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SUMMARY 

 

 

Key Words: Graph Theory, Fixed Points, Contraction Mappings, Metric Space. 

 

This thesis consists of eight chapters. In the first chapter, literature notices, some 

fundamental definitions and theorems which will be used in the later chapters were 

given. 

 

In the second chapter, some properties were examined by using the structure of a 

graph with different contractions. 

 

In the third chapter,  ,G graphic contractions were defined by using a 

comparison function and studied the existence of fixed points. Also, the Hardy-

Rogers G graphic contractions were introduced and some fixed point theorems 

were proved. 

 

In the fourth chapter,  ,G contraction and  ,G graphic contraction were 

introduced in a metric space by using a graph. Furthermore, existence and 

uniqueness of fixed point was examined by applying the connectivity of the graph in 

both cases.  

 

In the fifth chapter,  type contractions were defined on complete metric space 

involving with a graph. Also, fixed point results were given for such contractions. 

 

In the sixth chapter, ),,( G contractions were defined and some fixed point 

theorems were obtained in metric space with a graph. Also, some results were 

obtained which were extensions of some recent results. 

 

In the seventh chapter,  ,cG   contractions were defined on cone metric space 

endowed with a graph without assuming the normality condition of cone and fixed 

point results were investigated. 

 

In the last chapter, the main results which were obtained summarised. 
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GRAF İÇEREN METRİK UZAYLARDA FARKLI TİPLERDE 
DARALMA DÖNÜŞÜMLERİ İLE SABİT NOKTA TEOREMLERİ 

 

ÖZET 

 

 

Anahtar kelimeler: Graf Teori, Sabit Nokta, Daralma Dönüşümü, Metrik Uzay. 

 

Sekiz bölüm olarak hazırlanan bu çalışmanın birinci bölümünde daha sonraki 

bölümlerde kullanılacak olan bazı temel tanım ve teoremler verildi. 

 

İkinci bölümde, graf yapısı kullanılarak daha önceden yapılan bazı çalışmalar 

incelendi. 

 

Üçüncü bölümde, karşılaştırmalı fonksiyon kullanılarak  G  , grafik daralma 

dönüşümü tanımlandı ve sabit noktanın varlığı çalışıldı. Ayrıca, Hardy Rogers 

G grafik daralma dönüşümü tanımlanarak sabit nokta teoremleri ispatlandı. 

 

Dördüncü bölümde, metrik uzayda graf yapısı kullanılarak  G  , daralma ve 

 G  , grafik daralma dönüşümlerini tanımlandı. Ayriyetten, grafın bağlantılılığı 

kullanılarak sabit noktanın varlığı ve tekliği incelendi. 

 

Beşinci bölümde, grafla donatılmış tam metrik uzayda   daralma dönüşümleri 

tanımlandı. Aynı zamanda, bu dönüşümler için sabit nokta sonuçları verildi. 

 

Altıncı bölümde,  , ,G    daralma dönüşümü tanımlanarak grafla donatılmış 

metrik uzayda bazı sabit nokta teoremleri ispalandı ve bazı sonuçların 

genelleştirilmesi olduğu elde edildi. 

 

Yedinci bölümde, koninin normallik şartı kaldırılarak grafla donatılmış konik metrik 

metrik uzayda  ,cG   daralma dönüşümü tanımlanarak sabit noktanın varlığı ve 

tekliği incelendi. 

 

Son bölümde ise bazı genel sonuçlar ve öneriler verildi. 



 
 

 

 

 

CHAPTER 1. INTRODUCTION  

 

 

1.1. Basic Facts and Definitions 

 

Definition 1.1.1. [1] Let X be a non-empty set. A function  

 

   

:

, ,

d X X

x y d x y

 


 

 

is said to be a metric on X if it satisfies the following conditions: 

 

d1.   , 0d x y  ,  ,x y X   

d2.  , 0d x y x y   ,  ,x y X   

d3.    , ,d x y d y x ,  ,x y X   (symmetry) 

d4.      , , ,d x y d x z d z y  ,  ,x y X   (triangle inequality). 

 

The ordered pair  ,X d  is called a metric space. If there is no confusion likely to 

occur we, sometimes, denote the metric space  ,X d  by X . 

 

Example 1.1.2. [1] Let X  , the set of all real numbers. For ,x y X , define  

 ,d x y x y  . Then  ,X d  is a metric space. This is called the metric space  

with the usual metric. 

 

Example 1.1.3. [2] Let X  be an arbitrary non-empty set. For ,x y X , define d  by  



2 
 

 
0,  

,
1,  

x y
d x y

x y


 


 

 

Then  ,X d  is a metric space. The metric d  is called the discrete metric and the 

space  ,X d  is called discrete metric space.  

 

Example 1.1.4. [3] The metric space 2 , called the Euclidean plane, is obtained if 

we take the set of ordered pairs of real numbers, written    1 2 1 2, , ,x x x y y y  , and 

the Euclidean metric defined by      
2 2

1 1 2 2,d x y x y x y    . 

 

Example 1.1.5. [3] As a set X we take the set of all real-valued functions , ...x y  

which are functions of an independent real variable t  and are defined and continuous 

on a given closed interval  ,J a b . Choosing the metric defined by 

     , max
t J

d x y x t y t


  , we obtain a metric space which is denoted by  ,C a b . 

This is a function space because every point of  ,C a b  is a function. 

 

Definition 1.1.6. [2] Let  ,X d  be a metric space.  nx x  is called convergent 

(with limit 0x ) if and only if, for every 0   there exists  ,N N    such that 

 0, ,nd x x   for all n N . We write  0nx x n  , or 0lim nx x , and denote 

the set of all convergent sequences by c .

 
 

Definition 1.1.7. [2] Let  ,X d  be a metric space.  nx x  is called a Cauchy 

sequence if and only if    , 0, ,n md x x n m  , i.e. for all 0  , there exists 

 N N  such that  ,n md x x  , for all ,n m N . 

 

A convergent sequence has a unique limit. Every convergent sequence is also a 

Cauchy sequence, but not conversely, in general. If a Cauchy sequence has a 

convergent subsequence then the whole sequence is convergent. 
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Definition 1.1.8. [2] A metric space  ,X d  is called complete if and only if every 

Cauchy sequence converges (to a point of X ). Explicitly, we require that if  

 

 , 0, as ,n md x x n m  , 

 

then there exists x X  such that  , 0, asnd x x n  . 

 

Example 1.1.9. [2] The real numbers  with the usual metric form a complete 

metric space. 

 

Definition 1.1.10. [27] Let  ,X d  and  ,Y   be metric spaces. Then :T X Y  is 

called continuous function on X  if and only if for every 0   there exists 

 0, 0x     such that  0,d x x   implies     0,T x T x  , where 

0,x x X . 

 

Definition 1.1.11. [4] Let T  be a mapping from a metric space  ,X d  into another 

metric space  ,Y  . Then T  is said to be uniformly continuous on X  if for given 

0  , there exists   0     such that     0,T x T x   whenever 

 ,d x y   for all ,x y X . 

 

Definition 1.1.12. [5] A mapping XXT :  is called orbitally continuous if for all 

Xyx ,  and any sequence ( )n nk   of positive integers,  

 

 implies as
k k
n nT x y T T x Ty n   . 

 

Definition 1.1.13. [5] Let  ,X d  be a metric space. We say that sequences  n n
x


 

and  n n
y


, elements of X , are Cauchy equivalent if each of them is a Cauchy 

sequences and  , 0n nd x y  . 
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1.2. The Banach Contraction Principle and Some Basic Notations of Fixed Point 

       Theory 

 

The Fixed Point Theory is one of the most powerful and productive tools from the 

nonlinear analysis and it can be considered the kernel of nonlinear analysis. The best 

known result from the Fixed Point Theory is Banach’s Contraction Principle (1922), 

which can be considered the beginning of this theory. In a metric space setting it can 

be briefly stated as follows: 

 

Definition 1.2.1. [6] Let X  be a nonempty set and :T X X  a selfmap. We say 

that x X  is a fixed point of T  if  T x x  and denoted by  F T  or  Fix T  the 

set of all fixed points of T . 

 

Example 1.2.2. [6] 

 

i. If X   and   2 5 4T x x x   , then   { 2}F T   ; 

ii. If X   and   2T x x x  , then   {0,2}F T  ; 

iii. If X   and   2T x x  , then  F T  ; 

iv. If X   and  T x x , then  F T  . 

 

Let X  be any nonempty set and :T X X  be a selfmap. For any given x X , we 

define  nT x  inductively by  0T x x  and     1 ;n nT x T T x   we call  nT x  the 

thn  iterate of x  under T . In order to simplify the notions we will often use Tx  

instead of  T x . 

 

The mapping  1nT n   is called the thn  iterate of T . For any 0x X , the sequence 

 
0n n

x X

  given by 1 0 , 1,2,...n

n nx Tx T x n    is called the sequence of 

successive approximations with the initial value 0x . It is also known as the Picard 

iteration starting at 0x . 
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For a given selfmap the following properties obviously hold: 

 

i.     ,nF T F T  for each *n ; 

ii.    ,nF T x  for some    * ;n F T x    

 

The inverse of (ii) is not true, in general, as shown by the next example. 

 

Example 1.2.3. [6] Let    : 1,2,3 1,2,3T  ,      1 3, 2 2 and 3 1T T T   . 

Then    2 1,2,3F T   but    2F T  . 

 

Definition 1.2.4. [7] Let  ,X d  be a metric space. A mapping :T X X  is said to 

be Lipschitzian if there exists a constant 0k   such that for all ,x y X  

 

   , , .d Tx Ty kd x y  

 

The smallest number k  is called the Lipschitz constant of T . 

 

Definition 1.2.5. [7] A Lipschitzian mapping :T X X  with Lipschitz constant 

1k   is said to be a contraction mapping. 

 

Definition 1.2.6. [7] A Lipschitzian mapping :T X X  with Lipschitz constant 

1k   is said to be a nonexpansive mapping. 

 

Definition 1.2.7. [7] Let  ,X d  be a metric space. A mapping :T X X  is said to 

be contractive mapping if  

 

   , , , for all ,d Tx Ty d x y x y X  . 

 

Remark 1.2.8. [3] T  contraction    T  contractive    T  nonexpansive    T  

Lipschitzian. 
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Remark 1.2.9. [6] If T  is a Lipschitzian mapping, then T  is a uniformly continuous. 

 

Theorem 1.2.10. [7] (Banach’s Contraction Mapping Principle) Let  ,X d  be a 

complete metric space and let :T X X  be a contraction. Then T  has a unique 

fixed point 0x  in X . Moreover, for each x X , 

 

  0lim n

n
T x x


  

 

and in fact for each x X , 

 

   0, , ,
1

n
n k

d T x x d x Tx
k




 1,2,...n  . 

 

Example 1.2.11 [1] Take 
1

0,
2

X
 

  
 

 equipped with the usual metric. This is clearly 

an incomplete metric space. Note that the mapping :T X X  given by 2Tx x  is a 

contraction but T  has no fixed point. 

 

Example 1.2.12. [1] Consider the complete metric space  0,X    with the usual 

metric and :T X X  given by 
2

1

1
Tx

x



. Then; 

 

i. The mapping T  satisfies    , ,d Tx Ty d x y  and hence T  is a 

contractive mapping, while T  is a not a contraction. 

ii. T  has no fixed point. 

 

Let define the class  = : :      as follows. 

 

Definition 1.2.12. [6] A function   is said to be a comparison function if 

following conditions hold; 

i.   is monotone increasing, i.e., 1 2t t  implies    1 2t t  ; 
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ii.   n

n
t


 converges to 0 for all 0t  ; 

 

Definition 1.2.13. [6] A function   is said to be a (c)-comparison function if 

following conditions hold; 

 

i.   is monotone increasing, i.e., 1 2t t  implies    1 2t t  ; 

ii.  
0

n

n

t




  converges for all 0t  ; 

 

Remark 1.2.14. [6] Any (c)-comparison function is a comparison function. 

 

Definition 1.2.14. [8] Let   be a function. 

 

i.   is monotone increasing, i.e., 1 2t t  implies    1 2t t  ; 

ii.   n

n
t


 converges to 0 for all 0>t ; 

iii.  
0

n

n

t




  converges for all 0t  ; 

 

If the conditions (i-iii) hold then   is called a strong comparison function. 

 

Remark 1.2.15. [8] Any strong comparison function is a comparison function. 

 

Remark 1.2.16. [8] If   is a comparison function, then  t t  , for all 0,t   

 0 0   and   is right continuous at 0 . 

 

Example 1.2.17. [6]  ,  
1

t
t

t
 


 is a comparison function but it is not a (c)-

comparison function. 

 



8 
 

Definition 1.2.18. [6] Let  ,X d  be a metric space. The mapping  :T X X  is 

said to be a   contraction if there exists a comparison function   such that  

 

    , , for all ,d Tx Ty d x y x y X  . 

 

Remark 1.2.19. [8] Let define the class  = : is nondecreasing     

which the following conditions hold; 

 

      1.           = 0 iff =0;    

      2.           for every , 0 iff 0;n n n       

      3.             1 2 1 2 1 2for every , ,            . 

 

Definition 1.2.20. [9] Let  ,X d  be a metric space. The mapping :T X X  is said 

to be a Kannan operator if there exists 
1

0,
2


 

 
 

 such that: 

 

     , , , ,d Tx Ty d x Tx d y Ty     

 

for all ,x y X . 

 

Definition 1.2.21. [10] Let  ,X d  be a metric space. The operator :T X X  is 

said to be a Ciric-Reich-Rus operator if there exists nonnegative number , ,    with 

1      such that ; 

 

       , , , , ,d Tx Ty d x y d x Tx d y Ty      

 

for all ,x y X . 
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Definition 1.2.22. [11] Let ),( dX  be a metric space. The operator :T X X  is 

called Hardy-Rogers contraction if there exist nonnegative numbers  ,,,,  with 

1<  , such that  

 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ),d Tx Ty d x Tx d y Ty d x Ty d y Tx d x y          

 

for all Xyx , . 

 

Definition 1.2.23. [8] Let  ,X d  be a metric space. The mapping :T X X  is a 

graphic contraction if there exists  0,1   such that: 

 

   2, ,d Tx T x d x Tx  for all x X . 

 

Definition 1.2.24. [8] Let T  be a selfmap of a metric space  ,X d . We say that T  

is a Picard operator (abbr., PO) if T  has a unique fixed point *x  and 
*lim n

n
T x x


  for 

all *x X  and T  is a weakly Picard operator (abbr., WPO) if the sequence  n

n
T x


 

converges, for all x X  and the limit (which depends on x ) is a fixed point of T . 

 

1.3. Graph Theory 

 

Although the first paper in graph theory goes back to 1736 (Example 1.3.9.) and 

several important results in graph theory were obtained in the nineteenth century, it is 

only since the 1920s that there has been a sustained, widespread, intense interest in 

graph theory. Indeed, the first text on graph theory ([König]) appeared in 1936. 

Undoubtedly, one of the reasons for recent interest in graph theory is its applicability 

in many diverse fields, including computer science, chemistry, operations research, 

electrical engineering, linguistics and economics. 

 

We begin with some basic graph terminology and examples. Then we discuss some 

important concepts in graph theory, including connectivity. 
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Definition 1.3.1. [12] A graph (or undirected graph) G  consist of a set V  of vertices 

(or nodes) and a set E  of edges (or arcs) such that each edge e E  is associated 

with an unordered pair of vertices. If there is a unique edge e  associated with the 

vertices v  and w , we write  ,e v w  or  ,e w v . In this context,  ,v w  denotes 

an edge between v  and w  in an undirected graph and not an ordered pair. 

 

A directed graph (or digraph) G  consist of a set V  of vertices (or nodes) and a set 

E  of edges (or arcs) such that each edge e E  is associated with an ordered pair of 

vertices. If there is a unique edge e  associated with the ordered pair  ,v w  of 

vertices, we write  ,e v w , which denotes an edge from v  to w . 

 

An edge e  in a graph (undirected or directed) that is associated with the pair of 

vertices v  and w  is said to be incident on v  and w , and v  and w  are said to be 

incident on e  and to be a adjacent vertices 

 

If G  is a graph (undirected or directed) with vertices V  and edges E , we write 

 ,G V E . Unless specified otherwise, the sets E and V  are assumed to be finite 

and V  is assumed to be nonempty. 

 

Example 1.3.2. [12] A directed graph is shown in Figure 1.3.1. The directed edges 

are indicated by arrows. Edge 1e  is associated with the ordered pair  2 1,v v  of 

vertices, and edge 7e  is associated with the ordered pair  6 6,v v  of vertices. Edge 1e  

is denoted  2 1,v v , and edge 7e  is denoted  6 6,v v . 
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                                                   Figure 1.3.1. A directed graph. 

 

Definition 1.3.1. allows distinct edges to be associated with the same pair of vertices. 

For example, in Figure 1.3.2, edges 1e  and 2e  are both associated with the vertex pair 

 1 2,v v . Such edges are called parallel edges. An edge incident on a single vertex is 

called a loop. For example, in Figure 1.3.2, edge  3 2 2,e v v  is a loop. A vertex, 

such as vertex 4v  in Figure 1.3.1, that is not incident on any edge is called an isolated 

vertex. A graph with neither loops nor paralel edges is called a simple graph. 

 

              

                                      Figure 1.3.2. A graph with parallel edges and loops. 

 

2v

1v 3v

1e

2e

3e 4v

6v

5v

5e
4e

1v

2v
3v

5v

4v

6v

1e 3e

4e

2e 5e

6e

7e
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If we think of the vertices in a graph as cities and the edges as roads, a path 

corresponds to a trip beginning at some city, passing through several cities, and 

terminating at some city. We begin by giving a formal definition of path. 

 

Definition 1.3.3. [12] Let 
0v  and 

nv  be vertices in a graph. A path from 
0v  to 

nv  of 

length n  is an alternating sequence of 1n  vertices and n  edges beginning with 

vertex 0v and ending with vertex nv ,  0 1 1 2 1, , , ,..., , ,n n nv e v e v e v , in which edge ie  is 

incident on vertices 1iv   and iv  for 1,...,i n . 

 

Example 1.3.4. [12] In the graph of Figure 1.3.3,  1 2 3 41, ,2, ,3, ,4, ,2e e e e  is a path of 

length 4  from vertex 1 to vertex 2 . 

 

                                   

                                                 Figure 1.3.3. A connected graph 

 

Definition 1.3.5. [12] A graph G  is connected if given any vertices v  and w  in G , 

there is path from v  to w . 

 

Example 1.3.6. [12] The graph G  of Figure 1.3.3 is connected since, given any 

vertices v  and w  in G , there is a path from v  to w . 

 

Example 1.3.7. [12] The graph G  of Figure 1.3.4 is not connected since, for 

example, there is no path from vertex 2v  to vertex 5v . 

                                 

1e

2e

5e

4e

6e

7e

3e

8e

1

2

3

4

5
6

7
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                                              Figure 1.3.4. A graph that is not connected. 

 

Definition 1.3.8. [12] Let v  and w  be vertices in a graph G . A simple path from v  

to w  is a path from v  to w  with no repeated vertices. A cycle (or circuit) is a path of 

nonzero length from v  to v  with no repeated edges. A simple cycle is a cycle from 

v  to v  in which, except for the begining and ending vertices that are both equal to v , 

there are no repeated vertices. 

 

Example 1.3.9. [12] (Königsberg Bridge Problem ) The first paper in graph theory 

was Leonhard Euler’s in 1736. The paper presented a general theory that included a 

solution to what is now called the Königsberg bridge problem. 

 

Two islands lying in the Pregel River in Königsberg (now Kaliningrad in Russia) 

were connected to each other and the river banks by bridges, as shown in Figure 

1.3.5. The problem is to start at any location A, B, C or D; walk over each bridge 

exactly once; then return to the starting location. 

 

The bridge configuration can be modelled as a graph, as shown in Figure 1.3.6. The 

vertices represent the locations and the edges represent the bridges. The Königsberg 

bridge problem is now reduced of finding a cycle in the graph of Figure 1.3.6 that 

includes all of the edges and all of the vertices. In honor of Euler, a cycle in a grap 

G  that includes all of the edges and all of the vertices of G  is called an Euler cycle. 

 

1e 2e

3e
4e

1v
2v

3v
4v

5v

6v
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Throughout this thesis we suppose following notations: 

 

Let  ,X d  be a metric space and   denote the diagonal of the Cartesian product 

.XxX  Let G  be a directed graph such that the set )(GV  of its vertices coincides with 

X  and the set )(GE  of its edges contains all loops; that is, )(GE . Assume that 

G  has no parallel edges, so one can identify G  with the pair ))(),(( GEGV . 

 

The conversion of a graph G  is denoted by 1G  and which is a graph obtained from 

G  by reversing the direction of edges. Hence  

  

)}.(),(:),{(=)( 1 GExyXXyxGE   Also,    1V G V G  . 

 

By G
~

, we denote the undirected graph obtained from G  by omitting the direction of 

edges. Indeed; it is more convenient to treat G
~

 as a directed graph for which the set 

of its edges is symmetric. Under this convention, we have   

 

     1E G E G E G . 

 

For any , , ( , )x y V x y E    such that ( ), ( )V V G E E G   , then ),( EV   is 

called a subgraph of G .  

Pregel

Figure 1.3.5. 

 

 

 

Figure 1.3.6. 

RiverB

A

C

D

A

B C

D
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If x  and y  are vertices in a graph G , then a path from x  to y  of length ( )N N  

is a sequence  N
iix

0=
 of 1N  vertices such that 0 = , =Nx x x y  and )(),( 1 GExx ii   

for Ni 1,2,...,= .  

 

A graph G  is connected if there is a path between any two vertices. G  is weakly 

connected if G
~

 is connected. If G  is such that )(GE  is symmetric and x  is a vertex 

in G , then the subgraph xG  consisting of all edges and vertices which are contained 

in some path beginning at x  is called the component of G  containing x . In this case 

GxGV ][=)(  where Gx][  denotes the equivalence class of relation   defined on 

)(GV  by the rule: if there is a path in from to .y z G y z  Clearly, xG  is connected. 

 

Definition 1.3.10. [13] Let  ,X d  be a metric space endowed with a graph G  and 

:T X X  be a mapping. We say that the graph G  is T  connected if for all 

vertices ,x y  of G  with    ,x y E G , there exists a path in G ,  
0

N

i i
x


 from x  to 

y  such that 0x x , Nx y  and    ,i ix Tx E G  for all 1,2,..., 1i N  . A graph G  

is weakly T  connected if G  is T  connected. 

 

Now, we give some definition related to types of continuity of mappings. 

 

Definition 1.3.11. [5] A mapping :T X X  is called G  continuous if given 

x X  and a sequence  n n
x


, nx x  and    1,n nx x E G   for n  imply 

nTx Tx . 

 

Definition 1.3.12. [5] A mapping XXT :  is called orbitally G continuous if  

for all Xyx ,  and any sequence ( )n nk   of positive integers,  

 

     1, , imply as
k k k k
n n n nT x y T x T x E G T T x Ty n    . 
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Remark 1.3.13. [5] Clearly, we have the following relations: 

 

continuity   G continuity   orbital G continuity; 

continuity   orbital continuity   orbital G continuity. 

 

1.4. Cone Metric Space 

 

Definition 1.4.1. [14] Let B  be a real Banach space and K  be a subset of B . K  is 

called a cone if and only if: 

 

i. K  is closed, nonempty and  0K , 

ii. , ; , 0; ,a b R a b x y K ax by K      , 

iii. Kx  and = 0.x K x    

  

Given a cone K B , we define a partial ordering   with respect to K  by yx   if 

and only if Kxy  . We write yx <  if yx   but ;yx   yx  if int ,y x K   

where int K  is the interior of K . The cone K  is a normal cone if 

 

 inf : , and 1 0x y x y K x y                                                                 (1.1) 

 

or equivalently, if there is a number 0M   such that for all ,x y B ,  

 

0 .x y x M y                                                                                           (1.2) 

 

The least positive number satisfying (1.2) is called normal constant of K . From (1.1) 

one can conclude that K  is a non normal if and only if there exist sequences 

,n nx y K  such that  

 

 0 , lim 0, but lim 0n n n n n n
n n

x x y x y x
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Rezapour and Hamlbarini [15] proved that there are no normal cones with constants 

1M   and for each 1k   there are cones with normal constants .M k  

Huang and Zhang [14] redefined cone metric spaces as follows:  

 

Definition 1.4.2. Let X  be nonempty set, B  be a real Banach space and K B  be a 

cone. Suppose the mapping :d X X B   satisfies: 

 

i.  yxd ,<0  for all Xyx ,  and   0=, yxd  if and only if yx = ; 

ii.    xydyxd ,=,  for all Xyx , ; 

iii.      yzdzxdyxd ,,,   for all Xzyx ,, . 

 

Then d  is called a cone metric on X  and  dX ,  is called a cone metric space. It is 

obvious that the concept of a cone metric space is more general than a metric space. 

 

Example 1.4.3. [14] Let 2B  ,    2, : , 0K x y B x y    , and :d XxX B  

such that    , , ,d x y x y x y    where 0   is a constant. Then  dX ,  is a 

cone metric space. 

 

Let  nx  be a sequence in a cone metric space X  and Xx . If for every c B  with 

c  there is Nn 0  such that for all ,> 0nn    cxxd n ,  then nx  is called 

convergent sequence. If for every c B  with c  there is Nn 0  such that for all 

,>, 0nmn    cxxd mn ,  then nx  is called a Cauchy sequence in X . A cone metric 

space X  is said to be complete if every Cauchy sequence in X  is convergent in .X  

It is known that  nx  converges to Xx  if and only if   0, xxd n  as n . 

 

The following lemma has been given in [16] that we utilize them to prove our 

theorems. 

 

Lemma 1.4.4. Let  dX ,  be a cone metric space, .,, Xwvu   Then 

1. If vu  and ,wv  then wu . 
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2. If vu   and ,wv  then wu . 

3. If u c   for each int ,c K  then =u  . 

4. If int ,c K  na0  and 0,na  then there exists 0n  such that for all ,> 0nn  

it follows that can . 

 

Definition 1.4.5. [15] Let K  be a cone defined as above. A nondecreasing function 

: int intK K  , which satisfies the following conditions; 

 

1.         =  and   zz <<  for  Kz ; 

2.      intz K  implies   intz z K  ; 

3.         =lim zn

n 

 for every  Kz ; 

4.       zn

n




0=

 converges for all  Kz . 

 



 

 

 

CHAPTER 2. SOME FIXED POINT THEOREMS ON METRIC 

    SPACE ENDOWED WITH A GRAPH 

 

 

Metric fixed point theory has been researched extensively in the past two decades. 

Particularly, works have been proved in a metric space endowed with a partial 

ordering and many results have appeared, giving sufficient conditions of a mapping 

to be a Picard operator came into prominence. The Banach Contraction Principle and 

the Knaster-Tarski Theorem [5] are celebrated theorems for these concepts. 

Jachymski [5] used the platform of graph theory instead of partially ordering in 

metric space. Also, a mapping on a complete metric space still has a fixed point as 

long as the mapping satisfies the contraction condition for pairs of points which from 

edges in the graph. Subsequently Beg [17] established set valued mappings version 

of the main results of Jachymski [5]. Later, Bojor [13, 18, 19] obtained some results 

in such settings by weakening the condition of Banach G contraction and 

introducing some new type of connectivity of a graph, and also Petruşel and Chifu 

[20] found generalized contractions of Banach G contraction defining some new 

contractions in metric space endowed with a graph. 

 

2.1. The Contraction Principle for Mappings on a Metric Space Endowed with a 

       Graph 

 

Definition 2.1.1. [5] We say that a mapping :T X X  is a Banach G  contraction 

or simply G  contraction if  

 

i. T  preserves edges of G , i.e., 

 

                , , , ,x y X x y E G Tx Ty E G     
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ii. T  decreases weights of edges of  G  in the following way: 

 

          ,0,1
, , ,x y X x y E G d Tx Ty d x y




     . 

 

Example 2.1.2. [5] Any constant function :T X X  is a Banach G  contraction 

since  E G  contains all loops. 

 

Example 2.1.3. [5] Any Banach contraction is a 0G  contraction, where 0G  is 

defined by  0 :E G XxX . 

 

Proposition 2.1.4. [5] If a mapping :T X X  is a G  contraction, then T is both a 

1G  contraction and a G  contraction. 

 

Lemma 2.1.5. [5] Let :T X X  be a G  contraction with a constant  . Then, 

given  and y
G

x X x  , there is  , 0r x y   such that 

 

   , , , for alln n nd T x T y r x y n  . 

 

2.2. Fixed Point of  Contraction in Metric Spaces Endowed with a Graph 

 

Definition 2.2.1. [19] Let  ,X d  be a metric space and G  be a graph. The mapping 

:T X X  is said to be a  ,G   contraction if: 

 

i.         , , , ,x y X x y E G Tx Ty E G     

ii. there exists a comparison function   such that  

 

        , , for all ,d Tx Ty d x y x y E G  . 
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Remark 2.2.2. [19] If a mapping :T X X  is a  ,G   contraction, then T is both 

a  1,G  contraction and a  ,G   contraction. 

 

Example 2.2.3. [19] Any   contraction is a  0 ,G   contraction, where the graph 

0G  is defined by  0 :E G XxX . 

 

Example 2.2.4. [19] Any G  contraction is a  ,G   contraction, where the 

comparison function is  ,  t t  . 

 

2.3. Fixed Points of Kannan Mappings in Metric Spaces Endowed with a Graph 

 

Definition 2.3.1. [13] Let  ,X d  be a metric space. The mapping :T X X  is said 

to be a G Kannan mapping if:  

 

i. T  preserves edges of G , i.e.,        , ,x y E G Tx Ty E G   , 

ii. There exists 
1

0,
2


 

 
 

 such that: 

 

         , , , , for all ,d Tx Ty d x Tx d y Ty x y E G     . 

 

Remark 2.3.2. [13] If a mapping :T X X  is a G Kannan mapping, then T is 

both a 1G Kannan mapping and a G Kannan mapping. 

 

Example 2.3.3. [13] Any Kannan mapping is a 0G Kannan contraction, where the 

graph 0G  is defined by  0 :E G XxX . 

 

Example 2.3.4. [13] Let  0,1,3X   and the Euclidean metric  
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 , , ,d x y x y x y X    . 

 

The mapping :T X X , 

 

 0, if x 0,1

1, if x=3.

Tx
Tx

Tx

 
 


 

 

is a G Kannan mapping with constant  

 

            
1

, where E 0,1 ; 1,3 ; 0,0 ; 1,1 ; 3,3
3

G   , 

 

but is not a Kannan mapping because      0, 3 1 and 0, 0 3, 3 2d T T d T d T   . 

 

Lemma 2.3.5. [13] Let  ,X d  be a metric space endowed with a graph G  and 

:T X X  be a G Kannan mapping with constant  . If the graph G is weakly 

T  connected, then given ,x y X , there is  , 0r x y   such that 

 

       1 1, , , ,
1

n

n n n n n nd T x T y d T x T x r x y d T y T y


 


  
   

 
 

 

for all *n . 

 

2.4. Fixed Point Theorems for Reich Type Contractions on Metric Spaces with a 

       Graph 

 

Definition 2.4.1. [18] Let  ,X d  be a metric space. The operator :T X X  is said 

to be a G   Ciric-Reich-Rus operator if: 

 

i. T  preserves edges of G , i.e.,        , ,x y E G Tx Ty E G   , 
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ii. There exists nonnegative number , ,    with 1      such that for 

each    ,x y E G , we have; 

 

       , , , ,d Tx Ty d x y d x Tx d y Ty     . 

 

Example 2.4.2. [18] Any Ciric-Reich-Rus operator is a 0G   Ciric-Reich-Rus 

operator, where the graph 0G  is defined by  0 :E G XxX . 

 

Example 2.4.3. [18] Let  0,1,2,3X   and the Euclidean metric  

 

 , , ,d x y x y x y X    . 

 

The mapping :T X X , 

 

 0, if 0,1

1, if =3.

Tx x
Tx

Tx x

 
 


 

 

is a G Ciric-Reich-Rus operator with constants 
1 1

, 0,
3 3

     , where the 

edges of G  defined by                 E 0,1 ; 0,2 ; 2,3 ; 0,0 ; 1,1 ; 2,2 ; 3,3G  , but is 

not a Ciric-Reich-Rus operator because  

 

       1, 2 1, 1,2 1, 1, 1 1 and 2, 2 1d T T d d T d T    . 

 

Lemma 2.4.4. [7] Let  ,X d  be a metric space endowed with a graph G  and 

:T X X  be a G Ciric-Reich-Rus operator. If x X  satisfies the property 

   ,x Tx E G , then we have  

 

   1, ,n n nd T x T x c d x Tx  , 
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for all n , where 
1

c
 







. 

 

Lemma 2.4.5. [18] Let  ,X d  be a metric space endowed with a graph G  and 

:T X X  be a G Ciric-Reich-Rus operator such that the graph G  is T 

connected. For all x X  the subsequence  n

n
T x


 is a Cauchy sequence. 

 

2.5. Generalized Contractions in Metric Spaces Endowed with a Graph 

 

Definition 2.5.1. [20] We say that a mapping :T X X  is a G graphic 

contraction if 

 

i. T  preserves edges of  G , i.e.,        , ,x y E G Tx Ty E G   , 

ii. there exists  0,1   such that  

 

                    2, ,d Tx T x d x Tx   

                  

                 for all Tx X , where         : , or ,TX x X x Tx E G Tx x E G    . 

 

Lemma 2.5.2. [20] Let  ,X d  be a metric space endowed with a graph G . If a 

mapping :T X X  is a G graphic contraction, then T is both a 1G  graphic 

contraction and a G graphic contraction. 

 

Lemma 2.5.3. [20] Let :T X X  be a G graphic contraction with a constant  . 

Then, given 
Tx X , there is   0r x   such that 

 

   1, , , for alln n nd T x T x r x n   . 
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Lemma 2.5.4. [20] Let  ,X d  be a complete metric space endowed with a graph G . 

Suppose that: :T X X  is a G graphic contraction. Then for each 
Tx X , there 

exists 
*x X  such that the sequence  n

n
T x


 converges to * asx n . 

 

Lemma 2.5.5. [20] Let  ,X d  be metric space endowed with a graph G . Assume 

that :T X X  is a G graphic contraction such that for some 0x X ,  0 0 G
Tx x . 

Let 
0xG  be a component of G  containing 

0x . Then  0 G
x  is T  invariant and  0x

G
T  

is a 
0xG graphic contraction. 

 

Example 2.5.6. [20] Let [0,1]=X  be endowed with the usual metric. Consider 

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y   

 

and :T X X  

 

, if (0,1];
2

3
= , if = 0;

4

1, if 1.

x
x

Tx x

x













  

 

Then G  is weakly connected, TX  is nonempty and T  is a G graphic contraction 

but is not G contraction. Moreover,    1F T  . 

 

Definition 2.5.7. [20] Let  ,X d  be a metric space. The operator :T X X  is said 

to be a Ciric-Reich-Rus G  contraction if:  

 

i. T  preserves edges of  G , i.e.,        , ,x y E G Tx Ty E G   , 
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ii. There exists nonnegative number , ,    with 1      such that for 

each ,x y X , we have  

 

            , implies , , , , .x y E G d Tx Ty d x y d x Tx d y Ty       

 

Lemma 2.5.8. [20] Let  ,X d  be a metric space endowed with a graph G . If a 

mapping :T X X  is a Ciric-Reich-Rus G  contraction, then T is both a Ciric-

Reich-Rus 1G  contraction and a Ciric-Reich-Rus G  contraction. 

 

Lemma 2.5.9. [20] Let  ,X d  be a metric space endowed with a graph G  and 

:T X X  be a Ciric-Reich-Rus G  contraction with constants , ,   . Then, 

given Tx X , there exists a   0r x   such that, then we have  

 

   1,n n nd T x T x c r x  , 

 

for all n , where 
1

c
 







. 

 

Lemma 2.5.10. [20] Let  ,X d  be a complete metric space endowed with a graph 

G . Suppose that :T X X  is a Ciric-Reich-Rus G  contraction. Then for each 

Tx X , there exists 
*x X  such that the sequence  n

n
T x


 converges to 

* asx n . 

 



 

 

 

CHAPTER 3. SOME FIXED POINT THEOREMS FOR  

                        GENERALIZED CONTRACTIONS IN METRIC  

                        SPACE WITH A GRAPH  

 

 

In the present section  ,G graphic contractions have been defined by using a 

comparison function and studied the existence of fixed points. Also, the Hardy-

Rogers G graphic contractions have been introduced and some fixed point 

theorems have been proved. Some results in the literature are also generalized and 

extended. Moreover, we give some examples to support the usability of our results. 

 

3.1.  ,G Graphic Contraction and Fixed Point Theorems 

 

We study the existence of fixed points in metric spaces with a graph by defining 

 ,G  graphic contraction. Also, we will consider that the function   is a strong 

comparison function. 

 

Definition 3.1.1. Let  dX ,  be a metric space and G  a graph. The mapping 

:T X X  is called a  ,G graphic contraction if the following conditions hold; 

 

i. T  preserves edges of G ; ( , ) ( ) ( , ) ( )x y E G Tx Ty E G    for all 

Xyx , , 

ii. there exist a comparison function   such that 

 

    2, ,d Tx T x d x Tx  for all Tx X . 
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Remark 3.1.2. If T  is a  ,G graphic contraction, then T  is both a   ,1G

graphic contraction and a  ,
~
G graphic contraction. 

 

Example 3.1.3. Any G graphic contraction is a  ,G graphic contraction, if the 

comparison function is given as  . 

 

The following example shows that  ,G graphic contraction is an extension of 

 ,G   contraction given in [19]. 

 

Example 3.1.4. Let [0,1]=X  be endowed with the usual metric. Take  

 

              = 0,0 0,1 , 0,1 0,1 : ,E G x y x y    

 

and :T X X  as follows:  

 

 , if 0,1 ;
4

1
, if = 0;=

4

1, if = 1.

x
x

xTx

x












 

 

Then G  is weakly connected and TX  is nonempty and T  is a  ,G graphic 

contraction with  
4

3
=

t
t  which is not a  ,G   contraction. Moreover; 

   = 1F T . 

 

Proof. It is obvious that G  is weakly connected and TX  . It can be easily seen 

that T  is a  ,G graphic contraction. Take 
1 1 7 3

1, 1,
2 2 8 8

d T T d
    

      
    

, 

which is a contradiction. Thereby, T  is not  ,G   contraction.  
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Lemma 3.1.5. Let  dX ,  be a metric space endowed with a graph G . Let 

:T X X  be a  ,G   graphic contraction. If Tx X  then, there exists   0xr  

such that  

 

    1,n n nd T x T x r x   

 

for all n , where    = ,r x d x Tx . 

 

Proof. Take Tx X , that is,        , or ,x Tx E G Tx x E G  . If    ,x Tx E G , 

then by induction we have    1,n nT x T x E G   for each n . Thus  

 

       

     

1 1 2 2 1, , ,

, = .

n n n n n n

n n

d T x T x d T x T x d T x T x

d x Tx r x

 

 

    


 

If    ,Tx x E G , again by induction, we have that    1 ,n nT x T x E G   for each 

.n  Hence  

 

       

     

1 1 2 2 1, , ,

, = .

n n n n n n

n n

d T x T x d T x T x d T x T x

d x Tx r x

 

 

    


 

Lemma 3.1.6. Let  dX ,  be a complete metric space endowed with a graph G . 

Assume that :T X X  is a  ,G graphic contraction. Then, for each Tx X , 

there exists Xx *  such that the sequence  n

n
T x


 converges *x  as n . 

 

Proof. Let Tx X . By Lemma 1.3.5., we obtain  

 

    1, ,n n nd T x T x r x   
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for all n . Hence  1

=0

, <n n

n

d T x T x


   and the sequence  n

n
T x


 is a Cauchy 

sequence. Because  dX ,  is a complete metric space,  n

n
T x


 is convergence 

sequence and say limit is Xx * . 

 

In the following example shows that above the lemma does not satisfy unless the 

function   is not strong comparison. 

 

Example 3.1.7. Recall that  
1

=
t

t
t , 0t  is a comparison function but not a 

strong comparison function. If we use  
1

=
t

t
t , 0t  in the previous lemma, we 

have  

 

  
 

 =1 =1

,
, =

, 1

n

n n

d x Tx
d x Tx

n d x Tx


 


   

 

diverges if ( , ) > 0d x Tx . Thus, this shows that it is necessary to use a strong 

comparison function. 

 

Lemma 3.1.8. Let  dX ,  be a complete metric space endowed with a graph G , 

:T X X  is a  ,G   graphic contraction for which there exists Xx 0  such that 

 0 0 .
G

Tx x  Let 
0

~
xG  be the component of G

~
 containing 0x . Then  

G
x ~

0  is 

invariantT   and  x
G

T  is a  ,
~

0
xG graphic contraction. 

 

Proof. Choose  
G

xx ~
0 . Then there exists a path  N

iix
0=
 in G

~
 from 0x  to x , i.e., 

xxN =  and    1,i ix x E G   for Ni 1,2,...,= . But T  is a  ,G graphic 

contraction which yields    1,i iTx Tx E G   for Ni 1,2,...,= , this means that  
=0

N

i
Tx  

is a path in G
~

 from 0Tx  to Tx . Hence  0 G
Tx Tx  . Since, by the hypothesis, 
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 0 0 G
Tx x  , that is,    0 0G G

Tx x , we conclude  0 G
Tx x  and consequently  

G
x ~

0  

is invariantT  . Let    
0

, xx y E G , then there exists a path  N
iix

0=
 in G

~
 from 0x  to 

y  such that xxN =1  and  M
iiy

0=
 be a path in G

~
 from 0x  to 0Tx . With the same 

argument as the first part of the proof, we deduce that  0 1 1 2, ,..., , , ,...,M Ny y y Tx Tx Tx  

is a path in G
~

 from 0x  to Ty ; especially    1
0

,N N xTx Tx E G  , i.e., 

   
0

, xTx Ty E G . Also, T  is a  ,
~

0
xG graphic contraction. Since 

   
0

,xE G E G  and T  is a  ,G   graphic contraction. 

 

Theorem 3.1.9. Let ),( dX  be a complete metric space and G  be a directed graph. 

Let the triple ),,( GdX  has the following condition;  

 

     

    

            

1

1

for any in , if and ,

or respectively , for all , then there is a subsequence

with , or respectively , for all . 3.1

n n n nn

n n

k k k
n n nn

x X x x x x E G

x x E G n

x x x E G x x E G n







 

 

  

 

Let :T X X  be a  ,G graphic contraction which is orbitally G continuous. 

Then the following statements hold: 

 

i.   iff .TF T X   

ii. If TX   and G  is weakly connected, then T  is a weakly Picard 

operator. 

iii. For any Tx X , we have that  x
G

T  is a weakly Picard operator. 

 

Proof. We begin with the statement (iii). Let Tx X . Hence, there exists 0)( xr  

such that  
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   1,n n nd T x T x r x  , 

 

for all n . So, there exists Xx *  such that   *lim =n

n
T x x


. Since Tx X  in 

Definition 3.1.1. implies that n TT x X  for every n . Now assume that 

   ,x Tx E G .     This can be done if , .Tx x E G  By using (3.1), a subsequence 

 k
n

n
T x



 of  n

n
T x


 such that    *,

k
nT x x E G  for each n . A path in G  can 

be formed by using the points *1, ,..., ,
k

x Tx T x x  and hence  Gxx ~
*  . Since T  is 

orbitally G continuous, we obtain that *x  is a fixed point for  x
G

T . 

 

To prove (i), using (iii) we have  F T   if TX  . Suppose that  F T  . By 

using the assumption that )(GE , we immediately obtain that TX  . Hence (i) 

holds. 

 

For proving (ii), let Tx X . If we use weak connectivity of G , we have that 

 GxX ~=  and by applying (iii), we obtain the desired result.  

   

The next example shows that for any  ,G graphic contraction :T X X , being 

orbitally G continuous, is a necessary condition to be a weakly Picard operator.  

 

Example 3.1.10. Let [0,1]=X  be endowed with the usual metric. Consider 

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y   

 

and :T X X   

 

 , if 0,1 ;
2

1
, if = 0.

2

x
x

Tx

x
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Then G  is weakly connected, TX  is nonempty and T  is a  ,G graphic 

contraction with  
2

=
t

t , but is not orbitally G continuous. Thus T  has not a 

fixed point. 

 

The example which is given below satisfies all conditions and statements (i-iii) of 

Theorem 3.1.9. 

  

Example 3.1.11. Let [0,1]=X  be endowed with the usual metric. Consider 

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y   

 

and : ,T X X   

 

 , if 0,1 ;
2

0, if = 0;=

1, if = 1.

x
x

xTx

x










 

 

Then G  is weakly connected, TX  is nonempty and T  is a  ,G graphic 

contraction with  
2

=
t

t  and also, T  is orbitally G continuous. Moreover; 

  = {0,1}F T . 

 

3.2. Hardy-Rogers G Graphic Contraction and Fixed Point Theorems 

  

Definition 3.2.1. The mapping :T X X  is a Hardy-Rogers G graphic 

contraction if the following conditions hold:   

 

i. T  preserves edges of G ; ( , ) ( ) ( , ) ( ),x y E G Tx Ty E G    
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ii. there exist  ,,,,  nonnegative real numbers and 

1<   such that  

 

           2 2 2, , , , , ,d Tx T x d x Tx d Tx T x d x T x d Tx Tx d x Tx        

 

for all Tx X . 

 

Remark 3.2.2. If T  is a Hardy-Rogers G graphic contraction, then T  is both a 

Hardy-Rogers 1G graphic contraction and a Hardy-Rogers G
~

graphic 

contraction. 

 

Remark 3.2.3. Any G graphic contraction is a Hardy-Rogers G graphic 

contraction where 0====  . 

 

Example 3.2.4. Let {0,1,2,3}=X  and |=|),( yxyxd   for all Xyx , . Define the 

operator :T X X  as;  

 

 

 

0, if 0,1 ;

1, if 2,3 .

x
Tx

x


 



 

 

T  is a Hardy-Rogers G graphic contraction with constants 
5

1
====   and 

0= , where                 = 0,1 ; 0,2 ; 2,3 ; 0,0 ; 1,1 ; 2,2 ; 3,3E G , but it is not a 

Hardy-Rogers contraction  

 

           1, 2 1, 1 2, 2 1, 2 2, 1 1,2 ,d T T d T d T d T d T d          

 

it is a contradiction since 
5

3
1 . 
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Lemma 3.2.5. Let ),( dX  be a metric space endowed with a graph G . Let 

:T X X  be a Hardy-Rogers G graphic contraction with  ,,,,  

nonnegative real numbers and 1<  . If Tx X  then there exists 

0)( xr  such that  

 

   1,n n nd T x T x r x   

 

for all n , where 1<
1

=








. 

 

Proof. Take Tx X , then    ,x Tx E G  or    ,Tx x E G . If    ,x Tx E G  then 

by induction we get    1,n nT x T x E G   for each n . Therefore,  

 

       

   

     

   

   

1 1 1 1 1

1

1 1 1

1 1

1 1

, , , ,

, ,

, , ,

, , .

, ,

n n n n n n n n

n n n n

n n n n n n

n n n n

n n n n

d T x T x d T x T x d T x T x d T x T x

d T x T x d T x T x

d T x T x d T x T x d T x T x

d T x T x d T x T x

d T x T x d T x T x

  

 

  

 



    



  

 

 

  

 

  

 



 

 

where 1<
1

=








. Hence, we obtain that  

 

       1 1, , ... , = .n n n n n nd T x T x d T x T x d x Tx r x       
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If    ,Tx x E G  then we can also prove    1 ,n nT x T x E G   for each n  by 

induction. Consequently, we obtain the proof. 

 

Lemma 3.2.6. Let ),( dX  be a complete metric space endowed with a graph G . 

Suppose that :T X X  is a Hardy-Rogers G graphic contraction with constant 

 ,,,,  with 1<  . Then for each Tx X , there exists Xx *  

such that the sequence  n

n
T x


 converges to *x  as n . 

 

Proof. Choose an element x  in TX  then by Lemma 3.2.5. we have  

 

   1,n n nd T x T x r x   

 

for all n , where    = ,r x d x Tx . 

 

Hence  1

=0

, <n n

n

d T x T x


   and by using same arguments we obtain that  n

n
T x



is a Cauchy sequence. By the completeness of X , there exists Xx *  such that 

 n

n
T x


 converges to *x  as n . 

 

Lemma 3.2.7. Let ),( dX  be a complete metric space endowed with a graph .G  The 

self mapping T  is a Hardy-Rogers G graphic contraction for which there exists 

Xx 0  such that  0 0 G
Tx x . Then the set  

G
x ~

0  invariant with respect to T  and 

0
x

G

T
 
 

 is a Hardy-Rogers 
0

~
xG graphic contraction, where 

0

~
xG  is the component of 

G
~

 containing 0x . 

 

Proof. Let x  be an element in  
G

xx ~
0 . Then there exist  N

iix
0=
 in G

~
 from 0x  to x , 

i.e., xxN =  and    GExx ii

~
,1   for Ni 1,2,...,= . Since T  is a Hardy-Rogers G

graphic contraction we get that    1,i iTx Tx E G   for Ni 1,2,...,= . So we have a 
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path from 0Tx  to Tx . Therefore    0 0=
G G

Tx Tx x  since  0 0 G
Tx x . Consequently 

 
G

x ~
0  is invariant with respect to T . Take    

0

~
, xGEyx  , then there is a path  N

iix
0=
 

in G
~

 from 0x  to y  such that xxN =1 . Also, let  M
iiy

0=
 be a path in G

~
 from 0x  to 

0Tx . By using the argument from the first part of the proof, we realize 

 

 0 1 1 2 1, ,..., , , ,..., = , =M N Ny y y Tx Tx Tx Tx Tx Ty  

 

is a path in G
~

 from 0x  to Ty  such that    
0

, xTx Ty E G . Furthermore, T  is a 

Hardy-Rogers 
0

~
xG graphic contraction because    GEGE x

~~

0
  and T  is a Hardy-

Rogers G
~

graphic contraction.     

 

Theorem 3.2.8. Let ),( dX  be a complete metric space and G  be a directed graph 

such that the triple ),,( GdX  has the following condition;  

 

     

    

            

1

1

for any in , if and ,

or respectively , for all , then there is a subsequence

with , or respectively , for all . 3 2

n n n nn

n n

k k k
n n nn

x X x x x x E G

x x E G n

x x x E G x x E G n







 

 

   .

 

Let :T X X  be Hardy-Rogers G graphic contraction with nonnegative 

constants  ,,,,  with 1<   such that T  is orbitally G

continuous. Then we have the following statements: 

 

i.   iff ,TF T X   

ii. if TX   and G  is weakly connected, then T  is weakly Picard 

operator.  

iii. for any Tx X , we have that  x
G

T  is weakly Picard operator. 
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Proof. We first prove the statement (iii). Let x  be an arbitrary element in TX , then 

there exists 0)( xr  such that  

 

   1,n n nd T x T x r x  , for all n . 

 

This gives that there exists Xx *  such that   *lim n

n
T x x


  Since Tx X , in 

Definition 3.2.1. implies that n TT x X  for every n . Now let us suppose that 

   ,x Tx E G . (If we use    ,Tx x E G , a similar deduction can be done.) If we 

use (3.2), then there exists a subsequence  k
n

n
T x



 of  n

n
T x


 such that 

   *,
k
nT x x E G  for each n . Then there is a path in G  formed by the points 

*1, ,..., ,
k

x Tx T x x , and hence  Gxx ~
*  . Since T  is orbitally G continuous, we obtain 

that *x  is a fixed point for  x
G

T . 

 

To prove (i) and (ii) we can use the similar method which we use in last part of 

Theorem 3.1.9. By this way we complete the proof. 

 

Remark 3.2.9. In Definition 3.2.1., if we take 0==  , we get that T  is Ciric-

Reich-Rus G contraction and our results are extensions of results which given in 

[20]. 



 

 

 

CHAPTER 4. FIXED POINT THEOREMS FOR 𝝍− 

                        CONTRACTIONS IN METRIC SPACE 

                        INVOLVING A GRAPH 

 

 

We introduce  ,G contraction and  ,G graphic contraction in a metric space 

by using a graph. We explain some conditions for a mapping which is a  ,G

contraction to have a unique fixed point and also we give conditions about the 

existence of a fixed point for  ,G graphic contraction by applying the 

connectivity of the graph in both cases.  

 

4.1.  ,G Contraction and Fixed Point Theorems 

 

Definition 4.1.1. We say that a mapping :T X X  is a  ,G  contraction if the 

followings hold; 

 

i. T  preserves edges of G , i.e.  

 

        , ,x y E G Tx Ty E G   , ,x y X  , 

 

ii. T  decreases weight of edges of G  that is there exists (0,1)c  such that  

 

         , , , ,x y E G d Tx Ty c d x y     for all Xyx , . 

 

Lemma 4.1.2. If :T X X  is a  ,G contraction, then T  is both   ,1G

contraction and  ,
~
G contraction. 
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Proof. The proof can be obtained by the symmetry of d  and the definition of 

 ,
~
G contraction. 

 

Lemma 4.1.3. Let :T X X  be a  ,G contraction with constant (0,1)c , for a 

given Xx  and  Gxy ~ , there exists   0, yxr  such that  

 

    , ,n n nd T x T y c r x y  . 

 

Proof. Let Xx  and  Gxy ~ . Then there is a path  N
iix

0=
 in G

~
 from x  to y , this 

means; xx =0 , yxN =  and    GExx ii

~
,1   for Ni 1,2,...,= . By Lemma 4.1.2., T  is 

a  ,
~
G contraction. With an easy induction we have,    1,

n n

i iT x T x E G   and  

 

     

      

1 1

1 1

2 2

1 1

, ,

, ... ,

n n n n

i i i i

n n n

i i i i

d T x T x c d T x T x

c c d T x T x c d x x

 

 

 

 

 

 



  
 

for all n  and Ni 1,2,...,= . Hence using triangle inequality, we get  

 

        1 1

=1 =1

, , , .
N N

n n n n n

i i i i

i i

d T x T y d T x T x c d x x       

 

So it qualifies to set     1

=1

, := ,
N

i i

i

r x y d x x  . 

 

Lemma 4.1.4. Let  dX ,  be a complete metric space endowed with a graph G , 

:T X X  is a  ,G contraction for which there exists Xx 0  such that 

 0 0 .
G

Tx x  Let 
0

~
xG  be the component of G

~
 containing 0x . Then  

G
x ~

0  is 
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invariantT   and  x
G

T  is a  ,
~

0
xG contraction. Furthermore, if  

G
xyx ~

0,  , and 

the sequences  n

n
T x


 and  n

n
T y


 are Cauchy equivalent. 

 

Proof. The proof of this lemma can obtained by using similar arguments given in 

[19]. So we omitted the proof. 

 

The following result shows us that there is a close relation between convergence of 

iteration sequence which obtained by using a  ,G contraction mapping and 

connectivity of the graph. 

 

Theorem 4.1.5. Let  dX ,  be a metric space endowed with a graph G  and 

:T X X  be a  ,G contraction, then the following statements are equivalent: 

 

i. G  is weakly connected; 

ii. for given Xyx , , the sequences  n

n
T x


 and  n

n
T y


 are Cauchy 

equivalent; 

iii.   card 1F T  . 

 

Proof. (i) (ii)  Let T  be a  ,G contraction and Xyx , . By hypothesis, 

  Xx G =~ , so   .
G

Tx x  By Lemma 4.1.3., we get 

 

    1, ,n n nd T x T x c r x Tx   , 

 

for all n . Hence  

 

  1

=0

, <n n

n

d T x T x
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and if a standard argument is used then  n

n
T x


 is obtained as a Cauchy sequence. 

Since also,  Gxy ~ , Lemma 4.1.3. provides     , ,n n nd T x T y c r x y  . Therefore, 

 n

n
T x


 and  n

n
T y


 are equivalent. Clearly, because  n

n
T x


 is a Cauchy 

sequence, so  n

n
T y


. 

 

(ii) (iii)  Let T  be a  ,G contraction and , ( )x y F T . By (ii),  n

n
T x


 and 

 n

n
T y


 are equivalent which yields that yx = . 

 

(iii) (ii)  Suppose, on the contrary, G  is not weakly connected, that is, G
~

 is 

disconnected. Let Xx 0 . Then both the sets  
G

x ~
0  and  

G
xX ~

0  are nonempty. Let 

 
G

xXy ~
00   and define  

 

 

 

0 0

0 0

, if ,

, if .

G

G

x x x
Tx

y x X x

 
 

 

 

 

Obviously,    0 0= ,F T x y . We show T  is  ,G contraction. Let    GEyx , . 

Then    
GG yx ~~ = , so either  

G
xyx ~

0,   or  
G

xXyx ~
0,  . Hence in both cases 

=Tx Ty , so    ,Tx Ty E G  as   GE , and   , = 0d Tx Ty . Thereby, T  is 

 ,G contraction having two fixed points which violates. 

 

The result which given in the following is an easy consequence of Theorem 4.1.5. 

 

Corollary 4.1.6. Let  dX ,  be a complete metric space endowed with a graph G  

and :T X X  be a  ,G contraction, then the following statements are 

equivalent: 

 

i. G  is weakly connected; 

ii. there is Xx *  such that   *lim =n

n
T x x


 for all Xx . 
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Now, we give an example which T  is  ,G contraction and this example shows 

that we could not add that *x  is a fixed point of T  in Corollary 4.1.6. 

 

Example 4.1.7. Let [0,1]=X  be endowed with the usual metric. Take  

 

              = 0,0 0,1 , 0,1 0,1 : ,E G x y x y    

 

and :T X X  as follows: 

 

 , if 0,1 ,
3

1
, if = 0.

2

x
x

Tx

x




 



  

 

Then T  is  ,G contraction where  
1

=



 . 

 

Proof. It can be easily seen that G  is a weakly connected graph and T  is a  ,G

contraction where  
1

=



 . It is the fact that 0nT x , for all Xx  but T  has 

no fixed point. 

 

For any mapping which satisfy the condition of Corollary 4.1.6. to have a fixed point 

we need to add condition (4.1), given in the following Theorem. 

 

Theorem 4.1.8. Let ),( dX  be a complete metric space and the triple ),,( GdX  have 

the following condition: 

 

for any  n n
x


 in X , if    1and ,n n nx x x x E G   for n , then there is a 

subsequence  
nk

n
x


 with    ,

nkx x E G  for n .              (4.1) 

 

Let :T X X  be a  ,G contraction, then the following statements hold. 
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i.      card = card : .TG
F T x x X  

ii.  F T   iff TX  . 

iii. T  has a unique fixed point iff there exists 0 Tx X  such that  0T G
X x . 

iv. For any 
Tx X ,  x

G
T  is a Picard operator. 

v. If TX   and G  is weakly connected, then T  is a Picard operator. 

vi. If   : : TG
X x x X    , then XT   is a weakly Picard operator. 

vii. If ( )T E G , then T  is a weakly Picard operator. 

 

Proof. Initially, we prove the items (iv)  and (v) . Take Tx X  and then  
G

Tx x , 

so by Lemma 4.1.4., if  Gxy ~ , then  n

n
T x


 and  n

n
T y


 are Cauchy equivalent. 

Since X  is complete,  n

n
T x


 converges to some Xx * . It is obvious that 

  *=lim
n

n

T y x


. Then by using induction we get  

 

   1,n nT x T x E G                   (4.2) 

 

for all n , since ( , ) ( )x Tx E G . By (4.1), there is a subsequence  k
n

n
T x



 such 

that    *,
k
nT x x E G  for all n . If we use (4.2), we conclude that 

 2 *1, , ,..., ,
k

x Tx T x T x  is a path in G  and also in G
~

 from x  to *x , this means that 

 Gxx ~
*  . Since T  is  ,G contraction we have,  

 

     * *1 , , ,
k k
n nd T x Tx c d T x x     

 

for all n . By taking limit as n , we deduce * *=Tx x . Thereby,  x
G

T  is a 

Picard operator. Also, we conclude that T  is a Picard operator, when   Xx G =~ , since 

weakly connectedness of G . 
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(vi)  is obvious from (iv) . For proof of (vii) , if  T E G  then =TX X  and so 

XX =  holds. Thus T  is a weakly Picard operator because of (vi) . 

 

Let define a mapping to prove (i)  as;    Gxx ~=  for all ( )x F T . It is sufficient to 

show that     : = : TG
F T C x x X   , is a bijection. Because   GE , we 

deduce   TF T X  and then   F T C  . Beside, if Tx X , then by (iv) , 

     lim
n

G
n

T x x F T


  which implies     =lim
n

G
n

T x x


 and so   is a surjective 

mapping. We show that T  is injective. Take  1 2,x x F T  which are such that 

       
GG

xxxx ~
2

~
121 ==  , then  

G
xx ~

12   and so by (i) , 

 

       2 1 1lim = ,n

Gn
T x x F T x


  

 

which gives 21 = xx . Thus, T  is injective and this is the desired result.  

Finally, one can see that (ii)  and (iii)  are easy consequences of (i) . 

 

Corollary 4.1.9. Let ),( dX  be complete metric space and ),,( GdX  have property 

(4.1). The followings are equivalent: 

 

i. G  is weakly connected; 

ii. for every  ,G contraction :T X X  such that    0 0,x Tx E G  for 

some 0 ,x X  is a Picard operator; 

iii. for any  ,G contraction ,  card ( ) 1F T  . 

 

Proof. (i) (ii) : This can be obtained directly from Theorem 4.1.8., (v) . 

 

(ii) (iii) : Let :T X X  be a  ,G contraction. If TX  is empty, so is ( )F T  

because ( )F T  is subset of TX . If TX  is nonempty, then by (ii) , ( )F T  is singleton. 

In these two cases,  card ( ) 1F T  . 
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(iii) (i) : This implication follows from Theorem 4.1.5. 

 

Remark 4.1.10. In the above results by taking  =)( , one can we obtain the 

results, given in [5]. 

 

4.2. ),( G Graphic Contraction and Fixed Point Theorems 

 

In this section, we define ),( G graphic contraction and give some results and 

examples. 

 

Definition 4.2.1. Let ),( dX  be a metric space and G  be a graph. The mapping 

:T X X  is called a ),( G graphic contraction if the following conditions hold: 

 

i.    GEyx ,  implies    ,Tx Ty E G , (T  is edge preserving); 

ii. there exists a :    function with constants [0,1)c  such that 

 

                       2, ,d Tx T x c d x Tx  , for all Tx X . 

 

Lemma 4.2.2. If :T X X  is a  ,G graphic contraction, then T  is both 

  ,1G graphic contraction and  ,
~
G graphic contraction. 

 

Lemma 4.2.3. Let :T X X  be a  ,G graphic contraction with constant 

 0,1c . Then, given Tx X , there exists   0xr  such that  

 

    1, ,n n nd T x T x c r x    

 

for all n , where     := ,r x d x Tx . 
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Lemma 4.2.4. Suppose that :T X X  is a ),( G graphic contraction. Then for 

each Tx X , there exists Xx *  such that the sequence  n

n
T x


 converges to *x  

as n . 

 

Proof. Take an arbitrary element x  in TX . By Lemma 4.2.3., we obtain that 

 

    1, ,n n nd T x T x c r x    

 

for all n . Therefore, 

 

  1

=0

, <n n

n

d T x T x


  , 

 

and so   1, 0n nd T x T x   , consequently using property of   we have 

 1, 0n nd T x T x  . Then we say that  n

n
T x


 is a Cauchy sequence. By the 

completeness of X , there exists Xx *  such that  n

n
T x


 converges as n . 

 

Lemma 4.2.5. The self mapping T  is a ),( G graphic contraction for which there 

exists Xx 0  such that  0 0 G
Tx x . Then the set  

G
x ~

0  invariant with respect to T  

and 
0

x
G

T
 
 

 is a  
0
,xG  graphic contraction, where 

0

~
xG  is the component of G

~
 

containing 0x . 

 

Proof. Let x  be an element in  
G

x ~
0 . Then there exist  N

iix
0=
 in G

~
 from 0x  to x , 

i.e., xxN =  and    GExx ii

~
,1   for =1, 2,...,i N . Since T  is a ),( G graphic 

contraction we get that    1,i iTx Tx E G   for =1, 2,...,i N . So we have a path from 

0Tx  to Tx . Therefore,    0 0=
G G

Tx Tx x  since  0 0 G
Tx x . Consequently  

G
x ~

0  is 

invariant with respect to T . Take    
0

~
, xGEyx  , then there is a path  N

iix
0=
 in G

~
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from 0x  to y  such that xxN =1 . Also let  M
iiy

0=
 be a path in G

~
 from 0x  to 0.Tx

Then, we realize 

 

 0 1 1 2 1, , ..., , , , ..., = , =M N Ny y y Tx Tx Tx Tx Tx Ty  

 

is a path in G
~

 from 0x  to Ty  such that    
0

, xTx Ty E G . Furthermore, T  is a 

 
0
,xG  graphic contraction because    GEGE x

~~

0
  and T  is a  ,G  graphic 

contraction. 

 

Theorem 4.2.6. Let ),( dX  be a complete metric space and let the triple ),,( GdX  

have the following condition: 

 

     

    

            

1

1

for any in , if and ,

or respectively , for all , then there is a subsequence

with , or respectively , for all . 4.3

n n n nn

n n

k k k
n n nn

x X x x x x E G

x x E G n

x x x E G x x E G n







 

 

  

 

Let :T X X  be a ),( G graphic contraction and T  is orbitally G continuous. 

Then the following statements hold: 

 

i.  F T   if and only if TX  ; 

ii. if TX   and G  is weakly connected, then T  is a weakly Picard 

operator; 

iii. for any Tx X , we have that  x
G

T  is a weakly Picard operator. 

 

Proof. We begin with the statement (iii) Let Tx X . By Lemma 4.2.3., there exists 

0)( xr  such that  
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    1,n n nd T x T x c r x     

 

for all n . This gives, as in the proof of Lemma 4.2.4., there exists Xx *  such 

that   *lim =n

n
T x x


. Since Tx X  in Definition 4.2.1. implies that n TT x X  for 

every n . Now assume that  , ( )x Tx E G . A similar deduction can be made if 

   ,Tx x E G . By condition (4.3), a subsequence  k
n

n
T x



 of  n

n
T x


 such that 

 *, ( )
k
nT x x E G  for each n . A path in G  can be formed by using the points 

*1, ,..., ,
k

x Tx T x x  and hence  Gxx ~
*  . Since T  is orbitally G  continuous, we obtain 

that *x  is a fixed point for  x
G

T . 

 

To prove (i), using (iii) we have ( )F T   if TX  . Suppose that ( )F T  . By 

using the assumption that )(GE , we immediately obtain that TX  . Hence (i) 

holds.  

 

For proving (ii) let Tx X . If we use weak connectivity of G , we have that 

 GxX ~=  and by applying (iii) we obtain the desired result. 

 

The next example illustrates that T  must be orbitally G continuous in order to 

obtain statements which are given above theorem. 

 

Example 4.2.7. Let [0,1]=X  be endowed with the usual metric. Consider 

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y    

 

and : ,T X X  
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, if (0,1];
2

1
, if = 0.

2

x
x

Tx

x




 



  

 

Then G  is weakly connected, TX  is nonempty and T  is a  ,G graphic 

contraction where   =
3


   but is not orbitally G continuous. Thus, T  does not 

have a fixed point. 

 

Remark 4.2.8. In the Theorem 4.2.6., by replacing the condition that the triple 

),,( GdX  satisfies (4.3) and T  is orbitally G continuous with the mapping T  is 

orbitally continuous, we have the above result, too. 

 

Example 4.2.9. Let [0,1]=X  be endowed with the usual metric. Take 

 

              = 0,0 0,1 , 0,1 0,1 : ,E G x y x y    

 

and :T X X  as follows: 

 

 , if 0,1 ,
2

3
, if = 0.

4

x
x

Tx

x




 



  

 

Then G  is weakly connected and TX  is nonempty and T  is a  ,G graphic 

contraction with  
2

=


  which is not a  ,G contraction. 

 

Proof. It is clear that G  is weakly connected, TX   and with simple calculations 

it can be easily seen that T  is a  ,G graphic contraction. Take  
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1 1 1 1
0, 0, ,

2 2 4 4
d T T c d c 
      

        
      

  

 

which is a contradiction since [0,1)c . Thus, T  is not  ,G contraction. 

 

Remark 4.2.10. In Theorem 4.2.6., if we take  =)(  then we get the Theorem 

2.1 which given in [20]. 

 



 

 

 

CHAPTER 5. FIXED POINT RESULTS FOR 𝝍−TYPE 

                        CONTRACTIONS IN METRIC SPACE 

                        INVOLVING A GRAPH 

 

 

We consider  type contractions defined on a complete metric space endowed with 

a graph. We establish fixed point results for such contractions. Also, our results 

improve and extend several known results in the existing literature. Furthermore, we 

give some examples to support our results. 

 

5.1.  ,G Ciric-Reich-Rus Contraction and Fixed Point Theorems 

 

Definition 5.1.1. Let  dX ,  be a metric space and G  a graph. The mapping 

XXT :  is called  ,G Ciric-Reich-Rus contraction if the following conditions 

hold; 

 

i. T  preserves the edges of G ,        ,,, GETyTxGEyx   

for all ,x y X , 

ii. there exists nonnegative numbers  ,,  with 1<  , such that  

 

           , , , , ,d Tx Ty d x y d x Tx d y Ty        

 

for all )(),( GEyx  . 

 

Remark 5.1.2. Let ),( dX  be a metric space endowed with a graph G . If 

XXT :  is a  ,G Ciric-Reich-Rus contraction, then T  is both a   ,1G

Ciric-Reich-Rus contraction and a  ,
~
G Ciric-Reich-Rus contraction. 
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Remark 5.1.3. Any  ,G Ciric-Reich-Rus contraction is G -Ciric-Reich-Rus 

operator with  =)( . 

 

The following lemma is useful tool to obtain our results. 

 

Lemma 5.1.4. Let ),( dX  be a metric space with a graph G  and XXT :  be a 

),( G Ciric-Reich-Rus contraction. If Xx  satisfies the condition    GETxx , , 

then we have 

 

     1, , ,n n nd T x T x c d x Tx     

 

for all n , where 








1
=c . 

 

Proof. Let Xx  with    GETxx , . So,    ,, 1 GExTxT nn   for all n .  

Then for *,n  

 

           1 1 1 1, , , , ,n n n n n n n nd T x T x d T x T x d T x T x d T x T x           

 

which implies 

 

     1 1, ,n n n nd T x T x c d T x T x   , 

 

where 








1
=c , so we get 

 

     1, , ,n n nd T x T x c d x Tx     

 

for all n . 
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Lemma 5.1.5. Let ),( dX  be a metric space endowed with a graph G  and 

XXT :  be a ),( G Ciric-Reich-Rus contraction such that the graph G  is T

connected. For all Xx  the subsequence  n

n
T x


 is a Cauchy sequence. 

 

Proof. Let Xx  fixed. Then: 

 

1.  If    GETxx , , then we have 

 

     1, , ,n n nd T x T x c d x Tx     

 

for all *n where = .
1

c
 






 Because 1<c , we get  

 

     1

=0

1
, , < ,

1

n n

n

d T x T x d x Tx
c

 


  


   

 

and a standard argument shows  n

n
T x


 is a Cauchy sequence. 

 

2.  If    GETxx , . Then there is a path in G ,  N
iix

0=
 from x  to Tx  such that 

xx =0 , TxxN =  with    GExx ii  ,1  for all =1, 2, ...,i N  and    GETxx ii ,  for 

all =1, 2, ..., 1i N  . Then by the triangle inequality and Lemma 5.1.5., we obtain 

that  
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1

1

=1

1 1 1

1 1 1

=1 =1 =1

1 1 1

1 1 1

=1 =1

1 1

=1

, ,

, , ,

, , ,

, , ,

N
n n n n

i i

i

N N N
n n n n n n

i i i i i i

i i i

N N
n n n n n

i i i i

i i

N
n n n

i i

i

d T x T x d T x T x

d T x T x d T x T x d T x T x

d T x T x d T x T x c d x Tx

d T x T x c d x Tx

 

     

     

   





  

  

  

  

 



  

  

 



  

 



 

let us denote  

 

  1

=1

= ,
N

n n

n i i

i

x d T x T x  ,  

 

n  and set  

 

      1 1

=2

= ,
N

i i

i

r x d x Tx      ; 

 

Then we get 

 

     1

1

n

n n nx x c r x x    

     ,  

 

hence  

 

 1

1 ,
1

n

n nx c x c r x
 








 


                (5.1) 

 

where, = .
1

c
 






 Using relation (5.1) and elementary computations, we have  
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 1 ,
1

n

nx n c r x
 







                 (5.2) 

 

for all n . Because  10,c  and using (5.2), we obtain 

 

    
  

 1 1

2
=0 =0 =0

, = < ,
1 1 1

n n n

n n

n n n

d T x T x x x r x n c r x
c

   


 

  
  

   
  

     

 

and a standart argument shows that  
0

n

n
T x


 is a Cauchy sequence.  

 

The main result of this section is given by the following theorem. 

 

Theorem 5.1.6. Let ),( dX  be a complete metric space endowed with a graph G  and 

XXT :  be a ),( G Ciric-Reich-Rus contraction. We suppose that G  is weakly 

T connected and the triple ),,( GdX  satisfies the condition: 

 

for any  n n
x


 in X , if    1and ,n n nx x x x E G   for n , then there is a 

subsequence  
nk

n
x


 with    ,

nkx x E G  for n .              (5.3) 

 

Then T  is a PO. 

 

Proof. From Lemma 5.1.5.,   0n

nxT  is a Cauchy sequence for all Xx , and by 

hypothesis, we obtain that   0n

nxT  is convergent. Let Xyx ,  then   *

0 xxT n

n 
 

and   *

0
yyT

n

n 


, as n . 

 

1.  If    GEyx , , we get    GEyTxT nn , , for all n , then  

 

           1 1 1 1, , , , ,n n n n n n n nd T x T y d T x T y d T x T x d T y T y           
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for all *n . Letting n  we obtain that      **** ,, yxdyxd    and 

because  10,  we obtain      ****** =0=,0=, yxyxdyxd  . 

 

2.  If    GEyx , , then there is a path in G ,  N
iix

0=
 from x  to y  such that xx =0 , 

yxN =  with    GExx ii  ,1  for all =1, 2, ...,i N  and    GETxx ii ,  for all 

=1, 2, ..., 1i N  . Then    GExTxT i

n

i

n  ,1  for all n  and =1, 2, ...,i N  and by 

the triangle inequality, we have  

 

     

        

1

=1

1 1 1

1 1 1

=1 =1 =1

, ,

, , ,

N
n n n n

i i

i

N N N
n n n n n n

i i i i i i

i i i

d T x T y d T x T x

d T x T x d T x T x d T x T x

 

     



  

  



  



  
 

 

From previous lemma and hypothesis, we get that the sequence   0n

nxT  is 

convergent and using the continuity of distance we obtain, the sequence 

   1,
n n

i i
n

d T x T x 


 is convergent and    1, =lim
n n

i i i
n

d T x T x l 


 for all 

=1, 2, ...,i N . Letting n  we obtain 0=il  for all =1, 2, ...,i N  that is 

   0, ** yxd  and so ** = yx . Therefore, for all Xx  there exists a unique 

Xx *  such that *=lim xxT n

n 

. 

 

Now we will prove that  TFx * . Since the graph G  is weakly T connected, 

there exists at least Xx 0  such that    GETxx
~

, 00   so    GExTxT nn ~
, 0

1

0 
 for all 

n . But *

0 =lim xxT n

n 

, then by condition (5.3), there is a subsequence  0

k
n

n
T x


 

with    GExxT n
k ~

, *

0   for all n . Then, for all n , we have  

 

        * * * *1 1
0 0, , ,

k k
n nd x Tx d x T x d T x Tx       
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           * * * *1 1
0 0 0 0, , , , ,

k k k k
n n n nd x T x d T x x d T x T x d x Tx        

 

Now letting n , we obtain      * * * * * *, , =d x Tx d x Tx x Tx    , that is 

 TFx * . If we have yTy =  for some Xy , then from above, we must have 

*nT y x , so *= xy . Thus T  is a PO.  

 

The next example shows that the graph G  must be weakly T connected in order 

that the ),( G Ciric-Reich-Rus contraction T  is a PO. 

 

Example 5.1.7. Let  0,=X  be endowed with the Euclidean metric 

  yxyxd =, , and XXT : , 
5

= , ,
4

Tx x a a
 

  
 

. Define the graph G  by 

XGV =)( ,         = , , , : , 0,1E G x x b x b x x X b    . Then ),( dX  is a 

complete metric space but not weakly T connected since    GETxx ,  for all 

Xx . The self mapping T  is a ),( G Ciric-Reich-Rus contraction with 

  =
2


   and 

1 1
= , = =

6 3
   . Straightforwardly,  nT x  does not converge for 

all Xx  and T  has no fixed point. 

 

The next example illustrates that condition (5.3) is a necessary condition inasmuch as 

the ),( G Ciric-Reich-Rus contraction T  is a PO. 

 

Example 5.1.7. Let [0,1]=X  be endowed with the usual metric. Take 

 

              = 0,0 0,1 , 0,1 0,1 : ,E G x y x y     

 

and XXT :  as follows:  
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 , if 0,1 ,
3

1, if = 0.

x
x

Tx

x




 



 

 

Then ),( dX  is a complete metric space, G  is weakly T connected and T  is 

),( G Ciric-Reich-Rus contraction where   =
3


   and 

1 1
= = , =

3 4
   . 

Obviously 0nT x , for all Xx  but T  has no fixed point. 

 

Definition 5.1.8. Let  dX ,  be a metric space and G  be a graph. The self mapping 

T  is called  ,G Kannan contraction if the following conditions hold; 

 

i. T  preserves the edges of G ,        , , ,x y E G Tx Ty E G    

for all , ,x y X  

ii. there exists 









2

1
0,  such that  

 

                          , , , ,d Tx Ty d x Tx d y Ty        for all    ,x y E G . 

 

Remark 5.1.9. If T  is a  ,G Kannan contraction, then T  is both a   ,1G

Kannan contraction and a  ,
~
G Kannan contraction. 

 

Remark 5.1.10. Any  ,G Kannan contraction is G Kannan mapping with 

 =)( . 

 

Remark 5.1.11. If T  is a  ,G Kannan contraction with constant  , then T  is a 

 ,G Ciric-Reich-Rus contraction with = 0, = =    . 
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Lemma 5.1.12. Let  dX ,  be a metric space endowed with a graph G  and 

XXT :  be a  ,G Kannan contraction. If the graph G  is weakly T

connected, then given Xyx , , there is   0, yxr  such that 

 

          1 1, , , ,
1

n

n n n n n nd T x T y d T x T x r x y d T y T y


    


  
   

 
 

 

for all *n . 

 

Proof. The proof can be obtained by using a method similar to that used in [13]. 

 

Theorem 5.1.13. Let ),( dX  be a complete metric space endowed with a graph G  

and XXT :  be a ),( G Kannan contraction. We suppose that G  is weakly 

T connected and the triple ),,( GdX  satisfies the condition (5.3), then T  is a PO. 

 

Proof. The proof is acquired by using analogue method which is given in Theorem 

5.1.6. 

 

Corollary 5.1.14. Let ),( dX  be a complete metric space endowed with a graph G . 

T  is a self mapping and the triple ),,( GdX  satisfies the condition (5.3). We suppose 

that: 

 

i. G  is weakly T  connected, 

ii. there is nonnegative numbers   and   satisfying 1<2   such that  

 

           , , , , ,d Tx Ty d x y d x Tx d y Ty           

 

for all )(),( GEyx  . 

Then T  is a PO. 
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Proof. It is obvious that the self mapping T  is a  ,G Ciric-Reich-Rus contraction 

with  = , so the conclusion arrives Theorem 5.1.6. 

 

Remark 5.1.15. In corollary 5.1.14., if we take  =)( , then we get Corollary 1 

in [18]. 

 

Corollary 5.1.16. Let ),( dX  be a complete metric space endowed with a graph G  

and XXT :  be a ),( G contraction. We suppose that G  is weakly T

connected and the triple ),,( GdX  satisfies the condition (5.3), then T  is a PO. 

 

Proof. If T  is a ),( G contraction with constant (0,1)c , then T  is a  ,G

Ciric-Reich-Rus contraction with c=  and  =  from Theorem 5.1.6., T  is a PO. 

 

Remark 5.1.17. In corollary 5.1.16., if we take  =)( , then we get Corollary 2  

in [18]. 

 

5.2. ),( G Ciric-Reich-Rus Graphic Contraction and Fixed Point Theorems 

 

Definition 5.2.1. Let  dX ,  be a metric space and G  a graph. The mapping 

XXT :  is called  ,,G Ciric-Reich-Rus graphic contraction if the following 

conditions hold; 

 

i. T  preserves the edges of G ,        ,,, GETyTxGEyx   for all 

Xyx , , 

ii. there exists nonnegative numbers  ,,  with 1<  , such that  

 

           2 2, , , ,d Tx T x d x Tx d x Tx d Tx T x        

                    

                  for all Tx X . 
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Remark 5.2.2. Let ),( dX  be a metric space endowed with a graph G . If 

XXT :  is a  ,G Ciric-Reich-Rus graphic contraction, then T  is both a 

  ,1G Ciric-Reich-Rus graphic contraction and a  ,
~
G Ciric-Reich-Rus 

graphic contraction. 

 

Remark 5.2.3. Any  ,G Ciric-Reich-Rus graphic contraction is a  ,G

graphic contraction with 0==  . 

 

Remark 5.2.4. If T  is a  ,G Ciric-Reich-Rus graphic contraction, then T  is a 

G graphic contraction with  =)(  and = = 0  . 

 

Example 5.2.5. Let {0,1,2,3}=X  and |=|),( yxyxd   for all Xyx , . Define the 

mapping XXT :  as; 

 

 

 

0, if 0,1 ,

1, if 2,3 .

x
Tx

x


 



 

 

T  is a  ,G Ciric-Reich-Rus graphic contraction with ( ) =
3


   and 

1
= = =

4
   , where 

 

                  = 0,1 ; 0,2 ; 2,3 ; 0,0 ; 1,1 ; 2,2 ; 3,3 ; 1,2E G . 

 

But it is not a  ,G Ciric-Reich-Rus contraction  

 

           1, 2 1,2 1, 1 2, 2 ,d T T d d T d T        

 

it is a contradiction since 
4

1

3

1
  and what is worse   ={1}F T . 

 



63 
 

Lemma 5.2.6. Let ),( dX  be a metric space endowed with a graph G  and 

XXT :  be a  ,G Ciric-Reich-Rus graphic contraction. Then, given 
Tx X , 

there exists 0)( xr  such that 

 

    1,n n nd T x T x c r x     

 

for all n , where 








1
=c ,     ,r x d x Tx  

 

Proof. Let 
Tx X  i.e.,    GETxx ,  or    GExTx , . If    GETxx , , then by 

easy induction, we have that    GExTxT nn 1,  for each n . Therefore,  

 

     

       

1 1

1

, ,
1

, ... , = .

n n n n

n n n n

d T x T x d T x T x

c d T x T x c d x Tx c r x

 
 



 

 








  

 

If    GExTx , , again by induction, we obtain that    GExTxT nn  ,1 . So, we get 

the same relation as before. 

 

Lemma 5.2.7. Let ),( dX  be a complete metric space endowed with a graph G  

suppose that XXT :  be a  ,,G Ciric-Reich-Rus graphic contraction. Then, 

for all 
Tx X , there exists Xx *  such that the sequence  n

n
T x


 converges to *x  

as n . 

 

Proof. Let 
Tx X . From lemma 5.2.6., we get that   

 

    1, ,n n nd T x T x c r x    
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for all n , where     Txxdxr ,=  and .
1

=







c  Thus, 

 

  1

=0

, < ,n n

n

d T x T x


   

 

that is,   0., 1  xTxTd nn  So, the sequence  n

n
T x


 is a Cauchy Sequence. Due to 

completeness of X , we obtain that there exists Xx *  such that the sequence 

 n

n
T x


 converges to *x  as .n  

 

Theorem 5.2.8. Let ),( dX  be a complete metric space and the triple ),,( GdX  

satisfies the condition: 

 

     

    

            

1

1

for any in , if and ,

or respectively , for all , then there is a subsequence

with , or respectively , for all . 5.4

n n n nn

n n

k k k
n n nn

x X x x x x E G

x x E G n

x x x E G x x E G n







 

 

  

 

Let XXT :  be a  ,G Ciric-Reich-Rus graphic contraction and be orbitally 

G continuous. Then the following statements hold: 

 

i.  F T   iff TX  ; 

ii. if TX   and G  is weakly connected, then T  is a weakly Picard 

operator; 

iii. for any TXx  , we have that  GxT ~  is a weakly Picard operator. 

  

Proof. We start by proving statement (iii) . Let 
Tx X . From lemma 5.1.12., we 

obtain that there exists 0)( xr  such that  
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    1, ,n n nd T x T x c r x     

 

for all n , and also by lemma 5.2.6., there exists Xx *  such that   *= .lim
n

n

T x x


 

Owing to 
Tx X , n TT x X  for all n . Now assume that )(),( GETxx  . (A 

similar deduction can be done if ))(),( GExTx  . From condition (5.4), there exists a 

subsequence  k
n

n
T x


 of  n

n
T x


 such that    GExxT n

k
*,  for all n . Then 

the points *12 ,,...,,, xxTxTTxx
k

 from a path in ,G  and so   .~
*

Gxx   Because T  is 

orbitally G continuous, we get that *x  is a fixed point of  GxT ~ . 

 

To prove (i) , notice that from (iii) , it follows that  F T   if TX  . Suppose 

that  F T   because of   GE , directly obtain that TX  . Thus, also (i)  

holds.  

 

To prove (ii) , let 
Tx X . Since G  is weakly connected, we obtain that  GxX ~= , 

and just need to apply (iii) . 

 

Remark 5.2.9. In Theorem 5.2.8., 

 

i. if we take  =)( , then we obtain Theorem 2.2  in [20]. 

ii. if we take 0==  , then we get Theorem 3  in [21]. 

iii. if we take  =)(  and 0==  , then we have Theorem 2.1 in [20]. 

 



 

 

 

CHAPTER 6. FIXED POINT THEOREMS FOR GENERALİZED  

                        𝝋−CONTRACTIONS IN METRIC SPACE WİTH 

                        A GRAPH 

 

 

),,( G contractions have been defined and some fixed point theorems have been 

obtained in a metric space with a graph. Also some results have been given which are 

extensions of some recent results. Moreover, we give some examples to support our 

results. 

 

6.1. Fixed Point Theorems for   ,,G Contraction 

 

Definition 6.1.1. Let  dX ,  be a metric space and G  a graph. The mapping 

XXT :  is called   ,,G contraction if the following conditions hold; 

 

i. T  preserves the edges of G ,        ,,, GETyTxGEyx   for all 

Xyx , , 

ii. there exists a   and    such that  

 

      , ,d Tx Ty d x y   , for all    ,x y E G . 

 

Lemma 6.1.2. If XXT :  is a   ,,G contraction, then T  is both a 

   ,,1G contraction and a   ,,
~
G contraction. 

 

Theorem 6.1.3. Let  dX ,  be a complete metric space and G  be weakly connected. 

T  is a self mapping on X . We suppose that: 
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i. for any sequence  n n
x X


  with  1, 0n nd x x    there exists 0,k n   

such that    ,
n mk kx x E G  for ,m n , , 0m n  ; 

iia.       T  is orbitally continuous  

or 

      iib.       T  is orbitally G  continuous and there exists a subsequence  

                   0
nk

k
T x


of  0

n

n
T x


 such that    *

0 ,
nk

k
T x x E G


  for each k ; 

iii. There exist a   and a   such that T  is a   ,,G contraction. 

Then T  is a PO. 

 

Proof. Take an arbitrary element Xx 0  such that )(),( 00 GETxx  . By using the 

definition of a   ,,G contraction and a standard induction argument we get 

   GExTxT nn 

0

1

0 ,  and for all n ,  

 

      1

0 0 0 0, , .n n nd T x T x d x Tx      

 

Then   1

0 0lim , = 0n n

n
d T x T x 


 and, using property of 2  we have 

 

 1

0 0lim , = 0n n

n
d T x T x


.  

 

Hence from (i), there exist 0,k n   such that    GExTxT m
k

n
k

00 ,  for all 

0, ; ,m n m n n  . Since   1

0 0, 0
kk nnd T x T x


 , for 0> , there exists N , 

0nN   such that  

 

    ),(<, 0

1

0   xTxTd n
k

n
k

                (6.1) 

 

for each Nn  . As )(),( 0

1)(

0 GExTxT n
k

n
k

  and by using the triangle inequality, 

property 3  and (6.1), we get that, for any Nn    
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2 1 1 2

0 0 0 0 0 0

1 2

0 0

, , ,

< , ,

k k k kk kn n n nn n

k k
n n

d T x T x d T x T x d T x T x

d T x T x

  

    

   

 

     
      

     

  
    

  

  

and, since   is monotone increasing,  

 

    .<, 0

2

0  xTxTd n
k

n
k                  (6.2) 

 

By (6.2), we have     GExTxT n
k

n
k



0

2

0 ,  and, for any Nn  , 

 

          

  

3 1 1 3

0 0 0 0 0 0

2

0 0

, , ,

< ( ) , < .

k k k kk kn n n nn n

kk nn

d T x T x d T x T x d T x T x

d T x T x

  

     

   



     
      

     

  
    

  

  

Using an easy induction, we obtain for any m  and Nn  ,  

 

    .<, 00  xTxTd mn
k

n
k   

 

Then property 2  yields that    <, 00 xTxTd mn
k

n
k  . Hence,  0

k
n

n
T x


 is a Cauchy 

sequence in X . By the completeness of X , there exists a 
*x X  such that 

*

0

k
nT x x  as n . Because     0, 0

1

0  xTxTd nkn
k

 , so also 

   0, 0

1

0  xTxTd n
k

n
k

, and we get *

0

nT x x  as n . Take an arbitrary element 

Xx . Then: 

 

1.  If    GExx 0, , then    GExTxT nn 0, , for all n . Hence  

 

      0 0, , , .n n nd T x T x d x x n       
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Letting n , we obtain    0, 0 xTxTd nn  So, by 2  we get  *, 0nd T x x  . 

 

2.  If    GExx 0, , then, since G  is weakly connected, we have a path  M
iix

0=
 in G

~
 

from 0x  to x ; that is, xxM =  and    GExx ii

~
,1   for Mi 1,2,...,= . With an easy 

induction we obtain    GExTxT i

n

i

n ~
,1   for Mi 1,2,...,=  and 

 

      0 1

=1

, , .
M

n n n

i i

i

d T x T x d x x     

 

Letting n , we conclude that    0,0 xTxTd nn  and, from 2 , 

  0,0 xTxTd nn , which yields *nT x x . 

 

Now we are in the position to prove that  *x F T . It is obvious that  *x F T , if 

(ii)a  holds. If (ii)b  occurs, then, since   *

0

k
n

k
T x x


  and    *

0 ,
k
nT x x E G  for 

all k , we attain, using the orbitally G continuity of T , that 
 1 *

0

k
n

T x Tx


  as 

k . Thus 
* *=x Tx . Let yTy = , for some Xy , then we have *nT y x . But it 

must be the case that *=y x . 

 

Remark 6.1.4. In Theorem 6.1.3., if we take  =)( , we get Theorem 2.2 in [19]. 

 

The next example shows that T  must be either orbitally continuous or orbitally G

continuous to be a PO. 

 

Example 6.1.5. Let [0,1]=X  be endowed with the usual metric. Consider 

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y    

 

and ,: XXT    
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, if (0,1];
2

1
, if = 0.

2

x
x

Tx

x




 



  

 

Then G  is weakly connected, TX  is nonempty and T  is a   ,,G contraction 

where   =
2

t
t ,   =

3


   but is neither orbitally continuous nor orbitally G

continuous. Thus T  does not have a fixed point. 

 

The next example shows that, in Theorem 6.1.3., all conditions are necessary for the 

mapping T  to be a PO. 

 

Example 6.1.6. Let [0,1]=X  be endowed with the usual metric. Consider  

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y   

 

and ,: XXT    

 

 = , if 0,1 .
2

x
Tx x  

 

Then G  is weakly connected, TX  is nonempty and T  is a   ,,G contraction 

where   =
2

t
t ,   =

3


  . Also T  is both orbitally continuous and orbitally G

continuous. Thus the conditions of theorem 6.1.3. holds; i.e., T  is a PO. 

 

There is a close relation between the convergence of iteration sequences, obtained by 

using the   ,,G contraction and the connectivity of graph G . 

 

Theorem 6.1.7. Let  dX ,  be a metric space endowed with a graph G  and 

XXT :  be a   ,,G contraction, then the following statements are equivalent: 
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i. G  is weakly connected; 

ii.  for given Xyx , , the sequences  n

n
T x


 and  n

n
T y


 are Cauchy 

equivalent; 

iii.   card 1F T  . 

 

Proof. (i) (ii)  Let T  be a   ,,G contraction and Xyx , . By hypothesis, 

  Xx G =~ , so  Gxy ~ . Then there is a path  N
iix

0=
 in G

~
 from x  to y , which means, 

xx =0 , yxN =  and    1,i ix x E G   for Ni 1,2,...,= . If we apply an easy 

induction, we have    1,
n n

i iT x T x E G   for Ni 1,2,...,=  and   

 

      1

=1

, , ,
N

n n n

i i

i

d T x T y d x x      

 

so, as n , we have    0, yTxTd nn  and hence, from property 2 , 

 

  0, yTxTd nn . 

 

Likewise, there is a path  M
iiw

0=
 in G

~
 from x  to Tx ; that is, xw =0 , TxwN =  and 

   1,i iw w E G   for Mi 1,2,...,= . Then by 3 , the triangle inequality and the 

definition of   ,,G contraction, we have 

 

      1

1

=1

, , .
M

n n n

i i

i

d T x T x d w w  

  

 

Hence 

 

      1

1

=0 =1 =0

, , < ,
M

n n n

i i

n i n

d T x T x d w w  
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and this implies that  n

n
T x


 is a Cauchy sequence. So,  n

n
T y


 is a Cauchy 

sequence.  

 

(ii) (iii)  Let T  be a   ,,G contraction and )(, TFyx  . By (ii),  n

n
T x


 and 

 n

n
T y


 are Cauchy equivalent, from which one concludes that yx = . 

 

(iii) (i)  Conversely, let G  is not weakly connected; that is, G
~

 is disconnected. 

Let Xx 0 . Then both the sets  
G

x ~
0  and  

G
xX ~

0  are nonempty. Let  
G

xXy ~
00   

and define  

 

 

 

0 0

0 0

, if ,

, if .

G

G

x x x
Tx

y x X x

 
 

 

  

 

Obviously,    00 ,= yxTF . We prove that T  is a   ,,G contraction. Let 

   GEyx , . Then    
GG yx ~~ = , so either  

G
xyx ~

0,   or  
G

xXyx ~
0,  . Hence in 

both cases TyTx = , so    GETyTx , , because   GE , and   0=,TyTxd . Then, 

from 1  we get  

 

      , = 0 ,d Tx Ty d x y   .  

 

Therefore, T  is a   ,,G contraction having two fixed points, which conflicts 

with (iii). 

 

The following result can be obtained from Theorem 6.1.7., directly. 

 

Corollary 6.1.8. Let ),( dX  be a complete metric space and G  is a weakly 

connected graph. If XXT :  is a   ,,G contraction, then there is 
*x X  such 

that   *lim =n

n
T x x


 for all Xx . 
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Proposition 6.1.9. Let us suppose that XXT :  is a   ,,G contraction with 

  and  , for which there exists an Xx 0  such that   .~
00 G

xTx   Let 
0

~
xG  

be the component of G
~

 containing 0x . Then  
G

x ~
0  is invariantT   and  GxT ~  is a 

  ,,
~

0
xG  contraction. Moreover, if  

G
xyx ~

0,  , then  n

n
T x


 and  n

n
T y


 are 

Cauchy equivalent. 

  

Proof. The proof can be obtained by using a method similar to that used in [5]. 

 

In Theorem 6.1.3. the second statement follows from the first one because 
0

~
xG  is 

connected. 

 

Theorem 6.1.10. Let ),( dX  be a complete metric space and the triple ),,( GdX  

have the following condition: 

 

for any  n n
x


 in X , if    1and ,n n nx x x x E G   for n , then there is a 

subsequence  
nk

n
x


 with    ,

nkx x E G  for n .              (6.3) 

 

Let XXT :  be a   ,,G contraction. Then the following statements hold: 

 

i.      card = card : .TG
F T x x X  

ii.   TF  iff TX . 

iii. T  has a unique fixed point iff there exists TXx 0  such that  
GT xX ~

0 . 

iv. For any TXx ,  GxT ~  is a PO. 

v. If TX  and G  is weakly connected, then T  is a PO. 

vi. If   := : ,TG
X x x X   then XT   is a WPO. 

vii. If )(GET  , then T  is a WPO. 
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Proof. Initially we prove the items (iv)  and (v) . Take TXx . Then  GxTx ~ , so 

by Proposition 6.1.9., if  Gxy ~ , then  n

n
T x


 and  n

n
T y


 are Cauchy 

equivalent. Since X  is complete,  n

n
T x


 converges to some 

*x X . It is obvious 

that   *=lim
n

n

T y x


. Using induction we get 

 

   GExTxT nn 1,                   (6.4) 

 

for all n , since )(),( GETxx  . By (6.3), there is a subsequence  k
n

n
T x


 such 

that    *,
k
nT x x E G  for all n . If we use (6.4), we conclude that 

 2 *1, , ,..., ,
k

x Tx T x T x  is a path in G  and also in G
~

 from x  to 
*x . This means that 

 *

G
x x . Since T  is a   ,,G contraction we have, 

 

      * *1 , ,
k k
n nd T x Tx d T x x     

 

for all n . If n  tends to   we deduce that 
* *=Tx x . Thereby,  GxT ~  is a PO. 

Also, we conclude that T  is a PO when   Xx G =~ , since G  is weakly connected. 

 

(vi)  is obvious from (iv) . For the proof of (vii) , if  GET   then XXT =  and so 

XX =  holds. Thus T  is a WPO because of (vi) . 

 

To prove (i)  define the mapping;    Gxx ~=  for all )(TFx . It is sufficient to 

show that     : = : TG
F T C x x X   , is a bijection. Because   GE , we 

deduce that   TXTF  , and then    CTF  . Beside if TXx , then by )(iv , 

     lim
n

G
n

T x x F T


 , which implies that      ,lim
n

G
n

T x x


  and so   is a 

surjective mapping. We now show that T  is injective. Take  TFxx 21,  such that  
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       1 2 1 2= =
G G

x x x x   . 

 

Then  
G

xx ~
12   and so, by (i) ,        2 1 1= ,lim

n

G
n

T x x F T x


  which gives 

21 = xx . Thus T  is injective, and this is the desired result. 

 

Finally, one can see that (ii)  and (iii)  are easy consequences of (i) . 

 

Corollary 6.1.11. Let ),( dX  be a complete metric space and that the triple 

),,( GdX  satisfies condition (6.3). Then the following statements are equivalent: 

 

i. G  is weakly connected. 

ii. Every   ,,G contraction XXT :  is such that    GETxx 00 ,  for 

some Xx 0 , is a PO. 

iii. For any   ,,G contraction XXT : , with  card ( ) 1F T  . 

 

Proof. (i) (ii)  This implication follows directly from Theorem 6.1.10 (v). 

 

(ii) (iii)  Let XXT :  be a   ,,G contraction. If TX  is empty, so, )(TF  

since TXTF )( . If TX , then, by (ii), )(TF  is a singleton. In both cases 

 card ( ) 1F T  . 

 

(iii) ( )i  This can be obtained from Theorem 6.1.3. 

 

Corollary 6.1.12. Let ),( dX  be a complete metric space and the triple ),,( GdX  

satisfies condition (6.3). Then the following statements are equivalent: 

 

i. G  is weakly connected. 

ii. Every  ,G contraction XXT :  is such that    GETxx 00 ,  for 

some Xx 0 , is a PO. 
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iii. For any  ,G contraction XXT : , with  card ( ) 1F T  . 

 

Proof. If we take    =  in Corollary 6.1.11., we obtain Theorem 2.2 in [19]. 

 

Corollary 6.1.13. Let ),( dX  be a complete metric space and the triple ),,( GdX  

satisfies condition (6.3). Then the following statements are equivalent: 

 

i. G  is weakly connected. 

ii. Every  ,G contraction XXT :  is such that    GETxx 00 ,  for 

some Xx 0 , is a PO. 

iii. For any  ,G contraction XXT : , with  card ( ) 1F T  . 

 

Proof. If we regard   ctt =  for (0,1)c  in Corollary 6.1.11., then we obtain 

Corollary 2 in [21]. 

 

Corollary 6.1.14. Let ),( dX  be a complete metric space and the triple ),,( GdX  

satisfies condition (6.3). Then the following statements are equivalent: 

 

i. G  is weakly connected. 

ii. Every Banach G -contraction XXT :  is such that    GETxx 00 ,  for 

some Xx 0 , is a PO. 

iii. For any Banach G -contraction XXT : , with  card ( ) 1F T  . 

 

Proof. If    = ,   ctt =  for (0,1)c  is applied to Corollary 6.1.11., then 

Theorem 3.1 in [5] is obtained. 

 

Example 6.1.15. Let [0,1]=X  be endowed with the usual metric. Take  

 

              = 0,0 0,1 , 0,1 0,1 : ,E G x y x y     
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and XXT :  as follows:  

 

 , if 0,1 ,
3

2
, if = 0.

3

x
x

Tx

x




 



  

 

Then T  is   ,,G contraction where   =
2


   and   =

1

t
t

t



 where [0,1)t . 

But it is not a  ,G contraction. 

 

Proof. It is easy to confirm that G  is weakly connected, TX  is nonempty, and that 

T  is a   ,,G contraction. The following easy calculations show that T  is not a 

 ,G contraction realize the following easy calculations; 

 

1 1 1 1
0, 0,

2 2 4 4
d T T c d c 
      

        
      

  

 

which implies 1c , a contradiction of the definition of a  ,G contraction. 

 

Example 6.1.16. Take X  and )(GE  as above and define XXT :  as follows: 

 

 , if 0,1 ,
3

1
, if = 0.

2

x
x

Tx

x




 



  

 

Then T  is a   ,,G contraction, where  
2

=
2


   and   =

4

t
t , but it is not 

 ,G contraction. 
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Proof. To see that T  is not a  ,G contraction with   =
4

t
t , notice that  

 

3 1 3 1 1 1
, ,

4 2 4 2 12 16
d T T d

    
      

    
. 

 

Also, 0nT x  for all Xx , but T  has no fixed point. 

 



 

 

 

CHAPTER 7. ON SOME FIXED POINT THEOREMS WITH  

                        𝝋−CONTRACTIONS IN CONE METRIC SPACE 

                        INVOLVINGA GRAPH 

 

 

We introduce   contractions defined on a cone metric space endowed with a graph 

without assuming the normality condition of cone. We establish fixed point results 

for such contractions which are extension of several known results. Also, an example 

have been given which satisfies our main result. 

 

Throughout the section, we assume that X  is a nonempty set, G  is a directed graph 

and B  is a real Banach space and K  is a cone in B  with int K  . By this way, we 

uniquely determine the limit of a sequence. 

 

7.1. Fixed Point Theorems for  ,cG  Contraction 

 

Definition 7.1.1. Let  dX ,  be a cone metric space and G  be a graph. The mapping 

XXT :  is called as  ,cG contraction if the following conditions hold; 

 

i. T  preserves the edges of G ;        GETyTxGEyx  ,,  for all 

Xyx , ,  

ii. there exists a function KK :  such that 

 

    yxdTyTxd ,,  , for all ( , ) ( )x y E G . 
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Remark 7.1.2. Let ),( dX  be a cone metric space endowed with a graph G . If 

XXT :  is a  ,cG contraction, then T  is both a  
,

1

cG contraction and a 

 ,
~

cG contraction.  

 

Theorem 7.1.3. Let  dX ,  be a complete cone metric space and G  be weakly 

connected. T  is a self mapping on X . We suppose that: 

 

i. For any sequence  n n
x X


  with   cxxd nn 1,   for every c  there 

exist 0,k n   such that    GExx
m

k
n

k ,  for all ,m n  and 0, nm ; 

aii        T  is orbitally continuous 

or 

bii        T  is orbitally G continuous and there exists a subsequence  0

k
n

k
T x


 

            of  0

n

n
T x


 such that    *

0 ,
k
n

k
T x x E G


  for each k  

iii.        T  is a  ,cG contraction. 

Then T  is a PO. 

 

Proof. Take an arbitrary element Xx 0  such that )(),( 00 GETxx  . By using the 

definition of a  ,cG contraction and an easy induction we get 

   GExTxT nn 

0

1

0 ,  and  

 

    1

0 0 0 0, ,n n nd T x T x d x Tx    

 

for all n . Given c  and we choose a positive real number   such that 

    intc c N K       where    = : <N y B y    . Also choose a 

natural number N  such that  

 

    0 0,m d x Tx c c    
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for all Nm  . Consequently, since    GExTxT mm 

0

1

0 ,  for all m  then we 

have  

 

   ccxTxTd mm  0

1

0 ,   

 

for all Nm  . Fix Nm   and we prove  

 

  cxTxTd nm 0

1

0 ,
                                                                                                 (7.1) 

 

and from (i)  there exists , 1m n   such that    GExTxT nm 

0

1

0 ,  for all mn  . 

If we take mn = , then (7.1) holds. Now, we assume that (7.1) holds for some mn  . 

Since    GExTxT mm 

0

1

0 ,  for any Nm  , we have that  

 

     

    

   

2 1 1 2

0 0 0 0 0 0

1 1

0 0 0 0

, , ,

, ,

= .

m n m m m n

m m m n

d T x T x d T x T x d T x T x

d T x T x d T x T x

c c c c



 

   

 

 

 

  

 

Therefore, (7.1) holds when 1= nm . By induction, we deduce (7.1) holds for all 

Nnm ,  Thus,  0

m

m
T x


 is a Cauchy sequence in X  and by the completeness of 

X , there exists a *x X  such that *

0

mT x x X   as n . Since 

  cxTxTd nn 0

1

0 ,
 , we get *

0

nT x x  as n . Take an arbitrary element Xx . 

Then, if    GExx 0, , then    GExTxT nn 0, , for all n . Hence, from 3   

 

     

    

* *

0 0

*

0 0

, , ,

, , .

n n n n

n n

d T x x d T x T x d T x x

d x x d T x x c
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Letting n , we obtain that  *,nd T x x c . That is *.nT x x  If    GExx 0, , 

then, since G  is weakly connected, we have a path  M
iix

0=
 in G

~
 from 0x  to x ; that 

is, xxM =  and    GExx ii

~
,1   for Mi 1,2,...,= . With an easy induction we obtain 

   GExTxT i

n

i

n ~
,1   for Mi 1,...,=  and  

 

    0 1

=1

, , .
M

n n n

i i

i

d T x T x d x x   

 

So, letting n  from 3  we conclude that  *,nd T x x c . That is   *nT x x . 

 

Now we are in the position to proved that * ( )x F T . It is obvious that * ( )x F T , if 

(ii)a  holds. If (ii)b  occurs since  *

0 ,
k
nd T x x c , that is, *

0

k
nT x x  and 

   *

0 ,
k
nT x x E G  for all n , we attain, using the orbitally G continuity of T , 

that  *1
0 ,

k
nd T x Tx c  for all n .That is, *1

0

k
nT x Tx   Thus * *=x Tx . Let 

* *=Ty y , for some *y X , then we have *nT y x . But it must be the case that 

* *=y x . 

 

The next example illustrates that, in Theorem 7.1.3., all conditions are necessary for 

the mapping T  to be a PO. 

 

Example 7.1.4. Let [0,1]=X ,  = : 0K x B x   and =B 2  with the metric  

 

     
:

, , = , , 0.

d XxX E

x y d x y x y x y 



     

Consider 

 

            = 0,0 0, : 1/ 2 , : , 0,1 ,E G x x x y x y   
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and ,: XXT    

 

 , if 0,1 .
2

x
Tx x   

 

Then G  is weakly connected, TX  is nonempty and T  is a  ,cG contraction 

where   =
2

t
t . Also, T  is both orbitally continuous and orbitally G continuous. 

Thus the conditions of Theorem 7.1.7. holds; that is, T  is a PO.  

 

There is a close relation between the convergence of iteration sequences, obtained by 

using the  ,cG contraction and the connectivity of graph G .  

 

Theorem 7.1.5. Let  dX ,  be a cone metric space endowed with a graph G  and 

XXT :  be a  ,cG contraction, then the following statements are equivalent: 

 

i. G  is weakly connected; 

ii. for given Xyx , , the sequences  n

n
T x


 and  n

n
T y


 are Cauchy 

equivalent;  

iii.   card 1.F T   

 

Proof. (i) (ii)  Let T  be a  ,cG contraction and Xyx , . By hypothesis, 

  = ,
G

x X  so  Gxy ~ . Then there is a path  N
iix

0=
 in G

~
 from x  to y , which means, 

xx =0 , yxN =  and    GExx ii

~
,1   for Ni 1,...,= . If we apply an easy induction, 

we have    GExTxT i

n

i

n ~
,1   for Ni 1,...,=  and  

 

    1

=1

, , ,
N

n n n

i i

i

d T x T y d x x   
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as n , from property 3 , we obtain   0, yTxTd nn . Likewise, there is a path 

 M
iiw

0=
 in G

~
 from x  to Tx ; that is, xw =0 , TxwM =  and    GEww ii

~
,1   for 

Mi 1,...,= . Then by 4 , the triangle inequality and the definition of  ,cG

contraction, we have  

 

    1

1

=1

, , .
M

n n n

i i

i

d T x T x d w w

  

 

Hence,  

 

    1

1

=0 =1 =0

, , <
M

n n n

i i

n i n

d T x T x d w w
 



    

 

and this implies that  n

n
T x


 is a Cauchy sequence. So,  n

n
T y


 is a Cauchy 

sequence. 

 

(ii) (iii)  Let T  be a  ,cG contraction and )(, TFyx  . By (ii),  n

n
T x


 and 

 n

n
T y


 are Cauchy equivalent, from which one concludes that yx = . 

 

(iii) (i)  Conversely, let G  is not weakly connected; that is, G
~

 is disconnected. 

Let Xx 0 . Then both the sets  
G

x ~
0  and  

G
xX ~

0  are nonempty. Let  
G

xXy ~
00   

and define  

 

 

 

0 0

0 0

, if ,

=
, if .

G

G

x x x

Tx
y x X x

 




 


 

 

Obviously,    00 ,= yxTF . We prove that T  is a  ,cG contraction. Let 

   GEyx , . Then    
GG yx ~~ = , so either  

G
xyx ~

0,   or  
G

xXyx ~
0,  . Hence in 
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both cases TyTx = , so    GETyTx , , because   GE , and   =,TyTxd . Then, 

we get  

 

    yxdTyTxd ,0=,  .  

 

Therefore, T  is a  ,cG contraction having two fixed points, which conflicts with 

(iii).  

 

The following result can be obtained from Theorem 7.1.5., directly.  

 

Corollary 7.1.6. Let ),( dX  be a complete cone metric space and G  be a weakly 

connected graph. If XXT :  is a  ,cG contraction, then there is *x X  such 

that   *lim =n

n
T x x


 for all Xx .  

 



 

 

 

CHAPTER 8. RESULTS AND SUGGESTIONS 

 

 

In this section we summarize some results which are obtained in previous sections.  

 

In the chapter 3.,  ,G graphic contractions have been defined by using a 

comparison function and studied the existence of fixed points. Also, the Hardy-

Rogers G graphic contractions have been introduced and some fixed point 

theorems have been proved. Some results in the literature are also generalized and 

extended. 

 

In the chapter 4., we define  ,G contractions and  ,G graphic contractions 

which are extensions of some contractions given in the literature. Also we prove 

some fixed point theorems in a metric space by using connectivity of graph. 

 

In the chapter 5., we motivated by the work of Jachymski [5], Bojor [18] and 

Petruşel [20], we introduced new contractions the mappings on complete metric 

space and obtained some fixed point theorems. Our results generalize and unify some 

results which is given [5, 18, 20, 21]. 

 

In the chapter 6., ),,( G contractions have been defined and some fixed point 

theorems have been obtained in a metric space with a graph. Also some results have 

been given which are extensions of some recent results which is given [19] and [21]. 

Moreover, we give some examples to support our reults. 

 

In the chapter 7., we introduce  contraction defined on a cone metric space 

endowed with a graph without assuming the normality condition of cone. We 
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establish fixed point results for such contractions which are extension of several 

known results. Also, an example have been given which satisfies our main result. 

In addition these studies, it can be extended by using some various contractive 

conditions in different types of metric spaces endowed with a graph. 
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