T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

SİLTLERDE SIVILAŞMA POTANSİYELİNİN DEĞERLENDİRİLMESİNDE YANAL KONSOLİDASYON ÖZELLİĞİNİN ETKİSİ

YÜKSEK LİSANS TEZİ

İnş. Müh. Mehmet TAPAN

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ
Enstitü Bilim Dalı	•	GEOTEKNİK
Tez Danışmanı	:	Yrd. Doç. Dr. Aşkın ÖZOCAK

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

SILTLERDE SIVILAŞMA POTANSİYELİNİN DEĞERLENDIRILMESINDE YANAL KONSOLIDASYON ÖZELLİĞİNİN ETKİSİ

YÜKSEK LİSANS TEZİ

İnş. Müh. Mehmet TAPAN

İNŞAAT MÜHENDİSLİĞİ Enstitü Anabilim Dalı : **GEOTEKNİK** Enstitü Bilim Dalı :

Bu tez 14 / 09 /2011 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Yrd. Doç. Dr. Aşkın ÖZOCAK Prof. Dr. Akın ÖNALP Jüri Başkanı

Thomas

Yrd. Doc. Dr. Sedat SERT

Üve

Üve

ÖNSÖZ

Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Geoteknik Programında yüksek lisans tezi olarak hazırlanan bu araştırmada siltli zeminlerin gerilme artışı altında gösterdiği sönümlenme davranışının sıvılaşma ile ilişkisi ele alınmıştır.

Birlikte çalışmaya başladığımdan beri hiçbir zaman her türlü destek ve emeğini esirgemeyen hocam Yrd. Doç. Dr. Aşkın ÖZOCAK'a teşekkürlerimi sunarım.

Çalışmam süresince yardımlarını gördüğüm Sakarya Üniversitesi öğretim üyeleri Yrd. Doç. Dr. Ertan BOL, Yrd. Doç. Dr. Sedat SERT, Sakarya Üniversitesi Geoteknik Laboratuvar sorumlusu Recep EYÜPLER'e sonsuz teşekkür ederim. Ayrıca tezim için gerekli deneylerimin bir bölümünü İstanbul Kültür Üniversitesi laboratuvarında yapmama olanak sağlayan sayın Prof. Dr. Akın ÖNALP hocama sonsuz teşekkür ederim.

Beni eğitim ve öğretim hayatım boyunca destekleyen annem Hanife TAPAN, babam Numan TAPAN, kardeşlerim Fatma, Öznur, Fatih TAPAN'a ve ayrıca YAZ ve TAPAN ailelerine teşekkür ederim.

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
SİMGELER LİSTESİ	V
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	vii
FOTOĞRAFLAR LİSTESİ	viii
ÖZET	ix
SUMMARY	x

BÖLÜM 1.

BÖLÜM 2.

ZEMİNLERİN SIKIŞMASI VE KONSOLİDASYON	2
2.1. Sıkışma ve Konsolidasyon	3
2.2. Zeminin Sıkışabilirliği	4
2.3. Konsolidasyon Süreci	5
2.4. Bir Boyutlu Sıkışma ve Konsolidasyon	6
2.5. Sıkışma Katsayısı ve Sıkışma İndisi	10
2.6. Radyal Konsolidasyon Teorisi	12

BÖLÜM 3.

SİLTLERİN DİNAMİK DAVRANIŞI	1	4
-----------------------------	---	---

BÖLÜM 4.

RADYAL KONSOLİDASYON16

4.1. Hidrolik Hücrede Sönümlenme	19
4.1.1. Deney prosedürü	20

BÖLÜM 5.

DENEYSEL ÇALIŞMA	22
5.1. Numune Hazırlama	22
5.2. Fiziksel Deneyler	
5.3. Hidrolik Hücrede Sönümlenme Deneyleri	
5.4. Deney Sonuçlarının Adapazarı Kriteri Açısından İncelenmesi	32
5.5. Sönümlenme Deney Sonuçları	

BÖLÜM 6.

SONUÇLAR VE ÖNERİLER	
KAYNAKLAR	40
EKLER	42
EK I.a. Dane Boyutu Dağılım Eğrileri (Pipet)	. 42
EK I.b. Dane Boyutu Dağılım Eğrileri (Hidrometre)	. 42
EK II. Sönümlenme Eğrileri	45
ÖZGEÇMİŞ	87

SİMGELER LİSTESİ

В	:	Boşluk Suyu Basıncı Parametresi
C _c	:	Sıkışma İndisi
C _v	:	Düşey Konsolidasyon Katsayısı
C _h	:	Yatay Konsolidasyon Katsayısı
Cr	:	Radyal Konsolidasyon Katsayısı
Е	:	Boşluk Oranı
E	:	Elastisite Modülü
k _v	:	Düşey Geçirimlilik Katsayısı
k _h	:	Yatay Geçirimlilik Katsayısı
m _v	:	Hacimsel Sıkışma Katsayısı
OCR	:	Aşırı Konsolidasyon Oranı
Si	:	Ani Oturma
S _∞	:	Konsolidasyon Oturması
u _w	:	Boşluk Suyu Basıncı
V	:	Toplam Hacim
W	:	Su İçeriği

ŞEKİLLER LİSTESİ

Şekil 2.1. Zeminlerde yükleme ve boşaltma süresince sıkışma ve şişme modeli3
Şekil 2.2. İri ve ince daneli zeminlerde konsolidasyonun zamanlarda gelişimi5
Şekil 2.3. Değişmez gerilme altında konsolidasyonun zamanla gelişimi
Şekil 2.4.a. Doygun bir zemin elemanı
Şekil 2.4.b. Doygun zeminde tek boyutlu sıkışma7
Şekil 2.5. Zemin elemanında akım
Şekil 2.6. Sıkışabilir bir zemin için ideal boşluk oranı – efektif gerilme ilişkisi11
Şekil 2.7. Radyal drenaj durumu12
Şekil 4.1. Hidrolik konsolidasyon hücresi deney sistemi16
Şekil 4.2. Hidrolik hücre drenaj ve yükleme durumları
Şekil 4.3. Rowe hücresi sönümlenme deneylerinde kullanılan deney düzeneği20
Şekil 5.1. t ₅₀ ile hesaplanan radyal konsolidasyon katsayısı değerleri
Şekil 5.2. t ₉₀ ile hesaplanan radyal konsolidasyon katsayısı değerleri

TABLOLAR LİSTESİ

Tablo 4.1. Hidrolik hücre konsolidasyon deneylerinde ölçek katsayıları	19
Tablo 5.1. Karışım numuneleri fiziksel özellikleri	.28
Tablo 5.2. Adapazarı kriteri açısından numunelerin incelenmesi	33
Tablo 5.3. Radyal konsolidasyon zaman faktörleri	.34
Tablo 5.4. Sönümlenme deney sonuçları	35

FOTOĞRAF LİSTESİ

Foto 4.1. Rowe laboratuvar sönümlenme deneyleri düzeneğinden bir görünüş	21
Foto 5.1. Numunenin el arabasıyla laboratuvara taşınması	22
Foto 5.2. Numunenin çökeltme havuzuna alınması	23
Foto 5.3. Numunenin 40 nolu elekten elenmesi ve karıştırılması	23
Foto 5.4. Su ile birlikte karıştırılan numunenin 5 dk çöktürülmesi	24
Foto 5.5. Santrifüjle kilin büyük havuza pompalanması	24
Foto 5.6. Silt – kum karışımından siltin yıkama eleme yöntemiyle elde edilmesi25	
Foto 5.7. Etüvden alınan siltin masa üzerine serilip kurutulması	26
Fot 5.8. Kurutulan siltin harman yapılması	26
Fot 5.9. Su ilave edilen numunenin karıştırılması	27
Foto 5.10. Numuneye vakum uygulama	27
Foto 5.11. Çarpmalı alette (Casagrande) likit limit deneyi	29
Foto 5.12. Koni düşürme deneyi	29
Foto 5.13. Özgül ağırlık deneyi numuneleri	29
Foto 5.14. Hidrometre deney numuneleri	30
Foto 5.15. Rowe hücresine numune yerleştirme ve deney düzeneği	31
Foto 5.16. Rowe hücresi deney sonu numune boyu ölçme	31
Foto 5.17. Deney sonu numune tartımı ve etüve konulması	32

ÖZET

Anahtar kelimeler: Hacim değişimi, Silt, Yanal konsolidasyon katsayısı, Sıvılaşma, Hidrolik hücre (Rowe)

Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Geoteknik Programı'nda yüksek lisans tezi olarak hazırlanan bu araştırmanın amacı, siltli zeminlerde hacim değişimi davranışının deneysel olarak gözlemlenerek siltli zeminlerin konsolidasyon katsayısının hidrolik hücre ile belirlenmesi ve sıvılaşma ile olası ilişkisinin incelenmesidir. Bu amaçla, Adapazarı kentinden alınan siltli zemin numunesinin içerdiği silt boyutundaki daneler ayıklanarak içerisine belirli oranlarda kil numunesi ilavesi ile hidrolik hücrede konsolide edilip sönümlenme deneyleri yapılmıştır.

Elde edilen numunelerin ayrıca fiziksel özellikleri ölçülmüş, çarpmalı alet ve koni düşürme ile likit limit değerleri, plastik limit değerleri, özgül ağırlık değerleri, hidrometre ve pipet analizi ile dane dağılım eğrileri elde edilmiştir. Sönümlenme deneylerinden belirlenen yanal konsolidasyon katsayısı değerleri numunelerin Adapazarı Kriteri ile belirlenen sıvılaşma potansiyelleri açısından değerlendirilmiştir.

EFFECT OF RADIAL CONSOLIDATION PROPERTIES ON THE LIQUEFACTION POTENTIAL OF SILTS

SUMMARY

Keywords : Volume change, Silt, Radial consolidation coefficient, Liquefaction, Hydraulic cell (Rowe)

The aim of this research, which has been done as an MBA thesis in Geotechnic Programme in Civil Engineering Department, University of Sakarya, is to do a study on identifying consolidation coefficient of silt grounds and the possible relation with liquefaction by observing the volume change behaviour in silt grounds.

With this aim, particles in silt dimension have been cleaned out of silt ground sample from Adapazari, a certain proportion of clay sample has been added and dissipation experiments are done by consolidating those particles in hydraulic cell.

The samples gained have been physically measured, liquid limit values, plastic limit values, heat specific weights have been acquired via casagrande and cone penetration and particle distribution curves have been acquired via hydrometer and pipette analysis.

Lateral consolidation coefficients identified via dissipation experiments have been evaluated in terms of liquefication potentials which were identified in Adapazarı criteria of the samples.

BÖLÜM 1. GİRİŞ

Bilindiği gibi siltlerin sıvılaşabilirliği son yirmi yıldır önemli bir çalışma konusu olmuş, Sakarya Üniversitesi'nde de bu konu üzerine yoğun emek verilmiştir. Siltlerde boşluk suyu basıncının sönümlenme özelliğinin sıvılaşma potansiyelinin tespitinde değerlendirilmesi bu çalışmanın konusu olmuştur.

Ödometrede konsolidasyon ölçümünün getirdiği bazı eksiklikleri bertaraf etme amacıyla 1960'lı yıllarda geliştirilen hidrolik hücre (Rowe hücresi), zeminlerin sıkışabilirliğinin daha iyi koşulların kontrol edilebildiği bir deneyde ölçülmesi fikrinden ortaya çıkmıştır. Bu çalışmada zeminlerin sönümlenme özelliğinin ölçümünde hidrolik hücreden yararlanılmıştır. Deneylerde kullanılan numuneler, likit limitin 1.5 katı su muhtevasında hazırlanan zemin bulamacının, hidrolik konsolidasyon hücresinde konsolide edilmesiyle hazırlanmıştır. Laboratuvarda oluşturulan bu numuneler aynı hidrolik hücre içinde düşey gerilme altında konsolide edilmiştir. Bunun yanında numunedeki fazla boşluk suyu basıncının sönümlenmesi hücre cidarına yerleştirilen geçirimli süzgeç elemanı vasıtasıyla dışa doğru yanal konsolidasyon özellikleri belirlenmiştir. Bu çalışmada güncel bilgiler ışığında sıvılaşma potansiyeli tespit edilen bu numunelerin yatay konsolidasyon özelliklerinin

BÖLÜM 2. ZEMİNLERİN SIKIŞMASI ve KONSOLİDASYON

Cisimler yüklendiklerinde şekil değiştirme özelliği gösterirler. Birçok mühendislik gereci kabul edilebilir düzeydeki bir mutlak gerilme noktasına kadar Hooke yasasına uyar. Örneğin, çeliğin akma sınırına dek gerilme-şekil değiştirme davranışı gerçekte bir doğruyla temsil edilir, elastik sınır içinde yük boşaltıldığında şekli eski haline döner. Beton bir dereceye kadar benzer davranır, ancak gerilme-şekil değiştirme ilişkisi doğrusallıktan yoksundur. Zeminler için, gerilme-şekil değiştirme ilişkisi zeminin cinsiyle değişmekle beraber, zamanın önemli rol oynadığı ince daneli zeminlerde, genellikle karmaşıktır. Zeminin bu zaman ilişkili şekil değiştirmesi (konsolidasyon) özellikle ince daneli zeminlerde oturma hesabında kullanılmaktadır.

Temel oturmalarının hesabı geoteknik mühendisinin önemli problemlerinden biridir. İtalya'da Pisa kulesi, Mexico City'deki Güzel Sanatlar Binası ve Latin Amerika Kulesi gibi yapılar mimari özellikleri ile değil oturma özellikleri ile tanınırlar. Geçmişte birçok yapı aşırı oturmanın sonucu olarak işlev göremez hale gelmiştir. Gerçekten farklı tahmin edilen oturma sonucu oluşabilecek hasarlar geoteknik mühendisleri için çözülmesi gerekli bir problemdir.

Oturma yer altı su seviyesindeki düşüş, titreşim gibi etkilerle de oluşmasına rağmen genellikle dış yükleme nedeniyle belirmektedir. Tipik olarak, lineer olmamakla beraber gerilmenin artmasıyla oturma büyüklüğü artmaktadır. Örneğin, zemin yüzeyine uygulanan herhangi bir yükün sonucu olarak temel altında oturmalar tahmin edilebilmektedir. Bunun yanında kazı ve yer altı su seviyesindeki yükselişten dolayı efektif gerilmedeki azalım gibi nedenlerle yükün kalkması durumunda ise şişme veya kabarma meydana gelebilir. Şekil 2.1'deki tam doğrusal olmayan ve geri dönmeyen özellikteki sıkışma gerçek bir zeminin sıkışma davranışını temsil etmektedir (Cernica, 1995).

Şekil 2.1. Zeminlerde yükleme ve boşaltma süresince sıkışma ve şişme modeli (Cernica, 1995)

2.1. Sıkışma ve Konsolidasyon

Boşluk suyunda oluşan fazla basıncın sönümlenmesi ile zemindeki hacim değişiminin zamana bağlı ilerlemesi konsolidasyon olarak bilinir. Zemin hacmi ve efektif gerilme arasındaki zamandan bağımsız ilişki ise sıkışma olarak tanımlanır. Doygun zeminlerde geçerli olduğu kabul edilen efektif gerilme ilkesine göre, zemin hacmindeki değişim sadece efektif gerilmedeki değişimden dolayı meydana gelmektedir. Bunun anlamı, bir zeminin hacmi değişmişse almakta olduğu efektif gerilmenin mutlaka değişmiş olduğu biçiminde açıklanabilir. Zemin daneleri ve su sıkışmaz kabul edildiğinden doygun bir zeminin hacmi sadece boşluklardan suyun uzaklaşması durumunda azalmaktadır. Bir zemin kütlesinin en içteki boşluklarından sınırına kadar su akışının Darcy yasasına uyduğu kabul edilir. Ancak akış hızı sonlu bir değere sahip olacağından zeminin hacim değişimi zamanla süregelir. Zemin hacminin zamanla değişimi, efektif ve toplam gerilme, boşluk suyu basıncı, geçirimlilik ve sıkışabilirlik arasındaki karmaşık etkileşim sonucu meydana gelmektedir (Önalp, 2002).

2.2. Zeminin Sıkışabilirliği

Sıkışma bir zemin kütlesinin hacmindeki azalımın sonucudur. Yüzeye uygulanan yükler zemin kesiti boyunca yatay ve düşey yönlerde gerilme artışları yaratmakta, drenajsız (ani) ve drenajlı konsolidasyon oturması oluşmaktadır. İri daneli zeminlerin sıkışması bağıl olarak kısa sürede tamamlanmaktadır. Geçirimliliği düşük doygun ince daneli zeminlerdeki toplam oturma, üç bileşenden oluşmaktadır:

 i) Ani oturma tüm diğer malzemelerde de gerçekleşen sıkışma türüdür. Zeminin düşük geçirimliliğinden dolayı kayda değer hacim değişimi olmaksızın meydana gelen ani oturma doygun olmayan zeminlerde önemli değerlere ulaşabilmektedir. Temel özelliğine bağlı olan ani oturma elastisite kuramına göre aşağıdaki bağıntıyla hesaplanabilir (Uzuner, 1990);

$$S_i = q \cdot B \cdot \frac{1 - \nu^2}{E} \cdot I_0 \tag{2.1}$$

Burada;

- q: Temel taban basıncı
- B: Temel genişliği
- I₀: Temel rijitlik katsayısı
- E: Zemin elastisite modülü
- υ: Poisson oranı

ii) Birincil konsolidasyon oturması doygun tabakaya gelen gerilme artışı nedeniyle artan boşluk suyu basıncının sönümlenmesi ile ortamdan su çıkışı sonucu oluşan oturmadır. Boşluk suyu basıncının sönümlenmesi iri daneli zeminlere oranla çok daha yavaş oluşacağından sıkışma da benzer yavaşlıkla meydana gelecektir.

Şekil 2.2. İri ve ince daneli zeminlerde konsolidasyonun zamanla gelişimi (Cernica, 1995)

Diğer bir deyişle, suyun ince daneli bir malzemenin boşluklarından çıkması için uzun süre gerektiğinden doygun bir kil tabakasının sıkışması Şekil 2.2'de gösterildiği gibi uzun bir zaman sonra tamamlanacaktır.

iii) Su içeriği çok yüksek plastik ve organik killerde sünme sonucu beliren ikincil konsolidasyon bu çalışmanın kapsamı dışında kalmaktadır.

2.3. Konsolidasyon Süreci

Terzaghi konsolidasyon kuramı geçirimliliği görece düşük olan zeminde sıkışmanın sadece yüklenme sonucu dışarıya kaçamadığı için oluşan fazla boşluk suyu basınçlarının zaman içinde sönümünden kaynaklandığını kabul etmektedir (Terzaghi, 1943; Önalp, 1982). Bir başka deyişle, B parametresi 1.00 olan bir zemin ani gerilme artışı aldığında boşluk suyu basıncı da bu gerilme artışına denk büyüklükte artış gösterecektir (Şekil 2.3.a,b) (Önalp, 1982).

Şekil 2.3. Değişmez gerilme altında konsolidasyonun zamanla gelişimi (Önalp, 1982)

Zeminin geçirimliliği sıfırdan büyük ise bu fazla boşluk suyu basıncının zaman içinde sönümlenmesi beklenir. O halde, başlangıçta uygulanan gerilmenin ilk aşamada tümü su tarafından taşınırken zaman içinde boşluk suyu basıncının sönmesiyle yük danelere aktarılacağından efektif gerilme denklemine göre sistemdeki boşluk suyu basıncı sıfıra yönelirken efektif gerilme artışı toplam gerilme artışına eşit olacaktır. Bunun doğal sonucu da Şekil 2.3d'de gösterilen hacim azalmasıdır (Önalp, 2002).

2.4. Bir Boyutlu Sıkışma ve Konsolidasyon

Gerilme artışına maruz kalan bir doygun zeminde yatay şekil değiştirmelerin ihmal edilebilir düzeyde kalacağı kabul edildiğinde sıkışma sadece düşey yönde incelenebilir. Hacim bağıntıları Şekil 2.4'de gösterilen blok diyagramına ait zemin örneği için, bir blok diyagramda gösterilen doygun bir zeminde (Şekil 2.4) hacim değişiminin sadece boşluk hacmindeki azalmadan kaynaklanacağı kabul edilmektedir:

$$\frac{\Delta V}{V_0} = \frac{\Delta H}{H_0} = \frac{V_s \left(1 + e_0\right) - V_s \left(1 + e_0\right)}{V_s \left(1 + e_0\right)} = \frac{e_0 - e}{1 + e_0}$$
(2.2)

Şekil 2.4 a. Doygun bir zemin elemanı b. Doygun zeminde tek boyutlu sıkışma

Hacimdeki azalma oranı tek boyutlu durumda sadece boydaki azalma oranına eşit olduğu kabul edilirse bir boyutlu sıkışma denklemi;

$$\frac{\Delta V}{V_0} = \frac{\Delta H}{H_0} = \frac{V_s \left(1 + e_0\right) - V_s \left(1 + e_0\right)}{V_s \left(1 + e_0\right)} = \frac{e_0 - e}{1 + e_0}$$
(2.3)

olarak yazılabilir.

Doygun zeminlerin genel bir konsolidasyon kuramı gerilme ve şekil değiştirme durumlarını üç boyutlu olarak göz önüne almayı gerektirir. Terzaghi'nin geliştirdiği bir boyutlu konsolidasyon kuramında aşağıda sıralanan kabuller yapılmakta ve çözüme önemli kolaylık getirilmektedir;

- Zemin homojen (türdeş)dir.
- Tüm boşluklar sıkışmaz suyla doludur.
- Danelerin sıkışabilirliği suyunkine oranla ihmal edilebilir.
- Suyun sıkışabilirliği zemin iskeletine göre ihmal edilebilir.
- Darcy yasası geçerlidir.
- Sıkışmalar ve suyun zeminde hareketi tek yönde oluşur.
- Sıkışabilirlik ve geçirimlilik zeminin aldığı gerilme kademesinden bağımsızdır.
- Boşluk oranı efektif gerilmenin fonksiyonu olup zamanla değişmez.
- Oluşan sıkışmalar kilin ilk kalınlığına oranla küçük olduğundan ortalama

özellikler ve ortalama boyutlar kullanılabilir.

- Gerilme artışları ani olarak uygulanmaktadır.
- Zemin iskeleti hacim değişimine akışmaz direnç göstermez.

Terzaghi (1943)'ye göre doygun bir küp zemin elemanına giren ve çıkan su miktarı arasındaki farkın sıkışma miktarına eşitlenmesiyle bir boyutlu konsolidasyon denkleminin çözümü sağlanmaktadır. Şekil 2.5'deki birim küpe giren ve çıkan su debileri;

$$q_{giren} = \left(v_x - \frac{\partial v_x}{\partial_x} \cdot \frac{d_x}{2}\right) \cdot dy \cdot dz + \left(v_y - \frac{\partial v_y}{\partial y} \cdot \frac{dy}{2}\right) \cdot dx \cdot dz + \left(v_z - \frac{\partial v_z}{\partial z} \cdot \frac{dz}{2}\right) \cdot dx \cdot dy \quad (2.4)$$

$$q_{cikan} = \left(v_x + \frac{\partial v_x}{\partial_x} \cdot \frac{d_x}{2}\right) \cdot dy \cdot dz + \left(v_y + \frac{\partial v_y}{\partial y} \cdot \frac{dy}{2}\right) \cdot dx \cdot dz + \left(v_z + \frac{\partial v_z}{\partial z} \cdot \frac{dz}{2}\right) \cdot dx \cdot dy \quad (2.5)$$

ifadelerinden oluşmaktadır. Giren ve çıkan debiler arasındaki fark zeminin o süre sonundaki sıkışmasını göstermektedir:

$$\Delta_{q} = \frac{\partial V}{\partial t} = \left[\frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z}\right]$$
(2.6)

Şekil 2.5. Zemin elemanında akım

Bu ifadeler yukarıda kabuller çerçevesinde çözüldüğünde çeşitli sınır koşullarında çözümü yapılabilen diferansiyel denklem, 2.7'deki bir boyutlu konsolidasyon denklemi elde edilir:

$$c_{v} \cdot \frac{\partial^{2} u}{\partial z^{2}} = \frac{\partial u_{w}}{\partial t}$$
(2.7)

burada cv , konsolidasyon katsayısını (cm²/s) göstermektedir.

Denklemin çözümünde tanımlanan konsolidasyon katsayısı;

$$c_{v} = \frac{k}{\rho_{w}} \cdot \left(\frac{1+e}{a_{v}}\right)$$
(2.8)

biçiminde tanımlanmıştır. Burada;

k: Geçirimlilik katsayısı (cm²/s)

av: Sıkışma katsayısını göstermektedir.

Konsolidasyon katsayısının boyutsuz zaman faktörüyle bulunması denklem 2.9'daki gibidir.

$$c_v = \frac{T_v H^2}{t} \tag{2.9}$$

Burada,

T_v: Zaman faktörü (boyutsuz)

H: Drenaj mesafesini temsil etmektedir.

Örneğin başlangıç boşluk suyu basıncı dağılımı üniform ortamda zaman faktörü konsolidasyon yüzdesi $(U_s = \Delta H / S_{\infty})$ veya ona eşit olan boşluk suyu basıncı sönümlenme derecesinden (U_p) bulunabilir.

$$U_{s} = U_{p} = \frac{\int_{0}^{H} \left(1 - \frac{u(t) \cdot dz}{u_{0}}\right)}{\int_{0}^{H} u_{0} \cdot dz} = 1 - \sum \frac{2}{M^{2}} \cdot \exp\left(-M^{2}T_{v}\right)$$
(2.10)

2.5. Sıkışma Katsayısı ve Sıkışma İndisi

Konsolidasyon eğrisi zeminin sıkışma davranışını yansıtmaktadır. Zeminin sıkışabilirliği boşluk oranındaki azalmayı belirten denklem 2.11'deki sıkışma katsayısı a_v ile ifade edilir. Sıkışma katsayısı boşluk oranı-efektif gerilme eğrisinin eğimidir. Eğrinin eğimi sabit olmadığından sıkışma katsayısının değeri de değişkendir.

$$a_{\nu} = -\frac{\Delta e}{\Delta \sigma} \tag{2.11}$$

Denklem 2.2'deki son sıkışma miktarı da böylece

$$S_{\infty} = \Delta H = H_0 \cdot \frac{a_v}{1 + e_0} \cdot \Delta \sigma'$$
(2.12)

halini alır. Ortadaki terim blok diyagramda hacim ifade ettiğinden hacimsel sıkışma katsayısı (m_v) adını almaktadır.

$$m_{v} = \frac{a_{v}}{1 + e_{0}} \tag{2.13}$$

AB: Bakir sıkışma eğrisi BC: Boşaltma/şişme eğrisi CD: Yeniden yükleme eğrisi Şekil 2.6. Sıkışabilir bir zemin için ideal boşluk oranı-efektif gerilme ilişkisi

Şekil 2.6.b'de görüldüğü gibi sıkışma eğrisi yarı logaritmik eksen takımında çizildiğinde hemen tüm zeminlerde bir doğruya dönüşmektedir. Bu durumda doğrunun hesaplanan eğimi sıkışma indisi adını almaktadır.

$$C_c = -\frac{de}{d\left(\log\sigma'\right)} \tag{2.14}$$

Sıkışma katsayısı ile sıkışma indisi arasında aşağıdaki bağıntı bulunmaktadır.

$$a_v = \frac{0.435C_c}{\sigma'} \tag{2.15}$$

Sıkışma indisi kullanıldığında son sıkışma denklemi 2.12' de

$$S_{\infty} = \Delta H = H_0 \cdot \frac{C_c}{1 + e_0} \cdot \log \cdot \frac{\sigma_0 + \Delta \sigma}{\sigma_0}$$
(2.16)

biçimine dönüşmektedir (Terzaghi ve Peck, 1967).

2.6. Radyal Konsolidasyon Teorisi

Radyal konsolidasyon kavramı eksenel akışın sıfır olduğu kısa süreli radyal akışın olduğu durumda aksisimetrik problemler için kullanılmaktadır. Bu durumda konsolidasyon denklemi

$$c_{v}\left(\frac{\partial^{2}u_{e}}{\partial r^{2}} + \frac{1}{r}\frac{\partial u_{e}}{\partial r}\right) = \frac{\partial u_{e}}{\partial t} - \frac{\partial \sigma_{v}}{\partial t}$$
(2.17)

şekline dönüşmektedir (Scott, 1963).

Rendulic (1936) radyal akış durumunda tek boyutlu düşey sıkışma için diferansiyel denklem çözümünü

$$\frac{\partial u}{\partial t} = c_h \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right)$$
(2.18)

olarak sunmuştur Şekil 2.5.

Şekil 2.7. Radyal drenaj durumu

Carillo (1942) ise radyal drenaj ile birleştirilmiş tek boyutlu konsolidasyon için fazla boşluk suyu basıncı değerini $(u_{r,z})$;

$$\frac{\partial u}{\partial t} = c_h \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) + c_v \frac{\partial^2 u}{\partial z^2} \quad [u_{r,z} = u_r u_z / u_0]$$
(2.19)

şeklinde vermiştir. Burada u₀ başlangıç boşluk suyu basıncını göstermektedir. Ortalama konsolidasyon derecesi ise;

$$(1 - \bar{U}) = (1 - \bar{U}_z)(1 - \bar{U}_r)$$
(2.20)

İle hesaplanmaktadır. Burada \overline{U} düşey ve radyal drenaj için herhangi bir t zamanındaki ortalama konsolidasyon derecesini, \overline{U}_z ve \overline{U}_r ise sırasıyla düşey ve radyal akış için ortalama konsolidasyon derecelerini göstermektedir.

BÖLÜM 3. SİLTLERİN DİNAMİK DAVRANIŞI

Kumlara özgü olduğu düşünülen sıvılaşma olayının depremlerde elde edilen gözlem sonuçları ve araştırmalar neticesinde silt boyutundaki ince daneli zeminlerde de oluşabileceği görülmüştür. 1980'li yıllarda siltlerin de kumlar gibi sıvılaşma göstereceği varsayılır olmuştur. Özellikle Çin depremlerinden elde edilen deneyimler önce Çin Kriteri olarak tanıtılan özelliklerle literatüre yansımıştır (Wang, 1979). Çin kriteri siltin sıvılaşmasını doğal su muhtevası, likit limit, kil yüzdesi (< 5 µm) gibi fiziksel özelliklere bağlamıştır. Sakarya Üniversitesi'nde gerçekleştirilmiş araştırmalar siltlerin sıvılaşma yeteneğinin zeminin fiziksel özellikleri ile kolayca saptanabileceği bulgularını getirmiş ve bu amaca yönelik olarak Adapazarı Kriteri'nin revize edilmiş biçimi önerilmiştir (Bol vd., 2010).

Siltlerde sıvılaşmanın, kumlarda görülen kolaylıkla oluşmadığı, hatta MI ve MH siltlerde olağan deprem koşullarında ($M_w < 7$, t < 50 s) belki de hiç belirmediği yolunda kuşkular vardır. Buna bağlı olarak da siltlerin kumsu ve kilsi olarak ayırtlanması ve sıvılaşabilir grubun daha ziyade kumsular olduğu öne sürülmüştür (Idriss ve Boulanger, 2006). Daha açık bir ifade ile, kilsi siltte ve killi zeminlerde sadece çevrimsel yumuşama olası iken kumsu karışımlarda tipik sıvılaşma belirtileri ortaya çıkmaktadır. Kesin yargıya varılamayan birçok durumda da dinamik deneyler yapılması hemen tüm araştırmacılarca önerilmektedir.

Adapazarı Kriterleri olarak sunulan (Önalp ve Arel, 2002) ve siltli zeminlerin 1999 depreminde performansını yansıtan bilgiler literatürde Çin kriteri olarak anılan bilgilerin kritik değerlendirilmesi ile üretilmiştir. Bu bilgiler sürekli yeni deneyler ve incelemelerle güncellenmektedir. Bu kriterler büyük arazide sıvılaşmış/sıvılaşmamış sitelerde yapılan gözlemler ve buralardan alınan numunelerin deneye tabi tutulması

ile geliştirildiğinden, güvenilirliği yüksek olarak nitelendirilebilir. Son biçimi ile Adapazarı Kriteri'ne göre bir ince daneli zeminin sıvılaşabilmesi için

$$\begin{split} I_L &\geq 0.9 \; (w_p \; \text{ölçülemiyor ise } w_n/w_L \; \text{oran1}) \\ w_L &\leq 33 \\ C &\leq \% \; 10 \\ D_{50} &> 0.02 \; \text{mm} \end{split}$$

koşullarının tümünün sağlanması gerekmektedir. Bu kriterde $25 < w_L < 33$ ve

10 < % C < 15 aralıklarında numunelerin dinamik deneylerle değerlendirilmesi önerilmiştir (Bol vd., 2010). Adapazarı kriterlerinde plastisite indisinin yer almamasının nedeni olarak düşük plastisiteli ile sıvılaşabilir NP zeminlerde plastik limitin ölçümdeki tutarsızlıklar gösterilebilir. Bölgenin üst sınırı ise I_p = 12 ile gösterilmiş olup, Bray ve Sancio (2006) önerisi ile uyum içindedir. Ancak, bu plastisite indisi değerinin deneyle ölçülebilir en alt sınırı göstermesi nedeniyle, belki de sadece NP siltlerin sıvılaşabileceği gerçeği tartışılır olmaktadır. Öneriler genel olarak değerlendirildiğinde, sıvılaşabilir siltli zeminlerin "kumsu" karakterde olduğu hakkında görüş birliği olduğu, kumsudan kilsiye geçişte mekanik deneylerden de yararlanılarak yargıya varılmasının uygun olacağı ve sonuçta kilsi zeminlerin sıvılaşmayacağı gibi bir görüş belirmektedir.

BÖLÜM 4. RADYAL KONSOLİDASYON

Ödometrede konsolidasyon ölçümünün getirdiği bazı eksiklikleri bertaraf etme amacıyla 1960'lı yıllarda geliştirilen hidrolik hücre (Rowe, 1966), zeminlerin sıkışabilirliğinin daha iyi koşulların kontrol edilebildiği bir deneyde ölçülmesi fikrinden ortaya çıkmıştır. Şekil 3.1'de hidrolik konsolidasyon hücresi olarak da bilinen Rowe hücresi düzeni gösterilmektedir. Hidrolik hücre içinde konsolidasyon basıncı numuneye içi su dolu bir lastik körük vasıtasıyla uygulanmaktadır.

Şekil 4.1 Hidrolik konsolidasyon hücresi deney sistemi

Hücre içinde numuneye düşey ve/veya radyal drenaj uygulanabilmekte, geri basınç ve drenaj genelde hücre kenarından sağlanmaktadır. Numune çapı 150 mm olabilmekte, yükseklik ise 50 ± 5 mm ye çıkabilmektedir. Deneyde basınç artışı uygulanırken drenaj vanaları kapalı tutulmakta, boşluk suyu basıncının maksimum

değere ulaştığı görüldükten sonra vanalar açılmakta ve boşluk suyu basıncının sönümlenmesi, sıkışma ve hacim değişimi ile birlikte sürekli olarak izlenmektedir.

Radyal konsolidasyon deneyinde Şekil 4.2'de gösterildiği gibi drenajın içeriye veya dışarıya doğru yapılması mümkün olup, düşey drenaj tek yönlü, çift yönlü veya radyal olarak sağlanabilmektedir.

Zeminin yatay geçirimlilik katsayısını ölçmek için numune hem çevre (plastik dren) hem de merkez dreni (kum) ile hazırlanabilir ve her gerilme artışı sonunda merkezden dışa ya da dıştan merkeze doğru akım sağlanarak yanal hidrolik iletkenlik katsayısı

$$\mathbf{k}_{\mathrm{h}} = \frac{Q \cdot \ln\left(r_{e} / r_{w}\right)}{2\pi \cdot \Delta D \cdot \Delta h} \tag{4.1}$$

ile hesaplanmaktadır. Burada Q sağlanan akımda denge debisi, r_w merkezdeki drenin yarıçapı, r_e eksenden dış drene olan uzaklık, Δh numuneye uygulanan hidrolik yük, ΔD ise numune kalınlığıdır. Yükleme durumu körük altına esnek veya rijit başlık konmasıyla serbest şekil değiştirme veya eşit şekil değiştirme koşullarını yansıtabilmektedir. Şekil 4.2'de bu durumlar ayrı ayrı gösterilmiştir.

Şekil 4.2. Hidrolik hücre drenaj ve yükleme durumları (Head, K.H., 1985)

Düşey veya yanal konsolidasyon katsayısı (c_h) %50 ve %90 konsolidasyon için Tablo 4.1'de verilen ölçek katsayılarının kullanımı ile ilgili formülden yararlanılarak hesaplanabilmektedir.

					Teorik Zaman Faktörü						
Tes	t	Drenaj	Sınır ş.d.	Kons.	t ₅₀		t ₉₀	Zaman	Eğri	Kull. ölç.	Kons katsy/yıl
				konumu				fonk.	eğimi		
(a)	ve	Düşey, tek	Serbest ve	Ortalama	0.197	$T_{\rm v}$	0.848	0.5	1.15	$\Delta V / \Delta H^{**}$	$T_{y}H^{2}$
(b)		yön	eşit	Merkezi	0.379		1.031	$t^{0,5}$		b.s.b.	$c_v = 0.526 \frac{t}{t}$
(c)	ve	Düşey, çift	Serbest ve	Ortalama	0.197	T_v	0.848	$t^{0,5}$	1.15	$\Delta V / \Delta H$	$T_{\rm u}H^2$
(d)		yön	eşit					-			$c_v = 0.131 \frac{v}{t}$
(e)		Radyal,	Serbest	Ortalama	0.0632	T _{r0}	0.335	$t^{0,465}$	1.22	ΔV	$D_{121}T_m D^2$
		dışa		Merkezi	0.200		0.479			b.s.b.	$c_h = 0.131 \frac{1}{t}$
(f)			Eşit	Ortalama	0.0866	T _{r0}	0.288	$t^{0,5}$	1.17	$\Delta V / \Delta H$	$T_m D^2$
				Merkezi	0.173		0.374			b.s.b.	$c_h = 0.131 \frac{1}{t}$
(g)		Radyal,	Serbest	Ortalama	0.771	T _{ri}	2.631	$t^{0,5}$	1.17	ΔV	$T_{i}D^{2}$
		içe*		r=0.55R	0.765		2.625			b.s.b.	$c_h = 0.131 \frac{n}{t}$
(h)			Eşit	Ortalama	0.781	T _{ri}	2.595	$t^{0,5}$	1.17	$\Delta V / \Delta H$	$T_r D^2$
				r=0.55R 0.	.778		2.592			b.s.b.	$c_h = 0.131 - \frac{n}{t}$

Tablo 4.1. Hidrolik hücre konsolidasyon deneylerinde ölçek katsayıları

*: Drenaj oranı; **: ΔH sadece eşit şekil değiştirme için; T_v, T_{r0}, T_{ri}: teorik zaman faktörleri;
t: zaman (dakika); H: numune boyu; D: numune çapı (mm)

4.1. Hidrolik Hücrede Sönümlenme

Yürütülen laboratuvar sönümlenme deneyleri Şekil 4.1'de gösterilen 150 mm çaplı hidrolik konsolidasyon hücresi deney setinde gerçekleştirilmiştir. Deney sisteminin bir görünümü de Foto 4.1'de verilmiştir. Bu şekillerden de görüleceği gibi drenaj radyal dren vasıtasıyla sağlanmakta, hücre kenarından verilen drenaj çıkışı hacim değişim ölçer ve geri basıncın verildiği değişmez basınç sağlar pompaya bağlanmaktadır.

Düşey gerilme, numune üzerine etkiyen su dolu körük vasıtasıyla bir başka değişmez basınç sağlar tarafından sağlanmakta, numune üzerine yerleştirilen rijit metal disk ile eşit şekil değiştirme koşulu oluşturulmaktadır. Numune boy değişimi üst taraftaki 0.002 mm hassasiyetli boy değişim ölçer saat ve transdüşer ile ayrı ayrı ölçülmektedir. Değişmez basınç sağlarların çıkış basınçları ile numune tabanından boşluk suyu basıncı basınç trans düşerleri ile ölçülmektedir. Elektronik olarak alınan tüm veriler ADU veri toplama cihazı yardımıyla bilgisayarda toplanmaktadır.

4.1.1. Deney prosedürü

Laboratuvar sönümlenme deneyleri yukarıda tariflenen 150 mm'lik hidrolik hücre kullanımıyla gerçekleştirilmiştir. Bulamaç halinde hazırlanan karışım numuneleri hücre içine 5.0 ± 0.5 mm yüksekliğinde yerleştirilmektedir. Hücre kapatıldıktan sonra kademeli olarak düşey gerilme-geri basınç uygulamasına geçilmekte ve hücre basıncı ile geri basınç arasında 10 kPa fark olacak şekilde 50 kPa'lık adımlarla 500 kPa geri basınca ulaşılmaktadır.

Şekil 4.3. Rowe hücresi sönümlenme deneylerinde kullanılan deney düzeneği (Özocak vd., 2008)

Foto 4.1. Rowe laboratuvar sönümlenme deneyleri düzeneğinden bir görünüş

BÖLÜM 5. DENEYSEL ÇALIŞMA

5.1. Numune Hazırlama

Siltli zeminlerin yanal konsolidasyon özelliklerini ölçmek amacıyla bu çalışma kapsamında öncelikle Adapazarı kent merkezi Yenigün mahallesi Tacettin Sert arsasından getirilmiş olan doğal numune laboratuvarda bir takım işlemlerden geçirilerek sadece silt boyutundaki malzemenin ayrılması hedeflenmiştir. Bu doğrultuda sırasıyla;

 Numune el arabasına yüklenerek laboratuvar içerisine taşınmış (Foto 5.1) ve belli miktarlarda numune 40 nolu elekten elenerek çökeltme havuzuna alınmıştır (Foto 5.2).

Foto 5.1. Numunenin el arabasıyla laboratuvara taşınması

Foto 5.2. Numunenin çökeltme havuzuna alınması

- Elenen numune su ile iyice karıştırıldıktan sonra kronometre çalıştırılmıştır.

Foto 5.3. Numunenin 40 nolu elekten elenmesi ve iyice karıştırılması

- Karışım 5 dakika bekletilerek silt ve kum havuza çöktürüldükten sonra santrifüj çalıştırılarak çözelti içinde asılı olarak kalan kil numunesi büyük havuza pompalanmıştır.
- Küçük havuza tekrar su doldurularak ve numune tekrar iyice karıştırılarak ve her seferinde 5 dakika çökelmesine izin verilerek bu işlem toplam 6 kez tekrarlanmış, çökeltme havuzunda sadece silt ve kum boyutundaki malzemelerin kalması sağlanmaya çalışılmıştır.

- Yaklaşık 500 kg numune bu şekilde ayrıştırılmıştır.

Foto 5.4. Su ile birlikte karıştırılan numunenin 5 dk çöktürülmesi

Fotoğraf 5.5. Santrifüjle kilin büyük havuza pompalanması

 Kili ayrıştırılmış numune tekrar kovalara doldurularak 200 nolu elekten yıkama yöntemiyle siltin eleğin altına geçmesi sağlanmış ve elek üstünde toplanan kum numuneleri alınarak silt daneleri kum danelerinden ayrıştırılmıştır (Foto 5.6). Bu işlem kili ayrıştırılmış tüm numuneler için yapılmış ve saf silt elde edilmiştir.

Foto 5.6. Silt-kum karışımından siltin yıkama eleme yöntemiyle elde edilmesi

- Toplanan silt önce $40 C^0$ 'ye ayarlanmış olan etüvde sonra oda sıcaklığında kurumaya bırakılmıştır.
- Kurutulan silt toz haline ufalandıktan sonra 200 nolu elekten elenerek kovalara doldurulup muhafaza edilmiştir.
- Elde edilen siltten 3000'er gram alındıktan sonra havuzda çökelen kilden ağırlıkça %1.5, %3, %6, %7.5, %9, %12, %15, %20, %30, %44, % 58, %72 ve %86 oranında kil katılarak homojen şekilde karıştırılmıştır.
- Bunun yanında %100 silt, %100 kil ve Yenigün siltinden 3000'er gr numune saf olarak hazırlanmıştır.

Foto 5.7. Etüvden alınan siltin masa üzerine serilip kurutulması

Fotoğraf 5.8. Kurutulan siltin harman yapılması

- Hazırlanan bu numunelere 1350 cc su ilave edilerek iyice karıştırılmış ve 24 saat dinlendirilmiştir.
- Dinlendirilen numuneler her biri ayrı ayrı 1-2 saat desikatörde vakuma maruz bırakılmışlardır.

Fotoğraf 5.9. Su ilave edilen numunenin karıştırılması

Fotoğraf 5.10. Numuneye vakum uygulama

5.2. Fiziksel Deneyler

Yukarıdaki bölümlerde anlatılan şekilde hazırlanan tüm numunelerin fiziksel deneyleri TS 1900-1/2006'ya göre yapılmıştır. Araştırmanın bünyesinde çarpmalı yöntem (Casagrande) (Foto 5.11) ve koni düşürme yöntemi (Foto 5.12) ile likit limit deneyleri, plastik limit deneyi, özgül ağırlık deneyi (Foto 5.13), dane çapı dağılımının bulunması için pipet ve hidrometre deneyleri (Foto 5.14) yapılmıştır. Karışım numunelerinin fiziksel deney sonuçları özet olarak Tablo 5.1'de görülmekte olup, dane dağılımı eğrileri EK-I'de verilmiştir.

Numune	Çarpmalı	Koni	Plastik	т	0/ V:1	D_{50}		C	Simge
Adı	W_L	W_L	Limit	\mathbf{I}_{P}	% K 11	Hidrometre Pipet		Gs	(TS1500)
K020	NP	38	NP	NP	2	0.037	0.037	2.72	ML
K024	NP	38	NP	NP	2.4	0.040	0.035	2.71	ML
K032	NP	36	NP	NP	3.2	0.039	0.038	2.72	ML
K040	NP	36	NP	NP	4	0.039	0.036	2.7	ML
K043	NP	35	NP	NP	4.3	0.037	0.035	2.7	ML
K048	NP	34	NP	NP	4.8	0.030	0.036	2.7	ML
K050	NP	35	NP	NP	5	0.031	0.035	2.7	ML
K056	NP	34	NP	NP	5.6	0.028	0.034	2.69	ML
K072	30	33	26	NP	7.2	0.030	0.034	2.7	ML
K080	32	36	23	9	8	0.025	0.027	2.73	ML
K096	33	37	24	9	9.6	0.024	0.024	2.72	ML
K112	34	37	22	12	11.2	0.021	0.030	2.72	ML
K144	35	37	22	13	14.4	0.016	0.020	2.72	MI
K184	55	52	27	28	18.4	0.007	0.007	2.71	СН
Tsert	NP	37	NP	NP	1.6	0.034	0.040	2.72	ML
Yenikent	NP	32	NP	NP	3.2	0.046	0.035	2.7	ML

Tablo 5.1. Karışım numuneleri fiziksel özellikleri

Fotoğraf 5.11. Çarpmalı alette (Casagrande) likit limit deneyi

Fotoğraf 5.12. Koni düşürme deneyi

Fotoğraf 5.13. Özgül ağırlık deney numuneleri

Fotoğraf 5.14. Hidrometre deney numuneleri

5.3. Hidrolik Hücrede Sönümlenme Deneyleri

Laboratuvar sönümlenme deneyleri yukarıda tariflenen 150 mm'lik hidrolik hücre kullanımıyla gerçekleştirilmiştir. Likit limitin 1.5 katı su muhtevasında bulamaç halinde hazırlanan karışım numuneleri 5.0 ± 0.5 mm yüksekliğinde numune hücre içine yerleştirilmiştir (Foto 5.15). Hücre kapatıldıktan sonra konsolidasyon-geri basınç işlemine geçilmiş ve hücre basıncı ile geri basınç arasında 10 kPa fark olacak şekilde 50 kPa' lık adımlarla 500 kPa geri basınca ulaşılmıştır. Doyurma aşamasında ölçülen B parametresinin 0.95' in üzerinde bir değere yükseldiğinin teyidinden sonra yükleme aşamasına geçilmektedir. Karışım numunelerinin konsolidasyonu bulamaç halinden başladığından B parametresi konsolidasyon aşamasında 1 veya 1'e çok yakın değerler almıştır. Ancak ön calışmalarda düşük geri başınc kullanımında, ilerleven yüklemelerde B'nin hızla düşmesi nedeniyle tüm numunelerde geri basıncın 500 kPa olarak alınması uygun görülmüştür. Net gerilme 25, 50, 100 ve 200 kPa'lık artışlarla numuneler 400 kPa'a (900-500) dek yüklenmişlerdir. Yükleme körüğünün kapasitesi (1000 kPa) nedeniyle daha yüksek gerilmelere çıkmak mümkün olmamaktadır. Her gerilme artışının uygulanmasından sonra boşluk suyu basıncının (u_w=b.s.b.) sabitlenmesinin ardından geri basınç vanası açılarak radyal drenaj yoluyla sönümlenme aşamasına geçilmiş ve boşluk suyu basınçlarının sönümlenmesi izlenmiştir. Her kademe b.s.b. sönümlenme okumaları 24 saat boyunca sürdürülmüş, bunlar başta sık, gittikçe seyrelen aralıkla kaydedilmiştir.

Fotoğraf 5.15. Rowe hücresine numune yerleştirme ve deney düzeneği

Deney sonunda hücre açıldığında numunenin boyu kumpas yardımıyla ölçülerek deney esnasında dijital transdüşer ve analog mikrometre ile alınan okumaların teyidi yapılmıştır (Foto 5.16). Bunun yanında deney sonu ağırlığı alınan numuneler etüvde kurutularak kuru numune ağırlıkları ölçülmüştür.

Fotoğraf 5.16. Rowe hücresi deney sonu numune boyu ölçme

Fotoğraf 5.17. Deney sonu numune tartımı ve etüve konulması

5.4 Deney Sonuçlarının Adapazarı Kriteri Açısından İncelenmesi

Sakarya Üniversitesi'nce gerçekleştirilmiş araştırmalar siltlerin sıvılaşma yeteneğinin zeminin fiziksel özellikleri ile kolayca saptanabileceği bulgularını getirmiş ve bu amaca yönelik olarak Adapazarı Kriteri'nin revize edilmiş biçimi önerilmiştir (Bol vd., 2010). Bölüm 4'te anlatılan Adapazarı Kriterine göre bu çalışmada kullanılan karışım numunelerinin sıvılaşıp sıvılaşmayacağına bakılmış ve Tablo 5.2'de bu sonuçlar gösterilmiştir.

Adapazarı Kriterleri literatürde Çin kriteri olarak anılan bilgilerin kritik değerlendirilmesi ile üretilmiştir. Bu bilgiler sürekli yeni deneyler ve incelemelerle güncellenmektedir. Bu kriterler sıvılaşmış-sıvılaşmamış büyük arazilerde yapılan gözlemler ve buralardan alınan numunelerin deneye tabi tutulması ile geliştirildiğinden, güvenilirliği makul derecede yüksek olarak nitelendirilebilir.

Tabloya bakıldığında numunelerin çoğunda bu kritere göre sıvılaşma oluşması beklenmektedir. Adapazarı kriterinde yer alan $I_L \ge 0.9$ şartı numuneler doğal numune olmamasından dolayı bu koşul sağlanıyor olarak düşünülmüştür.

Numune	Çarpmalı	Koni	Plastik	IP	%	D ₅₀		Simge	Suulasma*	
Adı	W_L	W_{L}	Limit	11	Kil	Hidrometre	Pipet	Shinge	Sivilaşına	
K020	NP	38	NP	NP	2	0.037	0.037	ML	Var	
K024	NP	38	NP	NP	2.4	0.040	0.035	ML	Var	
K032	NP	36	NP	NP	3.2	0.039	0.038	ML	Var	
K040	NP	36	NP	NP	4	0.039	0.036	ML	Var	
K043	NP	35	NP	NP	4.3	0.037	0.035	ML	Var	
K048	NP	34	NP	NP	4.8	0.030	0.036	ML	Var	
K050	NP	35	NP	NP	5	0.031	0.035	ML	Var	
K056	NP	34	NP	NP	5.6	0.028	0.034	ML	Var	
K072	30	33	26	NP	7.2	0.030	0.034	ML	Var	
K080	32	36	23	9	8	0.025	0.027	ML	Var	
K096	33	37	24	9	9.6	0.024	0.024	ML	Var	
K112	34	37	22	12	11.2	0.021	0.030	ML	Yok	
K144	35	37	22	13	14.4	0.016	0.020	MI	Yok	
K184	55	52	27	28	18.4	0.007	0.007	СН	Yok	
Tsert	NP	37	NP	NP	1.6	0.034	0.040	ML	Var	
Yenikent	NP	32	NP	NP	3.2	0.046	0.035	ML	Var	

Tablo 5.2. Adapazarı Kriteri açısından numunelerin incelenmesi

* Adapazarı Kriterine göre (Bol vd., 2010)

5.5. Sönümlenme Deney Sonuçları

Hidrolik hücrede yapılan laboratuvar sönümlenme deneylerinde drenaj koşulları, içten dışa doğru radyal drenaj biçiminde uygulanmıştır. Yükleme ve drenaj vanasının açımını takiben 6 sn ile başlayan boşluk suyu basıncı okumaları iki kat artan aralıklar en az 24 saat ya da 500 kPa geri basınç değerine ulaşana dek sürdürülmüştür. Literatüre bakıldığında, hidrolik hücrede içten dışa doğru drenaj koşullarında ölçülen t₅₀ ve t₉₀ değerleri kullanılarak radyal konsolidasyon katsayısının (Head, 1986);

$$c_{ro} = 0.131 \frac{T_{ro}D^2}{t}$$
 (5.1)

ifadesi ile bulunduğu görülmektedir. Burada D: numune çapını (mm), t: zamanı (dk), T_{ro} : teorik zaman faktörünü göstermektedir. Eşit oturma ve serbest oturma durumları için kullanılacak zaman faktörleri de Tablo 5.3'de verilmektedir.

Drenai vönü	Oturma	Konsolidasyon	Zaman faktörü			
Brenaj yonu	Oturnia	konumu	T ₅₀	T ₉₀		
Radyal	Serbest	Ortalama	0.0632	0.335		
Dışa doğru	2010050	Merkezi	0.200	0.479		
Radyal	Esit	Ortalama	0.0866	0.288		
Dışa doğru	Lyw	Merkezi	0.173	0.374		

Tablo 5.3. Radyal konsolidasyon zaman faktörleri

Sürekli okuma alınan laboratuvar Rowe sönümlenme deneyi grafik sonuçları Ek-II' de verilmekte olup deneylerden belirlenen t_{50} ve t_{90} değerleri ile yukarıda anlatıldığı gibi hesaplanan radyal konsolidasyon katsayıları Tablo 5.4.'te listelenmiştir. Tabloda görülen t_{50} ve t_{90} değerlerine ulaşmak için sönümlenme eğrileri U_r-t eksenlerinde çizilip buradan konsolidasyon yüzdesi U₅₀, U₉₀ ve U₁₀₀ için t_{50} , t_{90} ve t_{100} değerleri okunmuştur. Burada

$$U_{\rm r} = 1 - \frac{\Delta u_{\rm w}}{\Delta u_{\rm w0}} \tag{5.2}$$

olarak alınmıştır.

Şekil 5.1'de 50, 100 ve 200 kPa gerilme artış kademelerinde ölçülen t_{50} değerine göre hesaplanan radyal konsolidasyon katsayı değerlerinin değişimi verilmektedir. Şekil 5.2'de ise aynı katsayıların t_{90} değerine göre hesaplanmış büyüklükleri verilmektedir. Bu şekillerdeki deney noktalarından geçirilen eğilim eğrilerinin R² değerleri istenen büyüklükten uzak olup bunun yanında %10 kil oranında radyal konsolidasyon katsayısı değerlerinin 5 m²/yıl civarında olduğu söylenebilir.

No. No. <th>Numune No</th> <th>Sinif TS 1500</th> <th>σ (kPa)</th> <th>Δσ (kPa)</th> <th>t₅₀ (sn)</th> <th>t₉₀ (sn)</th> <th>t₁₀₀ (sn)</th> <th>t₅₀ (dk)</th> <th>t₉₀ (dk)</th> <th>t₁₀₀ (dk)</th> <th colspan="2">$\begin{array}{c} c_{\rm ro} \ m^2/y_{\rm l}l\\ (t_{50} \ ile) \end{array}$</th> <th colspan="2">c_{ro} m²/yıl (t₉₀ ile)</th>	Numune No	Sinif TS 1500	σ (kPa)	Δσ (kPa)	t ₅₀ (sn)	t ₉₀ (sn)	t ₁₀₀ (sn)	t ₅₀ (dk)	t ₉₀ (dk)	t ₁₀₀ (dk)	$\begin{array}{c} c_{\rm ro} \ m^2/y_{\rm l}l\\ (t_{50} \ ile) \end{array}$		c _{ro} m ² /yıl (t ₉₀ ile)	
K016ML600-500500220097004000041.716.1766.676.012.05.16.7ML700-50010011004700280018.378.3480013.66.611.613.8K020600-50050010017034002880012.356.4480020.29.841.652.22.328.6ML700-500100178.82400.83.78.030.2218.1211.57.8150.5K024600-500500554.312.00.10.72.027.18132.1111.57.8150.5K024600-50050090070014.0016.010.02.002.102.0015.04.006.03.24.31K032900-50020014.570010.2017.010.2057.04.0010.257.14.0157.1K040900-50050012.012.0012.714.013.244.314.1212.115.115.1K040900-50050012.0012.0012.712.0012.403.024.0112.112.113.115.1K040900-50010020.0012.0012.0012.712.0012.403.0113.213.114.5K040900-50010020.0012.0012.0012.712.0012.30 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th colspan="2">ortalama merkezi</th><th>ortalama</th><th>merkezi</th></th<>											ortalama merkezi		ortalama	merkezi
MI 700-500 100 1100 4700 28800 18.3 78.3 4800 13.6 6.6. 10.6 13.8 K020 600-500 100 740 3400 2880 12.3 56.7 4800 32.2 9.8.3 14.6 19.0 MI 700-500 100 7.7 8.8 240 0.3 10.1 0.7 4.0 80.0 42.11 115.78 15.33 K024 900-500 200 5.5 43.1 100 10.0 21.0 24.00 16.0 12.0 24.00 16.5 7.6 6.9.3 23.1 K042 900-500 100 200 7.00 10.0 2.0 14.00 10.0 2.0 14.0 10.3 6.0 33.2 43.1 K043 900-50 100 200 10.0 12.0 12.0 12.0 12.0 13.8 13.8 13.8 13.8 13.0 13.0 13.1 13.0	K016		600-500	50	2500	9700	40000	41.7	161.7	666.7	6.0	12.0	5.1	6.7
Image		ML	700-500	100	1100	4700	28800	18.3	78.3	480.0	13.6	6.6	10.6	13.8
No.20image			900-500	200	740	3400	28800	12.3	56.7	480.0	20.2	9.8	14.6	19.0
ML 700-500 100 17 88 240 0.3 1.5 4.0 88.0 427.4 565.7 73.47 K024 900-500 200 5.5 4.3 120 0.1 0.7 2.0 2721.8 1321.1 1157.8 1503.5 K024 600-500 50 900 720 14400 16.0 120.8 240.0 15.6 7.6 6.9 8.9 ML 700-500 100 370 3060 1400 12.0 12.0 40.0 15.9 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 <th>K020</th> <th></th> <th>600-500</th> <th>50</th> <th>45</th> <th>224</th> <th>480</th> <th>0.8</th> <th>3.7</th> <th>8.0</th> <th>332.7</th> <th>161.5</th> <th>222.3</th> <th>288.6</th>	K020		600-500	50	45	224	480	0.8	3.7	8.0	332.7	161.5	222.3	288.6
NumNu		ML	700-500	100	17	88	240	03	15	4.0	880.6	427.4	565.7	734 7
K024 K01 Col <th></th> <th></th> <th>000 500</th> <th>200</th> <th>5.5</th> <th>42</th> <th>120</th> <th>0.5</th> <th>0.7</th> <th>2.0</th> <th>2721.8</th> <th>127.1</th> <th>1157.9</th> <th>1502.5</th>			000 500	200	5.5	42	120	0.5	0.7	2.0	2721.8	127.1	1157.9	1502.5
K0246005005005007200740016001203240.015.67.66.938.99ML700-5001001303060144006.251.0240.040.515.060.561.3321.1K02600-50050430150018047.225.064.034.816.933.243.1ML700-500100260124072004.320.712.0057.627.940.152.1K040600-50050380138038406.323.064.039.419.136.146.8K140600-50050300138013806.323.064.039.419.136.146.8K040600-500506001002401050220010.27.7120.062.430.314.761.6K043600-50050650145077072001.27.7120.062.430.311.220.326.4K043600-50050650142038.404.323.764.057.627.935.1455.5K043600-500506301400120012.812.812.0013.810.810.2K043600-500506301300140025.016.324.013.212.112.0K043600-50050 <th< th=""><th></th><th></th><th>900-300</th><th>200</th><th>5.5</th><th>43</th><th>120</th><th>0.1</th><th>0.7</th><th>2.0</th><th>2721.8</th><th>1321.1</th><th>1157.8</th><th>1505.5</th></th<>			900-300	200	5.5	43	120	0.1	0.7	2.0	2721.8	1321.1	1157.8	1505.5
ML 700-500 100 370 3600 14400 6.2 51.0 24.0 40.5 10.5 16.3 21.1 K032 0 600-500 200 145 760 10200 2.4 12.7 170.0 103.2 50.1 65.5 85.1 K032 ML 700-500 100 200 12.0 77.0 40.1 52.1 K040 ML 700-500 100 200 130 3840 6.3 23.0 64.0 12.4 60.6 65.5 85.1 K040 200-500 100 200 130 1380 3840 6.3 23.0 64.0 12.4 13.0 62.4 13.3 46.1 K040 200-500 100 200 130 1380 3840 6.3 23.0 64.0 12.4 13.0 62.4 13.3 13.0 13.4 16.3 13.2 13.1 K040 600-500 100 200 1420 73.4 12.0 13.3 43.0 13.3 43.0 K048 ML 700-500 100 1300 1500 14.00 2.4 12.1 12.2 K040 700-500<	K024		600-500	50	960	7250	14400	16.0	120.8	240.0	15.6	7.6	6.9	8.9
weight of the set		ML	700-500	100	370	3060	14400	6.2	51.0	240.0	40.5	19.6	16.3	21.1
K032600-5005043043038407.225064.034.81.6933.243.1ML700-500100260120720043.320.7120057.627.940.152.1K040900-500200100720038402.012.716.0124.860.665.585.1K040700-500100240105072004.017.5120062.430.347.461.6900-50020070040012.77.752.021.3010.3810.810.810.810.810.910.810.810.910.910.810.812.012.87.112.012.812.012.310.112.112.012.310.112.112.012.310.112.1			900-500	200	145	760	10200	2.4	12.7	170.0	103.2	50.1	65.5	85.1
ML 700-500 100 260 1240 7200 4.3 20.7 1200 57.6 27.9 40.1 52.1 K040 600-500 500 120 760 3840 2.0 12.7 64.0 124.8 60.6 65.5 85.1 K040 600-500 50 120 120 12.7 64.0 17.5 1200 62.4 30.3 47.4 61.6 ML 700-500 100 240 1700 120 12.7 32.0 11.2 10.8 108.8 10.0 12.8 10.20 12.4 14.5 K043 600-500 50 240 1700 72.0 2.4 12.8 12.00 103.2 50.1 64.7 84.3 K048 600-500 50 2800 1000 280 45.3 240.0 10.0 43.7 7.7 9.9 ML 700-500 100 1200 100. 100 100	K032		600-500	50	430	1500	3840	7.2	25.0	64.0	34.8	16.9	33.2	43.1
900-500 200 120 760 3840 2.0 12.7 64.0 124.8 60.6 65.5 85.1 K040 600-500 50 380 1380 380 6.3 23.0 64.0 39.4 19.1 36.1 46.8 ML 700-500 100 240 1050 7200 4.0 17.5 120.0 62.4 30.3 47.4 61.6 WL 700-500 100 240 120 12.2 7.7 32.0 21.3 103.8 108.2 140.5 K043 600-500 50 2450 7200 10.8 40.8 120.0 23.0 11.2 20.3 26.4 45.7 145.5 ML 700-500 100 1400 28.00 14.00 28.0 108.3 24.00 10.0 4.8 7.7 9.9 ML 700-500 50 2800 1400 12.50 108.3 33.3 24.0 12.0		ML	700-500	100	260	1240	7200	4.3	20.7	120.0	57.6	27.9	40.1	52.1
K040600-5005038013803806.323.064.039.419.136.146.8ML700-500100240105072004.017.5120.062.430.347.461.6K043600-500506502450720010.840.8120.023.011.220.326.4K043600-50050650142038404.323.764.057.627.935.145.5ML700-500100260142038404.323.764.057.627.935.145.5K048600-50020014577072002.412.8120.010.04.87.79.9K048600-50050280011000280064.718.348.005.32.64.55.9K050600-50010015006500144002.50108.324.0010.04.87.79.9K050600-5001001000100086400105.050.0144.02.41.21.72.2K056600-500507002880060017.076.672.11.01.72.2K050100400010002880060015.06.03.71.84.76.0K056600-50050700288006.015.07.02.4 <t< th=""><th></th><th></th><th>900-500</th><th>200</th><th>120</th><th>760</th><th>3840</th><th>2.0</th><th>12.7</th><th>64.0</th><th>124.8</th><th>60.6</th><th>65.5</th><th>85.1</th></t<>			900-500	200	120	760	3840	2.0	12.7	64.0	124.8	60.6	65.5	85.1
ML 700-500 100 240 1050 7200 4.0 17.5 120.0 62.4 30.3 47.4 61.6 M043 600-500 50 650 2450 7200 10.8 40.8 120.0 21.3 103.8 108.2 140.5 K043 600-500 500 650 2450 7200 12.4 7.7 32.0 21.3 11.2 20.3 26.4 ML 700-500 100 260 1420 3840 4.3 23.7 64.0 57.6 27.9 35.1 45.5 K048 600-500 50 100 1500 6500 1440 2.4 18.3 480.0 5.3 2.6 4.7 6.1 K050 600-500 50 6300 30000 86400 105.0 50.0 144.0 2.4 1.2 1.7 2.2 K050 600-500 50 7200 2800 28.3 11.7 48.0	K040		600-500	50	380	1380	3840	6.3	23.0	64.0	39.4	19.1	36.1	46.8
Image: border		ML	700-500	100	240	1050	7200	4.0	17.5	120.0	62.4	30.3	47.4	61.6
K043 600-500 50 650 2450 7200 10.8 40.8 1200 23.0 11.2 20.3 26.4 ML 700-500 100 260 1420 3840 4.3 23.7 64.0 57.6 27.9 35.1 45.5 K048 600-500 200 145 770 7200 2.4 12.8 1200 103.2 50.1 64.7 84.0 K048 600-500 200 1250 500 14400 25.0 108.3 240.0 12.0 5.8 10.00 12.9 K050 600-500 500 1200 14400 2.4 12.0 1.2 1.7 2.2 K050 600-500 50 6300 3000 16400 12.0 480.0 5.0 2.4 4.7 6.2 K050 600-500 50 700 28800 63.0 170.0 76.7 5.0 2.4 4.9 6.3			900-500	200	70	460	1920	1.2	7.7	32.0	213.9	103.8	108.2	140.5
ML 700-500 100 260 1420 3840 4.3 23.7 64.0 57.6 27.9 35.1 45.5 K048 600-500 50 2800 11000 2880 46.7 183.3 480.0 5.3 2.6 4.5 5.9 ML 700-500 100 1500 6500 14400 25.0 108.3 240.0 10.0 4.88 7.7 9.9 K050 600-500 50 6300 30000 86400 105.0 500.0 1440.0 2.4 41.2 1.7 2.2 K050 600-500 50 6300 30000 86400 15.0 480.0 5.0 2.4 4.7 6.2 ML 700-500 100 4000 1070 2880 28.3 111.7 480.0 3.7 1.8 4.7 6.0 K056 600-500 50 700 28800 65.7 178.3 480.0 3.7 1.8	K043		600-500	50	650	2450	7200	10.8	40.8	120.0	23.0	11.2	20.3	26.4
Image: border		ML	700-500	100	260	1420	3840	4.3	23.7	64.0	57.6	27.9	35.1	45.5
K048 600-500 50 2800 11000 28800 46.7 183.3 480.0 5.3 2.6 4.5 5.9 ML 700-500 100 1500 6500 14400 25.0 108.3 240.0 10.0 4.88 7.7 9.9 K050 600-500 50 6300 30000 86400 105.0 500.0 1440.0 2.4 1.2 1.7 2.2 K050 600-500 50 6300 3000 28800 50.0 1440.0 2.4 1.2 1.7 2.2 K056 600-500 50 7200 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 K056 600-500 50 7200 28800 60.0 170.0 766.7 5.0 2.4 4.9 6.3 K0572 600-500 50 6000 2100 28800 100.0 350.0 3.4 1.7 3.7 4.8			900-500	200	145	770	7200	2.4	12.8	120.0	103.2	50.1	64.7	84.0
ML 700-500 100 1500 6500 14400 25.0 108.3 240.0 10.0 4.8 7.7 9.9 K050 600-500 50 6300 30000 86400 105.0 500.0 14400 2.8 83.3 240.0 12.0 5.8 10.0 12.9 K050 600-500 50 6300 10500 28800 50.0 175.0 480.0 5.0 2.4 4.7 6.2 ML 700-500 100 3000 16700 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 K056 600-500 50 7000 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 ML 700-500 100 4400 13500 21600 73.3 22.5 3.0 2.4 4.9 6.3 K072 600-500 50 1000 12000 1200 300.0 1500	K048		600-500	50	2800	11000	28800	46.7	183.3	480.0	5.3	2.6	4.5	5.9
900-500200125050001440020.883.3240.012.05.810.012.9K050600-500506303000185002880050.0175.0480.05.02.44.76.2ML700-5001001006700288002.3111.7480.08.84.37.49.6K056600-500507200288006607178.3480.03.71.84.76.7ML700-5001004000107002880066.7178.3480.03.71.84.76.0ML700-5001004000107002880066.7178.3480.03.71.84.76.0K072600-50050600210028800100.0170.0766.75.02.44.96.3K072600-50050600210028000100.0170.030.0170.030.01.01.11.72.2K074900-5002003000100001200050.016.6721.005.02.44.96.3K072600-50050100100001200023.350.025.000.90.41.72.2K080600-50050100100001200026.7100.0200.00.90.41.72.2K080600-5005047025.0 </th <th></th> <th>ML</th> <th>700-500</th> <th>100</th> <th>1500</th> <th>6500</th> <th>14400</th> <th>25.0</th> <th>108.3</th> <th>240.0</th> <th>10.0</th> <th>4.8</th> <th>7.7</th> <th>9.9</th>		ML	700-500	100	1500	6500	14400	25.0	108.3	240.0	10.0	4.8	7.7	9.9
K050 600-500 50 6300 30000 86400 105.0 50.0 1440.0 2.4 1.2 1.7 2.2 ML 700-500 100 3000 10500 28800 5.00 175.0 480.0 5.00 2.4 4.7 6.2 K056 600-500 50 7200 28800 46000 120.0 480.0 766.7 2.1 1.0 1.7 2.2 ML 700-500 100 4000 10700 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 WIL 700-500 100 4000 10700 28800 100.0 35.0 480.0 2.5 1.2 2.4 3.1 K072 600-500 50 1000 4400 13500 166.7 210.0 5.0 2.4 5.0 6.5 K080 600-500 50 1700 3000 15000 283.3 50.0 250.0 0.4 <th></th> <th></th> <th>900-500</th> <th>200</th> <th>1250</th> <th>5000</th> <th>14400</th> <th>20.8</th> <th>83.3</th> <th>240.0</th> <th>12.0</th> <th>5.8</th> <th>10.0</th> <th>12.9</th>			900-500	200	1250	5000	14400	20.8	83.3	240.0	12.0	5.8	10.0	12.9
ML 700-500 100 3000 10500 28800 5.0. 175.0 480.0 5.0. 2.4 4.7 6.2 W10 900-500 200 1700 6700 28800 28.3 111.7 480.0 8.8 4.3.3 7.4 9.6 K056 600-500 50 7200 28800 46000 120.0 480.0 76.7 2.1 1.0 1.7 2.2 ML 700-500 100 4000 10700 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 K072 600-500 50 6000 21000 28800 100.0 350.0 480.0 3.4 1.7 3.7 4.8 ML 700-500 100 4000 13500 21600 73.3 225.0 360.0 3.4 1.7 3.7 4.8 ML 700-500 100 4000 12000 210.0 20.0 0.4 1.7	K050		600-500	50	6300	30000	86400	105.0	500.0	1440.0	2.4	1.2	1.7	2.2
Motion 900-500 200 1700 6700 28800 28.3 111.7 480.0 8.8 4.3 7.4 9.6 K056 600-500 50 7200 28800 46000 120.0 480.0 766.7 2.1 1.0 1.7 2.2 ML 700-500 100 4000 10700 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 WL 700-500 200 3000 10200 46000 50.0 170.0 766.7 5.0 2.4 4.9 6.3 K072 600-500 50 6000 10000 12600 73.3 225.0 360.0 3.4 1.7 3.7 4.8 ML 700-500 100 16000 10000 12600 283.3 500.0 250.0 0.9 0.4 1.7 2.2 K080 600-500 50 1700 3000 120000 16.7 766.7 200.0		ML	700-500	100	3000	10500	28800	50.0	175.0	480.0	5.0	2.4	4.7	6.2
K056 600-500 50 7200 28800 46000 120.0 480.0 766.7 2.1 1.0 1.7 2.2 ML 700-500 100 4000 10700 28800 66.7 178.3 480.0 3.7 1.8 4.7 6.0 900-500 200 3000 10200 46000 50.0 170.0 766.7 5.0 2.4 4.9 6.3 K072 600-500 50 6000 21000 28800 100.0 350.0 480.0 2.5 1.2 2.4 3.1 ML 700-500 100 4400 13500 21600 73.3 225.0 360.0 3.4 1.7 3.7 4.8 900-500 200 3000 10000 12600 50.0 166.7 210.0 5.0 2.4 5.0 6.5 K080 600-500 50 17000 3000 12000 266.7 1000.0 200.0 2.1 1.0			900-500	200	1700	6700	28800	28.3	111.7	480.0	8.8	4.3	7.4	9.6
ML 700-500 100 4000 10700 28800 66.7 178.3 48.00 3.7 1.8 4.7 6.0 W1L 900-500 200 3000 10200 46000 50.0 170.0 766.7 5.0 2.4 4.9 6.3 K072 600-500 50 6000 21000 28800 100.0 350.0 480.0 2.5 1.2 2.4 3.1 ML 700-500 100 4400 13500 21600 73.3 225.0 360.0 3.4 1.7 3.7 4.8 900-500 200 3000 10000 12600 50.0 166.7 210.0 5.0 2.4 5.0 6.5 K080 600-500 50 1700 30000 12000 283.3 500.0 200 0.4 1.7 2.2 ML 700-500 100 16000 2600 12000 12.7 766.7 200.0 2.1 1.0	K056	M	600-500	50	7200	28800	46000	120.0	480.0	766.7	2.1	1.0	1.7	2.2
K072 600-500 200 3000 10200 40000 30.0 170.0 700.7 5.0 2.4 4.9 0.3 K072 600-500 50 6000 21000 28800 100.0 350.0 480.0 2.5 1.2 2.4 3.1 ML 700-500 100 4400 13500 21600 73.3 225.0 360.0 3.4 1.7 3.7 4.8 900-500 200 3000 10000 12600 50.0 166.7 210.0 5.0 2.4 5.0 6.5 K080 600-500 50 17000 30000 15000 283.3 500.0 250.0 0.9 0.4 1.7 2.2 ML 700-500 100 16000 60000 12000 266.7 1000.0 200.0 2.1 1.0 1.1 1.4 K096 600-500 50 470 2500 3800 7.8 41.7 63.3 31.9 </th <th></th> <th>ML</th> <th>700-500</th> <th>200</th> <th>2000</th> <th>10700</th> <th>28800</th> <th>50.7</th> <th>1/8.3</th> <th>480.0</th> <th>5.7</th> <th>1.8</th> <th>4.7</th> <th>6.0</th>		ML	700-500	200	2000	10700	28800	50.7	1/8.3	480.0	5.7	1.8	4.7	6.0
K072 Corr 200 <thcorr 200<="" th=""> Corr 200 <thc< th=""><th>K072</th><th></th><th>600 500</th><th>200</th><th>6000</th><th>21000</th><th>28800</th><th>100.0</th><th>250.0</th><th>480.0</th><th>2.5</th><th>1.2</th><th>4.9</th><th>0.5</th></thc<></thcorr>	K072		600 500	200	6000	21000	28800	100.0	250.0	480.0	2.5	1.2	4.9	0.5
K08 H18 H08 H18 H11 H11 <th>K072</th> <th>ML</th> <th>700-500</th> <th>100</th> <th>4400</th> <th>13500</th> <th>21600</th> <th>73.3</th> <th>225.0</th> <th>360.0</th> <th>3.4</th> <th>1.2</th> <th>3.7</th> <th>4.8</th>	K 072	ML	700-500	100	4400	13500	21600	73.3	225.0	360.0	3.4	1.2	3.7	4.8
K080 600-500 50 17000 30000 150000 283.3 500.0 2500.0 0.9 0.4 1.7 2.2 ML 700-500 100 16000 60000 120000 266.7 1000.0 2000.0 0.9 0.5 0.8 1.1 K096 600-500 50 470 2500 3800 7.8 41.7 63.3 31.9 15.5 19.9 25.9 ML 700-500 100 310 1500 7000 5.2 25.0 116.7 48.3 23.4 33.2 43.1 K096 600-500 50 470 2800 25.5 16.7 63.3 99.8 48.4 49.8 64.7 K112 600-500 50 850 9500 72000 14.2 158.3 120.0 17.6 8.5 5.2 6.8 K112 600-500 50 180 2800 2.2 31.3 48.0 40.5 19.6			900-500	200	3000	10000	12600	50.0	166.7	210.0	5.0	2.4	5.0	6.5
ML 700-500 100 16000 60000 120000 266.7 1000.0 2000.0 0.9 0.5 0.8 1.1 M0 900-500 200 7000 46000 120000 116.7 766.7 2000.0 2.1 1.0 1.1 1.4 K096 600-500 50 470 2500 3800 7.8 41.7 63.3 31.9 15.5 19.9 25.9 ML 700-500 100 310 1500 7000 5.2 25.0 116.7 48.3 23.4 33.2 43.1 ML 700-500 100 310 1500 7000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 K112 600-500 50 850 9500 72000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 K112 600-500 50 1800 1800 18.0 216.7 366.7 34.0 <th>K080</th> <th></th> <th>600-500</th> <th>50</th> <th>17000</th> <th>30000</th> <th>150000</th> <th>283.3</th> <th>500.0</th> <th>2500.0</th> <th>0.9</th> <th>0.4</th> <th>1.7</th> <th>2.2</th>	K080		600-500	50	17000	30000	150000	283.3	500.0	2500.0	0.9	0.4	1.7	2.2
ML 900-500 200 7000 46000 120000 116.7 766.7 2000.0 2.1 1.0 1.1 1.4 K096 600-500 50 470 2500 3800 7.8 41.7 63.3 31.9 15.5 19.9 25.9 ML 700-500 100 310 1500 7000 5.2 25.0 116.7 48.3 23.4 33.2 43.1 ML 700-500 200 150 1000 3800 2.5 16.7 63.3 99.8 48.4 49.8 64.7 K112 600-500 50 850 9500 72000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 ML 700-500 100 440 2800 22000 7.3 46.7 36.7 34.0 16.5 17.8 23.1 MI 700-500 200 370 1880 28800 6.2 31.3 480.0		ML	700-500	100	16000	60000	120000	266.7	1000.0	2000.0	0.9	0.5	0.8	1.1
K096 600-500 50 470 2500 3800 7.8 41.7 63.3 31.9 15.5 19.9 25.9 ML 700-500 100 310 1500 7000 5.2 25.0 116.7 48.3 23.4 33.2 43.1 900-500 200 150 1000 3800 2.5 16.7 63.3 99.8 48.4 49.8 64.7 K112 600-500 50 850 9500 72000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 ML 700-500 100 440 2800 22000 7.3 46.7 36.7 34.0 16.5 17.8 23.1 900-500 200 370 1880 28800 6.2 31.3 480.0 40.5 19.6 26.5 34.4 600-500 50 1080 13000 15000 18.0 216.7 2500.0 13.9 6.7 3.8			900-500	200	7000	46000	120000	116.7	766.7	2000.0	2.1	1.0	1.1	1.4
ML 700-500 100 310 1500 7000 5.2 25.0 116.7 48.3 23.4 33.2 43.1 900-500 200 150 1000 3800 2.5 16.7 63.3 99.8 48.4 49.8 64.7 K112 600-500 50 850 9500 72000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 ML 700-500 100 440 2800 22000 7.3 46.7 366.7 34.0 16.5 17.8 23.1 900-500 200 370 1880 28800 6.2 31.3 480.0 40.5 19.6 26.5 34.4 600-500 50 1080 13000 150000 18.0 216.7 250.0 13.9 6.7 3.8 5.0 K 144 MI 700-500 100 780 5200 86400 13.0 86.7 1440.0 19.2 9.3	K096		600-500	50	470	2500	3800	7.8	41.7	63.3	31.9	15.5	19.9	25.9
900-500 200 150 1000 3800 2.5 16.7 63.3 99.8 48.4 49.8 64.7 K112 600-500 50 850 9500 72000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 ML 700-500 100 440 2800 22000 7.3 46.7 366.7 34.0 16.5 17.8 23.1 900-500 200 370 1880 28800 6.2 31.3 480.0 40.5 19.6 26.5 34.4 900-500 200 370 1880 28800 6.2 31.3 480.0 40.5 19.6 26.5 34.4 MI 700-500 100 780 5200 86400 13.0 86.7 1440.0 19.2 9.3 9.6 12.4 K144 MI 700-500 100 550 2400 28800 9.2 40.0 480.0 27.2 13.2		ML	700-500	100	310	1500	7000	5.2	25.0	116.7	48.3	23.4	33.2	43.1
K112 600-500 50 850 9500 72000 14.2 158.3 1200.0 17.6 8.5 5.2 6.8 ML 700-500 100 440 2800 22000 7.3 46.7 366.7 34.0 16.5 17.8 23.1 900-500 200 370 1880 28800 6.2 31.3 480.0 40.5 19.6 26.5 34.4 600-500 50 1080 13000 150000 18.0 216.7 2500.0 13.9 6.7 3.8 5.0 K 144 MI 700-500 100 780 5200 86400 13.0 86.7 1440.0 19.2 9.3 9.6 12.4 900-500 200 550 2400 28800 9.2 40.0 480.0 27.2 13.2 20.7 26.9 600-500 50 6700 44000 200000 111.7 733.3 3333.3 2.2 1.1 1			900-500	200	150	1000	3800	2.5	16.7	63.3	99.8	48.4	49.8	64.7
ML 700-500 100 440 2800 22000 7.3 46.7 366.7 34.0 16.5 17.8 23.1 900-500 200 370 1880 28800 6.2 31.3 480.0 40.5 19.6 26.5 34.4 600-500 50 1080 13000 150000 18.0 216.7 2500.0 13.9 6.7 3.8 5.0 K 144 MI 700-500 100 780 5200 86400 13.0 86.7 1440.0 19.2 9.3 9.6 12.4 900-500 200 550 2400 28800 9.2 40.0 480.0 27.2 13.2 20.7 26.9 600-500 50 6700 44000 200000 111.7 733.3 333.3 2.2 1.1 1.1 1.5 K184 CH 700-500 100 5900 24000 16000 98.3 400.0 266.7 2.5 1.	K112		600-500	50	850	9500	72000	14.2	158.3	1200.0	17.6	8.5	5.2	6.8
K 144 MI 700-500 200 570 1880 28800 6.2 51.3 480.0 40.5 19.6 26.5 34.4 K 144 MI 700-500 50 1080 13000 150000 18.0 216.7 2500.0 13.9 6.7 3.8 5.0 K 144 MI 700-500 100 780 5200 86400 13.0 86.7 1440.0 19.2 9.3 9.6 12.4 900-500 200 550 2400 28800 9.2 40.0 480.0 27.2 13.2 20.7 26.9 K184 CH 700-500 100 5900 24000 200000 111.7 733.3 3333.3 2.2 1.1 1.1 1.5 K184 CH 700-500 100 5900 24000 160000 98.3 400.0 266.7 2.5 1.2 2.1 2.7 900-500 200 5000 21000 200		ML	/00-500	100	440	2800	22000	1.3	46.7	366.7	34.0	16.5	17.8	23.1
K 144 MI 700-500 100 780 5200 86400 13.0 86.7 1440.0 19.2 9.3 9.6 12.4 900-500 200 550 2400 28800 9.2 40.0 480.0 27.2 13.2 20.7 26.9 600-500 50 6700 44000 200000 111.7 733.3 3333.3 2.2 1.1 1.1 1.5 K184 CH 700-500 100 5900 24000 160000 98.3 400.0 266.7 2.5 1.2 2.1 2.7 900-500 200 5000 21000 200000 83.3 350.0 3333.3 3.0 1 2.4 3.1			900-500	200	370	1880	28800	6.2	31.3	480.0	40.5	19.6	26.5	54.4
K144 700-500 100 700 5200 60000 13.0 60.7 1440.0 19.2 9.3 9.0 12.4 900-500 200 550 2400 28800 9.2 40.0 480.0 27.2 13.2 20.7 26.9 600-500 50 6700 44000 200000 111.7 733.3 3333.3 2.2 1.1 1.1 1.5 K184 CH 700-500 100 5900 24000 160000 98.3 400.0 2666.7 2.5 1.2 2.1 2.7 900-500 200 5000 21000 200000 83.3 350.0 3333.3 3.0 1 2.4 3.1	K 144	мт	700-500	50 100	780	5200	86400	18.0	210.7	2500.0	13.9	0./	3.8 9.6	5.0 12.4
K184 CH 700-500 100 500 2100 20000 912 4000 4000 2100 2100 2007	IX 144	IVII	900-500	200	550	2400	28800	9.2	40.0	480.0	27.2	13.2	20.7	26.9
K184 CH 700-500 100 5000 1000 20000 1111 1500 55000 212 111 111 110 K184 CH 700-500 100 5900 24000 160000 98.3 400.0 2666.7 2.5 1.2 2.1 2.7 900-500 200 5000 21000 200000 83.3 350.0 3333.3 3.0 1 2.4 3.1			600-500	50	6700	44000	200000	111.7	733.3	3333.3	2.2	1.1	1.1	1.5
900-500 200 5000 21000 200000 83.3 350.0 3333.3 3.0 1 2.4 3.1	K184	СН	700-500	100	5900	24000	160000	98.3	400.0	2666.7	2.5	1.2	2.1	2.7
			900-500	200	5000	21000	200000	83.3	350.0	3333.3	3.0	1	2.4	3.1

Tablo 5.4. Sönümlenme deney sonuçları

Şekil 5.1. t₅₀ ile hesaplanan radyal konsolidasyon katsayısı değerleri

Şekil 5.2. t₉₀ ile hesaplanan radyal konsolidasyon katsayısı değerleri

Ek-II'de verilen deney sonuçları incelendiğinde kil oranı açısından %10 değerine sahip numunelerin sönümlenme eğri tipi birbirine benzer şekilde parabolik olarak yumuşak şekilde azalan bir tip sergilerken dikkat çekici bir şekilde %10'dan daha fazla kil oranına sahip numunelerin sönümlenme eğrileri drenaj vanasının açılmasıyla birlikte sert ve ani bir düşüş yapan boşluk suyu basıncı değerinin hemen sonrasında yükleme esnasında aldığı en büyük değeri aşmayacak büyüklükte artması ve daha sonra da yine parabolik yumuşak bir eğri şeklinde azalması ile sonuçlanmaktadır.

BÖLÜM 6. SONUÇLAR VE ÖNERİLER

Bu tez çalışmasında siltli zeminlerin sıvılaşma potansiyelinin belirlenmesinde, radyal konsolidasyon katsayısını ölçmede kullanılan hidrolik hücre deney sonuçlarının katkıda bulunması hedeflenmiştir. Bu amaçla farklı kil oranlarına sahip 16 farklı zemin karışımı kullanılmıştır.

Tez çalışması kapsamında laboratuvarda çarpmalı alet ve düşen koni penetrasyon yöntemi ile likit limit deneyleri, plastik limit deneyleri, zemin danelerinin özgül ağırlığının tayini için piknometre deneyi, dane çapı dağılımının bulunması için pipet yöntemi ve hidrometre yöntemi ile çöktürme deneyleri yapılmıştır. Zeminlerin sönümlenme ve radyal konsolidasyon katsayılarını belirlemek için boşluk suyu basıncı okumalı hidrolik hücrede sönümlenme deneyleri yapılmıştır.

Siltli numuneler üzerinde yapılan deneylerde kil oranının artması ile t_{50} ve t_{90} değerlerinde artış meydana gelmiş, bu durumda da hesaplanan radyal konsolidasyon katsayısı değerleri artan kil oranı ile azalmıştır.

Numunelere uygulanan gerilme kademesi arttıkça ölçülen sönümlenme zamanlarının azaldığı, dolayısı ile konsolidasyon katsayısı değerlerinin arttığı izlenmiştir.

 t_{50} ve t_{90} değerine göre hesaplanmış radyal konsolidasyon katsayısı değerlerine bakıldığında kil oranına göre değişim eğrilerinin eğilim çizgilerinin R² değerleri istenen büyüklükten uzak olup bunun yanında %10 kil oranında radyal konsolidasyon katsayısı değerlerinin 5 m²/yıl civarında olduğu söylenebilir.

Sönümlenme deney sonuçları incelendiğinde kil oranı açısından %10 değerine sahip numunelerin sönümlenme eğri tipi birbirine benzer şekilde parabolik olarak yumuşak

şekilde azalan bir tip sergilerken dikkat çekici bir şekilde %10'dan daha fazla kil oranına sahip numunelerin sönümlenme eğrileri drenaj vanasının açılmasıyla birlikte sert ve ani bir düşüş yapan boşluk suyu basıncı değerinin hemen sonrasında yükleme esnasında aldığı en büyük değeri aşmayacak büyüklükte artması ve daha sonra da yine parabolik yumuşak bir eğri şeklinde azalması ile sonuçlanmaktadır.

KAYNAKLAR

ASTM Designation D 43 1 8-95a, Liquid Limit, Plastic Limit and Plasticity Index of Soils.

BRAY, J.D., SAIONC, R.B., Assessment of Liquefaction Susceptibility of Fine Grained Soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 27:2:31-41. 2006

BOL, E., ÖNALP, A., AREL, E., SERT, S., ÖZOCAK, A., Liquefaction of Silts: The Adapazarı Criteria. Bulletin of Earthquake Engineering, 8:859-873. 2010

CERNICA, J.N., Geotechnical Engineering: Soil Mechanics, John WİLEY & SONS, U.S.A., pp.453, 1995

HEAD, K.H., Manual of Soil Laboratory Testing, Vol: 1-2-3, Pentech Press, London, pp: 1240. 1985

IDRISS, I.M., BOULANGER, R.W., Semi-emprical Procedures for Evaluating Liquefaction Potential During Earthquakes,. Soil Dynamics and Earthquake Engineering, Elsevier, 26:115-130. 2006

KANBUR, M.A., Siltlerde sıvılaşma potansiyelinin değerlendirilmesinde boşluk geometrisinin etkisi, SAÜ FBE. 2011

ÖNALP, A., Geoteknik Bilgisi 1 Çözümlü Problemlerle Zeminler ve Mekaniği, Birsen yayınevi 3.baskı 2007

ÖNALP, A., ve AREL, E., Siltlerin Sıvılasma Yeteneği: Adapazarı Kriteri, Zemin Mekaniği ve Temel Mühendisliği Onuncu Ulusal Kongresi, İstanbul Teknik Üniversitesi, İstanbul. 2002

ÖZOCAK, A., ÖNALP, A., ve BOL, E., İnce Daneli Zeminlerde Laboratuvar Sönümlenme Deneyleri, Zemin Mekaniği ve Temel Mühendisliği Onikinci Ulusal Kongresi, 16-17 Ekim 2008, Selçuk Üniversitesi, Konya 2008

ROWE, P.W., BARDEN, L., A New Consolidation Cell, Geotechnique, Vol. 16 (2), 162. 1966

SCOTT, R.F., Principles of Soil Mechanics, Addison-Wesley Publishing Co., READING, Mass., 1963

TERZAGHI, K., PECK, R.B., Soil Mechanics in Engineering Practice, John Wiley & SONS, U.S.A., 719pp., 1967

TS 1500. İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması, Ankara, 2000

TS 1900-1, İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri – Bölüm 1: Fiziksel Özelliklerin Tayini, Türk Standartları, Bakanlıklar, Ankara, 2006

UZUNER, B., Çözümlü Problemlerle Temel Zemin Mekaniği, KTÜ 1990

WANG, W.S., Some Findings in Soil Liquefaction, Research Institute of Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing 1979

EKLER

EK I.a. Dane boyutu dağılım eğrileri (Pipet)

EK I.b. Dane boyutu dağılım eğrileri (Hidrometre)

Dane Boyu (mm)

EK-II

Sönümlenme Eğrileri

ÖZGEÇMİŞ

Mehmet TAPAN,12.12.1983 Kırıkhan / HATAY doğumlu olup aslen Trabzon'ludur. Dört çocuklu ailenin ikinci çocuğu olup, babası emekli, annesi ev hanımıdır. İlköğrenimini Kırıkhan / HATAY'da, ortaöğrenimini Keçiören / ANKARA'da, önlisans programını Kırıkkale Üniversitesi Kırıkkale Meslek Yüksekokulu İnşaat Bölümü'nde tamamlamıştır. Sakarya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü'nden 2009 bahar döneminde mezun olmuştur. 2009 yılında Sakarya Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı Geoteknik Mühendisliği Programı'nda yüksek lisans yapmaya hak kazanmıştır.