T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KIRILMA VE ÇATLAK İLERLEME PROBLEMLERİNİN ÜÇ BOYUTTA DÜZENSİZ BÖLÜNTÜLÜ MODELLERLE UYGULAMALI OLARAK ÇÖZÜMÜ

YÜKSEK LİSANS TEZİ

Mak. Müh. Cihan KURTİŞ

Enstitü Anabilim Dalı	:	MAKİNE MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	MAKİNE TASARIM VE İMALAT
Tez Danışmanı	:	Doç. Dr. Ali Osman AYHAN

Haziran 2011

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KIRILMA VE ÇATLAK İLERLEME PROBLEMLERİNİN ÜÇ BOYUTTA DÜZENSİZ BÖLÜNTÜLÜ MODELLERLE UYGULAMALI OLARAK ÇÖZÜMÜ

YÜKSEK LİSANS TEZİ

Mak. Müh. Cihan KURTIS

Enstitü Anabilim Dalı : MAKİNE MÜHENDİSLİĞİ

Enstitü Bilim Dah

: MAKINE TASARIM VE IMALAT

Bu tez 14 / 06 / 2011 tarihinde aşağıdaki jüri tarafından Ovbirliği ile kabul edilmiştir.

Duc. Dr. Ali Osman AYHAN Jüri Başkanı

Doc. Dr. Kenan GENEL Üye.

Yrd. Doç. Dr. Ergün Nart Uye /

TEŞEKKÜR

Bu çalışmanın ortaya çıkması ve yürütülmesi esnasında beni yönlendiren, destekleyen ve yardımlarını esirgemeyen danışman hocam Sayın Doç. Dr. Ali Osman AYHAN'a sonsuz teşekkür ederim. Ayrıca, tez ve proje çalışmalarım kapsamında fikir desteği ve yardımları için Yrd. Doç. Dr. Ergün NART'a, çalışmalarımı finansal olarak destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na (TÜBİTAK) teşekkür ederim.

OMMI (Operation Maintenance and Materials Issues) ve yayıncısı European Technology Development Ltd. UK tarafından OMMI'nin online telif hakkında belirttiği gibi (http://www.ommi.co.uk/), M. REYTIER verilerinin kullanılabilmesi ve tekrar yayınlanabilmesi izni olduğu için bu çalışmada, plakaya çatlak yerleştirilerek çatlak ilerleme analizi gerçekleştirilmesi sonucunda elde edilen sonuçların karşılaştırılmasında deneysel çalışmalarını referans olarak kullandığım OMMI ve M. REYTIER'e teşekkürü bir borç bilirim.

Ayrıca, benim bu günlere gelmemde büyük emeği olan, beni sürekli destekleyen, öğrenim hayatımın her aşamasında maddi ve manevi desteklerini esirgemeyen aileme teşekkürü bir borç bilirim. TÜBİTAK destekli araştırma projesi kapsamında birlikte çalışmış olduğum arkadaşlarım Mahmut USLU ve Gökhan ATALI'ya da teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	vii
ŞEKİLLER LİSTESİ	ix
TABLOLAR LİSTESİ	xix
ÖZET	XX
SUMMARY	xxi

BÖLÜM 1.

GİRİŞ	1
1.1. Kırılma Mekaniğinin Tanımı ve Tarihçesi	1
1.2. Gerilme Şiddet Faktörü (K) ve Elde Etme Metodları	3
1.2.1. Teorik metodlar	5
1.2.1.1. Westergaard metodu	6
1.2.1.2. Kompleks potansiyeller metodu	6
1.2.2. Nümerik metodlar	6
1.2.2.1. Green fonksiyonu metodu	6
1.2.2.2. Sonlu elemanlar metodu	7
1.2.3. Deneysel metodlar	10
1.2.3.1. Fotoelastisite metodu	10
1.3. Üç Boyutlu Kırılma Analizi İhtiyaçları	10
1.3.1. Üç boyutlu kırılma mekaniği literatür çalışması	12

BÖLÜM 2.	
FCPAS KULLANICI ARA YÜZÜ	15
2.1. Giriş	15

2.2. Cracked Model Developed Using ANSYS (ANSYS Kullanılarak	
Çatlak İçeren Model Geliştirilmesi)	17
2.2.1. ANSYS (TM) sekmesi	20
2.2.2. GEO File sekmesi	23
2.2.3. RUN File sekmesi	24
2.2.4. Fracture Analysis sekmesi	25
2.2.5. Fracture Info sekmesi	26
2.2.6. Post Processing sekmesi	27
2.2.7. Visualization sekmesi	28
2.3. 3DCPP&C Sekmesi	
2.3.1. Plate Pressure formu	34
2.3.2. Plate Displacement formu	34
2.3.3. Cylinder Pressure formu	36
2.3.4. Cylinder Displacement formu	38
2.3.5. Crack_Profiles formu	39
2.4. Crack Insertion and Fracture Analysis (Çatlak Yerleştirme ve	
Kırılma Analizi)	41
2.4.1. Working Directory-File Format sekmesi	42
2.4.2 Crack Insertion sekmesi	43
2.4.3 GEO File sekmesi	44

BÖLÜM 3.

FARKLI ÜNİFORM ve EĞİLME YÜKLERİNE MARUZ KALAN	
SİLİNDİRİK ÇUBUKLARDAKİ ÜÇ BOYUTLU ÇATLAKLAR İÇİN	
GERİLME ŞİDDET FAKTÖRLERİ	46
3.1. Giriş	46
3.2. Sonlu Elemanlar Metodu	48
3.3. Değişik Üniform ve Eğilme Yükleri Altında Gerilme Şiddet	
Faktörleri	50
3.3.1. Uygulama: Üniform yayılı yük kontrollü ve eliptik yüzey	
çatlağı içeren silindirik bir çubuk modelinde gerilme şiddet faktörü	
hesaplanması (a/c=0.2, a/D=0.1)	53

	3.3.2.	Değişik	yükler	altında	gerilme	şiddet	faktörlerinin	
]	karşıla	ştırılması .				•••••		60
	3	.3.2.1. Ün	iform ya	yılı yük,	termal yü	ik ve dej	olasman yükü	
	a	ltındaki ge	erilme șid	ldet faktö	rlerinin ka	ırşılaştırı	lması	60
	3	.3.2.2. Eği	ilme yayı	ılı yükü,	termal yük	kü ve dej	olasman yükü	
	a	ltındaki ge	erilme șid	ldet faktö	rlerinin ka	ırşılaştırı	lması	71

BÖLÜM 4.

FARKLI ÜNİFORM ve EĞİLME YÜKLERİNE MARUZ KALAN	
SİLİNDİRİK ÇUBUKLARDAKİ ÜÇ BOYUTLU ÇATLAKLAR İÇİN	
ÇATLAK İLERLEME ANALİZLERİ	84
4.1. Giriş	84
4.2. Çatlak İlerleme Modeli	86
4.3. Değişik Yükler Altında Çatlak İlerleme Analizleri	88
4.3.1. Üniform yayılı yük ve deplasman yükü altındaki çatlak	
ilerleme analizleri	88
4.3.2. Uygulama: Üniform deplasman yükü altındaki silindirik	
çubuk modelinde çatlak ilerleme analizi (a/c=0.2, a/D=0.1)	90
4.3.3. Eğilme yayılı yükü ve deplasman yükü altındaki çatlak	
ilerleme analizleri	102
BÖLÜM 5.	
DÜZENSİZ BÖLÜNTÜ ile MODELLERE ÇATLAK YERLEŞTİRİLMESİ	
İŞLEMİ	112
5.1. Çatlaksız Bir Sonlu Eleman Modeline Çatlak Yerleştirilmesi	112
5.2. Plakada Mod-I Yüzey Çatlağı Yerleştirme İşlemi	114
5.3. Uygulama: Üniform Yayılı Yük Altındaki Plakada Mod-I Yüzey	
Çatlağı Yerleştirme İşlemi ve Kırılma Analizi (a/c=0.2, a/t=0.2,	
2W=50mm., 2H=50 mm., t=5mm.)	116
5.4. Uygulama: Eğilme Yayılı Yükü Altındaki Plakada Mod-I Yüzey	
Çatlağı Yerleştirme İşlemi ve Çatlak İlerleme Analizi	121

BÖLÜM 6.

SONUÇLAR ve ÖNERİLER	124
KAYNAKLAR	126
ÖZGEÇMİŞ	129

SİMGELER VE KISALTMALAR LİSTESİ

K	: Gerilme şiddet faktörü
K _t	: Gerilme yığılma katsayısı
$\sigma_{ m max}$: Parçada oluşan maksimum gerilme
$\sigma_{ m ort}$: Parçada oluşan ortalama gerilme
2b	: Elips y ekseni çapı
2a	: Elips x ekseni çapı
ρ	: Elips değişken yarıçapı
β	: Parça geometrisine bağlı sabit bir katsayı
σ	: Parçaya uygulanan gerilme
a	: Çatlak yarı uzunluğu
С	: Çatlağı saran herhangi bir yön
W	: Genleme enerjisi yoğunluğu
Т	: C boyunca n normali doğrultusunda oluşan çekme vektörü
u	: Şekil değişimi vektörü
ds	: Ark boyu
t	: Levha kalınlığı
φ	: Parametrik çatlak ucu açısı
σ_{t}	: Çekme gerilmesi
$F(a/c, a/t, \varphi)$: Düzeltme faktörü
W	: Plaka yarı genişliği
Н	: Plaka yarı uzunluğu
t	: Plaka et kalınlığı
Δa_{max}	: Çatlak ucu boyunca bir adımdaki maksimum ilerleme miktarı
D	: Silindir çapı
[K]	: Tümel direngenlik matrisi
{P}	: Bütün düğümlere uygulanan dış kuvvetler

$\{\delta\}$: Bütün düğümlerin yer değiştirmesi
E	: Elastisite modülü
ν	: Poisson oranı
K _N	: Normalize edilmiş gerilme şiddet faktörü
σ^{T}	: Termal yük gerilmesi
\mathcal{E}^{T}	: Termal yük birim şekil değişimi
σ^{D}	: Deplasman yükü gerilmesi
ε^{D}	: Deplasman yükü birim şekil değişimi
ΔL	: Silindir boyundaki değişim
L	: Silindir boyu
a _{ef}	: Silindir çapından çatlak derinlik noktasına olan etkin çatlak
	uzunluğu
С	: Malzeme sabiti
n	: Malzeme sabiti
da	: Belli bir çevrim sayısındaki çatlak ilerlemesi
ΔK	: Gerilme şiddet faktörü genliği
XR	: Çatlak merkez X koordinatı
YR	: Çatlak merkez Y koordinatı
ZR	: Çatlak merkez Z koordinatı
Ø	: Çatlağın X ekseni ile yaptığı açı
А	: Çatlak etkin derinlik noktası
FCPAS	: Fracture and crack propagation analysis system (Kırılma ve
	çatlak ilerleme analiz sistemi
3DCPP&C	: Three dimensional crack propagation in plates and cylinders
	(Plaka ve silindirlerde üç boyutlu çatlak ilerlemesi)

ŞEKİLLER LİSTESİ

Şekil 1.1.	Üniform gerilme yükü altındaki eliptik delik içeren bir plaka		
Şekil 1.2.	Eliptik delik içeren ve P yüküne maruz plaka		
Şekil 1.3.	J integral konturu	8	
Şekil 1.4.	Çatlak ucu C ve C' konturları	9	
Şekil 1.5.	Örnek çatlak ve plaka boyutları	12	
Şekil 2.1.	FCPAS ara yüzü ana formu	17	
Şekil 2.2.	FCPAS ana formu akış şeması	17	
Şekil 2.3.	Cracked Model Developed Using ANSYS genel algoritmas1	18	
Şekil 2.4.	ANSYS TM programı kullanılarak kırılma modellerinin		
	geliştirilmesi ve FCPAS/FRAC3D ile analizi	19	
Şekil 2.5.	ANSYS TM sekmesi	20	
Şekil 2.6.	Control Panel	22	
Şekil 2.7.	GEO File sekmesi	23	
Şekil 2.8.	RUN File sekmesi	24	
Şekil 2.9.	Fracture Analysis sekmesi	25	
Şekil 2.10.	Fracture Info sekmesi	26	
Şekil 2.11.	Post Procesing sekmesi	27	
Şekil 2.12.	Visualization sekmesi	28	
Şekil 2.13.	Kırılma analizi gerçekleştirilmiş üniform yayılı yük kontrollü		
	eliptik yüzey çatlağı içeren bir silindirik çubuk modeli için üç		
	boyutlu gerilme dağılımı görüntüsü	29	
Şekil 2.14.	Kırılma analizi gerçekleştirilmiş eğilme yayılı yükü kontrollü		
	eliptik yüzey çatlağı içeren bir silindirik çubuk modeli için üç		
	boyutlu gerilme dağılımı görüntüsü	29	
Şekil 2.15.	3DCPP&C sekmesi	30	
Şekil 2.16.	3DCPP&C sekmesi işlem şeması	31	

Şekil 2.17.	Yayılı yük ve deplasman yükü kontrollü plaka ve silindir	
	modelleri için çatlak ilerleme analizleri formlarına geçiş	33
Şekil 2.18.	Plate Pressure formu	34
Şekil 2.19.	Deplasman yükü kontrollü plaka modeli için çatlak ilerleme	
	analizi formu olan Plate Displacement formuna geçiş	35
Şekil 2.20.	Plate Displacement formu	35
Şekil 2.21.	Yayılı yük kontrollü silindir modeli için çatlak ilerleme analizi	
	formu olan cylinder pressure formuna geçiş	36
Şekil 2.22.	Cylinder Pressure formu	37
Şekil 2.23.	Deplasman yükü kontrollü silindir modeli için çatlak ilerleme	
	analizi formu olan Cylinder Displacement formuna geçiş	38
Şekil 2.24.	Cylinder Displacement formu	38
Şekil 2.25.	Crack_Profiles formu	40
Şekil 2.26.	Eliptik bir yüzey çatlağı içeren plaka modeli örneği için çatlak	
	ilerleme simülasyonu	41
Şekil 2.27.	Working Directory-File Format sekmesi	42
Şekil 2.28.	Crack Insertion sekmesi	43
Şekil 2.29.	GEO File sekmesi	44
Şekil 3.1.	Eliptik bir yüzey çatlağı içeren ½ simetrisindeki genel bir	
	silindir modeli	46
Şekil 3.2.	Otomatikleştirilmiş makro ile elde edilmiş ve yayılı yük	
	altındaki 1/2 simetrik silindirik çubuk modeli, bölüntü, yükler ve	
	sınır şartları (a/c=0.2, a/D=0.1)	51
Şekil 3.3.	Çatlak ucu boyunca zenginleştirilmiş elemanlar kullanılarak elde	
	edilmiş çatlak ucu bölgesi bölüntü örneği (a/c=0.6, a/D=0.75)	52
Şekil 3.4.	FCPAS ara yüzü ana formu	54
Şekil 3.5.	Analiz için gerekli dosyaların da bulunduğu çalışma klasörünün	
	seçilmesi	55
Şekil 3.6.	GEO File sekmesi	56
Şekil 3.7.	RUN File sekmesi	57
Şekil 3.8.	Fracture Analysis sekmesi	58
Şekil 3.9.	Frac3d çözümü	58

Şekil 3.10.	Üniform yayılı yük kontrollü eliptik yüzey çatlağı içeren silindir	
	çubuk modeli	6
Şekil 3.11.	Üniform termal yük kontrollü eliptik yüzey çatlağı içeren silindir	
	çubuk modeli	6
Şekil 3.12.	Üniform deplasman yükü kontrollü eliptik yüzey çatlağı içeren	
	silindir çubuk modeli	62
Şekil 3.13.	Üniform yayılı yük altındaki silindir çubuk modeli için FCPAS	
	çözümü ile Yang ve Kuang'a ait çözümlerin karşılaştırılması	
	(a/c=1.0, a/D=0.25)	6.
Şekil 3.14.	Üniform yayılı yük, termal yük ve deplasman yükü kontrollü	
	silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu	
	boyunca normalize edilmiş gerilme şiddet faktörü dağılımı	
	(a/c=1.0 için a/D=0.1)	64
Şekil 3.15.	Üniform yayılı yük, termal yük ve deplasman yükü kontrollü	
	silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu	
	boyunca normalize edilmiş gerilme şiddet faktörü dağılımı	
	(a/c=1.0, a/D=0.5)	64
Şekil 3.16.	Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.2, a/D=0.1, 0.25)	6
Şekil 3.17.	Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.2, a/D=0.5, 0.75)	6
Şekil 3.18.	Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.4, a/D=0.1, 0.25)	6
Şekil 3.19.	Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.4, a/D=0.5, 0.75)	6
Şekil 3.20.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
-	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.1, 0.25)	6

Şekil 3.21.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.5, 0.75)	68
Şekil 3.22.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.8, a/D=0.1, 0.25)	68
Şekil 3.23.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=0.8, a/D=0.5, 0.75)	69
Şekil 3.24.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.1, 0.25)	69
Şekil 3.25.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.5, 0.75)	70
Şekil 3.26.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=2.0, a/D=0.1, 0.25)	70
Şekil 3.27.	Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki	
	eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş	
	gerilme şiddet faktörü dağılımı (a/c=2.0, a/D=0.5, 0.75)	71
Şekil 3.28.	Eğilme yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindir	
	çubuk modeli	72
Şekil 3.29.	Eğilme termal yükü kontrollü eliptik yüzey çatlağı içeren silindir	
	çubuk modeli	72
Şekil 3.30.	Eğilme deplasman yükü kontrollü eliptik yüzey çatlağı içeren	
	silindir çubuk modeli	73
Şekil 3.31.	Eğilme yayılı yükü altındaki silindir çubuk modeli için FCPAS	
	çözümü ile Shiratori' ye ait çözümlerin karşılaştırılması	74
Şekil 3.32.	Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü	
	silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu	
	boyunca normalize edilmiş gerilme şiddet faktörü dağılımı	
	(a/c=0.6, a/D=0.1)	75

Şekil 3.33.	Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu	
	boyunca normalize edilmiş gerilme şiddet faktörü dağılımı	
	(a/c=0.6, a/D=0.25)	75
Şekil 3.34.	Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı	76
0.1.1.2.25	(a/c=0.6, a/D=0.50)	/6
Şekii 3.35.	silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı	
	(a/c=0.6, a/D=0.75)	76
Şekil 3.36.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.2,	
	a/D=0.1, 0.25)	77
Şekil 3.37.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktakı eliptik yüzey çatlağı ıçın çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktoru dağılımı (a/c=0.2, $(D_{10}, 0.5, 0.75)$)	70
Salvil 2 28	a/D=0.5, 0.75)	/8
Şekii 5.58.	cubuktaki eliptik vüzev catlağı için catlak uçu boyunca	
	normalize edilmis gerilme siddet faktörü dağılımı (a/c=0.4	
	a/D=0.1, 0.25)	78
Sekil 3.39.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
3	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.4,	
	a/D=0.5, 0.75)	79
Şekil 3.40.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6,	
	a/D=0.1, 0.25)	79

xiii

Şekil 3.41.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6,	
	a/D=0.5, 0.75)	80
Şekil 3.42.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.8,	
	a/D=0.1, 0.25)	80
Şekil 3.43.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.8,	
	a/D=0.5, 0.75)	81
Şekil 3.44.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0,	
	a/D=0.1, 0.25)	81
Şekil 3.45.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0,	
	a/D=0.5, 0.75)	82
Şekil 3.46.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=2.0,	
	a/D=0.1, 0.25)	82
Şekil 3.47.	Eğilme yayılı yükü ve termal yükü kontrollü silindir bir	
	çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca	
	normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=2.0,	
	a/D=0.5, 0.75)	83
Şekil 4.1.	Çatlak ilerleme analizi gerçekleştirilen 1/2 simetri oranındaki	
	çatlak ve silindir modelleri	84
Şekil 4.2.	Çatlak ilerleme genel işlem şeması	86
Şekil 4.3.	Çevrim sayısına karşı çatlak uzunluğu örneği	87
Şekil 4.4.	Çatlak ilerleme analizleri kısmına geçiş	89

Şekil 4.5.	Üniform deplasman yükü kontrollü eliptik yüzey çatlağı içeren	
	silindirik bir çubuktaki çatlak ilerleme analizi FCPAS ara yüzü	
	görünümü (a/D=0.1, a/c=0.2)	91
Şekil 4.6.	Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.2)	93
Şekil 4.7.	Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.4)	93
Şekil 4.8.	Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.6)	94
Şekil 4.9.	Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.8)	94
Şekil 4.10.	Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=1.0)	95
Şekil 4.11.	Eliptik yüzey çatlağı içeren silindirik çubuk modelinde derinlik	
	noktası (A) gösterimi	96
Şekil 4.12.	Üniform deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.2)	97
Şekil 4.13.	Üniform deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.4)	98

Şekil 4.14.	Üniform deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.6)	99
Şekil 4.15.	Üniform deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.8)	100
Şekil 4.16.	Üniform deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=1.0)	101
Şekil 4.17.	Ömür hesabı örneği (a/c=0.2, a/D=0.1)	102
Şekil 4.18.	Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.2)	103
Şekil 4.19.	Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.4)	103
Şekil 4.20.	Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.6)	104
Şekil 4.21.	Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=0.8)	104
Şekil 4.22.	Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü	
	ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan	
	çatlak profilleri (a/D=0.1, a/c=1.0)	105
Şekil 4.23.	Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.2)	106

Şekil 4.24.	Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.4)	107
Şekil 4.25.	Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.6)	108
Şekil 4.26.	Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=0.8)	109
Şekil 4.27.	Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik	
	çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme	
	şiddet faktörü dağılımı (a/D=0.1, a/c=1.0)	110
Şekil 4.28.	Ömür hesabı örneği (a/c=0.2, a/D=0.1)	111
Şekil 5.1.	Çatlak yerleştirme prosedürünün işlem haritası	113
Şekil 5.2.	Üniform çekme gerilmesi altında sonlu kalınlıktaki bir plakada	
	yüzey çatlağı	114
Şekil 5.3.	Çalışma klasörünün seçilmesi ve Node File Format	116
Şekil 5.4.	Yeni oluşturulan *.node2 uzantılı dosyanın seçilmesi, çatlak	
	merkez koordinatlarının girilmesi, chunk bölgesi ile çatlağın	
	oluşturulması	117
Şekil 5.5.	Çatlağın plakaya yerleştirilerek *.geo uzantılı dosyanın çalışma	
	klasörü içerisine oluşturulması	118
Şekil 5.6.	RUN File sekmesi	118
Şekil 5.7.	Fracture Analysis sekmesi	119
Şekil 5.8.	Fracture Info sekmesi	119
Şekil 5.9.	Üniform gerilme altındaki sonlu kalınlıkta bir plakadaki yüzey	
	çatlağı ucu boyunca mod-I gerilme şiddet faktörü dağılmı	
	(a/c=0.2, a/t=0.2)	120
Şekil 5.10.	Çatlak yüzey bölüntülerinin yakın bölge kesit görünüşü (a/c=0.2,	
	a/t=0.2)	120
Şekil 5.11.	Üniform gerilme altındaki sonlu kalınlıkta bir plakadaki yüzey	
	çatlağı ucu boyunca normalize edilmiş mod-I gerilme şiddet	
	faktörü dağılmı (a/c=0.2, a/t=0.2, 0.5, 0.8)	121

Şekil 5.12.	Çözüm	sonucu	elde	edilen	gerilme	şiddet	faktörü	(K)	
	dağılımının grafik olarak gösterimi								122

TABLOLAR LİSTESİ

Tablo 3.1.	Gerilme şiddet faktörü analizi gerçekleştirilen eliptik yüzey	
	çatlağı ve silindirik çubuk modelleri oranları	50
Tablo 3.2.	Gerilme şiddet faktörü karşılaştırması gerçekleştirilen eliptik	
	yüzey çatlağı ve silindirik çubuk modelleri oranları	73
Tablo 4.1.	Üniform yayılı yük ve deplasman yükü kontrollü eliptik yüzey	
	çatlağı içeren silindirik bir çubuk modeli için a/D=0.1 sabit	
	durumundaki a/c oranları	88

ÖZET

Anahtar Kelimeler: Gerilme Şiddet Faktörü (K), FCPAS, Üç Boyutlu Kırılma, Çatlak İlerlemesi, Makro

Mühendislik sistemlerinin projelendirilmesinde, imalatında veya kullanımında çalışan mühendisler zaman zaman dizayn ettikleri, ürettikleri veya kullandıkları sistemlerin kırıldıklarına ve bu şekilde hasara uğradıklarına tanık olabilirler. Mühendislik yapılarını çatlak ve çatlak benzeri oluşumlardan arındırmak mümkün değildir. Öte yandan enerji ve malzeme tasarrufu konusunda artan talepler de bu yapıların daha düşük emniyet katsayıları ile çalışmasını dikte etmektedir. Böylece yapıların çatlakları tolere etme özellikleri ve bunun doğru bir şekilde sayısal olarak ortaya konabilmesi artan bir şekilde önem kazanmaktadır.

Bu çalışmada, 108M283 numaralı TÜBİTAK destekli araştırma projesi kapsamında üç boyutlu kırılma ve çatlak ilerleme analiz programı olan FCPAS (Fracture and Crack Propagation Analysis System) ara yüzü geliştirilmiş, ANSYSTM programında otomatikleştirilmiş makrolar ile birlikte FCPAS ara yüzü kullanılarak üç boyutlu silindir ve plaka modelleri için kırılma ve çatlak ilerleme analizleri gerçekleştirilmiştir. Elde edilen kırılma ve çatlak ilerleme analizlerinde temel parametre olarak ise, çatlak ucu boyunca zenginleştirilmiş sonlu elemanlar metodu ile elde edilen ve K sembolü ile gösterilen gerilme şiddet faktörü alınmıştır.

FRACTURE AND CRACK PROPAGATION ANALYSES

SUMMARY

Key Words: Stress Intensity Factor (K), FCPAS, Three Dimensional Fracture, Crack Propagation, Macro

In this study, FCPAS, a graphical user interface (GUI) for three dimensional fracture and crack propagation analysis system is developed. Fracture and crack propagation analyses are done in plates and cylinders by using FCPAS. Different types of loads are employed for fracture models.

The main parameter computed is the stress intensity factor. This parameter is calculated along the crack front. The stress intensity factors are calculated by using enriched finite elements.

BÖLÜM 1. GİRİŞ

1.1. Kırılma Mekaniğinin Tanımı ve Tarihçesi

Kırılma mekaniği, çatlak veya boşluk içerebilen mühendislik yapılarının emniyetli bir şekilde çalışmalarını sağlayan bir bilim dalıdır. Kırılma mekaniği malzemenin deformasyonunu ve kırılmasını incelemektedir. Kırılma olayı atomik düzeyde ele alındığında ise, parçaya gelen gerilmenin atomlar arasındaki bağların oluşturduğu mukavemeti aşması sonucunda kırılma gerçekleşmektedir.

Hemen hemen tüm mühendislik malzemeleri ne kadar dikkatli ve hassas üretilirse üretilsinler yine de içlerinde veya yüzeylerinde boşluk, hata, çatlak, çentik, kusur vb. içermektedirler. Ayrıca çalışma koşullarından dolayı da çatlaklar oluşabilmektedir. Mühendislik malzemelerinin neden kırıldığının araştırılarak kırılma sebeplerinin anlaşılması benzer hasarların ve kazaların tekrarlanmaması için gerekmektedir. Malzemelerin hasara uğrama sebepleri ise; yanlış tasarımlar, malzeme hataları, beklenmeyen yükler, üretim hataları, çalışma koşulları ve diğer karmaşık nedenler olabilmektedir [1].

Mühendislik malzemelerinin kırılma davranışı geçmişten günümüze gelen ciddi bir sorun olmuştur. Kırılmanın iki temel sonucu emniyet ve ekonomikliktir.

İngiltere'de 1860-1870 yılları arasında tren kazalarında her yıl ortalama 200 kişinin hayatını kaybetme sebebi tren tekerlek, aks veya tren yolu raylarının kırılması sonucu trenlerin raydan çıkması ile oluşan kazalardır [2]. Daha fazla kırılma sonucu oluşan ciddi emniyet problemi örnekleri için [2] numaralı kaynağa bakınız.

Kırılma konusuna ekonomiklik açısından bakıldığında ise; ABD'de 1981 yılında yapılan bir araştırma aynı yıl içerisinde kırılma sonucu meydana gelen hasar ve kaybın milli gelirin %4'üne yakın bir değer teşkil ettiğini ortaya koymuştur.

A.A. Griffith 1920'li yıllarda bir parçanın teorik olarak hesaplanan kopma mukavemeti ile deneyler sonucunda elde edilen kopma mukavemeti arasındaki büyük farkı, parçanın içerisinde veya yüzeyinde bulunan mikro çatlakların parça yük altında iken birleşmesi ile parçanın kopma mukavemetinin düşmesi olarak tanımlamıştır ve bu konu ile ilgili çalışmalar yapmıştır. Bir parçanın teorik kopma mukavemeti gözlemlenen deneysel kopma mukavemetinden yaklaşık 100 kat daha küçük çıkmaktadır. Griffith malzemelerde bulunan mikro çatlakların malzemede gerilme yığılmalarına sebep olduğunu ve buna bağlı olarak malzemede önemli oranda mukavemet kayıplarının olduğunu ortaya koymuştur [3]. Griffith'in yapmış olduğu çalışmalar [3] numaralı kaynakta detaylı olarak açıklanmaktadır.

Kırılma Mekaniği, önemli ölçüde Griffith'in 1922'de yayınlamış olduğu çalışma ile başlamış ve George Irwin'in 1958'deki çalışması ile hız kazanmıştır. Irwin lineer elastik kırılma mekaniği ile ilgilenmiştir. J.R. Rice lineer olmayan kırılma problemleri çalışmış ve 1968 yılında bugün J-İntegrali olarak bilinen çözümü geliştirerek kırılma mekaniği çalışma alanını ileri seviyeye taşımıştır.

Kırılma Mekaniği disiplini son 40 yılda önemli gelişmeler göstermiştir. 1950'li ve 60'lı yıllarda mekanik ve malzeme konularında temel çalışmalar yapılmıştır. 1970'lerde standartlar ve spesifikasyonlar ortaya konmuştur. ABD'de kırılma mekaniği araştırmaları 1970'lerdeki nükleer güç santralleri tarafından yönlendirilmiştir. İngiltere'de ise Kuzey Denizi'ndeki petrol kaynakları kırılma mekaniğine ayrı bir ivme katmıştır [1].

Gerilme şiddet faktörünün doğru hesaplanması çatlak içeren yapılar için büyük önem arz etmektedir. Bunun için geliştirilmiş olan değişik metodlar vardır.

1.2. Gerilme Şiddet Faktörü (K) ve Elde Etme Metodları

Dış kuvvet ya da iç kuvvet etkisi altındaki bir parçada gerek eleman iç kısımlarında gerekse eleman kenarlarında süreksizlik ya da çentik bulunabilmektedir. Ayrıca yine kuvvet etkisi altındaki bir elemanın kesitinde yavaş veya ani bir kesit değişimi olabilmektedir. Aynı zamanda parçanın imalatı sırasında çatlak, boşluk, süreksizlik gibi küçük boşluklar oluşabilmektedir. Parçada bulunan çatlak, boşluk benzeri küçük boşluklar çentik etkisi oluşturmaktadır. Böyle bir durumda eleman üzerindeki kuvvetten dolayı oluşan gerilmeler parçanın her yerinde üniform olarak değişmemektedir. Parçada süreksizliklerin bulunduğu yerlerde meydana gelen gerilme ortalama gerilmenin üzerinde olmaktadır. Bazı bölgelerde gerilme maksimum değere ulaşmasına gerilme yığılması denilmektedir. Gerilmenin maksimum noktaya ulaşmasına çentik etkisi de denilebilmektedir.

Mühendislik parçalarının mukavemet hesaplamaları esasen elastisite teorisini temel almaktadır. Eğer akma sınırı aşılırsa plastik deformasyon oluşmaktadır ve çok daha karmaşık olan plastisite teorisi kullanılmaktadır. Gerilme yığılmasının maksimum olduğu durumlar için şöyle bir formül kullanılmaktadır [1,4].

$$K_t = \frac{\sigma_{max}}{\sigma_{ort}} \tag{1.1}$$

 K_t : Gerilme yığılma katsayısı σ_{max} : Parçada oluşan maksimum gerilme σ_{ort} : Parçada oluşan ortalama gerilme

İçerisinde elips biçiminde bir delik bulunan sonsuz büyüklükteki bir levhanın gerilme dağılımı Inglis tarafından incelenmiştir (Şekil 1.1). Gerilme analizi gerçekleştirilirken kullanılan elastisite teorisini temel alan analitik çözümler burada detaylı bir biçimde gösterilmemiştir. Analiz çeşitli kitaplarda bulunmaktadır [bkz.5,6]. Sonuç olarak A noktasında oluşan maksimum gerilme şu şekilde ifade edilmiştir.

Şekil 1.1. Üniform gerilme yükü altındaki eliptik delik içeren bir plaka

$$\sigma_{\max} = \sigma \left[1 + \frac{2a}{b} \right] = \left[1 + 2\sqrt{\frac{a}{\rho}} \right]$$
(1.2)

$$K_{t} = \left[1 + \frac{2a}{b}\right] = \left[1 + 2\sqrt{\frac{a}{\rho}}\right]$$
(1.3)

Çatlak başlangıç ömrü çok büyük ölçüde Denklem 1.3'te elde edilmiş olan gerilme yığılma katsayısı (K_t) değerine bağlıdır.

Çatlak başlangıç periyodunu çatlak ilerlemesi takip etmektedir. Çatlak başlangıcı gerçekleştikten sonra gerilme yığılma katsayısı (K_t) çatlak ucundaki gerilme dağılımı büyüklüğü için faydalı bir durum olmayacaktır. Çünkü çatlak da uç yarıçapı sıfıra eşit olan bir çentiktir yani Denklem 1.3'te b=0 durumu söz konusudur ve böyle bir durumda gerilme yığılma katsayısı olan K_t sonsuza gitmektedir. Bu durum da herhangi bir çatlak uzunluğu için doğru olmayacaktır. b=0 olmasının sebebi; elipsin yarıçapı değişken ρ , çatlağın uzunluğu a ve çatlağın derinliği b olduğunda geometrik bağıntıdan b=0 olmakta ve böylece K_t 'nin sonsuza gitmesidir.

Çatlak ucunda gerilme dağılımı büyüklüğünü gösteren yeni durum gerilme şiddet faktörüdür(K). Bu durum Irwin modelinden geliştirilmiştir [4]. Geliştirilmiş olan gerilme şiddet faktörünün (K) formülü Denklem 1.4'te verilmiştir.

$$K = \beta \ \sigma \sqrt{\pi a} \tag{1.4}$$

- K: Gerilme şiddet faktörü
- β : Parça geometrisine bağlı sabit bir katsayı
- σ : Parçaya uygulanan gerilme
- *a*: Çatlak yarı uzunluğu

Gerilme şiddet faktörü (K) değeri temel olarak elastik durum için geçerlidir.

Kırılma analizinde çatlak ucu boyunca (*K*) gerilme şiddet faktörünü elde etme yöntemleri aşağıda açıklanmaktadır.

1.2.1. Teorik metodlar

Teorik metodlar basit çatlak geometrileri ve sınır şartları ile kısıtlanmaktadır [2]. Teorik metodlar Airy gerilme fonksiyonlarından türetilmiş olan durumlardır [3]. Airy gerilme fonksiyonu ile denge denklemleri kullanılarak gerilmeler elde edilmektedir. Airy gerilme fonksiyonunun en genel hali aşağıdaki denklemde verilmiştir [2].

$$\frac{\partial^4 \psi}{\partial x^4} + 2 \frac{\partial^4 \psi}{\partial x^2 \partial y^2} + \frac{\partial^4 \psi}{\partial y^4} = 0$$
(1.5)

veya

$$\nabla^2 \left(\nabla^2 \psi \right) = 0 \tag{1.6}$$

1.2.1.1. Westergaard metodu

Mod-I çatlakları için bu metodun kullanılması uygundur. Westergard metodunun tam olarak doğru olmadığı Sih [7] ve Eftis-Liebowitz [8] tarafından gerçekleştirilen çalışmalar ile gösterilmektedir ancak bu durum tekil gerilme durumlarını etkilememektedir [3].

1.2.1.2. Kompleks potansiyeller metodu

Kompleks potansiyeller metodu, Mod-I (açılma modu) ve Mod-II (kayma modu) çatlakları için gerilme alanının belirlenmesinde kullanılmaktadır.

1.2.2. Nümerik metodlar

Nümerik metodlar, Green foksiyonu, integral transformları, sonlu elemanlar metodlarıdır. Green fonksiyonu ve sonlu elemanlar metodu aşağıda açıklanmıştır.

1.2.2.1. Green fonksiyonu metodu

Çatlaksız yapıdan elde edilecek olan çatlak bölgesindeki gerilmeler kullanılarak gerilme şiddet faktörleri değerleri hesaplanabilmektedir.

Şekil 1.2. Eliptik delik içeren ve P yüküne maruz plaka

$$K_{I_A} = \frac{P}{\sqrt{\pi a}} \sqrt{\frac{a+x}{a-x}} \tag{1.7}$$

$$K_{I_B} = \frac{Q}{\sqrt{\pi a}} \sqrt{\frac{a-x}{a+x}} \tag{1.8}$$

Çatlak yüzeyindeki tekil bir kuvvet yüklemesinden elde edilmiş olan gerilme şiddet faktörü formülasyonunu çatlak yüzeyindeki herhangi bir yükleme veya gerilme profiline uygulayabilmek için kullanılan bir metottur.

1.2.2.2. Sonlu elemanlar metodu

Bu metotta yapı, sürekli ortam veya problemin bölgesinin sonlu boyutta çok sayıda elemana ayrıldığı tasavvur edilmektedir. Metodun ismi de bu sebeple sonlu elemanlar metodu olarak adlandırılmaktadır. Sonlu elemanlar metodu Bölüm 3.2'de detaylı olarak açıklanmaktadır. Sonlu elemanların kırılma mekaniğine uygulamasında çeşitli metodlar vardır. Bu metodlar deplasman korelasyon, domain integral metodu, J integrali ve zenginleştirilmiş sonlu eleman metodudur. Metodlar aşağıda kısaca açıklanmaktadır.

Zenginleştirilmiş sonlu elemanlar metodu: Zenginleştirilmiş sonlu elemanlar metodu çatlak ucu yakınında özel bölüntüye ve sonlu eleman çözümünün sonrasında işleme ihtiyaç duymadığından üç boyutta etkili ve hassas kırılma analizleri için cazip bir metottur. Zenginleştirilmiş elemanlar için yer değiştirmeler aşağıdaki gibidir.

$$u(\xi,\eta,\rho) = \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) u_{j} + Z_{0}(\xi,\eta,\rho) \left(f_{u}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) f_{uj} \right) \left(\sum_{i=1}^{ntip} N_{i}(\Gamma) K_{I}^{i} \right) + Z_{0}(\xi,\eta,\rho) \left(g_{u}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) g_{uj} \right) \left(\sum_{i=1}^{ntip} N_{i}(\Gamma) K_{II}^{i} \right) + Z_{0}(\xi,\eta,\rho) \left(h_{u}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) h_{uj} \right) \left(\sum_{i=1}^{ntip} N_{i}(\Gamma) K_{III}^{i} \right)$$
(1.9)

$$v(\xi,\eta,\rho) = \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho)v_{j} + Z_{0}(\xi,\eta,\rho) \left(f_{v}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) f_{vj} \right) \left(\sum_{i=1}^{ntip} N_{i}(\Gamma)K_{I}^{i} \right) \\ + Z_{0}(\xi,\eta,\rho) \left(g_{v}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho)g_{vj} \right) \left(\sum_{i=1}^{ntip} N_{i}(\Gamma)K_{II}^{i} \right) \\ + Z_{0}(\xi,\eta,\rho) \left(h_{v}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho)h_{vj} \right) \left(\sum_{i=1}^{ntip} N_{i}(\Gamma)K_{II}^{i} \right)$$
(1.10)

$$w(\xi,\eta,\rho) = \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) w_{j} + Z_{0}(\xi,\eta,\rho) \left(f_{w}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) f_{wj} \right) \left(\sum_{i=1}^{niip} N_{i}(\Gamma) K_{I}^{i} \right) \\ + Z_{0}(\xi,\eta,\rho) \left(g_{w}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) g_{wj} \right) \left(\sum_{i=1}^{niip} N_{i}(\Gamma) K_{II}^{i} \right) \\ + Z_{0}(\xi,\eta,\rho) \left(h_{w}(\xi,\eta,\rho) - \sum_{j=1}^{m} N_{j}(\xi,\eta,\rho) h_{wj} \right) \left(\sum_{i=1}^{niip} N_{i}(\Gamma) K_{II}^{i} \right)$$
(1.11)

Yukarıdaki denklemlerden görüldüğü gibi, düğüm noktalarındaki bilinmeyen yer değiştirmelere, u_j , v_j , w_j , ek olarak bilinmeyen gerilme şiddet faktörleri de, K_I^i , K_{III}^i , K_{III}^i , formülasyona dahil edilmiştir. Sonlu eleman çözümünde, deplasman ve gerilme şiddet faktörleri aynı anda elde edilmektedir [9].

J İntegrali metodu: J integrali çatlak ilerlemesinin başlamasını tanımlamaktadır. Elasto-plastik kırılma mekaniğinde kırılma tokluğunu tespit etmede kullanılan en önemli metodlardan birisidir. Plastik şekil değiştirme lineer-elastik kırılma mekaniğinin (LEFM) kullanılamayacağı kadar büyüdüğünde J integrali kullanılmaktadır.

Plastik şekil değiştirme sırasında gerilme-gerinim ilişkileri lineer değildir. Kırılma öncesi yüksek plastik şekil değiştirmesi ile birlikte geometri değişiklikleri oluşmaktadır. Çözüm olarak, çatlak ilerlemesinin başlaması ile çatlak ilerlemesinin ayrı ayrı incelenmesi çözümü bulunmuştur.

Bu metodun esası, iki boyutlu çatlak problemlerinde çatlak ucunu çeviren bölgede genleme enerji yoğunluğu ve iş terimleri seçilecek çatlak uzunluklarına sahip numunelere ait yük-uzama diyagramlarının karşılaştırılmasıdır. Başka bir deyişle, bu yöntem çatlak boyu ve gerilmeyi depolanan plastik enerjiye bağlamaktadır.

Şekil 1.3. J integral konturu

J integral metodunun temel formülasyonu Denklem 1.2'de gösterilmektedir.

$$J = \int_{C} \left(W dy - \vec{T} \cdot \frac{\partial \vec{u}}{\partial x} ds \right)$$
(1.12)

C: Çatlağı saran herhangi bir yön

W: Genleme enerjisi yoğunluğu

T: C boyunca n normali doğrultusunda oluşan çekme vektörü

u: Şekil değişimi vektörü

ds: Ark boyu

Burada *W* birim hacmin yaptığı iş olup elastik alandaki gerilme yoğunluğu olarak da tarif edilebilir ve şu bağıntı ile verilir.

Şekil 1.4. Çatlak ucu C ve C' konturları

Şekil 1.4'te Kontur kapalı olduğundan konturun L_1 ve L_2 kısımlarında dy = 0 ve $\vec{T} = 0$ olacağından integral sıfıra eşit olacaktır. Bu da C konturunun nereden çizilirse çizilsin yüke ve çatlak uzunluğuna bağlı bir fonksiyon bulunduğunu göstermektedir.

Ayrıca, J integrali çatlak ilerlemesi için kullanılabilen enerji ile de bağlantılıdır. J integrali aynı yük altında iki parça arasındaki potansiyel enerji farkıdır [3].

Domain İntegral Metodu: Bilinen şekil fonksiyonlarını kullanarak kolayca hesaplanabilen çizgi integralin, bir domain integrale dönüştürülmesi ile hesaplanmış olan J integrali enerji salıverme oranı hesaplanması için en hassas ve elegant metottur.

1.2.3. Deneysel metodlar

Gerilme şiddet faktörlerinin çeşitli deneyler yapılarak elde edilmesi durumudur. Malzemelerin kırılma tokluğu değerlerinin elde edilmesi ve çevrim sayısına bağlı olan çatlak ilerlemesi hesaplamaları için de deneyler yapılmaktadır. Deneysel metodlar, fotoelastisite, interferometri, dijital imaj korelasyonu ve moire metodlarıdır. Fotoelastisite metodu aşağıda açıklanmıştır.

1.2.3.1. Fotoelastisite metodu

1958 yılında Irwin'in Wells ve Post [10] un çalışmalarından gözlemlediği iki boyutlu problemlerdeki gerilme şiddet faktörü değerleri için fotoelastik modellerden K_I gerilme şiddet faktörü için önerdiği bir yaklaşımdır [11].

$$K_{I} = \frac{Nf_{\sigma}}{t} \frac{(2\pi r)^{1/2}}{\sin\theta} \left(1 + \frac{2}{3} \frac{tg^{\frac{3\theta}{2}}}{tg\theta}\right) \left[1 + \left(\frac{2}{3tg\theta}\right)^{2}\right]^{-1/2}$$
(1.14)

1.3. Üç Boyutlu Kırılma Analizi İhtiyaçları

Çoğu mühendislik malzemesi mekanik perspektiften bakıldığında gerçekte üç boyutlu geometri ve yükleme karakteristiğine sahiptir. Bundan dolayı, herhangi bir yapıdaki çatlak karşısında faydalı ömür şartı veya kalan ömrünün belirlenmesinde üç boyutlu kırılma analizine oldukça ihtiyaç duyulmaktadır [12].

Hava taşıtlarında yorulma hasarları genellikle malzemede gömülü, yüzeyinde veya köşesinde bulunan çentikler ya da hatalardan oluşmuş olan çatlakların başlangıcı ve ilerlemesinden oluşmaktadır. Bu çatlaklar eliptik olarak ya da eliptiğe yakın çatlak

önleri ile ilerlemektedirler. Çatlak ilerleme ömrü ve kırılma mukavemetini tahmin edebilmek için bu çatlak konfigürasyonlarında hassas gerilme şiddet faktörü çözümlerine ihtiyaç duyulmaktadır. Bu noktada ise üç boyutlu kırılma mekaniğinin önemi ortaya çıkmaktadır. Ancak bu tip problemlerin karmaşık durumlarından dolayı tam çözümlere ulaşılamamaktadır. Bunun yerine, araştırmacılar yaklaşık analitik metodları, deneysel metodları ve mühendislik yaklaşımlarını kullanmak zorunda kalmışlardır. Üç boyutlu kırılma analizleri çoğunlukla plaka modelleri için çalışılmaktadır. Plaka modellerinde gerilme şiddet faktörünün elde edilmesi için kullanılan en yaygın metod Newman-Raju [13] denklemleridir.

Literatürde üç boyutlu çatlaklı parçalar için az miktarda teorik çözümler bulunmaktadır. Bunlardan birisi Green ve Sneddon'un tam gerilme analizini kullanan Irwin tarafından türetilen üniform çekme yüküne maruz kalan sonsuz bir katı içerisinde eliptik bir çatlaktır. Kassir ve Sih, Shah ve Kobayashi, Vijayakamur ve Atluri üniform olmayan çekme yüküne maruz sonsuz büyüklükteki bir katı içerisindeki eliptik bir yüzey çatlağı için yakın form çözümlerini elde etmişlerdir.

Sonlu parçalar için tüm çözümler yaklaşık analitik ve nümerik metodlara ihtiyaç duymaktadır. Plaka modelleri kırılma analizlerinde en yaygın kullanılan gerilme şiddet faktörü elde etme metodu olan Newman-Raju denklemi kısaca açıklanmaktadır.

Newman ve Raju, üzerinde yarı eliptik yüzey çatlağı bulunan izotropik levhalarda çekme ve eğme yükünün etkisindeki gerilme şiddet faktörünü üç boyutlu sonlu elemanlar yöntemi ile düğümsel kuvvet metodundan hesaplamıştır. Eksenel çekme için K_I gerilme şiddet faktörü aşağıdaki denklemdeki gibi verilmiştir.

$$K_{I} = \left(\sigma_{t}\right) \sqrt{\frac{\pi^{*}a}{Q}} F\left(\frac{a}{c}, \frac{a}{t}, \phi\right)$$
(1.15)

Şekil 1.5. Örnek çatlak ve plaka boyutları

- a: Çatlak derinliği
- 2c: Çatlak uzunluğu
- t: Levha kalınlığı
- φ: Parametrik çatlak ucu açısı
- σ_t : Çekme gerilmesi
- Q: Şekil faktörü
- F(a/c, a/t, φ): Düzeltme faktörü

Şu zamana kadar, plakalardaki üç boyutlu yüzey ve köşe çatlakları için en etkili gerilme şiddet faktörleri Newman ve Raju tarafından tespit edilmiştir.

Ayrıca Newman-Raju denklemleri $a/c \le 1$ ve a/c > 1 durumları için genel yapıları Denklem 1.15'te verilmiş olan denkleme benzer farklı denklemler kullanmaktadır [13].

1.3.1. Üç boyutlu kırılma mekaniği literatür çalışmaları

Bu çalışmada değişik yükler altındaki silindirik yapılarda bulunan üç boyutlu çatlaklar analiz edildiği için daha çok bu konudaki ilgili literatür çalışmaları aşağıda özetlenmiştir.

N. Couroneau, J. Royer [14], eliptik bir yüzey çatlağı için çekme ve eğilme yüküne maruz kalan, çatlak uzunluğu ve çatlak derinliğini kullanan iki parametreli sayısal modeli kullanarak silindirik çubuk için yorulma ilerlemesi çalışmasını gerçekleştirmişlerdir. Çatlak ilerleme yolu ve gerilme şiddet faktörünün her ikisi için yaklaşık cözümler türetilerek yorulma tahminleri ile sayısal sonuclar karşılaştırılmıştır.

X. B. Lin, R. A. Smith [15], yapmış oldukları çalışmada yorulma yüklemesi altındaki yarı dairesel çentikli silindirik çubuktaki yüzey çatlak profillerini sayısal bir prosedür

ile tahmin etmişlerdir. Yazarlar kendileri geliştirmiş oldukları sayısal prosedürü lineer elastik bir kırılma analizinde çatlak ucu boyunca gerilme şiddet faktörü tahmini için kullanmışlardır. Sonra ise çatlak önü boyunca belirli noktalardaki yerel çatlak ilerleme hesaplaması için Paris tipi yorulma ilerleme deneyi uygulanmaktadır. Yeni çatlak önü için yeniden bir sonlu eleman modeli oluşturulmakta ve bir sonraki çatlak ilerlemesi çatlak ilerleme miktarının tekrar hesaplanması ile simüle edilmiştir. Silindirik model üzerinde çekme yükü ve eğilme yükü kontrollü durumlar için analizler yapılmıştır.

X. B. Lin, R. A. Smith [16], birden çok serbestlik dereceli bir modeli temel alan sayısal bir simülasyon tekniği açıklamıştır. Yarı eliptik statik çatlak ve çatlak ilerlemeleri için sonuçlar çalışmada bulunmaktadır. Bu çalışmadaki sonuçlar ile Newman-Raju yakın form gerilme şiddet faktörü denklemini temel alan iki serbestlik dereceli model tahminleri arasında karşılaştırmalar yapılmıştır. Sonuçlar, büyük oranda kullanılan Newman-Raju denklemlerinin plaka derinliğinin %90'ından büyük çatlak derinliğine sahip olan çatlaklar için bu çalışmadaki sonuçlardan daha az hassasiyete sahip değerler verdiğini ve yine bu çalışmadaki çatlak ilerleme sırasındaki gerilme şiddet faktörlerinin iki boyutlu metod ile elde edilen sonuçlarla genel olarak iyi bir uygunlukta olduğunu göstermektedir.

A.R. Maligno, S. Rajaratnam, S. B. Leen, E. J. Williams [17], sonlu elemanlar ve tekrar bölüntüleme tekniklerini temel alan hava taşıtlarının şaft bileşenleri için kullanılan bir hasar tolerans yaklaşımı geliştirmek amacıyla sayısal analizler gerçekleştirmiştir. İlk olarak yüksek mukavemete sahip alaşımlı çelik malzemesi için gerilme şiddet faktörleri deneysel olarak hesaplanmakta ve farklı faktörlerin etkisi altında sayısal yöntemlerle de karışık mod yüklemesi altında gerilme şiddet faktörleri hesaplanarak sonuçlar karşılaştırılmıştır. Sayısal analizler ile deneysel çalışmalar uygunluk göstermektedir.

A. O. Ayhan [18], yorulma çatlak ilerleme simülasyonu için üç boyutlu bir metodoloji açıklamıştır. Metod, karışık mod gerilme şiddet faktörlerinin hesabı için çatlak ucu zenginleştirilmiş elemanlar kullanımı ile geliştirilmiştir. Ayrıca çatlak ilerleme ömür hesabı tanıtılmıştır. Örnek olarak, Mod-I yüzey çatlağının yorulma

çatlak ilerlemesi ve karışık mod yüzey çatlaklarının çatlak ilerlemeleri simüle edilmiştir. Tahmin edilen sonuçlar literatürdeki deneysel verilerle harika bir biçimde uygunluk göstermektedir.

Bu çalışmada, silindir çubuklardaki çatlaklar için Mod-I üniform ve eğilme yayılı yük, termal yük ve deplasman yükleri altında üç boyutlu kırılma ve çatlak ilerleme analizleri gerçekleştirilmiştir. Ayrıca bu analizlerin gerçekleştirilmesi için 108M283 numaralı TÜBİTAK destekli araştırma projesi kapsamında FCPAS isimli bir ara yüz geliştirilmiştir.

FCPAS ara yüzü üç boyutlu çatlaklı modeller için kırılma ve çatlak ilerleme analizleri ile çatlak içermeyen modellere çatlak yerleştirilerek kırılma analizleri uygulamalarını gerçekleştirmektedir. FCPAS ara yüzü detaylı olarak Bölüm 2'de açıklanmaktadır.
BÖLÜM 2. FCPAS KULLANICI GRAFİK ARA YÜZÜ

2.1.Giriş

FCPAS (Fracture & Crack Propagation Analysis System-Kırılma ve Çatlak İlerleme Analiz Sistemi) Programı 108M283 kod numaralı TÜBİTAK destekli bir araştırma projesi sonucunda geliştirilmiştir. FCPAS ara yüzü oluşturulurken Microsoft Visual Studio 2008 programı altında bulunan C# dili kullanılmış ve .NET ortamında yazılmıştır [19].

Geliştirilmiş olan FCPAS Programı ile mühendislik parçalarının bilgisayar ortamında üç boyutlu kırılma ve çatlak ilerleme analizleri yapılmakta ve elde edilen sonuçlara göre üzerinde çalışılan model için gerekli öngörü oluşturulabilmektedir. Tüm bu çalışmaların yapılabilmesi için FCPAS kodu ve ara yüzü geliştirilmiştir.

FCPAS Programı geliştirilirken C# yazılım dilinin seçilme sebepleri şunlardır:

- 1. C# dili öğrenilmesi kolay bir dildir.
- 2. C# dili gerçek manada nesne yönelimli bir dildir.
- 3. C# dili yüksek verimlidir.
- 4. C# programı XML desteğine sahiptir.
- 5. C# modern bir dildir [20,21].

FCPAS programı kullanılarak mühendislik açısından aşağıdaki katma değerler elde edilebilir;

1. Yapılarda bulunan çatlak hasarları analizi konusunda verimli bir şekilde elde edilen doğru bilgi,

- Makine parçalarının veya yapılarının daha emniyetli ve ekonomik olarak tasarımı, imalatı ve işletimi konularında alternatif düşünce ve yöntemler üretebilme,
- 3. Çatlak ve çatlak benzeri hataların mühendislik yapılarının performansına etkisinin bilinmesi,
- 4. Mühendislik yapılarında hasara karşı toleransı sağlamak üzere uygun malzeme seçimi,
- 5. Kırılma mekaniğinin prensipleri kullanılarak mühendislik yapılarında kritik çatlak uzunlukları ve yorulma çatlak ilerleme ömürleri,
- Mühendislikte sıkça karşılaşılan kırılma ve yorulma problemlerinin anlaşılmış olması, kırılma ve yorulmaya karşı dirençli yapıların nasıl tasarlanacağının planlanabilmesi.

FCPAS programı, elde edilen sonuçlar uygun bir şekilde irdelenip değerlendirildiğinde yukarıda belirtilen faydaları kullanıcısına sağlayabilir. FCPAS programının içerisinde gerekli analizleri yapan birçok kompakt çalıştırılabilir dosya bulunmaktadır.

FCPAS aşağıda gösterilen işlemlerin kullanıcı tarafından gerçekleştirilmesini sağlayan düzenli, kullanıcı dostu bir ara yüzdür. Bu ara yüz lineer kırılma analizi ile yayılı yük, deplasman yükü ve eğilme yükü kontrollü plakalarda ve silindirlerde çatlak ilerleme analizi yapabilmektedir. Ara yüz ilk olarak Şekil 2.1'de gösterildiği gibi ana forma sahiptir. Bu ana formda iki seçenek bulunmaktadır.

Şekil 2.1 FCPAS ara yüzü ana formu

Şekil 2.2 FCPAS ana formu akış şeması

2.2. Cracked Model Developed using ANSYSTM (ANSYSTM Kullanılarak Çatlak İçeren Model Geliştirilmesi)

Bu bölüm seçildiğinde, ANSYSTM [22] programı ile geliştirilmiş çatlak içeren model formuna geçiş yapılmaktadır. Bu bölümde analizi yapılmak istenilen modele çatlak

kullanıcı tarafından ANSYSTM programı ile yerleştirilerek, içerisinde hazır çatlak bulunan modelin analizi yapılmaktadır.

Cracked Model Developed using ANSYS[™] seçeneğinin genel algoritması Şekil 2.3'teki gibidir.

Şekil 2.3. Cracked Model Developed using ANSYS[™] genel algoritması [23]

Çatlak boyut ve konum bilgilerinin ANSYS[™] programı ile oluşturulduğu bölümde algoritma iki ana kısımdan oluşmaktadır. Bunlar;

-Ön Hazırlık (Preprocess)

-Çözüm (Solution), kısımlarıdır.

Ön hazırlık kısmı formun ilk üç sekmesi olan ANSYS[™], GEO File ve RUN File sekmelerinden oluşmaktadır. Çözüm kısmı ise Fracture Analysis sekmesinden oluşmaktadır. Son işlem kısmı Fracture Info, Post Processing ve Visualization sekmelerinden meydana gelmektedir. Bu kısım elde edilen verilere bağlı olarak çözümün yapıldığı ve sonuçların grafiksel ve görsel olarak incelenebildiği kısımdır. Bu ara yüzde bulunan 3DCPP&C sekmesi ise istenilen boyutlardaki plaka merkezinde bulunan ve yine kullanıcı tarafından ara yüz yardımı ile ölçüleri istenilen değerlerde verilen yüzey çatlağı için tekil kırılma analizlerinin otomatikleştirilmiş bir makro ile otomatik olarak gerçekleştirilebildiği sekmedir. Ayrıca bu sekmeden, daha sonra açıklanacak olan çatlak ilerleme analizlerinin gerçekleştirildiği diğer formlara geçiş sağlanmaktadır.

Şekil 2.4. ANSYSTM programı kullanarak kırılma modellerinin geliştirilmesi ve FCPAS/FRAC3D ile analizi [24]

Şekil 2.4'te çatlak ilerleme analizi işleminin yapısı gösterilmektedir.

2.2.1. ANSYSTM sekmesi

elp		
(TM) GEO F	File RUN File Fracture Analysis Fracture Info Post Processing Visualization 3DCPP&C	Control Panel
Browse Browse	C1Program Files VANSYS Incliv 120'annye' binlivitel'Vauncher 120 exe	Change Working Direct
		ANSYS(TM) Geo File RUN File
	Working Directory	Fracture Info Post Processing
	FCPAS Software Path	Visualization 3DCPP and C
	CA	← →
	Curent Path C-Documents and Settinos\Admin	

Şekil 2.5. ANSYSTM sekmesi

Form 8 adet sekmeden oluşmaktadır. Formun birinci sekmesi Şekil 2.5'te gösterilmiş olan ANSYSTM'tir.

Bu sekmede ve geriye kalan 7 sekmede de menü olarak bulunan File menüsü ile Help menüsü ve kontrol paneli (Control Panel) bulunmaktadır. File menüsü ve Help menüsü bu kısımda açıklanmakta ve diğer kısımlarda bundan dolayı tekrarlanmamaktadır.

File menüsü Change Working Directory, Open Project, Save Project, Exit seçeneklerini içermektedir.

Help menüsü About FCPAS, FCPAS Tutorial (Beta), Licence Agreement seçeneklerini içermektedir.

File menüsü dikkate alındığında;

Change Working Directory seçeneği ile çalışma klasörü seçilebilmekte veya çalışma klasörü değiştirilebilmektedir.

Open Project seçeneği ile daha önceden çalışması yapılmış ve kayıtlı analizler açılabilmektedir.

Save Project seçeneği ile yapılmış olan analiz kaydedilebilmektedir.

Exit seçeneği ile form kapatılabilmektedir.

Help menüsü dikkate alındığında;

About FCPAS seçeneği ile FCPAS programının versiyonu, iletişim bilgileri ve istenilirse kullanıldığı bilgisayara ait sistem bilgilerine ulaşılabilmektedir.

FCPAS Tutorial (Beta) seçeneği ile FCPAS programının kullanım kılavuzuna ulaşılabilmektedir. Kullanım kılavuzu FCPAS programını açıklamakla birlikte çeşitli örnekler içermektedir. Böylelikle FCPAS programının mantığını ve ara yüzü kullanımını çok rahat öğrenme imkanı bulunmaktadır.

Licence Agreement seçeneği FCPAS programının serbest olarak kullanılabilmesi için gerekli şartları içermektedir.

Şekil 2.6. Control Panel

Şekil 2.6'da görülmekte olan ve her sekmede bulunan kontrol paneli, kullanıcıya kullanım kolaylığı sağlamaktadır. Ok sembollü butonlarla sekmeler arasında bir önceki veya bir sonraki sekmeye geçiş rahat bir şekilde gerçekleştirilmektedir. Ayrıca, kontrol paneli, üzerindeki ANSYSTM butonu ile ANSYSTM sekmesine, GEO File butonu ile GEO File sekmesine, RUN File butonu ile RUN File sekmesine, Fracture Analysis butonu ile Fracture Analysis sekmesine, Fracture Info butonu ile Fracture Info sekmesine, Post Processing butonu ile Post Processing sekmesine, Visualization butonu ile Visualization sekmesine ve 3DCPP&C butonu ile 3DCPP&C sekmesine doğrudan ulaşabilme imkanını sağlamaktadır. ANSYSTM sekmesinde bulunan Change Working Directory komutu ile analizin gerçekleştirileceği klasör seçilmektedir.

Birinci sekme olan ANSYSTM sekmesinde kullanıcının bilgisayarında kurulu olan ANSYSTM programı Browse butonu ile seçilir ve Run ANSYSTM butonu ile parça modeli ve bölüntüsü için ihtiyaç duyulan ANSYSTM programı açılmaktadır. Kullanıcı isterse bu yolu kullanmadan da ANSYSTM programını açarak çalışmasına devam edebilmektedir. ANSYSTM programında kırılma analizi gerçekleştirilmek istenilen parça üç boyutlu olarak çatlaklı bir biçimde modellenmekte, bölüntülenmekte ve istenilen yükler ile sınır şartları uygulanmaktadır.

Gerekli dosyalar ANSYSTM programından alındıktan sonra ya da daha önceden ANSYSTM programı ile oluşturulmuş olan çatlaklı bir model için gerekli dosyalar hazır durumda ise, bu model dosyalarının bulunduğu çalışma klasörü kontrol panelindeki Change Working Directory butonu kullanılarak veya File menüsünden yine Change Working Directory seçilerek ve bir sonraki sekme olan GEO File sekmesine geçilmektedir.

2.2.2. GEO File sekmesi

(TM) GEO	m l í í				
(110)	FIE RUN File Fracture Analysis Fracture Info.	Post Processing Vaualization 3DCPP&C			
					Control Panel
Input Ele	ement Connectivity FileName>			Browse	
Input No	dal Coordinate FileName>			Browse	CARA NIGINOUS NIGILLS CARA LLURINI CONNECTIVITY E
Input Bo	undary Conditions FileName>			Browse	66 0 1 0 4788 4795
Input No	dal Forces FileName>			Browse	0 1141 2 4/88 4/85
Input Pre	essure Loading FileName>			Browse	4796 0 0 0 4828 0 4827
Input No	dal Temperatures FileName>			Browse	
Input the	corresponding mesh ID from the list	Choose	•		
Hoe man	ny cracks doyou have? <input 0="" crack="" if="" no=""/>	,			
Select a	n Option for Crack Front Information Input	Choose	-		
		,			ANSYS(TM)
					Geo File
					RUN File
					Eracture Analysis
					Fracture Info
				Add	Post Processing
					10 10 10
				Remove	Visualization
				All Remove	3DCPPC
Ľ					
X Y or Z	Coordinate Axis for Crack Front Node Order	CX CY @Z			
Are then	a SIE Constraints on The Crack Front?				
/ *** ****		Choose			
⊂SIF Pa	rameters				
1. 75	- Constraint Along The Whole, Const. Econt or or	Courtier Madage			
is in	e constraint Along The Whole Crack Front or or	Choose	<u> </u>		
Innut	The Type of Constraint:K1 K2 K3		G	enerate GEO File	
		J NI J NZ J NJ			
Input	the Value of SIF	0	_		
_					
		Add		71	
		Remove			
		Tremove			

Şekil 2.7. GEO File sekmesi

Formun ikinci sekmesi GEO File sekmesidir. Bu sekmede, modelin maruz kaldığı yük tipine göre ANSYSTM programı ile elde edilen *.elis, *.node, *.dlis, *.flis, *.sflis, *.tem dosyalarından gerekli olan dosyalar Browse butonları ile seçilmektedir. Gerekli dosyalar seçildikten sonra çalışma ekseni ve analiz sonucunda oluşacak gerilme şiddet faktörü veya faktörleri tipleri belirlenmektedir. Son olarak Generate GEO File butonu tıklanarak *.geo uzantılı dosya elde edilmektedir. Generate GEO File butonunun geri planında FORTRAN yazılım dili ile yazılmış olan convert_ansys_frac3d.exe çalışmaktadır. convert_ansys_frac3d_ansysbatch.exe, ANSYSTM programından gelen modele ait eleman listesi olan *.elis, modele ait düğüm listesi olan *.node, modele ait sınır şartları listesi olan *.dlis, modele

uygulanan yüklerin listesi olan *.flis, *.sflis veya *.tem, çatlak ucu eleman listesi olan *.crelems ve çatlak ucu düğüm listesi olan *.crnodes uzantılı dosyaları kullanarak çatlaklı modele ait tüm geometrik bilgileri tek bir dosyada toplamaktadır. Oluşturulmuş olan dosyanın uzantısı *.geo uzantısıdır. Elde edilmiş *.geo uzantılı dosya Generate GEO File butonu tıklandığında çalışma klasörü içerisine oluşturulmaktadır.

2.2.3. RUN File sekmesi

Şekil 2.8. RUN File sekmesi

Formun üçüncü sekmesi RUN File sekmesidir. RUN File sekmesinde analiz parametreleri, özellikleri belirtilerek Frac3D analiz malzeme dosyası hazırlanmaktadır. Yapılan analize göre gerekli görülen secenekler etkinleştirilebilmektedir. Generate RUN File butonuna tıklandığında FORTRAN yazılım dili ile yazılmış olan writerun frac3d.exe çalışmaktadır. writerun frac3d.exe çalıştırılarak *.run uzantılı dosya elde edilmektedir. Oluşturulan *.run uzantılı dosya çatlaklı modele ait tüm malzeme özelliklerini, analiz özelliklerini içermektedir. Elde edilmiş *.run uzantılı dosya Generate RUN File butonu tıklandığında çalışma klasörü içerisine oluşturulmaktadır.

2.2.4. Fracture Analysis sekmesi

ile Help					
NSYS (TM) GEO File RUI	N File Fracture Analysis Fracture Info Po	ost Processing Visualization 3DCPP&C			
				Control Par	iel
	RUN File Name GEO File Name I Thermal Analysis? TEM File Name Number of Processors to be Used Do you accept License Agreement?	C Yes C No	Browse Browse RUN RUN Rev	iew Error File	ANSYS(TM) Geo File RUN File acture Analysis
	FC PAS Solver Facture and Crack Propagation An LICENSE TERMS Copyright 2010- All O. Ayhan, ayha Permission is hereby granted, free o person obtaining a copy of this software the "Software" in other ayhat to use cop and publish resultation the Software sub- UNDER THE CONDITION THAT THE NUMBER THE CONDITION THAT THE NUMBER THE CONDITION THAT THE Software is permissible an UNDER THE CONDITION THAT THE UNDER APPOPURATE SUBCOM UNDER THE CONDITION THAT THE UNDER APPOPURATE SUBCOM UNDER THE CONDITION THAT THES	alysis System 			Inclure Info

Şekil 2.9. Fracture Analysis sekmesi

Formun dördüncü sekmesi Fracture Analysis sekmesidir. Bu sekmede, formun ikinci ve üçüncü sekmeleri olan GEO File ve RUN File sekmelerinde oluşturulmuş olan *.geo ve *.run uzantılı dosyalar frac3d.exe çözücüsü kullanılarak üç boyutlu çatlak içeren bir model için kırılma analizi gerçekleştirilmektedir. Çözüm gerçekleştirildiğinde, *.crk, *.out, *.stn, *.str, *.sum, *.wct uzantılı dosyalar elde edilmektedir. *.crk uzantılı dosya içerisinde çatlak ucu boyunca gerilme şiddet faktörleri (K1, K2, K3) bulunmaktadır. frac3d.exe çözücüsünü çalıştırmak için RUN butonuna basılması yeterlidir. *.str uzantılı dosya modele ait gerilme değerlerini, *.stn uzantılı dosya modele ait gerinim değerlerini içermektedir.

2.2.5. Fracture Info sekmesi

Şekil 2.10. Fracture Info sekmesi

Formun beşinci sekmesi Fracture Info sekmesidir. Bu sekme, çatlak ucu boyunca elde edilen gerilme şiddet faktörlerinin düğümlere göre değerlerinin gösterildiği ve grafikle birlikte çizildiği sekmedir. Kullanıcı grafiksel olarak değerleri görebilmektedir. Open File butonu kullanılarak her düğüme karşılık gelen gerilme şiddet faktörleri (K1, K2, K3) görüntülenebilmektedir. Plot SIFs butonu kullanılarak her düğüme karşılık gelen gerilme şiddet faktörleri (K1, K2, K3) görüntülenebilmektedir. K1, K2, K3) grafiksel olarak görüntülenebilmektedir.

2.2.6. Post Processing sekmesi

Help		
S (TM) GEO File RUN File Fracture Analysis Fracture Info Post Processing Visualization 3DCPP&C		
		Control Panel
RUN File Name	Browse	
CEO Ele Neve		
GEO File Name	Browse	
How Many Different Materials Do You Want To See?	Create	
Material ID Numbers		
mput Material ID Numbers		
Do You Want to Prepare Animation File? Choose	T	
		ANSYS(TM)
		Geo File
		RUN File
		Fracture Analysis
		Fracture Info
		Post Processing
		Visualization
		3DCPP
		\leftarrow

Şekil 2.11. Post Processing sekmesi

Formun altıncı sekmesi Post Processing sekmesidir. Bu sekmede, Fracture Analysis sekmesinden elde edilen *.sum, *.str, *.stn, *.out uzantılı dosyaları veri olarak kullanan movie3d.exe çalıştırılarak bir sonraki Visualization sekmesinde kullanılacak olan dosyalar oluşturulmaktadır. movie3d.exe'yi çalıştırmak için Create butonuna basılması yeterlidir.

2.2.7. Visualization sekmesi

ECPAS 1.0-1)Cracked Model Developed using ANSYS			
File Help			
ANSYS (TM) GEO File RUN File Fracture Analysis Fracture Info Pos	t Processing Visualization 3DCPF	28C	Control Panel
Choose whether to draw an outline before deformation Input the scaling factor for displacement	Choose 💌		
Which scalar to be displayed?	Choose		
Do you want to change range?	Choose		
from 0 = to 2 =			
Input the zooming scale	1		ANSYS(TM)
		Show Results	Geo File
		*	Fracture Analysis Fracture Info Post Processing
VTK software Usage is Limited To This Copy	right		Visualization 3DCPP
http://www.vtk.org/VTKiproject/license.html			← →

Şekil 2.12. Visualization sekmesi

Formun yedinci sekmesi Visualization sekmesidir. Bu sekmede, analizi yapılan çatlaklı modelin üç boyutlu olarak gerilme dağılımı görüntülenmektedir. Visualization sekmesi, analizi yapılan çatlaklı kırılma modelinin doğruluğunun incelenmesini ve çatlak bölgesindeki risk bölgelerinin görsel olarak belirlenebilmesini sağlamaktadır. Formun bu sekmesinde VTK Toolkit kullanılmıştır. Formun altındaki mavi renkli linkten kullanım hak ve kısıtlamalarına ulaşılabilmektedir [25]. Aşağıda çatlaklı modelin resmedildiği iki farklı örnek bulunmaktadır.

Şekil 2.13. Kırılma analizi gerçekleştirilmiş üniform yayılı yük kontrollü eliptik yüzey çatlağı içeren bir silindirik çubuk modeli için üç boyutlu gerilme dağılımı görüntüsü [25]

Şekil 2.14. Kırılma analizi gerçekleştirilmiş eğilme yayılı yükü kontrollü eliptik yüzey çatlağı içeren bir silindirik çubuk modeli için üç boyutlu gerilme dağılımı görüntüsü [25]

2.3. 3DCPP&C sekmesi

ECPAS 1.0-1)Cracked Model Developed	using ANSYS		_ 0 🛛
File Help			
ANSYS (TM) GEO File RUN File Fracture Analysis	s Fracture Hro Post Processing Veualization 30C Working Directory Change Working Directory	Copy Macro ANSYS Path	Choose Your Macro
$\overbrace{2e}^{a,\bullet} 2h$	Plate and Crack Dimensions W H	Crack Propagation Steps Generate ANSYS Model	Control Panel
2W	t Crack Length (c)	Generate GEO File	ANSYS(TM) Geo File
	Crack Depth (a)	Generate RUN File	RUN File Fracture Analysis
	Material Properties	Fracture Analysis	Fracture Info
	Material Constant (C) Material Constant (n)	Predict Next Profile	Visualization
× ×	Maximum Crack Length Increment	Best_ellipse.fit	
y and y	Modulus of Elasticity (E) Poisson Ratio	—	
	Applied Stress		Select propagation
	Integration Order		
	Use Transition Element		
	number of Processors		

Şekil 2.15. 3DCPP&C sekmesi

3DCPP&C sekmesi Cracked Model Developed using ANSYSTM formunun son sekmesi olmasına rağmen, otomatikleştirilmiş makro kullanıldığı ve çatlak ilerleme analizleri formlarına geçiş sekmesi olması sebebi ile 3DCPP&C sekmesi bu bölümde şimdiye kadar açıklanan 7 adet sekmeden farklı olarak ayrı bir başlık altında anlatılmaktadır. Şekil 2.16'da 3DCPP&C sekmesinin işlem şeması gösterilmektedir. 3DCPP&C başlığı Three Dimensional Crack Propagation in Plates and Cylinders (Plaka ve Silindirlerde Üç Boyutlu Çatlak İlerlemesi) anlamına gelmektedir.

Şekil 2.16. 3DCPP&C sekmesi işlem şeması

Bu sekmede kullanıcının belirleyeceği çatlak ve plaka ölçülerine sahip, üniform yayılı yüke maruz, merkezinde eliptik yüzey çatlağı içeren ¼ simetrik plaka geometrisinde bir model için ANSYSTM programında otomatikleştirilmiş makro kullanılarak şimdiye kadar anlatılmış olan sekmelerin hepsinin birer buton haline getirilmiş biçimi ile kırılma analizi gerçekleştirilmekte ve bir sonraki çatlak uzunluğu a ve çatlak derinliği c elde edilmektedir.

Şekil 2.16'da bulunan işlem şemasından da görülebileceği gibi ilk olarak çalışma klasörü belirlenmekte ve sonrasında ANSYSTM programında kullanılacak olan makro seçilmektedir. Kullanıcı plaka modeli boyutları olan genişlik W, yükseklik H ve et kalınlığı t ile başlangıç çatlak boyutları olan çatlak uzunluğu c, çatlak derinliği a ölçülerini, malzeme özelliklerini, iterasyon sayısını ve analiz çözümünü bilgisayarının kaç işlemci kullanarak gerçekleştireceğini girmektedir. Bilgisayarda bulunan ANSYSTM programına ait çalıştırılabilir (executable) dosya seçilmektedir. Tüm gerekli değerler girildikten sonra Generate ANSYSTM Model butonuna basılmaktadır. Generate ANSYSTM Model butonuna basıldığında ANSYSTM programı ara yüzü açılmadan gizli modda çalıştırılarak analiz için gerekli olan plaka modeline ait *.elis, *.node, *.sflis, *.dlis, *.crelems, *.crnodes uzantılı dosyalar çalışma klasörü içerisine oluşturulmaktadır. Bu işlemin yalnızca bir butona basılarak gerçekleştirilmesinin en önemli sebebi; parametrik olarak hazırlanmış olan 3DCPP Macro Manual.inp isimli makronun hazırlanmış olmasıdır. Generate ANSYSTM Model butonuna basıldığında Generate GEO File butonu aktif hale gelmektedir. Analiz için gerekli dosyalar çalışma klasörü içerisine oluşturulduktan sonra Generate GEO File butonuna basılarak kullanıcının istediği ölçülerde oluşturulmuş olan çatlaklı plaka modeline ait geometri bilgilerinin tamamı *.geo uzantılı dosya içerisinde toplanmakta ve bu dosya çalışma klasörü içerisine kaydedilmektedir. Generate GEO File butonuna basıldığında Generate RUN File butonu aktif hale gelmektedir. Generate RUN File butonuna basıldığında modele ait gerekli malzeme özelliklerini ve analiz özelliklerini içeren *.run uzantılı dosya çalışma klasörü içerisine oluşturulmaktadır. Generate RUN File butonuna basıldığında Fracture Analysis butonu aktif hale gelmektedir. Fracture Analysis butonuna basıldığında *.geo ve *.run uzantılı dosyalar kullanılarak problemin çözümü gerçekleştirilmektedir. Problemin çözümü sonucunda *.crk, *.prop1, *.str

*.stn, *.wct, *.sum, *.out uzantılı dosyalar çalışma klasörü içerisine oluşturulmuş olmaktadır. Elde edilen *.crk uzantılı dosya gerilme şiddet faktörlerinin değerlerini içermektedir. Fracture Analysis butonuna basıldığında Predict Next Profile butonu aktif hale gelmektedir. Predict Next Profile butonuna basıldığında ara yüzün geri planında crk propagation.exe çalıştırılmaktadır. Predict Next Profile butonuna basıldığında *.prop1 uzantılı dosya kullanılarak *.prop2 ve *.matprop uzantılı dosyalar çalışma klasörüne oluşturulmaktadır. Predict Next Profile butonuna basıldığında Best ellipse.fit butonu aktif hale gelmektedir. Best_ellipse.fit butonuna basıldığında ara yüzün geri planında Ellipsefit.exe calıştırılmaktadır. Best ellipse.fit butonuna basıldığında çalışma klasöründe oluşmuş olan *.prop2 uzantılı dosya kullanılarak ellipse.inp ve crack values.inp dosyaları çalışma klasörüne oluşturulmaktadır. crack values.inp dosyası üniform yayılı yük kontrollü eliptik yüzey çatlağı içeren plaka modelinde bir sonraki ilerleme durumu için çatlak uzunluk c ve çatlak derinlik a değerlerini içermektedir. Yani bir sonraki çatlak profili, boyutları ile birlikte elde edilmiş durumdadır.

Şekil 2.17'de gösterildiği gibi Select Propagation yazılı kısımdan ise plaka ve silindir modelleri için çatlak ilerlemesi analizi formlarına geçiş yapılabilmektedir. Select Propagation bölümünden seçilen çatlak ilerleme formları aşağıda açıklanmaktadır.

Şekil 2.17. Yayılı yük ve deplasman yükü kontrollü plaka ve silindir modelleri için çatlak ilerleme analizleri formlarına geçiş

2.3.1. Plate Pressure formu

😫 Plate Pressure			_ 🗆 🔀
	Change Working Directory Project Name ANSYS Path ANSYS Path Copy Macro	⊂ Choose Axes of the Ellipse x_ellipse y Solect y So	_ellipse
2W	Plate and Crack Dimensions W H Crack Length (c) Crack Length (c) Material Properties Material Properties	Blocks Number of Crack Growth Increment Blocks Starting Crack Front Number Increment No Number of Steps Δa(max.) Crack_Lesize I I I I I I I I I I I I I I I I I I I	rack Growth nalysis
t (a)	Material Constant (C) Material Constant (n) Modulus of Elasticity (E) Poisson Ratio (v) Stress Integration Order Number of Processor Use transition element	3 1 2 Plot Cr 4 1 2 Plot Cr 5 1 2 Plot Cr 6 1 2 Plot Cr 7 1 2 Plot Cr 8 1 2 Plot Cr 9 1 2 Plot Cr 10 1 2 Plot Cr Crack Lesize: Number of elements along Crack Lesize: Number of elements along	ack Profiles

Şekil 2.18. Plate Pressure formu

Bu formda yayılı yüke maruz kalan merkezinde eliptik yüzey çatlağı içeren bir plaka modeli için otomatikleştirilmiş makro kullanılarak çatlak ilerleme analizi yapılmaktadır. Kullanıcı, plaka yarı genişliğini W, yarı yüksekliğini H, et kalınlığını t ve başlangıç çatlak uzunluğunu c, derinliğini a, malzeme özelliklerini, çatlak ucu boyunca bir adımdaki maksimum ilerleme miktarını Δa_{max} , uygulanacak yayılı yükü, çatlak ucunda geçiş elemanlarının kullanılıp kullanılmayacağını, kaç iterasyon ile çözüm yapılması gerektiğini ve çözüm işlemi sırasında kullanılan bilgisayarın kaç işlemci ile çalışacağını girmektedir. Aynı zamanda istenilen her bir maksimum çatlak ilerlemesi artışı ile kaç adım atılması gerektiğini de kullanıcı kendi problemi için belirlemektedir. Analiz sonucunda çalışma klasörü içerisine her bir ilerleme adımı için a ve c değerleri crack_values_front(n).inp isimleri ile ayrı dosyalar halinde kaydedilmektedir.

2.3.2. Plate Displacement formu

Şekil 2.19'da gösterildiği biçimde Plate Displacement formuna giriş yapılmaktadır.

FCPAS 1.0-1)Cracked Model Developed us	sing ANSYS		
File Help			
ANSYS (TM) GEO File RUN File Fracture Analysis	Fracture Info Post Processing Vaualization 3DCPP&C Working Directory Copy Max Change Working Directory Copy Max	ansys Path	Choose Your Macro
$a_{f} \rightarrow 2h$	Plate and Crack Dimensions W H H	Crack Propagation Steps Generate ANSYS Model	ol Panel
2W	Crack Length (c)	Generate GEO File	ANSYS(1M) Geo File RUN File Fracture Analysis
ψ ψ ψ σ ₆	Material Properties Material Constant (C) Material Constant (n)	Fracture Analysis Predict Next Profile	Fracture Info Post Processing Visualization
r 2c	Maximum Crack Length Increment Modulus of Elasticity (E) Poisson Ratio Applied Stress Integration Order Use Transition Element Number of Processors	Best_ellipse.fit	approximation approxi

Şekil 2.19. Deplasman yükü kontrollü plaka modeli için çatlak ilerleme analizi formu olan Plate Displacement formuna geçiş

Change Working Directory		
roject Name	Plot Crack Profiles	
NSYS Path	Choose Axes of the Ellipse;	
ANSYS Path	Copy Macro	
ate and Crack Dimensions		
V	Number of Crack Growth Increment Blocks	
ł 🗌	Starting Crack Front Number	
	Adım Sayısı amax. Crack_Lesize	
Crack Length (c)	1 1 0.005 80	
Crack Depth (a)	2 1	
aterial Properties	3 1 7	
laterial Constant (C)	4 1	
laterial Constant (n)		
lodulus of Elasticity (E)		
oisson Ratio (v)		
tegration Order		
umber of Processor	8 1 - Start Crack Growth Analysis	
Use transition element	9 1 🛫	
	10 1 Plot Crack Profiles	

Şekil 2.20. Plate Displacement formu

Bu formda ise deplasman yüküne maruz kalan eliptik bir yüzey çatlağı içeren plaka modeli için otomatikleştirilmiş makro kullanılarak çatlak ilerleme analizi yapılmaktadır. Kullanıcı, plaka genişliğini W, yüksekliğini H, kalınlığını t ve başlangıç çatlak uzunluğunu c, derinliğini a, malzeme özelliklerini, çatlak ucu boyunca bir adımda maksimum ilerleme miktarını Δa_{max} , çatlak ucu boyunca geçiş elemanlarının kullanılıp kullanılmayacağını, kaç iterasyon ile çözüm yapılması gerektiğini ve çözüm işlemi sırasında kullanılan bilgisayarın kaç işlemci ile çalışacağını girmektedir. Aynı zamanda istenilen her bir maksimum çatlak ilerlemesi artışı ile kaç adım atılması gerektiğini de kullanıcı kendi problemi için belirlemektedir. Analiz sonucunda çalışma klasörü içerisine her bir ilerleme adımı için a ve c değerleri crack_values_front(n).inp isimleri ile ayrı dosyalar halinde kaydedilmektedir.

2.3.3. Cylinder Pressure formu

Şekil 2.21'de gösterildiği biçimde Cylinder Pressure formuna giriş yapılmaktadır.

Şekil 2.21. Yayılı yük kontrollü silindir modeli için çatlak ilerleme analizi formu olan Cylinder Pressure formuna geçiş

Change Working Directory	
roject Name	
ANSYS Path	Choose Axes of the Ellipse;
ANSYS Path	Copy Macro x_ellipse y_ellipse
Crack and Crack Dimensions	Flocks
D	Number of Crack Growth Increment Blocks
Crack Length (c)	
Crack Depth (a)	Starting Crack Front Number 1
н	Increment No Number of Steps Δa(max.) Crack_Lesize
XR	1 1 2005 80
YR	2 1 2
ZR	
Ø	
Material Properties	
Material Constant (C)	5 1
Material Constant (n)	6 1 🚎
Modulus of Elasticity (E)	
Poisson Ratio (v)	Start Crack Growth
Stress	
Integration Order	9 1 - Plot Crack Profiles
lumber of Processor	
Use transition element	

Şekil 2.22. Cylinder Pressure formu

Bu formda yayılı yük kontrollü eliptik bir yüzey çatlağı içeren bir silindir çubuk modeli için otomatikleştirilmiş makro kullanılarak çatlak ilerleme analizi yapılmaktadır. Çatlak ilerleme analizi gerçekleştirilecek olan model simetriye sahiptir. Kullanıcı, silindir çapını D, silindir yüksekliğini H ve başlangıç çatlak uzunluğunu c, başlangıç çatlak derinliğini a, malzeme özelliklerini, çatlak ucu boyunca bir adımdaki maksimum çatlak ilerleme miktarını Δa_{max} , uygulanacak yükü, çatlak ucu boyunca geçiş elemanının kullanılıp kullanılmayacağını, kaç iterasyon ile çözüm yapılması gerektiğini ve çözüm işlemi sırasında kullanılan bilgisayarın kaç işlemci ile çalışacağını girmektedir. Aynı zamanda istenilen her bir maksimum çatlak ilerlemesi artışı ile kaç adım atılması gerektiğini de kullanıcı kendi problemi için belirlemektedir. Analiz sonucunda çalışma klasörü içerisine her bir ilerleme adımı için a ve c değerleri crack_values_front(n).inp isimleri ile ayrı dosyalar halinde kaydedilmektedir.

2.3.4. Cylinder Displacement formu

Şekil 2.23'te gösterildiği biçimde Cylinder Displacement formuna giriş yapılmaktadır.

File Help			
ANSYS (TM) GEO File RUN File Fracture Analy	is Fracture Info Post Processing Vaualization 3DCPP&C Vorking Directory Change Working Directory Cop	y Macro	Choose Your Macro
$\xrightarrow{a \not a}_{c} 2h$	Plate and Crack Dimensions	Crack Propagation Steps Generate ANSYS Model	Control Panel
2W	t Crack Length (c)	Generate GEO File	ANSYS(TM) Geo File
	Crack Depth (a)	Generate RUN File	RUN File Fracture Analysis
$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	Material Properties	Fracture Analysis	Fracture Info
	Material Constant (C) Material Constant (n)	Predict Next Profile	Visualization
* *	Maximum Crack Length Increment	Best_ellipse.fit	3DCPP&C
I a p y	Modulus of Elasticity (E) Poisson Ratio		
2e	Applied Stress		Select propagation
	Integration Order		Plate Displacement Cylinder Pressure
	Number of Processors	-	Cynnuci Displacement

Şekil 2.23. Deplasman yükü kontrollü silindir modeli için çatlak ilerleme analizi formu olan Cylinder Displacement formuna geçiş

ylinder Displacement		_
Change Working Directory		
Project Name		
ANSYS Path	Choose Axes of the Ellipse;	
ANSYS Path	Copy Macro <u>x_ellipse</u> Select <u>v</u> Select <u>v</u>	
Crack and Crack Dimensions	Blocks	
D	Number of Crack Growth Increment Blocks	
Crack Length (c)		
Crack Depth (a)	Starting Crack Front Number	
н	Increment No. Number of Steps. Aa(max.) Crack Lesize	
XR		
YR		
ZR		
Ø	3 1 🚍	
	4 1 2	
Material Properties Material Constant (C)	5 1	
Material Constant (n)	6 1	
Modulus of Elasticity (E)	7 1 🚔 Start Crark Growth	
Poisson Ratio (v)	8 1 Analysis	
Integration Order		
Number of Processor	Plot Crack Profiles	
,		
Use transition element	Crack Logizo: Number of elemente along grack front	

Şekil 2.24. Cylinder Displacement formu

Bu formda ise deplasman yükü kontrollü eliptik yüzey çatlağı içeren bir silindir çubuk modeli için otomatikleştirilmiş makro kullanılarak çatlak ilerleme analizi yapılmaktadır. Çatlak ilerleme analizi gerçekleştirilecek olan model simetriye sahiptir. Kullanıcı, silindir çapını D, silindir yüksekliğini H ve başlangıç çatlak uzunluğunu c, başlangıç çatlak derinliğini a, malzeme özelliklerini, çatlak ucu boyunca bir adımdaki maksimum çatlak ilerleme miktarını Δa_{max} , çatlak ucunda geçiş elemanlarının kullanılıp kullanılmayacağını, kaç iterasyon ile çözüm yapılması gerektiğini ve çözüm işlemi sırasında kullanılan bilgisayarın kaç işlemci ile çalışacağını girmektedir. Aynı zamanda istenilen her bir maksimum çatlak ilerlemesi artışı ile kaç adım atılması gerektiğini de kullanıcı kendi problemi için belirlemektedir. Analiz sonucunda çalışma klasörü içerisine her bir ilerleme adımı için a ve c değerleri crack_values_front(n).inp isimleri ile ayrı dosyalar halinde kaydedilmektedir.

2.3.5. Crack_Profiles formu

Bu form Crack Increment, Plate Displacement, Cylinder Pressure ve Cylinder Displacement çatlak ilerleme analizi formlarındaki Plot Crack Profiles butonu kullanılarak kullanıcının karşısına gelen bağımsız bir formdur.

Bu formda yayılı yük veya deplasman yükü kontrollü plaka ya da silindir modeli için çatlak ilerlemesi analizini tamamlamış olan kullanıcı gerçekleştirmiş olduğu analiz sonucunda elde etmiş olduğu çatlak profillerini grafiksel olarak görebilmektedir. Grafiksel olarak çatlak profillerini kullanıcı ekranına getiren eklenti ise umumi kullanıma açık olan ZedGraph.dll'dir.

Şekil 2.25. Crack_Profiles formu

Şekil 2.25'te gösterilen formda, çatlak profillerinin oluşturulmasında veri olarak, çatlak ilerleme analizi sonucunda oluşmuş ellipse_final.inp ve step.inp dosyaları kullanılmaktadır. Kullanıcı, Browse butonları ile çalışma klasörü içerisinden öncelikle ellipse_final.inp, sonra step.inp dosyalarını seçerek Plot Crack Profiles butonuna basmakta ve yapmış olduğu analiz sonucunda elde etmiş olduğu çatlak profillerini grafik halinde görebilmektedir. Böylece çatlak ilerleme simülasyonu gerçekleştirilmiş olmaktadır.

Eliptik bir yüzey çatlağı içeren plaka modeli için çatlak ilerleme simülasyon örneği Şekil 2.26'da gösterilmiştir.

Şekil 2.26. Eliptik bir yüzey çatlağı içeren plaka modeli örneği için çatlak ilerleme simülasyonu

2.4. Crack Insertion and Fracture Analysis (Çatlak Yerleştirme ve Kırılma Analizi)

Bu kısımda Nart ve Ayhan'ın geliştirmiş olduğu [9] çatlaksız bir modele çatlak yerleştirme metot ve çalışmalarının FCPAS ara yüzüne entegre edilmesi verilmektedir.

FCPAS ara yüzü ana formu üzerinden Crack Insertion and Fracture Analysis kısmı seçildiğinde, çatlaksız bir modelin kırılma analizi formuna geçiş yapılmaktadır. Çatlak içermeyen bir sonlu eleman modeli ile işleme başlanmaktadır. Bu kısımda çatlak içermeyen üç boyutlu herhangi bir model için ANSYSTM programından faydalanılmaktadır. ANSYSTM programı ile oluşturulan çatlaksız modele ait eleman listesi olan *.elis, düğüm listesi olan *.node, kuvvet listesi olan *.flis, *.sflis veya *.tem, sınır şartları listesi olan *.dlis uzantılı dosyalar kullanılmaktadır. Çatlak yerleştirme işlemi FCPAS ara yüzü aracılığıyla gerçekleştirildiği için Bölüm 2.2'de olduğu gibi çatlağa ait eleman listesi *.crelems ve düğüm listesi *.crnodes dosyalarına ihtiyaç duyulmamaktadır.

FCPAS programı çalıştırıldığında ekrana gelen Şekil 2.1'deki FCPAS ara yüzü ana formundan Crack Insertion and Fracture Analysis butonuna basılarak Şekil 2.27'de gösterilen ara yüz ekrana gelmektedir.

Wething Directory Node File Working Directory Browse Working Directory Reveal Browse Reveal

2.4.1. Working Directory-File Format sekmesi

Şekil 2.27. Working Directory-File Format sekmesi

Crack Insertion and Fracture Analysis formu 8 adet sekmeden oluşmaktadır ve ilk sekmesi Working Directory-File Format sekmesidir.

File ve Help menüleri ile Control Panel işlevleri ve kullanımları Bölüm 2.2.1'de açıklandığı üzere bu form için de geçerli olmaktadır.

Bu kısımda Change Working Directory butonu ile çalışma klasörü seçilmektedir. Node File Format butonu ANSYSTM programı ile elde edilmiş çatlaksız modele ait düğüm listesini içeren *.node uzantılı dosyayı çatlak yerleştirme işleminde kullanılabilecek *.node2 uzantılı formata çevirmektedir. Bu işlemi gerçekleştirmek için Node File Format butonuna basılması sonucunda nodefileformat.exe çalıştırılmış olmaktadır.

2.4.2. Crack Insertion sekmesi

Şekil 2.28. Crack Insertion sekmesi

Formun ikinci sekmesi Crack Insertion sekmesidir. Bu kısımda çatlak yerleştirme işleminde kullanılan ChunkSeperator.exe ile çatlağı da içeren, chunk adı verilen ve çatlaksız modele sonradan yerleştirilen, elemanlara bölünmüş bir hacim olan chunk bölgesinin görsel olarak kontrol edilmesini sağlayan tetview-win.exe bulunmaktadır.

Browse butonu ile bir önceki sekmede oluşturulmuş olan *.node2 uzantılı dosya seçilmektedir. Bir sonraki işlem olarak ise çatlak merkezinin koordinatları kullanıcı tarafından verilmektedir. Çatlak koordinatlarını girerek çatlağın model üzerindeki konumunu belirlemiş olan kullanıcı daha sonra çatlağı da içeren bir hacim olan ve modele yerleştirilen chunk bölgesi yarıçapı değerini, çatlak uzunluğunu a, çatlak derinliğini c, çatlak ucu boyunca istenilen düğüm sayısını girip ChunkSeperator butonuna bastığında çatlaksız modele chunk bölgesi içerisindeki çatlağı yerleştirmiş olmaktadır.

Chunk Radius, çatlağın içerisinde bulunduğu chunk bölgesinin yarıçapı, Crack Length, modele yerleştirilmek istenilen çatlağın uzunluğu, Crack Depth, modele yerleştirilmek istenilen çatlağın derinliği, Number of nodes along crack front, Çatlak ucu boyunca olması istenilen düğüm sayısı, Angle of rotation about the free surface normal(Gamma), Serbest normalindeki dönme açısı, Angle of rotation about the crack face x-axis(Theta), Çatlak yüzü x-eksenindeki dönme açısı olmaktadır.

Bu sekmede ara yüz üzerinde görülen sol alt taraftaki resim kullanıcının Gamma ve Theta değerlerinin nelere karşılık geldiğini göstermektedir.

2.4.3. GEO File sekmesi

Şekil 2.29. GEO File sekmesi

Formun üçüncü sekmesi GEO File sekmesidir. Bu kısımda çatlak yerleştirme işleminden sonra gerekli işlemleri gerçekleştiren cmd.exe, Arragement.exe ve QuadTransform.exe bulunmaktadır. Kullanıcı bölüntü oluşturacağından bu sekmede bölüntü eleman kenar uzunluğunu kendisi belirlemektedir. Daha Sonra 1) Run Tetgen^(c) butonu ile Tetgen çalıştırılmaktadır. Kullanıcı, Triangle [26] ve Tetgen [27] resmi internet sayfalarına linklere tıklayarak ulaşabilmektedir. Sırasıyla 2) Unify Chunk-Original Meshes ve 3) Generate Quadratic Elements-Midside Nodes butonları tıklandıktan sonra form üzerindeki açıklayıcı resimlerde de örnekleri gösterildiği gibi modele çatlak yerleştirilmesi işlemi tamamlanmış ve çatlaklı modele ait *.geo

uzantılı çatlaklı modelin geometrik bilgilerini içeren dosya çalışma klasörü içerisine kaydedilmiş durumdadır.

Bu sekmeden sonraki RUN File, Fracture Analysis, Fracture Info, Post Processing, Visualization sekmeleri Bölüm 2.2. Cracked Model Developed using ANSYSTM kısmında detaylı bir biçimde açıklandığı için tekrar açıklama ihtiyacı duyulmamaktadır.

Bölüm 3'te üniform yayılı, termal ve deplasman yükleri ile eğilme yayılı, termal ve deplasman yüklerine maruz kalan silindirik çubuklardaki üç boyutlu çatlaklar için gerilme şiddet faktörleri FCPAS ara yüzü kullanılarak hesaplanmaktadır.

BÖLÜM 3. FARKLI ÜNİFORM ve EĞİLME YÜKLERİNE MARUZ SİLİNDİRİK ÇUBUKLARDAKİ ÜÇ BOYUTLU ÇATLAKLAR İÇİN GERİLME ŞİDDET FAKTÖRLERİ

3.1. Giriş

Çalışmanın bu bölümünde, üniform yayılı yük, termal yük ve deplasman yükü ile eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü, yüzey çatlağı içeren silindirik çubuk modellerinde farklı a/c (çatlak derinliği/çatlak uzunluğu) oranlarında ve farklı a/D (çatlak derinliği/silindir çapı) durumları için FCPAS programı kullanılarak kırılma analizleri gerçekleştirilmiş ve gerilme şiddet faktörleri hesaplanarak sonuçlar üniform ve eğilme yükleri için ayrı ayrı karşılaştırılmıştır.

Silindirik bir geometriye sahip birçok makine bileşeni bulunmaktadır ve bu makine bileşenlerinin çeşitli koşullar altında çalışması sırasında hasara ya da istenilmeyen kazalara yol açmaması için kontrol altında tutulabilmesi, eğer çatlak içeriyorsa bu çatlağın mekanik yönden güvenli olup olmadığının önceden tahmin edilebilmesi oldukça önemlidir. Şekil 3.1'de bu çalışmada kullanılan silindirik çubuk modeli için örnek bir model gösterilmektedir.

Şekil 3.1. Eliptik bir yüzey çatlağı içeren ½ simetrisindeki genel bir silindirik çubuk modeli

D: Silindir çapı

- H: Silindir yüksekliği
- a: Çatlak derinliği
- c: Çatlak uzunluğunun yarısı
- s: Boyutsuz çatlak ucu konumu

Bu analizler tekrarlanırken her a/c ve a/D oranı için benzer modelleri tek tek ANSYSTM programında manuel olarak oluşturarak gerekli dosyaların elde edilmesi yerine otomatikleştirilmiş makro kullanılarak farklı oranlarda ancak birbirine benzer ANSYSTM modelleri çok daha kısa sürede oluşturulmuştur. Böylece gerekli dosyalar kolaylıkla elde edilmiştir. Bu sebeplerden dolayı oldukça büyük bir zaman kazancı sağlanmıştır.

Otomatikleştirilmiş makro oluşturulurken geometrinin oluşturulması, bölüntü, yüklerin uygulanması, sınır şartları ve Şekil 3.3'te gösterildiği üzere çatlak ucu bölgesinde zenginleştirilmiş elemanlar kullanılarak daha hassas bölüntüleme manuel olarak bir defalığına ANSYSTM programında gerçekleştirilmiş ve bu işlemler yapılırken her adımda ANSYSTM programı içerisindeki List→Log File kısmından açılan metin dosyasındaki son komut farklı bir metin dosyasına kopyalanarak makro oluşturulmuştur. Oluşturulmuş olan bu makro sabit değerler için kullanılabilir durumdadır ve daha sonra sabit ölçüler için elde edilmiş olan bu makro parametrik hale getirilerek farklı boyutlarda çatlaklı silindirik çubuk modelleri oluşturulmuştur. Otomatikleştirilmiş makro oluşturma işlemi üniform ve eğilme yüklerinde üç farklı yükleme kontrolü olan; yayılı yük, termal yük ve deplasman yükü için toplamda altı ayrı biçimde tekrarlanmıştır.

Bu çalışmada gerilme şiddet faktörleri hesaplanırken kullanılan metod sonlu elemanlar metodu olup tanımı, formülasyonu ve tercih nedenleri aşağıda açıklanmaktadır.

3.2. Sonlu Elemanlar Metodu

Tanımı Bölüm 1.2.2.2'de yapılmış olan sonlu elemanlar metodunda, cisim uzayda n (=1, 2, 3) boyuta sahipse n-boyutlu sonlu elemanlar sistemine ayrılmaktadır. Bir boyutlu cisimler düğümlerle, iki boyutlu cisimler çizgilerle, üç boyutlu cisimler ise düzlemlerle sonlu elemanlara ayrılmaktadır [28].

Bu çalışmada, FCPAS ara yüzü kırılma ve çatlak ilerleme analizleri üç boyutlu modeller için kullanılmaktadır.

Üç boyutlu cisimlerde elemanlar eşit büyüklükte olmayabileceği gibi farklı şekillerde de olabilmektedirler. Bununla birlikte, bütün durumlarda cismi temsil eden sonlu elemanlar düğümlerle bağlanmaktadır. Düğümler komşu sonlu elemanları uçlarından birbirine bağlayan ve onları bir arada tutan somun-cıvata bağlantısı gibi düşünülebilmektedir. Düğümler kaldırıldığında elemanlar birbirinden ayrılacağından komşu sonlu elemanlar arasında fiziksel süreklilik yoktur.

Metodun çözümlenmesinde bundan sonraki adım, cismi temsil eden elemanların her birinin eleman direngenlik matrisi (element stiffness matrix) tanımlanmaktadır. Daha sonra eleman direngenlik matrisleri, parçalara ayrılmış cismin tamamına ait tümel direngenlik matrisini (overall stiffness matrix) oluşturmak üzere toplanır. Bu toplamada, cismin sonlu eleman modelindeki bütün düğümlerde kuvvetlerin dengesi ve yer değiştirmelerin sürekliliği sağlanır. Buradan Denklem 3.1'e ulaşılmaktadır.

$$[K]{\delta} = {P} \tag{3.1}$$

- [K]: Cismin tümel direngenlik matrisi
- {P}: Bütün düğümlere uygulanan dış kuvvetler
- {δ}: Bütün düğümlerin yer değiştirmesi

Denklem 3.1 incelendiğinde [K] nitelik bakımından, parçalara ayrılmış cisimde birim yer değiştirme oluşturacak kuvveti ifade etmektedir. Burada cismin sonlu eleman modelini bir yaya eşit olduğu düşünüldüğünde cismin direngenliği [K]'nın yay

sabitine karşılık olduğu açıkça görülmektedir. Dolayısıyla sonlu eleman metodu, esası itibarı ile cismin direngenlik açısından analizinin yapıldığı bir metottur. Direngenlik kavramı kuvvet/yer değiştirme oranıdır.

Cisme etkiyen belirli dış kuvvetler ve belirli bir sınır şartları takımı için, Denklem 3.1'den çözüm olarak düğüm yer değiştirmeleri $\{\delta\}$ bulunur. Yer değiştirmelerden de gerilmeler ve zorlanmalar hesaplanabilmektedir.

Özetlenirse, verilen bir problemi sonlu eleman metodu ile çözmek için sırası ile aşağıdaki işlemlerin uygulanması gerekmektedir:

- 1. Cismi bir sonlu elemanlar sistemi halinde bölme (parçalama)
- Cismi temsil eden elemanların her birinin eleman direngenlik matrisi ve diğer özelliklerinin çıkarılması
- 3. Tümel direngenlik matrisi [K] ve tümel kuvvet vektörü {P} nin çözümü
- 4. $\{\delta\}$ yı tayin etmek için, belirlenmiş sınır şartları ile Denklem 3.1'in çözülmesi
- Hesaplanan düğüm yer değiştirmelerinden {δ} elemanların zorlanmalarının ve gerilmelerinin hesaplanması.

Sonlu elemanlar metodunda eleman seçimi de oldukça önemli bir konudur. Verilen bir cismin nasıl bölüntüleneceğinin belirlenmesinde cismin geometrisi, özellikle iç ve dış sınırlarının biçimi, geniş ölçüde yol gösterici olmaktadır. Üç boyutlu cisimler için üçgen prizma veya dörtgen prizma gibi eleman biçimleri bulunmaktadır.

Cismin şekline ve ihtiyaçlara bağlı olarak, uygulamada karışık bölüntüleme yapmak belli bir eleman kullanmaktan daha uygun olabilmektedir. Bu çalışmada da modelin genelinde tetrahedron (dört yüzlü) elemanlar kullanılmakta iken çatlak ucu boyunca zenginleştirilmiş elemanlar kullanılmaktadır. Zenginleştirilmiş sonlu eleman formülasyonu detaylı olarak Ayhan ve Nied [29] ve Ayhan [30] tarafından verilmiştir.

Çözüm temeli zenginleştirilmiş sonlu elemanlar metoduna dayalı gerçekleştirilmiş olan kırılma analizleri Bölüm 3.3'te açıklanmaktadır.

3.3. Değişik Üniform ve Eğilme Yükleri Altında Gerilme Şiddet Faktörleri

Bu kısımda üniform yayılı yük, termal yük ve deplasman yükü ile eğilme yayılı yükü, termal yükü ve deplasman yüküne maruz, eliptik yüzey çatlağı içeren ve ¹/₂ simetriye sahip aynı boyutlardaki silindirik çubuk modeller için gerilme şiddet faktörü analizleri yapılmıştır.

Gerilme şiddet faktörü analizi gerçekleştirilen eliptik yüzey çatlağı ve silindirik çubuk modellerinin boyut oranları Tablo 3.1'de gösterilmektedir.

		a/D			
		0.1	0.25	0.5	0.75
a/c	0.2	D=1	D=1	D=1	D=1
		c=0.5	c=1.25	c=2.5	c=3.75
		a=0.1	a=0.25	a=0.5	a=0.75
	0.4	D=1	D=1	D=1	D=1
		c=0.25	c=0.625	c=1.25	c=1.875
		a=0.1	a=0.25	a=0.5	a=0.75
	0.6	D=1	D=1	D=1	D=1
		c=0.1667	c=0.41667	c=0.833	c=1.25
		a=0.1	a=0.25	a=0.5	a=0.75
	0.8	D=1	D=1	D=1	D=1
		c=0.125	c=0.3125	c=0.625	c=0.9375
		a=0.1	a=0.25	a=0.5	a=0.75
	1.0	D=1	D=1	D=1	D=1
		c=0.1	c=0.25	c=0.5	c=0.75
		a=0.1	a=0.25	a=0.5	a=0.75
	2.0	D=1	D=1	D=1	D=1
		c=0.5	c=0.125	c=0.25	c=0.375
		a=0.1	a=0.25	a=0.5	a=0.75

Tablo 3.1. Gerilme şiddet faktörü analizi gerçekleştirilen eliptik yüzey çatlağı ve silindirik çubuk modelleri boyut oranları

Şekil 3.2. Otomatikleştirilmiş makro ile elde edilmiş ve üniform yayılı yük altındaki $\frac{1}{2}$ simetrik silindirik çubuk modeli, bölüntü, yükler ve sınır şartları (a/c=0.2, a/D=0.1)

Şekil 3.2'de analizi farklı yükler ile farklı a/c ve a/D oranları için gerçekleştirilen, otomatikleştirilmiş makro kullanılarak elde edilmiş olan örnek bir silindirik çubuk modeli, bölüntüsü, yükleri ve sınır şartları gösterilmektedir.

Farklı a/c ve a/D oranları için yalnızca makro içerisindeki a/c ve a/D oranları değiştirilerek üniform yayılı yük, termal yük ve deplasman yükleri ile eğilme yayılı yükü, termal yükü ve deplasman yüklerinin her birisi için 24 farklı eliptik yüzey çatlağı içeren bir silindirik çubuk modelinde çatlak ucu boyunca gerilme şiddet faktörü değerleri hesaplanmış ve aynı a/c, a/D oranlarında farklı yükler altındaki modeller için elde edilen çatlak ucu gerilme şiddet faktörü değerleri normalize edilerek grafiksel olarak karşılaştırılmıştır.

Şekil 3.3. Çatlak ucu boyunca zenginleştirilmiş elemanlar kullanılarak elde edilmiş çatlak ucu bölgesi bölüntü örneği (a/c=0.6, a/D=0.75)

Şekil 3.3'te gösterilen örnekte çatlak ucu boyunca zenginleştirilmiş elemanlar kullanılarak özel bölüntü oluşturulmaktadır. Bu işlem elemanlar arası geçiş kolaylığı sağlayarak çatlak ucu boyunca hesaplanması istenilen gerilme şiddet faktörü değerlerinin daha hassas bir biçimde elde edilmesini sağlamaktadır. Ancak bu işlem modele ait eleman sayısını arttırdığı için çözümlenmesi gereken eleman direngenlik matrisi sayısı artmakta ve dolayısı ile kırılma analizi için gerekli süre de artmaktadır.

Analiz için gerekli işlem basamakları şu şekilde sıralanabilmektedir:

- Üniform veya eğilme yayılı yükü, termal yükü ya da deplasman yüküne maruz bir modelin kırılma analizi için otomatikleştirilmiş ANSYSTM makrolarından herhangi birisi seçilmektedir.
- Otomatikleştirilmiş makro dosyası üzerinde kullanıcının kullanacağı çalışma klasörü yolu değiştirilmektedir.
- Otomatikleştirilmiş makro dosyası içerisinde istenilen a/c ve a/D oranları hazırlanmaktadır.

- Makro içerisindeki tüm komutlar ANSYS[™] programı komut satırına girilerek istenilen oranlarda model ve modele ait gerekli dosyalar elde edilmektedir.
- 5. Makro ile oluşturulmuş olan dosyalar çalışma klasörü içerisine gerekli uzantılar ve çalışma ismi ile kaydedilmektedir.
- 6. FCPAS programı çözümü gerçekleştirilerek istenilen yükleme kontrolünde ve istenilen oranlarda silindirik bir çubuk için çatlak ucu boyunca gerilme şiddet faktörleri hesabı analizi gerçekleştirilmektedir.

Aşağıdaki kısımda ANSYSTM programında otomatikleştirilmiş makro ile a/c= 0.2 ve a/D= 0.1 oranları için ve üniform yayılı yük kontrollü eliptik yüzey çatlağı içeren simetrik olarak modellenmiş olan silindirik bir çubuk modelinde çatlak ucu boyunca gerilme şiddet faktörü değerlerinin FCPAS programı kullanılarak elde edildiği örnek bir kırılma analizi açıklanmaktadır.

3.3.1 Uygulama: Üniform yayılı yük kontrollü ve eliptik yüzey çatlağı içeren silindirik bir çubuk modelinde gerilme şiddet faktörü hesaplanması (a/c=0.2, a/D=0.1)

Yukarıda gerekli işlem basamakları ifade edilen işlemler üniform yayılı yük kontrollü D=1 ve a/c= 0.2, a/D= 0.1, H=5 olan simetrik olarak modellenmiş eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için örnek uygulama olarak açıklanmaktadır. Diğer a/c ve a/D oranlarındaki üniform yayılı yük, termal yük ve deplasman yükü altındaki modeller için yapılmış analizler de bu örneğe benzer biçimde gerçekleştirilmiştir. Ayrıca, aynı a/c ve a/D oranlarında olan ve eğilme yayılı yükü, termal yükü ve deplasman yükü altındaki silindirik çubuk modelleri için de açıklanmakta olan örneğe benzer biçimde kırılma analizleri gerçekleştirilerek grafiksel olarak karşılaştırılmaktadır.

Otomatikleştirilmiş makroda silindir çapı olan D değeri 1 birim ve silindir yüksekliği olan H değeri 5 birim olarak alınmıştır ve çatlak boyutları (a,c) D değeri ile olan oranlarına göre değişmektedir. Bu örnek kırılma analizi uygulaması için; D=1, a=0.1, c=0.5, ve H=5 birim olmaktadır.

İlk olarak, otomatikleştirilmiş makro kullanılarak üniform yayılı yük için oluşmuş olan *.sflis uzantılı yük dosyası, *.dlis uzantılı sınır şartları dosyası, *.elis uzantılı modelin tamamının eleman dosyası, *.crelems uzantılı çatlak ucu boyunca bulunan eleman dosyası ve *.crnodes uzantılı çatlak ucu boyunca bulunan düğüm dosyası önceden oluşturulmuş olan çalışma klasörü içerisine kaydedilmektedir. Ayrıca modelin tamamının düğüm noktalarının listelendiği *.node uzantılı dosya otomatik olarak çalışma klasörü içerisine kaydedilmektedir. Eğer yapılmak istenilen analizde termal yük varsa *.sflis dosyası oluşmamakta ve onun yerine *.tem uzantılı dosya elde edilmektedir. Eğer üniform deplasman yükü altında bir analiz yapılmak istenilirse bu defa da yine *.sflis uzantılı dosya oluşmayacaktır. Bu işlemden sonra FCPAS programı analizi için gerekli dosyalar hazır durumda çalışma klasörü içerisinde bulunmaktadır.

FCPAS programı çalıştırılmaktadır. Kullanıcının karşısına gelen Şekil 3.4'te gösterilmiş FCPAS ara yüzü ana formundan Cracked Model Developed using ANSYSTM (ANSYSTM Kullanılarak Çatlaklı Model Geliştirilmesi) butonu ile gerekli forma geçilmiş olunmaktadır.

Şekil 3.4. FCPAS ara yüzü ana formu

Kullanıcının karşısına gelen bir sonraki formda ilk sekme ANSYSTM sekmesidir. Bu sekmede kullanıcı yukarıda da belirtilen *.sflis, *.dlis, *.elis, *.node, *.crelems ve *.crnodes uzantılı dosyaların bulunduğu çalışma klasörünü seçmektedir.

Şekil 3.5. Analiz için gerekli dosyaların da bulunduğu çalışma klasörünün seçilmesi

Çalışma klasörü seçildikten sonra bir sonraki sekmede kullanıcı GEO File sekmesine geçmektedir. Bu sekmede gerekli dosyalar Browse butonları ile seçilmektedir. Ayrıca çatlak ucu için gerekli koordinat ekseni belirlenmektedir. Şekil 3.6'da da görüldüğü gibi K2 ve K3 seçenekleri işaretlidir. Bunun anlamı ise; silindir çubuk modeli bu analizde yayılı yük kontrolünde sadece çekme yüküne maruz kaldığından sadece K1 gerilmesinin oluşacağı ve K2 ile K3 gerilmelerinin sıfıra eşit olacağı öngörüsüdür. Bu sekmede son işlem olarak Generate GEO File butonu tıklanarak convert_ansys_frac3d_ansysbatch.exe çalıştırılmaktadır. Bu işlem sonucunda ANSYSTM programından elde edilmiş olan kırılma analizi gerçekleştirilecek olan model geometrisi ile ilgili *.elis, *.node, *.dlis, *.sflis, *.crelems ve *.crnodes uzantılı toplam 6 adet dosya, çalışma klasörü içerisine *.geo uzantılı tek bir dosya halinde oluşturulmaktadır.

,			
TM) GEO File RUN File Fracture Analysis Fracture Inf	Post Processing Visualization 3DCPP		
	·		Control Panel
Input Element Connectivity FileName>	silndr.els	Browse	
Input Nodal Coordinate FileName>	sindr.node	Browse	CAN DELEVENT CONNECTIVITY B
Input Boundary Conditions FileName>	siindir.dis	Browse	66 0 1 0 ⁷² 4796 0 ⁷⁸⁸ 4795
Input Nodal Forces FileName>		Browse	0 3163 2 4/88 4/95 0
Input Pressure Loading FileName>	siindir.sfis	Browse	4796 0 4828 4827 0 4828 0
Input Nodal Temperatures FileName>		Browse	
Input the corresponding mesh ID from the list	20 node quadratic-Hexahedron (inc. mixed mesh)		
	1		
Select an Option for Crack Front Information Input	Input Files for Crack Front Nodes and Elements		
Files			ANSYS(TM)
Input file name of file for Cr. Fronts Elements	siindir.crelems	Browse	Geo File
Input file name of file for Cr. Fronts Nodes	einde modee	Browse	RUN File
	Join fail to the deal		Fracture Analysis
			Eracture Info
1		Add 1	Post Processing
siindir.crelems		Pamaua	Vieuplication
sind chodes		All Damage	VISUAIIZAUUII
1		All Remove	JUCPP
Input Coordinate Axis for Crack Front Node Order X Y or Z Coordinate	CX CY CZ		
Are there SIF Constraints on The Crack Front?			
	Yes		
SIF Parameters			
Is The Constraint Along The Whole Crack Front or o	n Specific Nodes? Along The Front		
Input The Type of Constraint:K1,K2,K3	Г K1 Г K2 Г K3 G	enerate GEO File	
Input the Value of SIF	0	. ملد.	
F 2 0	Add		
E 3 0			

Şekil 3.6. GEO File sekmesi

Bir sonraki sekmede ise modele ait malzeme özellikleri ve analiz tipi belirlenmektedir. Bu analiz için elastisite modülü E=3x10⁷, poisson oranı Nu=0.3 olarak belirlenmiştir. Ayrıca analiz tipi olarak Linear ve Fracture seçenekleri seçilerek lineer bir kırılma analizinin gerçekleştirileceği de belirlenmiştir. Aynı zamanda bu analiz için 24 iterasyon ile çözümün gerçekleştirilmesi ve çözüm sırasında çatlak ucu boyunca zenginleştirilmiş elemanların kullanılması istenilmekte ve böylece hassas sonuçların elde edilmesi amaçlanmaktadır. Modeldeki farklı malzeme tipi sayısı bu analiz için 1 olduğundan Number of different material in the model kısmına 1 değeri girilmiştir.

Bu sekmede son işlem olarak Generate RUN File butonu tıklanarak modele ait girilmiş olan tüm malzeme özellikleri, çözümün kaç iterasyonla yapılmak istendiği, çatlak ucunda geçiş elemanları ile çözüm istenip istenilmediği çalışma klasörü içerisine *.run uzantılı dosya ile kaydedilmektedir.

YS (TM) GEO Fie RUN Fie Fracture Holp Post Processing Vesalization 3DCPP Run File Name without "run" aindrivela Analysis Type Linear Nonlinear Thermal Stress IV Fracture FGM Solver Type Frontal PCG Tolerance-> 1 e-8 Image: Control Panel Image: Control Panel Image: Control Panel Material Properties Number of affineent material in the model Image: Control Panel Image: Control Panel Image: Control Panel Solver Type Frontal PCG Tolerance-> 1 e-8 Image: Control Panel Image: Control Panel Material Properties Frontal PCG Tolerance-> 1 e-8 Image: Control Panel Image: Control Panel Solver Type Frontal PCG Tolerance-> 1 e-8 Image: Control Panel Image: Control Panel Solver Type FGM Properties(E(x)=E0 exp(0 x) N(x)=N(u) exp(n x) Alpha(x)=Alpha0 exp(w x)) Image: Control Panel Image: Control Panel Is Material PGM7 Image: Control Panel Image: Control Panel Image: Control Panel Image: Control Panel Now many DOF do you have? Image: Control Panel Image: Control Panel Image: Control Panel Image: Control Panel Image: Control Panel	Help	
Control Pase New Vitrout * run* predect register in Nonlinear Thermal Stress V Fracture FGM Analysis Type Cinear Nonlinear Thermal Stress V Fracture FGM Solver Type Fordital in the model 1 Bar File Name without * run* predict register in the model 1 Bar File Stress V Fracture FGM Number of different material in the model 1 Bar File Stress V Fracture FGM Solver Type Fordital in the model 1 Bar File Stress V Fracture FGM Solver Type Fordital in the model 1 Bar File Stress V Fracture FGM FGM Properties (E(x)=ED exc(§ x), Nu(x)=Nu0 exc(pt x), Alpha(x)=Alpha0 exc(pt x), Alpha0 exc(pt	(S (TM) GEO File RUN File Fracture Analysis	Fracture Info Post Processing Visualization 30CPP
Run File Name without *:run* plandredis Analyzis Type Linear Nonlinear Fornital PCG Tolerance-> ta:8 Solver Type Fornital PCG Tolerance-> ta:8 Material Properties Romber of different material in the model Is Bate Plastic Is Bate Plastic Is Material Properties FGM Properties(E(x)=D exp(0; x) Nu(x)=Nu0 exp(1, x) Alpha(x)=4plane exp(x) x) Is Material FGM? Is Material FGM? Is Material FGM? Is Material FGM? CET Values (pXY:ZZ) and Tref Temp Depender Material Property Initial Temperature Acceleration Ix Type 7 a Have Body Force Loading Temp. Points Ex, Ey, Ez, Gx, Gy, Gz, 13:e73:e73:e7 Nu of Material Tiestmenture dep. Temp. Points Ex, Ey, Ez, Gx, Gy, Gz, 13:e73:e73:e7 Nu of Material Tiestmenture dep. Temp. Points Ex, Ey, Zz, Gy, Gz, 13:e73:e73:e7 Nu of Material Tiestmenture dep. Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points Temp. Points T		Control Panel
Analysis Type I linear Nonlinear Thermal Stress Fracture FGM Solver Type Fiontal PCG Tolerance-> 1 a 8 Material PCoperties Number of Inferent material in the model FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, xx) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) Alpha(x)=Alpha0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) FGM Properties(Ex)=E0 exp(8 x) Nu(x)=Nu0 exp(n, x) FGM Properties(Ex)=FGM FGM Fracture Info Bow many nodes FGM Properties(Ex)=FGM FGM Fracture Info FGM Properties(Ex)=FGM FGM Fracture Info FGM Properties(Ex)=FGM FGM Fracture Info FGM Properties(Ex)=FGM FGM Fracture Info FGM Properties(Ex)=FGM FGM Fracture Info FGM Properties(Ex)=FGM FGM Fracture Info FGM Fracture Info FGM Fracture	Run File Name without ".run" slindr els	
Analysis Type Linear Nonlinear Thermal Stress Fracture FGM FGM PCG Tolerance-> 1a-3 Behaviour Say T Fac Tolerance-> 1a-3 Behaviour Say T Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Fac Tolerance-> 1a-3 Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviour Behaviou		
Solver Type Protial PCG Tolerance-> a-3 Material Properties Protection Possible Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Properties Baterial Propertinte Batematerial Properin	Analysis Type 📀 Linear	r C Nonlinear Thermal Stress Fracture FGM
Aussignment Figure 0.0000 </td <td>Solver Type C Frontal</td> <td>0.300000000000000000000000000000000000</td>	Solver Type C Frontal	0.300000000000000000000000000000000000
Index of afficient material in the model 1 Ex Ex Gxy Gyz Gxz Nuxy Nuyz Nuxy Behaviour Sof 3.6.7 3.6.7 Sof Gaz	Material Decention	0.30000 0.30000 0.
Ex Ey Ex Goz Goz Nazy Nazy Behaviour 3e7 3e7 3e7 153846 1158848 1153846 1158848	Number of different material in the model	1
3.e7 3.e7 3.e7 1153846 115884 1112	Ex Ey Ez Gxy	Gyz Gxz Nuxy Nuyz Nuxz Behaviour
FGM Properties (E(x)=0 exp(8,x), N(x)=Nu0 exp(x), X) Alpha(x)=Alpha 0exp(x), X) Chriteropic Elasto Plastic FGM Properties (E(x)=0 exp(8,x), N(x)=Nu0 exp(x), X) Alpha(x)=Alpha 0exp(x), X) Chriteropic Elasto Plastic Is Material 1F GM Properties (E(x)=0 exp(8,x), N(x)=Nu0 exp(x), X) Alpha(x)=Alpha (3.e7 3.e7 3.e7 1153846	1153846 1153846 0.3 0.3 0.3 Orthotropic Elasto Plastic
FGM Properties(E(x)=E0 exp((a), N(u(x)=Nu0 exp(x), X)Alpha(x)=Alpha(x) exp(x), X) File State Plastic FGM Properties(E(x)=E0 exp((a), X)(u(x)=Nu0 exp(x), X)Alpha(x)=Alpha(x) exp(x), X) File State Plastic Is Material FGM? Is Material FGM? Is Material 2 FGM? File State Plastic Do You Have Other Tred DOF Sets CTE Values (XX,YY/Z2) and Tref How many DOF do you have? File Dependet Material Property Node number and direction Ix I y IZ Here Body Force Loading Gravity Centrifuel File Material Tis temperature dep. Temp. Points Ix Exp(Ex, Gx, Gy, Gz] 367367367 Nu of Material Tis temperature dep. Temp. Points Trep. Points Nx Lx (y, Z) (30303) Of CT temperature depended Temp. Points The Alceleration State Timeperature depended The Number of temperature depended Timeperature depended The Number of temperature depended Timeperature and coresing The Number of temperature depended Timeperature depended The Number of temperature depended Timeperature depended The Number of temperature depended Timeperature depended The Number of temperature depended Timeperature depende		Conthotropic Elasto Plastic
FGM Properties(E(y)=E0 exp(B_x).Hu(y)=Hu0 exp(n_x).A(bhc(x)=Apha0 exp(n_x)) ANSYS(TM) B n B n B n B n B n B n B n B n B n B n B n B n B n B n B n B n B Material 2 FGM? Fracture Info Property Indemator n Fracture Info Post Processing Visualization Nor Waterial Tis temperature dep. Temp. Points Exc.Ey.Ez.GX.GY.G2 367367367 Mov Material Tis temperature dep. Temp. Points Nor Nav.Nu/Nu Descrito Loading Gravity Centrifugal The Acceleration Sistemator Sistemator Up of Body Force Loading Tis Temp. Points Sistemator True Utineton Coaines of Grav.Us Loading Tis Tis		Conthotropic Elasto Plastic
AUSYSCIM) Australiant Andrew Andr	EGM Properties(E(x)=E0 exo()	(8 x) Nu(x)=Nu0 exp(n x) Alpha(x)=Alpha0 exp(w x))
Is Material FGM? Geo File Is Material FGM? Is Material FGM? Is Material 2 FGM? Is Material 3 FGM? To You Have Other Tied DOF Sets CTE Values (XYY/Z2) and Tref How many DOF do you have? Image: CTE Values (XYY/Z2) and Tref Node number and direction Image: CTE Values (XYY/Z2) and Tref Have Body Force Loading Gravity They of Body Force Loading Gravity They of Body Force Loading Gravity Centrifugal Femp. Points The Acceleration Statistic Temperature dep. Temp. Points Note, Ky, Kz, Gy, Gg. [3:673:673:67] Nu of Material 1 is temperature dep. Temp. Points Temp. Points Not, Nu, Nuz Descord on Axis Statistic Temperature deprint The Value(Sci Gravity) Centrifugal The Acceleration Statistic Temperature deprints Torout Unreton Coaines of Grav. Useding Till The Acceleration Statistic Temperature depended The Number of Incrementure points Till Temperature and corresponding Till Or Vaterial Integration Order How Local Coordinate Systems <td></td> <td>β η w</td>		β η w
I is Material2 FGM? RUN File Do You Have Other Tied DOF Sets Fracture Analysis How many DOF do you have? Image Dependent Material Property Index number and direction Image Dependent Material Property Index number and direction Image Dependent Material Property Index number and direction Image Dependent Material Property Index number and direction Image Dependent Material Instemperature dep. Temp. Points Exc.Ey.Ez.Gx.Gy.Gg.2 3673673.877 Have Body Force Loading Gravity Centrifugal Temp. Points Exc.Ey.Ez.Gx.Gy.Gg.2 30303.03 Temp. Points Image Doristion Image Doristion Second on Axis Image Doristion Image Doristion Temp. Points Image Doristion Image Doristion Temp. Points Image Doristion Image Doristion Dersentry or Material Image Doristion Image Doristion Temp. Points Image Doristion Image Doristion Dersentry or Material Image Doristion Image Doristion Dersentry or Material Image Doristion Image Doristion Dersentry or Material Image Doristion	Is Material1 FGM?	Geo File
Image: Second and System Fracture Analysis First Values CTE Values (X) (Y) (ZZ) and Tref Integration Cosines Image: Second and System Image: Second and System How many coordinate System Image: Second and System Image: Second and System	Is Material2 EGM2	RUN File
The Material Park Price Loading Fracture Info Ob You Have Other Tied DOF Sets CTE Values (XXYY/ZZ) and Tref T112 How many DOF do you have? Temp Dependet Material Property Temp Dependet Material Property Node number and direction Image Structure E of Material Tis temperature dep. Temp Dependet Material Tis temperature dep. Temp. Points E CK S/E Z/GA/G/G2 T367367367 The Acederation Image Structure Temp. Points E CK S/E Z/GA/G/G2 T367367367 The Acederation Image Structure Temp. Points E CY E Values (XX, VIX, VIX Temp. Points The Acederation Image Structure Image Structure Temp. Points Temp. Points Temp. Points Temp Unrection Coarines of Gravity Centrifuel Temp. Points Timeprature doepnide Temp. Points Timeprature doepnide The Acederation Image Structure Temp. Points Timeprature doepnide Timeprature and Coares Structure Timeprature and Coares Structure Generate RUN F Heve Local Coordinate Systems Image Structure Tempetity and Coares Structure Timeprature doepnide Timeprature doepnide How many coordinate System Image Structure Generate RUN F Tim		Fracture Analysis
Do You Have Other Tied DOF Sets CTE Values (XX,YYZZ) and Tref 1112 PostProcessing How many DOF do you have? Image Temp Dependet Material Property Image Temp Dependet Material Property Image Temp Dependet Material Property How doe number and direction Image Temp Dependet Material Property Image Temp Points Image Temp Points Image Temp Points Have Body Force Loading Image Temp Points Image Temp	I Is Materials FGM?	Fracture Info
How many DOF do you have? Image: Control of the second and the se	Do You Have Other Tied DOF Sets	CTE Values (XX,YY,ZZ) and Tref 1112
How many nodes Imem Depender. Material "roperty Visualization Node number and direction Imem Depender. Material "roperty Imem Depender. Material "roperty Node number and direction Imem Depender. Material "is temperature dep. Imem Depender. Material "is temperature dep. Have Body Force Loading Gravity C certification Imem Depender. Material "is temperature dep. The Acceleration Imem Depender. Material Tis temperature dep. Imem Depender. Material Tis temperature dep. The Acceleration Imem Depender. The North Nixz Imem Depender. Material Tis temperature dep. The Acceleration Imem Depender. The North Nixz Imem Depender. The North Nixz Imem Depender. The North Nixz Second on Axis T11 Imegration Order Imegration Order Imegration Order How many coordinate System Imegration Drofer Imegration Conter Imegration Order Imegration Profer	How many DOF do you have?	
Node number and direction Image and sensitive Image and sens	How many nodes	Visualization
Node number and affection I E of material 18 temperature dep. Have Body Force Loading Temp. Points E CK_E/E, GX, Gy, Gg. 3a73a73a7 The Acceleration 9-81 In an of material 18 temperature dep. The Acceleration 9-81 In an of material 18 temperature dep. The Acceleration 9-81 In an of material 18 temperature dep. Temp. Points Nux, Nu, Nux 10.30.30.3 IF CE temperature depended Temp. Points 111 Becond on Also 111 Integration Order 1111 Have Local Coordinate Systems Integration Order 1111 Integration Order How many coordinate system In function Element Generatize Plane Strain Problem Input Number of Increments, Max, Number of		3DCPP
Have Body Force Loading Centrifugal They Definits E.K.Ly, E.Z., Ko, Ko, Ko, Ko, Ko, Ko, Ko, Ko, Ko, Ko	Node number and direction	x j y j z j E of material i is temperature dep.
Have Body Force Loading Find work from the second		Temp. Points]1 Ex,Ey,Ez,Gx,Gy,Gz]13.e7 3.e7
Type of Body Force Leading Gravity Centrifugal Temp. Points Nux.Nuy.Nuz 0.30.30.3 The Acceleration 0.51 Temp. Points Nux.Nuy.Nuz 0.30.30.3 Generate RUN F The Vector Cosines of Grav. Loading 11.1 Temperature depended Time Temperature and corresponding Time Density of Maternal 11.1 Temperature and corresponding Time Time Time Have Local Coordinate Systems Vise Transition Element/ Generate Rever of Zive Transition Element/ Generate Run F How many coordinate system T Imput Number of Increments, Max. Number of Sixe of Sixe of	Have Body Force Loading	Nu of Material 1 is temperature dep.
Inter-acceration Inter	Type of Body Force Loading Gravity	C Centrifugal Temp. Points 1 Nux, Nuy, Nuz 10.30.30.3
Input Unrection Cosines of Law. Logang 111 Direction (wt Global Coard, Sys) 111 Density of Material 111 Have Local Coordinate Systems Integration Order How many coordinate System 1 Input Number of Increments, Max. Number of	The Acceleration 9.81	Generate RUN File
Second on Axis Temperature and corresponding Temperature and c	Direction (wrt Global Coord, Sys.)	11 The Number of temperature points
Cric Values(x,y,z points) for point 1 Integration Order 24 Integrate A Integration Order 24 Integrate A Integrate A I	Second on Axis 1111	Temperature and corresponding
Heve Local Coordinate Systems Integration Order 24 We transition Element/ Generalized Plane Strain Problem How many coordinate system Integration Element/ Generalized Plane Strain Problem	Density of Material	CTE Values(x,y,z points) for point 1
Have Local Coordinate Systems		Integration Order 24
How many coordinate system 1 Input Number of Increments ,Max. Number of	Have Leeal Coordinate Systems	Vilse Transition Element
	nave Local Coordinate Systems	
Iterations and I olerance for Convergence 10 20 1.0e-6	How many coordinate system	1 Input Number of Increments, Max, Number of

Şekil 3.7. RUN File sekmesi

Şekil 3.8'de gösterilen Fracture Analysis sekmesinde ise çalışma klasörü içerisinde oluşturulmuş olan *.geo ve *.run uzantılı dosyalar kullanılarak çatlaklı silindir çubuk modelinin arka frac3d.exe isimli dosya ile planda çalışan çözümü gerçekleştirilmektedir. frac3d.exe çözüm işlemini gerçekleştirirken yani çatlak ucu boyunca gerilme şiddet faktörü değerlerini hesaplarken zenginleştirilmiş sonlu elemanlar metodunu temel alarak çalışmaktadır. Çözüm işlemini başlatmak için lisans şartları kabul edilip onay verildikten sonra etkin hale gelen RUN butonu tıklanarak kırılma analizi çözümü başlatılmaktadır.

File Help	a moder berefoped asing more				
ANSYS (TM) GEO FIE F	RUN File Fracture Analysis Fracture Info Por	st Processing Visualization 3DCPP			
					Control Panel
	RUN File Name GEO File Name In Thermal Analysis? TEM File Name Number of Processors to be Used Do you accept License Agreement?	sindrels_3d sindrels_3d 2 • Yes • No	Browse Browse RUN	Review Error File	ANSYS(TM) Geo File RUN File Fracture Analysis
	FCPAS Solver Fracture and Crack Propagation Ana LICENSETERMS Copyright 2010-Ali O. Ayhan, ayhan Permission is hereby granted. free of person obtaining a copy of this software, subconstituents and the associated docu- the "Software"), for the rights to use, copy	wysis System 	E		Fracture Info Post Processing Visualization 3DCPP
	and publish resultfrom the Software subject Ubage of the Software is permissible and UNDER THE CONDITION THAT THE SI INCLUDING APPROPRIATE SUBCONS' OF THE RESPECTIVE AUTHORIS AND DISTRIBUTED TO ANY OTHER THIND Ubage of the Software for private use, res and education IS PERMISSIBLE.	cted to the following conditions: freely available DTWARE, TITUENTS, REMAIN UNDER COPYRIGHT THE SOFTWARE IS NOT PARTIES. earch, publication	v		

Şekil 3.8. Fracture Analysis sekmesi

RUN butonuna basıldıktan sonra çözüm işlemini gerçekleştiren frac3d.exe Şekil 3.9'da görülmektedir.

FCPAS 1.0-1)Cracked Model Developed using ANSYS			
File Help			
ANSYS (TM) GEO File RUN File Fracture Analysis Fracture Info	Post Processing Visualization 3DCPP		Control Panel
C:\WINDOWS\system32\cmd.exe		- 🗆 🗙	
Wall Clock Time (Seconds)= Starting Fracture Data Pre-processing	0.90		
Fracture Data Pre-processing Done	1.20		
Wall Clock Time (Seconds)= Start Adjusting Data Structure	1.87		
ADJUSTMENT OF DATA STRUCTURE IS FINISHED Wall Clock Time (Seconds)= Adjusting Data Structure Done	1.88		ANSYS(TM)
Wall Clock Time (Seconds)= Start for Searching Non-Zero Terms	1.88		Geo File
SEARCHING FOR NONZERO TERMS IN STRUCTURE Wall Clock Time (Seconds)= Searching Non-Zero Terms Done	E IS DONE 4.92	Review Error	File RUN File Fracture Analysis
Wall Clock Time (Seconds)= Start Element Matrix Calculation & Assem	4.98 bly	_	Fracture Info Post Processing
Fracture and Crack Propagation	Analysis System		Visualization
Hotale and clock hopogator	r ruiyaa oyacan		3DCPP
LICENSE TERMS	3	=	
			\leftarrow \rightarrow
Copyright 2010- Ali O. Ayhan, a	yhan@sakarya.edu.tr		
Permission is hereby granted, fre person obtaining a copy of this soft subconstituents and the associated (the "Software"). for the softe to use, and publish resultatrom the Software #	ee of charge, to any vare, its all loccumentation files copy, merge software, ubjected to the following conditions:		
* Usage of the Software is permissible UNDER THE CONDITION THAT TH INCLUDING APPROPRIATE SUBC OF THE RESPECTIVE AUTHOR(S) DISTRIBUTED TO ANY OTHER TH	and freely available IE SOFTWARE. DNSTITUENTS, REMAIN UNDER COPYRIGHT AND THE SOFTWARE IS NOT IRD PARTIES.		
Usage of the Software for private use and education IS PERMISSIBLE.	e, research, publication	~	

Şekil 3.9. Frac3d çözümü

Frac3d çözümü sonucunda oluşan *.crk uzantılı dosya çatlak ucu boyunca her düğüm noktasına karşılık gelen gerilme şiddet faktörü (K1) değerlerini içermektedir. *.crk dosyasının içerisindeki K1 değerleri için aşağıda gösterilen formül kullanılarak normalizasyon yapılmakta ve gerilme şiddet faktörü değerleri boyutsuz duruma getirilmektedir.

Üniform ve eğilme yayılı yükü altındaki çatlaklı silindir çubuk için gerilme şiddet faktörü normalizasyonu Denklem 3.2'de gösterilmektedir.

$$K_{\rm N} = \frac{K_1}{\sigma \sqrt{\pi a}} \tag{3.2}$$

K1: *.crk uzantılı dosya içerisinde çatlak ucu düğümlerine karşılık gelen gerilme şiddet faktörü değerleri

- σ : Uygulanan yayılı yük
- a: Çatlak derinliği

Bu çalışmada alt ve üst yüzeylerinde sabitlenmiş üniform ve eğilme yayılı yük kontrollü silindirik çubuk modeli için gerilme σ değeri 1 birim olarak alınmıştır.

Diğer yük kontrolleri altındaki gerilme şiddet faktörü değerlerinin normalizasyonları ise Denklem 3.3, 3.4, 3.5 ve Denklem 3.6, 3.7, 3.8'de açıklanmaktadır.

Alt ve üst yüzeylerinde sabitlenmiş üniform ve eğilme termal yükü kontrollü silindirik çubuk modeli $\Delta T = -1^{\circ}C$ sıcaklık farkına maruz kalmaktadır. Üniform ve eğilme termal yükü kontrolü için gerilme şiddet faktörü normalizasyonu;

$$K_{\rm N} = \frac{K_1}{\sigma^{\rm T} \sqrt{\pi a}} \tag{3.3}$$

$$\sigma^{\mathrm{T}} = -\varepsilon^{\mathrm{T}} \cdot \mathrm{E} \tag{3.4}$$

$$\varepsilon^{\mathrm{T}} = \alpha. \, \Delta \mathrm{T} \tag{3.5}$$

Üniform ve eğilme termal yükü kontrollü silindir çubuk modeli için gerilme σ^{T} değeri, birim şekil değişimi ε^{T} ile elastisite modülünün E çarpımına ve birim şekil değişimi de ısı iletim katsayısı α ile sıcaklık farkı ΔT çarpımına eşittir.

Bu çalışmada üniform ve eğilme termal yükü kontrolündeki silindir çubuk model için 1sı iletim katsayısı α =1.10⁻⁵ 1/°C olarak alınmıştır.

Alt ve üst yüzeylerinde sabitlenmiş üniform ve eğilme deplasman yükü kontrolündeki silindir çubuk için gerilme şiddet faktörü normalizasyonu;

$$K_{\rm N} = \frac{K1}{\sigma^{\rm D}\sqrt{\pi a}} \tag{3.6}$$

$$\sigma^{\rm D} = \varepsilon^{\rm D}.\,\mathrm{E} \tag{3.7}$$

$$\varepsilon^{\rm D} = \frac{\Delta L}{L} \tag{3.8}$$

Üniform ve eğilme deplasman yükü altındaki silindir çubuk modeli için gerilme σ^{D} değeri, birim şekil değişimi ϵ^{D} ile elastisite modülünün E çarpımına ve birim şekil değişimi de silindir boyundaki değişimin ΔL ile silindir başlangıç boyuna L bölümüne eşittir.

Bu çalışmada üniform ve eğilme deplasman yükü kontrolündeki silindir çubuk modeli için silindir boyundaki değişim $\Delta L = H/100$ ve silindir boyu H olarak alındığından birim şekil değişimi $\varepsilon^{D}=0.01$ 'dir.

3.3.2. Değişik yükler altında gerilme şiddet faktörlerinin karşılaştırılması

3.3.2.1. Üniform yayılı yük, termal yük ve deplasman yükü altındaki gerilme şiddet faktörlerinin karşılaştırılması

Üniform yayılı yük, termal yük ve deplasman yükü kontrollü, eliptik yüzey çatlağı içeren silindir modelleri Şekil 3.10, Şekil 3.11 ve Şekil 3.12'de gösterilmektedir.

Şekil 3.10. Üniform yayılı yük kontrollü eliptik yüzey çatlağı içeren silindir çubuk modeli

Şekil 3.11. Üniform termal yük kontrollü eliptik yüzey çatlağı içeren silindir çubuk modeli

Şekil 3.12. Üniform deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindir çubuk modeli

Yapılmış olan eliptik yüzey çatlağı içeren a/D=0.25 ve a/c=1.0 oranları için silindir çubuk modeli kırılma analizleri sonucunda elde edilmiş olan boyutsuz gerilme şiddet faktörü değerleri 2007 yılında F. P. Yang ve Z. B. Kuang tarafından yayınlanmış olan "Stress Intensity Factors for Surface Fatigue Crack in a Round Bar Under Cyclic Axial Loading [31]" isimli çalışmadaki aynı a/D ve a/c oranları için elde edilmiş olan boyutsuz gerilme şiddet faktörü değerleri ile uygunluk göstermektedir. Ayrıca çatlak uçlarında FCPAS çözümünün daha hassas ve doğru olduğu Şekil 3.13'te açıkça görülmektedir. Çünkü Şekil 3.13'teki grafik silindirik modelin geometrisi sebebi ile simetriye sahiptir ve FCPAS (K) çözümünün simetri noktasına (s=1.0) sıfır eğim ile gelmesine karşın F. P. Yang ve Z. B. Kuang'a ait çözüm simetri noktasında sıfır eğime yaklaşmaktadır ancak sıfır değildir.

Şekil 3.13. Üniform yayılı yük altındaki silindir çubuk modeli için FCPAS çözümü ile YANG ve KUANG'a ait çözümlerin karşılaştırılması (a/c=1.0, a/D=0.25) [31]

Mevcut gerilme şiddet faktörü değerlerinin normalizasyon işleminden sonra elde edilen boyutsuz K1 gerilme şiddet faktörü değerinin boyutsuz çatlak ucu konumuna göre grafikleri üniform yayılı yük, termal yük ve deplasman yükü kontrolleri için Şekil 3.14 ve Şekil 3.15'te gösterildiği gibidir.

Bu karşılaştırmaların dışında FCPAS ara yüzü kullanılarak plaka modelleri için de kırılma analizleri gerçekleştirilmiştir [29].

Şekil 3.14. Üniform yayılı yük, termal yük ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.1)

Şekil 3.15. Üniform yayılı yük, termal yük ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.5)

Şekil 3.14 ve Şekil 3.15'ten de görüldüğü üzere aynı büyüklükteki üniform deplasman yükü ve üniform termal yükü kontrolündeki çatlaklı silindir model için normalize edilmiş olan gerilme şiddet faktörleri değerleri birbirine eşit çıkmaktadır. Üniform deplasman yükü için elde edilen grafiklerin üniform termal yükü için elde edilen grafiklerin üniform termal yükü için elde yükü için elde uniform termal yükü için elde bundan sonraki grafiklerde üniform yayılı yük ile üniform termal yük grafikleri karşılaştırılmaktadır.

Şekil 3.16. Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.2, a/D=0.1, 0.25)

Şekil 3.16'daki grafikte görüldüğü üzere üniform yayılı yük kontrollü silindir çubukta bulunan eliptik yüzey çatlağının ucundaki gerilme şiddet faktörü değerleri üniform termal yük kontrollü silindir çubukta bulunan aynı boyutlardaki eliptik yüzey çatlağının ucundaki boyutsuz (normalize edilmiş) gerilme şiddet faktörü değerlerinden daha büyüktür.

Şekil 3.17. Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.2, a/D=0.5, 0.75)

Şekil 3.18. Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.4, a/D=0.1, 0.25)

Şekil 3.17, Şekil 3.18, Şekil 3.19, Şekil 3.20, Şekil 3.21, Şekil 3.22, Şekil 3.23, Şekil 3.24, Şekil 3.25, Şekil 3.26, Şekil 3.27'deki grafiklerde, aynı a/c oranları için farklı a/D oranlarında benzer biçimde farklar görülmektedir.

Şekil 3.19. Üniform yayılı yük ve termal yük kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.4, a/D=0.5, 0.75)

Şekil 3.20. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.1, 0.25)

Şekil 3.21. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.5, 0.75)

Şekil 3.22. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.8, a/D=0.1, 0.25)

Şekil 3.23. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.8, a/D=0.5, 0.75)

Şekil 3.24. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.1, 0.25)

Şekil 3.25. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.5, 0.75)

Şekil 3.26. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=2.0, a/D=0.1, 0.25)

Şekil 3.27. Üniform yayılı yük ve termal yük altındaki silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=2.0, a/D=0.5, 0.75)

3.3.2.2. Eğilme yayılı yükü, termal yükü ve deplasman yükü altındaki gerilme şiddet faktörlerinin karşılaştırılması

Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü, eliptik yüzey çatlağı içeren silindir çubuk modelleri Şekil 3.28, Şekil 3.29 ve Şekil 3.30'da gösterilmektedir.

Şekil 3.28. Eğilme yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindir çubuk modeli

Şekil 3.29. Eğilme termal yükü kontrollü eliptik yüzey çatlağı içeren silindir çubuk modeli

Şekil 3.30. Eğilme deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindir çubuk modeli

Tablo 3.2. Gerilme şiddet faktörü karşılaştırması gerçekleştirilen eliptik yüzey çatlağı ve silindirik çubuk modelleri oranları

	a/c	a/D
1	0.6338	0.0555
2	0.6253	0.111
3	0.6104	0.1665
4	0.5878	0.222
5	0.5555	0.2775
6	0.5091	0.333
7	0.4413	0.3885
8	0.3325	0.444

Yapılmış olan eliptik yüzey çatlağı içeren, silindir boyutları D=1, H=5 ve Tablo 3.2'de verilmiş olan a/c, a/D oranları için silindirik çubuk modeli kırılma analizleri sonucunda elde edilmiş olan boyutsuz gerilme şiddet faktörü değerleri 1999 yılında Manuel da Fonte ve Manuel de Freitas tarafından yayınlanmış olan "Stress Intensity Factors for Semi-Elliptical Surface Cracks in Round Bars Under Tension And Bending [32]" isimli çalışmadaki aynı a/c ve a/D oranları için elde edilmiş olan ve

Shiratori ile kıyaslanan boyutsuz gerilme şiddet faktörü değerleri ile uygunluk göstermektedir.

Şekil 3.31. Eğilme yayılı yükü altındaki silindir çubuk modeli için FCPAS çözümü ile SHIRATORI'ye ait çözümlerin karşılaştırılması [32]

Mevcut gerilme şiddet faktörü değerlerinin normalizasyon işleminden sonra elde edilen boyutsuz K1 gerilme şiddet faktörü değerinin boyutsuz çatlak ucu konumuna göre grafikleri eğilme yayılı yükü, termal yükü ve deplasman yükü kontrolleri için Şekil 3.32, Şekil 3.33, Şekil 3.34 ve Şekil 3.35'te gösterildiği gibidir.

Şekil 3.32. Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.1)

Şekil 3.33. Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.25)

Şekil 3.34. Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.50)

Şekil 3.35. Eğilme yayılı yükü, termal yükü ve deplasman yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.75)

Şekil 3.32, Şekil 3.33, Şekil 3.34 ve Şekil 3.35'ten de görüldüğü üzere aynı büyüklükteki eğilme deplasman yükü ve eğilme termal yükü kontrolündeki çatlaklı silindir model için normalize edilmiş olan gerilme şiddet faktörleri değerleri birbirine eşit çıkmaktadır. Eğilme deplasman yükü için elde edilen grafiklerin eğilme termal yükü için elde edilen grafiklerle aynı olması nedeni ile bundan sonraki grafiklerde eğilme yayılı yükü ile eğilme termal yükü grafikleri karşılaştırılmaktadır.

Şekil 3.36. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.2, a/D=0.1, 0.25)

Şekil 3.37. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.2, a/D=0.5, 0.75)

Şekil 3.38. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.4, a/D=0.1, 0.25)

Şekil 3.39. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.4, a/D=0.5, 0.75)

Şekil 3.40. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.1, 0.25)

Şekil 3.41. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.6, a/D=0.5, 0.75)

Boyutsuz Çatlak Ucu Konumu

Şekil 3.42. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.8, a/D=0.1, 0.25)

Şekil 3.43. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=0.8, a/D=0.5, 0.75)

Şekil 3.44. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.1, 0.25)

Şekil 3.45. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=1.0, a/D=0.5, 0.75)

Şekil 3.46. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=2.0, a/D=0.1, 0.25)

Şekil 3.47. Eğilme yayılı yükü ve termal yükü kontrollü silindir bir çubuktaki eliptik yüzey çatlağı için çatlak ucu boyunca normalize edilmiş gerilme şiddet faktörü dağılımı (a/c=2.0, a/D=0.5, 0.75)

Sonuç olarak; a/c= 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 oranları ve a/D=0.1, 0.25, 0.5, 0.75 oranları içerisinde çatlak derinliği olan a değerinin büyüklüğü çatlak uzunluğu olan c değeri ve silindir çapı olan D değerine oranla arttıkça üniform ve eğilme yayılı yükü kontrolü sonucu elde edilen çatlak ucu boyunca gerilme şiddet faktörü değerleri üniform ve eğilme termal yükü ve deplasman yükü kontrollü eliptik yüzey çatlağı değerlerine göre daha büyüktür. Bir başka deyişle aynı a/c ve a/D oranları için üniform ve eğilme yayılı yükü ve termal yükü altındaki gerilme şiddet faktörleri farkı çatlak boyutu büyüdükçe artmaktadır. Bu fark bir sonraki bölümde gösterildiği gibi bu iki tip yük altındaki çatlak ilerleme ömürlerinde ciddi farklar oluşturacaktır.

BÖLÜM 4. FARKLI ÜNİFORM ve EĞİLME YÜKLERİNE MARUZ KALAN SİLİNDİRİK ÇUBUKLARDAKİ ÜÇ BOYUTLU ÇATLAKLAR İÇİN ÇATLAK İLERLEME ANALİZLERİ

4.1. Giriş

Bu bölümde üniform yayılı yük ve deplasman yükü ile eğilme yayılı yükü ve deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik çubuklarda farklı a/c başlangıç çatlak boyutları ve sabit silindir çapı D ile silindir yüksekliği H boyutları için çatlak ilerleme analizleri FCPAS ara yüzü kullanılarak gerçekleştirilmiştir.

Şekil 4.1. Çatlak ilerleme analizi gerçekleştirilen ½ simetri oranındaki çatlak ve silindir modelleri

Şekil 4.1'de görüldüğü gibi çatlak profiline uydurulmuş olan elipsin merkezi değişken olduğu için elipsin merkezinden çatlak derinlik noktasına olan a değeri çatlak uzunluğu ve a_{ef} değeri ise silindir dış çapından çatlak derinlik noktasına olan etkin çatlak uzunluğu mesafesidir.

Çatlak ilerleme analizlerinde tekrarlı işlemlerin yapılması oldukça uzun zaman alan ve tekrar işlemleri esnasında hata yapılma ihtimali yüksek olan bir işlemdir. Ancak FCPAS programı içerisinde bulunan otomatikleştirilmiş çatlak ilerleme ara yüzü ile kullanıcı istediği silindir çapı D, silindir yüksekliği H, başlangıç çatlağı uzunluğu c, başlangıç çatlağı derinliği a bilgileri ile istediği çatlak ucu boyunca bir adımdaki maksimum ilerleme miktarı Δa_{max} , her bir maksimum ilerleme miktarı için çatlak ucu boyunca istenilen eleman sayısı ve yapılacak tekrar sayısı değerlerini girerek ünform ve eğilme yayılı yükü ya da deplasman yükü kontrollü, eliptik yüzey çatlağı içeren boyutlu silindirik bir cubukta catlak ilerleme analizini rahatlıkla üç gerçekleştirebilmektedir. Ayrıca, malzeme özellikleri olan elastisite modülü E ile poisson oranı v değerleri ile malzeme sabitleri olan C ve n değerlerini, uygulanmasını istediği gerilme değerini ve her maksimum ilerleme miktarı Δa_{max} için çatlak ucu boyunca istenilen eleman sayısını kullanıcı kendisi belirlemektedir.

FCPAS programının bu analizi kullanıcıya kolayca sağlama nedeni ise parametrik olarak yazılmış olan ANSYSTM makrosunun ve ayrıca ANSYSTM makrosunu her defasında elde edilen yeni çatlak boyutları ve kullanıcı istekleri ile çalıştıran büyük bir kod döngüsünün arka planda bulunmasıdır. Otomatikleştirilmiş makronun oluşturulması aşamasında ilk olarak belirli ölçülerde, değişken olmayan eliptik bir yüzey çatlağı içeren silindirik bir çubuk modeli için gerekli sınır şartları, yükler ve bölüntü oluşturulmuştur. Tüm bu işlemler sırasında her yapılan işlem komut olarak ANSYSTM programının List \rightarrow Log File kısmından açılan metin dosyasındaki son yapılan işleme karşılık gelen komut alınarak sabit ölçülere ait bir makro oluşturulmuştur. Bir sonraki adımda ise sabit ölçülere sahip bu makro parametrik olarak, yani kullanıcının istediği herhangi bir çatlak-silindir boyutlarında ve malzeme özelliklerinde çalışabilir hale getirilmiştir. Çatlak ilerleme analizi genel işlem şeması Şekil 4.2'de gösterilmektedir.

Şekil 4.2. Çatlak ilerleme genel işlem şeması [24]

Bu çalışmada her çatlak ilerleme adımındaki gerilme şiddet faktörü değerlerinin bulunmasında zenginleştirilmiş sonlu elemanlar metodu ve bir sonraki çatlak ölçüleri bulunurken de Paris-Erdoğan denklemi ve elipsfit prosedürü esas alınmaktadır.

4.2. Çatlak İlerleme Modeli

Yorulma çatlak ilerlemesi birçok malzeme ve mühendislik yapısının yorulma ömrünün büyük bir kısmını oluşturmaktadır. Yorulma ömrünün belirlenmesi için yorulma çatlak ilerlemesinin hassas bir şekilde tahmini önemlidir. Yorulma çatlak ilerlemesinin ana sorusu; bir çatlağın başlangıç çatlak derinliğinden maksimum izin verilebilen çatlak derinliğine ulaşması için gerekli olan N_{kr} kritik çevrim sayısının
belirlenmesi ve N yükleme çevrimi ile çatlak uzunluğunun ilgili olduğu bu artış formudur. Yorulma çatlak ilerlemesi analizlerinde en yaygın kullanılan bir model Paris çatlak ilerleme modelidir [33].

$$\frac{da}{dN} = C\left(\Delta K\right)^n \tag{4.1}$$

- da: Belli bir çevrim sayısındaki çatlak ilerlemesi
- dN : Çevrim sayısı
- C: Malzeme sabiti
- ΔK : Gerilme şiddet faktörü genliği
- n: Malzeme sabiti

Paris çatlak ilerleme modeli ve elipsfit prosedürü kullanılarak elde edilmiş olan örnek bir ömür hesabını gösteren çevrim sayısı-çatlak uzunluğu grafiği Şekil 4.3'te verilmiştir.

Şekil 4.3. Çevrim sayısına karşı çatlak uzunluğu örneği

4.3. Değişik Yükler Altında Çatlak İlerleme Analizleri

4.3.1. Üniform yayılı yük ve deplasman yükü altındaki çatlak ilerleme analizleri

Bu kısımda üniform yayılı yük ve deplasman yükü kontrollü başlangıç çatlak derinliği ölçüsü a/D=0.1 durumunda Tablo 4.1'de belirtilen çatlak derinliği a/çatlak uzunluğu c oranlarında eliptik yüzey çatlağı içeren silindirik çubuk modelleri için çatlak ilerleme analizleri gerçekleştirilmiştir. a/c oranları Tablo4.1'de verilmiştir.

Tablo 4.1. Üniform yayılı yük ve deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için a/D=0.1 sabit durumundaki a/c oranları

a/D=0.1	a/c		
	0.2		
	0.4		
	0.6		
	0.8		
	1		

Analiz için gerekli işlem basamakları aşağıda sıralanmıştır;

- Üniform yayılı yük ya da deplasman yükü kontrollü eliptik yüzey çatlağı içeren bir silindirik çubuk modeli analizi için FCPAS ara yüzünde bulunan 3DCPP&C sekmesi kullanılarak Cylinder Displacement kısmı seçilir.
- Cylinder Displacement formu seçildikten sonra kullanıcı karşısına gelen ara yüzde uygulamak istediği yük çeşidi olan üniform deplasman yükünü belirlemektedir.
- Cylinder Displacement formu seçildikten sonra kullanıcının karşısına gelen ara yüzde Change Working Directory butonu ile ilk olarak çalışma klasörü belirlenmektedir.
- 4. Project Name kısmında kullanıcı çalışmasına vermek istediği ismi belirlemektedir.
- 5. ANSYS[™] Path butonu ile kullanıcı, bilgisayarında bulunan ANSYS[™] programının uygulama yolunu seçmektedir.
- 6. Copy macro butonu ile kullanıcı üniform deplasman yük kontrollü makroyu seçmiş olduğu çalışma klasörüne kopyalamaktadır.

- 7. Cylinder and Crack Dimensions kısmında, silindir çapı D, çatlak uzunluğu c, çatlak derinliği a, silindir uzunluğu H, çatlak merkez X koordinatı XR, çatlak merkez Y koordinatı YR, çatlak merkez Z koordinatı ZR ve çatlağın X ekseni ile yapmış olduğu açı Ø geometrik değerleri kullanıcının belirlediği biçimde girilmektedir.
- Material Properties kısmında, malzeme sabiti C, malzeme sabiti n, elasitisite modülü E, poisson oranı v malzeme özellikleri ile analizde kullanılması istenilen integrasyon sayısı, bilgisayar işlemci sayısı ve geçiş elemanı kullanılıp kullanılmayacağını kullanıcı belirlemektedir.
- 9. Choose Axes of Ellipse kısmında, çatlağın silindir üzerine yerleştirileceği eksenleri kullanıcı belirlemektedir.
- 10. Blocks kısmında, kullanıcı çatlak ucu boyunca bir adımdaki maksimum ilerleme miktarı, her maksimum ilerleme miktarı için kaç defa ilerleme analizi yapılacağı ve her maksimum ilerleme miktarı için çatlak ucu boyunca istenilen eleman sayısı kullanıcı tarafından belirlenmektedir.
- 11. Start Crack Growth Analysis butonu ile eliptik yüzey çatlağı içeren silindirik çubuk modeli için çatlak ilerleme analizi başlatılmaktadır.

Şekil 4.4. Çatlak ilerleme analizleri kısmına geçiş

4.3.2. Uygulama: Üniform deplasman yükü altındaki silindirik çubuk modelinde çatlak ilerleme analizi (a/c=0.2, a/D=0.1)

Yukarıda gerekli işlem basamakları ifade edilen işlemler üniform deplasman yükü altındaki D=1, a/c= 0.2, a/D= 0.1, H=5 eşitliklerinde belirtilen boyutlarda olan $\frac{1}{2}$ simetrik olarak modellenmiş çatlaklı silindirik çubuk modeli için örnek çatlak ilerleme analizi açıklanmaktadır. Bu örnek uygulamada ayrıca, çatlak ucu boyunca bir adımdaki maksimum çatlak ilerleme miktarı olan Δa_{max} =0.1, 0.2, 0.3, 0.4 mm. değerleri için beşer adımlık, Δa_{max} =0.5 mm. için iki adımlık ilerlemeler kullanılmıştır. Örnek uygulama olarak gerçekleştirilen çatlak ilerleme analizi ve diğer a/c, a/D oranlarındaki çatlak ilerleme analizlerinde kullanılan Paris çatlak ilerleme modeli Denklem 4.1'de verilmiştir. Paris çatlak ilerleme modelindeki birimler ise Denklem 4.2'de verilmektedir.

$$[m/cycle=C(MPa(m)^{0.5})^{n}]$$
 (4.2)

Bu uygulama için Denklem 4.1'de kullanılan malzeme sabiti C=7.1x10⁻¹⁰, malzeme sabiti n=3 olarak alınmıştır. Elastisite modülü E=3x10⁷ ve poisson oranı v=0.3'e eşittir. Bu çatlak ilerleme analiz uygulaması için silindir ve çatlak boyutları şu şekildedir.

D=1 H=5 a=0.1 c=0.5

Diğer a/c oranlarındaki üniform yayılı yük ve deplasman yükü kontrollü eliptik çatlak içeren silindirik çubuk modeller için yapılmış analizler ile yine aynı a/c ve a/D oranlarındaki eğilme yayılı yükü ve deplasman yükü kontrollü eliptik çatlak içeren silindirik çubuk modeller için yapılmış analizler de bu örneğe benzer biçimde gerçekleştirilmiştir.

linder Displacement							
Change Working Directo	ry C.\Documents an	id Settings\Admin\Deskto;	o\cylinder_displace	ment			
roject Name	cylinder						
ANSYS Path					Choose Axes of the	Ellipse;	
ANSYS Path	Con	Macro					
					X_empse	y_cantrac	
C:\Program Files\ANSYS Inc	\v120\ansys\bin\intel\ansys12	0.exe					
Cylinder and Crack Dimens	ions	Blocks					
D	1.0	Number of Cra	ck Growth Increm	ent Blocks 5	-		
Crack Length (c)	0.5			_			
Crack Depth (a)	0.1	Starting Crack	Front Number	1	-		
н	5.0	Increment No.	Number of Steps	An(max.)	Crack Lexize		
XR	0.5	increment ivo	Number of Steps	La(max.)	loo		
YR	0.0		D	10.01	Jou		
ZR	5.0	2	5 🗄	0.02	80		
ø	0.0	3	5 🔅	0.03	80		
		4	5	0.04	80		
Material Properties	7 10-10	5		0.05	00		
Material Constant (C)	2.000		4	10.00	100		
Material Constant (n)	13.000	6	1 🗮				
Modulus of Elasticity (E)	3.e7	7	1			Start Crack Growth	
Poisson Ratio (v)	0.3	8	1 🗮			Analysis	
Integration Order	18	9	1				
Number of Processor	16	10				Plot Crack Profiles	
		10	1 🗮	1			
Use transition element			Crac	k_Lesize: N	umber of elemer	nts along crack front	

Şekil 4.5. Üniform deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuktaki çatlak ilerleme analizi FCPAS ara yüzü görünümü (a/D=0.1, a/c=0.2)

Üniform deplasman yükü kontrollü eliptik çatlak içeren silindirik bir çubuk modeli için gerçekleştirilen bu çatlak ilerleme analizinde ilk olarak çalışma klasörü belirlenmekte ve analize bir isim verilmektedir. Sonraki işlem olarak bilgisayarda hazır bulunan ANSYSTM programının uygulama yolu seçilmektedir. Copy Macro butonu ile üniform deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeline ait parametrik makro çalışma klasörü içerisine kopyalanmaktadır. Silindir ve çatlak ölçüleri ile malzeme özellikleri ve analiz değişkenleri Şekil 4.5'te görüldüğü gibi girilmektedir. Bu butona tıklandıktan sonra gerçekleşen işlemler kısaca şu şekildedir; ilk olarak kullanıcı tarafından girilen değerler çalışma klasörü içerisinde bulunan otomatikleştirilmiş parametrik makro içerisindeki değişkenlerde kullanılmak üzere gerekli isimlerle kaydedilmektedir ve kullanıcının ara yüze girmiş olduğu silindir, başlangıç çatlağı boyutları malzeme özellikleri ile ANSYSTM programı ara yüzü açılmadan parametrik makro kullanılarak calıştırılmaktadır. Otomatikleştirilmiş parametrik makro yardımı ile ANSYSTM programından elde edilmiş olan gerekli dosyalar kullanılarak model geometri bilgilerini içeren *.geo ve model malzeme özelliklerini içeren *.run uzantılı dosyalar elde edilmektedir. *.geo ve *.run uzantılı dosyalar frac3d.exe ile çözülmekte ve başlangıç çatlak ölçüleri için çatlak ucu boyunca gerilme şiddet faktörü değerlerini içeren *.crk uzantılı dosya ve çatlak ucu koordinatlarını içeren *.prop1 uzantılı dosya oluşturulmaktadır. *.prop1 uzantılı dosya ve malzeme sabitleri C, n değerlerini içeren *.matprop uzantılı dosyayı birlikte kullanan crk_propagation.exe çalıştırılarak

*.prop2 uzantılı dosya elde edilmektedir. *.prop2 uzantılı dosya ve EllipseFit.exe çalıştırılabilir dosyası kullanılarak ellipse.inp dosyası elde edilmektedir. Yeni çatlak için uygun bir elips uydurulduktan sonraki adımda ise bir sonraki çatlak ölçüleri crack_values_front1.inp dosyası içerisinde elde edilmiş olmaktadır. Birinci ilerleme adımı sonucunda elde edilmiş olan yeni çatlak uzunluğu ve derinliği ölçüleri ANSYSTM programında oluşturulacak olan bir sonraki eliptik yüzey çatlağı içeren silindirik çubuk modeli için yeni çatlak uzunluğu ve çatlak derinliği olarak kullanılmaktadır.

Yukarıda açıklanmış olan yalnızca tek bir butona basılarak gerçekleştirilen bu işlemler kullanıcının istediği çatlak ucu boyunca her bir adımdaki maksimum ilerleme miktarı ve çatlak ilerleme analizi adım sayısı kadar bir döngü biçiminde devam etmektedir. Bu özellik FCPAS programının kullanıcıya sağladığı kolaylığı ve zaman tasarrufunu açıkça göstermektedir.

Çatlak ilerleme analizi sonucunda çalışma klasörü içerisine her ilerleme adımındaki çatlak boyutu, crack_values_front(n).inp biçiminde ve her ilerleme adımında elde edilen gerilme şiddet faktörleri *_front(n).crk biçiminde kaydedilmektedir.

Analiz sonucunda her çatlak ilerleme adımı için *.crelems, *.crk, *.crnodes, *.dlis, *.elis, *.geo, *.matprop, *.node, *.out, *.prop1, *.prop2, *.sum, *.stn, *.str, *.wct crack_values_front.inp dosyaları çalışma klasörü içerisine oluşturulmaktadır.

Gerçekleştirilen üniform yayılı yük ve deplasman yükü kontrollü çatlak ilerleme analizleri sonucunda elde edilmiş olan çatlak profilleri Şekil 4.6, Şekil 4.7, Şekil 4.8, Şekil 4.9 ve Şekil 4.10'da gösterilmektedir.

Şekil 4.6. Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.2)

Şekil 4.7. Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.4)

Şekil 4.8. Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.6)

Şekil 4.9. Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.8)

Şekil 4.10. Üniform deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=1.0)

Üniform yayılı yük ve deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik çubuk modeli için elde edilmiş olan çatlak profilleri Şekil 4.6, Şekil 4.7, Şekil 4.8, Şekil 4.9 ve Şekil 4.10'da gösterilmektedir. Bu şekillerdeki çatlak profilleri incelendiğinde çatlak profillerinin her iki yük kontrolü için de birbirine çok yakın olduğu görülmektedir.

Yapılmış olan çatlak ilerleme analizleri aynı değerler ve yalnızca a/D=0.05, a/c=0.4 oranları için de üniform yayılı yük durumu için ayrıca tekrarlanmıştır. Elde edilmiş olan çatlak profilleri 1997 yılında X. B. Lin ve R. A. Smith tarafından yayınlanmış olan "Shape Growth Simulation of Surface Cracks in Tension Fatigued Round Bars [16]" isimli çalışmadaki çatlak profilleri ile oldukça uygunluk içerisindedir.

Şekil 4.11. Eliptik yüzey çatlağı içeren silindirik çubuk modelinde derinlik noktası (A) gösterimi

Her ne kadar üniform yayılı yük ve üniform deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik çubuk modeli için her iki yük durumunda da çatlak profilleri aynı görülse de, Şekil 4.11'de gösterilmiş olan çatlak etkin derinlik noktasındaki (A) gerilme şiddet faktörü değerleri grafiksel olarak incelendiğinde üniform yayılı yük altındaki gerilme şiddet faktörü değerleri üniform deplasman yükü altındaki değerlerden çatlak büyüdükçe büyüyen bir fazlalık göstermektedir. Bu durum Şekil 4.12'de açıkça görülmektedir. Gerilme şiddet faktörleri arasındaki bu fark çatlak ilerleme ömrüne direk olarak yansıyacaktır. Yani üniform deplasman yükü altındaki çatlak ilerleme ömrü, çatlaksız yapıda aynı eksenel gerilmeyi oluşturan üniform yayılı yük altındaki çatlak ömründen daha fazla olacaktır.

Şekil 4.12. Üniform deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.2)

Şekil 4.13. Üniform deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.4)

Şekil 4.14. Üniform deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.6)

Şekil 4.15. Üniform deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.8)

Şekil 4.16. Üniform deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=1.0)

Her iki üniform yük kontrolü durumu için de çatlak profillerinin benzer çıktığı ancak etkin çatlak derinliğindeki derinlik noktası boyutsuz K_1 gerilme şiddet faktörleri arasında fark oluştuğu yukarıdaki profil ve grafik şekillerinden gözlemlenmektedir.

Bu noktada, çatlak ilerleme analizlerine ilave olarak a/D=0.1, a/c=0.2 oranı için üniform deplasman yükü ve üniform yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik çubuk modeli için ömür hesabı yapılmakta ve sonuçlar karşılaştırılmaktadır.

Şekil 4.17. Ömür hesabı örneği (a/c=0.2, a/D=0.1)

Şekil 4.17'de görüldüğü gibi üniform yayılı yüke maruz ve eliptik yüzey çatlağı içeren silindirik çubuk modelinin çevrim sayısı, üniform deplasman yüküne maruz modele ait çevrim sayısından daha azdır. Yani üniform yayılı yük altındaki modelin ömrü üniform deplasman yükü altındaki modele göre daha kısadır.

4.3.3. Eğilme yayılı yükü ve deplasman yükü altındaki çatlak ilerleme analizleri

4.3.1'de işlem basamakları açıklanan ve 4.3.2'de de örnek bir uygulama ile üniform yayılı yük altındaki eliptik yüzey çatlağı içeren silindir çubuk modelinde gösterilmiş olan çatlak ilerleme analizi bu bölümde benzer biçimde eğilme yayılı yükü ve eğilme deplasman yüküne maruz olan silindir çubuk modeli için tekrarlanmaktadır.

Bu bölümde kullanılan çatlak boyutları ve silindir boyutları Tablo 4.1'de gösterilmiştir. Ayrıca diğer gerekli değişkenler de Bölüm 4.3.1'de kullanılan değerler ile aynıdır. Benzer işlemlerin tekrar açıklanmaması sebebi ile elde edilen çatlak profilleri ve derinlik noktasındaki gerilme şiddet faktörü değerlerinin grafikleri aşağıda verilmektedir.

Şekil 4.18, 4.19, 4.20, 4.21 ve 4.22'de eğilme deplasman yükü ve eğilme yayılı yüküne maruz olan silindir çubuk modelindeki çatlak profilleri gösterilmektedir.

Şekil 4.18. Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.2)

Şekil 4.19. Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.4)

Şekil 4.20. Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.6)

Şekil 4.21. Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=0.8)

Şekil 4.22. Eğilme deplasman yükü ve yayılı yükü kontrollü eliptik yüzey çatlağı içeren silindirik bir çubuk modeli için FCPAS ara yüzü ile gerçekleştirilmiş çatlak ilerleme analizinden elde edilmiş olan çatlak profilleri (a/D=0.1, a/c=1.0)

Her ne kadar eğilme yayılı yükü ve eğilme deplasman yükü kontrollü eliptik yüzey çatlağı içeren silindirik çubuk modeli için her iki yük durumunda da çatlak profilleri aynı görülse de, Şekil 4.11'de gösterilmiş olan çatlak etkin derinlik noktasındaki (A) gerilme şiddet faktörü değerleri grafiksel olarak incelendiğinde eğilme yayılı yükü altındaki gerilme şiddet faktörü değerleri eğilme deplasman yükü altındaki değerlerden çatlak büyüdükçe büyüyen bir fazlalık göstermektedir. Bu durum Şekil 4.12'de açıkça görülmektedir. Gerilme şiddet faktörleri arasındaki bu fark çatlak ilerleme ömrüne direk olarak yansıyacaktır. Yani eğilme deplasman yükü altındaki çatlak ilerleme ömrü, çatlaksız yapıda aynı eksenel gerilmeyi oluşturan eğilme yayılı yükü altındaki çatlak ömründen daha fazla olacaktır.

Şekil 4.23. Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.2)

Şekil 4.24. Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.4)

Şekil 4.25. Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.6)

Şekil 4.26. Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=0.8)

Şekil 4.27. Eğilme deplasman yükü ve yayılı yükü kontrollü silindirik çubuk modelindeki eliptik yüzey çatlağı derinlik noktası gerilme şiddet faktörü dağılımı (a/D=0.1, a/c=1.0)

Şekil 4.28. Ömür hesabı örneği (a/c=1.0, a/D=0.1)

Şekil 4.28'de görüldüğü gibi eğilme yayılı yüküne maruz ve eliptik yüzey çatlağı içeren silindirik çubuk modelinin çevrim sayısı, eğilme deplasman yüküne maruz modele ait çevrim sayısından daha azdır. Yani eğilme yayılı yükü altındaki modelin ömrü eğilme deplasman yükü altındaki modele göre daha kısadır.

Üniform ve eğilme yayılı-deplasman yükleri kontrolü durumu için de çatlak profillerinin benzer çıktığı ancak etkin çatlak derinliğindeki derinlik noktası boyutsuz K_1 gerilme şiddet faktörleri arasında fark oluştuğu yukarıdaki profil ve grafik şekillerinden gözlemlenmektedir.

Bir sonraki bölümde çatlak içermeyen plaka modeline çatlak yerleştirilerek kırılma analizleri gerçekleştirilmiş ve gerilme şiddet faktörü değerleri elde edilmiştir.

BÖLÜM 5. DÜZENSİZ BÖLÜNTÜ ile MODELLERE ÇATLAK YERLEŞTİRİLMESİ İŞLEMİ

Bu bölümde, Nart ve Ayhan'ın geliştirmiş olduğu [9] çatlaksız bir modele çatlak yerleştirme metot ve çalışmalarının FCPAS ara yüzüne entegre edilmesi verilmektedir. Bu metot, [9], kısaca aşağıda özetlenmektedir.

5.1. Çatlaksız Bir Sonlu Eleman Modeline Çatlak Yerleştirilmesi

Çatlaksız bir modele çatlak yerleştirme işleminin detayları bu noktada verilmektedir.

İşlemin temel adımları;

1. Bir başlangıç bölüntüsü girdi olarak alınmaktadır.

2. Çatlağın konumu, oryantasyonu ve boyut parametreleri girilmektedir.

3. Çatlak konumuna göre verilmiş boyutun bir bölgesi içindeki bir grup eleman boyut özellikleri ayrı ayrı seçilmekte ve saklanmaktadır. (chunk mesh)

4. Chunk bölüntüsüne dahil düğümler kaldırılır ve chunk sınırları üçgen yüzeyler tarafından tanımlanmaktadır.

5. Çatlak yüzeyi chunk bölüntüsünün serbest yüzeyi üzerindeki üçgen yüzeyler ile dış çatlak yüzey çizgilerini belirlemek için bölünmektedir. (çatlak ağız çizgileri)

6. Sonra, çatlak ucu çizgisi ile birlikte çatlak yüzeyi sınırları tekrar oluşturulmaktadır.

7. Sonuçta oluşan çatlak yüzeyi Triangle kullanılarak üçgen elemanlar ile bölüntülenmektedir.

8. İstenilen yer ve oryantasyona dönüşümden sonra chunk sınırı bölüntülenmiş çatlak yüzeylerinde üçgen elemanları kapsayarak yeniden düzenlenmektedir. Bu basamakta

çatlak yüzeyleri az oranda yerleştirilmekte ve çatlaklı chunk sınırı tanımındaki yüzeyler gibi şekil alanına çatlak ucunda birleştirilmektedir.

9. Dağıtıcı, bölüntülenmiş bir yüzey olarak çatlak içeren yeni tanımlanmış chunk dış sınırları kullanılarak tetrahedral elemanlı chunk çatlak ucu çizgisi yakınındaki geliştirme ile ayrıştırılmaktadır.

10. Sonuçta oluşan çatlaklı chunk bölüntüsü ve chunk bölgesiz orijinal bölüntü birleştirilmekte ve yeniden numaralandırılmaktadır. Çatlak yüzeylerine ait kısmen açık tetra yüzeyler kapanmaktadır.

11. Sınır şartları ve yükler yeni modele aktarılmaktadır.

Şekil 5.1. Çatlak yerleştirme prosedürünün işlem haritası [9]

5.2. Plakada Mod-I Yüzey Çatlağı Yerleştirme İşlemi [9]

Tamamen düzensiz bölüntü kullanılarak oluşturulan çatlaksız bir sonlu eleman modeli içerisine çatlak yerleştirilmesi işlemi yukarıda açıklanmıştır. Bu kısımda farklı çatlak boyutları ile sonlu eleman modellerinin bir bölüntü uygunluğu ve kırılma analiz perspektifinden geçerliliğini göstermek için sayısal örnekler sunulmaktadır.

İlk olarak yüzey çatlak modelleri farklı çatlak durumu ve plaka kalınlığı oranları ile oluşturulmuş ve bölüntü sürekliliği test edilmiştir. Çatlak yerleştirme metodu ve sonuçta oluşan sonlu eleman bölüntüsünden ayrıca, bu modeller düzenli bir gerilme analizi ve zenginleştirilmiş sonlu elemanların kullanıldığı kırılma analizleri ile analiz edilmektedir. Tetrahedral zenginleştirilmiş sonlu elemanlardan elde edilen kırılma çözümleri literatürde mümkün sonuçlarla karşılaştırılmaktadır.

Bölüm 5.1'de tanımlanan çatlak yerleştirme metodunu kullanarak mod-I çatlakları içeren sonlu kalınlıktaki plakalardaki yüzey çatlakları için farklı modeller oluşturulmaktadır. Şekil 5.2, üniform gerilme altındaki bir sonlu kalınlıktaki plaka içerisindeki 2c uzunluğunda ve a derinliğinde olan mod-I yüzey çatlağını göstermektedir.

Şekil 5.2. Üniform çekme gerilmesi altında sonlu kalınlıktaki bir plakada yüzey çatlağı

Çatlak yerleştirme metodunu kullanarak farklı a/c ve a/t durumları ile modeller oluşturulmuş ve bu modeller için kırılma analizleri Nart ve Ayhan [9] tarafından geliştirilen metod kullanılarak gerçekleştirilmiştir. Şekil 5.10'da çatlak yüzeyleri yanında üretilmiş bölüntülerin yakın kesit görünüşü örneği a/c=0.2 ve a/t=0.2 için gösterilmektedir.

Bu bölüntü resminden görüldüğü gibi model tamamen tetrahedral elemanlar ile çatlak ucu boyunca ve çatlak yüzeyleri üzerinde refine elemanlar içermektedir. Ayrıca tüm modeller bölüntü uyuşmazlığına ve istenilmeyen süreksizliğe karşı ANSYSTM kullanılarak kontrol edilmektedir. Bu nedenle, üretilen kırılma modellerinin gerilme ve kırılma analizleri için kabul edilebilir olduğu kararına varılmaktadır.

Bu bölümde; çatlak içermeyen plaka modellerine farklı oranlarda çatlak yerleştirilmektedir. Farklı a/c ve a/t oranları için kırılma analizleri gerçekleştirilmiştir.

Bahsedilen değerler;

a: Çatlağın derinliği,

c: Çatlağın uzunluğu,

t:Plaka et kalınlığı. Boyutlar Şekil 5.2'de gösterilmiştir.

İlk olarak üç boyutlu çatlaksız modeller uygun ölçülerle birlikte ANSYSTM programı kullanılarak oluşturulmaktadır. Model bölüntülendikten sonra chunk bölgesinin modele çatlak yerleştirme ile ekleneceği merkez etrafındaki bölge tekrar hassas bölüntülenmektedir. Modelin *.elem, *.node, *.dlis ve *.sflis dosyaları çalışma klasörüne kaydedilmektedir. Daha sonra FCPAS programı çalıştırıldığında ekrana ilk gelen ana menüden Crack Insertion and Fracture Analysis butonu ile çatlak yerleştirme işlemine başlanılmaktadır. İlk önce çalışma klasörü seçilmektedir. İkinci olarak ise çalışma klasörüne oluşturulan *.node uzantılı dosya seçilir ve kullanılabilecek formata *.node2 uzantılı bir biçimde sokulmaktadır. Bir sonraki sekmede çatlağın merkez koordinatları, chunk bölgesinin yarıçapı, çatlak uzunluğu,

çatlak derinliği, çatlak ucu boyunca olması istenilen düğüm sayısı ve çatlağın açısı girilmektedir. İçerisinde çatlak bulunan chunk bölgesi oluşturulmaktadır. Diğer sekmede ise bu chunk bölgesi çatlak içermeyen plaka modeline integre edilmektedir.

5.3. Uygulama: Üniform Yayılı Yük Altındaki Plakada Mod-I Yüzey Çatlağı Yerleştirme İşlemi ve Kırılma Analizi (a/c=0.2, a/t=0.2 2W=50 mm., 2H=50mm., t=5 mm.)

İlk olarak FCPAS ara yüzü ana formundan Crack Insertion and Fracture Analysis seçeneği ile çatlaksız model kısmına geçilmektedir. Şekil 5.3'teki ara yüzden çalışma klasörü belirlenmekte ve ANSYSTM programından elde edilmiş *.node uzantılı modele ait düğüm listesi Node File Format butonu ile uygun formata sokulmaktadır.

Şekil 5.3. Çalışma klasörünün seçilmesi ve Node File Format

Şekil 5.4'te gösterilen bir sonraki sekmede çatlaksız modele çatlak yerleştirme işlemi Nart ve Ayhan'ın geliştirmiş olduğu yöntem [9] ile ve FCPAS ara yüzü aracılığı ile gerçekleştirilmektedir. *.node2 uzantılı bir önceki sekmede oluşturulmuş olan dosya Browse butonu ile seçilmekte ve daha sonra çatlağın konum X, Y ve Z koordinatları sırasıyla 25, 25, 5 girilmektedir. Generate Chunk kısmında ise çatlağın içerisinde bulunduğu ve chunk olarak adlandırılan küresel yapının yarıçap değeri, çatlağın uzunluk, derinlik değerleri, çatlak ucu boyunca kaç tane düğüm kullanılacağı ve çatlağın dönme açıları verilmektedir. ChunkSeperator butonu tıklanarak Chunk oluşturulmaktadır. Oluşturulmuş olan chunk bölgesi tetview-win.exe butonu tıklandığında ekrana gelen ara yüz yardımı ile görüntülenmektedir. Bu işlemin avantajı ise; oluşturulmuş olan chunk bölgesinin istenilen biçimde doğru olarak oluşturulup oluşturulmadığı ya da çatlağın chunk sınırlarına çok yakın olup olmadığının kontrolünü sağlamasıdır.

Şekil 5.4. Yeni oluşturulan *.node2 uzantılı dosyanın seçilmesi, çatlak merkez koordinatlarının girilmesi, chunk bölgesi ile çatlağın oluşturulması

Şekil 5.5'te gösterilmiş olan GEO File sekmesinde çatlak içeren chunk bölgesinin plakanın önceden belirlenmiş kısımına yerleştirilmesi Unify Chunk – Original Meshes butonu ile sağlanmaktadır. Bölüntüleme işleminde Run Tetgen butonu kullanılmaktadır ve eleman kenar uzunluğu 0.05 olarak belirlenmiştir. Generate Quadratic Elements – Midside Nodes butonu ile de çatlak yerleştirme işlemi tamamlanmış olunmaktadır.

Şekil 5.5. Çatlağın plakaya yerleştirilerek *.geo uzantılı dosyanın çalışma klasörü içerisine oluşturulması

Şekil 5.6'da gösterilmiş olan RUN File sekmesi analiz tipinin, malzeme özelliklerinin belirlendiği sekmedir. Bu uygulama için elastisite modülü değeri $E=3x10^7$ ve poisson oranı değeri v=0.3 olarak girilmektedir. Ayrıca çözüm işlemi için 24 iterasyon ve geçiş elemanının kullanılması durumu seçilmiştir.

Help		
on Directory-File Format Crack Insertion GEO File BUN File Frac	ture Analysis Fracture Info Post Processing Visualization	
		Control Panel
Run File Name without ".run" 1		
Applying Type		24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analysis type	T Thermal Stress IV Flacture T PGM	0.10000000E-07 0.3000000E+08 0.3000000
Solver Type C Frontal	ance> 1.e-8	0.11538462E+08 0.30000 0.30000 0.
Material Properties		C*** THERMAL LADDING
Ex Ey Ez Gxy Gyz Gxz	Nuxy Nuyz Nuxz Behaviour	
3.e7 3.e7 3.e7 1153846 1153846 115384	6 0.3 0.3 Orthotropic Elasto Plastic	
	Orthotropic Elasto Plastic	
	Conthotropic Elasto Plastic	
FGM Properties(E(x)=E0.exp(β.x),Nu(x)=Nu0.ex	p(n.x),Alpha(x)=Alpha0.exp(w.x))	
β	η	
Is Material1 FGM?		Working Directory
Is Material2 FGM?		Creak Instation
Is Material3 FGM?		Clack Inseluon
Do You Have Other Tied DOE Sets		GEO File
Haw many DOE do you have?	CIE Values (XX, YY, 22) and Iref 1112	Run File
How many boli do you have i	Temp Dependet Material Property	Fracture Analysis
	Initial Temperature	Fracture Info
Node number and direction J x I y J z	E of Material 1 is temperature dep.	Post Processing
	Temp. Points Ex,Ey,Ez,Gx,Gy,Gz 3.67 3.67 3.67	Visualization
Have Body Force Loading	Nu of Material 1 is temperature dep.	
Type of Body Force Loading G Gravity C Centrifugal	Temp. Points 1 Nux, Nuy, Nuz 1 0.3 0.3 0.3	
Input Direction Cosines of Gray, Loading	CTE temperature depended	
Direction (wrt Global Coord. Sys.)	The Number of temperature points	
Density of Material	CTE Values(x,y,z points) for point 1	Generate RUN File
Have Local Coordinate Systems	Integration Order 24	
How many coordinate system	Use Transition Element C Generalized Plane Strain Problem	**
	Input Number of Increments ,Max. Number of	
CSYS ID no, THXY THYZ THXZ angles 11 30 0 0	Iterations and Folerance for Convergence 10 20 1 0e-6	

Şekil 5.6. RUN File sekmesi

Fracture Analysis sekmesinde çatlak yerleştirilmiş plakadaki eliptik yüzey çatlağı ucu boyunca gerilme şiddet faktörlerinin hesaplanması için çözüm işlemi Şekil 5.7'de gösterildiği gibi gerçekleştirilmiştir.

e Help					
king Directory-File Form	nat Crack Insertion GEO File RUN File Frac RUN File Name GEO File Name	Inter Analysis Practure Info Post Processing	Visualization Browse Browse	Co	ntrol Panel
	☐ Thermal Analysis? TEM File Name Number of Processors to be Used	2	Browse RUN		
	Do you accept License Agreement? F.C.P.A.S. Solver Fracture and Crack Propagation Ana	• Yes C No	*	view Error File	Working Directory Crack Insertion GEO File Run File Fracture Analysis Fracture Info
	LICENSETERMS Copyright 2010- AI O. Ayhan, ayhan Pemiston is hereby granted, free of person obtaining a copy of this software, subcontucers and the associated docu the "Software", for the sryfst to use, copy and spublish resultifrom the Software, subpe	Esakaya edu tr Charge, to any Its all merge coffware. merge coffware.			Post Processing Visualization
	* Usage of the Software is permissible and UNDER THE CONDITION THAT THE SI INCLUDING APPROPRIATE SUBCONS OF THE RESPECTIVE AUTHOR(S) AND DISTRIBUTED TO ANY OTHER THIRD * Usage of the Software for private use, res * Usage of the Software for private use, res	freely available DFTWARE, ITTUENTS, REMAIN UNDER COPYRIGHT THE SOFTWARE IS NOT PARTIES. earch, publication			

Şekil 5.7. Fracture Analysis sekmesi

Şekil 5.8. Fracture Info sekmesi

Şekil 5.9. Üniform gerilme altındaki sonlu kalınlıkta bir plakadaki yüzey çatlağı ucu boyunca mod-I gerilme şiddet faktörü dağılmı (a/c=0.2, a/t=0.2)

Şekil 5.9'da kırılma analizi gerçekleştirilmiş olan çatlak yerleştirilmiş plaka modeli için çatlak ucu boyunca elde edilmiş olan gerilme şiddet faktörü (K_1) dağılımı görülmektedir. Şekil 5.10'da ise çatlak yerleştirilmiş plaka kesiti görülmektedir.

Şekil 5.10. Çatlak yüzey bölüntülerinin yakın bölge kesit görünüşü (a/c=0.2, a/t=0.2)

Şekil 5.11. Üniform gerilme altındaki sonlu kalınlıkta bir plakadaki yüzey çatlağı ucu boyunca normalize edilmiş mod-I gerilme şiddet faktörü dağılmı (a/c=0.2, a/t=0.2, 0.5, 0.8) [9]

5.4. Uygulama: Eğilme Yayılı Yükü Altındaki Plakada Mod-I Yüzey Çatlağı Yerleştirme İşlemi ve Çatlak İlerleme Analizi

Bu bölümde eğilme yükü altındaki çatlak içermeyen modele FCPAS ara yüzü kullanılarak çatlak yerleştirilmekte ve bir sonraki yeni çatlak uzunluk ve derinlik (a,c) değerleri elde edilerek çatlak ilerleme analizi gerçekleştirilmektedir. Yapılmış olan eğilme yayılı yükü altındaki çatlak içermeyen plaka modeline çatlak yerleştirilmesi ve çatlak ilerleme simülasyonu çalışması, 2004 yılında M. Reytier tarafından yayınlanmış olan "Fatigue Crack Growth In Large Cracked Plates Of Martensitic P91 Steel At 550^oC [34]" isimli çalışmadaki aynı başlangıç değerleri için elde edilmiş olan deneysel veriler ile uygunluk göstermektedir. M. Reytier

probleminde üzerinde çalışılan modelin ölçüleri W=0.175 m, H=0.295 m. ve t=0.03m.'dir. Başlangıç çatlak değerleri; a_0 =0.0069 m ve c_0 =0.0124 m'dir. Çatlak ilerleme miktarı 1.-10.profiller arasında 0.0005 m., 10.-16. Profiller arasında 0.001 m., 16.-19. profiller arasında 0.0015 m.'dir. Bu işlem Reytier problemi için 27 defa tekrar edilmiştir.

Bu uygulama için gerçekleştirilen benzer adımlar bir önceki alt başlık olan Bölüm 5.3'te detaylı bir biçimde açıklanmıştır. Bölüm 5.3'teki uygulama için yapılan işlemler bu uygulama için de benzer bir biçimde tekrarlanarak çatlak yerleştirme işlemi ile kırılma analizi gerçekleştirilmiş ve plaka modelinde çatlak ucu boyunca gerilme şiddet faktörü (K) dağılımı Şekil 5.12'deki gibi elde edilmiştir.

Şekil 5.12. Çözüm sonucu elde edilen gerilme şiddet faktörü (K) dağılımının grafik olarak gösterimi

Bu uygulamada farklı olarak çatlak ilerleme analizi de gerçekleştirilmiştir. Frac3d çözümü sonucunda elde edilen *.prop1 uzantılı dosya crk_propagation.exe de kullanılarak bir sonraki çatlak profilindeki noktaların koordinatlarını veren *.prop2 uzantılı dosya oluşturulmaktadır. Elde edilen bu *.prop2 uzantılı dosya Ellipsefit.exe
tarafından kullanılarak yeni çatlak uzunluk ve derinlik (a,c) değerleri elde edilmektedir. Bu işlemler sonraki adımlarda da tekrarlanmaktadır.

Tüm adımlar tekrarlandıktan sonra aşağıdaki şekil elde edilmektedir.

Şekil 5.13. Reytier deneyinden elde edilen çatlak yüzeyi ile zenginleştirilmiş tetrahedron elemanlı tahmini çatlak ucu profillerinin grafiksel olarak karşılaştırılması [34]

Şekil 5.13'te görüldüğü gibi eğilme yükü altındaki çatlaksız bir plakaya çatlak yerleştirilmesi ve çatlak ilerleme analizi işlemlerinin FCPAS ara yüzü ile gerçekleştirilmesi sonucunda elde edilmiş olan çatlak profilleri Reytier tarafından gerçekleştirilen deneysel çalışma sonuçları ile birebir örtüşmektedir.

OMMI (Operation Maintenance and Materials Issues) ve yayıncısı European Technology Development Ltd. UK tarafından OMMI'nin online telif hakkında belirttiği gibi (http://www.ommi.co.uk/) [35] M. Reytier verilerinin kullanılabilmesi ve tekrar yayınlanabilmesi için alıntı yapılmıştır. Yapılan çalışmaların karşılaştırma imkanını sağladığı için OMMI ve M. Reytier'e teşekkür ediyorum.

[34]

BÖLÜM 6. SONUÇLAR ve ÖNERİLER

Bu çalışmada, kırılma ve çatlak ilerleme analizlerinin gerçekleştirilmesinde kullanılan FCPAS (Fracture and Crack Propagation Analysis System) isimli bir ara yüz geliştirilmiştir. Bu ara yüz geliştirme çalışması 108M283 numaralı TÜBİTAK destekli araştırma projesi kapsamında yapılmıştır.

ANSYS[™] programında oluşturulmuş olan farklı eliptik yüzey çatlağı içeren oranlarda silindirik çubuk modelleri için kırılma analizleri yapılmıştır. Üniform yayılı yük, termal yük ve deplasman yükleri ile eğilme yayılı yükü, termal yükü ve deplasman yüküne maruz olan bu modeller için FCPAS kullanılarak kırılma analizleri gerçekleştirilmiştir. Elde edilen analiz sonuçları incelendiğinde; üniform ve eğilme yük tiplerindeki yayılı yüke maruz silindirik çubuk modelindeki eliptik yüzey çatlağı ucundaki normalize edilmiş olan gerilme şiddet faktörü değerleri (K), üniform ve eğilme yük tiplerindeki termal ve deplasman yüklerine maruz model için elde edilen değerlerin üzerinde olduğu görülmektedir. Aynı zamanda a/c ve a/D oranları büyüdükçe üniform yayılı yüke maruz model analizinden elde edilen değerlerin termal ve deplasman yükler sonucu elde edilen değerler arasındaki fark artarak büyümektedir. Ayrıca, termal yük ve deplasman yükü kontrollü kırılma analizi sonucundaki normalize edilmiş gerilme şiddet faktörü değerleri birbirine eşit olduğu tespit edilmiştir.

Bölüm 4'te ise eliptik yüzey çatlağı içeren ve üniform ve eğilme yayılı-deplasman yük tiplerine maruz silindirik çubuk modeli için farklı a/c oranları için çatlak ilerleme analizleri gerçekleştirilmiştir. Bu çalışmada da üniform ve eğilme yayılı yüküne maruz kırılma modellerinin çatlak derinlik noktasındaki normalize edilmiş gerilme şiddet faktörü değerlerinin üniform ve eğilme deplasman yüküne maruz kırılma modellerine göre daha büyük olduğu belirlenmiştir. Ayrıca üniform yayılı ve deplasman yükleri altında a/D=0.1 ve a/c=0.2 ve eğilme yayılı ve deplasman yükleri altında a/D=0.1 ve a/c=1.0 oranları için ömür hesabı yapılmış olup çatlaksız modelde aynı eksenel gerilmeleri oluşturacak iki yüklemede de deplasman yükü için daha fazla ömür elde edildiği tespit edilmiştir.

ANSYSTM programından elde edilen çatlaksız plaka modeli için de FCPAS ara yüzü kullanılarak çatlak yerleştirme işlemi sonrasında kırılma analizleri gerçekleştirilmiştir. Nart ve Ayhan [9]'ın çatlak yerleştirme işlemi çalışmalarında elde edilen sonuçların Newman ve Raju denklemleri ile uyumlu çıktığı görülmüştür. Ayrıca yine çatlak içermeyen, eğilme yükü altındaki plaka modeline eliptik yüzey çatlağı FCPAS ara yüzü ile yerleştirildikten sonra çatlak ilerleme analizi gerçekleştirilmiş ve elde edilen çatlak profillerinin M. Reytier [34]'in deneysel sonuçları ile birebir uygun olduğu gözlemlenmiştir.

Bu tezde gerçekleştirilen çalışmalar, aynı anda farklı yüklere maruz ve eliptik yüzey çatlağı içeren silindirik çubuk modelleri için makro oluşturulması, bu makroların FCPAS ara yüzüne entegre edilmesi, karışık mod kırılma ve çatlak ilerleme analizleri ile gerilme şiddet faktörlerinin hesaplanması, çatlak profillerinin çizilmesi ve ömür hesabının gerçekleştirilmesi çalışmaları ile ileriye taşınabilir.

KAYNAKLAR

- [1] YAYLA, P., Kırılma Mekaniği, Çağlayan Kitabevi, İstanbul, 2007.
- [2] BROEK, D., Elemantary Engineering Fracture Mechanics, Kluwer Academic Publishers, Galena, OH, USA, 1986.
- [3] GDOUTOS, E.E., Fracture Mechanics, Springer, 2005.
- [4] SCHIJVE, J., Fatigue Of Structures and Materials, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
- [5] TIMOSHENKO, S., GOODIER, J.N., Theory Of Elasticity (3rd), Mc Graw Hill, 1987.
- [6] MUSKHELISVILI, N.I., Some Basic Problems Of The Mathematical Theory of Elasticity, Noordhoff, 1936.
- [7] SIH, G.C., On The Westergaard Method Of Crack Analysis, International Journal Of Fracture Mechancis., pp. 628-631, 1966.
- [8] EFTIS, J., LIEBOWITZ, H., On The Modified Westergaard Equations For Certain Plane Crack Problems, International Journal Of Fracture Mechanics., pp. 383-392, 1972.
- [9] NART, E., AYHAN., A.O., Crack Insertion, Meshing and Fracture Analysis Of Structures Using Tetrahedral Elements, pp.293-306, 2011.
- [10] WELLS, A., POST, D., The Dynamic Stress Distribution Surrounding a Running Crack – A Photoelastic Analysis, Proceedings Of The Society For Experimental Stress Analysis, Vol. 16, No. 1, pp. 69-66, 1958.
- [11] SIH, G.C., CHOW, C.L., Fracture Mechanics and Technology, Sijthoff and Noordhoff International Publishers.
- [12] AYHAN, A.O., NART, E., KURTIS, C., USLU, M., Modeling Of Three-Dimensional Fracture Problems Using FCPAS: Application On a Surface Crack Problem, Proceedings Of 13th International Materials Symposium, IMSP'2010, Denizli, Turkey, October 13-15, 2010.

- [13] NEWMAN, J.C., RAJU, I.S., Stress-Intensity Factor Equations For Cracks In Three-Dimensional Finite Bodies Subjected To Tension and Bending Loads, NASA Technical Memorandum, 1984.
- [14] COURONEAU, N., ROYER, J., Simplified Model For The Growth Analysis of Surface Cracks In Round Bar, International Journal Of Fatigue, pp. 711-718, 1998.
- [15] LIN, X.B., SMITH, R.A., Shape Evolution Of Surface Cracks In Fatigued Round Bars With a Semicircular Circumferential Notch, International Journal Of Fatigue, pp. 965-973, 1999.
- [16] LIN, X.B., SMITH, R.A., Shape Growth Simulation Of Surface Cracks In Tension Fatigued Round Bars, International Journal Of Fatigue, Vol.19, No.6, pp.461-469, 1997.
- [17] MALIGNO A.R., RAJARATNAM, S., LEEN, S.B., WILLIAMS, E.J., A Three Dimensional (3D) Numerical Study Of Fatigue Crack Growth Using Remeshing Techniques, Engineering Fracture Mechanics, pp. 94-111, 2010.
- [18] AYHAN, A.O., Simulation Of Three-Dimensional Fatigue Crack Propagation Using Enriched Finite Elements, Computers and Structures, pp.801-812, 2011.
- [19] SAKARYA ÜNİVERSİTESİ, Lisanslı Visual Studio 2008.
- [20] TÜZEL, S., C# Programlama Kılavuzu, Alfa Kitabevi, İstanbul, 2002.
- [21] ALGAN S., Her Yönüyle C#, Pusula Kitabevi, İstanbul, 2009.
- [22] ANSYS, Version 12.0. Ansys Inc., Canonsburg, PA, USA, 2009.
- [23] FCPAS (Fracture & Crack Propagation Analysis System) Version 1.0 Software & Tutorial Document, 2010.
- [24] 108M283 Numaralı TÜBİTAK Projesi 4. Dönem Raporu 4, 2010.
- [25] http://www.vtk.org/VTK/project/license.html, Nisan 2011.
- [26] http://www.cs.cmu.edu/~quake/triangle.html, Nisan 2011.
- [27] http://tetgen.berlios.de/, Nisan 2011.
- [28] NATH., B. Çeviren: GÜNAY, D., Sonlu Elemanlar Metodunun Temelleri, SAÜ Yayınlar, 1993.

- [29] AYHAN, A.O., NIED., H.F., Stress Intensity Factors For Three-Dimensional Surface Cracks Using Enriched Finite Elements, International Journal For Numerical Methods In Engineering, pp.899-921, 2002.
- [30] AYHAN, A.O., Stress Intensity Factors For Three-Dimensional Surface Cracks Using Enriched Finite Elements, 2002.
- [31] YANG, F.P., KUANG, Z.B., Stress Intensity Factors For Surface Fatigue Crack in a Round Bar Under Cyclic Axial Loading, 2007.
- [32] MANUEL DE, F., MANUEL DA, F., Stress Intensity Factors For Semi-Elliptical Surface Cracks In Round Bars Under Tension and Bending, International Journal Of Fatigue, pp.457-463, 1999.
- [33] PARIS, P.C., GOMEZ M.P., ANDERSON W.E., A Rational Analytic Theory Of Fatigue, Trend Eng., 13, pp. 9-14, 1961.
- [34] REYTIER, M., Fatigue Crack Growth In Large Cracked Plates Of Martensitic P91 Steel At 550^oC, Fatigue Crack Growth In P91 Plates, 2004.
- [35] http://www.ommi.co.uk/, Nisan 2011.

ÖZGEÇMİŞ

Cihan KURTİŞ, 05.03.1987 tarihinde Sakarya'da doğdu. İlk, orta ve lise eğitimini Sakarya'da tamamladı. 2005 yılında Figen Sakallıoğlu Anadolu Lisesinden mezun oldu. 2005 yılında başladığı Sakarya Üniversitesi Makine Mühendisliği bölümünü 2009 yılında bitirdi. 2009 yılında Sakarya Üniversitesi, Fen Bilimleri Enstitüsü Makine Mühendisliği Ana Bilim Dalı'na girdi ve 2011 yılında yüksek lisans eğitimini tamamladı. 2009 – 2011 yılları arasında Doç. Dr. Ali Osman AYHAN tarafından yürütülen "Kırılma ve Çatlak İlerleme Analiz Sistemi-FCPAS" isim ve 108M283 kod numaralı TÜBİTAK destekli araştırma projesinde proje asistanı olarak çalıştı. Bu süre içerisinde FCPAS programı ara yüzü geliştirilmesi ve çeşitli kırılma analizlerinin gerçekleştirilmesinde aktif rol aldı.