yerleştirilen mituyota arasında 9.5 cm mesafe tespit edilmiştir.

Şekil 3.13. DN1 kompozit kirişinin Yük-Sehim grafiği

Şekil 3.14. DN1 kompozit kirişinin Moment – Eğrilik Diyagramı

3.3.2 DN 2 kirişi

DN1 ile benzer olarak üretilmiştir. Bu deneyde strength kullanılmıştır.

Deneyde kirişlere yük yüklenmiş (loadcell), sehimleri okunmuş (lvdt), kiriş üst ve alt başlık yatay yer değiştirmesi (elektronik deplasman ölçer) ve alt başlığın uzaması ölçülmüştür (straingage).

DN 2 kirişinden alınan değerler Tablo 3.2'de verilmiştir.

	Üst flanş elektronik deplasman ölçer	Alt flanş elektronik deplasman ölçer	Lvdt	Loadcell	Straingage
Zaman(s)	1311(mm)	1312(mm)	1212(mm)	1211(kN)	1217(mV)
10	0	0	0	0	0
20	0.0075	0.146434	0.551531	2.65877	-5.62861
30	0.035	0.278189	0.992756	4.14306	-23.0636
40	0.05	0.403815	1.47994	6.05074	-31.3006
50	0.0725	0.462033	1.93955	8.19525	-44.3425
60	0.1325	0.517186	2.41754	10.8017	-86.2138
70	0.2075	0.575403	2.822	13.3421	-132.204
80	0.2775	0.64894	3.48384	16.9679	-169.407
90	0.3175	0.640221	4.17325	20.3338	-203.316
100	0.365	0.646182	4.88105	23.7178	-243.678
110	0.3925	0.646015	6.07603	26.7157	-290.628
120	0.435	0.653592	6.67352	29.4982	-336.618
130	0.48	0.668104	7.14233	31.4598	-399.906
140	0.5025	0.688745	7.50082	32.5418	-469.508

Tablo 3.2. DN2 kirişine ait değerler

Tablo 3.2. Devamı:

	1	1	1		I
150	0.5125	0.684065	7.98801	34.4561	-524.696
160	0.53	0.684706	8.50277	36.7403	-580.708
170	0.545	0.692282	9.04511	38.9321	-630.404
180	0.585	0.698243	9.55068	41.392	-666.784
190	0.605	0.70427	9.6426	40.9111	-690.26
200	0.645	0.71006	10.1574	43.0381	-720.737
400	1.78	2.89442	22.511	79.3432	-1132.72
410	1.805	2.89749	24.4808	80.233	-1254.22
420	1.8875	2.93119	26.4414	81.1785	-1518.9
430	1.965	2.94958	28.3279	82.1889	-1859.09
440	1.9775	3.02311	30.196	83.3569	-2031.93
450	2.045	3.08133	32.1103	84.2282	-2244.58
460	2.085	3.14874	33.8952	83.2364	-2448.72
470	2.13	3.23147	35.5875	84.5804	-2628.7
480	2.175	3.32646	37.0395	84.2838	-2857.55
490	2.2325	3.3571	39.111	85.5815	-3062.24
500	2.285	3.41838	41.0715	87.1944	-3314.43
510	2.355	3.47353	42.8934	87.0554	-3688.25
520	2.4075	3.50111	43.8736	85.322	-4267.58
530	2.4625	3.53788	46.1394	87.9267	-4533.36
540	2.52	3.544	48.5346	88.8351	-4533.36
550	2.58	3.56852	49.4871	88.6683	-4533.36
560	2.65	3.56852	51.5864	90.0494	-4533.36
570	2.69	3.59916	53.5654	90.3553	-4533.36
580	2.7525	3.64512	54.4717	90.4388	-4533.36
590	2.815	3.68189	56.2362	91.959	-4533.36
600	2.875	3.70334	57.2911	89.3172	-4533.36
610	2.945	3.73091	58.6286	91.9219	-4533.36
620	3.005	3.73704	60.0038	92.4688	-4533.36
630	3.0875	3.74623	61.3225	92.6913	-4533.36
640	3.1525	3.77074	62.6223	92.5893	-4533.36
650	3.215	3.79219	64.3178	92.7469	-4533.36
660	3.28	3.89526	65.7212	93.0806	-4533.36
670	3.345	3.90139	67.2377	94.3783	-4533.36
680	3.39	3.91058	68.6789	93.6645	-4533.36
690	3.4425	3.91671	70.2707	94.1373	-4533.36
700	3.5225	3.9596	72.0038	94.7398	-4533.36
710	3.5875	3.96267	73.2283	95.2218	-4533.36
720	3.6525	3.96574	74.8013	96.3527	-4533.36

730	3.7325	3.96881	76.4779	96.6493	-4533.36
740	3.805	3.97188	78.1168	97.0016	-4533.36
750	3.8725	3.97495	79.7275	96.742	-4533.36
760	3.955	3.97802	81.423	98.151	-4533.36
770	4.0375	3.98109	83.1749	97.5763	-4533.36
780	4.045	3.98416	84.9552	98.8462	-4533.36
790	4.0525	3.98723	86.5093	98.7628	-4533.36
800	4.06	3.9903	88.0541	99.3653	-4533.36
810	4.0675	3.99337	89.7589	100.07	-4533.36
820	4.075	3.99644	90.8986	99.0965	-4533.36
830	4.0825	3.99951	92.4057	100.802	-4533.36
840	4.09	4.00258	94.12	101.126	-4533.36
850	4.0975	4.00565	95.8814	101.822	-4533.36
860	4.105	4.00872	97.5674	101.349	-4533.36
870	4.1125	4.01179	99.5172	101.507	-4533.36
880	4.12	4.01486	101.881	102.535	-4533.36
890	4.1275	4.01793	103.454	102.433	-4533.36
900	4.135	4.021	105.461	103.258	-4533.36
910	4.1425	4.02407	105.988	103.778	-4533.36
920	4.15	4.02714	105.988	104.223	-4533.36

Tablo 3.2. Devamı:

105.99 kN kompozit kirişin maksimum taşıdığı yük olarak kaydedilmiştir. Kirişin orta bölgesindeki maksimum sehim ise 104.22 olarak belirlenmiştir.46 kN' da ilk çatlak sesi duyulmuştur.

Kompozit kirişin orta kısmındaki betonarme çatlağı 7 mm olduğu tespit edilmiştir. Orta çatlağın sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur. Çatlak aralıkları sağdaki 18.5 cm ve soldaki 17.5 cm olarak tespit edilmiştir. Orta çatlağın boyu 11.5 cm, sağ çatlağın boyu 11.0 cm ve sol çatlağın boyu 10.5 cm olarak tespit edilmiştir. Ayrıca betonda oluşan çatlakların bulonların olduğu bölgeye doğru hareket ettiği gözlemlenmiştir.

Çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiş ve kayma elemanlarında kopma gözlemlenmemiştir. Ayrıca sıyrılma (kalkma) gözlemlenmemiştir.

Çelik profin üst başlığına yerleştirilen mituyota ile alt başlığa yerleştirilen mituyota arasında 9.5 cm mesafe tespit edilmiştir.

Şekil 3.15. DN2 kompozit kirişinin Yük-Sehim grafiği

Şekil 3.16. DN2 kompozit kirişinin Strength-zaman grafiği

Şekil 3.17. DN2 kompozit kirişinin Yük Uzama grafiği

Şekil 3.18. DN2 kompozit kirişinin Moment – Eğrilik Diyagramı

Şekil 3.19. Benzer imal edilmiş DN1 ve DN2 kirişlerine ait yük deplasman grafikleri

Şekil 3.20. Benzer imal edilmiş DN1 ve DN2 kirişlerine ait Moment – Eğrilik Diyagramları

Kompozit kirişlerin betonarme plak kısımlarının her birinde açıklık donatısı olarak $6\Phi 12$ ve enine donatı olarak $\Phi 8/15$ etriyeler kullanılmıştır. Kompozit çalışmayı sağlamak amacıyla her levhaya 2 adet bulon gelecek şekilde toplam 20 adet levha 40 adet bulon kullanılmıştır.

Şekil 3.21. DN3 ve DN4 kompozit kiriş kesit ve genel görünümleri

Şekil 3.21. Devamı:

Şekil 3.22. DN3 ve DN4 'de kullanılacak bulon ve levha görünümü

Deneyde kirişlere yük yüklenmiş (loadcell), sehimleri okunmuş (lvdt), kiriş üst ve alt başlık yatay yer değiştirmesi (elektronik deplasman ölçer) ve alt başlığın uzaması ölçülmüştür (straingage).DN 3 kirişinden alınan değerler Tablo 3.3'de verilmiştir.

Tablo 3.3. DN3 kirişine ait değerler

	Elektronik	Elektronik			
	deplasman ölçer	deplasman ölçer			
	üst flanş	alt flanş	Lvdt	Loadcell	Straingage
Zaman(s)	1311(mm)	1312(mm)	1212(mm)	1211(kN)	1217(mV)

Tablo 3.3.	Devamı				
0	0	0	0	0	0
10	0	0	0	0.013872	-0.13075
20	0	0	0.455349	2.39983	-7.9755
30	0.00999	0	0.513478	2.6264	-9.80594
40	0.00999	0	0.56192	2.80674	-10.8519
50	0.01998	0	0.610361	2.99632	-12.1594
60	0.01998	0.01001	0.66849	3.22751	-13.4668
70	0.10989	0.05005	1.34667	5.73832	-32.948
80	0.14985	0.07007	1.7342	7.86345	-44.5843
90	0.17982	0.11011	2.1508	10.4616	-59.3586
100	0.21978	0.15015	2.57708	12.9938	-74.9174
110	0.23976	0.19019	3.02274	15.4765	-91.1299
120	0.27972	0.24024	3.42965	17.4689	-105.381
130	0.31968	0.3003	4.11751	21.3196	-131.138
140	0.37962	0.42042	4.74725	23.6443	-162.386
150	0.42957	0.510511	5.40605	26.364	-202.264
160	0.45954	0.610611	6.18111	28.967	-250.901
170	0.48951	0.730731	6.91742	31.3257	-299.147
180	0.519481	0.830831	7.5956	33.6746	-339.285
190	0.539461	0.940941	8.52568	37.2721	-390.146
200	0.559441	1.03103	9.07791	38.9829	-421.917
210	0.569431	1.14114	9.87978	41.859	-468.332
220	0.579421	1.25125	10.699	44.2172	-515.269
230	0.599401	1.35133	11.0555	44.4022	-524.029
240	0.599401	1.38131	11.3639	45.7246	-538.411
250	0.599401	1.44127	11.8265	46.9823	-556.454
260	0.599401	1.50123	12.3855	48.7764	-587.18
270	0.629371	1.58118	12.9444	50.3948	-617.774
280	0.629371	1.61116	13.3685	52.6236	-638.432
290	0.629371	1.68111	13.9082	54.0385	-672.426
300	0.639361	1.75107	14.6888	56.7111	-713.088
310	0.639361	1.86099	15.6332	59.1248	-766.432
320	0.649351	1.97092	16.7801	62.597	-825.66
340	0.649351	2.21076	19.0352	67.8157	-939.147
350	0.649351	2.34068	20.1531	69.4564	-992.492
360	0.659341	2.44061	21.3578	72.6451	-1047.8
370	0.679321	2.59051	22.4661	73.535	-1090.55
380	0.709291	2.71043	23.5647	74.5176	-1116.18
390	0.739261	2.85034	24.8561	76.9184	-1138.53
400	0.779221	3.01023	26.08	76.8535	-1143.11
410	0.789211	3.15014	27.4871	78.1605	-1154.22
420	0.819181	3.28005	28.817	79.4953	-1168.87
430	0.839161	3.40996	30.1663	80.1813	-1169.13

Tablo 3.3. Devamı:

1		1	1	1	1
440	0.849151	3.5099	31.3902	81.4512	-1198.02
450	0.859141	3.61982	32.4696	81.5902	-1199.33
460	0.859141	3.73974	33.7417	81.2194	-1210.31
470	0.849151	3.83968	35.0427	82.4986	-1227.05
480	0.849151	3.92962	36.2763	83.8891	-1222.08
490	0.839161	4.01956	37.4424	83.5646	-1206.65
500	0.809191	4.0995	38.5989	83.7685	-1190.7
510	0.759241	4.21942	40.5986	85.9191	-1187.04
520	0.709291	4.35933	42.5241	85.2795	-1174.62
530	0.679321	4.48924	44.8365	87.291	-1260.65
540	0.629371	4.59917	46.5921	87.328	-1670.15
550	0.679321	4.67912	47.2434	86.8646	-1886.14
560	0.649351	4.77905	49.1971	88.4126	-2737.69
570	0.579421	4.88898	51.1981	87.9491	-3818.17
580	0.529471	4.96892	53.0386	88.2086	-4280.62
590	0.43956	5.02888	54.9736	89.4971	-4280.62
600	0.36963	5.08884	56.4837	89.321	-4280.62
610	0.28971	5.13881	58.0222	90.2108	-4280.62
620	0.1998	5.16879	59.6268	90.3777	-4280.62
630	0.05994	5.22875	61.8165	91.2954	-4280.62
640	-0.06993	5.28871	64.1573	92.1389	-4280.62
650	-0.17982	5.34867	65.9884	91.6105	-4280.62
660	-0.26973	5.38864	67.7628	92.3706	-4280.62
670	-0.35964	5.40863	69.188	92.7229	-4280.62
680	-0.45954	5.43861	70.9594	94.0484	-4280.62
690	-0.55944	5.4586	72.2498	93.7147	-4280.62
700	-0.61938	5.47858	73.3048	93.2049	-4280.62
710	-0.6993	5.48858	74.0395	93.7055	-4280.62
720	-0.81918	5.49857	75.4241	94.8085	-4280.62
730	-0.93906	5.50856	76.95	95.6891	-4280.62
740	-1.06893	5.51856	78.6737	96.0414	-4280.62
750	-1.25874	5.52855	80.4822	95.3647	-4280.62
760	-1.62837	5.52855	83.8354	96.8664	-4280.62
770	-2.30769	5.49857	88.3189	98.229	-4280.62
780	-2.30702	5.47858	91.512	98.2753	-4280.62
790	-2.58417	5.37865	95.4869	99.6379	-4280.62
800	-2.86133	5.27872	99.4806	100.426	-4280.62
810	-3.13848	5.18878	101.722	99.6472	-4280.62
820	-3.41563	5.11882	103.889	100.148	-4280.62

830	-3.69278	5.03888	105.82	100.148	-4280.62
840	-3.96993	4.9989	106.95	99.1745	-4280.62
850	-4.24708	4.9989	106.988	98.0343	-4280.62
860	-4.52423	4.96892	107.76	100.398	-4280.62
870	-4.80138	4.96892	107.826	98.5071	-4280.62
872.375	-5.07853	4.96892	107.845	98.3309	-4280.62

Tablo 3.3. Devamı:

107.85 kN kompozit kirişin maksimum taşıdığı yük olarak kaydedilmiştir. Kirişin orta bölgesindeki maksimum sehim ise 100.43 olarak belirlenmiştir. 47 kN' da ilk çatlak sesi duyulmuştur.

Kompozit kirişin orta kısmındaki betonarme çatlağı 4 mm olduğu tespit edilmiştir. Orta çatlağın sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur. Çatlak aralıkları sağdaki 17 cm ve soldaki 20.7 cm olarak tespit edilmiştir. Orta çatlağın boyu 10.2 cm, sağ çatlağın boyu 9.8 cm ve sol çatlağın boyu 9.5 cm olarak tespit edilmiştir. Ayrıca betonda oluşan çatlakların bulonların olduğu bölgeye doğru hareket ettiği gözlemlenmiştir.

Çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiş ve kayma elemanlarında kopma gözlemlenmemiştir. Ayrıca sıyrılma (kalkma) gözlemlenmemiştir.

Çelik profin üst başlığına yerleştirilen mituyota ile alt başlığa yerleştirilen mituyota arasında 9 cm mesafe tespit edilmiştir. Strength 580. Saniyeden itibaren maksimum ölçebileceği sınırı geçmiş olduğu tespit edilmiştir.

Şekil 3.23. DN3 kompozit kirişinin Yük-Sehim grafiği

Şekil 3.24. DN3 kompozit kirişinin Strength-zaman grafiği

Şekil 3.25. DN3 kompozit kirişinin Yük Uzama grafiği

Şekil 3.26. DN3 kompozit kirişinin Moment - Eğrilik Diyagramı

3.3.4 DN 4 kirişi

DN3 ile benzer olarak üretilmiştir.

Deneyde kirişlere yük yüklenmiş (loadcell), sehimleri okunmuş (lvdt), kiriş üst ve alt başlık yatay yer değiştirmesi (elektronik deplasman ölçer) ve alt başlığın uzaması ölçülmüştür (straingage). DN 4 kirişinden alınan değerler Tablo 3.4'de verilmiştir.

	Elektronik	Elektronik			
	deplasman ölçer	deplasman ölçer			
	üst flanş	alt flanş	Lvdt	Loadcell	Straingage
Zaman(s)	1311(mm)	1312(mm)	1212(mm)	1211(kN)	1217(mV)
0	0	0	0	0	0
10	0	0	0	0	0
20	0	0	0	0	-0.392238
30	0	0	0	-0.0046239	-0.784475
40	0	0	1.97905	5.5025	-27.8489
50	0	0	4.46122	11.2643	-60.4046
60	0	0	5.97258	14.7038	-99.2361
70	0	0	7.18362	17.2127	-155.457
80	0	0	8.24933	20.4081	-212.201
90	0	0.014005	9.95446	24.4293	-294.44
100	-0.02	0.03517	11.4271	28.3966	-363.081
110	-0.04	0.036335	11.7468	28.998	-374.718
120	-0.06	0.0375	11.7855	28.8185	-374.325
130	-0.08	0.038665	11.7855	28.7018	-374.456
140	-0.1	0.03983	11.7855	28.621	-374.325
150	-0.11	0.040995	11.7952	28.5492	-374.195
160	-0.12	0.04216	11.7952	28.4774	-373.802
170	-0.13	0.053325	11.7952	28.3787	-372.495
180	-0.14	0.06449	11.7952	28.2889	-372.364
190	-0.15	0.075655	11.9599	29.8059	-375.371
200	-0.16	0.08682	13.762	36.1299	-474.215
210	-0.17	0.097985	15.2152	40.1065	-549.002
220	-0.18	0.10915	16.6878	45.1929	-624.181
230	-0.19	0.114315	18.1992	49.1232	-702.236
240	-0.2	0.11948	19.633	53.6639	-778.199
250	-0.21	0.124645	21.28	58.741	-867.76
260	-0.24	0.12981	22.7333	61.8138	-978.502
270	-0.27	0.134975	23.7215	64.4556	-1037.47
280	-0.3	0.14014	24.814	65.9665	-1080.61
290	-0.33	0.145305	26.2114	68.803	-1111.86
300	-0.36	0.15247	27.763	70.7588	-1128.99

Tablo 3.4. DN4 kirişine ait değerler

Tablo 3.4. Devamı

310	-0.39	0.159635	29.4206	72.6498	-1144.94
320	-0.44	0.1668	30.9722	73.0948	-1154.75
330	-0.49	0.173965	32.4949	74.3091	-1165.73
340	-0.54	0.18113	34.644	76.1815	-1169.65
350	-0.59	0.188295	37.2268	76.8026	-1226.79
360	-0.64	0.21546	39.347	76.4596	-1292.68
370	-0.69	0.242625	41.7852	78.3227	-1332.43
380	-0.74	0.26979	44.2138	79.398	-1393.36
390	-0.79	0.296955	46.4015	80.1674	-1466.97
400	-0.84	0.32412	48.5409	79.4722	-1544.89
410	-0.89	0.361285	50.7864	80.8997	-1557.84
420	-0.94	0.39845	53.2632	81.4095	-1595.1
430	-0.99	0.435615	56.0234	82.596	-1646.61
440	-1.04	0.47278	58.3736	83.56	-1711.72
450	-1.09	0.539945	61.2712	85.4788	-1813.05
460	-1.14	0.60711	64.0273	84.9597	-1914.51
470	-1.19	0.674275	66.8494	86.7673	-1991.65
480	-1.28	0.74144	69.2091	84.626	-2034.41
490	-1.37	0.808605	71.5404	86.6653	-2094.55
500	-1.46	0.87577	74.5324	88.8714	-2148.94
510	-1.55	0.942935	78.6005	89.5759	-2227.91
520	-1.64	1.0501	82.5175	90.1692	-2322.18
530	-1.73	1.157265	85.7144	90.5121	-2414.48
540	-1.82	1.26443	89.1335	91.8748	-2530.85
550	-1.91	1.381595	92.289	92.2641	-2618.97
560	-2	1.49876	95.774	93.673	-2735.2
570	-2.09	1.615925	97.9687	93.1818	-2836.79
580	-2.44	2.73309	102.075	94.1921	-3034.09
590	-2.83	2.850255	106.126	95.0727	-3255.96
600	-3.26	3.186742	110.374	96.0182	-3511.7
610	-3.61	3.884585	113.84	96.8061	-3737.76
620	-4.11	3.90175	118.371	98.0112	-4103.33
630	-4.68	3.918915	122.779	98.4654	-4284.8
640	-5.31	4.23608	127.366	99.5962	-4284.8
650	-5.98	4.953245	131.454	97.9926	-4284.8
660	-6.03	5.17041	131.67	96.0924	-4284.8
670	-6.29	5.987575	133.535	99.93	-4284.8
680	-6.57005	6.00474	135.118	97.8258	-4284.8
690	-6.61009	6.021905	135.193	96.6022	-4284.8

Tablo 3.4. DN4 kirişine ait değerler

700	-6.6201	6.03907	137.303	96.0553	-4284.8
706.625	-6.63011	6.056235	137.303	95.8236	-4284.8

99.60 kN kompozit kirişin maksimum taşıdığı yük olarak kaydedilmiştir. Kirişin orta bölgesindeki maksimum sehim ise 137.30 olarak belirlenmiştir. 44 kN' da ilk çatlak sesi duyulmuştur.

Kompozit kirişin orta kısmındaki betonarme çatlağı 6 mm olduğu tespit edilmiştir. Orta çatlağın sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur. Çatlak aralıkları sağdaki 21.5 cm ve soldaki 19.5 cm olarak tespit edilmiştir. Orta çatlağın boyu 10.2 cm, sağ çatlağın boyu 9.5 cm ve sol çatlağın boyu 9.4 cm olarak tespit edilmiştir. Ayrıca betonda oluşan çatlakların bulonların olduğu bölgeye doğru hareket ettiği gözlemlenmiştir.

Çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiş ve kayma elemanlarında kopma gözlemlenmemiştir. Ayrıca sıyrılma (kalkma) gözlemlenmemiştir.

Çelik profin üst başlığına yerleştirilen mituyota ile alt başlığa yerleştirilen mituyota arasında 8.3 cm mesafe tespit edilmiştir.

Strength 630. Saniyeden itibaren maksimum ölçebileceği sınırı geçmiş olduğu tespit edilmiştir.

Şekil 3.27. DN4 kompozit kirişinin Yük-Sehim grafiği

Şekil 3.28. DN4 kompozit kirişinin Strength-zaman grafiği

Şekil 3.29. DN4 kompozit kirişinin Yük Uzama grafiği

Şekil 3.30. DN4 kompozit kirişinin Moment --Eğrilik Diyagramı

Şekil 3.31. Benzer imal edilmiş DN3 ve DN4 kirişlerine ait yük deplasman grafikleri

Şekil 3.32. Benzer imal edilmiş DN3 ve DN4 kirişlerine ait strength grafikleri

Şekil 3.33. Benzer imal edilmiş DN3 ve DN4 kirişlerine ait Yük - Uzama grafikleri

Şekil 3.34. Benzer imal edilmiş DN3 ve DN4 kirişlerine ait Moment - Eğrilik Diyagramları

3.3.5 DN 5 kirişi

Kompozit kirişlerin betonarme plak kısımlarının her birinde açıklık donatısı olarak $6\Phi 12$ ve enine donatı olarak $\Phi 8/15$ etriyeler kullanılmıştır. Kompozit çalışmayı sağlamak amacıyla levhasız bir şekilde toplam 40 adet bulon kullanılmıştır.

Şekil 3.35. DN5 ve DN6 'da kullanılacak bulon görünümü

Şekil 3.36. DN5 ve DN6 kesitleri ve genel görünümleri

Şekil 3.36. Devamı:

Deneyde kirişlere yük yüklenmiş (loadcell), sehimleri okunmuş (lvdt), kiriş üst ve alt başlık yatay yer değiştirmesi ölçülmüş (elektronik deplasman ölçer) ve alt başlığın uzaması ölçülmüştür (straingage).

DN 5 kirişinden alınan değerler Tablo 3.5'de verilmiştir.

	Elektronik	Elektronik			
	deplasman ölçer	deplasman ölçer			
	üst başlık	alt başlık	Loadcell	Lvdt	Straingage
Zaman(s)	1311(mm)	1312(mm)	1211(kN)	1212(mm)	1217(mV)
0	0	0	0	0	0
10	-0.01	-0.02448	3.32462	2.61093	-19.7426
20	-0.01	-0.01548	4.97999	3.37228	-45.4996
30	-0.011	-0.00648	7.95418	4.50947	-101.067
40	-0.012	0.00252	11.039	5.41538	-151.142
50	-0.013	0.01152	15.2703	6.60076	-220.83
60	-0.014	0.02052	19.1294	7.8247	-290.517
70	-0.015	0.02952	23.6802	9.09682	-358.636
80	-0.016	0.05952	28.3297	10.4557	-427.8
90	-0.04776	0.08952	32.1672	11.6507	-486.898
100	-0.06812	0.11952	36.2733	12.8746	-546.256
110	-0.08848	0.14952	39.1956	14.0889	-600.254
120	-0.10884	0.17952	42.2104	14.8888	-640.655
130	-0.1292	0.19965	42.6728	15.39	-655.037
140	-0.14956	0.21978	46.5292	16.2091	-690.861
150	-0.16992	0.23991	50.0341	17.2018	-737.014
160	-0.19028	0.26004	54.88	18.5124	-803.564
170	-0.23028	0.28017	59.7537	20.0062	-880.835
180	-0.27028	0.3003	64.1172	21.394	-979.286
190	-0.31028	0.41041	65.9155	22.5408	-946.469
200	-0.35028	0.500501 68.714		23.9382	-970.788
210	-0.39028	0.570571	69.9848	25.1332	-1007.4
220	-0.43028	0.670671	70.096	26.4536	-1053.42
230	-0.47028	0.770771	72.4783	28.1112	-1120.23
240	-0.51028	0.860861	72.4598	29.4893	-1172.27
250	-0.58352	0.940941	73.9521	30.9445	-1313.08
260	-0.65676	0.990958	75.8246	32.7059	-1499.52
270	-0.73	1.09089	76.6867	34.5842	-1881.3
280	-0.80324	1.19082	77.6692	36.3586	-2275.11
290	-0.87648	1.25078	77.6692	38.0387	-2649.17
300	-0.94972	1.3807	78.2347	40.1624	-2997.22
310	-1.02296	1.43066	79.3285	40.993	-3137.64
320	-1.0962	1.5206	80.9877	43.598	-3584.27

Tablo 3.5. DN5 kirişine ait değerler

330	-1.16944	1.58056	80.654	45.0799	-3837.52
340	-1.24268 1.65052		81.5902	47.6	-4237.87
350	-1.31592	1.70048	83.0641	50.2617	-4238.78
360	-1.38916	1.80048	83.6944	52.6874	-4238.78
370	-1.4624	1.95048	83.6944	55.2169	-4238.78
380	-1.53564	2.12054	86.1786	57.4822	-4238.78
390	-1.55856	2.45065	86.2991	60.6346	-4238.78
400	-1.58892	2.57077	87.5969	63.4343	-4238.78
410	-1.61928	2.65089	87.9306	65.9963	-4238.78
420	-1.64964	2.78101	87.8471	67.4186	-4238.78
430	-1.68	2.90113	89.1819	70.2726	-4238.78
440	-1.71036	3.15125	91.6569	73.4563	-4238.78
450	-2.06071	3.20137	92.5004	75.8582	-4238.78
460	-2.48113	3.29149	90.2665	78.3636	-4238.78
470	-2.68133	3.44161	92.7322	79.9649	-4238.78
480	-3.18183	3.56373	93.965	83.4406	-4238.78
490	-3.54219	3.68585	94.2894	85.9743	-4238.78
500	-4.18283	3.80797	94.6324	89.2428	-4238.78
510	-4.5532	4.05009	96.959	91.9178	-4238.78
520	-5.08373	4.18221	97.1074	95.4311	-4238.78
530	-5.54419	4.21433	98.1548	98.6808	-4238.78
540	-6.01466	4.34645	100.129	102.222	-4238.78
550	-6.24489	4.37857	97.1722	103.682	-4238.78
560	-6.24489	4.41069	96.0599	103.598	-4238.78
570	-6.24489	4.44281	95.5408	103.598	-4238.78
580	-6.24489	4.47493	95.1978	103.598	-4238.78
582.625	-6.24489	4.50705	95.133	103.598	-4238.78

Tablo 3.5. Devamı:

100.13 kN kompozit kirişin maksimum taşıdığı yük olarak kaydedilmiştir. Kirişin orta bölgesindeki maksimum sehim ise 103.68 olarak belirlenmiştir. 46 kN' da ilk çatlak sesi duyulmuştur.

Kompozit kirişin orta kısmındaki betonarme çatlağı 5 mm olduğu tespit edilmiştir. Orta çatlağın sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur. Çatlak aralıkları sağdaki 20.5 cm ve soldaki 23 cm olarak tespit edilmiştir. Orta çatlağın boyu 11 cm, sağ çatlağın boyu 10.5 cm ve sol çatlağın boyu 10.5 cm olarak tespit edilmiştir. Ayrıca betonda oluşan çatlakların bulonların olduğu bölgeye doğru hareket ettiği gözlemlenmiştir. Çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiş ve kayma elemanlarında kopma gözlemlenmemiştir. Ayrıca sıyrılma (kalkma) gözlemlenmemiştir.

Çelik profin üst başlığına yerleştirilen mituyota ile alt başlığa yerleştirilen mituyota arasında 8.0 mesafe tespit edilmiştir.

Strength 340. Saniyeden itibaren maksimum ölçebileceği sınırı geçmiş olduğu tespit edilmiştir.

Şekil 3.37. DN5 kompozit kirişinin Yük-Sehim grafiği

Şekil 3.38. DN5 kompozit kirişinin Strength-zaman grafiği

Şekil 3.39. DN5 kompozit kirişinin Yük Uzama grafiği

Şekil 3.40. DN5 kompozit kirişinin Moment-Eğrilik diyagramı

3.3.6 DN 6 kirişi

DN5 ile benzer olarak üretilmiştir.

Deneyde kirişlere yük yüklenmiş (loadcell), sehimleri okunmuş (lvdt), kiriş üst ve alt başlık yatay yer değiştirmesi ölçülmüş (elektronik deplasman ölçer) ve alt başlığın uzaması ölçülmüştür (straingage). DN 6 kirişinden alınan değerler Tablo 3.6'de verilmiştir.

Tablo 3.6. DN6 kirişine ait değerler

	Elektronik	Elektronik			
	deplasman ölçer	deplasman ölçer			
	üst flanş	alt flanş	Lvdt	Loadcell	Straingage
Zaman(s)		1312(mm)	1212(mm)	1211(kN)	1217(mV)
0	0	0	0	0	0

Tablo 3.6. Devamı:

10	0.06	0	-0.00969	-0.02774	0.130746
20	0.055	0	0	-0.03699	0.130746
30	0.05	-0.01999	0.968827	2.64139	-3.39939
40	0.045	-0.02998	1.55012	4.38175	-12.8131
50	0.04	-0.04997	2.56739	7.78822	-32.8172
60	0.035	-0.04997	2.87742	8.01092	-47.0685
70	0.03	-0.04997	3.03243	8.75325	-49.4219
80	0.025	-0.05996	3.72998	10.5101	-75.1789
90	0.02	-0.05996	3.72998	10.2709	-78.0553
100	0.015	-0.06995	3.7978	9.2069	-114.01
110	0.01	-0.06995	3.7978	9.09142	-114.926
120	0.005	-0.06995	3.78811	8.97595	-115.972
130	0	-0.06995	3.78811	8.86048	-116.495
140	-0.005	-0.06995	3.76874	8.75325	-116.233
150	-0.01	-0.06995	3.76874	8.84398	-116.625
160	-0.015	-0.06995	3.76874	8.79449	-117.41
170	-0.02	-0.06995	4.58255	12.2752	-149.704
180	-0.025	-0.06995	5.62888	15.5478	-203.31
190	-0.03	-0.06995	5.64826	15.0451	-209.455
200	-0.04	-0.06995	6.96586	20.1524	-276.135
210	-0.04	-0.06995	7.98313	23.4107	-331.441
220	-0.045	-0.02998	9.29105	28.1166	-392.107
230	-0.045	0.019987	10.3568	31.5199	-442.836
240	-0.045	0.079947	11.7325	35.6907	-502.326
250	-0.045	0.139907	13.0792	40.3424	-560.115
260	-0.045	0.17988	14.183	43.1907	-607.837
270	-0.155	0.099933	15.5226	47.0841	-654.383
280	-0.22	0	16.7369	50.6723	-704.851
290	-0.315	-0.12991	18.221	54.4454	-772.185
300	-0.415	-0.23984	19.6377	57.2383	-832.982
310	-0.515	-0.33977	21.2857	60.6119	-909.599
320	-0.595	-0.41972	22.8084	62.6141	-967.912
330	-0.7	-0.51965	24.4371	64.1807	-1015.24
340	-0.81	-0.62958	26.7018	65.4506	-980.986
350	-0.89	-0.70953	28.4847	65.8399	-973.141
360	-0.995	-0.78947	30.576	66.3127	-978.371
370	-1.155	-0.92938	33.5347	68.7969	-1014.33
380	-1.36	-1.10926	37.2643	70.5766	-1074.47
390	-1.535	-1.28914	40.1747	69.9741	-1182.73

64

Tablo 3.6. Devamı:

400	-1.715	-1.48901	43.0756	71.7446	-1547.9
410	-1.92506	-1.74883	45.8426	72.1803	-2178.88
420	-2.1603	-2.02865	49.2405	72.8384	-2932.89
430	-2.25039	-1.99867	52.006	73.4873	-3783
440	-2.40054	-2.11859	54.9131	74.8406	-4236.03
450	-2.50064	-2.18854	57.2255	74.7572	-4236.03
460	-2.64578	-2.28847	60.9443	77.0746	-4236.03
470	-2.77591	-2.33844	64.5876	78.6875	-4236.03
480	-2.89103	-2.38841	68.2215	79.7905	-4236.03
490	-3.03617	-2.45848	71.7892	80.2818	-4236.03
500	-3.17131	-2.51854	75.2131	80.6433	-4236.03
510	-3.31645	-2.60863	79.2068	83.0812	-4236.03
520	-3.51165	-2.72875	83.3606	83.4612	-4236.03
530	-3.70184	-2.86889	87.7123	85.4171	-4236.03
540	-3.90204	-3.01904	91.5176	85.5283	-4236.03
550	-4.07221	-3.16919	94.852	85.5283	-4236.03
560	-4.17231	-3.24927	96.6793	86.8353	-4236.03
570	-4.33747	-3.36939	100.07	86.9095	-4236.03
580	-4.52266	-3.53956	103.706	88.7449	-4236.03
590	-4.7629	-3.78981	107.521	89.644	-4236.03
600	-4.99814	-4.03005	110.77	89.3381	-4236.03
610	-5.19835	-4.24026	113.558	89.4308	-4236.03
620	-5.33345	-4.39041	115.405	90.4319	-4236.03
630	-5.52365	-4.61063	117.91	90.4597	-4236.03
640	-5.83395	-4.96098	121.81	91.2662	-4236.03
650	-6.11425	-5.31133	125.323	91.7204	-4236.03
660	-6.2844	-5.52154	127	89.5606	-4236.03
670	-6.2894	-5.53155	127	88.5595	-4236.03
680	-6.29445	-5.53155	127	88.096	-4236.03
690	-6.39955	-5.6817	127	92.4063	-4236.03
700	-6.7449	-6.12214	127	93.5372	-4236.03
710	-7.1447	-6.61263	127	94.2417	-4236.03
720	-7.53935	-7.13315	127	95.5301	-4236.03
730	-7.6692	-7.29331	127	93.9636	-4236.03
740	-7.70915	-7.35337	127	91.8687	-4236.03
746.5	-7.71415	-7.35337	127	91.3959	-4236.03

95.53 kN kompozit kirişin maksimum taşıdığı yük olarak kaydedilmiştir. Kirişin orta bölgesindeki maksimum sehim ise 127 mm olarak belirlenmiştir.660. saniyeden sonra lvdt'den okuma alınamamıştır. 43 kN' da ilk çatlak sesi duyulmuştur.

Kompozit kirişin orta kısmındaki betonarme çatlağı 5 mm olduğu tespit edilmiştir. Orta çatlağın sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur. Çatlak aralıkları sağdaki 21.0 cm ve soldaki 20.5 cm olarak tespit edilmiştir. Orta çatlağın boyu 10.5 cm, sağ çatlağın boyu 10 cm ve sol çatlağın boyu 9.5 cm olarak tespit edilmiştir. Ayrıca betonda oluşan çatlakların bulonların olduğu bölgeye doğru hareket ettiği gözlemlenmiştir.

Çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiş ve kayma elemanlarında kopma gözlemlenmemiştir. Ayrıca sıyrılma (kalkma) gözlemlenmemiştir.

Çelik profin üst başlığına yerleştirilen mituyota ile alt başlığa yerleştirilen mituyota arasında 8.0 cm mesafe tespit edilmiştir.

Strength 440. Saniyeden itibaren maksimum ölçebileceği sınırı geçmiş olduğu tespit edilmiştir.

Şekil 3.41. DN6 kompozit kirişinin Yük-Sehim grafiği

Şekil 3.42. DN6 kompozit kirişinin Strength-zaman grafiği

Şekil 3.43. DN6 kompozit kirişinin Yük Uzama grafiği

Şekil 3.44. DN6 kompozit kirişinin Moment – Eğrilik Diyagramı

Şekil 3.45. Benzer imal edilmiş DN5 ve DN6 kirişlerine ait yük deplasman grafikleri

Şekil 3.46. Benzer imal edilmiş DN5 ve DN6 kirişlerine ait strength grafikleri

Şekil 3.47. Benzer imal edilmiş DN5 ve DN6 kirişlerine Yük - Uzama grafikleri

Şekil 3.48. Benzer imal edilmiş DN5 ve DN6 kirişlerinde Moment – Eğrilik Diyagramları

Şekil 3.49. Tüm deney Eprüvetlerinin Yük – Sehim Diyagramları

Şekil 3.50. Tüm deney Eprüvetlerinin Moment – Eğrilik Diyagramları

Şekil 3.51. Tüm deney Eprüvetlerinin Yük – Uzama Diyagramları

BÖLÜM 4. DENEYLERDE KULLANILAN KİRİŞLERİN HESAPLAMALARI VE TAHKİKLERİ

4.1. Kullanılan Malzeme Bilgileri

Deneylerde test edilen kompozit kirişi oluşturan beton, donatı çeliği, profil çeliği ile ilgili değerler Tablo 4.1' de verilmiştir. Kompozit kirişin betonarme plak kısmı 3 m uzunluğunda, 80 cm eninde, 12 cm kalınlığındadır. [15][17]

Tablo 4.1. Deneylerde test edilen kompozit kirişi oluşturan beton, donatı çeliği, profil çeliği ile ilgili değerler

Beton Sınıfı	Donatı Çeliği	Profil Çeliği
C 30	BÇ III a	St 37 HEB ₁₂₀
$\sigma_{br} = 380.8 \text{ kg/cm}^2$	$\sigma_{\rm F} = 4.610 \ {\rm t/cm}^2$	$\sigma_F = 2.4 \text{ t/cm}^2$
$\alpha_b = 0.74$	$\dot{\alpha_a} = 0.95$	$\alpha_a = 0.95$
$\gamma_{bet} = 2.39 \text{ t/m}^3$	$f_a' = 6.79 \text{ cm}^2$ (6Ø12)	$f_{\rm a} = 34.0 \ {\rm cm}^2$
$E_{b} = 321350 \text{ kg/cm}^{2}$	$E_a = 2119540 \text{ kg/cm}^2$	H= 12 cm
h' = 1.5 cm		$H_i = 9.8 \text{ cm}$
		$t_{g} = 0.65 \text{ cm}$
		h _g =10.3 cm
		$W_{pa} = 165.2 \text{ cm}^3$

Şekil 4.1. Kompozit kirişlerin kesme kuvveti ve eğilme momenti diyagramları

$$M_{u} = \frac{PxL}{4}$$

$$P_{u} = \frac{4xM_{u}}{L}$$

$$L$$

$$b_{eff} \leq \begin{cases} lx & b_{eff} = 75 \text{ cm} \\ 16x12 + 12 \end{cases}$$

her iki yünden 2,5 cm pas paylarıyla beraber toplam genişlik 80 cm olur.

 G_{plak} =0,12x0,8x2,39 = 0,229 t/m G_{profil} = 0,0267 t/m $G = G_{plak} + G_{profil} = 0.2561 \text{ t/m}$

4.2. Kompozit Kirişin Pozitif Moment Taşıma Gücü Hesabı

$$\begin{split} & Z = \alpha_a \: \sigma_F \: F_a \\ & Z = 0.95 \: x \: 2.4 \: x \: 34 = 77,52 \: ton \\ & D = \alpha_b \: . \: \sigma_{br} \: . \: b_{eff} \: . \: y \\ & y = Z \: / \: (\alpha_b \: . \: \sigma_{br} \: . \: b_{eff}) \\ & y = 77,52 \: / \: (0,74x0,380x75) = 3,67 \: cm \\ & h_{ao} = h_{au} = h_a / 2 = 12 / 2 = 6 \: cm \\ & y = 3,67 < d = 12 \: cm \: olduğu \: için \\ & M_u = \: Z_e = Z \: . \: [\: h_{ao} + d - y / 2 \:] \\ & M_u = 77,52 \: [6+12\text{-}3,67/2 \:] = 1253,11 \: tcm \end{split}$$

4.3. Kompozit Kirişin Negatif Moment Taşıma Gücü Hesabı

Yalnız çelik enkesitin taşıyabileceği M_{pa} plastikleşme momenti

$$W_{pa} = \int_{alan} |y| dF_{a} = S_{x,iist} + S_{x,alt}$$
$$W_{pa} = 165.2 \text{ cm}^{3}$$
$$M_{pa} = \alpha_{a} \sigma_{F} W_{pa}$$
$$M_{pa} = 0.95x2.4x165.2 = 376.66 \text{ tcm}$$

Mesnet donatısının yüzey ortalayıcısına göre katkısı

y' =
$$h_t - (h_{alt} - h')$$

y' = 24-(6+1,5) = 16,5 cm
Z' = $\alpha_a' \sigma_F' F_a'$
Z' = 0,95x4,610x6,79 = 29,74 ton
 $\Delta M_1 = Z'.y'$
 $\Delta M_1 = 29,74x16.5$
 $\Delta M_1 = 490,71$ tcm
Eksen farkı dengeleme momenti
y'' = Z'/ (2t_g $\alpha_a \sigma_F)$

$$y'' = 29,74/(2x0,65x0,95x2,4) = 10,03 \text{ cm}$$

$$\Delta M_2 = \alpha_a \sigma_F t_g y'' |y''|$$

$$\begin{split} \Delta M_2 &= 0.95 x 2.4 x 0.65 x 10.03 x |10.03| = 149.09 \ tcm \\ |-M_u| &= M_{pa} + \Delta M1 - \Delta M2 \\ |-M_u| &= 376.66 + 490.71 - 149.09 = 718.28 \ tcm \\ P_u &= \frac{4 x M_u}{L} \\ P_u &= 4 x 718, 28/300 = 9.58 \ ton \end{split}$$

4.4. Kompozit Kirişin Kesme Kuvveti Dikkate Alındığında Oluşan Negatif Moment Taşıma Gücü Hesabı

$$Q_{pa} = 0.52 \text{ }\sigma\text{F tg hg}$$

$$Q_{pa} = 0.52 \text{ }\sigma\text{F tg hg}$$

$$Q_{pa} = 0.52x2.4x0.65x9.8 = 7.77 \text{ ton}$$

$$Q = T1 = Pu/2 = 9.58/2 = 4.79 \text{ ton}$$

$$Q_{pa} x 0.3 = 7.77x0.3 = 2.331 \text{ } \text{c} Q = 4.79$$

$$0.3 \text{ } Q_{pa} = 0.3x7.77 = 2.331 \text{ } \text{ton} < Q = 3.725 \text{ } \text{ton}$$

$$t_{g} ' = T \sqrt{1 - \left(\frac{Q}{Q_{pa}}\right)^{2}}$$

$$t_{g} `= 0.65 \sqrt{1 - ((4.79/7.95)^{2})}$$

$$t_{g} `= 0.52$$
Mpa = 376,66 tcm
$$\Delta M_{1} = 490,71 \text{ } \text{tcm}$$

$$y'' = Z'/(2t_{g} \alpha_{a} \sigma_{F})$$

$$y'' = 29,74/(2x0,52x0,95x2,4) = 12,54 \text{ } \text{cm}$$

$$\Delta M_{2} = \alpha_{a} \sigma_{F} t_{g} ' y'' | y''|$$

$$\Delta M_{2} = 0.95x2.4x0.52x12.54x|12.54| = 186.43 \text{ } \text{tcm}$$

$$|-M_{u}| = M_{pa} + \Delta M1 - \Delta M2$$

$$|-M_{u}| = 376.66 + 490.71 - 186.43 = 680.94 \text{ } \text{tcm}$$

4.5. Düşey Yerdeğiştirme Hesabı

$$f == \frac{\mathrm{PL}^3}{\mathrm{48EI}}$$

$$h_t = h_a + d \ge \frac{L}{25}$$

 $h_t = 12 + 12 = 24 > 300/25 = 12 \text{ cm}$

 $h_a \! \geq \! L\!/30, \, h_a \! = \! 12 \; cm\!\! > \!\! 300\!/30 \!\! = \!\! 10 \; cm \; [17]$

Düşey yer değiştirmesi hesaplanmasında bütün deney eprüvetlerinin 60 kN' daki düşey yer değiştirmesi hesaplanmıştır.

Çelik Profil Enkesitinin Atalet Momentine Göre Hesaplanmış Düşey Yer Değiştirme Değeri;

$$I_{p} = 864.4 \text{ cm}^{4}$$
$$f1 = \frac{6000 \times 300^{3}}{48 \times 2,1 \times 10^{6} \times 864,4} = 18.6 \text{ mm}$$

Kompozit Kiriş Kesiti Göz Önüne Alınarak Hesaplanan Düşey Yer Değiştirme;

$$n = \frac{E_{a}}{E_{b}} = \frac{2119540}{321350} = 6.59$$

$$2n = 13.19$$

$$b^{*} = \frac{b_{eff}}{2n} = \frac{75}{13.19} = 5.68 \text{ cm}$$

$$y_{g} = \frac{5.68 \times 12 \times 6 - 34 \times 6}{5.68 \times 12 + 34} = 2 \text{ cm}$$

$$I_{k} = \frac{5.68 \times 12^{3}}{12} + 5.68 \times 12 \times (6 - 2)^{2} + 864.4 + 34 \times (6 + 2)^{2} = 4948.88 \text{ cm}^{4}$$

$$f_{2} = \frac{6000 \times 300^{3}}{48 \times 2.1 \times 10^{6} \times 4948.88} = 3.25 \text{ mm}$$

Çatlamış kesit göz önüne alınarak hesaplanan düşey yer değiştirme;

Beton kesitinin yarısı (6 cm) çatlamış olduğu varsayılarak hesaplandığında

$$y_{g} = \frac{34x6 - 5.68x6x3}{34 + 5.68x6} = 1.49 \text{cm}$$
$$I_{kc} = 864.4 + 34x(4.51)^{2} + \frac{5.68x6^{3}}{12} + (5.68x6)x(3 + 1.69)^{2}$$
$$I_{kc} = 2345.25 \text{cm}^{4}$$

$$f_{c} = \frac{6000 \times 300^{3}}{48 \times 2,1 \times 10^{6} \times 2345,25} = 0,68 \text{cm} = 6,8 \text{mm}$$

EC-4 'te düşey yer değiştirmenin çatlamış ve çatlamamış en kesitlerinin ortalama atalet momentinin kullanılmasını tavsiye etmiştir. Böylece düşey yer değiştirme;

$$I_{ort} = \frac{I_k + I_{kc}}{2} = \frac{4948.88 + 2345.25}{2} = 3647.06 \text{cm}^4$$

$$f_{\text{ort}} = \frac{6000 \times 300^3}{48 \times 2.1 \times 10^6 \times 3647.06} = 4.35 \text{ mm} \text{ olarak bulunmuştur.}$$

4.6. Kayma Elemanlarının Hesabı (Bulon)

Bulon hesabı Eurocode 4, bölüm 6.2.1.1 'e göre hesaplanmıştır.

Çelik profilin karşılayabileceği kuvvet için

$$F_s = (A_s.f_y)/\gamma_a$$

$$F_s = (34x2400)/1.15$$

$$F_s = = 70956.52 \text{ kg}$$

Betonarme tablanın karşılayabileceği kuvvet

$$F_c = (0.85.A_c.f_{ck}) / \gamma_c$$

$$F_c = (0.85x960x300) / 1.5$$

$$F_c = 163200 \text{ kg}$$

Bir bulonun taşıdığı kesme kuvveti değeri Eurocode 4 bölüm 6.3.2.1'e göre

$$P_{Rd} = 0,29 \alpha d^2 \sqrt{\frac{f_{ck} E_{cm}}{\gamma_v}}$$

a, bulonun toplam boyunun çapına oranına h/d'ye bağlı olarak belirlenir:

$$a=0,2[(h/d)+1]$$
 3 $a=1$ h/d>4

h/d=15/1.3=11.54 a=1 alınmıştır.

$$P_{Rd}=0.29 \times 1 \times 1.3^2 \sqrt{\frac{300 \times 321350}{1.25}}$$

P_{Rd}=3849.68 kg

Gerekli bulon sayısını bulmak için karşılanması gereken kuvvetin, bulonun taşıyabileceği kuvvette bölünmesiyle hesaplanabilir.

n bulon =70956.52/3849.68

n bulon =18.43 adet

n bulon =20 adet kullanılmıştır.

4.7. Levhalara Gelecek Bulon Mesafelerinin Hesaplanması

Şekil 4.2. Bulon yerleşimi gösterimi

e = aralık

e1 = Kuvvet doğrultusunda kenar uzaklık

e2 = kuvvete dik doğrultudaki kenar uzaklık olarak kabul edilir.

	binalarda	köprülerde
min e	3.5-4.0d	3.5-4.0d
min e1	2d	2d
min e2	1.5d	1.5d
max e	8d,15t	6d,12t
max e1	3d,6t	3d,6t
max e2	3d,6t	3d,6t

Tablo 4.2 Bulon yerleşim koşulları

t = en ince parça kalınlığıdır.

DN1, DN2, DN3, DN4 te

min e= 4.55 cm max e= 10.4 cm

min e1=2.6 cm max e1=3.9 cm

min $e^{2}=1.95$ cm max $e^{2}=3.9$ cm olarak hesablanmıştır.

DN1 ve DN2 için

DN3 ve DN4 için

bu levhalar kullanılmıştır.[18] Şekil 4.3. Levhaların gösterimi

4.8. Döşeme Plağı Donatı Hesabı

Negatif moment bölgesindeki donatı hesabı

 $H_{(-)}' = ((n' - n_{ao}'). H_{(-)})/n$ $H_{(-)}' = ((6-0)x29.74)/6$ $H_{(-)}' = 29.74$ ton L=300 cm $V_{cr} = 0.65.t_{ctd}.2d.L$

$$V_{cr} = 0.65 \times 12.66 \times 2 \times 12 \times 300$$

 $V_{cr} = 59248.8 \text{ kg}$

 $H_{(-)}$ '= 29.74 ton < V_{cr} = 59.25 kg

Donatı hesabı gerekmez minumum donatı konulmalıdır.

d=12 cm olduğu için donatı aralığı 15 cm dir.

BÖLÜM 5. SONUÇ VE ÖNERİLER

Bu bölümde bölüm 3' deki deney verileri ile Bölüm 4' deki hesap tahkikleri karşılaştırılmış ve değerlendirmeler yapılmıştır.

Deneylerin sonucunda ilk olarak çelik profil ile betonarme plak arasında tam kompozitlik gözlemlenmiştir. kayma elemanlarında kopma, sıyrılma gözlemlenmemiştir. Bulonların çok iyi birer bağlantı elemanı olduğu gözlemlenmiştir.

Deneylerin tamamında orta çatlağın (yükün yüklendiği yerin) sağında ve solunda simetrik sayılabilecek çatlaklar oluşmuştur.

Şekil 5.1. Kirişlerin simetrik çatlak görünüşleri

Deney eprüvetlerinin beton çatlakları incelendiğinde bulonların bulunduğu yerlerde çatlakların oluştuğu gözlemlenmiştir. Çelik elemanlarda olduğu gibi beton plak üzerinde de bulon deliklerinin bulunduğu noktalarda beton net en kesit alanı bulon dışındaki bölgelerdeki alandan daha küçük olduğu için betondaki çatlama bulon deliklerinin olduğu (net en kesitin küçük olduğu) bölgelerde gerçekleşmiştir. Aynı durum çelik elemanlarda da net en kesit alanın küçük olduğu bulon delik bölgelerinde gerçekleşeceği bilinmektedir.

Şekil 5.2. Beton çatlaklarının bulonlar etrafında oluşumunun gösterilmesi

Deney numunelerine ait genel bilgiler, çatlama yükleri, deneysel ve teorik taşıma gücü değerleri verilmiştir.

	Beton Boyutu	Çelik	Çelik
	(cm)	Profil	levha
DN1	300.80.12	HEB120	20 adet 150*120*2
DN2	300.80.12	HEB120	20 adet 150*120*2
DN3	300.80.12	HEB120	40 adet 120*70*2
DN4	300.80.12	HEB120	40 adet 120*70*2
DN5	300.80.12	HEB120	levhasız
DN6	300.80.12	HEB120	levhasız

Tablo 5.1 Numunelere ait bilgiler, çatlama yükleri, deneysel ve teorik taşıma gücü değerleri

	Çatlama	Deneysel Taşıma	Teorik Taşıma	Deneysel Taşıma
	yükü (kN)	Yükü (kN) P _{ud}	Yükü(kN) P _{ut}	Yükü (kN) P _{ud}
DN1	52	118.31	95.8	DN1 veDN2 ortalama
DN2	46	105.99	95.8	112.15
DN3	47	107.85	95.8	DN3 ve DN4 ortalama
DN4	44	99.6	95.8	103.72
DN5	46	100.13	95.8	DN5 ve DN6 ortalama
DN6	43	96.53	95.8	98.33

Deneysel taşıma yükü ile teorik taşıma yükü arasında minumum 0.73 kN maksimum 22.51 kN dur. Teorik taşıma yükü deneysel taşıma yükünden minumum %0.7 maksimum %23.5 daha fazladır. DN1 ve DN2 den oluşan 1.sete gelen taşıma yükü DN3 ve DN4 ten oluşan 2.setten %8.13 daha fazladır.DN3 ve DN4 ten oluşan 2.sette gelen taşıma yükü DN5 ve DN6 dan oluşan 3.setten %5.48 daha fazladır. DN1 ve DN2 den oluşan 1.sete gelen taşıma yükü ise DN5 ve DN6 dan oluşan 3.setten %14.05 daha fazladır.

Taşıma yüklerindeki bu farklılıklar referans kaynak olarak aldığımız Çelik Yapıda Karma Elemanların Plastik Hesabı kitabında da belirtildiği gibi; Bir karma kirişte, Kayma bağlantılarının amacı, çelik enkesitle betonarme plağı birbirine, bir bütün olarak çalışabilecekleri şekilde bağlamaktır. Bu amaçla, yük altında: (a) Beton ve çelik bölümler arasında oluşmak isteyen kalkmayı önlemek, dolayısıyla kayma kuvvetini aktarabilmek, (b)şekil değiştirmeler sonucu beton plağın çelik parçadan ayrılıp kalkmasını sağlamak uygun kayma bağlantısının boyutlarını ve sayısını hesapla bulmak mümkündür. Buna karşın, plağın kalkmasıyla ilgili bir hesap şekli gelişmemiş olup önlemler deneyimlere dayanır. Dolayısıyla bu yapılan çalışmalarda plağın çelik kirişten kalkması durumu temel amaç olarak dikkate alınmıştır. Levhalı deney eprüvetlerinin levhasızlara oranla daha fazla yük taşıması da Levhaların kalkmaya karşı daha rijit durduğu ve bundan dolayı taşıma kapasitesinin daha fazla olduğu olarak açıklanmıştır.

Şekil 5.3. Herbir deney epruvetine ait çatlama yükleri, deneysel taşıma ve teorik taşıma yükleri

Şekil 5.4. Herbir sete ait ortalama çatlama yükleri ve ortalama taşıma yükleri

Deneylerde LVDT (potansiyometrik cetvel, deplasman ölçer) ile sehimler okunmuş ve yük-sehim grafikleri çizilmiştir. Deney numunelerine ait deneysel sehim, Brüt Enkesit Ele Alınarak Belirlenen Sehim, Çatlamış Kesit Ele Alınarak Belirlenen Sehim, Brüt ve Çatlamış Kesitin Ortalaması Ele Alınarak Belirlenen Sehim değerleri verilmiştir.

	Tab	lo :	5.	2	N	umun	elere	ait	dene	ysel	sehin	ı ve	hesa	planan	sehim	mikta	rları
--	-----	------	----	---	---	------	-------	-----	------	------	-------	------	------	--------	-------	-------	-------

	Deneysel Sehim	Deneysel Sehim	Brüt Enkesit	Çatlamış Kesit	f1 ile f2 nin
	miktarı (mm)	Yükü (kN) P _{ud}	Ele Alınarak	Ele Alınarak	ortalması
	fd (60 kN'da)		Belirlenen Sehim	Belirlenen Sehim	olan Sehim
			miktarı (elastik	miktarı (elastik	miktarı (elastik
DN1	13.34	DN1 veDN2 ortalama	hesap)	hesap)	hesap)
DN2	14.60	13.97	(mm) f1	(mm) fç	(mm) fort
DN3	15.92	DN3 ve DN4 ortalama	(60 kN'da)	(60 kN'da)	(60 kN'da)
DN4	21.87	18.86			
DN5	20.08	DN5 ve DN6 ortalama	3.25 mm	6.85 mm	4.35 mm
DN6	20.95	20.51			

1.sette (DN1 ve DN2) okunan deneysel sehim miktarı ortalaması alınmış teorik sehim miktarından 3.21 kat daha fazladır. 2.sette (DN3 ve DN4) okunan deneysel sehim miktarı ortalaması alınmış teorik sehim miktarından 4.33 kat daha fazladır. 3.sette (DN3 ve DN4) ise okunan deneysel sehim miktarı ortalaması alınmış teorik sehim miktarından 4.71 kat daha fazladır. Burada en fazla çatlamış kesit hesabının deneysel sehim miktarına yakın olduğu tespit edilmiştir.

1.sette okunan sehim miktarı 2.sette okunan sehim miktarından %35 daha az, 2.sette okunan sehim miktarı 3.sette okunan sehim miktarından %8.74 daha az ve 1.sette okunan sehim miktarı 3.sette okunan sehim miktarından %46.81 daha az olduğu tespit edilmiştir. Buradan da levha kullanımının sehim miktarını azalttığı sonucuna varılmıştır.

Süneklilik herhangi bir etki ve karşı gelen şekil değiştirme için tanımlanabilir. Deney eprüvetlerimizin tamamı için süneklilik tanımına yakın yük-şekil değiştirme diyagramları çizilmiştir. Bu da güç tükenmesine yakın durumunda Yük-şekil değiştirme grafiği değişimi yataya yakın olmuş yani yük yutma özelliği sonlandığı halde şekil değiştirmelerin devam ettiği tespit edilmiştir.

Şekil 5.5. Tüm deney Eprüvetlerinin Yük – Uzama Diyagramları

Kesitin Eğilme Rijitliğine Elastiklik Modülü ve Brüt atalet momenti etkili olur EI=M/ø.Tüm deney Eprüvetlerinde Yük arttıkça Moment-Eğrilik diyagramında yataya yakın hareket gözlemlenmiştir. Bu da güç tükenmesine yakın durumunda M-ø (moment-eğrilik) değişimi yataya yakın olduğu için eğilme rijitliği küçülür yorumuna sebeb olmuştur. Bu davranış plastik malzeme davranışıdır ve elastik davranıştan çok daha gerçekçi bir yaklaşım olarak belirtilmiştir.

Şekil 5.6. Tüm deney Eprüvetlerinin Moment - Eğrilik Diyagramları

KAYNAKLAR

- [1] EROL,M.,''Karma Malzemeler'',Ders Notları,2008
- [2] ARDA,T.S,YARDIMCI,N.,''Çelik Yapıda Karma Elemanların Plastik Hesabı'',Kutriş Matbası
- [3] EYYUBOV,C.,GÜNBAY,S.,''Çelik-Beton Kompozit Enkesitli Kirişlerin Gerilme ve Şekil Değiştirmerinin Araştırılması'',Yüksek Lisans Tezi,2005
- [4] YELGİN,A.N. ,YALMAN,H.Y.,'' Çelik Liflerle Güçlendirilmiş Hazir Betonarme Plakli Kompozit Kirişlerin Negatif Moment Bölgesindeki Yapisal Davranişi'', Yüksek Lisans Tezi,Sakarya,1998
- [5] ARDA,T.S.,YARDIMCI,N.,''Gövde Betonlu Betonarme-Çelik Kompozit Kirişlerin Negatif Moment Bölgesindeki davranışı ve taşıma gücünün incelenmesi''Doktora tezi İ.T.Ü.,İstanbul,1993
- [6] YELGİN,A.N. ,ÇETİN,Ö.,'' Çelik Levhalarla Takviye Edilmiş Hazir Betonarme Plakli Karma Kirişlerin Negatif Moment Bölgesindeki Yapisal Davranişi''Yüksek Lisans Tezi''Sakarya,2004
- [7] SÜTÇÜ ,F., ÖZGEN,K.,'' Kompozit Döşemelerde Etkili Tabla Genişliğinin Incelenmesi'' Yüksek Lisans Tezi,İ.T.Ü.,İstanbul,2003
- [8] GAETANO,M.,GİOVANNİ,F.,EDOARDO,C.,'' Çelik Beton Karma Kirişlerin Negatif Moment Eğilme Altında Modellenmesi'',journal of structural engineering...
- [9] ROİK,K., EHLERT,W.'' Negatif Moment Bölgesinde Alt Başlığın Yanal Burkulması Ve Gövde Levhasının Yanal Burkulması''
- [10] BS5400,"Steel Concrete and Composite Bridges",1979
- [11] Eurocade No.4.,''Çelik ve Beton Kompozit Yapıların Dizaynı''Temmuz,2002
- [12] AISC, "Manual Of Steel Construction Load And Resistance Design", First Edition, 1986.

- [13] AASHTO''standart Specifications For Highway Bridges, Washington. 1973
- [14] TS4561''Çelik Yapıların Plastik Teoriye Göre Hesap Kuralları''TSE,Ankara, Nisan,1984.
- [15] İMO-02 "Hesap Kurallari ve Proje Esaslari" İstanbul,2008
- [16] TS500 ''Betonarme Yapilarin Tasarimi Ve Yapim Kurallari''Şubat,2000
- [17] TS648 ''Çelik Yapıların Hesap ve Yapım Kuralları''Aralık,1980
- [18] TS80 ''bağlama elemanları''1988

EKLER

- EK 1: Betonarme plak döşemede kullanılan donatıların mekanik raporu
- EK 2: Betonarme plak döşemede kullanılan betonun basınç dayanım raporu
- EK 3: Fotoğraflar

DENGE YAPI LABORATUVARI TEL:0216 3650503 FAX:3650504 Mekanik Test Raporu

Malzeme Bilgileri

Müsteri	: MOMENT YAPI DENETİM			
Yapı Sahibi	: MEHMET ÇOLAK	Tarih	• * e ×	
Standart	: TS 708	Seri No	: .	
Kayıt No	: Ç267	Numune Eb	badı :	
Malzeme	: BÇ Illa			
Sonuçlar				

Numune No	Kesit Alanı mm2	L0 mm	L1 mm	Akma kN	Re %0 .2 N/mm2	Çekme Kuv. kN	Rm N/mm2	Rm/Re	Uzama %	E Modulus N/mm2
12.	113.04	120.	137.	63.77	564.08	73.95	654.33	1.16	14.2	211954.86
12.	113.04	120.	136.	66.	583.7	76.06	672.97	1.15	13.3	201438.54

Grafikler

Uzama %

Açıklama :

Deneyi Yapan

Onaylayan

Not 1: BU RAPOR İZİNSİZ OLARAK ÇOĞALTILAMAZ ÜZERİNDE DEĞIŞİKLİK YAPILAMAZ Not 2: BU RAPOR SADECE DENEYİ YAPILAN NUMUNELER İÇİN GEÇERLİDİR
10:39

an

DENGE YAPI LABORATUVARI TEL:0216 365 05 03 FAX:0216 365 05 04 Basing Dayanım raporu

Numune Bilgileri :								Rapor Tarihi :				
Yapı Sa İnşaət /	hibi : ME Adreal : AT	ATÜRK MAH	K(1531) ÚMRANÍY	'E Parsel : 17								
Katkı Test St Kull. Ye	andardı : or ; 1.M	ORMAL KAT		Betor Hazır ABLİYE	eton :	C30 Demirtas						
Nr.	Kaalt Alan+ cm2.	Hacim cm3.	Ağırtık gr.	Birim Ağır. kg/dm3	Num. Yaşı gün	Alinig Tarthi	Test Tarihi	Kirilma Yokü kN.	Basing Deyanin N/mm2	rBeton Sicak. 'C	Trana. No	
4	225	3375	8052.	2.39	20	02.09.09	30.09.09	992.69	39.23			
5	225.	9375	8051.	2.39	28	02.09.09	30.09.09	849.49	37.75			
6	225.	3375.	8082	2.39	28	02.09.09	80.09.09	838.84	37,19			
Jrtelama:				وشمسمت				856.34	38.08		1	
Basınç 60.	Dayanımı (N/	'mm2)		Yükle	mathizi.≓8 M	Pala				(Inima Yükü	(kN) 1350.00	
55,	+ + + + + + + + + + + + + + + + + + + +									+++++++++++++++++++++++++++++++++++++++		
40.			/							+ + + +	500.00	
20.											450.00	
0	<u>M</u>				00	1		+	- 			

Açıklamalar:

Deneyleri Yapan Selahattin TECER Onaylayan Lab.Şefi

5

R

Kayıl yeri : D:\DENGEK~2WOMENT~1\MEHMET~1\0209~1.01\TEST05.TST Not 1: Bu repor firmamızın izni olmadan çoğaltılamaz, üzerinde değişiklik yapılamaz. Not 2: Bu repor sadece deneyi yapılan numuneler için geçerildir.

Zaman (s.)

ÖZGEÇMİŞ

Ahmet DEGERLİ, 03.05.1985 de Gölcük' te doğdu. İlk, orta ve lise eğitimini İstanbul'da tamamladı. 2007 yılında Atatürk Üniversitesinden mezun oldu. 2007-2008 yılları arasında Çamlıca Yapı Denetim 'de yardımcı kontrol mühendisi olarak görev yaptı. 2008 'den itibaren AZ Mimarlık' ta çalışmaktadır.