T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TİCARİ YARI RÖMORK TANKER ŞASİ YORULMA DAYANIMININ GERÇEK YOL SİNYALLERİ İLE BİLGİSAYAR ORTAMINDA İNCELENMESİ

YÜKSEK LİSANS TEZİ Mehmet AKSOY

Enstitü Anabilim Dalı	:	MAKİNE MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	MAKİNE TASARIM VE İMALAT
Tez Danışmanı	:	Yrd. Doç. Dr. Yaşar KAHRAMAN

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TİCARİ YARI RÖMORK TANKER ŞASİ YORULMA DAYANIMININ GERÇEK YOL SİNYALLERİ İLE BİLGİSAYAR ORTAMINDA İNCELENMESİ

YÜKSEK LİSANS TEZİ

Mehmet AKSOY

Enstitü Anabilim Dalı

MAKİNE MÜHENDİSLİĞİ

Enstitü Bilim Dalı

MAKİNE TASARIM VE İMALAT

Bu tez 28 / 11 / 2014 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Yrd. Doç. Dr. Yaşar KAHRAMAN Jüri Başkanı

:

:

Yrd. Doç. Dr. Murat ÖZSOY Üye Yrd. Doç. Dr. Mesut DURAT Üye

ÖNSÖZ

Bu tez çalışmasında, Türkiye şartları için üretilmesi planlanan bir tanker aracı tasarımının, farklı yol koşulları altındaki yorulma dayanımı bilgisayar ortamında gerçek yol sinyalleri ile incelenmiş ve elde edilen sonuçlar ile farklı yol koşullarının araç üzerindeki yorma etkileri göreceli olarak elde edilmiştir.

Tez çalışmam süresince danışmanlığımı yaparak beni yönlendiren tez danışman hocalarım Yrd. Doç. Dr. Yaşar Kahraman ve Yrd. Doç. Dr. İ. Kutay Yılmazçoban'a teşekkür ederim. Ayrıca bu çalışma sürecinde desteklerini hep yanımda hissettiğim ve bu günlere gelmemde büyük katkısı olan sevgili eşim Sanem Aksoy, kızlarım Erva Gül Aksoy, Berra Gül Aksoy ve aileme sonsuz teşekkürler.

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	viii
ŞEKİLLER LİSTESİ	xi
TABLOLAR LİSTESİ	xviii
ÖZET	xix
SUMMARY	XX

BÖLÜM 1.

GİRİŞ	1
1.1. Amaç	1
1.2. Treylerin Tarihçesi	1

BÖLÜM 2.

TAŞITLARDA TASARIM VE DOĞRULAMA	3
2.1. Araç Dayanımı	5
2.2. Araç Dayanımı ve Hasarlanmalar	5
2.3. Tasarım Doğrulama	6
2.3.1. Gerçek yol testleri ile doğrulama	6
2.3.1.1. Hızlandırılmış özel test pistlerinde yapılan testler	7
2.3.1.2. Laboratuvar ortamında yol simülatör testleri	8
2.3.2. Bilgisayar destekli mühendislik ile doğrulama	9

BÖLÜM 3.

TAŞITLARDA YORULMA HASARI	13
3.1. Taşıtlarda Yorulma Tarihçesi	13
3.2. Yorulmanın Tanımı ve Teorisi	14

3.3. Yorulma Yüzeyinin Genel Görünüşü	17
3.4. Gerilmenin ve Hasarın Hesaplanması	17
3.4.1. Gerinim-gerilme kavramı	18
3.4.2. Poisson orani	19
3.4.3. Elastisite modülü	19
3.4.4. Malzemenin akma, nihai ve kopma gerilmesi	20
3.5. Yükleme Koşulları Altında Gerilme Davranışları	21
3.6. Gerinim Ölçer (Strain-Gauge) Tipleri ve Gerilme Hesaplamaları	22
3.6.1. Doğrusal tip gerinim ölçer (strain-gaugeler)	23
3.6.2. Çiftli doğrusal tip gerinim ölçerler (strain-gaugeler)	24
3.6.3. Kesme ve tork tipi gerinim ölçerler (strain-gaugeler)	24
3.6.4. Rozet tipi gerinim ölçerler (strain-gaugeler)	24
3.7. Sinyal İşleme Yöntemleri	26
3.7.1. Peak-valley filtreleme yöntemi	27
3.7.2. Level crossing saydırma yöntemi	27
3.7.3. Range pair saydırma yöntemi	28
3.7.4. Rainflow saydırma yöntemi	29
3.8. Gerilme-Çevrim Sayısı (S-N) Eğrileri	30
3.8.1. S-N eğrisinin matematiksel tanımı	31
3.9. Hasar Hesaplanması	33
3.10. Haig Diyagramı	34
3.10.1. Ön yükleme ve ortalama gerilme etkileşim eğrileri	35
3.10.2. Soderberg etkileşim eğrisi	36
3.10.2.1. Goodman etkileşim eğrisi	36
3.10.2.2. Gerber etkileşim eğrisi	36
3.10.2.3. Morrow etkileşim eğrisi	37

BÖLÜM 4.

TAŞIT DAYANIMINDA HİBRİT ARAÇ MODELİ	38
4.1. Modal Tabanlı Analiz Teorisi	41
4.2. Bileşen Mod Sentezi Yöntemi	42
4.3. Klasik Mod Birleştirme Yönteminin Adımları	44

4.4.	Mod	Birleștirme	Yönteminin	Ritz	Vektörleri	Kullanıla	rak
	Uygu	lanması					46
4.5.	Modal	Tabanlı Anali	z ile Sanal Ar	aç Simülas	yon Yöntemi.		48
BÖLÜM 5	5.						
DENEYSI	ELVEI	BİLGİSAYAH	R DESTEKLİ	ÇALIŞMA	A		53
5.1.	Treyler	[.] Şasisi ve Öz	ellikleri		•••••		54
5.2.	Simüla	syon için Ön	Kabuller ve S	ınır Şartlar	1		55
5.3.	Sonlu l	Elemanlar Mo	odeli Simülasy	onu			60
:	5.3.1. D	oğal frekans	(modal) anali	zleri			61
	5.	3.1.1. Analiz	sınır şartları				61
:	5.3.2. Y	apısal analizl	er				63
	5.	3.2.1. Kritik model	noktaların leri	belirlenme	si için kulla	nılan yükle	me 63
5.4.	Yol Tes	sti ve Veri Top	olama				64
:	5.4.1. T	est güzergâhı	ve yol profill	eri			64
:	5.4.2. Ö	lçüm noktala	rı ve kanal lis	tesi			65
:	5.4.3. Y	ol sinyallerin	in toplanması				67
:	5.4.4. Y	ol sinyallerin	in işlenmesi				68
:	5.4.5. B	ozuk ve hatal	lı sinyallerin t	emizlenme	si		68
:	5.4.6.	İvme sinya	llerinin and	alizi ve	simülasyon	yol pro	ofili
	(oluşturulması.					69
:	5.4.7. F	rekans analizi	i ve güç spekt	rum yoğun	luğu		70
:	5.4.8. 6	öreceli hasar	teorisi ile top	lanan sinya	allerin karşılaşı	tırılması	71
:	5.4.9. T	oplanan yol s	inyallerinden	karma yol	profili oluşturu	ılması	73
:	5.4.10.	Simülasyon y	ol profilinin c	oluşturulma	181		74
:	5.4.11.	Yol profillerir	nin göreceli ha	asar analizl	eri		75
:	5.4.12.	Test eşleştirm	e yöntemiyle	yol profili	belirlenmesi		76
:	5.4.13.	Gerinim sinya	allerinin işleni	mesi ve ana	alizi		77
:	5.4.14.	Gerinim s	sinyalleri il	e yorulma	a hesapları	ve yolla	ırın
		karşılaştırılı	nası				79
:	5.4.15.	Gerilme ömri	i (stress-life) a	analizi			80
:	5.4.16.	Şekil değiştir	me ömrü (stra	in-life) ana	alizi		82

5.5. Çoklu Cisim Simülasyonu	84
5.5.1. Mekanik sistem modelinin oluşturulması	85
5.5.2. Simülasyon için ön kabul ve sınır şartları	85
5.5.3. Dingil grubu ön şartları	86
5.5.3.1. Amortisör ve hava körüğü	86
5.5.3.2. Kauçuk burç	87
5.5.3.3. Tekerlekler	88
5.5.3.4. King-pim	88
5.5.4. Mekanik sistem modelinin doğrulanması	89
5.5.5. Sonlu elemanlar modelinin entegre edilmesi	89
5.5.6. Yol sinyallerinin simülasyona entegre edilmesi	92
5.5.7. Dinamik simülasyon analizi	94
5.5.7.1. Simülasyon sonuçları ve değerlendirme	96
5.6. Yorulma Ömrü Simülasyonu	98
5.6.1. Ncode yorulma simülasyonu modeli	98
5.6.2. Sonlu elemanlar modeli sonuçları	100
5.6.3. Modal koordinat sonuçları	103
5.6.4. Gerilme ömrü (stress-life) modeli simülasyonu	104
5.6.4.1. S-N eğrisi tanımlama	105
5.6.4.2. Yorulma ömrü metodu belirleme	106
5.6.4.3. Yükleme frekans aralığı belirleme	107
5.6.5. Şekil değiştirme ömrü (strain-life) modeli	108
5.6.5.1. E-N eğrisi tanımlama	109
5.6.5.2. Yorulma ömrü metodu belirleme	110
5.6.5.3. Yükleme frekans aralığı belirleme	112
BÖLÜM 6.	

SONUÇLAR	113
6.1. Sonlu Elemanlar Modeli Sonuçları	113
6.1.1. Yerçekimi ivmesi (1 g) etkisinde yapısal analiz sonuçları	113
6.1.2. Frenleme ivmesi (0,4 g) etkisinde yapısal analiz sonuçları	116
6.1.3. Çukura düşme (50 mm) etkisinde yapısal analiz sonuçları	118
6.1.4. Tümsek geçme (50 mm) etkisinde yapısal analiz sonuçları	120

6.1.5. Burkulma (3°) etkisinde yapısal analiz sonuçları	122
6.1.6. Doğal frekans (modal) analiz sonuçları	123
6.1.7. Model derecesi düşürme (craig-bampton) mod sonuçları	125
6.2. Toplanan Yol Sinyalleri ve İşleme Sonuçları	126
6.2.1. İvme sinyalleri ait sonuçları	127
6.2.2. Birim şekil değişimi sinyallerine ait sonuçları	132
6.3. Çoklu Cisim Simülasyonu Sonuçları	141
6.4. Yorulma Simülasyonu Sonuçları	148
6.4.1. 1. Simülasyon sonuçları (12-50 Hz)	148
6.4.2. 2. Simülasyon sonuçları (30-50 Hz)	152
6.4.3. 3. Simülasyon sonuçları (40-50 Hz)	153
6.4.4. 4. Simülasyon sonuçları (12-10110 Hz)	154
6.4.5. 5. Simülasyon sonuçları (12-10110 Hz)	157

BÖLÜM 7.

TARTIŞMA VE ÖNERİLER 1	60
------------------------	----

KAYNAKLAR	164
EKLER	169
ÖZGEÇMİŞ	171

SİMGELER VE KISALTMALAR LİSTESİ

W	: Ağırlık
а	: İvme
F	: Kuvvet
L	: Uzunluk
ΔL	: Uzunluk farkı
DD	: Gerçek yol yorulma etkisi
DT	: Test yolu sinyalleri yorulma etkisi
S-N	: Strength of number of cycle
θ	: Poisson oranı
ε	: Birim uzama
Ε	: Elastisite modülü
σ	: Gerilme
σ_K	: Kopma gerilmesi
$\sigma_{\!A}$: Akma gerilmesi
σ_n	: Nihai gerilme
σ_D	: Sürekli mukavemet değeri
GF	: Gage faktör
D	: Hasar değeri
Ν	: Çevrim sayısı
S	: Emniyet katsayısı
b	: Basquin eğimi
S _e	: Sonsuz ömür sınır gerilme genliği
т	: Blok sayısı
n_i	: Sabit gerilme genlikleri
N _{fi}	: Çevrim sayısı
π	: Oransal hasar işi

$\overline{\pi}$	Hasara kadar çevrim
n _i	: Toplam çevrim
D_k	: Hasar toplamı
σ_a	: Gerilme büyüklüğü
σ_{ge}	: Sonsuz ömür genliği
σ_{genlik}	: Gerilme genliği
σ_m	Ön gerilme
σ_{akma}	: Akma gerilmesi
σ _{kırma}	Kırılma gerilmesi
σ_{kopma}	: Kopma gerilmesi
k _f	Yorulma çentik katsayısı
S _a	: Sabit gerilme aralığı
S _r	: Gerilme aralığı
S _{max}	Maksimum gerilme
S _{min}	Minimum gerilme
S _m	: Ortalama gerilme
R	Gerilme oranı
A	: Genlik oranı
b	: Yorulma dayanımı üssü
S'_f	Yorulma dayanımı katsayısı
n _i	: Toplam çevrim sayısı
N_f	Hasara kadar olan çevrim sayısı
E[D]	: Toplam hasar
i	Anlık değişken
a	: Titreşim özvektörleri
b _i	İ. Ritz vektörü
В	Şekil değiştirme matrisi
С	: Sönüm matrisi
K	Rijitlik matrisi
M	Kütle matrisi
P	Yük vektörü
Q	Modal matris

Т	: Periyot
u	: Deplasman vektörü
ù	: Hız vektörü
ü	: İvme vektörü
Y	: Modal deplasman vektörü
Ζ	: Fonksiyonlar vektörü
λ	: Karakteristik değer
ω	: Açısal frekans
Y_i	: İ nci mod için modal deplasman
ξ_i	: İ nci sönüm oranı
ω_i	: İ nci mod için serbest titreşim frekansı
x	: Yer değiştirme vektörü
ż	: Hız vektörü
<i>x</i> ̈́	: İvme vektörü
t	: Zaman
q_i	: Modal koordinat
σ_i	: Modal gerilme
$S_{(t)}$: Sonlu elemanlar modeli geçiş gerilmesi
$u_{(t)}$: Sonlu elemanlar modeli geçiş şekil değişimi
φ_i	: Yapısal mod
FEM	: Finite element model
MNF	: Modal neutral file
ÇCS	: Çoklu cisim simülasyonu
BMS	: Bileșen mod sentezi
MDD	: Model derecesi düşürme
SEM	: Sonlu elemanlar modeli
MTSPS	: Modal tabanlı sanal prototip simülasyonu
CAE	: Computer aided engineering

ŞEKİLLER LİSTESİ

Şekil 2.1. Tekrarlı dinamik yüklemeye göre tasarım döngüsü	3
Şekil 2.2. Tasarım süreç diyagramı	5
Şekil 2.3. Hızlandırılmış yol testi parkuru	7
Şekil 2.4. Dingil uyartılı komple araç testi	8
Şekil 2.5. Tekerlek etkileşimli komple araç testi	8
Şekil 2.6. Ticari bir araca ait süspansiyon bileşeninin yorulma test düzeneği	9
Şekil 2.7. Sonlu elemanlar metodu ile model tanımı ve ağ modeli	11
Şekil 3.1. Değişken genlikli yük	14
Şekil 3.2. Yorulma kırılması genel görünüşü	15
Şekil 3.3. Yorulma başlangıç ve gelişim eğrileri	15
Şekil 3.4. Yorulma kırılmasına uğramış parçaya ait yüzey resmi	17
Şekil 3.5. Yorulma analizi süreç diyagramı	18
Şekil 3.6. Birim şekil değişimi (gerinim-strain) tanımı	19
Şekil 3.7. Akma, nihai ve kopma gerilmesi	20
Şekil 3.8. Taşıtlarda yükleme koşulları	21
Şekil 3.9. Gerinim ölçer (strain-gauge) boyutları.	23
Şekil 3.10. Doğrusal tip strain-gauge	23
Şekil 3.11. Çiftli lineer tip gerinim ölçer	24
Şekil 3.12. Tork tipi 45 derece gerinim ölçer (strain-gauge).	24
Şekil 3.13. Rozet tipi gerinim ölçer (strain-gage).	25
Şekil 3.14. Düzlemsel ve yığılmış tip rozet konstrüksiyonu	26
Şekil 3.15. Sinyal işleme yöntemi	26
Şekil 3.16. Peak-valley yöntemi ile filtrelenmiş veriler	27
Şekil 3.17. Level crossing sayma yöntemi	28
Şekil 3.18. Range pair sayma metodu	28
Şekil 3.19. Histerezis çevrimi.	29
Şekil 3.20. Rainflow saydırma yöntemi ve matrix görünüşü	30

Şekil 3.21. Wöhler diyagramı.	31
Şekil 3.22. Wöhler diyagramı matematiksel bağıntısı.	31
Şekil 3.23. Çeşitli metallere ait S-N diyagramı	32
Şekil 3.24. Birikimli kümülatif hasar teorisi	33
Şekil 3.25. Palmgren-miner ve elemanter-miner.	34
Şekil 3.26. Haig diyagramı	35
Şekil 3.27. Ortalama gerilme etkileşim eğrileri	35
Şekil 4.1. Sanal prototip ile taşıt dayanımı proses diyagramı	38
Şekil 4.2. Atv motor için hazırlanmış sanal yol simülasyonu	39
Şekil 4.3. Msc adams çoklu cisim simülasyon yazılımda hazırlanmış kan	nyon
modeli	40
Şekil 4.4. Modal tabanlı sanal prototip yorulma analizi süreci	48
Şekil 4.5. Modal tabanlı yorulma dayanımı prosedürü akış şeması	49
Şekil 4.6. Çoklu cisim simülasyonunda şekil değişimi ifadesi	49
Şekil 4.7. Modların lineer kombinasyonu ile elastik deformasyonun ifadesi	50
Şekil 4.8. Mod şekillerinin lineer kombinasyonu ile genel yapısal gerilmesinin	elde
edilmesi	51
Şekil 5.1. Deneysel ve bilgisayar destekli çalışma akış şeması	53
Şekil 5.2. Yarı römork tanker genel bölgeleri	54
Şekil 5.3. Yarı römork tanker dalgakıran bölgeleri	55
Şekil 5.4. Sınır şartları uygulama bölgeleri (a: king-pim bölgesi b: d	ingil
bölgesi)	56
Şekil 5.5. Dingil grubu bölgesinin simülasyon modeline uyarlanması	57
Şekil 5.6. Yarı römork tankerin serbestlik derecesi belirlenen bölgeleri	58
Şekil 5.7. Noktasal yüklerin model üzerindeki dağılımı	59
Şekil 5.8. Sonlu elemanlar simülasyonu için sadeleştirilmiş model	60
Şekil 5.9. Sonlu elemanlar simülasyonu için mesh modeli	61
Şekil 5.10. Modal analiz sınır şartları - remote displacement noktaları	61
Şekil 5.11. Modal analiz sınır şartları - remote displacement noktaları	62
Şekil 5.12. Noktasal yüklerin model üzerindeki dağılımı	62
Şekil 5.13. Test parkuru haritası.	64
Şekil 5.14. Test parkuru yol profili tipleri	65
Şekil 5.15. İvme ölçer sensör yerleşimi.	66

Şekil 5.16. Bozuk ve hatalı sinyal temizleme işlemi	68
Şekil 5.17. Tanker sinyallerine ait bozuk ve hatalı sinyal temizleme işlemi	69
Şekil 5.18. Tanker sinyallerine ait frekans spektrum analizi	70
Şekil 5.19. Modal doğal frekansları ve yapısal tahrikler çakışma aralığı	71
Şekil 5.20. nCODE göreceli hasar analizi teorik adımları	72
Şekil 5.21. nCODE ivme-deplasman dönüşümü ve göreceli hasar analizi	72
Şekil 5.22. Ömürlük kullanım yüzdesine göre karma yol profili	73
Şekil 5.23. "Concaenation" fonksiyonu ile sinyal birleştirme	74
Şekil 5.24. Tank ivme sinyallerinin birleştirilerek karma yol profil	linin
yapılması	74
Şekil 5.25. nCODE karma yol profili göreceli hasar etkisi analizi	75
Şekil 5.26. nCODE eşdeğer yol profili göreceli hasar etkisi analizi	76
Şekil 5.27. nCODE "Test Match" fonksiyonu ile yol profili optimizasyonu	76
Şekil 5.28. nCODE "Test Match" fonksiyonu ait konfigürasyon ayarları	77
Şekil 5.29. nCODE ile rozet gerinim ölçer (strain-gage) sinyallerinin işlenmesi.	78
Şekil 5.30. nCODE rozet strain gage dönüşüm fonksiyonu özellikleri	79
Şekil 5.31. nCODE yazılımı ile gerilme-ömür analizi işlemi	80
Şekil 5.32. nCODE gerilme-ömür analizi konfigürasyonu	81
Şekil 5.33. nCODE gerilme-ömür analizine ait malzeme özellikleri ve	S-N
eğrisi	81
Şekil 5.34. nCODE yazılımı ile gerilme-ömür analizi işlemi	82
Şekil 5.35. nCODE şekil değiştirme-ömür analizi konfigürasyonu	83
Şekil 5.36. nCODE şekil değiştirme-ömür analizine ait malzeme özellikleri ve	S-N
eğrisi	83
Şekil 5.37. Adams ortamında hazırlanmış hibrit simülasyon modeli	84
Şekil 5.38. Tanker araç simülasyonu mekanik sistem modeli genel bölümleri	85
Şekil 5.39. Sınır şartları tanımlanmış tanker araç simülasyon modeli	86
Şekil 5.40. (a) Hava körüğü konfigürasyonu. (b) Amortisör konfigürasyonu	87
Şekil 5.41. Makas kulağı kauçuk burç konfigürasyonu	87
Şekil 5.42. Tekerlek modeli konfigürasyonu.	88
Şekil 5.43. King-pim bağlantısı konfigürasyonu	88
Şekil 5.44. Modeli doğrulama analizi kuvvet ölçüm noktaları	89
Şekil 5.45. Sonlu elemanlar modeli ve çoklu cisim modeli entegre şeması	90

Şekil 5.46. Craig-bampton metodu ile oluşturulan araç modeline ait yapı	sal
modlar	90
Şekil 5.47. Esnek modele ait konfigürasyon tablosu	91
Şekil 5.48. Hibrit araç simülasyonu yol sinyalleri tahrik noktaları	92
Şekil 5.49. Yol sinyallerinin araç tahrik noktalarına doğrusal hareket fonksiyonu	ile
atanması	93
Şekil 5.50. Yol sinyallerinin araç tahrik noktalarına doğrusal hareket fonksiyonu	ile
atanması	93
Şekil 5.51. MSC ADAMS solver ayarlarının yapılması.	94
Şekil 5.52. MSC ADAMS simülasyon kontrol ayarları ve koşturulması	95
Şekil 5.53. MSC ADAMS/Postprocessing modülü ve analiz sonuçları	nn
gösterimi	96
Şekil 5.54. MSC ADAMS/Durability modülü	96
Şekil 5.55. MSC ADAMS/Durability-Hot spot table fonksiyonu kullanımı	97
Şekil 5.56. ADAMS/Durability – modal koordinatların dışa aktarılması	97
Şekil 5.57. ADAMS/Durability – modal koordinatların dışa aktarılması	98
Şekil 5.58. nCODE yorulma simülasyonu modeli arayüzü	99
Şekil 5.59. nCODE yorulma simülasyonu modeli modülleri.	99
Şekil 5.60. nCODE yorulma simülasyonu modeli modülleri 1	01
Şekil 5.61. nCODE yorulma simülasyonu modeli modülleri 1	01
Şekil 5.62. nCODE sonlu elemanlar modeli sonuçları gösterimi 1	02
Şekil 5.63. nCODE sonlu elemanlar modeli sonuçları gösterimi 1	03
Şekil 5.64. nCODE gerilme ömür simülasyonu işlem adımları 1	04
Şekil 5.65. nCODE gerilme ömür simülasyonu S-N eğrisi konfigürasyonu 1	05
Şekil 5.66. Steel_UML_UTS500 malzemesine ait S-N eğrileri 1	05
Şekil 5.67. nCODE gerilme ömür simülasyonu konfigürasyonu 1	06
Şekil 5.68. nCODE gerilme ömür simülasyonu yükleme frekans aralığı 1	07
Şekil 5.69. Ncode gerilme ömür simülasyonu işlem adımları 1	08
Şekil 5.70. nCODE gerilme ömür simülasyonu işlem adımları 1	09
Şekil 5.71. Steel_UML_UTS500 malzemesine ait E-N eğrileri 1	10
Şekil 5.72. Neuber kuralı grafiksel gösterimi 1	11
Şekil 5.73. nCODE şekil değiştirme ömür simülasyonu konfigürasyonu 1	11

Şekil 6.1. Yerçekimi ivmesi etkisinde; yapısal analiz ile oluşan yer değiştirme
sonuçları 114
Şekil 6.2. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde yer
değiştirme sonuçları 114
Şekil 6.3. Yerçekimi ivmesi etkisinde; yapısal analiz ile oluşan von mises eş değer
gerilme sonuçları 115
Şekil 6.4. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde oluşan von
mises eş değer gerilme sonuçları 115
Şekil 6.5. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde oluşan von
mises eş değer gerilme sonuçları 115
Şekil 6.6. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde oluşan von
mises eş değer gerilme sonuçları 116
Şekil 6.7. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan yer değiştirme
sonuçları 116
Şekil 6.8. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan yer değiştirme
sonuçları
Şekil 6.9. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan von mises eş değer
gerilme sonuçları
Şekil 6.10. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan von mises eş değer
gerilme sonuçları
Şekil 6.11. Çukura düşme etkisinde; yapısal analiz ile oluşan yer değiştirme
sonuçları
Şekil 6.12. Çukura düşme etkisinde; yapısal analiz ile oluşan yer değiştirme
sonuçları 118
Şekil 6.13. Çukura düşme etkisinde; yapısal analiz ile şasi üzerinde oluşan yer
değiştirme sonuçları 119
Şekil 6.14. Çukura düşme etkisinde; yapısal analiz ile von mises eş değer gerilme
sonuçları 119
Şekil 6.15. Çukura düşme etkisinde; yapısal analiz ile von mises eş değer gerilme
sonuçları 119
Şekil 6.16. Çukura düşme etkisinde; yapısal analiz ile şasi üzerinde oluşan von mises
eş değer gerilme sonuçları 120

Şekil 6.17. Tümsek geçme etkisinde; yapısal analiz ile oluşan yer değiştirm
sonuçları
Şekil 6.18. Tümsek geçme etkisinde; yapısal analiz ile oluşan von mises eş değe
gerilme sonuçları 12
Şekil 6.19. Tümsek geçme etkisinde; yapısal analiz ile oluşan von mises eş değe
gerilme sonuçları
Şekil 6.20. Tümsek geçme etkisinde; yapısal analiz ile şasi üzerinde oluşan vo
mises eş değer gerilme sonuçları 12
Şekil 6.21. 3° Burkulma etkisinde; yapısal analiz ile oluşan yer değiştirm
sonuçları
Şekil 6.22. 3° Burkulma etkisinde; yapısal analiz ile şasi üzerinde oluşan ye
değiştirme sonuçları 122
Şekil 6.23. 3° Burkulma etkisinde; yapısal analiz ile oluşan eş değer von mise
gerilme sonuçları
Şekil 6.24. 3° Burkulma etkisinde; yapısal analiz ile şasi üzerinde oluşan eş değe
von mises gerilme sonuçları
Şekil 6.25. Modal analiz - yer değiştirme sonuçları
Şekil 6.26. Modal analiz sonuçları; yapısal modlar ve frekansları 12:
Şekil 6.27. Otoban yol profili ivme sinyalleri
Şekil 6.28. Şehir içi yol profili ivme sinyalleri 12
Şekil 6.29. Şehirler arası yol profili ivme sinyalleri 125
Şekil 6.30. Off-road yol profili ivme sinyalleri
Şekil 6.31. Köy yolları yol profili ivme sinyalleri 129
Şekil 6.32. Tanker ivme sinyallerine ait göreceli hasar analizi sonuçları 130
Şekil 6.33. Eşdeğer yol sinyali ivme verileri
Şekil 6.34. Köy yollarından toplanan birim şekil değişimi sinyalleri 132
Şekil 6.35. Otoban yollarından toplanan birim şekil değişimi sinyalleri 13.
Şekil 6.36. Şehir içi yollarından toplanan birim şekil değişimi sinyalleri 13.
Şekil 6.37. Şehirler arası yollarından toplanan birim şekil değişimi sinyalleri 134
Şekil 6.38. Off-road yollarından toplanan birim şekil değişimi sinyalleri 134
Şekil 6.39. Farklı yol profillerine ait asal gerilme sonuçları 13:
Şekil 6.40. Farklı yol profillerine ait asal gerinim sonuçları 130

Şekil 6.41. MSC ADAMS statik yükleme durumu için teker reak	csiyon
kuvvetleri	141
Şekil 6.42. Modal koordinat sonuçları grafik gösterim	143
Şekil 6.43. Modal koordinat sonuçları grafik gösterim (Devamı)	144
Şekil 6.44. Modal koordinat sonuçları grafik gösterim (Devamı)	145
Şekil 6.45. nCODE - 1. Simülasyonu sonucu - genel görünüş	148
Şekil 6.46. nCODE - 1. Simülasyonu sonucu - ön bölge görünüş	148
Şekil 6.47. nCODE - 1. Simülasyonu sonucu - arka bölge görünüş	149
Şekil 6.48. nCODE - 1. Simülasyonu sonucu - konsol bölgesi görünüş	149
Şekil 6.49. nCODE - 1. Simülasyonu sonucu - tampon bölgesi görünüş	150
Şekil 6.50. nCODE - 1. Simülasyonu sonucu - körük bölgesi görünüş	150
Şekil 6.51. nCODE - 1. Simülasyonu sonucu - körük bölgesi görünüş	151
Şekil 6.52. nCODE - 1. Simülasyonu sonucu - makas kulağı bölgesi görünüş	151
Şekil 6.53. nCODE - 2. Simülasyonu sonucu - genel görünüş	152
Şekil 6.54. nCODE - 2. Simülasyonu sonucu - tampon bölgesi görünüş	152
Şekil 6.55. nCODE - 3. Simülasyonu sonucu - genel görünüş	153
Şekil 6.56. nCODE - 3. Simülasyonu sonucu - genel görünüş	153
Şekil 6.57. nCODE - 4. Simülasyonu sonucu – genel görünüş	154
Şekil 6.58. nCODE - 4. Simülasyonu sonucu – ön bölge görünüş	154
Şekil 6.59. nCODE - 4. Simülasyonu sonucu – konsol bölgesi görünüş	155
Şekil 6.60. nCODE - 4. Simülasyonu sonucu – dingil bölgesi görünüş	155
Şekil 6.61. nCODE - 4. Simülasyonu sonucu – arka bölge görünüş	156
Şekil 6.62. nCODE - 4. Simülasyonu sonucu – makas kulağı bölgesi görünüş.	156
Şekil 6.63. nCODE - 5. Simülasyonu sonucu – genel görünüş	157
Şekil 6.64. nCODE - 5. Simülasyonu sonucu – konsol bölgesi görünüş	157
Şekil 6.65. nCODE - 5. Simülasyonu sonucu – dingil bölgesi görünüş	158
Şekil 6.66. nCODE - 5. Simülasyonu sonucu – plate bölgesi görünüş	158
Şekil 6.67. nCODE - 5. Simülasyonu sonucu – ön bölge görünüş	159
Şekil 7.1. Yol Sinyalleri ve Yapı Mod frekansları Karşılaştırılması	162

TABLOLAR LİSTESİ

Tablo 5.1. Yarı römork tankerin serbestlik derecesi tablosu.	58
Tablo 5.2. Noktasal kütle elemanlarının özellikleri	59
Tablo 5.3. Statik analiz senaryoları.	63
Tablo 5.4. Yol tiplerine göre araç kullanım yüzdeleri	65
Tablo 5.5. Ölçüm kanalları ve özellikleri	66
Tablo 5.6. Şekil 5.15'e göre ivme kanalları ve yerleşim bölgeleri	67
Tablo 5.7. Sinyal toplanan yol profillerinin özellikleri	67
Tablo 5.8. Yol sinyalleri ve yapı mod frekansları karşılaştırılması	112
Tablo 6.1. Model derecesi düşürme (Craig-Bampton) sonuçları	125
Tablo 6.2. Model derecesi düşürme (Craig-Bampton) sonuçları (Devamı)	126
Tablo 6.3. Sinyal toplanan yol profillerinin özellikleri	126
Tablo 6.4. Test eşleştirme analizi sonuçları.	131
Tablo 6.5. Eşdeğer yol sinyali ivme verileri kanal özellikleri	132
Tablo 6.6. Farklı yol profillerine ait asal gerilme sonuçları	137
Tablo 6.7. Farklı yol profillerine ait asal gerinim sonuçları	138
Tablo 6.8. nCODE gerilme-ömür analizi sonuçları.	139
Tablo 6.9. nCODE şekil değiştirme-ömür analizi sonuçları	140
Tablo 6.10. Statik yükleme durumu; prototip araç ve çoklu cisim simülasyonu.	141
Tablo 6.11. Sonlu elemanlar modeli titreşim analizi mod-frekans sonuçları	142
Tablo 6.12. Modal koordinat sonuçları	145

ÖZET

Anahtar kelimeler: Yorulma analizi, sonlu elemanlar modeli, çoklu cisim simülasyonu, ticari araç, römork, tanker şasi, bileşen mod sentezi, modal analiz, dinamik analiz, titreşimler, taşıt titreşimleri, ivme, strain gage.

Bu çalışmada, bir ticari yarı römork akaryakıt tanker şasinin yorulma karakterinin belirlenmesi amacıyla aracın statik davranışlarından ziyade özellikle yoldan gelen yükleme frekanslarının araç şasisinin doğal frekanslarını tahrik etme olasılığından dolayı dinamik yüklemeler altındaki titreşim kaynaklı yorulma durumu incelenmiştir. Bir sonlu eleman çözücüsü olan ANSYS programı yardımıyla doğal frekans analizleri ve statik analiz senaryoları yapılmış ve model üzerindeki kritik bölgeler tespit edilmistir. Aracın yorulma karakterinin gerçek yol sinyalleri ile incelenebilmesi amacıyla Türkiye koşullarında farklı yol güzergâhları üzerinden ivme ve birim şekil değişimi sinyalleri toplanmıştır. Sinyal işleme programı olan nCODE yazılımı ile zaman düzlemindeki ivme değerleri frekans bazında ifade edilerek sonlu elemanlar modeli doğal frekansları ile karşılaştırılmıştır. Toplanan birim şekil değişimi sinyallerine belirlenen bir S-N eğrisi ile yorulma analizi yapılarak FEM modeli ile uygunlukları kontrol edilmiştir. Ayrıca, toplanan sinyallerin nCODE yazılımında göreceli hasar etkileri incelenerek, yollar kategorize edilmiş ve bilgisayar simülasyonunda kullanmak üzere eşdeğer hasar oranına sahip bir yol profili oluşturulmuştur. Araç modelinin, elde edilen eşdeğer yol profili ivme sinyalleri ile dinamik olarak analiz edilmesi amacıyla MSC ADAMS yazılımı ile sonlu elemanlar modeli cıktıları birlikte kullanılarak hibrit bir arac modeli olusturulmustur. Sonlu elemanlar modeli doğal frekans sonucları model derecesi düsürme yöntemi (Craig-Bampton) kullanılarak MSC ADAMS yazılımına entegre edilmiş ve model doğal frekanslarının yol sinyallerine göre tahrik sonuçları modal koordinat değerleri olarak elde edilmiştir.

Aracın şasi yorulma dayanımının incelenmesi amacıyla, oluşturulan hibrit araç modelinden elde edilen frekansa bağlı modal koordinat sonuçları nCODE Designlife yazılımına aktarılmıştır. Farklı frekans bantlarında yorulma simülasyonları yapılarak doğal frekanslar ile yol sinyalleri tahrik frekanslarının çakıştığı bantlardaki yorulma durumları incelenmiştir.

DURABILITY INVESTIGATION OF A COMMERCIAL SEMI-TRAILER FUEL TANKER CHASSIS WITH REAL ROAD DATA BY USING COMPUTER

SUMMARY

Keywords: fatigue analysis, finite element model, multi body dynamics, commercial vehicle, trailer, tank chassis, component mod synthesis, modal analysis, dynamic analysis, vibration, vehicle vibration, acceleration, strain gage.

In this study, vibration induced fatigue behavior of a commercial semi-trailer fuel tanker chassis has been investigated due to the fact that the natural frequency of the chassis is driven by the loading frequency. A finite element solver which is called ANSYS has been performed for modal analysis and static analysis scenarios to determine the critical points of vehicle model. In order to vibrate vehicle chassis at their natural frequencies and calculate chassis fatigue life, different road profiles are selected to collect acceleration and strain data in Turkey. Time domain acceleration signals are converted into frequency domain to compare with natural frequencies of the chassis by means of a data acquisition software nCODE. Also time domain strain signals are used for fatigue life calculations of critic points with selected S-N curve in order to check the accuracy of the FEM model results. Signal collected roads has been categorized according to their relative damage effect with using relative damage function of nCODE software and equivalent road profile has been formed for use in dynamic multi body simulations. Multi body dynamics model and finite element model have been combined with the MCS ADAMS software to create hybrid vehicle simulation model in order to do dynamic analysis of vehicle chassis. Natural frequencies results of finite element modal analysis has been transferred to MSC ADAMS software using model order reduction method (Craig Bampton) and the natural frequencies of the vehicle chassis has been driven by equivalent road signal and the results has been obtained as modal coordinate values.

In order to investigate the fatigue strength of the vehicle chassis, Modal coordinate results and finite element modal analysis (Craig-Bampton) results has been transferred into Ncode Designlife software. Fatigue simulations performed in different frequency bands and the fatigue effect of the loading frequencies coinciding with the natural frequencies has been investigated.

BÖLÜM 1. GİRİŞ

1.1. Amaç

Aracın kalite ve fonksiyonlarını aracın yararlı ömrü boyunca devam ettirmesi olarak tanımlanan araç dayanımı ticari araç sektöründe oldukça önemli bir yere sahiptir. Araç parçalarının yapısal dayanımı müşteri memnuniyeti ve maliyet açısından araç dizaynı ve geliştirilmesi aşamalarında dikkat edilmesi gereken en önemli noktalardan biridir. Bu tez kapsamında Türkiye şartlarında; yarı römork akaryakıt tankerinin şasisinin araç dayanımı açısından incelenmesi için, belirli yükleme koşulları altında FEM analizleri ile incelenmesi sağlanacaktır. Yapılan incelemeler sonucunda belirlenen kritik bölgelere strain-gage sensörleri, teker bölgeleri ve king-pim üzerine ivmeölçerler monte edilerek farklı yol kategorilerinde araç kullanılarak ölçümler alınacaktır. Yapılan ölçümler sonucu elde edilecek olan gerinim, gerilme ve ivme sinyallerinin işlenmesi suretiyle, şasi üzerindeki yorulma davranışı ve hasar etkileri incelenecektir. Aynı zamanda yoldan toplanan veriler kullanılarak bilgisayar ortamında Sonlu Elemanlar Modeli ile Dinamik Araç Modelinin ortaklaşa kullanıldığı bir karma araç simülasyonu oluşturularak yol sinyallerinin araç üzerindeki dinamik etkileri altında araç modelinin yapısal davranışı elde edilecektir. Yapının dinamik etkiler altındaki yorulma davranışının incelenmesi amacıyla farklı frekans aralıklarında yorulma analizleri yapılarak aracın yorulma sonuçları elde edilecek ve gerçek yol sinyalleri ile karşılaştırılacaktır.

1.2. Treylerin Tarihçesi

Römork bilindiği üzere motorlu araç arkasına takılıp çekilen yük taşıma amaçlı karayolu aracıdır. Römork kelimesi Fransızca menşeli olup İngilizce trailer kelimesinden Türkçeye geçerek treyler şeklinde ifade edilmektedir [1].

Çekici ve yarı römorkun oluşturduğu katar günümüzde bütün dünyada karayollarında yük taşıma aracı olarak en çok kullanılan taşıttır. Dünyanın küreselleşmesi ile paralel olarak uluslararası ticaretin aktifleşmesi; kara, deniz, hava ve raylı taşımacılık sektörlerini harekete geçirmiştir. Kara yolu taşımacılığı diğer taşımacılık yollarına kıyasla; ekonomik olması sebebiyle en çok tercih edilen taşımacılık yöntemi olmuştur [2].

Kara yolu taşımacılığı ucuz olmasına rağmen, yükü taşıyan yol zeminin maliyetinin yüksek olması sebebiyle taşıtlar; hız, taşıma kapasitesi, uzunluk, genişlik ve yükseklik gibi teknik özelliklerinde bir takım sınırlandırmalara tabii tutulmuşlardır. Bununla birlikte; karayolu araçlarında kullanılan yakıtın pahalı olması da, taşıma seferlerinin en minimum sayıda yapılmasını beraberinde getirmiştir. Bu sebeplerden dolayı; taşımacılıkta yarı römorkların kullanımı tercih nedeni olmuştur [2].

Yarı römorklar, uluslararası yollarda kullanılırlar. Yük taşıma kapasitesini artırmak amacıyla ve ihtiyaç şekline yönelik olarak farklı tip ve teknik ölçülerde araçlar üretilmiştir. Bu üretilen araçların bir kısmı standartlaştırılmıştır. Standartlaştırılan yarı römorkların en belirgin olanları; kuru yük tipi yarı römork, van tipi (kapalı kasalı) yarı römork, lowbed tipi yarı römork, damper tipi yarı römork ve çalışma konumuz olan tanker yarı römorktur. Bu tiplerin dışında, özel ihtiyaca yönelik olarak tahıl taşıyıcı (silo bus), pamuk taşıyıcı, meşrubat taşıyıcı, otomobil, taşıyıcı, v.b. yarı römorklar imal edilmiştir [2].

BÖLÜM 2. TAŞITLARDA TASARIM VE DOĞRULAMA

Otomotiv sektöründeki firmaları ele alırsak, yeni bir ürün tasarımında veya mevcut ürünlerdeki modifikasyonlarda ilk olarak ürünün sanal modelini oluşturup, bilgisayar ortamında analizleri yapılmaktadır. Ancak, bilgisayar ortamlarında hesaplanan bu analizlerin daha sonra gerçek model üzerinde yapılacak testler ile doğrulanması çalışmasının yapılması gerekmektedir [3].

Test maliyetlerinin ve sürelerinin ise otomotiv sektörde önemi oldukça fazladır. Aşağıda da belirtilen tasarım döngüsü yardımı ile bu test maliyetlerinin ve sürelerinin azaltılması mümkün olabilmektedir.

Şekil 2.1. Tekrarlı dinamik yüklemeye göre tasarım döngüsü.

Tekrarlı dinamik yüklemeye göre tasarım döngüsü Şekil 2.1'de gösterilmiştir. Bu süreç küçük ve büyük döngü olarak ikiye ayrılmaktadır. Küçük döngü, taşıtın sanal modeli üzerinde yapılan analizler ve hesaplamalardan oluşmaktadır. Bu döngüde sanal model belirli yükleme koşullarında analiz edilmektedir. Büyük döngü ise ancak aracın gerçek modeli oluşturulduktan sonra gerçekleştirilebilmektedir. Büyük döngü analizi yapılacak taşıt üzerinde oluşan gerilmelerin ölçülmesi ile gerçekleşmektedir. Burada iki yöntem izlenebilmektedir [3].

İlk yöntemde, taşıtın kötü yol pistlerinde test edilerek veri toplanmaktadır. İkinci yöntem de ise taşıtın laboratuvar ortamında "hidropuls" standı üzerinde test edilerek veri toplanmaktadır. İkinci yöntem olan hidropuls testinde araç üzerine etki ettirilecek sinyaller, kötü yol koşullarındaki pistlerden veya gerçek yollardan toplanarak ve eş hasar yaratacak şekilde çeşitli yöntemler ile hidropuls sistemine aktarılmaktadır. Kötü yol koşullarındaki pistleri veya hidropuls testleri yardımı ile sanal ortamda tasarımı ve analizi yapılmış olan bir ürünün doğrulaması hızlı bir şekilde sağlanmış olunmaktadır [3].

Taşıt üzerinden toplanan veriler dinamik yüklerden oluşmaktadır. Bu verilerin anlamlı hale gelmesi ancak toplanan verilerin saydırılması sonucunda oluşturulan istatistiksel dağılımlar ile mümkün olmaktadır. Oluşturulan bu istatiksel dağılımlara yük kolektifleri denilmektedir [4].

Sonuç olarak, iki tasarım döngüsü birbirini tamamlamakta ve veri akışı ile beslemektedir. Gerçek modelden toplanan ve değerlendirilen veriler daha sonra sanal model oluşturulurken de kullanılmaktadır. Dikkat edilmesi gereken nokta, sanal modelin de tek başına bir tasarımda yeterli olmaması ve gerçek bir model ile doğrulamasının yapılmasına ihtiyaç duyulmasıdır.

Tez kapsamında yapılan çalışma; veri toplanması, hasar analizi gerçekleştirilmesi ve sonrasında analitik yorumun yapılarak sanal model üzerinden yapılan çalışmanın doğrulamasının sağlanmasını veya aksi bir durumda ise tasarım optimizasyonunun gerekliliğinin belirtilmesini kapsamaktadır.

Şekil 2.2. Tasarım süreç diyagramı.

2.1. Araç Dayanımı

Araç parçalarının yapısal dayanımı müşteri memnuniyeti açısından araç tasarımı ve geliştirmesi sırasında değerlendirilmesi gereken en önemli unsur olmaktadır. Araç dayanımı, diğer bir tanımlama ile belirlenen ve müşteri hedefleri doğrultusunda aracın veya parçaların işlevlerini ilk alınan durum gibi devam ettirmesidir. Ayrıca, aracın kalite ve fonksiyonlarını aracın yararlı ömrü boyunca devam ettirmesi, diğer bir tanımlama olarak verilebilmektedir [5].

Dayanım açısından yüksek olan bir parça müşterinin belirlediği özel durumlar ve zaman aralıkları içerisinde, yapısal hasar ve aşınmalardan dolayı tamire ve değişime uğramamalıdır. Geniş anlamda düşünüldüğünde ise araç, sistemler, alt sistemler ve bileşenler bazında herhangi bir hasarla karşılaşmadan özel hedefleri sağlamalıdır.

2.2. Araç Dayanımı ve Hasarlanmalar

Geniş anlamda düşünüldüğünde araç, sistemler, alt sistemler ve bileşenler bazında herhangi bir hasarla karşılaşmadan özel hedefleri sağlamaktadır. Aracın fonksiyonunu devam ettirmesinden ziyade, araçta oluşacak diğer durumlarda hasarlar görülebilmektedir. Bunlar aşağıda belirtildiği gibidir:

- Gövde yapılarında hasarlanmalar; birinci ve ikinci sınıf yüzeylerde oluşan çatlaklar ve deformasyonlar araç fonksiyonuna etkilerinden dolayı hasar olarak değerlendirilir.
- Şasi yapısında hasarlanmalar; şasiyi oluşturan parçalarda meydana gelen çatlamalar, kırılmalar, deformasyonlar ya da bağlantı yerlerinde oluşan gevşemelerden dolayı aracın yol tutuş ve direksiyon hâkimiyetinin değişmesi ve kolayca işitilebilen sesler oluşmasına neden olur.
- Dönen parçalar; özellikle aracın motoru, aksı ve dişli kutusunda bulunan dönen parçalarında meydana gelecek hasarlar aracın fonksiyonunu yitirmesine sebebiyet verir.
- İç döşemede meydana gelen hasarlar; aracın görselliğine hitap eden iç kısmındaki parçalardaki görünen çatlaklar ve yırtılmalar aracın doğrudan fonksiyonunu yitirmesine neden olmasa da hasar olarak değerlendirilir.
- Araç boyasında ve yapıştırıcılarında meydana gelen hasarlar.

Aracın fonksiyonunu yitirmesine neden olabilecek hasarlar olabileceği gibi işlem açısından araca zarar vermeyip görselliğe hitap eden aracı durdurmayan olaylar da hasar olarak kabul edilir [5].

2.3. Tasarım Doğrulama

Her bir tasarım, araç yapısal dayanımına uygun olarak testler veya analitik yöntemler kullanılarak doğrulanır. Tasarımın farklı evrelerinde testler ve analitik analizlerden yararlanılır. Analitik analizler ile belirtilen bilgisayar destekli mühendislik (CAE) araçlarından yararlanılarak elde edilen veriler, gerçek hayattaki durumun doğruya en yakın şekilde sanal ortamdaki benzetimi olarak tanımlanabilmektedir. Tasarım doğrulama, kendi içerisinde gerçek yol testleri ile doğrulama ve bilgisayar destekli mühendislik ile doğrulama olarak ikiye ayrılmaktadır.

2.3.1. Gerçek yol testleri ile doğrulama

Bu tipte testler taşıtların gerçek yollarda test edilmesi ile gerçekleştirilmektedir. Genellikle test süreleri uzun olmaktadır ve taşıtlar karayollarında normal trafik şartlarında sürülmektedir. Artık demode bir yöntem olmasına rağmen günümüzde hâlâ birçok firma tarafından uygulanmaktadır. Genellikle test km'leri oldukça uzundur. Binek taşıtlar için test süreleri 300.000 km'ler mertebesinde, ağır taşıtlar için ise bu rakam 1 milyon km mertebesinde olmaktadır [5].

2.3.1.1. Hızlandırılmış özel test pistlerinde yapılan testler

Taşıt testleri eğer gerçek yol şartlarında yapılmak istenirse test süreleri çok uzun olmaktadır. Bu uzun süreler rekabetçi bir sektör olan otomotiv sektöründe kesinlikle istenmemektedir. Bir örnek vermek gerekirse: Bir otobüsün test maksadıyla üretime çıkmadan önce, ortalama 60 km/saat hızla 300.000 km ömür için, 24 saat sürekli olarak 7 ay süresince kullanılması gerekmektedir. Bu süre ağır vasıta bir taşıt için daha uzun olacaktır. Fakat böyle bir çalışmayı gerçek yol şartlarında bu kadar kısa sürede ve 24 saat sürekli olarak kullanarak yapmak imkânsızdır. Aynı testi, yoldan alınan gerçek yol sinyallerinin laboratuvar ortamına taşınması ve burada 24 saat sürekli çalışması durumunda ancak 7 ay içerisinde bitirmek mümkündür. Fakat bu süre, rekabetçi bir piyasada oldukça uzun bir süreye karsılık gelmektedir. Bu amaçla aynı km'ye tekabül eden ve daha kısa olan veya istenilen sürede, araçta aynı yorulma deformasyonlarını oluşturacak, hızlandırılmış yol sinyallerinin üretilmesi veya yoldan alınan gerçek yol sinyallerinin (revize edilmesi) yoluna gidilmektedir. Amerika Birleşik Devletleri'nin Nevada eyaletindeki otomotiv test merkezindeki gibi özel olarak tasarlanmış belli uzunluklardaki yol kaplamaları veya parkurlarında bu ömrün saptanması mümkün olabilmektedir [6].

Şekil 2.3. Hızlandırılmış yol testi parkuru [7].

2.3.1.2. Laboratuvar ortamında yol simülatör testleri

Yol testleriyle doğrulanabilen ve üretim için onay verilen araç testleri için bir diğer yer laboratuvardır. Araçların yapısal dayanım performanslarını değerlendirmek için birçok laboratuvar testi bulunmaktadır. Bu testler komple araç bazında yapılabileceği gibi bileşen bazında da yapılabilmektedir. Araç seviyesinde atalet etkileşimli araç dayanım testleri dingil etkileşimli araç testleri ve tekerlek etkileşimli araç testleri olmak üzere genel olarak iki kısma ayrılmaktadır.

Şekil 2.4. Dingil uyartılı komple araç testi [8].

Şekil 2.4 ile görülen test düzeneği tekerlek göbeği etkileşimli olup aracın yol şartlarının benzetimi için, her bir tekerlek göbeğinden birbirinden bağımsız olmak üzere x, y ve z yönlü toplam 13 kanal giriş sinyali verilebilmektedir. Sinyal kanalları ile dikey, yatay yüklerin yanında frenleme, viraj dönüşü gibi manevra durumları da araç üzerinde uygulanabilmektedir. Bu test düzeneğinde araç tekerlekleri ve jantlar çıkartılmış olup yol sinyalleri direkt olarak tekerlek göbeği üzerinden araca aktarılmaktadır.

Şekil 2.5. Tekerlek etkileşimli komple araç testi [9].

Şekil 2.5 ile gösterilen test düzeneği aracın gerçek yol şartlan altında toplanmış deplasman ya da kuvvet değerlerini dört adet hidrolik silindir ile tekerlekler vasıtasıyla araca iletmektedir. Araç yol testlerine götürülmeden laboratuvar ortamında hızlandırılmış gerçek yol verileri ile aracın yapısal dayanımı belirlenmektedir.

Araç bazında testlerden ziyade laboratuvar ortamında yapılan testlerden bir diğeri parça odaklı yapısal dayanım testleridir. Bu testlerin bir diğer adı ise parça ömür testleridir. Uygun yükler ve sınır koşulları altında gerçek durumun simülasyonunu yapacak şekilde özel test düzeneklerine sabitlenmiş olan araç parçalarının testleri bu gruba girmektedir. Parça odaklı ömür testlerinde, aşırı yükler ve % 90 çevresel etkili müşteri kullanım şartlarının arttırılarak sisteme verilmesi ile hızlandırılmaktadır. Hasar etkisi olmayan çevrimler yük spektrumlarından çıkarılarak limitli sayıda yük çevrimi altında ömür tespitleri yapılmaktadır. Şekil 2.6'da bir ticari aracın arka süspansiyon sisteminin yorulma dayanımının test edilmesi hazırlanan ve hidrolik silindirler ile kontrol edilen test düzeneği görülmektedir [5,6].

Şekil 2.6. Ticari bir araca ait süspansiyon bileşeninin yorulma test düzeneği [10].

2.3.2. Bilgisayar destekli mühendislik ile doğrulama

Günümüzde teknolojinin ulaştığı seviye gerek fizibilite, gerek ön tasarım gerekse de nihai modelleme ve analizlerin bilgisayar destekli olarak yürütülmesini zorunlu hale getirmiştir. Geliştirilen nümerik modelleme yöntemleri bir mühendislik sisteminin kurgulanmasında gerek duyulacak alt tasarım unsurlarının eş zamanlı ele alınmasına ve sistemin sanal ortamda oluşturularak incelenmesine ve analiz edilmesine olanak sağlaması nedeniyle "bilgisayar destekli" analizlerinin önemini arttırmaktadır. Elle hesaplama yöntemiyle yapılamayacak analizlerin olanaklı hale gelmesi "bilgisayar destekli" analizlerinin önemini arttırmaktadır. Bu analizlerin başlıca faydaları arasında:

- Tasarım konseptinin ve imalat süreçlerinin doğrulanması,
- Tasarım aşamasının ilerlemiş safhalarında daha az modifikasyona gereksinim duyulması,
- Üründe ağırlık ve maliyet açısından tasarruf sağlanması,
- Simülasyon ile tasarımın görselleştirilmesi,
- Gerçek ortamlarda (ör: 1s1l, elektromanyetik ve akışkanlı ortamlarda) ürünün işleyişinin öngörülmesi,
- Fiziksel prototip ve test yapımı ihtiyacının en az indirgenmesi,
- Tasarım döngü sürelerinin kısalması,
- Tasarım maliyetlerinin azaltılması gibi konular yer almaktadır.

Bu faydaları anlayan kuruluşlar tarafından önemi kavranan bilgisayar destekli mühendislik analizleri artık vazgeçilmez unsurlar olmuştur [11].

Bilgisayar destekli mühendislik analizleri için geliştirilen birçok nümerik yöntem bulunmaktadır. Bu yöntemler en çok kullanılanı Sonlu Elemanlar Metodudur. Sonlu elemanlar metodu mühendislikte sınır değer problemlerinin yaklaşık çözümlerine ulaşmak için kullanılan bir hesaplama tekniğidir. Basitçe, sınır değer problemi, bir veya birden fazla bağımlı değişkenin belli bir alan içerisinde diferansiyel denklemler olarak yorumlanması ile ortaya çıkan bir matematik problemi şeklinde ifade edilebilmektedir [11].

Sonlu elemanlar analizi, bir yapıyı önce birden çok elemente bölerek, sonrasında her elementin davranışını basit bir şekilde tanımlayıp bu elementleri belirli noktalarda birbirine tutturarak gerçekleştirilmektedir. Bu süreç birçok matematiksel denklemi meydana getirmektedir. Gerilimde bu denklemler bağlantı noktalarındaki eşitlik denklemleridir. Bu denklemler genellikle yüzlerce hatta binlerce olduğu için

bilgisayar kullanımına ihtiyaç vardır. Şekil 2.7'de ağ modeli oluşturulmuş bir araç modeli görülmektedir.

Şekil 2.7. Sonlu elemanlar metodu ile model tanımı ve ağ modeli.

Sonlu elemanlar metodunda fiziksel problemin çözümünde bazı belirli adımlar belirlenmiştir. Bu adımlar fiziksel problem ne olursa olsun benzer şekilde bazı analiz programlarının içinde hazır paket olarak sunulmaktadır. Bu adımlar aşağıdaki gibidir:

- 1) Ön işlem (Model tanımı)
- 2) Hesaplama
- 3) Son işlem

Eğer problem yanlış şekilde tanımlanmış ise, çok iyi hesaplanmış bir sonlu elemanlar analizinin hiçbir anlamı olmamaktadır. Bu yüzden en önemli adım ilk adım olan "Model tanımı" olmaktadır. Modelin geometrik tanımı, modelde kullanılacak elemanlar, elemanların geometrik özellikleri, kullanılan malzemelerin özellikleri, oluşturulacak model ağı, sınır şartları ve yükler bu adımda belirlenmektedir. İkinci adım olan hesaplama, bilgisayar programları yardımı ile yapılmaktadır. Bu aşamada, denklemlerin çözümü gerçekleştirilmektedir.

Üçüncü adımda, sonuçlar analiz edilerek değerlendirilmektedir. Elemanlarda oluşan gerilmeler, genliklerine göre gruplanabilmekte ve sistemin dinamik davranışı hakkında bilgi sahibi olunmaktadır [11].

BÖLÜM 3. TAŞITLARDA YORULMA HASARI

3.1. Taşıtlarda Yorulma Tarihçesi

Malzemelerin statik ve dinamik yükler etkisinde yorulması yüzyıllar boyunca insanların ilgisini çekmiş ve önemli bir araştırma konusu olmuştur. Kullanım koşullarına uygun konstrüksiyonların inşa edilebilmesi ve bu konstrüksiyonlarda kullanılacak malzemelerin doğru seçilebilmesi amacı ile birçok araştırma yapılmıştır. Günümüzde kullanılan yorulma analizi süreçlerinin temelleri de uzun yıllar öncesine dayanmaktadır. Yorulma analizi hakkında bilinen ilk kayıt 1837 tarihinde Wilhelm Albert tarafından yazılmış bir makaledir [12]. Alman maden mühendisi olan Wilhelm Albert, metal yorulması hakkında incelemeler ve araştırmalar yapan ilk kişi olarak bilinir. Demir maden zincirlerinin tekrarlayan ufak yüklerin etkisinde yorularak kopması ile ilgili çalışma yapmıştır.

İlerleyen yıllarda dünyada tren ulaşımı önem kazanmaya başlamıştır. Ancak yorulma konusunun tam olarak anlaşılamaması ve bilgi eksikliklerinin sonucu olarak trenlerde aks kırılmaları oluşmuş ve dolayısı ile tren kazaları meydana gelmiştir. Bu durum, mühendisleri bu alanda inceleme yapmaya yöneltmiştir. Bu dönemde inşaat mühendisi olan W. J. Rankine akslarda oluşan kırıkla incelemiş ve malzemelerde oluşan çatlak oluşumu ve ilerlemesi hakkında makaleler yazmıştır [13].

Metallerin yorulması hakkında ilk sistematik araştırmalar Alman mühendis August Wöhler tarafından yapılmıştır [14]. Sistematik araştırmasının ilk örneği S-N eğrileri (Wöhler eğrileri) olarak bilinir. Bu eğrilerin oluşturulması ile malzemelerin yorulma davranış karakterleri hakkında bilgi sahibi olunmuştur.

1945'de M.A. Miner [15], ilk olarak 1924'de A. Palmgren [16] tarafından ortaya atılan bir kuralı tekrar popüler hale getirmiştir. Bu yüzden bu kurala Palmgren-Miner

kuralı da denmektedir. Bu kural lineer hasar hipotezi olarak tanımlanabilir. Daha sonraki yıllarda, saydırma metotlarının ortaya çıkışı ve bilgisayar desteğinin yapılan analizlerde kullanılması, yorulmanın otomotiv endüstrisinde de yer edinmesini sağlamıştır. Günümüzde ömür analizi birçok otomotiv firması tarafından kullanılmaktadır.

3.2. Yorulmanın Tanımı ve Teorisi

Yorulmanın tam olarak tanımı, bir makina parçasının dinamik yükler altında, statik dayanım sınırının çok altında zorlanarak hasara uğramasıdır. Yorulma ömrünü etkileyen iki önemli faktör, dinamik yüklerin tekrar sayısı ve yüklerin genlikleridir. Günümüzde birçok endüstride hasarın önlenmesi amacı ile yorulma analizi yöntemleri kullanılmaktadır. Özellikle uçak, inşaat, otomotiv gibi insan yaşamının da etkileyebileceği sektörlerde bu yöntemler daha da önem kazanmaktadır.

Şekil 3.1. Değişken genlikli yük.

Şekil 3.1'de verilen yükleme grafiğinde gerilme değerlerinin sabit olmadığı, zaman göre sürekli değiştiği görülmektedir. Bu durum söz konusu yükleme için malzeme yorulmasının hesaba katılması gerektiğini göstermektedir.

Gevrek türde kırılmalarda en çok rastlanan ve geniş bir gerilme genliğinde görülen kırılma tiplerinden biri "yorulma kırılması" olmaktadır. Çatlağın oluşumu ve gelişimi gözlemsel olarak düz ve parlak yüzey karakteri gösterir ve dereceli çatlak büyümesi aşaması olarak adlandırılmaktadır. Kaba kristal görünümlü görüntü veren bölge ise hızlı ve son kırılma bölgesidir, aynı zamanda ani kırılma olarak da adlandırılmaktadır. Şekil 3.1'de kırık yüzeyin düzgün ve mat görünümlü bölgesinde

farklı genlikteki değişken yüklerin etkisiyle oluşan duraklama çizgileri tespit edilebilmektedir. Yorulma kırılmasının başka bir özelliği de makro çapta plastik deformasyon göstermesidir. Bu sebeple gevrek kırılma ile benzerlik göstermektedir [17].

Şekil 3.2. Yorulma kırılması genel görünüşü [17].

Metal yorulması konusunda ilk çalışmaların yapıldığı zamanlarda yorulma çatlağı oluşumunun, çatlağın ilerlemesi aşamasına nazaran, yorulma ömrünün tayini açısından daha önemli olduğu düşünülmekteydi. Son on yıl içerisinde çatlağın formasyonu ve gerilimi konusunda dikkate değer teknik eserler verilmiştir. Şekil 3.3'te Wöhler eğrisinin, çatlağın oluşumu ve çatlak gelişimi şeklinde ikiye ayrılmış şematik çizimi görülmektedir. Şeklin logaritmik skala ile çizilmiş olması sayesinde grafiğin bütün olarak incelenmesi ve malzemenin yorulma davranışının yorumlanmasında oldukça fayda sağlamaktadır. Gerilme genliğinin artması ile yorulma ömrüne karşılık gelen çevrim sayısındaki düşüş, yorulma çatlağının hem oluşum hem de gelişim safhalarında açıkça görülmektedir [17].

Çevirim sayısı(Log skala)

Şekil 3.3. Yorulma başlangıç ve gelişim eğrileri [18].
Sonuç olarak; yorulma eğrileri olarak adlandırılan ve malzemelerin tekrarlı yükler altındaki yorulma karakteristiklerini belirleyen grafikler, metalik malzemelerin servis ortamı içerisinde güvenli çalışabileceği koşulların sağlanmasında ve yorulma ömrü tahminlerinin yapılmasında önemli rol oynamaktadırlar. Özellikle test numunelerinden farklı olarak, malzemelerin kendi özelliklerinden kaynaklanan yüzey hataları ve kristal yapıdaki bazı düzensizliklerin, parçanın toplam yorulma ömrü içerisinde yorulma çatlağının oluşum sürecini azaltabileceği ve hatta yok edebileceği söylenebilmektedir. Yorulma çatlağının metal yüzeyi üzerinde bölgesel olarak oluşumunu şu nedenlere bağlanabilmektedir:

- Çentik etkisi sebebi ile pratikte genellikle mühendislik malzemelerinde, keskin açılı kesitler veren çentik veya kanal gibi bölgesel şekil değişimi görülen noktalarda gerilme yoğunluğunda artış görülmektedir,
- Yüzeydeki kristaller iç bölgelere nazaran daha az desteklidir. Bu yüzden yüzeyde kayma ihtimali daha fazla olmaktadır.
- Atmosferik reaksiyonlar etkili olmaktadır.
- Bir mühendislik malzemesinin, tekrarlı yüklerin etkisinde kaldığı zaman yüzeyinde bölgesel kayma olayı görülebilmektedir. Kayma, kristal kafesin içerisinde olur ve atomların birbirine paralel düzlemler üzerinde yer değiştirmesi ile gerçekleşir. Kayma bantlarının hareketi ile yüzeyde çıkıntı ve çöküntülerin oluşumu ile son bulur.
- Gerilme yoğunluğu (çentik) etkisi: Yorulma çatlakları çoğunlukla gerilme arttırıcıların sebebi ile gerilme yoğunluğunun fazla olduğu bölgelerde başlangıç gösterirler. Gerilmeyi arttırıcı etki, ani kesit değişimi veya gerilme dağılımını etkileyen başka faktörlerden kaynaklanabilmektedir.

Gerilme arttırıcılar malzemenin yorulma ömrünü kısaltmaktadır. Mekanik (çukurlar, kanallar, çentikler, kenarlar, yivler) veya metalürjik (porazite, inklüzyon, segregasyon) olabilmektedir. Her türlü oluşan süreksizlik (discontinuities) bölgesel gerilme seviyesinde artışa neden olmaktadır [19].

3.3. Yorulma Yüzeyinin Genel Görünüşü

Makroskobik inceleme: Yorulma kırılmasına uğramış metalik malzemeler genellikle çok az plastik deformasyon gösterirler. Statik kırılmalarda süneklik ve tokluk, deformasyonu belirleyen önemli iki kriterdir. Malzemenin tokluğunun artması ile tolerans alanı içinde kalan çatlak uzunluğu artar. Yorulma yüzeyi mekanik parçaların kırılma karakteristiğini ve çevrimsel işlem safhalarını gösteren kıyı çizgileri adı verilen izler içerir. Yorulma kırığı yüzeyleri karşılıklı olarak sürtünmenin sonucunda düz ve oldukça pürüzsüz bir görünüm alır. Şekil 3.4'te bir bisiklet pedalına ait alüminyum krank parçası üzerinde meydana gelen yorulma kırılmasına ait yüzey şekli görülmektedir [17,19].

Şekil 3.4. Yorulma kırılmasına uğramış parçaya ait yüzey resmi [20].

3.4. Gerilmenin ve Hasarın Hesaplanması

Otomotiv sektörüne yorulmanın incelenmesi için çeşitli yöntemlerin izlenmesi gerekmektedir. En genel haliyle yorulmanın incelenmesinde, bir gerilme değişimine ait değerler ve malzemeye ait yorulma eğrileri olarak isimlendirilen SN eğrilerine ihtiyaç vardır. Bu iki faktör elde edildikten sonra yorulma ömrü ve hasarının hesaplanması yapılabilmektedir. Şekil 3.5'te gösterildiği üzere; bir yük değişiminden elde edilen gerilme sonuçları bir saydırma yöntemi sayesinde sayılarak yüklemenin değişim karakteri ve genlikleri elde edilerek malzemeye ait yorulma eğrileri üzerinden yorulma hasarı ve ömrünün hesaplanması sağlanmaktadır.

Şekil 3.5. Yorulma analizi süreç diyagramı [21].

3.4.1. Gerinim-gerilme kavramı

Yakın zamanlara kadar, ölçme aletini direk olarak kullanarak, bir parça üzerinde ortaya çıkan gerilmelerin ölçülmesi en büyük mühendislik problemlerinden birisiydi. Elektrik dirençli gerinim ölçerlerin bulunuşundan önce bu amaç için mekanik uzama ölçerler (extensometre) kullanılmıştır. Bunların bazı dezavantajları olmakta idi. Gerekli ölçüm (gauge) uzunluğu 12 mm den az değildi. Hacimleri, sınırlı yer şartları için elverişli değildi. Bu yüzden pek çok gerilme problemi emniyet faktörleri esas alınarak çözülmüştür. 1866'da Lord KELVİN, metal bir tel üzerine gerilim uygulandığı zaman, tel uzunluğu ve çap değiştiğinde elektrik direncinin de değiştiğini bulmuştur. Böylece gerinim (strain) veya diğer ismiyle birim uzama ölçümünün temel prensibi oluşturulmuştur.

Dış kuvvete maruz kalan bir parça, gerilim altındadır. Gerilim direk olarak ölçülmez, ancak etkisi ölçülebilmektedir. Gerilim ile gerinim (strain) arasındaki ilişki hesaplama için gereklidir.

Birim uzamanın tanımını iyice anlamak için Şekil 3.6'daki gibi, L boyunda homojen bir çubuğun bir F kuvvet ile çekildiğini ve basma etkisinde kaldığı kabul edildiği zaman, çubuğun eksen boyunca uzayıp kısalması doğrusal yayılımlı olmaktadır. Verilen F yükü için yayılımı, çubuk uzunluğuna bağlıdır. Birim uzama, formül3.1'de belirtildiği üzere, birim uzunluk başına düşen yayılım olarak tanımlanmaktadır.

Şekil 3.6. Birim şekil değişimi (gerinim-strain) tanımı.

3.4.2. Poisson oranı

Poisson oranı, malzemede meydana gelen yüke dik yöndeki birim şekil değişiminin, yükün uygulandığı eksendeki birim şekil değişimine oranı olarak belirtilmektedir. Çapraz birim uzamanın direkt birim uzamaya oranı POISSON oranı olarak bilinmektedir. Şekil 3.6'da verilen örnek birim şekil değişimi ile poisson oranı, $\upsilon = -(\varepsilon_y/\varepsilon_x)$ denklemiile ifade edilebilmektedir. Bu (υ) oran her metal ve alaşım için farklı bir değerdir. En düşük değeri $\upsilon = 0,21$ ile çinkoda, en büyük değeri $\upsilon = 0,4$ ile polimerlerde görülmektedir. Çelik için $\upsilon = 0,29$ olarak kabul edilmektedir.

3.4.3. Elastisite modülü

Malzemenin kuvvet altında şekil değiştirmesinin ölçüsüne elastisite modülü denmektedir. Tanımı gereği birim kesit alanına sahip bir malzemede birim boyu bir kat artırmak için uygulanması gereken kuvveti gösterir. Bazı kaynaklarda "Young modulus" olarak geçebilmektedir.

Doğrudan gerilme altındaki elastik malzemelerde elastisite modülü (E) ;

$$E = Gerilme(\sigma) / Gerinim(\varepsilon)$$
(3.2)

$$\sigma = E.\varepsilon \tag{3.3}$$

olarak gösterilir, birimi N/mm²'dir.Örneğin, yapı çeliği için elastisite modülü $E_{celik}=2x10^5$ N/mm², alüminyum için $E_{alüminyum}=7x10^4$ N/mm²'dir.

3.4.4. Malzemenin akma, nihai ve kopma gerilmesi

Şekil 3.7'de malzemenin özelliklerine ait gerilme tipleri görülmektedir. Akma gerilmesi (σ_y), malzemenin plastik deformasyona başladığı sınır gerime olarak tanımlanır. Akma gerilmesinin altında, malzemeler, yüklenip boşaltıldıklarında tekrar eski konumlarına dönerler (elastik davranış), ancak akma değerinden daha yüksek değerlerde sonra deformasyon kalıcı olur (plastik davranış) [22].

Nihai gerilme (σ_u), malzemenin boyun verme ve kırılma oluşmaksızın ulaşabileceği maksimum gerilme olarak tanımlanır.

Kırılma gerilmesi (σ_f), ise malzemede kırılmanın gerçekleştiği gerilme olarak tanımlanır.

3.5. Yükleme Koşulları Altında Gerilme Davranışları

Taşıtlarda iki tip gerilme vardır. Bunlardan ilki temel gerilmedir ve aracın kendi ağırlığından ve yüklenmesinden dolayı ortaya çıkmaktadır. İkinci tip gerilme ise ilave gerilmelerdir. Bu gerilme tipi ise, araçta meydana gelen tekil etkiler sonucu ve araçtaki titreşimlerden dolayı ortaya çıkarlar.

Temel gerilmeleri oluşturan yüklemeler sabit veya belirli periyodlarda sabit kalan sinyallerden oluşur. Ancak ilave gerilmeleri oluşturan yüklemelerin sinyalleri değişkendir. Şekil 3.8'de gerilme çeşitlerine örnekler verilmiştir [4].

Şekil 3.8. Taşıtlarda yükleme koşulları [4].

3.6. Gerinim Ölçer (Strain-Gauge) Tipleri ve Gerilme Hesaplamaları

Gerinim ölçer (Strain-gauge), üzerine kuvvet uygulandığında değişken direnç değerleri gösteren bir sensör türüdür. Direnç farkları yardımı ile sonuç olarak gerinim (strain) değeri elde edilmektedir. Gerinim, malzemede dış etken veya iç etkenler dolayısı ile oluşabilmektedir. Gerinim oluşmasında, kuvvetler, basınçlar, momentler, sıcaklık veya malzemenin fiziksel değişime uğraması etkili olabilmektedir. İlk tel tipi gerinim ölçer 1938 yılında üretilmiştir. Daha sonraları bu tip gerinim ölçerler yerini metalik folyo tipi olan sensörlere bırakmıştır. Çünkü folyo tip gerinim ölçerler, tel tipine göre bazı üstünlükleri sahip olmaktadır. Bunlardan bazıları; uygulamasının daha kolay olması, daha büyük akımların geçmesine izin verilebilmesi, k faktörünün daha büyük olması, iyi bir ısı dağılımı sağlanması ve yüksek uyarma voltajına izin verilebildiği için ölçüm devresinde daha doğru değerlerin elde edilebilmesidir. Folyo tipi gerinim ölçerler yaklaşık 0,025 mm kalınlığa sahip sarılmış tel elemanından oluşur. Yüzeye bir kuvvet uygulandığında, yüzey üzerinde oluşan boyut değişimi folyo üzerinde elektrik direncinin değişmesine neden olmaktadır.

Bu sayede gerinim değeri ölçülmüş olur. Folyo elemanının ve yapışkan malzemenin gerinim iletiminde birlikte çalışması gerekmektedir, çünkü yapışkan malzeme aynı zamanda yapıştırılan yüzey ile folyo arasında yalıtkan bir rol oynamalıdır, yalıtkan, esnek bir desteğin üzerine döşenmiş telden ya da folyodan oluşmaktadır. Folyo üzerinde oluşan elektriksel direnç değişimi genellikle Wheatstone devresi kullanılarak ölçülmektedir.

1843 Yılında, İngiliz fizikçisi Charles Wheatstone tarafından malzemelerin elektrik dirençlerinin ölçülmesi için, bir köprü devresi bulunmuştur. Bu köprü devresi sayesinde malzemedeki çok küçük direnç değişimleri bile ölçülmeye başlanmıştır.

1856 yılında Lord KELVIN tarafından yapılan deneylerde, bakır ve çelik tellere bir gerilme uygulandığında, tellerin direncinin değiştiği gözlenmiş, aynı gerilme koşulları altında demirin direncinin bakırın direncine göre daha fazla değiştiğini görülmüştür.

Lord Kelvin bu deneylerin sonucu ile ve Wheatstone Köprüsü deneyi yardımıyla bu direnç değişmelerini ölçerek aşağıdaki üç önemli sonuca varmıştır:

- Teldeki direnç değişmesi, teldeki yer değiştirmenin bir fonksiyonudur.
- Değişik malzemeler için bu fonksiyon değişiktir.
- Wheatstone Köprüsü yöntemiyle çok küçük dirençlerin ölçümlerini yapmak mümkündür [3,23].

Şekil 3.9'da gerinim ölçerin (strain-gauge) boyutları gösterilmiştir.

Şekil 3.9. Gerinim ölçer (strain-gauge) boyutları [24].

3.6.1. Doğrusal tip gerinim ölçer (strain-gaugeler)

Doğrusal tip gerinim ölçerler tek yönde strain ölçümü yapmaya olanak sağlarlar. Bu tip gerinim ölçerler piyasada en çok kullanılan tiplerdendir. Dinamik ve statik birçok uygulamada kullanılabilmektedirler. Şekil 3.10'da doğrusal tip gerinim ölçerin gösterimi görülmektedir.

Şekil 3.10. Doğrusal tip strain-gauge [24].

3.6.2. Çiftli doğrusal tip gerinim ölçerler (strain-gaugeler)

Birbirlerine paralel ve doğrusal bir şekilde duran iki adet folyodan oluşan gerinim ölçer tipidir. Gerinim, iki folyoda aynı yönde ölçmektedir. Bu tip sensörler daha çok eğilme zorlamalarında ölçüm alınırken kullanılmaktadır. Şekil 3.11'de çiftli doğrusal tip gerinim ölçer gösterilmektedir.

Şekil 3.11. Çiftli lineer tip gerinim ölçer [24].

3.6.3. Kesme ve tork tipi gerinim ölçerler (strain-gaugeler)

Bu tip gerinim ölçerler kesme kuvvetleri ve tork dolayısı ile oluşan gerinimi ölçmek için tasarlanmışlardır. 45 derece eğik biçimde döşenmiş folyodan oluşmaktadırlar. Şekil 3.12'de tork tipi gerinim ölçer gösterilmektedir.

Şekil 3.12. Tork tipi 45 derece gerinim ölçer (strain-gauge) [24].

3.6.4. Rozet tipi gerinim ölçerler (strain-gaugeler)

Üç boyutlu bir elemanda şekil değiştirme her üç boyutta birden meydana gelir. Böyle bir elemanın direncinin değişimini inceleyecek olursak, hangi eksende ne büyüklükte birim şekil değişimi olduğunu anlamak imkânsızdır. Ayrıca, parçanın boyutlarının büyük olması direkt olarak ölçümü imkânsız kılmaktadır. Bu nedenlerden dolayı istenen bir eksende ölçüm yapılabilmesi için yardımcı bir alete ihtiyaç duyulmaktadır. Bu yardımcı aletin Rozet tipi gerinim ölçerdir.

Şekil 3.13. Rozet tipi gerinim ölçer (strain-gage) [24].

Rozet tipi gerinim ölçerler, iki veya daha fazla gerinim ölçerin değişik pozisyonlarda dizilmesiyle farklı yönlerdeki gerilmelerin ölçülmesine yaramaktadır. 3 tip rozet uygulaması mevcuttur:

- Tee tipi (0-90 derece)
- Dikdörtgen tip (0-45-90 derece)
- Delta tipi (0-60-120 derece)

Bunlardan Tee tipi rozet iki elemanlı rozettir ve ana gerilme yönleri bilindiğinde kullanılmalıdır. Silindirik basınçlı tanklar, burulma etkisindeki şaftlar bu rozetin kullanım alanlarına iyi birer örnektir. Üç elemanlı rozetler dikdörtgen ve delta tipinde olabilir. Bu tipte rozetler gerilmelerin yönünün hiç bilinmediği zamanlarda kullanılır ve rozet yön önemi olmaksızın yerleştirilebilir. 120 derecelik delta tipi rozetler ölçümlerde en uygun değer rozetler olmasına rağmen daha çok tercih edilen rozet tipi dikdörtgen tip rozetlerdir. Bunun nedeni dikdörtgen tip rozetin denklemlerinin daha basit olması ve bununda bilgisayar ortamında hesaplamaların daha kolay ve hızlı yapılabilmesi demektir. İki rozet tipi de birbiri yerine tercih edilebilmektedir. Şekil 3.14'te düzlemsel ve yığılmış tipte yapılara sahip rozet tipi gerinim ölçerler görülmektedir [24].

Tez içerisinde bahsedilen uygulamada kullanılan rozetler 45 derece dikdörtgen ve yığılmış tiptedirler. Bu tipte rozetler için gerilme denklemleri aşağıdaki gibidir:

$$\varepsilon_{\theta} = \varepsilon_{x} \cos^{2}\theta + \varepsilon_{y} \sin^{2}\theta + 2\varepsilon \gamma_{xy} \sin\theta \cos\theta$$
(3.5)

Burada denklemde θ yerine 0,45 ve 90 derece değerleri yerleştirildiğinde;

Şekil 3.14. Düzlemsel ve yığılmış tip rozet konstrüksiyonu [24].

$$\varepsilon_{\min} = \frac{\varepsilon_1 + \varepsilon_2}{2} \pm \frac{1}{2} \sqrt{\left((\varepsilon_1 - \varepsilon_2)^2 + \left(2\varepsilon_2 - (\varepsilon_1 + \varepsilon_3) \right)^2 \right)}$$
(3.6)

$$\sigma_{\min}_{\min} = \frac{\sigma_1 + \sigma_2}{2} \pm \frac{1}{2} \sqrt{\left((\sigma_1 - \sigma_2)^2 + \left(2\sigma_2 - (\sigma_1 + \sigma_3)\right)^2\right)}$$
(3.7)

Bu denklem yardımı ile rozet tipi bir gerinim ölçer ile ölçülen gerinim (birim uzama değerleri) gerilme değerlerine çevrilebilmektedir [24].

3.7. Sinyal İşleme Yöntemleri

Toplanan sinyallerin yorulma açısından incelenebilmesi için sinyal içindeki değişken yüklemelerin gruplandırılması ve ardından sayılması gerekmektedir. Bu amaçla; sinyal değerlerinin saydırılması için geliştirilmiş farklı saydırma yöntemleri mevcuttur. En çok kullanılan ve otomotiv sektörü içinde popüler olan yöntem "Rainflow" saydırma yöntemidir. Bu yöntem dışında Şekil 3.15'te gösterildiği üzere Level Crossing, Range Pair, Peak Counting gibi yöntemler de bulunmaktadır.

Şekil 3.15. Sinyal işleme yöntemi.

Rainflow saydırma yöntemi bu tez içerisinde anlatılacaktır. Rainflow ile verilerin saydırılma işlemi anlatılmadan önce ön bir işlem olan Peak-Valley Filtreleme yönteminden bahsedilecektir [25].

3.7.1. Peak-valley filtreleme yöntemi

Peak-Valley yöntemi bir ön sayma metodudur ve rainflow sayma metodunu desteklemektedir. Peak-Valley algoritması zaman eksenindeki küçük genlikli gerilmelerin elenerek sadece tepe ve çukurların seçilmesini sağlamaktadır. Algoritma gerilmelerin eğimlerinin işaret değişimini kontrol ederek seçim yapar. Şekil 3.16'da Peak-Valley yöntemi ile saydırmaya hazırlanmış bir verinin zaman eksenindeki görüntüsü verilmektedir. Bu yöntem ile genellikle veri işlemek için kullanılan programlarda Peak-Valley yöntemi ile filtrelenmiş veriler Rainflow yöntemi öncesi sonradan işlenmek üzere geçici belleğe alınarak kayıt edilmektedir [3,25].

Şekil 3.16. Peak-valley yöntemi ile filtrelenmiş veriler [3].

3.7.2. Level crossing saydırma yöntemi

Tek parametreli bir sayma yöntemidir. Tek yönde artan veya azalan bölge geçişleri sayılmaktadır. Her bir ön gerilme için ayrı ayrı sayma süreci yapılmalıdır. Bölge genişlikleri bölgelerin miktarına bağlı olmaktadır.

Şekil 3.17. Level crossing sayma yöntemi [3].

Şekil 3.17'de level Crossing yöntemi ile saydırmaya örnek verilmiştir. Burada sağda yer alan grafikte sıfır çizgisinin üstünde kalan adetler pozitif geçişleri, altında kalan adetler ise negatif geçişleri göstermektedir. Range pair yöntemine göre daha çok tercih edilmektedir [3,25].

3.7.3. Range pair saydırma yöntemi

Range pair saydırma metodu DIN 45667 de standartlaştırılmıştır. Bu yöntemde sinyalde iki dönüş noktası arasındaki genlikler sayılmaktadır. Burada bir salınımda eşdeğer boyutlu pozitif ve negatif dönüşler mevcuttur. Bu yöntemde bu eşdeğer boyutlu salınımlar toplanır. Sonuç olarak kümülatif bir frekans dağılımı elde edilir. Şekil 3.18'de range-pair saydırma metoduna ait gösterim verilmiştir [3,25].

Şekil 3.18. Range pair sayma metodu [3].

3.7.4. Rainflow saydırma yöntemi

Rainflow (yağmur akışı) saydırma yöntemi herhangi bir malzemenin Gerilim- Birim uzama eğrisindeki kapalı histerezis çevrimlerini bulmaya yarayan bir saydırma metodudur. Bir yükleme çevrimini temsil eden histerezis çevrimi hasar kullanılan birimdir. hesaplamalarında temel Metallerin gerilme eğrileri incelendiğinde akma noktasının ötesinde malzemelerde oluşan yükleme ve boşalım eğrilerinin oluşturduğu kapalı çevrimlere histerezis çevrimi denir. Malzeme histerezis cevrimini tamamladıktan sonra, daha fazla gerilmeye maruz kalsa bile orijinal Gerilme-Birim uzama eğrisini "hatırlayarak" gerilmeye devam eder. Şekil 3.19'da histerezis çevrimi görülmektedir. Rainflow saydırma yönteminin en önemli avantajı, bu yöntemin yorulma hasar hesaplamalarına tutarlı bir şekilde ilişkilendirilebilmesidir. Bu avantaj kapalı histerezis çevrimlerinin fiziksel olarak yorumlanabilmesi sayesindedir. Rainflow algoritmasında uygulanması gereken sıra şu şekildedir. Gerilme tepeleri sıkıştırılarak zaman ekseninin daraltılır, zaman ekseni bir çatı olarak düşünülür, çatı zaman ekseninin başlangıç noktası yukarı gelecek sekilde 90 derece acı ile döndürülür ve her gerilme tepesi bir su kaynağı olarak düşünülür. Aşağıdaki kriterlere göre yarım çevrim sayısı belirlenir:

Şekil 3.19. Histerezis çevrimi [21].

- Zaman ekseninin sonuna ulaşıp ulaşmadığında,
- Daha önceki bir gerilme tepesinden başlayan akış ile birleşip birleşmediğine,
- Daha büyük yükseklikteki bir gerilme tepesinin tersi yönünde akıp akmadığına göre,

Bu aşamadan sonra yarım çevrimlerin genlikleri hesaplanır ve aynı genliklere sahip yarım çevrimler birbirleri ile eşleştirilerek tam çevrim oluşturup oluşturmadığına bakılır. Şekil 3.20'de rainflow saydırma yönteminin gösterimi görülmektedir [21,25].

Şekil 3.20. Rainflow saydırma yöntemi ve matrix görünüşü [21].

3.8. Gerilme-Çevrim Sayısı (S-N) Eğrileri

Gerilme-çevrim sayısı (S-N) diyagramı diğer ismiyle Wöhler diyagramı, farklı sabit gerilmeler altında malzemelerin kaç çevrim sonunda çatlayacağını veya kırılacağını gösteren bağıntıyı verir ve bu yöntem, metallerin maruz bırakıldıkları gerilmeye bağlı olarak ömürlerindeki değişimi gösteren eğriyi temel almaktadır.

S-N eğrisinin çizilmesi için ortalama gerilme tüm deneylerde sabit kalmak üzere numunelerin her birine farklı periyodik gerilmeler uygulanarak numunenin çatlamasına (veya kırılmasına) kadar geçen çevrim sayısı tespit edilir. Bu sayı N ile ifade edilmektedir.

Küçük gerilmeler için çatlamanın görüleceği çevrim sayısı çok büyük olacağından, önceden belirlenen çevrim sayısına kadar deney devam ettirilerek malzemenin davranışı izlenir. Deneylerin tümünde gerilme genliği (genlik mukavemeti) deney süresince sabit tutulmaktadır.

Şekil 3.21'de gösterildiği üzere, elde edilen mukavemet değerine malzemenin "devamlı mukavemet değeri" (σ_D veya τ_D) denmektedir.

3.8.1. S-N eğrisinin matematiksel tanımı

S-N eğrisinin matematiksel tanımınım yapılabilmesi için Şekil 3.22'de verilen eğri incelenirse; bir malzeme için geçerli olan N_i ve S_i belirlendikten sonra; N_1 karşılığı S_1 ve N_2 karşılığı S_2 olacak şekilde diyagramda yerine koyularak elde edilecek doğrunun eğimi sayesinde ilgili malzeme için genel anlamıyla yorulma eğrisi elde edilmiş olmaktadır. Elde edilen eğrinin eğimine özel olarak "Basquin Eğimi" denmektedir.

Şekil 3.22. Wöhler diyagramı matematiksel bağıntısı.

Şekil 3.22'den çıkartılan aşağıdaki bağıntıdan, eğrinin eğimi olarak gösterilen *b* (Basquin Eğimi) hesaplanması gösterilirse;

$$b = \frac{-(\log S - \log S_0)}{(\log N_0 - \log N)}$$
(3.7)

$$\log N_0 \log N = \frac{1}{b} \log \left(\frac{S}{S_0}\right)$$
(3.8)

$$\log N = \log N_0 + \frac{1}{b} \log \left(\frac{S}{S_0}\right)$$
(3.9)

$$N = N_0 \left(\frac{S}{S_0}\right)^{\frac{1}{b}} = N_0 \left(\frac{S}{S_0}\right)^k$$
(3.10)

$$k = \frac{1}{b} \tag{3.11}$$

Buna göre Basquin eğimi ve (S,N) çifti biliniyorsa belirli bir *S* için *N* hesaplanabilmektedir. Hatta hesaplamalarda $N_0 = 10^6$ alınır ise formül aşağıdaki formu alır. $(S_e, N_0 = 10^6$ 'daki gerilme olmak üzere);

$$N = \left(\frac{S}{S_e}\right) \times 10^6 \tag{3.12}$$

Çeşitli metallere ait S-N eğrileri Şekil 3.23'te görüldüğü gibi farklılık göstermektedir.

Şekil 3.23. Çeşitli metallere ait S-N diyagramı [3].

3.9. Hasar Hesaplanması

S-N eğrileri malzemelerin sabit genlikteki yüklerle test edilmesi ile oluşturulmuştur. Farklı genlikteki gerilmelerin oluşturacağı etki, lineer bir hasar birikimi yöntemi ile tespit edilebilmektedir. Bu yönteme Palmgren-Miner yöntemi adı verilir. Bu metot ile yük kolektifinin farklı sabit gerilimdeki bloklara bölünebilmekte ve bu blokların toplam hasara katkılarının ne kadar olduğunu görülebilmektedir. Her bloğun toplam hasara katkısı aşağıdaki denklem ile hesaplanmaktadır:

$$D = \sum_{i=1}^{m} \frac{n_i}{N_{fi}}$$
(3.13)

"m" blok sayısını, " n_i " sabit gerilme genliklerini, " N_{fi} " ise tekrardan kaç sonra malzemenin kırılacağını göstermektedir.

Palmgren-Miner kuralına göre D=1 değerine ulaştığında malzemede kırılma meydana gelir. Şekil 3.24'te birikimli hasar teorisinin gösterimini görülmektedir. Sabit ya da çok küçük değişken ön gerilmeli durumlarda D=0.25-7.0 arası tespit edilmiştir. Ön gerilme yükseldikçe hasar oranı artmaktadır. Ön gerilme artışı ile hasar arasında oransal bir bağıntı yoktur. Wöhler eğrisinde sonsuz ömür sının altındaki gerilmelerde hasar olmadığı teorik olarak söylenebilmektedir [3].

$$D_k \sum_{i=1}^m \frac{n_i}{N_i}$$

Şekil 3.24. Birikimli kümülatif hasar teorisi [3].

Ancak, günümüzde bu sınırın altında kalan gerilme genliklerinde de hasar oluşabileceği belirlenmiştir (Bölgesel hasarlar). Bu bakımdan yüksek dereceden güvenli parçalarda sınır değerlerin D=0.5-0.8'e çekilmesi tavsiye edilmektedir. Bu amaçla muhtelif yöntemler geliştirilmiştir. Bunlardan biri de Haibach'a [27] göre modifiye edilmiş hasar yöntemi, diğeri de Şekil 3.25'te görülen "Elementar Miner*" yöntemidir. Bu yöntemde, sonsuz ömür sınırı eğim açısı "k" da düzeltme yaparak yeni bir eğimle "k *", eğri aşağı doğru uzatılarak daha geniş bir alanı kapsayacak bir biçime getirilmektedir [4].

Şekil 3.25. Palmgren-miner ve elemanter-miner [3].

3.10. Haig Diyagramı

Haig diyagramında X ekseninde malzemenin ön gerilme miktarı bulunmaktadır. Y ekseni ise gerilme genliğini göstermektedir ve diyagramda yer alan çizgiler sürekli ömür çizgilerini ifade etmektedir. Çizgilerin altında kalan alan sonsuz ömrü, üstünde kalan alan ise sonlu ömrü ifade etmektedir. Haig diyagramının oluşturulması için çok sayıda malzeme numunesi ile yorulma testleri yapılmasına gerekmektedir. Her değişken gerilme ve ön gerilme için bir çizgi elde etmek pratik değildir. Bu yüzden bazı yaklaşımlar yapılarak bu diyagramlar elde edilmektedir. Bu metotlar, çeşitli yıllarda Soderberg [27], Goodman [27] ve Gerber [27] olarak ortaya çıkmışlardır. Aşağıda daha detaylı olarak bu eğrilerin denklemlerine değinilecektir. Şekil 3.26'da bir Haig diyagramının şekli gösterilmiştir [27].

Şekil 3.26. Haig diyagramı [27].

3.10.1. Ön yükleme ve ortalama gerilme etkileşim eğrileri

Ortalama gerilmenin yorulma sonrası hasarın meydana gelmesinde etkisi büyüktür. Bu noktada, üç çeşit etkileşim eğrisinden bahsedilebilmektedir. Bunlar Soderberg, Goodman, Gerber ve Morrow etkileşim eğrileridir. Şekil 3.27'de ortalama gerilme etkileşim eğrilerini görülmektedir. Burada sonsuz ömür genliği (σ_{ge}), gerilme genliği (σ_{genlik}), ön gerilme (σ_m), akma gerilmesi (σ_{akma}), kırılma gerilmesi ($\sigma_{kırılma}$) ve kopma gerilmesi (σ_{kopma}) şeklinde gösterilmesi durumunda, aşağıda dört kriter için denklemler belirtilmiştir [27].

Şekil 3.27. Ortalama gerilme etkileşim eğrileri [27].

3.10.2. Soderberg etkileşim eğrisi

Soderberg etkileşim eğrisi için denklem aşağıdaki gibidir:

$$\frac{k_f \sigma_{genlik}}{\sigma_{ge}} + \frac{\sigma_m}{\sigma_{akma}} = \frac{1}{S}$$
(3.14)

Eğer bir noktada uygulanan gerilme değeri Soderberg eğrisinin altında kalıyor ise malzeme güvenli bölgede demektir. En risksiz etkileşim davranışı bu şekilde bir eğri ile tanımlanabilmektedir. Burada, Malzemenin akma dayanımını esas alınmaktadır.

3.10.2.1. Goodman etkileşim eğrisi

Goodman etkileşim eğrisi için denklem aşağıdaki gibidir:

$$\frac{k_f \sigma_{genlik}}{\sigma_{ge}} + \frac{\sigma_m}{\sigma_{kopma}} = \frac{1}{S}$$
(3.15)

Eğer bir noktada uygulanan gerilme değeri Goodman eğrisinin altında kalıyor ise malzeme güvenli bölgede demektir. Burada "S" emniyet katsayısını temsil etmektedir. Soderberg eğrisinden daha riskli olmaktadır. Malzemenin kopma dayanımını esas alınmaktadır.

3.10.2.2. Gerber etkileşim eğrisi

Gerber etkileşim eğrisi için denklem aşağıdaki gibidir:

$$\frac{k_f \sigma_{genlik}}{\sigma_{ge}} + \left(\frac{S\sigma_m}{\sigma_{kopma}}\right)^2 = \frac{1}{S}$$
(3.16)

Eğer bir noktada uygulanan gerilme değeri Gerber eğrisinin altında kalıyor ise malzeme güvenli bölgede demektir. Burada "S" emniyet katsayısın, temsil

etmektedir. Goodman eğrisinden daha fazla risk meydana getirmektedir. Malzemenin kopma dayanımını esas alınmaktadır.

3.10.2.3. Morrow etkileşim eğrisi

Morrow etkileşim eğrisi için denklem aşağıdaki gibidir:

$$\frac{k_f \sigma_{genlik}}{\sigma_{ge}} + \frac{\sigma_m}{\sigma_{kirilma}} = \frac{1}{S}$$
(3.17)

Eğer bir noktada uygulanan gerilme değeri Morrow eğrisinin altında kalıyor ise malzeme güvenli bölgede demektir. Gerber eğrisinden daha fazla risk teşkil etmektedir. Burada "S" emniyet katsayısın, temsil etmektedir. Malzemenin kırılma dayanımını esas alınmaktadır.

BÖLÜM 4. TAŞIT DAYANIMINDA HİBRİT ARAÇ MODELİ

Özellikle CAE çalışmalarının doğruluk oranının yükselmesi ile sanal prototip kavramı, gerçek prototiplerin yerini almaya hazırlanmaktadır. Tüm aracın ve süspansiyon bileşenlerinin tasarım sürecindeki performansları CAE çalışmaları ile belirlenerek hedef değerleri ile karşılaştırılabilmektedir.

Daha önceden belirlenmiş bu hedeflere ulaşmak için birçok iterasyon yapmak gerekebilir. Bundan dolayı araç performansı, ağırlığı, maliyeti, imalatı ve diğer tasarım şartlarının arasında optimize edilmiş bir araç tasarımı ihtiyacı doğmaktadır. Bu ihtiyacı karşılamada CAE çalışmaları önemli bir rol oynamaktadır.

Şekil 4.1. Sanal prototip ile taşıt dayanımı proses diyagramı.

Sanal Prototip yaklaşımında amaç CAE yöntemlerinin daha etkin bir biçimde kullanılarak araç parçalarının dayanım ömürlerinin prototip araç ortaya çıkmadan önce hesaplamak ve bu hesapların sonuçlarına göre tasarımları iyileştirilebilmektedir. Bu yöntem ile ticari araçların tasarımında hem zaman hem de maliyet açısından daha büyük bir avantaj sağlanabilmektedir.

Sanal prototip süreci için ilk adım önceki bölümlerde anlatıldığı üzere, araç çalışma şartlarındaki yol koşullarının ölçülüp simüle edilmesi ile başlamaktadır. Bu sayede aracın hangi şartlarda hareket edebileceği ve hayatta kalabileceği farklı senaryolar altında incelenebilmektedir. Belirlenen arazinin yol ölçümleri alınıp, simülasyon ortamında modellenmesi ile aracın bu yol şartlarındaki performansı kolaylıkla incelenebilmektedir. Şekil 4.2'de bir ATV motor için farklı yol şartlarında dayanıklılık analizlerinin yapılması için hazırlanmış sanal yol simülasyonu görülmektedir.

Şekil 4.2. Atv motor için hazırlanmış sanal yol simülasyonu [28].

Sanal dayanım test modeli oluşturulduktan sonra aracın belirlenen senaryolara göre koşturulması ile yorulma simülasyonları için girdiler oluşturulmaktadır. Sonlu elemanlar yöntemi ile elde edilen yorulma hasarları ve ömürleri kullanılarak her bir parçanın dayanım doğrulaması yapılabilmektedir. Taşıt gövde geometrisinden oluşturulan detaylı sonlu eleman modelleri doğrudan sonlu eleman analizlerinde

kullanılabildiği gibi birtakım düzenlemeler sonunda dinamik sistem simülasyonlarına da entegre edilebilmektedir.

Şekil 4.3. Msc adams çoklu cisim simülasyon yazılımda hazırlanmış kamyon modeli [29].

Genel olarak bir dinamik sistem simülasyonu yapının dinamik yükler altında nasıl davrandığını ve mesnet noktalarına ne tip yüklerin geldiğini belirlemede oldukça etkili bir yöntemdir. Bu yükler aynı zamanda SEM doğrulanması ve yapının gerilme dağılımının belirlenmesinde faydalı olmaktadır. Bu yöntem her ne kadar uygun görünse de bazı dezavantajları vardır:

- Her zaman adımı tam bir yarı-durgun çözümü gerektirir. Büyük SEM için uygulanabilir değildir.
- Genel olarak, SEM analizi Yarı-durgun hesaplamalara dayanmaktadır. Yani, her zaman adımına karşılık gelen yük ile Yarı-durgun çözümler hesaplanması anlamına gelir. Sonuç olarak, hiçbir doğal titreşim etkisi çözümlere dahil edilmemiştir. Bu tip bir çözüm doğal titreşimlerin etkisinin çok düşük olduğu durumlar için kabul edilebilir. Bir tren veya araç gövdesi gibi karmaşık sistemlerin çözümlenmesinde bu sadeleştirme ciddi hatalara yol açabilmektedir. Ayrıca, titreşim kaynaklı sorunların belirlenmesinde etkisizdir. Dolayısıyla bir sistemin hem dinamik davranışını hem de yapısal kararlılığının hesaplanma bilmesi için titreşim kaynaklı etkilerin hesaba katılması ayrıca yorulma gibi davranışların incelenmesi için gerilme değerlerinin hesaplanması gerekmektedir. Bu noktada Modal Tabanlı Sanal Araç Simülasyoları oldukça etkili bir çözüm olmaktadır [30].

Modal Tabanlı Sanal Araç Simülasyonları; titreşim kaynaklı etkilerin çözüme dahil edilmesi, gerilme ve gerinim değerlerin hesaplanması, hem de daha hızlı çözümlerin elde edilmesi için "Doğal Frekans Analizi" (Modal Analiz) ile Mod derecesi düşürme yöntemi "Bileşen Mod Sentezi" birlikte kullanılarak dinamik yapıların simülasyonu yapılabilmektedir.

4.1. Modal Tabanlı Analiz Teorisi

Tüm dinamik çözümlerin yapı taşları sistemin doğal frekansları veya modlarıdır. Her gövde yükten bağımsız olarak rezonans frekanslarına veya doğal frekanslara sahiptir. Bu fenomen bir çarpmadan veya hızlı olarak kaldırılan bir yer değiştirme kuvvetinden sonra sistemin serbest titreşimi olarak görülmektedir. Birim zamanda gerçekleşen salınım sayılarına ise frekans denilmektedir. Denge pozisyonundan azami yer değiştirme ise genliktir. Gerçekte titreşim hareketi sonsuza kadar devam etmez. Bunun sebebi sistemdeki sönümdür. En basit modelde sönüm etkileri ihmal edilmiştir. Sönümsüz serbest titreşim analizi sistemin dinamik davranışı hakkında bilgi vermektedir. Modal analizle yapının doğal frekansları ve mod şekilleri elde edilmektedir. Bunlar yapının serbest titreşim karakteristiğini belirleyen unsurlardır. Bu karakteristik sadece sistemin fiziksel özelliklerine bağlıdır. Serbest titreşim modları ve doğal frekansları yapının zorlayıcı kuvvetler altındaki davranışının belirlenebilmesi açısından doğal frekansların bilinmesi önemli olmaktadır.

En genel halde zorlanmış bir sistemin hareket denklemi sonlu elemanlar formülasyonu ile şu şekilde yazılır:

$$[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = P(s,t)$$
(4.1)

Burada, [M] sistemin kütle matrisi, [C] sönüm katsayıları matrisi, [K] yay katsayıları matrisi, $\mathbf{P}(s, t)$ zorlayıcı kuvvetler vektörü ve $\{u\}$ yer değiştirmeleri ifade etmektedir. Sistemde dışarıdan etkiyen zorlayıcı kuvvet ve sönümleme olmadığı kabul edilirse serbest titreşim için;

$$[\mathbf{M}]\{\mathbf{\ddot{u}}\} + [\mathbf{K}]\{\mathbf{u}\} = 0 \tag{4.2}$$

denklemi elde edilir. Denge konumundan başlayarak daimi durum için, A düğüm noktalarının titreşim genlikleri ve ω (rad/s) frekans olmak üzere yer değiştirmeler;

$$\{u\} = \{A\}\sin\omega t \tag{4.3}$$

olarak denklem 4.3'de yerine girilirse;

$$[K]{A} = \omega^{2}[M]{A}$$
(4.4)

denklemi elde edilir. Burada $\omega^2 = \lambda$ olarak tanımlandığında 4.4 denkleminin genel özdeğer problemi olduğu görülmektedir. $\{A\}$, λ özdeğerine tekabül eden titreşim modlarını belirten özvektördür. Özdeğer probleminde {A} özvektörünün sıfırdan farklı hesaplanabilmesine ve cözümlerinin yapının doğal frekanslarının çözümlenmesi için imkân sağlamaktadır. 4.4 denkleminin çözümünün olabilmesi için katsayılar determinantının sıfır olması gerekmektedir. Bundan dolayı problemlerde katsayılar matrisinin determinantını sıfır yapacak λ değerlerini bulmak gerekmektedir. Yani özdeğer problemi çözmek gerekmektedir. Bu değerler çözüldüğünde istenen frekans değerleri $f = \omega/2\pi$ (hertz) olarak dairesel frekans kullanılarak hesaplanabilmektedir. İlk mod en düşük enerji ile oluşur ve doğal frekansı verir. Diğer mod şekilleri daha fazla enerjiye ihtiyaç duymaktadırlar. Kütle atalet momenti ile doğal frekans arasında ters orantı bulunmaktadır [31].

4.2. Bileşen Mod Sentezi Yöntemi

Mevcut sistemin her biri sonlu elemanlar ile modellenen parçalara ve alt sistemlere ayrılması esasına dayanan bu yöntemde modların dönüşümü ile serbestlik derecelerinin sayısı düşürülür. Bu yönteme kısaca Bileşen Mod Sentezi (BMS) denmektedir. Bu yöntemde karmaşık yüksek model derecesine sahip sistemin çok sayıda alt parçaya bölünmesi ilk adımı oluşturmaktadır. Ardından bir Ritz vektörleri grubu ile her bir parçanın modellenmesi gerçekleştirilir ve orijinal modelin her bir alt parçasının fiziksel koordinatları, MDD (Model Derecesi Düşürme) uygulanmış fiziksel ve modal koordinatları olarak tanımlanır. Ayrılmış her bir parçanın koordinatlarının global koordinatlar ile birleştirilmesi sonrasında yapı analize hazır hale gelir. Birleştirilmiş yapı üzerinden yapılan analiz sonrasında gerekli veriler daha detaylı olarak incelenebilmektedir [31].

Bileşen mod sentezi yöntemiyle analizde, yapının gerçek davranışına yakın sonuçlar elde edilebilmesi için:

- Yeterli sayıda Modun hesaplanması,
- Modların yeterli frekans aralığını kapsaması,
- Kütle katılım oranlarının yeterli olması,
- Mod şekillerinin arzu edilen tüm deformasyonları belirtiyor olması, gerekmektedir [31].

Bu yaklaşım ile karmaşık bir özdeğer problemi, ayrıldığı alt sistemlerin çok sayıdaki daha az karmaşık seviyeye sahip problemler haline dönüştürüldüğü için pek çok avantajı da beraberinde getirmektedir.

- Çok sayıda giriş verisinin uygulanması, alt gruplar yolu ile daha verimli yapılmaktadır.
- Her bir ayrılmış parça veya alt sistem için veri girişi neredeyse tamamen bağımsız analizciler tarafından hazırlanabilir.
- Uzun hesaplama zamanına duyulan ihtiyacı ortadan kaldırır.
- Yerel olarak gereken düzeltmelerin uygulanmasında yeniden yapılacak analizler için sürenin en aza indirilmesi sağlanır.

Orijinal model ile karşılaştırıldığında önemli ölçekte derecesi düşürülmüş Ritz tabanlı vektörlerin süperpoze edilmesi sonucunda her bir parçanın davranışı analize yansıtılmaktadır. Bu nedenle, BMS özellikle yapısal sistemin parçaları ayrı olarak tasarlandığı ve analiz edildiği durumlarda, tasarım ve analiz işlemleri için verimli bir yöntem olarak karşımıza çıkmaktadır [31].

BMS olarak 1960'larda ortaya atılan ilk çalışmaların ardından, Ritz tabanlı vektörlerin tanımlarına dayanan pek çok sayıda yöntem geliştirilmiştir. Mevcut BMS yöntemleri düşük frekans aralığındaki analizlerde başarılı sonuçlar vermektedir.

4.3. Klasik Mod Birleştirme Yönteminin Adımları

Mod birleştirme yönteminde u deplasmanları Y_k modal deplasmanları ve özvektörler cinsinden,

$$\mathbf{u} = \mathbf{a}_1 \mathbf{Y}_1 + \mathbf{a}_2 \mathbf{Y}_2 + \dots + \mathbf{a}_M \mathbf{Y}_M \tag{4.2}$$

açılımına tabi tutulmaktadır. (4.2) denkleminde M yeterli kütle katılım oranını sağlamak için hesaba katılması gereken mod sayısını (M < N) göstermektedir. Burada $a_k (k = 1 ... M)$ titreşim özvektörlerini göstermekte olup bu vektörler,

$$(\mathbf{K} - \lambda \mathbf{M})\mathbf{a} = 0 \tag{4.3}$$

karakteristik özdeğer problemi çözülerek bulunabilmektedir. (4.3) denkleminde λ , karakteristik değeri temsil etmekte olup, serbest titreşim frekansı ω 'ya

$$\lambda = \omega^2 \tag{4.4}$$

denklemi ile bağlı olmaktadır. Her özdeğer-özvektör çifti yapının doğal bir Titreşim Modu olarak adlandırılmaktadır. (4.2) denklemi kompakt formda yazılırsa

$$\mathbf{u} = \mathbf{Q}\mathbf{Y} \tag{4.5}$$

ifadesi elde edilmektedir. Burada,

u : Deplasman vektörünü,

- Y : Modal deplasman vektörünü,
- Q : Mod vektörlerini içeren "Modal Matris"i,

göstermektedir. (4.5) denklemi iki kez zamana göre türetilip,

$$\dot{\mathbf{u}} = \mathbf{Q}\dot{\mathbf{Y}} \tag{4.5a}$$

$$\ddot{\mathbf{u}} = \mathbf{Q}\ddot{\mathbf{Y}} \tag{4.5b}$$

bağıntıları bulunduktan sonra, (4.1) denkleminde yerlerine yazılıp Q matrisi ile soldan çarpılırsa,

$$(\mathbf{Q}^T \mathbf{M} \mathbf{Q}) \mathbf{Y} + (\mathbf{Q}^T \mathbf{C} \mathbf{Q}) \mathbf{Y} + (\mathbf{Q}^T \mathbf{K} \mathbf{Q}) \mathbf{Y} = \mathbf{Q}^T \mathbf{P}$$
(4.6)

ifadesi elde edilir. Özvektörler, **K** ve **M** matrislerine göre ortogonaldir. Bu vektörlerin **C**'ye göre de ortogonal olduğu kabul edilirse, (4.6) denklemindeki üçlü matris çarpımları sonucunda,

$$\mathbf{Q}^T \mathbf{M} \mathbf{Q} = \begin{bmatrix} \mathbf{m}_1 & & \\ & \ddots & & \\ & \mathbf{0} & & \ddots & \\ & & & & \mathbf{m}_M \end{bmatrix}, \qquad \mathbf{m}_i = \mathbf{a}_i^T \mathbf{M} \mathbf{a}_i \qquad (4.6a)$$

$$\mathbf{Q}^T \mathbf{C} \mathbf{Q} = \begin{bmatrix} \mathbf{c}_1 & & \\ & \ddots & & \\ & & \ddots & \\ & & & & \mathbf{c}_M \end{bmatrix}, \qquad \mathbf{c}_i = \mathbf{a}_i^T \mathbf{C} \mathbf{a}_i \qquad (4.6b)$$

$$\mathbf{Q}^{T} \mathbf{K} \mathbf{Q} = \begin{bmatrix} \mathbf{k}_{1} & & & \\ & \ddots & & \\ & \mathbf{0} & & \ddots & \\ & & & & \mathbf{k}_{M} \end{bmatrix}, \qquad \mathbf{k}_{i} = \mathbf{a}_{i}^{T} \mathbf{K} \mathbf{a}_{i} \qquad (4.6c)$$

şeklinde hesaplanan diyagonal matrisler elde edilmektedir. Denklemin sağ tarafındaki çarpma işleminden,

$$\mathbf{Q}^{T} \mathbf{P} = \begin{bmatrix} \mathbf{p}_{1} \\ \vdots \\ \mathbf{p}_{M} \end{bmatrix}, \qquad k_{i} = \mathbf{a}_{i}^{T} \mathbf{K} \mathbf{a}_{i} \qquad (4.6d)$$

ifadesi elde edilmektedir. Bu ifadeler yerlerine yazılırsa, (4.6) denklem takımı, her denkleminde bir bilinmeyen içeren "girişimsiz denklem takımına" dönüşmektedir. Bu denklemlerin her biri:

$$\mathbf{m}_{i}\ddot{\mathbf{Y}}_{i} + \mathbf{c}_{i}\mathbf{Y}_{i} + \mathbf{k}_{i}\mathbf{Y}_{i} = \bar{\mathbf{p}}_{i}$$
(4.7)

Formundadır. (4.7) denkleminde bütün terimler m_i'ye bölünerek, $c_i/m_i = 2\xi_i\omega_i$ ve $k_i/m_i = \omega_i^2$ eşdeğerleri konulursa,

$$\ddot{Y}_i + 2\xi_i \omega_i Y_i + \omega_i^2 Y_i = \frac{\bar{p}_i}{m_i}$$
 (i=1...M) (4.8)

denklemi bulunur. Burada:

 Y_i : i nci mod için modal deplasman, ξ_i : Sönüm oranı (bütün modlar için aynı olduğu kabul edilmektedir), ω_i : i nci mod için serbest titreşim frekansı, $m_i = \mathbf{a}_i^T \mathbf{M} \mathbf{a}_i$,

anlamındadır. (4.8) ifadesi ile tanımlanan, indirgenmiş lineer, ikinci mertebe, adi diferansiyel denklemler, bazı standart sayısal yöntemlerle (Runge-Kutta, Newmark v.b.), bilinmeyen zaman fonksiyonları [Yi (t)] için, çözülebilmektedir. Böylece Yi (t) modal deplasmanları bulunduktan sonra $\mathbf{u} = \mathbf{Q} \mathbf{Y}$ denkleminden $\mathbf{u} = \mathbf{u}(t)$ zamana bağlı gerçek deplasman değerleri bulunabilmektedir [31].

4.4. Mod Birleştirme Yönteminin Ritz Vektörleri Kullanılarak Uygulanması

Taşıyıcı sisteme ait hareket denkleminin Ritz vektörleri kullanılarak Mod Birleştirme Yöntemi ile çözümü için, (4.1) denkleminin sağ tarafındaki yük vektörü, yer ve zamana bağlı iki fonksiyonun çarpımı şeklinde yazılmaktadır [31].

$$\mathbf{P}(\mathbf{s}, \mathbf{t}) = \mathbf{f}(\mathbf{s})\mathbf{g}(\mathbf{t}) \tag{4.9}$$

u deplasman vektörü ise, zamana bağlı Z_i fonksiyonları ve b_i Ritz vektörleri cinsinden:

$$\mathbf{u} = \mathbf{b}_1 \mathbf{Z}_1 + \mathbf{b}_2 \mathbf{Z}_2 + \dots + \mathbf{b}_L \mathbf{Z}_L \tag{4.10}$$

açılımına tabi tutulmaktadır. Burada L, hesaba katılması gereken Ritz vektörü sayısını (L < N) göstermektedir. (4.10) denklemi kompakt formda

$$\mathbf{u} = \mathbf{B} \mathbf{Z} \tag{4.10}$$

şeklinde gösterilirse, sisteme ait hız ve ivme vektörleri için

$$\dot{\mathbf{u}} = \mathbf{B} \, \dot{\mathbf{Z}} \tag{4.11}$$

$$\ddot{\mathbf{u}} = \mathbf{B}\,\ddot{\mathbf{Z}}\tag{4.12}$$

ifadeleri yazılabilmektedir. (4.11) ve (4.12) ifadelerinde **B**, (NxL) boyutlu Ritz vektörleri matrisini, **Z** ise (1xL) boyutunda zamana bağlı fonksiyonlar vektörünü göstermektedir. (4.9), (4.11) ve (4.12) ifadeleri (4.1) denkleminde yerine yazılıp soldan B ile çarpılırsa:

$$M^{*}\ddot{Z} + C^{*}\dot{Z} + K^{*}Z = P^{*}g(t)$$
(4.13)

Denklemi elde edilmektedir. Burada:

$$\mathbf{M}^* = \mathbf{B}^{\mathrm{T}} \mathbf{M} \mathbf{B} \tag{4.14}$$

$$\mathbf{C}^* = \mathbf{B}^{\mathrm{T}} \mathbf{C} \ \mathbf{B} \tag{4.15}$$

$$\mathbf{K}^* = \mathbf{B}^{\mathrm{T}} \mathbf{K} \mathbf{B} \tag{4.16}$$

$$\mathbf{P}^* = \mathbf{B}^{\mathrm{T}} \mathbf{f}(\mathrm{s}) \tag{4.17}$$

şeklinde hesaplanmaktadır. B matrisinin Ritz vektörlerini içeriyor olması nedeniyle, klasik Mod Birleştirme Yönteminden farklı olarak (LxL) boyutlu M*, C*, ve K* matrisleri diyagonal olmamakta, yani, (4.13) denklem sistemi "girişimli" olmaktadır.

Bu girişimli denklem sisteminin çözümünün uygun bir adım-adım integrasyon yöntemi veya dönüşüm tekniği kullanılarak yapılması gerekmektedir. L değerinin M değerinden her zaman daha küçük olması (L < M) nedeniyle (Wilson ve ark., 1982), Ritz vektörleri ile çözümün, özvektörler ile yapılacak çözüme göre çok daha az hesap yükü getireceği açıktır [31].

Ritz vektörleri, taşıyıcı sisteme etkiyen dinamik yükün f(s) vektörü ile tanımlanan konumuna ve kütle dağılımına bağlı olarak basit bir prosedür ile elde edilmektedir (Wilson ve ark., 1982). Burada en önemli husus, bu yöntem ile temel yükleme tarafından harekete geçirilmeyecek hiç bir mod şekil vektörünün hesaplamalara girmeyecek olmasıdır [31].

4.5. Modal Tabanlı Analiz ile Sanal Araç Simülasyon Yöntemi

Modal Tabanlı Sanal Prototip Simülasyonu (MTSPS) yöntemi dinamik sistem çözümlerinde statik simülasyonlara göre daha yararlı bir çözüm olmaktadır [30].

Şekil 4.4. Modal tabanlı sanal prototip yorulma analizi süreci.

Bu entegrasyonda BMS metodu kullanan ve sonlu elemanlar ortamında doğal frekans analizine tabi tutularak elde edilen sonuçlar önemli rol oynamaktadır. Tamamen yapısal doğal frekansların süperpozisyonundan oluşan bu model, uygulanan yüklemelerin yapıdaki frekans cevabını gerilme-gerinim sonuçlarına yansıtmaktadır [30].

Bu çözüm yöntemi aşağıdaki gibi avantajlar sağlamaktadır:

- Yorulma analizi hesaplarına titreşim etkileri ve ÇCS doğrusal olmayan etkisi katılmış olur.
- ÇCS sonrası SEM analizi gerekmediği için olası hatalar ihmal edilmiştir.
- Çok Büyük yapıların ve uzun zaman düzlemindeki yüklemelerin simülasyonu kısa sürede yapılabilir.

Şekil 4.5. Modal tabanlı yorulma dayanımı prosedürü akış şeması [30].

ÇCS içinde bir yapının şekil değişimi; yapının hareketi ve elastik şekil değişiminin süper pozisyonu ile elde edilir. Bu uygulama Şekil 4.6'da gösterilmiştir.

Şekil 4.6. Çoklu cisim simülasyonunda şekil değişimi ifadesi [30].

Elastik gövde düğümleri, iki farklı grup (serbestlik derecesi (DOF)) olarak ele alınırsa:

- Arayüz düğümler (DOF): Çoklu Cisim Simülasyonunda, kuvvetler ve sınır şartları bu düğüm noktalarından Sonlu Elemanlar modeli ile etkileşime girerler.
- İç düğümler (DOF): Bu düğümler dış kuvvet veya kısıtlamaları ile etkileşim yok.
 Bu düğüm noktalarındaki deformasyonlar dıştan uygulanan kuvvetler ve sistemin dinamik bir sonucudur.

Şekil 4.7. Modların lineer kombinasyonu ile elastik deformasyonun ifadesi [30].

Şekil 4.7'de gösterildiği gibi tüm serbestlik derecelerinin elastik deformasyonu, uygun modların lineer kombinasyonu ile ifade edilmiştir. Bileşen Mod Sentezi yöntemi bu tip mod dizilerinin çözümünde oldukça etkili bir yöntem olmaktadır. Bileşen Modları; yapının statik ve dinamik davranışı içeren modlara sahiptir. Bu modlar iki grupta incelenebilir:

- Statik deformasyon şekilleri: Her bir "Arayüz serbestlik derecesi" bir birim değiştirmesine uğrar. Diğer tüm "Arayüzü - serbestlik dereceleri" sabittir. Oluşan şekil "Statik Modu" denir. Serbestlik derece - Sonuç arayüzü gibi pek çok Statik Modu vardır.
- Doğal titreşimler: Bütün "Arayüzü serbestlik dereceleri" sabittir. Bir klasik
 Özdeğer problemi çözümü olan "Normal Modlar" elde edilmesini sağlar.

Modları ayrıştırılmış bir dizi şeklinde elde etmek için Statik ve Normal modlar 'Ortogonalleştirilmiş Bileşen Modları' dizisi şekline dönüştürülür. Dönüştürülen modlar arasında tamamem statik veya dinamik modlar arasında ayırım yapmak mümkün değildir.Oluşturulan "Ortogonalleştirilmiş Bileşen Modları" Sonlu elemanlar yöntemi ile oluşturulur ve ÇCS içine aktarılır [30].

ÇCS sonucunda bütün modların her bir zaman aralığı için toplam deformasyonu elde edilir. Bu deformasyonlara "Modal Koordinatlar" denir. Şekil 4.7'de modal koordinat kullanımı $q_{i(t)}$ gösterilmektedir.

Gerilme verileri önceki bir SEM analizi ile temin edilmiştir. Uygun zaman veri ölçümü veya simülasyon tarafından belirlenir.

SEM' de oluşan her deformasyon bir gerilme dağılımı meydana getirir. Bunun anlamı her bir Bileşen Modu (deformasyon) kendine göre bir gerilme dağılımına (Modal Gerilme) sahiptir (Şekil 4.8).

Şekil 4.8. Mod şekillerinin lineer kombinasyonu ile genel yapısal gerilmesinin elde edilmesi [30].

Sonlu elemanlar yapısının gerilme hesaplamaları Modal gerilmelerin lineer kombinasyonu ile elde edilirler. Şekil 4.8'de gösterildiği üzere bir gerilmenin Modal koordinat dağılımı; Bileşen Modunun ve Çoklu Cisim Simülasyon sonucunun Modal koordinat dağılımı ile aynıdır. Bu nedenle modele ait Modal Gerilmelerin veri miktarının çok uzun gerilme-zaman bileşenlerine sahip dizilerin şeklinde olması
mümkündür. Bu 300000 zaman adımı ile 20 dakika uzunluğunda bir test sürüşünü simüle etme imkânı sağlar. Böyle bir simülasyon statik, dinamik ve titreşim etkilerini aynı anda görmemize olanak sağlar [30].

Buraya kadar yapılan işlemleri özetlemek gerekirse; Sonlu Elemanlar Analizi, Çoklu Cisim Simülasyonu için Bileşen Modları ve Modal Gerilmeleri oluşturur. Çoklu Cisim Simülasyonu ile yapının Modal Koordinatları elde edilir. Elde edilen Modal Gerilmeler ve Modal Koordinatlar yorulma analizinde girdi verisi olarak kullanılır.

Yorulma Simülasyonu yapılırken genel olarak yukarıda bahsedilen prosedüre uyularak elde edilen Modal Koordinat verileri ile Modal Gerilmeler süperpozisyon yöntemi ile asıl gerilmelerin elde edilmesi için kullanılır. Asıl gerilmeler hesaplandıktan sonra önceki bölümde anlatılan yorulma hasarı teorilerine göre hasar hesaplamaları yapılarak modal tabanlı yorulma simülasyonu tamamlanmış olur.

BÖLÜM 5. DENEYSEL VE BİLGİSAYAR DESTEKLİ ÇALIŞMA

Deneysel çalışmalarda Türkiye şartlarında; 5 bölmeden oluşan yarı römork akaryakıt tankerinin şasisinin farklı yol şartlarındaki yapısal davranışları ve yorulma ömrü üzerindeki etkileri incelenmiştir.

Şekil 5.1. Deneysel ve bilgisayar destekli çalışma akış şeması.

Şekil 5.1'de verilen deneysel çalışma akış şeması doğrultusunda çalışma süreci kısaca özetlerinse; araç modelindeki kritik bölgelerin tespiti amacıyla, belirli yükleme koşulları altında FEM analizleri yapılmış ve sonrasında belirlenen kritik bölgelere gerinim ölçer (strain-gage), teker bölgeleri ve king-pim üzerine ivme ölçerler monte edilerek farklı yol kategorilerinde ölçümler alınmıştır. Bu ölçümden elde edilen ivme değerleri ile bilgisayarda oluşturulan hibrit araç simülasyonu koşturularak yapısal gerilme değerleri elde edilmiştir. Bilgisayar simülasyonundan elde edilen gerilme değerleri ile gerçek araç modelinden elde edilen gerilme değerleri yorulma simülasyonu yazılımında karşılaştırılarak yarı römork üzerindeki hasar açısından kritik bölgelerin doğrulanması ve optimizasyon için tasarım bölümünün bilgilendirilmesi sağlanmıştır. Bölüm devamında yukarıda özetlenen işlemlerden detaylı olarak bahsedilecektir.

5.1. Treyler Şasisi ve Özellikleri

Çalışmalarda kullanılan treyler modelinin şasi tasarımı; kullanım amacı ve taşıma kapasitesine uygun olarak yüksek mukavemetli çelikten "I" kesitli olarak otomatik gaz altı kaynak makineleriyle kaynak konstrüksiyondan ve şasi destek bağlantıları "U" kesitli yüksek mukavemetli St-52 kalite sacdan imal edilecek şekilde tasarlanmıştır. Araçta kullanılacak dingiller 150.000 Km bakım gerektirmeyen, elektronik kontrollü kalkar dingil, 3 Aks sistemi, 6 adet lastik, her bir dingil 12 ton kapasiteli ve dövme çelikten mamul aksların, dikdörtgen geçme çelik profiller ile toz altı kaynak metoduyla birleştirilmesi ile imal edilmesi planlanmıştır.

Şekil 5.2. Yarı römork tanker genel bölgeleri.

Treyler ile çekici arasındaki bağlantı için SAE/DIN normlarına uygun yüksek düzeyde gerilme ve kopmalara dayanıklı, dövme çelikten imal, vida bağlantılı bir ara bağlantı olan "King-pim" kullanılmıştır.

Tankerin şasi ile bağlantısı 5 adet konsol kullanılarak sağlanmaktadır. Konsollar tanker ile kaynaklı olarak birleştirilerek şasi üzerine cıvatalı olarak bağlanmaktadır. Cıvatalı bağlantı bölgesinde tanker ile şasi arasında kauçuk sönümleme pedleri bulunmaktadır. Bu pedler sayesinde yoldan gelen titreşimlerin sönümlenmesi amaçlanmıştır.

Tankerin bölümleri arasında adı "Dalga Kıran" olarak geçen ve çalkalanma etkilerini azaltmaya yarayan bölücüler bulunmaktadır. Taşınan yakıt bu dalga kıranlar arasında geçiş delikleri aracılığıyla hareket edebilmesi, ani frenleme ve benzeri durumlarda aşırı çalkalanma gibi etkiler ise dalga kıranlar tarafından engellenerek güvenli sürüş yapılması amaçlanmaktadır.

Şekil 5.3. Yarı römork tanker dalgakıran bölgeleri.

5.2. Simülasyon için Ön Kabuller ve Sınır Şartları

Bilgisayar ortamında yapılacak olan nümerik yöntemli çözümlerde belli hata payları mevcuttur. Bu hata paylarının sınırlar içinde kalması ve doğru analizler yapmak için hazırlanan modellerin doğru sınır şartları ve ön kabullere sahip olması gerekmektedir. Sınır şartların belirlenmesi için tasarlanan aracın teknik özellikleri ve kullanım şartları gibi konular iyi bilinmeli ve simülasyon yazılımlarına doğru aktarılması gerekmektedir. Yapılan deneysel çalışmada kullanılan prototip modelin ön şartları ve sınır koşulları belirlenerek hibrit modelin bütün simülasyonları için belirlenen şartların benzer olması amaçlanmıştır.

Araç için belirlenen ön şartlar;

- Aracın boş ağırlığı yaklaşık 3800 Kg olarak hesaplanmıştır.
- Aracın yükleme kapasitesi yaklaşık 27000 Kg olarak hesaplanmıştır.
- Aracın yüklü simülasyonu tam dolu durum için yapılmıştır.
- Araç yükleme durumu noktasal yük elemanları ile sağlanmıştır.
- Araç yükleme durumunun eşit dağılması için 9 parça noktasal yük elemanı kullanılmıştır.
- Araçta çalkalanmadan dolayı oluşan etkiler dikkate alınmamıştır.

Aracın ön bölümde çekici ile olan bağlantısı (King-pim), arka bölümde ise dingil grubu (süspansiyon, amortisör, teker) aracılığıyla yolla olan bağlantısı genel sınır şartlarını oluşturmaktadır. Bu bölgelerdeki serbestlik derecelerinin doğru tayin edilmesi aracın yükleme davranışının doğruluğu için oldukça önemlidir.

Şekil 5.4. Sınır şartları uygulama bölgeleri (a: king-pim bölgesi b: dingil bölgesi).

Şekil 5.4'te gösterildiği üzere king-pim bölgesinde çekici-tabla mekanizması 7-8° dönmeye imkan verebilmektedir. Yapılan simülasyonlarda bu bağlantı bölgesi dönmeye serbest bırakılmıştır. Arka bölgede bulunan dingiller 3 noktadan şasi üzerine bağlanmaktadır. Makas kulağı bölgesinde kauçuk burç, orta bölgede amortisör ve arka bölgede havalı körük ile şasiye bağlantıları tamamlanmıştır. Dingil ön bölgede bağlı olduğu makas kulağı etrafında dönme hareketi yapacak şekilde serbestlik derecesine sahiptir.

Dingil bölgesindeki süspansiyon, amortisör ve kauçuk burç gibi elemanlar paket yazılımlarda bulunan kütüphanelerden yay, sönüm elemanı gibi hazır elemanlar yardımıyla modellenmiştir. Katı modelden gelen şekiller analizde kullanılmamıştır. Bu tip bir yaklaşım hem çözümün daha hızlı hem de daha doğru olmasını sağlamaktadır. Şekil 5.5'te dingil bölgesindeki elemanların simülasyon modelleri üzerinde kütüphaneden atanmış karşılıkları gösterilmiştir.

Havalı Süspansiyon Körüğü; deplasman-kuvvet grafiği ile yay elemanı olarak tanımlanmıştır. Gazlı amortisör sönüm elemanı; deplasman-kuvvet grafiği ile sönüm elemanı olarak tanımlanmıştır. Kauçuk burç ise; dönme ve öteleme etkilerine göre değer tablosu girilerek burç eleman olarak tanımlanmıştır. Bu eleman dönüşümleri sayesinde araç modeli sonlu elemanlar modeline ve daha ileride anlatılacak olan hibrit modele uyarlanmıştır.

Şekil 5.5. Dingil grubu bölgesinin simülasyon modeline uyarlanması.

Araç modelinin serbestlik derecelerinin daha iyi anlaşılması için Şekil 5.6'da verilen bölgeler için serbestlik derecesi değerleri Tablo 5.1'de ayrıntılı olarak verilmiştir.

Şekil 5.6. Yarı römork tankerin serbestlik derecesi belirlenen bölgeleri.

	Öteleme			Dönme		
	X-ekseni	Y-ekseni	Z-ekseni	X-ekseni	Y-ekseni	Z-ekseni
King Pim (A)	0 mm	0 mm	0 mm	0 mm	Serbest	0 mm
1.Dingil Sağ Teker (B)	Serbest	0 mm	0 mm	0 mm	Serbest	0 mm
1.Dingil Sol Teker (C)	Serbest	0 mm	0 mm	0 mm	Serbest	0 mm
2.Dingil Sağ Teker (D)	Serbest	0 mm	0 mm	0 mm	Serbest	0 mm
2.Dingil Sol Teker (E)	Serbest	0 mm	0 mm	0 mm	Serbest	0 mm
3.Dingil Sağ Teker (F)	Serbest	0 mm	0 mm	0 mm	Serbest	0 mm
3.Dingil Sol Teker (G)	Serbest	0 mm	0 mm	0 mm	Serbest	0 mm

Tablo 5.1. Yarı römork tankerin serbestlik derecesi tablosu.

Model için gerekli sınır şartları belirlendikten sonra yükleme şartlarının sağlanması gerekir. Bu nedenle aracın ne büyüklükte yüklere ne tip bir dağılımla maruz kaldığının bilinmesi gerekmektedir. Deneysel çalışma için kullandığımız tanker modelinde sıvı akaryakıt taşınması amaçlandığı için yükleme olarak hidrostatik basınç kullanılmalıdır. Fakat sonraki bölümlerde yapılacak olan dinamik simülasyonlarda çözüm süreleri ve simülasyonun basitliği açısından noktasal yükleme elemanları kullanılması, tankerin tam yüklü durumu için sıvı akaryakıtın çalkalanma etkisi ihmal edilecek kadar düşük olduğu için uygun bulunmuştur. Bu nedenle Model doğrulamasın ve Statik analizler için hidrostatik yükleme koşulları uygulanırken, Hibrit model ve yorulma analizlerinde noktasal kütle yükleme koşulları uygulanmıştır.

Noktasal kütle yükleme koşulları ile tankerin iç yüzeyine bağlayacağımız Noktasal Kütle (Point Mass) elemanları ile tanker içindeki yakıtın kütlesinin simülasyonu yapılabilmektedir. Bu tip bir yaklaşımda tekil bir yük elemanı tankere aşırı rijitlik katacağından yük 9 parçaya bölünerek tankerin iç yüzeyine paylaştırılmıştır. Bu paylaştırma sayesinde tankerin yükleme şartlarına daha esnek cevap vermesi sağlanmıştır. Şekil 6.8'de model içinde 9 adet noktasal kütlenin tanker içinde dağılımı verilmiştir.

Şekil 5.7. Noktasal yüklerin model üzerindeki dağılımı.

Noktasal kütle elemanları için girilmesi gereken belli başlı değerler vardır. Bunlar kütlenin değeri ve atalet momentleridir. Bu değerlerden kütle hesaplanırken; kütle elemanının hacim, şekil ve temsil ettiği yakıtın özgül ağırlığı esas alınmıştır. Bu değerlerin hesaplanarak tablo edilmiş hali Tablo 5.2'de verilmiştir.

Noktasal Kütle		Atalet Momentleri (kg.mm2)			
Eleman No	Ağırlık	X - ekseni	Y -ekseni	Z -ekseni	
Point Mass	3120 kg	1,55E+09	1,09E+09	1,09E+09	
Point Mass2	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass3	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass4	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass5	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass6	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass7	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass8	3132 kg	1,57E+09	1,19E+09	1,19E+09	
Point Mass9	2406 kg	1,20E+09	7,30E+08	7,30E+08	

Tablo 5.2. Noktasal kütle elemanlarının özellikleri.

5.3. Sonlu Elemanlar Modeli Simülasyonu

Deneysel çalışmalarda ilk olarak; sonlu elemanlar simülasyonu için analiz modeli oluşturularak farklı çalışma koşullarında yapısal analizler yapılarak dinamik analizler öncesi tasarım doğrulaması yapılmıştır. Yapılan analizler neticesinde araç yapısının zayıf noktalarının tespiti ve iyileştirilmesi ile ömür hesaplarının gerçekleştirilmesi ve muhtemel problemlerin öngörülmesi mümkün olmuştur.

Deneysel araç modelinin sonlu elemanlar simülasyonu için otomotiv sektöründe tam araç modellerinin oluşturulması uluslararası platformda da yaygınca kullanılan ANSYS 14.5 paket yazılımı kullanılmıştır.

Hazırlanan simülasyon modelinin ilk olarak modal analizleri yapılarak yapının bütünlüğü doğrulanmış ve yapısal modları çıkarılmıştır. Modal analizler ile modelin yapısal bütünlüğü doğrulandıktan sonra yapısal analizler yapılarak model üzerindeki yapısal zafiyet noktaları belirlenmiştir.

Yapılan analiz çalışmalara ait sonuç değerleri "SONUÇLAR" bölümde ayrıntılı olarak gösterilmiştir.

Şekil 5.8. Sonlu elemanlar simülasyonu için sadeleştirilmiş model.

Şekil 5.9. Sonlu elemanlar simülasyonu için mesh modeli.

5.3.1. Doğal frekans (modal) analizleri

5.3.1.1. Analiz sınır şartları

Modal analizin amacı; daha önceki bölümlerde anlatıldığı üzere yapının doğal frekansları ve mod şekillerinin elde edilmesidir. Sonlu elemanlar modelinde yapılacak olan modal analiz hibrit araç simülasyonunda titreşim etkilerinin simülasyona katılması için kullanılacaktır. Dingil bölgesindeki amortisör, süspansiyon gibi bileşenlerin MSC Adams yazılımı ile ÇCS tarafından sağlanacağı için sadece şasi bölgesinin modal analizinin yapılması yeterli görülmüştür.

Şekil 5.10. Modal analiz sınır şartları - remote displacement noktaları.

Modal analizde sınır şartları noktasal kütle elemanları için statik analiz sınır şartları ile aynıdır. Şekil 5.10'da noktasal yük dağılımı gösterilmiştir. Statik analiz ile en büyük fark modal analizde dingil elemanlarının mevcut olmamasıdır. Şasi Modeli;dingil ve king-pim bölgesinde bağlantı yaptığı bütün noktalardan "Remote Displacement" koşulu ile bağlanarak sabitlenmiştir. "Remote Displacement" koşulu kullanılmasının nedeni daha önceki bölümde anlatıldığı üzere "Craig-Bampton" metodunda her bir nokta için 6 serbestlik derecesinde modal analiz çözümü yapılarak bu çözümlerin süperpozisyonu sayesinde birim şekil değişimi ve gerilme değerleri elde edilmesidir. Kullanılan "Remote Displacement" koşulu belirlenen bir noktanın 6 serbestlik derecesinin bağımsız olarak tanımlanmasını sağladığı için Craig-Bampton modlarının çözülmesi için imkân sağlamaktadır.

Şekil 5.11. Modal analiz sınır şartları - remote displacement noktaları.

Şekil 5.12. Noktasal yüklerin model üzerindeki dağılımı.

5.3.2. Yapısal analizler

Tasarlanan araç modelinin dinamik analizlerinden önce belli bir takım yapısal analiz senaryosundan geçmesi gerekmektedir. Eğer model bu senaryoları geçemiyorsa, dinamik analize ihtiyaç duymaksızın tasarımın revize edilmesi gerekmektedir.

Deneysel Çalışmada araç modeli için belli birtakım senaryolar hazırlanmış ve araç bu senaryolara göre analiz edilerek tasarımın uygunluğuna karar verilmiştir. Yapısal analizlerin uygunluğu sonrasında modal analizler ile hibrit modelleme devam edilerek dinamik analiz fazına geçilmiştir.

5.3.2.1. Kritik noktaların belirlenmesi için kullanılan yükleme modelleri

Statik analiz için gerekli yükleme senaryoları belirli standartlara göre veya araç kullanım şartlarına göre belirlenerek analizlerde kullanılır. Bu çalışmada kullanılan araç modeli için öngörülen analiz senaryoları Tablo 6.3'te verilmiştir.

Analiz Tipi	Uygulanan Kuvvet
Yerçekimi	1 g
Frenleme	0,4 g
Çukura Düşme	50 mm
Tümsek Geçme	50 mm
Burkulma	300mm

Tablo 5.3. Statik analiz senaryoları.

Tablo 5.3'deki senaryolara göre modelin analizleri yapılarak Bölüm 6'da verilmekte olan analiz sonuçları incelenmiştir. Model üzerindeki kritik gerilmelerin malzeme akma mukavemeti altında olması nedeniyle genel bir tasarım değişikliğine ihtiyacı olmadığına karar verilmiştir. Bu karar için genel bir yaklaşım olan yapısal gerilmelerin akma gerilmesinin 0,5 katı kadar altında olması şartına bakılmıştır. Bu şart; tasarım için sonsuz ömrü ifade etmekte olup makina tasarımında sıklıkla kullanılmaktadır.

5.4. Yol Testi ve Veri Toplama

Sonlu elemanlar simülasyonunda gerçekleştirilen farklı yükleme modelleri ile belirlenen kritik bölgelerdeki gerinim ve gerilim değerlerinin ve titreşim kaynaklı yorulma analizlerinin temelini oluşturan ivme değerlerinin gerçek yol şartlarında belirlenmesi için prototip olarak üretilen bir model sensörler ile enstrümante edilerek yol sinyalleri toplanmıştır. Ölçülen değerlerin mantıklı olup olmadığının anlaşılması için ölçümler farklı yükleme koşulları için tekrarlanmıştır.

5.4.1. Test güzergâhı ve yol profilleri

Gerçek kullanım şartlarının sağlanabilmesi için Sakarya-Kocaali bölgesinde şasi bağlantı parçaları rezonansa sokacak yol profilleri seçilmiş olup 587 km boyunca veri toplama işlemi gerçekleştirilmiştir. Şekil 5.13'de testler için kullanılan parkurlar görülmektedir.

Şekil 5.13. Test parkuru haritası.

Araç ömrünün yol tiplerine göre kullanım yüzdeleri Tablo 5.4'de verilmiştir. Kullanım yüzdesi 1.000.000 km ömür öngörülerek dağıtılmıştır. Bu tablo incelendiğinde araç daha çok şehirlerarası yollarda kullanılacağı görülmektedir. Araca en yüksek hasarları verecek olan Köy yolları, Off-road gibi bozuk yol profilleri çok düşük bir kullanım yüzdesine sahiptir. Bu yollara ait örnek görüntüler Şekil 5.14'de verilmiştir.

Yol Tipi	Kullanım Yüzdesi
Otoban (Asfalt)	13%
Şehirlerarası (Asfalt)	65%
Şehir İçi (Bozuk Asfalt)	15%
Köy Yolları (Stabilize)	5%
Offroad (Arazi)	2%

Tablo 5.4. Yol tiplerine göre araç kullanım yüzdeleri.

Şekil 5.14. Test parkuru yol profili tipleri.

5.4.2. Ölçüm noktaları ve kanal listesi

Enstrümantasyon çalışmalarında ölçüm noktaları belirlenirken sonlu elemanlar simülasyonunda belirlenen kritik noktalar ve araç tahrik noktaları kullanılmıştır. Seçilen 8 adet kritik bölgeden rozet tipi gerinim ölçer (strain-gage) kullanılarak 24 kanal olarak birim şekil değişimi sinyalleri toplanmıştır. İvme sinyallerinin toplanması için aracın tahrik bölgeleri olan king-pim ve dingiller üzerindeki teker bölgeleri seçilerek dikey eksende ivme toplanacak şekilde sensörü yerleştirilmiştir.

Aracın yol profillerine göre hız dağılımlarının belirlenmesi ve konum haritalarının çıkarılması için GPS ölçüm sensörü enstrümanstasyona dahil edilmiştir. Belirtilen ölçümlere ait kanallar ve özellikler Tablo 5.5'de verilmektedir.

Kanal Açıklama	Kanal adedi	Birim
İvme	7	g
Birim Şekil Değişimi	24	μstrain
Enlem	1	derece
Boylam	1	derece
Hız	1	km/h

Tablo 5.5. Ölçüm kanalları ve özellikleri.

İvme sensörlerinin yerleşim noktaları Şekil 5.15'de verilmiştir. Şekilde görüleceği üzeri ivmeölçerler tahrik noktalarına mümkün olduğunca yakın şekilde koyularak ölçümlerin doğruluk artması amaçlanmıştır.

Şekil 5.15. İvme ölçer sensör yerleşimi.

Enstrümantaston çalışmalarında ölçüm noktaları belirlenirken sonlu elemanlar simülasyonunda belirlenen kritik noktalar ve araç tahrik noktaları kullanılmıştır. Araç üzerinde 24 kanal üzerinden 3-eksende birim şekil değişimi, aracın 7 tahrik bölgesinden ise ivme sinyali toplanmıştır. Bu bölgelerin 6 tanesi dingil bölgesinde teker üzerinden, son bölge ise ön bölümde king-pim üzerinden alınmıştır. Tablo 5.6'da ivme kanallarının yerleşim bölgeleri gösterilmektedir.

Kanal	Kanal Açıklama
А	King-pim Z-ekseni ivme ölçer
В	1.Dingil Sağ Teker Z-ekseni ivme ölçer
С	1.Dingil Sol Teker Z-ekseni ivme ölçer
D	2.Dingil Sağ Teker Z-ekseni ivme ölçer
E	2.Dingil Sol Teker Z-ekseni ivme ölçer
F	3.Dingil Sağ Teker Z-ekseni ivme ölçer
G	3.Dingil Sol Teker Z-ekseni ivme ölçer

Tablo 5.6. Şekil 5.15'e göre ivme kanalları ve yerleşim bölgeleri.

5.4.3. Yol sinyallerinin toplanması

Enstrümanstasyon çalışmaları tamamlandıktan sonra üretilen prototip araç ile seçilen yol profillerinde toplamda 587 km test sürüşü yapılarak yol sinyalleri toplanmıştır. Yol sinyalleri toplanırken 500 Hz sinyal toplama frekansı kullanılmıştır. Yollara ait km bilgileri Tablo 5.7'de verilmiştir.

Yol sinyalleri toplandıktan sonra sinyal işleme yazılımları ile sinyaller işlenerek yol profillerinin araç üzerindeki etkileri incelenmiş ve hibrit araç simülasyonu için gerekli olan yol girdileri oluşturulmuştur.

Yol Profili	Toplam Yol (Km)	Maks. Hız (Km/h)
Otoban (Asfalt)	90	100
Şehirlerarası (Asfalt)	280	94
Şehir İçi (Bozuk Asfalt)	150	84
Köy Yolları (Stabilize)	59	65
Offroad (Arazi)	8	40

Tablo 5.7. Sinyal toplanan yol profillerinin özellikleri.

5.4.4. Yol sinyallerinin işlenmesi

Toplanan yol sinyalleri değerlendirilmeden önce bazı temizleme işlemlerinden geçirilerek bozuk ve hatalı bölümlerin ayıklanması gerekir. Bu işlemler için özel olarak yazılmış sinyal işleme yazılımları kullanılmaktadır. Bu yazılımlar barındırdıkları fonksiyonlar ile sinyal üzerinde birçok işlem yapılabilmesine izin vermektedir. Sinyallerin işlenmesi için çalışmalarda HBM firması tarafından geliştirilen "nCODE Glypworks" yazılımı kullanılmıştır. "nCODE Glypworks" yazılımı otomotiv sektöründe oldukça geniş bir kullanım alanı olan ve görsel programlama altyapısı ise kullanım kolaylığı sağlayan bir yazılımdır.

5.4.5. Bozuk ve hatalı sinyallerin temizlenmesi

Yoldan toplanan sinyallerin içinde çevredeki dış etkiler veya anlık oluşan ölçüm hataları nedeniyle tutarsız ve hatalı değerler oluşabilmektedir. Sinyaller değerlendirilirken bu değerlerin göz ardı edilmesi gerekmektedir. Sinyallerin işlenmesinde ilk adım olarak bozuk ve hatalı sinyaller nCODE yazılımı içerisindeki "Spike Detection" fonksiyonu kullanılarak temizlenmişlerdir. Sinyal temizleme işleminde kullanılan fonksiyonlar sinyallerin içindeki süreksiz ve ani değişimleri belirleyerek bunların gerçek sinyallerden ayrılmasında oldukça faydalı olmaktadırlar. Temizleme işleminden sonra sinyaller kontrol edilerek uygunlukları kontrol edilmiştir. Şekil 5.16 ve Şekil 5.17'de bozuk ve hatalı sinyallerin belirlenerek temizlendiği yol sinyalleri gösterilmektedir.

Şekil 5.16. Bozuk ve hatalı sinyal temizleme işlemi.

Şekil 5.17. Tanker sinyallerine ait bozuk ve hatalı sinyal temizleme işlemi.

Yol sinyallerinin temizleme işlemleri tamamlandıktan sonra sinyaller birim şekil değişimi ve ivme olarak iki kısımda incelenmiştir. Simülasyon çalışmalarında yoldan gelen tahriklerin modellenmesi için ivme sinyalleri kullanılmıştır. Birim şekil değişimi değerleri araç üzerindeki kritik bölgelerdeki gerilme değerlerinin incelenmesi ve analiz modelleri ile karşılaştırması ve yorulma analizleri için kullanılmıştır.

5.4.6. İvme sinyallerinin analizi ve simülasyon yol profili oluşturulması

İvme sinyalleri temizlendikten sonra farklı yol tiplerine göre ele alınarak frekans ve göreceli hasar analizleri yapılmıştır. Analizler sonucunda yolların karakteristikleri belirlenmiş olup hangi yol tipinin araç üzerinde daha güçlü etkiler yaptığı tespit edilmiştir.

Dinamik araç analizlerinde, aracın tahrik edilmesi için gerekli olan sinyallerin elde edilmesi için yoldan toplanan sinyaller kullanılarak farklı yol tiplerinin araç üzerindeki etkileri görülebilmektedir. Bu amaçla karma bir yol profili oluşturulması için her yol tipinin etkileri frekans düzleminde incelenmiş ve hangi frekans aralığının araç üzerinde baskın olduğu da belirlenmiştir.

5.4.7. Frekans analizi ve güç spektrum yoğunluğu

Toplanan sinyallerin temizleme işlemleri tamamlandıktan sonra frekans aralıkları ve frekanslara bağlı etkilerinin belirlenebilmesi için frekans spektrum analizi yapılmıştır. Bu analiz sonucunda zaman düzlemindeki sinyaller frekans düzlemine dönüştürülerek aracı tahrik eden frekansların belirlenmesi sağlanmıştır. Şekil 5.18'de frekans spektrum analizi elde edilmişmiş sinyaller görülmektedir.

Şekil 5.18. Tanker sinyallerine ait frekans spektrum analizi.

SEM ile yapılan Modal Analizlerden edinilen doğal frekans değerleri ile toplanan yol sinyallerinin frekansları karşılaştırılarak çakışan sinyal aralıkları belirlenmiştir. Teorik olarak yapılan kabullerde bir yapıyı tahrik eden kuvvetlerin frekansı, yapının doğal frekansları ile çakışıyor ise, sistem üzerinde dinamik davranışın dikkate alınması ve statik analizler yerine dinamik analizler değerlendirilmesi gerekmektedir.

Analizler sonucunda yapıyı tahrik eden kuvvetlerin frekans aralığı yaklaşık olarak 2-50 Hz arasında olduğu hesaplanmıştır. 6-30 Hz frekans aralığındaki tahrik kuvvetleri en yüksek aralığa sahip olduğu görülmektedir. Modal analiz sonuçları ile karşılaştırıldığında yapının tahrik frekansları ile doğal frekansların çakıştığı görülmektedir. Ortak çakışma aralığı olarak 8-30 Hz arasındaki baskın frekanslar seçilmiştir. Bu nedenle yapının dinamik analizinin yapılmasının gerektiği sonucuna varılmıştır. Şekil 5.19'da çakışan frekans aralığı gösterilmektedir.

Yapının dinamik analizlerinde sonuçlar incelenirken bakılması gereken frekans aralığının seçilmesi konusunda ve Frekans spektrum analizi oldukça yardımcı olmuştur.

Şekil 5.19. Modal doğal frekansları ve yapısal tahrikler çakışma aralığı.

Frekans analizleri sonrasında ivme sinyalleri incelendiğinde en yüksek ivme değerlerinin Off-road yol koşullarında ±18g mertebelerinde olduğu görülmüştür. Off-road yol koşulları oldukça bozuk ve çukur-tümsek şeklinde bir profile sahip olduğu için ivme değerlerinin yüksek olmasına beklenen bir durumdur. Frekans analizlerinin tamamlanmasından sonra yol profillerinin yorma etkilerine göre sınıflandırılması için göreceli hasar analizi çalışmaları yapılmıştır.

5.4.8. Göreceli hasar teorisi ile toplanan sinyallerin karşılaştırılması

nCODE yazılımı göreceli hasar teorisine göre, herhangi bir sonlu eleman modeline ihtiyaç duyulmadan herhangi bir gerilme-çevrim sayısı eğrisine göre zaman eksenindeki yükler birer birim uzama gibi düşünülerek iki hasarın karşılaştırmasını yapmaktadır. Daha basit bir anlatımla bir yolun diğer yollara göre ne kadar hasar etkisi olduğunun belirlenmesinde "Göreceli Hasar Analizi" oldukça faydalı bir fonksiyondur. Şekil 5.20'de göreceli hasarın teorik adımları gösterilmektedir.

Şekil 5.20. nCODE göreceli hasar analizi teorik adımları.

Frekans aralığı belirlenen ivme sinyallerinin; nCODE yazılımda bulunan "Göreceli Hasar Analizi" fonksiyonu kullanılarak araç üzerindeki yorulma etkileri karşılaştırılmıştır. Karşılaştırma için kullanılan sanal yorulma eğrisi genellikle şekil değişimi yani uzama değerleri için kullanıldığı için öncelikle ivme değerlerinin deplasman değerlerine dönüşümü sağlanmış. Dönüşümün yapılması için "g" birimindeki ivme değerleri mm/s² birimine dönüştürülerek iki defa integrali alınarak deplasman değerlerine geçiş sağlanmıştır. Daha sonra deplasman değerleri ile göreceli hasar analizi sonuçları elde edilmiştir (Şekil 5.21). Göreceli hasar fonksiyonu kullanılarak yapılan karşılaştırma analizlerinde eğrinin eğimi -4 olarak alınmıştır.

Şekil 5.21. nCODE ivme-deplasman dönüşümü ve göreceli hasar analizi.

Aracın tahrik noktaları üzerindeki göreceli hasarlanma analiz grafikleri "SONUÇLAR" bölümünde gösterilmektedir.

5.4.9. Toplanan yol sinyallerinden karma yol profili oluşturulması

Sinyal toplanan yolların göreceli olarak hasar etkilerinin belirlenmesinin ardından hangi yolların daha fazla hasar verdiği belirlenmiştir. Sonraki çalışma olarak daha önceden belirlenmiş aracın ömrü boyunca kullanılacağı yol profili yüzdeleri kullanılarak toplanan sinyallerden bir yol profili oluşturulur. Oluşturulan bu yeni profil, aracın farklı yol tiplerindeki ömürlük kullanım yüzdelerine göre toplanan yol sinyallerinin birleştirilmesinden oluşan karma bir ömür yol profilidir. Şekil 5.22'de karma bir yol profilinin bölümleri gösterilmiştir.

Şekil 5.22. Ömürlük kullanım yüzdesine göre karma yol profili.

Yol profili oluşturulurken hedef bir km hesaplanmış ve bu hedeflenen km yüzdelik dilimlere bölünerek karma yol profilinin farklı yol tiplerinden oluşturulması sağlanmıştır. Karma yol profili yaklaşık olarak 100 km'lik yolu karşılayacak şekilde oluşturulmuştur.

Kanallar birleştirilirken nCODE yazılımındaki "Concatenation" fonksiyonu kullanılmıştır. Bu fonksiyon sayesinde farklı zamanlarda toplanmış sinyaller her sinyal uygun kanal numarasına denk gelecek şekilde birleştirilerek tek bir sinyal haline getirilirler. Şekil 5.23'de fonksiyonun kullanımı ve Şekil 5.24'de tanker sinyalleri ile karma yol profili oluşturma işlemi gösterilmiştir.

Şekil 5.23. "Concaenation" fonksiyonu ile sinyal birleştirme.

Şekil 5.24. Tank ivme sinyallerinin birleştirilerek karma yol profilinin yapılması.

5.4.10. Simülasyon yol profilinin oluşturulması

Oluşturulan karma yol profilinin hibrit araç simülasyonunda kullanılması için kısaltılması gerekmektedir. Bunun nedeni sinyal toplama frekansının ve süresinin yüksek olmasıdır. Bu sinyallerin simülasyon tarafından yönetilmesi ve analiz sonuçlarının çıkarılması oldukça uzun süreler gerektirmektedir. Bu sürenin

kısaltılması ve simülasyon çalışmaların daha hızlı yapılabilmesi için nCODE yazılımında Test Eşleştirme (TestMatch) olarak adlandırılan test eşleştirme ve optimizasyon fonksiyonu yardımıyla karma yol profiline eşdeğer ve daha kısa bir yol profili hesaplanmıştır. Hesaplar yapılırken profillerin karşılaştırılmasında Göreceli Hasar Etkisi, Yorulma Hasar Spektrumu, "Rainflow Saydırma Yöntemi" gibi birçok farklı karakterize metodunun kullanılması mümkün olmaktadır. Bu sayede bir yol profilinin oluşturduğu hasarın eşdeğeri bir etki için farklı profillerin hangi oranlarda kullanılması gerektiği gibi bilgilerin hesaplanmasında veya dayanım testleri için test parkuru güzergâhlarının hazırlanmasında oldukça yararlı olmaktadır. Bu çalışma kapsamında yapılan analizlerde karşılaştırma için Göreceli Hasar Etkisi dikkate alınmıştır.

5.4.11. Yol profillerinin göreceli hasar analizleri

Karma yol profiline eşdeğer ve daha kısa bir yol profilinin hesaplanmasında karşılaştırma için "Göreceli Hasar Etkisi" değerleri kullanılmıştır. Şekil 5.25'de Göreceli hasar etkisi analizinin karma yol profili için yapılışı gösterilmektedir.

Şekil 5.25. nCODE karma yol profili göreceli hasar etkisi analizi.

Hibrit araç simülasyonlarında kullanılacak olan karma yol profiline eşdeğer yol profili oluşturulurken tüm frekans bantlarındaki karakteristiklerin sağlaması gerekmektedir. Aksi taktirde yapının doğal frekansları eksik tahrik edilmesi nedeni ile yanlış sonuçlar oluşturulmaktadır. Eşdeğer yol profili Off-road yol profili üzerinden oluşturulmuştur. Bu sayede daha kısa sürede aynı hasar etkisi elde edilmiştir. Şekil 5.26'da Off-road yol profili üzerinden oluşturulan eşdeğer yol profili işlemleri gösterilmiştir.

Şekil 5.26. nCODE eşdeğer yol profili göreceli hasar etkisi analizi.

5.4.12. Test eşleştirme yöntemiyle yol profili belirlenmesi

nCODE yazılımındaki Test Eşleştirme (Test Match) fonksiyonu kullanılarak simülasyonda kullanılması amaçlanan yol sinyallerinin istenen hasarı vermesi için uygun olup olmadığı ve kaç tekrarda hedeflenen hasarı verdiği bilgileri hesaplanmıştır. Bu hesaplama için bir önceki bölümde anlatıldığı üzere Göreceli Hasar etkileri hesaplanmış ve Test Eşleme fonksiyonuna girdi olarak eklenmişlerdir (Şekil 5.27).

Şekil 5.27. nCODE "Test Match" fonksiyonu ile yol profili optimizasyonu.

Yoldan toplanan sinyallerin ömürlük kullanım ömrüne göre belirli yüzdelerde birleştirilmiş bir modeli olan karma yol profili yaklaşık 100 km uzunluğunda bir yolu temsil etmektedir. Aracın yorulma ömrü için belirlenen limit 1.000.000 km olduğu için test eşleştirme fonksiyonunda hedef yol profilinin tekrar sayısı (TargetRepeatCount) 10⁴ olarak girilmesi gerekmektedir. Bu girdi sayesinde eşleştirme yapılırken 1.000.000 km karşılık gelecek olan yol profili değerleri hesaplanmıştır.

Şekil 5.27'de nCODE "Test Match" fonksiyonu kullanılarak Karma Yol Profili (Hedef Profil) eşdeğeri olacak bir test profilinin aynı etkileri vermesi için kaç tekrara ihtiyacı olduğu hesaplanarak çözüm sonuçları elde edilmiştir.

Şekil 5.28. nCODE "Test Match" fonksiyonu ait konfigürasyon ayarları.

Eşdeğer yol profili ile hedeflenen yol profili arasındaki eşitlik ile ilgili karşılaştırma değerleri ve eşdeğer yol profilinin ivme değerleri "SONUÇLAR" bölümünde verilmiştir.

5.4.13. Gerinim sinyallerinin işlenmesi ve analizi

Prototip araç üzerinden simülasyonda belirlenen kritik bölgelere göre toplanan gerinim sinyalleri üç eksenli rozet tipi gerinim ölçer (strain-gage) kullanılarak toplanmıştır. Rozet tipi gerinim ölçerler sayesinde ilgili noktadaki asal gerilme değerler elde edilerek en yüksek gerilmenin doğrultusu ve genliği hesaplanabilmektedir. Çalışmada 21 adet kanaldan birim şekil değişimi verisi toplanmıştır. nCODE Glypworks yazılımında bulunan dönüşüm fonksiyonu

kullanılarak kritik noktadan toplanan 3 eksendeki birim şekil değişimisin sinyalleri asal gerilmelere dönüştürülmüş ve asal gerilme ve gerinim değerleri elde edilmiştir.

Şekil 5.29. nCODE ile rozet gerinim ölçer (strain-gage) sinyallerinin işlenmesi.

Şekil 5.29'da nCODE yazılımında farklı yol profillerinden toplanan yol sinyallerinin işlenerek asal gerilme ve asal gerinim değerlerinin elde edilişinin işlem görüntüsü görülmektedir. Gerinim değerleri yorulma hesabında kullanılacağı için "PVSlice" fonksiyonu ile Tepe-Çukur biçimine dönüştürülerek zaman düzlemi yerine döngü düzleminde değerlendirilecek bir şekle dönüştürülmüştür. Rozet gerinim ölçer dönüşümü yapılırken kullanılan fonksiyon ayarları Şekil 5.30'da gösterilmiştir. Kullanılan Rozet tipi 45 derecelik aralıklarla olduğu için "Rectangular" olarak seçilmiştir. Dönüşümde kullanılacak kanal grupları "Channels" bölümünde {1,2,3} gibi girilerek bütün datalar için rozet strain gage grupları girilmiştir. Çıktı değerleri hem gerilme hem de gerinim olarak elde edilmiştir (Şekil 5.30).

utput Channels Advanced	Output Channels Advanced	
Output Channels	Name Value	
Output	General	
All Outputs @ Salast	RosetteType Rectangular	
O Al Outputs @ select	OutputAngleType MaxPrincipal	_
Result Type	Output Select	_
a dura a dura a dut	ResultType Stress	_
Stress Strain Both	SelectOutput AbsMaxPrincipal	
MaxPrincipal	Number of Input Test	_
MinPrincipal	NumTSInputPads Single	
AbsMaxPrincipal	Channel Options	
MaxShear	Channels {1,2,3},{4,5,6},{7,8,9},{10,14,12},{13,14,15},{1	6,1;
ResolveToAngle	GroupFile	
SignedMaxShear	IgnoreMissingRosettes False	_
SignedVonMises	Rosette Construction	
PrincipalAngle	RosetteConstruction Stacked	
	TransverseSensitivity1 0	_
	TransverseSensitivity2 0	
Deeplys To Apples	TransverseSensitivity3 0	_
Resolve to Angles	GaugePoissonRatio 0.285	
Specified Angles O Critical Plane	Stress Conversion	
0	StressUnits MPa	
	· · · · · · · · · · · · · · · · · · ·	- P -

Şekil 5.30. nCODE rozet strain gage dönüşüm fonksiyonu özellikleri.

Kritik noktalara ait farklı yol profillerinden hesaplanan asal gerilme ve gerinim değerleri "SONUÇLAR" bölümünde verilmiştir.

5.4.14. Gerinim sinyalleri ile yorulma hesapları ve yolların karşılaştırılması

Gerinim sinyallerinin işlenmesi sonucunda elde edilen asal gerinim ve gerilme değerleri yorulma analizlerinde kullanılarak ölçüm alınan kritik noktaların yol şartlarına göre yorulma ömürleri incelenmiştir. Elde edilen yorulma sonuçları ile farklı yol profilleri yorma etkisi bakımından karşılaştırılabilmiştir.

Malzeme üzerinde yorulma hasarı oluşumunu analiz etmede üç temel yaklaşım kullanılmaktadır. Bunlar, Gerilme Ömrü (Stress Life), Şekil değiştirme Ömrü (Strain Life) ve Kırılma Mekaniği (Fracture Mechanics) yaklaşımıdır. Mevcut Çalışmalar dahilinde ilk iki yöntem olan Gerilme Ömrü ve Şekil değiştirme Ömrü yaklaşımları kullanılmıştır.

Yaklaşımların elde edilen verilerin uygulanması için nCODE Glyworks yazılımındaki "Stress-life" ve "Strain-life" fonksiyonları kullanılmıştır.

5.4.15. Gerilme ömrü (stress-life) analizi

Gerilme ömrü analizleri malzemenin toplam ömrünü araştırır ve çatlak başlangıcını ve ilerleyişini kapsamaz. S-N diyagramına dayanır ve genellikle yüksek çevrimleri içerdiği için High Cycle Fatigue (HCF) olarak da tanımlanır. 10⁵ ve üzeri çevrimleri kapsar. Gerilme Ömür analizleri kapsamında deformasyon elastik ve malzeme mukavemeti ön plandadır. Gerilme-Ömür Analizi Avantajları;

- Kullanımı kolaydır.
- Literatürde malzeme veri tabanı bulunabilir.
- Malzeme ve geometrideki değişiklikler kolayca hesaplanabilir.
- Gerilme-Ömür Analizi Kısıtlamaları;
- Çentiklerde bile plastik bölgeye geçmediği varsayılır.
- Genelde ortalama gerilme hesabı yanlışlık içerir.
- Çentik etkisinin iyi bilinmesi gerekir.

Ncode yazılımında "Stress-Life" fonksiyonu seçilerek elde edilen gerilme sinyalleri bu fonksiyona bağlanmıştır. Analiz sürecinin akış şeması Şekil 5.31'de verilmiştir.

Yol Dataları - Gerilme Değer	StressLife 1 MetaDataDisplay 1 Clear Export Copy Display ChanNumber ChanTitle 1 1 KOY YOLLARI-ASAL GERIL 2 2 KOY YOLLARI-ASAL GERIL 4 TII +	, C
	Clear Export Copy Display Once ChanNumber ChanTitle YTitle 1 1 KOY YOLLARI-ASAL GERILIM 1. NOKTA 2 2 KOY YOLLADI-ASAL GEDTI TM 2 NOKTA	•

Şekil 5.31. nCODE yazılımı ile gerilme-ömür analizi işlemi.

Analizin yapılabilmesi için bazı ön tanımlamalara ihtiyaç vardır. Bu tanımlar Malzeme Özellikleri, Yüzey Pürüzlülük katsayısı, Gerilme Doğrultma Yöntemi olarak verilebilir. Yazılımda ilgili tanımlamalar Şekil 5.32'de gösterildiği şekilde tanımlanmıştır. Malzeme bilgileri seçilirken prototip araçta kullanıldığı üzere St-52 malzeme özelliklerini karşılayacak bir malzeme modeli kullanılmıştır. Malzemeye ait bilgiler ve S-N eğrisi Şekil 5.33'de verilmiştir.

		? 💌	🖉 StressLife Properties
Advanced Materials Custom Met	hod		Advanced Materials Custom Method
Name MaterialName	Value	Description	Materials Database
MaterialModification		2	Database Name poe vicode 9.1 64-bit (siypnivorks vinats vicenow_standard.mxd) Browse
SurfaceFinish 🤇	HotRolled	Sets the surface finish typ	Materials
SurfaceTreatment	None	Sets the surface treatmen	Selected Material : Steel_UML_UTS500
CertaintyOfSurvival	50	Specifies the certainty of	Steel_UML_UTS1200
Output			Steel_UML_UTS1300
DamageHistogramBins	64	Number of bins in the out	Steel_UML_UTS1400
CyclesListThreshold	0	Cycles with damage value	Steel UML_UTS1600
StressOutputUnits	MPa	 Specifies the units of stre 	Steel_UML_UTS1700
CyclesListInput		=	Steel_UML_UTS1800
CyclesListInputColumns		Specifies the column numl	Steel_UML_UTS200
CyclesListInputType	MaxMin	 Specifies whether the inp 	Steel_UML_UTS2000
CyclesListInputRepeatCountColumn	•	The identifier of the colun	Steel_UML_UTS300
Advanced			
MeanStressCorrection 🤇	Goodman	Specifies mean stress cor 👻	Material Type SN
۰ III		+	
Apply	ОК	Cancel Help	Apply OK Cancel Help

Şekil 5.32. nCODE gerilme-ömür analizi konfigürasyonu.

Şekil 5.33. nCODE gerilme-ömür analizine ait malzeme özellikleri ve S-N eğrisi.

Yapılan Analizler sonucunda farklı yol şartlarında toplanan yol sinyallerine göre aracın kritik bölgelerindeki yorulma hasarlarına ait değerler "SONUÇLAR" bölünde verilmiştir.

5.4.16. Şekil değiştirme ömrü (strain-life) analizi

Şekil değiştirme Ömrü yorulmanın düşük tekrar (çevrim) sayılarını karakterize eden ve çatlak başlangıcını kapsayan bir metottur. Düşük sayılı çevrimler bu yüzden Low Cycle Fatigue (LCF) olarak da tanımlanmaktadır. LCF genellikle 10⁵ ve daha düşük çevrimleri kapsar. Günümüzde yaygın bir şekilde kullanılmaktadır. Uzun çevrim süreleri için incelendiği zaman Gerilme-Ömür analizleri için de sonuç vermektedir. Bunun nedeni Şekil değiştirme ömrü hem plastik hem de elastik bölge için sonuç vermektedir.

Ncode yazılımında "Strain-Life" fonksiyonu seçilerek, gerinim verileri bu fonksiyona bağlanmıştır. Analiz sürecinin akış şeması Şekil 5.34'te verilmiştir.

Şekil 5.34. nCODE yazılımı ile gerilme-ömür analizi işlemi.

Analizin yapılabilmesi için bazı ön tanımlamalara ihtiyaç vardır. Bu tanımlar Malzeme Özellikleri, Yüzey Pürüzlülük katsayısı, Gerilme Doğrultma Yöntemi olarak verilebilir. Yazılımda ilgili tanımlamalar Şekil 5.35'te gösterildiği şekilde tanımlanmıştır. Malzeme bilgileri seçilirken prototip araçta kullanıldığı üzere St-52 malzeme özelliklerini karşılayacak bir malzeme modeli kullanılmıştır. Malzemeye ait bilgiler ve S-N eğrisi Şekil 5.36'da verilmiştir.

		? 💌	StrainLife Properties
Advanced Materials			Advanced Materials
Name	Value	Description 🔺	Materials Database
MaterialName	Structural Steel BS4360 Grad	le 50D The name of th	Database Name bCode 9.1 64-bit/GlypbWorks/mats/iceflow_standard.mxd
SurfaceFinish	HotRolled	▼ Sets the surfac	
SurfaceTreatment	None 2	 Sets the surfac 	Materials
CertaintyOfSurvival	50	Specifies the ce	Selected Material : Structural Steel BS4360 Grade 50D
🗆 Output			Steel LML LITS2000
HistogramType	Nominal_RM	 Sets the X and 	Steel_UML_UTS300
DamageHistogramBins	64	Number of bins	Steel_UML_UTS400
CyclesListThreshold	0	Cycles with dar	Steel_UML_UTS500 Steel_UML_UTS500
CyclesListInput			Steel_UML_UTS700
CvclesListMethod	Independent	✓ Specifies how t =	Steel_UML_UTS800
CvclesListInputTvpe	MaxMin	 Specifies wheth 	Steel_UML_UTS900
CvclesListInputColumns		Specifies the co	Structural Steel BS4360 Grade 43A
CvclesListInputRepeatCountColumn	1 .	The column ider	Structural Steel BS4360 Grade 43C
	3		Structural Steel BS4360 Grade 43D
MeanStressCorrection	SmithWatsonTopper	▼ Specifies mean -	Subcidial Steel 654560 Grade 50D
< III		+	Material Type EN
Apply	ОК	Cancel Help	Anniv OK Cancel Help
, 444,1		- nep	

Şekil 5.35. nCODE şekil değiştirme-ömür analizi konfigürasyonu.

Şekil 5.36. nCODE şekil değiştirme-ömür analizine ait malzeme özellikleri ve S-N eğrisi.

Yapılan Analizler sonucunda farklı yol şartlarında toplanan yol sinyallerine göre aracın kritik bölgelerindeki yorulma sonuçları elde edilmiştir. Elde edilen yorulma değerleri "SONUÇLAR" bölünde verilmiştir.

5.5. Çoklu Cisim Simülasyonu

Çalışmanın bu safhasına gelene kadar yapılan işlemleri kısaca özetlemek gerekirse; aracın sonlu elemanlar modeli oluşturularak yapısal analizleri tamamlandı. Yapısal doğrulaması tamamlanan araç modeli prototip olarak üretilerek araç tahrik noktaları ve kritik bölgelerden yol dataları toplanmış ve farklı yol profillerinin araç üzerindeki etkileri incelenmiştir. Bu bölümde ise; bu zamana kadar elde ettiğimiz verileri kullanarak aracın dinamik etkiler altındaki davranışı gerçek yol verilerine bağlı olarak sonlu elemanlar modeli yardımıyla Çoklu Cisim Simülasyonu modeli üzerinde incelenmiştir.

Aracın Dinamik davranışının incelenmesi için Mekanik Sistem Simülasyon yazılımı MSC Adams kullanılmıştır. ADAMS ile sistemlerin dinamik davranışları incelenir, kuvvetlerin ve yüklerin sistem içinde nasıl dağıldığı hesaplanır, sistemlerin titreşim davranışı analiz edilir ve mekanizmalar optimize edilerek sistemlerin performansları arttırılır. Adams ile mekanik sistemlerin, sanal test prototipleri bilgisayar ortamında modellenir. gerçek hayattaki çalışma sartlarında test edilir. Adams: kinematik/hareket, statik, yarı-statik ve dinamik denklemlerini çözerek, sistemin gerçek fiziğini incelemektedir (Şekil 5.37). Mekanik parçaları, pnömatik, hidrolik, elektronik ve kontrol sistemleri ile entegre ederek ve bu sistemlerin birbirleri ile etkileşimlerini sağlayarak, komple bir sistemin sanal ortamda modellenmesi mümkündür.

Şekil 5.37. Adams ortamında hazırlanmış hibrit simülasyon modeli.

Hibrit araç modeli oluşturulurken Aracın süspansiyon, amortisör, teker gibi komponentler ile yapısal diğer parçalar ve şasi ile entegre edilerek etkileşimli bir araç simülasyonunun hazırlanması hedeflenmiştir. Aynı zamanda sonlu elemanlar modeli entegrasyonu ile esnek parçaların gerilme ve zorlanma, hasarlanama veya yorulma ömrü gibi değerlerin incelenmesine olanak sağlamıştır.

5.5.1. Mekanik sistem modelinin oluşturulması

Araç Modeline ait CAD modeli ADAMS içine aktarılmış ve alt sistem modelleri hazırlanarak birbirlerine entegre edilmeleri sağlanmıştır (Şekil 5.38). Model genel olarak Tanker Modeli, Dingil grubu ve Sanal Hidropuls elemanlarından oluşmaktadır. Sonlu elemanlar modelinden farklı olarak teker elemanları ve sanal sarsıcı elemenlar (Sanal Hidropuls) sisteme dahil edilmiştir. Bu sayede yol sinyalleri sarsıcılar yardımıyla teker elemanlarına uygulanarak aracın dinamik davranışı incelenmesi sağlanmıştır.

Şekil 5.38. Tanker araç simülasyonu mekanik sistem modeli genel bölümleri.

5.5.2. Simülasyon için ön kabul ve sınır şartları

Adam ortamında yapılacak olan çalışma sonlu elemanlar modelinin entegrasyonunu içerdiği için ön kabul ve sınır şartları Bölüm 5.2'de belirtilen şekilde oluşturulmuş ve entegre çalışmalar için ortak şartlar sağlanmıştır. Şekil 5.39'da sınır şartları tamamlanmış tanker araç simülasyon modeli görülmektedir.

Şekil 5.39. Sınır şartları tanımlanmış tanker araç simülasyon modeli.

5.5.3. Dingil grubu ön şartları

Araç modeli oluşturulurken her bileşenin çalışma şartlarına uygun parametreler girilerek simülasyon modeline tanıtılmıştır. Bu parametler ilgili bileşene ait katalog değerler veya yazılım kütüphanesindeki hazır değerler kullanılmıştır.

5.5.3.1. Amortisör ve hava körüğü

Dingil Grubu olarak adlandırılan amortisör, hava körüğü, dingil, kauçuk burç ve lastikten oluşan alt sistemlerde her bir eleman için üretici tarafından belirlenmiş parametreler ADAMS ortamına konfigürator yardımıyla girilerek parametrik tanımlamalar tamamlanmıştır.

Şekil 5.40'da hava körüğü ve amortisör elemanları için sisteme girilen konfigürasyon ayarları belirtilmiştir. Üretici firma kataloğundan elde edilen veriler kullanılarak lineer bir eğri elde edilmiş ve konfigüratöre girilmiştir. Karakteristik özelliklerin yanında her amortisör ve hava körüğü için geçerli olacak "KORUK_KUVVETİ" ve "AMORTİSOR_KUVVETİ" adında iki adet değişken oluşturularak dingil grubu bölgesinde ön yükleme kuvvetlerinin kontrol edilebilmesi sağlanmıştır. Ön yükleme kuvvetlerinin amacı; Araç üzerindeki yük miktarı arttıkça dingil bölgesinde meydana gelen çökmenin giderilmesi ve aracın düz konuma getirilmesi için gerekli olan hava basıncının simüle edilmesidir.

"KORUK_KUVVETİ" belirlenirken ikinci dingil referans alınmaktadır. Bunun nedeni gerçek araç modelinde araç seviyesi ölçülürken ikinci dingilin referans alınmasıdır. İkinci dingil hava körüğünün deplasman değerini sıfır yapacak kuvvet belirlenerek bütün körük elemanlarına aynı değer girilir.

Modify a Spring-Damper Force	Modify a Spring-Damper Force
Name SPRING_5	Name SPRING_7
Action Body Dingil1	Action Body Dingil1
Reaction Body STB34_REVIZE	Reaction Body STB34_REVIZE
Stiffness and Damping:	Stiffness and Damping:
Stiffness Coefficient 💌 150.0	No Stiffness
No Damping	Damping Coefficient 💌 50.0
Length and Preload:	Length and Preload:
Preload (KORUK_KUVVETI)	Preload (AMORTISOR_KUVVETI)
Default Length (Derived From Design Position)	Default Length (Derived From Design Position)
Spring Graphic On, If Stiffness Specified 🔻	Spring Graphic On, If Stiffness Specified 🔻
Damper Graphic On, If Damping Specified 🔻	Damper Graphic On, If Damping Specified 🔻
Force Display On Action Body	Force Display On Action Body
e 🔀 🐨	E 🧏 📭
OK Apply Cancel	OK Apply Cancel
(a)	(b)

Şekil 5.40. (a) Hava körüğü konfigürasyonu. (b) Amortisör konfigürasyonu.

5.5.3.2. Kauçuk burç

Dingil ile şasi bağlantısının yapıldığı makas kulağı bölgesinde bağlantı elemanı olarak kauçuk burç kullanılmaktadır. Burç sayesinde kuvvet iletimi sağlanmakta ve ani titreşim ve zorlanmalar sönümlenerek kararlı bir kuvvet aktarımı sağlanmaktadır. 6 serbestlik derecesi için sisteme girilen burç özellikleri Şekil 5.41'de gösterilmiştir.

Modify Bushing				x
Name	BUSHING_1			
Action Body	STB34_REVIZE_flex			
Reaction Body	Dingil1			
Translational Properties (x,y,z components):				
Stiffness	(1000 * {5.5, 5.5, 3.11})			
Damping	(100 * {5.5, 5.5, 3.11})			
Preload	0.0,0.0,0.0			
Rotational Properties (x,y,z components):				
Stiffness	(100000 * {1.01305, 1.01305, 0.2309})			
Damping	(10000 * {1.01305, 1.01305, 0.2309})			
Preload	0.0,0.0,0.0			
Force Display	On Action Body			
		ОК	Apply	Cancel

Şekil 5.41. Makas kulağı kauçuk burç konfigürasyonu.
5.5.3.3. Tekerlekler

Araç üzerindeki en önemli parçalar biri olan tekerlekler simülasyonun çalışmasında önemli bir yer oluşturmaktadır. Simülasyonda gerçek araç modeline uygun olarak 315 80R22.5 tekerlek tipi kullanılmıştır. Lastik modeli ADAMS kütüphanesinde hazır olarak alınmıştır (Şekil 5.42).

Modify Wheel and Tire							
Name	REVIZE_MODEL_START.DINGIL1_SAG_TEKER						
Side							
Cm Offset	0.0						
Mass	60.0						
lxx lyy	1.0						
Izz	1.0						
Wheel Center Offset	0.0						
Tire Property File	C:/MSC.Software/Adams_x64/2013/solver/atire/tires.tbl/pac2002_315_80R22_5.tir						
Longitudinal Velocity	0.0						
Spin Velocity	0.0						
Road	.REVIZE_MODEL_START.DINGIL1_SAG_ROAD						
Wheel Center Location an	d Orientation						
Location	-5687.4139195408, -946.0003035585, -650.8635902048						
Orient using	 Euler Angles C Direction Vectors 						
Euler Angles	0.0, 1.5707963268, 0.0						
X Vector	1.0,0.0,0.0						
Z Vector	0.0,-1.0,0.0						
M 🗗	OK Apply Cancel						

Şekil 5.42. Tekerlek modeli konfigürasyonu.

5.5.3.4. King-pim

Yarı römork ile çekici arasındaki bağlantıyı sağlayan king-pim ve plate bağlantısının modellenmesi için ADAMS-Truck Modülündeki hazır king-pim modeli kullanılmıştır. Bu modele göre king-pim bağlantısı bir burç eleman gibi düşünülmüş ve altı serbestlik derecesi için direngenlik ve sönüm katsayıları girilmiştir. Şekil 5.43'te king-pim bağlantı modeli için girilen parametre değerleri gösterilmiştir.

Modify Bushing	**	X
Name	BUSHING_7	
Action Body	STB34_REVIZE	
Reaction Body	PART_12	
Translational Prop	erties (x,y,z components):	
Stiffness	(10000000(newton/mm)),(1000000(newton/mm)),(10000000(newton/mm))	
Damping	(1.0E+004(newton-sec/mm)),(1000.0(newton-sec/mm)),(1.0E+004(newton-sec/mm))	
Preload	0.0,0.0,0.0	
Rotational Propert	ies (x,y,z components):	
Stiffness	(100000000(newton-mm/deg)),(100000(newton-mm/deg)),(100000000(newton-mm/deg))	
Damping	(10000000(newton-mm/deg)),(10000(newton-mm/deg)),(10000000(newton-mm/deg))	
Preload	0.0,0.0,0.0	
Force Display	On Action Body -	
e k		
	OK Apply C	ancel

Şekil 5.43. King-pim bağlantısı konfigürasyonu.

5.5.4. Mekanik sistem modelinin doğrulanması

Mekanik sistem modelinin doğru çalıştığından emin olmak için bazı doğrulama analizleri yapılmıştır. Yükleme dağılımının doğru olup olmadığının belirlenmesi için araç tam yüklü ağırlığı ile analiz edilerek araç tekerlerindeki ve king-pim bölgesindeki kuvvetler ölçülmüştür (Şekil 5.44).

Şekil 5.44. Modeli doğrulama analizi kuvvet ölçüm noktaları.

Yapılan ölçüm testleri prototip araç için tekrarlanarak, simülasyon modeli ile prototip aracın yükleme dağılım karşılaştırılmış ve modelin doğrulanması amaçlanmıştır. Elde edilen ölçüm sonuçları karşılaştırıldığında iki ölçüm test sonuçlarının yakın çıktığı ve dağılımın uygun olduğu görülmüştür. Ölçüm sonuçları "SONUÇLAR" bölümünde verilmiştir.

5.5.5. Sonlu elemanlar modelinin entegre edilmesi

Araç Modeli üzerinde gerilme veya zorlanma gibi etkiler mekanik sistem modelinde yoktur. Bu etkilerin elde edilebilmesi için istenilen katı modele sonlu elemanlar modeli entegre edilerek esnek yapısal modeller elde edilmektedir. Bu entegrasyon sayesinde model üzerinde meydana gelen şekil değişimleri, gerilme ve zorlanmalar, uygulanan tahriklere bağlı olarak elde edilmektedir. Bu işleme bir başka deyişle sonlu elemanlar metodu ve Çoklu Cisim Simülasyonlarının hibrit kullanım için entegre edildiği bölümdür (Şekil 5.45).

Şekil 5.45. Sonlu elemanlar modeli ve çoklu cisim modeli entegre şeması.

ANSYS tarafından Craig-Bampton metodu ile hesaplanan yapısal modlar MNF dosyası ile ADAMS ortamına aktarılmış ve Katı Cisim Modeli üzerine entegre edilmiştir (Şekil 5.46). Entegrasyon işlemi sırasında Bölüm 5.3.1.1'de belirtilen 19 adet nokta kullanılmıştır. Bu noktalar dingil grubu elemanlarının ve king-pim bölgesinin bağlantı bölgeleridir.

A Mo	dify Modal ICs	5 - 1		教室室・	- 41	X
	Nat. Freq.	Enabled	Displacment IC	Disp	Exact	Velocity IC
1	0.0					
2	0.0					
3	1.0243704679E-004	D				
4	0.2259431523	n				
5	0.4933455298					
6	2.0953592727					
7	12.8067445408	*	(none)			(none)
8	22.2654956923	*	(none)			(none)
9	24.0594972722	*	(none)			(none)
10	31.9240507537	*	(none)			(none)
11	33.5298756003	*	(none)			(none)
12	37.3013779183	*	(none)			(none)
13	40.3390518546	*	(none)			(none)
14	45.3348490557	*	(none)			(none)
15	46.2719063944	*	(none)			(none)
16	47.401696411	*	(none)			(none)
17	49.272742086	*	(none)		((none)
18	49.5951084472	*	(none)			(none)
19	49.7939678071	*	(none)			(none)
20	50.770689171	*	(none)			(none)
21	52.5797309756	*	(none)			(none)
22	54.5724217131	*	(none)			(none) 🗾
•						Þ
	Disable Highlighted Modes			Set Exac	:t	
	Enable Highlighted Modes	Apply D	Displacement IC	Clear Exa	ct	Apply Velocity IC
F	Refresh Table					Close

Şekil 5.46. Craig-bampton metodu ile oluşturulan araç modeline ait yapısal modlar.

Dinamik simülasyon sonuçlarında 134 modal koordinat görmeyi bekleriz. İlgilendiğimiz ilk mod numarası 7'dir. 1'den 6'ya kadar olan modlar rijit gövde modlarıdır ve otomatik olarak deaktif yapılmaktadır. İlk birkaç mod parçanın serbestserbest modlarına çok benzerdirler. Yüksek frekanslı modlar nadir gözükürler, fakat bağlantı noktalarındaki deformasyonların tanımlanmasında çok işe yaramaktadırlar. Dinamik simülasyonlarda yüksek frekanslı modlar normalde çok aktif olmamaktadır. Bunlardan kaçınmak için iki adet strateji bulunmaktadır (Şekil 5.46).

- Modları kapatmak. Eğer bazı modların tanımlanmasının gerektiği bir durum olurca bu stratejinin zorlukları olabilir. Örneğin; bir bağlantı noktası civarında yerel deformasyonlu statik konum hali.
- Sönümü değiştirmek dolayısıyla yüksek frekanslı modların kritik olarak sönümleyerek etkisiz hale getirilmesini sağlar. Modlara izin veririz ama üzerlerine uyguladığımız yüksek sönümden dolayı dinamik olarak onları almamış oluruz.

Burada yüksek frekanslı modlarda metot olarak kritik sönümü ayarlamasını uygulayacağız. Sönüm için bir basamak fonksiyonu tanımlarız. Frekans ne kadar yüksek olursa sönümün de o kadar yüksek olması gerekmektedir (Şekil 5.47).

A Flexible Body M	odify			-	23
Flexible Body	STB34_R	EVIZE_fl	ex		
Damping Rato	STEP(FX	REQ,10	00,	🗲 d	efault
Datum Node				₽ L	BRF
Generalized Damp	oing Off				•
Location Pos	ition ICs	Velocit	y ICs	M	odal ICs
Mode Number	(none)	of	134)	⊢.÷
Frequency					
Cycles	3 🗆 8	Superimp	ose		
⊂ Enable ⊙ D)isable	ra	nge	aute	
Graphics		-	Inertia r C Rig C Cor	model id bo nstan	ling dy t
Outline			Par	tial c	oupling
Plot Type Both		•	O Ful	I Cou	pling
Mode	Filter		Cu	stom	
Deformation Sca	le Factor		1.0		
					▶
		ОК	Арр	ly	Cancel

Şekil 5.47. Esnek modele ait konfigürasyon tablosu.

Esnek Modele ait konfigürasyon bölümünde Sönümleme oranı için basamak girişi **STEP(FXFREQ,1000,0.005,10000,1**) fonksiyonunu girilmiştir. Bu şu anlama gelir;

- 1,000 Hz frekansının altındaki modlar 5% sönümleme oranına sahip olacak.
- 10,000 Hz frekansının üzerindeki modlar 100% sönümleme oranına sahip olacak.
- 1,000 10,000 Hz arası modlar ise, tanımlanan basamak fonksiyonuna bağlı olarak artacak.

Standart sönümleme oranının girilmesinin işe yaramadığının altını çizmek istiyoruz. Eğer standart değer kullanırsak, 7. mod için 10% bir sönümleme oranı almış oluruz. Çelik bir parça olan parçalarımız için ise bu çok düşündürücü bir durum olmaktadır.

5.5.6. Yol sinyallerinin simülasyona entegre edilmesi

Hibrit Araç Simülasyonunun tamamlanması için gerekli olan diğer bir adım yol sinyallerinin simülasyon ortamına entegre edilerek gerekli tahrik noktaları ile ilişkilendirilmesidir. Bu amaçla Bölüm 5.4.10'da oluşturulan yol profiline ait ivme kanalları kullanılarak gerekli olan sinyaller modele eklenmiş olmaktadır.

Şekil 5.48. Hibrit araç simülasyonu yol sinyalleri tahrik noktaları.

Hibrit araçta gerçek araca uygun olarak 7 adet tahrik bölgesi bulunmaktadır. Şekil 5.48'de gösterildiği üzere tahrik noktaları king-pim ve her teker altında bulunan sanal sarsma tablasından oluşmaktadır. Bu sarsma tablalarına doğrusal hareket yapmalarını sağlayacak bir hareket fonksiyonu atanarak yol sinyalleri bu fonksiyona bağlanmıştır. Bu sayede yol sinyalleri tahrik bölgeleri ile ilişkilendirilmiştir. Şekil 5.49'da doğrusal hareket fonksiyonu ve yol sinyallerinin atanmasına ait konfigürasyon pencereleri gösterilmektedir.

Şekil 5.49. Yol sinyallerinin araç tahrik noktalarına doğrusal hareket fonksiyonu ile atanması.

Yol sinyalleri sisteme uygulanırken ADAMS tarafından Dayanıklılık testleri için geliştirilmiş bir fonksiyon yardımı ile interpolasyon yöntemi ile sisteme uygulanmaktadır. "Durability İnterpolation" olarak geçen bu fonksiyon "INTERP (time, 3, Yol_Sinyali, 0)" şeklinde sisteme girilmektedir. Bu fonksiyonda "time" bağımsız zaman değişkenidir. "Yol Sinyali" bölümüne uygulanmak istenen yol sinyalinin ismi girilmektedir. Şekil 5.50'de Fonksiyonun konfigürasyon penceresi gösterilmektedir.

A Function Builder	The second					×
Define a runtime function		C Full names	Short	names O	Adams ids	
INTERP(time , 3 , SOL_ON, 0)						
Math Functions Assist COS COSH DELAY DELAY	Getting Object Data				<u> </u>	+,
DIM EXP Fourier Cosine Series Fourier Sine Series Haversine Step	Plot Plot Limits			Insert Obj	iect Name Verify	y
			ОК	Apply	Cance	

Şekil 5.50. Yol sinyallerinin araç tahrik noktalarına doğrusal hareket fonksiyonu ile atanması.

5.5.7. Dinamik simülasyon analizi

MSC Adams simülasyonun model tasarımı ile ilgili adımlar tamamlandıktan sonra çözüm süreci ile ilgili konfigürasyonlarının tanımlanması gerekmektedir. Çözücünün kullanacağı çözüm algoritması, çözüm aralığı ve çözüm adım aralığı gibi değerlerin sisteme tanımlanması gerekmektedir. MSC Adams dinamik simülasyonunu çalıştırabilmek için;

- Adams/Solver ayarlarınızı değiştirmemiz gerekiyor.
- Settings menüsünden Solver'a geldikten sonra Executable' 1 seçilmiştir.
- Choice seçeneğini C++ olarak değiştirilmiştir.
- Adams/Solver dinamik parametrelerini de değiştirilmesi gerekir.
- Category olarak Dynamics seçilmiştir.
- Formulation olarak da SI2 ve Error olarak 0.001 ayarlamalarını yapılmıştır.

Dengelenmiş Index-2 formülasyonu (SI2) hız değişkenlerinin integral hatalarını gösteren integral sabitlerinin izlenmesini mümkün hale getirmektedir. Dolayısıyla çok tutarlı ve doğru simülasyonların oluşmasını sağlanmaktadır. SI2 formülasyonunun olumlu yanı, küçük adımlarda bile Jacobian matrisi kararlı kalmakta, bu da stabiliteyi ve düzelticinin küçük boyutlardaki gücünü arttırmaktadır. Biz burada SI2 formülasyonunu kullanıyoruz çünkü yorulma analizine girdilerin doğruluğunun yüksek olması bizim için çok önemlidir (Şekil 5.51).

Category	Executable		
Model	.REVIZE_MODEL_START	A Solver Settin	ings
Executable	Internal [default]	 Category 	Dynamics
Solver Library		Model	.REVIZE_MODEL_START
Choice	C FORTRAN C C++	Integrator	GSTIFF
Verify First		Formulation	SI2 ·
Hold License		Corrector	 Original O Modified
Remote Compute	C Yes C No	Error	1.0E-003
	0 100 0 100	Hmax	(none)
Node Name		Hmin	(none)
MDI Directory		Hinit	(none)
Remote Directory		Adaptivity	(none)
Thread Count	1	Interpolate	C Yes 🕫 No
		Kmax	6
		Maxit	10
		More	Defaults Close

Şekil 5.51. MSC ADAMS solver ayarlarının yapılması.

Solver ayarlarının tamamlanmasından sonra çözüm adım aralığı ve çözüm süresinin belirlenmesi gerekmektedir. Burada dikkat edilmesi gereken nokta simülasyonda kullanılan yol sinyallerinin frekansı ve toplam süresidir.

Yol sinyalleri toplam 137 saniye olup frekansı 100 Hz olarak ayarlanmıştır. Bunun manası 1 saniyelik sinyalin içinde 100 adet adım vardır. Şekil 5.52'de verilen kontrol paneli kullanılarak aşağıdakiler sırasıyla gerçekleştirilir:

- End Time 137 saniye olarak girilmiştir.
- 2. Açılır liste Step Size olarak değiştirilmiştir.
- Step Size değeri 0.01 saniye olarak girilmiştir.
- Start at Equilibrium Position seçeneği imlenmiştir. Eğer denge konumundan başlatmazsak tercih etmediğimiz iç geçici titreşimler meydana gelir.
- Solverdan alınan her çıkış zamanında ekranın sürekli güncellenmemesi için de Update graphics display seçeneğinin imi kaldırılmıştır.
- Play tuşuna basılır ve simülasyon başlatılır.

Şekil 5.52. MSC ADAMS simülasyon kontrol ayarları ve koşturulması.

5.5.7.1. Simülasyon sonuçları ve değerlendirme

MCS ADAMS analizlerinin koşturulması ile yapının dinamik davranışı ve yapı üzerinde oluşan gerilmeler hakkında birçok sonuç elde edilmiştir. Bu sonuçların görüntülenmesi ve analizi için yazılım içerisinde birçok modül bulunmaktadır (Şekil 5.53).

Şekil 5.53. MSC ADAMS/Postprocessing modülü ve analiz sonuçlarının gösterimi.

Yapı üzerine gelen kuvvet, hız, ivme, gerilme gibi değerlerinin incelenmesi için "ADAMS/Postprocessing" modülü kullanılmıştır. Bu modül sayesinde görüntülenmek istenen değerler grafiksel olarak incelenmiş ve dışa aktarılması sağlanmıştır (Şekil 5.54).

Şekil 5.54. MSC ADAMS/Durability modülü.

Modül üzerinde bulunan "Hot Spots Table" fonksiyonu sayesinde simülasyon süresi boyunca meydana gelen en yüksek gerilme veya gerinim değerleri bir tablo olarak elde edilmiştir (Şekil 5.55). Sonuçlar incelendiğinde bazı bölgelerde gerilme değerlerinin akma sınırını geçtiği görülmüştür. Bu noktalar tekil gerilme noktaları olup sonlu elemanlar metodunun kullandığı yöntem sonucu oluşan noktalar olduğu görülmüştür.

	VON MISES Hot Spots for STB34_REVIZE_flex Date= 2013-11-18 23:28:12									
N	Nodel= .REVIZ	E_MODEL_START	Analysis=	Last_Run	Ti	ime = 0	to 137 s	ec		
	1	Top 5 Hot Spots		Abs		Radius	= 0.0 m	ım		
Ē	Hot Spot	Stress	Node	Time	Lo	cation w	rt LPRF	(mm)		
Ē	#	(newton/mm**2)	id	(sec)	X		Y	Z		
Ê	1	562.481	441337	130.62	651.6	77 -6	-683.899	142		
Г	2	490.922	395410	130.62	651.6	683.899	142			
Ē	3 461.179		403152	130.62	-675.6	68	683.899	142		
	4	457.562	375022	130.62	-654.7	71 5	14.54	132.089		
í	5	449.4	441334	130.62	656	-6	85.884	142		
Flex Body	STB34_RE	VIZE_flex		Radius		0.0				
Analysis	Last_Run			Count	•	5				
Туре	Von Mises	s 🔻	Sort Orde	Sort Order		Absolute				
File Forma	t [HTML	-	File Nam	e		_			
Start	0	End 137								

Şekil 5.55. MSC ADAMS/Durability-Hot spot table fonksiyonu kullanımı.

Dinamik etkilerin yapının yorulma ömrü üzerindeki dinamik etkilerinin incelenmesi için modal koordinatların incelenmesi gereklidir. Bu amaçla "FE-Fatigue" fonksiyonu ile esnek modele ait tüm analiz boyunca oluşan modal koordinatlar dışa aktarılarak sonraki bölümde anlatılacak olan nCODE Designlife yazılımı için girdi değerleri elde edilmiştir. Elde edilen modal koordinat değerleri "SONUÇLAR" bölümde verilmiştir (Şekil 5.56).

Adams,	View Adams 2013	port] ② 🐛 業 🖪 📑 🚰 😳 🕄 ◎ 🚓 🖑 🔍 Increment 30.0 🌘
Bodies	Flexible Body Job Name	STB34_REVIZE_flex FATIGUE_EXPORT	ation Plugins Machinery Simulation Results
C (Applie	Modal Coor Analysis	inates	
EVIZ owse	Basis Format	Orthonormalized Image: Control of the second sec	
- C - M - F - E - M	FES File	modal velocities	5-1000
B		OK Apply Cancel	O TYYY
earch			j E 🎩 🔲 🕈 🧼 👍 🕠

Şekil 5.56. ADAMS/Durability - modal koordinatların dışa aktarılması.

5.6. Yorulma Ömrü Simülasyonu

Çalışmanın son bölümünde, bu zamana kadar elde edilen sonuçlar kullanılarak aracın yorulma ömrünün yoldan gelen dinamik etkiler altındaki davranışı incelenmiştir. Yol sinyallerinin aracın farklı frekansları üzerindeki etkileri ayrıntılı olarak incelenerek kritik bölgelerin ve frekansların karşılaştırılması üzerine yorulma simülasyonları yapılmıştır. Simülasyon çalışmalarında yazılım altyapısı olarak Ncode Designlife kullanılmıştır. Yorulma konusunda oldukça önemli bir yere sahip olan bu yazılım sayesinde sonlu elemanlar modeli üzerinde gerçek yol sinyalleri ile farklı yorulma yaklaşımları kullanarak yorulma simülasyonları yapmayı mümkün kılmaktadır. Çalışmanın ilerleyişine ait akış şeması Şekil 5.57'de verilmiştir.

Şekil 5.57. ADAMS/Durability – modal koordinatların dışa aktarılması.

5.6.1. Ncode yorulma simülasyonu modeli

Simülasyon modeli genel olarak 3 kısımdan oluşmaktadır. Bu kısımlar; sonuçların içe aktarılması, yorulma analizlerinin koşturulması ve sonuçların dışa aktarımı olarak özetlenebilir. nCODE üzerinde bu işlemlerin yapılmasını oldukça kolaylaştıran bir arayüz bulunmaktadır.

🖉 nCode Glyph\	orks	
Main Menu	File Edit View Insert Interactive Run Workspace Help	
G	🗋 🗳 🛃 🔗 🗞 🖕 🖹 🛍 🕲 🥸 🚔 🎯 🖏 🦻 🕪 🕨 🙆 🚱 🖛 🗰 🕨 🕨 🐘	
GlyphWorks	⊕ L L L L L L A D A B A B ↔ → ※ L \ L	00
	🗙 🖉 🛅 🔜 📴	rks 🔻
Ð	Available Data	Input
Decign life	🖌 🔁 FE Models 💦 👘 🖓 👘 🖓 👘	unction
Designate	encMs.rst-f.ISTB34DOSYA	asicDSP
	▲ model_kordinat_export_00 (de	Signal
	1 - Mode 1 Q(mm/mm)	equency
Automation		signLife
-++++	4 - Mode 4 Q(mm/mm)	atigue
±1		· ·
5	7 - Mode 7 Q(mm/mm)	ratedTesting
<u>V</u> u	8 - Mode 8 Q (mm/mm)	izedTesting
MaterialsM +	10 - Mode 10 Q(mm/mm)	nhBuilder
Applications	g 11 - Mode 11 Q(mm/mm)	perClyph
Tools	G 12-Mode 12 Q(mm/mm) 1	ver dryph
Tools	a binner i Symminni i a horizonta i a contra	Jispiay
Manuals		Jutput

Şekil 5.58. nCODE yorulma simülasyonu modeli arayüzü.

Simülasyon modelinin oluşturulması için Şekil 5.59'da gösterildiği şekilde 5 farklı modül kullanılmıştır. Bu modüller sırasıyla;

- Sonlu Elemanlar Modeli Sonuçları
- Modal Koordinat Sonuçları
- SN Analiz Modülü
- Analiz Sonuçları
- Sonuçların Dışa Aktarılması olarak ifade edilebilir.

Şekil 5.59. nCODE yorulma simülasyonu modeli modülleri.

Kullanılan modüller üzerinden simülasyonun çalışma şeklinin özetleyecek olursak; nCODE içine aktarılan sonlu elemanlar modeli sonuçları ile Modal Koodinat sonuçları süperpozisyon yöntemi ile yapı üzerindeki gerinim ve gerilme sonuçlarının frekansa bağlı olarak elde edilmesini sağlar. Elde edilen bu değerler analiz modülünde bir SN eğrisi veya EN eğrisi ile ilişkilendirilerek yorulma ömrü hesaplanmış olmaktadır. nCODE; hesaplamalar yapılırken farklı yorulma ömrü yaklaşımları kullanılmasına imkân vermektedir. Aynı zamanda bu çalışmada önemli bir nokta olan; belli frekans aralığındaki değerlerini ömrünü hesaplayarak hangi frekans aralığında modelin yorulma ömrünün kritik olduğu hakkında bize bilgi vermektedir.

5.6.2. Sonlu elemanlar modeli sonuçları

Yorulma ömrü simülasyonunda hesaplamalar için gerekli olan şekil değişimi ve gerilim değerlerinin elde edilmesi için Yapısal Titreşim Analizlerini sonuçları Ncode içine aktarılmıştır.

Daha önceki bölümlerden hatırlanırsa; sonlu elemanlar modelinin, dinamik analiz modeline uyarlanması için 19 bağlantı noktasından sabitlenmiş ve titreşim analizleri bu sınır koşullarına göre yapılmıştı. Her sabitleme noktası için geçerli 6 serbestlik derecesinde sonuç elde edilmiş, yapının istenen 20 doğal frekans modu da bu sonuçlara eklendiği zaman 134 Mod elde edilmişti. Sonuç olarak içe aktarılan simülasyon dosyası yapının 134 Modu için Yer değişimi, Şekil değişimi, Gerilme sonuçlarını içermektedir.

nCODE Designlife sayesinde sonlu elemanlar yazılımına ihtiyaç olmadan Modele ait Ağ yapısı, Mod şekilleri gibi birçok sonucu görüntülemeye imkân vermektedir. Şekil 5.60'da araç modeline ait sonuçların nCODE ortama aktarılmış bir görüntüsü görülmektedir.

Şekil 5.60. nCODE yorulma simülasyonu modeli modülleri.

İçe aktarılan sonuçlar ayrıntılı olarak incelenerek içerdiği değerler doğrulanmıştır. Şekil 5.61'te model sonuçlarının listeleyen ekran görüntüsü verilmiştir.

Main Menu G	
GiyphWorks	FEInput1 Input Model: fh. LADAMS MODELSNEVIZE MODELANSY'S FLESigenCMS.rst Input Model: fh. LADAMS MODELSNEVIZE MODELANSY'S FLESigenCMS.rst Input Model: fh. LADAMS MODELSNEVIZE MODELANSY'S FLESigenCMS.rst Input Function BasicOSP Signal
AS M	Advanced Results Result Case Load Case - 5: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4933 - displacements (node) Ioad Case - 1: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4933 - displacements (node) Ioad Case - 2: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4933 - displacements (node) Ioad Case - 2: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4933 - displacements (node) Ioad Case - 2: 14MODE_SON-Modal (F5):Displacement - vibration mode:Frequency 0.4933 - displacements (node) Ioad Case - 4: 14MODE_SON-Modal (F5):Displacement - vibration mode:Frequency 0.4933 - displacements (node) Legend Form Load Case - 6: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4933 - displacements (node) Legend Form Load Case - 8: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4933 - displacements (node) Ioad Case - 8: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.4031 - displacements (node) Ioad Case - 8: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.403 - displacements (node) Ioad Case - 8: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.416 - displacements (node) Ioad Case - 10: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.416 - displacements (node) Colour seque Load Case - 10: 14MODE_SON-Modal (F5):Displacement - Vibration mode:Frequency 0.416 - displacements (node) Numbe
Apply Manuals	OK Cancel Help , Workspaces >> ♥ WS1 Wews >> ♥ V1 ♥ Output

Şekil 5.61. nCODE yorulma simülasyonu modeli modülleri.

Tablo incelendiğinde çok yüksek frekanslı modların olduğu görülmektedir. Bu modlar dinamik analiz sırasında hesaplama doğruluğunun artması için kullanılan modlar olur gerçekte tahrik edilmesi mümkün olmamaktadır. Yoldan toplanan veriler incelendiği zaman aracı tahrik eden frekans aralığının 6-30 Hz arası olduğu görülmektedir. Dolayısıyla yorulma simülasyonunda genel olarak kullanılacak mod aralığı 7-20 Mod arası olarak seçilmektedir. İlk 6 mod statik modlar olduğu için etkisizdir olmakta ve hesaba katılmamaktadır. "SONUÇLAR" bölümünde frekans ve mod şekillerine ait bilgiler ayrıntılı olarak verilmiştir.

c) Sonlu Elemanlar Modeli Sonuç Dosyası- Modlara ait Sonuçların Gösterilmesi

Şekil 5.62. nCODE sonlu elemanlar modeli sonuçları gösterimi.

Simülasyonda kullanılmak için belirlenen modlara ait sonuç değerleri, Şekil 5.62'te gösterildiği gibi Mesh (Ağ) yapısı, yer değiştirme, şekil değiştirme, gerilme olarak görüntülenerek modların uygunluğu kontrol edilmiştir.

5.6.3. Modal koordinat sonuçları

Araç modelinin yapısal modlarının yol sinyalleri ile zaman bağlı olarak tahrik edilmesi ile dinamik simülasyon sonucunda elde edilmişti. Bu sonuçlar yapının 134 Moduna ait Modal koordinat değerleri olarak nCODE içine aktarılmıştır.

Şekil 5.63. nCODE sonlu elemanlar modeli sonuçları gösterimi.

Modal Koordinat sonuçları incelendiğinde; beklendiği gibi ilk 6 modun değerini sıfır olduğu görülmüştür. Bu Modlar statik Modlar olarak geçtikleri için dinamik yükleme altında bir etkileri yoktur.

Simülasyon için seçilen 2-50 Hz arasındaki Modal Koordinat sonuçlarına ait grafik Şekil 5.63'te gösterildiği şekildedir. Grafikler incelendiğinde modal koordinat değerlerinin uygulanan yol sinyallerine uygun şekilde davrandıkları ve değerlerini sıfır olmadığı görülmektedir. Modal koordinat sonuçlarına ait grafik ve tablolar, "SONUÇLAR" bölümünde ayrıntılı olarak verilmiştir.

5.6.4. Gerilme ömrü (stress-life) modeli simülasyonu

Aracın üzerindeki toplam ömür durumunun araştırılması için gerilme ömrü simülasyonları yapılmıştır. Bu simülasyonlarda yüksek çevrimler ile ilgilenilmektedir. Bu nedenle High Cycle Fatigue (HCF) olarak da tanımlanır. 10⁵ ve üzeri çevrimleri kapsar. Gerilme Ömür analizleri kapsamında deformasyon elastik ve malzeme mukavemeti ön plandadır.

Şekil 5.64. nCODE gerilme ömür simülasyonu işlem adımları.

Gerilme ömrü simülasyonu için Şekil 5.64'te gösterildiği üzere model hazırlanarak modal koordinatlar ve simülasyon sonuçları model içine aktarılmıştır. Simülasyon konfigüratörü sayesinde ömür hesabı için gerekli olan;

- S-N eğrisi tanımla,
- Yorulma ömrü metodu belirleme,
- Yükleme frekans aralığı belirleme,

gibi tanımlamalar belirlenerek simülasyonun koşturulması için simülasyon konfigürasyonuna girilmiştir. Simülasyona ait bu işlem adımları Şekil 8.10'daki işlem adımları şemasında gösterilmiştir.

5.6.4.1. S-N eğrisi tanımlama

Yorulma ömrü hesaplanmasında en önemli tanımlardan biri olan ve malzemenin yorulma ömrünün farklı gerilme tekrarları altındaki ömürlerinden elde edilen S-N eğrisinin sisteme tanımlanması için nCODE malzeme kütüphanesi kullanılmıştır. Kütüphane içinde birçok farklı malzemeye ait S-N eğrileri bulunmaktadır.

Araç modelinde kullanılan St52-3 (S355J2G3) çelik malzemenin yorulma eğrisinin ifadesi için akma ve kopma değerlerinden faydalanılmıştır. Bilindiği üzere çelikler için akma ve kopma değerlerini kullanarak ömür eğrisi çizilebilmektedir. nCODE kütüphanesinden seçilen "Steel_UML_UTS500" isimli eğri simülasyona atanmıştır. Bu malzemenin kopma değeri 500 Mpa ve akma değeri 385 Mpa olduğu için St52-3 çeliğinin S-N eğrisinin ifadesi için uygun bulunmuştur. Şekil 5.65'de SN eğrisinin simülasyona atanması gösterilmiştir.

Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Materials Creater Memory Meterials 1 OHPa 1 0 MPA 1 1 Pelahed 100 1 0 MPA 1 1 Pelahed 100 101 0 MPA 1 0 MPA 1 1 Pelahed 102 1 0 MPA 1 1 Pelahed 1 103 0 MPA 1 1 Pelahed 1 1 Pelahed 104 0 MPA 1 0 MPA 1 1 Pe		aMap						🔽 Va	lidate Before R
Material Group Material Name Database Scale Offset Kitzer Roughness Default Haterial Steel UHL_UTSS00 Halton 1 0.999a 1 1 Ankladed 1 0.999a 1 1 Polanded 1 0.999a 1 1 Polanded 10 0.999a 1 1 Polanded 1 1 Polanded 10 0.999a 1 1 Polanded 1 1 Polanded 100 1 0.999a 1 1 Polanded 1 Polanded 101 0.999a 1 0.999a 1 1 Polanded 102 1 0.999a 1 1 Polanded 1 Polanded 103 1 0.999a 1 1 Polanded 1 Polanded 1 104 1 0.999a 1 0.999a 1 1 Polanded 104 1	aterial Type Standard SN		•				Create N	femory Materials G	roup Properties
Operator Haterial Steel, UHL_UTS200 HatDB 1 O HPPa 1 1 AnsRolled 1 1 0 MPa 1 1 Polahed 10 1 0 MPa 1 1 Polahed 100 1 0 MPa 1 1 Polahed 100 1 0 MPa 1 1 Polahed 100 1 0 MPa 1 1 Polahed 101 0 MPa 1 1 Polahed 100 1 1 Polahed 102 1 0 MPa 1 1 Polahed 1 1 Polahed 103 1 0 MPa 1 1 Polahed 1 1 Polahed 104 1 0 MPa 1 1 Polahed 1 1 Polahed 104 1 0 MPa 1 0 MPa 1 1 Polahed 104 1 0 MPa <	Material Group	Material Name	Database	Scale	Offset	KTre	atment KUser	Roughness	
1 0 MPa 1 1 Polyhed 10 0 MPa 1 1 Polyhed 100 1 0 MPa 1 1 Polyhed 101 0 MPa 1 1 Polyhed 101 0 MPa 1 1 Polyhed 102 1 0 MPa 1 1 Polyhed 103 0 MPa 1 1 Polyhed 104 1 0 MPa 1 1 Polyhed 105 1 0 MPa 1 1 Polyhed 104 1 0 MPa 1 1 Polyhed 105 1 0 MPa 1 1 Polyhed 104 1 0 MPa 1 1 Polyhed 105 1 0 MPa 1 1 Polyhed 106 1 0 MPa 1 1 Polyhed 106 1 0 MPa 1 1 Polyhed 106 1 0 MPa 1 1 Polyhed 107 1 1 1 1 1 1 108 1 1 1 1 1 1	Default Material Stee	el_UML_UTS500	MatDB	1	0 MPa	1	1	AsRolled	
1 0 MPa 1 1 Poldwed 100 1 0 MPa 1 1 Poldwed 101 0 MPa 1 1 Poldwed 102 1 0 MPa 1 1 Poldwed 102 1 0 MPa 1 1 Poldwed 103 0 MPa 1 1 Poldwed 104 1 0 MPa 1 1 Poldwed 104 1 0 MPa 1 1 Poldwed 104 1 0 MPa 1 1 Poldwed 105 1 0 MPa 1 1 Poldwed 104 1 0 MPa 1 1 Poldwed 105 1 0 MPa 1 1 Poldwed 106 1 0 MPa 1 1 Poldwed 105 1 0 MPa 1 1 Poldwed 106 1 0 MPa 1 1 Poldwed 1060 1 2 1005 1 1 1060 153 2 1005 1 1 1060 1 1005 1 1 1	í			1	0 MPa	1	1	Polished	
100 1 0 MPa 1 1 Peldwed 011 1 0 MPa 1 1 Peldwed 012 1 0 MPa 1 1 Peldwed 013 0 MPa 1 1 Peldwed 014 0 MPa 1 1 Peldwed 014 0 MPa 1 1 Peldwed elect material to assign stabase stabase Stabase (TS) (PPa) Med Strength (PPa) Statch Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa) dataset Module (PFa	10			1	0 MPa	1	1	Polished	
com 1 OPR# 1 I Politikad 01 1 0 MPB 1 1 Politikad 022 1 0 MPB 1 1 Politikad 023 1 0 MPB 1 1 Politikad 034 1 0 MPB 1 1 Politikad 044 1 0 MPB 1 1 Politikad set: traterial to assign statistate ***********************************	00				0 MPa			Polished	
01. 1 0 Pre 1 1 Polehed 02. 1 0 Pre 1 1 Polehed 03. 1 0 Pre 1 1 Polehed 04. 1 0 Pre 1 1 Polehed 1 0 Pre 1 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Pre 1 Polehed 40. 1 0 Polehed 4				1	014Pa	1		Polarieu	
02 1 0 PPe 1 1 Peldhed 03 1 0 PPe 1 1 Peldhed 04 1 0 MPa 1 1 Peldhed Extended to assign Exten	01			1	0 MPa	1	1	Polished	
1 0 MPa 1 1 Peldhed 04 1 0 MPa 1 1 Peldhed fetmaterial to assign tabase Image: Second	02			1	0 MPa	1	1	Polished	
04 1 0 MPa 1 1 Poliphed Refer thaterial to assign statesate ***********************************	03			1	0 MPa	1	1	Polished	
circle and circle an	104			1	0 MPa	1	1	Polished	
Fidder View Versit General • • • • • • • • • • • • •	(atDB								Add
ViteS (PPa) Veta Steergth (Pa) Easter Meddue (P4) Neter (JAP, LTS200 200 154 2.16e05 Steel (JAP, LTS200 200 153 2.16e05 Steel (JAP, LTS200 200 153 2.16e05 Steel (JAP, LTS200 300 221 2.16e05 Steel (JAP, LTS200 300 22.16e15 2.16e05 Steel (JAP, LTS200 300 32.16e35 2.16e05 Steel (JAP, LTS200 500 58 2.16e05 Steel (JAP, LTS200 500 58 2.16e05 Steel (JAP, LTS200 500 58 2.16e05 Steel (JAP, LTS200 655 2.16e05] Folder View							View	Generate
Steel J.W. [17520] 200 154 2.1665 Beel J.W. [17520] 200 158 2.1665 Beel J.W. [17500] 300 231 2.1665 Beel J.W. [17500] 500 305 2.1665 Beel J.W. [17500] 500 385 2.1665 Beel J.W. [17500] 500 385 2.1665 Beel J.W. [17500] 500 385 2.1665 Beel J.W. [17500] 500 538 2.1665 Beel J.W. [17500] 605 52.1665 52.1665	Naterial Name	UTS (MPa)	Yield Strength (MPa)	Elastic Modulus (MPa)			
Intel_JML_UTS200 200 1538 2.10e05 Steel_JML_UTS200 500 231 2.10e05 Steel_JML_UTS200 500 231 2.10e05 Steel_JML_UTS200 500 232 2.10e05 Steel_JML_UTS200 500 538 2.10e05 Steel_JML_UTS200 500 538 2.10e05	teel_UML_UTS200	200	154		2.10e05				
Inter J.M. (JTSS0) 300 231 2.10e05 Inter J.M. (JTSS0) 300 385 2.10e05 Inter J.M. (JTSS0) 500 385 2.10e05 Inter J.M. (JTSS0) 600 462 2.10e05 Inter J.M. (JTSS0) 600 462 2.10e05 Inter J.M. (JTSS0) 600 53 2.10e05	teel UML UTS2000	2000	1538	-	2.10e05				
Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line Line		300	231		2.10e05				
computer computer computer computer field_UML_UTS500 600 462 2.10e05 field_UML_UTS500 700 538 2.10e05 field_UML_UTS500 800 615 2.10e05	teel_UML_UTS300	-100	308		2.10605				
tenel_UML_UTS700 700 538 2.10e05 tenel_UML_UTS800 800 615 2.10e05	teel_UML_UTS300 teel_UML_UTS400	500	305		2.10805				
steel_UML_UTS800 800 615 2.10e05	Steel_UML_UTS300 Steel_UML_UTS400 Steel_UML_UTS500	500	462		/ III//III//				
	teel_UML_UTS300 teel_UML_UTS400 teel_UML_UTS500 teel_UML_UTS500 teel_UML_UTS700	500 600 700	462 538		2.10e05 2.10e05				
itee_UML_UTS900 900 692 2.10e05	teel_UML_UTS300 teel_UML_UTS400 teel_UML_UTS500 teel_UML_UTS600 teel_UML_UTS700 teel_UML_UTS700	500 600 700 800	462 538 615		2. 10e05 2. 10e05 2. 10e05				

Şekil 5.65. nCODE gerilme ömür simülasyonu S-N eğrisi konfigürasyonu.

Şekil 5.66. Steel_UML_UTS500 malzemesine ait S-N eğrileri.

5.6.4.2. Yorulma ömrü metodu belirleme

Yorulma ömrü hesaplamaları yapılırken kullanılacak olan gerilme değerlerinin asal gerilmeler olarak seçilmesi ömrün kritik olarak belirlenmesi için oldukça önemlidir. Zira malzeme üzerindeki en yüksek gerilmeler asal eksenler doğrultusunda meydana gelmektedir. Yazılım üzerinde kullanılacak gerilme değerleri asal gerilme olarak seçilmiştir.

Diğer bir önemli konu ise Ortalama gerilme düzeltme formülasyonunun kullanılmasıdır. Genel olarak S-N eğrileri sıfır etrafında tekrarlı yüklemeler için yapılmakta olup bazı SN eğrilerinde farklı ortalama gerilmeler içinde S-N eğrileri oluşturulmaktadır. Ortalama gerilmenin simülasyon üzerindeki etkisinin kopma gerilmesi referans alınarak incelenmesi için konfigürasyondan ortalama gerilme etkisi için "Goodman" formülasyonu seçilmiştir (Şekil 5.67).

Simülasyondaki gerilme değerlerinin elde edilmesi için sonlu elemanlar modelindeki ağ modelindeki her eleman üzerindeki noktaların ortalaması alınarak gerilme değerleri elde edilmektedir.

	Name	Value		Description
-	General			
	LoggingLevel	Info	•	The amount of detail to output to the message window during the rur
	ResultsUpdateInterval	10		Time interval between processing result output
Ξ	AnalysisGroup			
	AnalysisGroup_GroupNames	*		Groups to process
	AnalysisGroup_MaterialAssignmentGroup	SelectionGroup	•	Sets the grouping type to be used for material mapping
	AnalysisGroup_SelectionGroupType	FEInput	•	Sets the grouping type to be used for extracting results
	AnalysisGroup_ShellLayer	TopAndBottom	•	Shell layer to use
	AnalysisGroup_SolutionLocation	AveragedNodeOnElement	•	Solution location
	AnalysisGroup_StressUnits	MPa	•	The units to use for stress values
Ξ	Compressed results (for display)			
	Compressed results (for display)_ChannelPerEvent	False	•	Whether to create a channel for each duty cycle event
Ξ	Job			
	Job_NumAnalysisThreads			The number of simultaneous analysis threads to use for this job
Ξ	Run1			
	Run1_Gate	20		The gate value to apply during time history compression
	Run1_TimeHistoryCompression	None	•	Specifies how to compress time history loading
Ξ	SNEngine			
	SNEngine_CertaintyOfSurvival	50		Required confidence level on damage results
	SNEngine_CheckStaticFailure	Warn	•	The action to take on static failure
	SNEngine_CombinationMethod	AbsMaxPrincipal	•	The method used to combine component stresses/strains
	SNEngine_EventProcessing	Independent	•	How to process separate events in duty cycles
	SNEngine_MeanStressCorrection	Goodman	•	The method used to correct the damage calculation for mean stress
	SNEngine_MultiAxialAssessment	Standard	•	Whether to perform assessment of the multi-axial stress state
	SNEngine_OutputEventResults	False	•	Whether to output results per event or not for duty cycle processing

Şekil 5.67. nCODE gerilme ömür simülasyonu konfigürasyonu.

5.6.4.3. Yükleme frekans aralığı belirleme

Simülasyonda yol sinyalleri olarak modal koordinat sonuçlarının kullanılacağını daha önce ifade etmiştik. modal koordinat sonuçları yapının modlarının; uygulanan yol sinyalleri altında ne kadar tahrik olduklarını belirten yer değiştirme sonuçları içeren sonuçlardı. modal koordinat sonuçlarının içinde çok yüksek frekanslar için oluşturulmuş ve gerçekte olması pek mümkün olmayan sonuçlar vardır. Simülasyon için belirli bir frekans aralığı belirlenerek gereksiz frekansların simülasyona dahil edilmemesi gerekir.

Frekans aralığı belirlenirken dikkat edilmesi gereken en önemli nokta, yol simülasyonunda kullanılan sinyallerin frekans aralığı belirlenerek, bu frekansları içine alacak şekilde bir aralık belirlemektir. Önceki bölümlerde yol sinyallerinin 6-30 Hz arasında baskın olduğu görülmüştür. Bu nedenle frekans aralığı, mod 7 ile 20 arası seçilmiştir. Seçilen aralık 12-50 Hz arasını kapsamaktadır. Bu aralıktaki modlar modal koordinat sonuçları ile Şekil 5.68'de gösterildiği üzere eşleştirilerek yükleme frekans aralığı belirlenmiştir.

Belirlenen frekans aralığının daraltılması ile yapılan farklı simülasyonlar ile yapı üzerindeki baskın frekanslar ve tahrik noktaları belirlenmesi sağlanmıştır.

oading Type: Time Series Load Case De	scription	s All 🔻						Auto-Config	jure
vailable FE Load Cases		Load Case Assign	nments			Pro	operties Loa	ad Mapping Fi	le
Description	*	Load Case	Description	Time Series	Chan	Chan Title	Divider	Scale Factor	-
I - 14MODE_SONModal (F5):Frequency 0	Ξ	1	7 - 14MODE_SON M	Time Series Input	7	Mode 7 Q	1		
2 - 14MODE_SONModal (F5):Frequency 0		2	8 - 14MODE SONM	Time Series Input	8	Mode 8 O	1		
- 14MODE_SONModal (F5):Frequency 1.024E-4	>	3	9 - 14MODE_SONM	Time Series Input	9	Mode 9 Q	1		
- 14MODE_SONModal (F5):Frequency 0.2259		3 4	10 - 14MODE SON	Time Series Input	10	Mode 10 O	1		
- 14MODE_SONModal (F5):Frequency 2.095		5	11 - 14MODE_SON	Time Series Input	11	Mode 11 O	1		-17
- 14MODE_SONModal (F5):Frequency 12.81	<	6	12 - 14MODE_SON	Time Series Input	12	Mode 12 O	1		
- 14MODE_SONModal (F5):Frequency 22.27			12 14MODE SON	Time Series Input	12	Mode 12 Q	-		-
- 14MODE_SONModal (F5):Frequency 24.06	<-	<u>ا (</u>	13 - 14MODE_SON-	mine series input	15	Mode 13 Q	1		-U
0 - 14MODE_SONModal (F5):Frequency 31.92		8	14 - 14MODE_SON	Time Series Input	14	Mode 14 Q	1		-
1 - 14MODE_SONModal (F5):Frequency 33.53		9	15 - 14MODE_SON	Time Series Input	15	Mode 15 Q	1		_
2 - 14MODE_SON-Modal (E5):Frequency 40, 34		10	16 - 14MODE_SON	Time Series Input	16	Mode 16 Q	1		
4 - 14MODE_SON-Modal (E5):Frequency 45.33	_	11	17 - 14MODE SON	Time Series Input	17	Mode 17 O	1		1
	*	•		III					_
Available Time Series (drag one or more onto load cases above)									
-Time Series Input									
									Ē
9 - Mode 9 Q									
10 - Mode 10 Q									=
11 - Mode 11 Q									
12 - Mode 12 Q									

Şekil 5.68. nCODE gerilme ömür simülasyonu yükleme frekans aralığı.

5.6.5. Şekil değiştirme ömrü (strain-life) modeli

Gerilme ömrü simülasyonunda kritik çıkan bölgelerin değerlendirilmesi amacıyla model üzerinde şekil değiştirme ömrü simülasyonu yapılmıştır. Şekil değiştirme Ömrü yorulmanın düşük tekrar (çevrim) sayılarını karakterize eden ve çatlak başlangıcını kapsayan bir metottur. Düşük sayılı çevrimler bu yüzden Low Cycle Fatigue (LCF) olarak da tanımlanmaktadır. LCF genellikle 10⁵ ve daha düşük çevrimleri kapsar. Günümüzde yaygın bir şekilde kullanılmaktadır. Uzun çevrim süreleri için incelendiği zaman Gerilme-Ömür analizi olarak da sonuç vermektedir. Bunun nedeni Şekil değiştirme ömrü hem plastik hem de elastik bölge için sonuç vermektedir.

Şekil 5.69. Ncode gerilme ömür simülasyonu işlem adımları.

Şekil değiştirme ömrü simülasyonu için Şekil 5.69'da gösterildiği üzere model hazırlanarak modal koordinatlar ve simülasyon sonuçları model içine aktarılmıştır. Simülasyon konfigüratörü sayesinde ömür hesabı için gerekli olan;

- E-N eğrisi tanımla,
- Yorulma ömrü metodu belirleme,
- Yükleme frekans aralığı belirleme,

gibi tanımlamalar belirlenerek simülasyonun koşturulması için simülasyon konfigürasyonuna girilmiştir. Simülasyona ait bu işlem adımları Şekil 8.10'daki işlem adımları şemasında gösterilmiştir.

5.6.5.1. E-N eğrisi tanımlama

Yorulma ömrü hesaplanmasında en önemli tanımlardan biri olan ve malzemenin yorulma ömrünün farklı şekil değiştirme tekrarları altındaki ömürlerinden elde edilen E-N eğrisinin sisteme tanımlanması için nCODE malzeme kütüphanesi kullanılmıştır. Kütüphane içinde birçok farklı malzemeye ait SN eğrileri bulunmaktadır.

diting material map : Mater	rialMap							Valid	late Before Ru
aterial Type Standard SN		•					Create Mem	ory Materials Gro	up Properties.
Material Group	Material Name	Database	Scale	Offset	к	Treatment	KUser	Roughness	
Default Material Ste	el_UML_UT5500	MatDB	1	0 MPa	1		1	AsRolled	
1			1	0 MPa	1		1	Polished	
10			1	0 MPa	1		1	Polished	
100			-	0 MD=	-			Delished	
100			1	UMPa	1		1	Polished	
101			1	0 MPa	1		1	Polished	
102			1	0 MPa	1		1	Polished	
103			1	0 MPa	1		1	Polished	
104			1	0 MDD				Polished	
elect material to assign									
ielect material to assign Vatabase MatDB								•	Add
elect material to assign Database MatDB I Folder View								View	Add Generate
elect material to assign Database MatDB I Folder View Material Name	UTS (MPa)	Yield Strength (N	MPa)	Elastic Modulus (f	MPa)			View	Add Generate
elect material to assign latabase MatDB Folder View Material Name Steel_UML_UTS200	UTS (MPa) 200	Yield Strength (M	MPa)	Elastic Modulus (* 2. 10e05	MPa)			View	Add Generate
elect material to assign Database MatDB Folder View Material Name Steel_UML_UTS200 Steel_UML_UTS2000	UTS (MPa) 200 2000	Yield Strength (* 154 1538	MPa)	Elastic Modulus († 2. 10e05 2. 10e05	MPa)			View	Add Generate
elect material to assign Database MatDB Polder View Material Name Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200	UTS (MPa) 200 2000 300	Yield Strength (N 154 1538 231	MPa) I	Elastic Modulus († 2. 10e05 2. 10e05 2. 10e05	MPa)			View	Add Generate
elect material to assign batabase MatDB Polder View Material Name Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200	UTS (MPa) 200 2000 300 400	Yield Strength (M 154 1538 231 308	MPa)	Elastic Modulus († 2. 10e05 2. 10e05 2. 10e05 2. 10e05	MPa)			View	Add Generate.
elect material to assign batabase MatDB Folder View Material Name Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS300 Steel_UML_UTS400 Steel_UML_UTS500	UTS (MPa) 200 2000 300 400 500	Yield Strength (* 154 1538 231 308 385	MPa)	Elastic Modulus († 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05	MPa)			View	Add Generate.
elect material to assign atabase MatDB Folder View Material Name Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS400 Steel_UML_UTS500 Steel_UML_UTS500	UTS (MPa) 200 2000 300 400 500 600	Yield Strength (* 154 1538 231 308 385 462	MPa)	Elastic Modulus († 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05	MPa)			View	Add Generate.
elect material to assign latabase MatDB Folder View Material Name Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS300 Steel_UML_UTS500 Steel_UML_UTS500 Steel_UML_UTS500 Steel_UML_UTS500	UTS (MPa) 200 2000 300 400 500 600 700 200	Yield Strength (N 154 1538 231 308 385 462 538 625	MPa)	Elastic Modulus († 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05	MPa)			View	Add Generate.
Velect material to assign Vatabase MatDB Polder View Material Name Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS200 Steel_UML_UTS500 Steel_UML_UTS500 Steel_UML_UTS500 Steel_UML_UTS500 Steel_UML_UTS200 Steel_UML_UT	UTS (MPa) 200 2000 300 400 500 600 700 800 800	Yield Strength (N 154 1538 231 308 385 462 538 615 602	MPa)	Elastic Modulus († 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05 2. 10e05	MPa)			View	Add Generate.

Şekil 5.70. nCODE gerilme ömür simülasyonu işlem adımları.

Araç modelinde kullanılan St52-3 (S355J2G3) çelik malzemenin yorulma eğrisinin ifadesi için akma ve kopma değerlerinden faydalanılmıştır. Bilindiği üzere çelikler için akma ve kopma değerlerini kullanarak ömür eğrisi çizilebilmektedir. nCODE kütüphanesinden seçilen "Steel_UML_UTS500" isimli eğri simülasyona atanmıştır. Bu malzemenin kopma değeri 500 Mpa ve akma değeri 385 Mpa olduğu için St52-3 çeliğinin E-N eğrisinin ifadesi için uygun bulunmuştur. Şekil 5.70'de E-N eğrisinin simülasyona atanması gösterilmiştir.

Şekil 5.71. Steel_UML_UTS500 malzemesine ait E-N eğrileri.

5.6.5.2. Yorulma ömrü metodu belirleme

Yorulma ömrü hesaplamaları yapılırken kullanılacak olan gerilme değerlerinin asal gerilmeler olarak seçilmesi ömrün kritik olarak belirlenmesi için oldukça önemlidir. Zira malzeme üzerindeki en yüksek gerilmeler asal eksenler doğrultusunda meydana gelmektedir. Yazılım üzerinde kullanılacak gerilme değerleri Asal gerilme olarak seçilmiştir.

Diğer bir önemli konu ise Ortalama gerilme düzeltme formülasyonunun kullanılmasıdır. Genel olarak E-N eğrileri sıfır etrafında tekrarlı yüklemeler için yapılmakta olup bazı S-N eğrilerinde farklı ortalama gerilmeler için de E-N eğrileri oluşturulmaktadır. Ortalama gerilmenin simülasyon üzerindeki etkisinin elastik ve plastik deformasyon için birlikte incelenmesi için konfigürasyonda ortalama gerilme etkisi "Smitch Watson Topper" formülasyonu seçilmiştir.

Model üzerinde akma mukavemetini geçen bölgelerde plastik deformasyon meydana geldiği düşünüldüğünde, bu bölgelerdeki gerilme değerlerinin daha düşük olması gerekmektedir. Bu nedenle strain-life için plastik gerinimi tespit etmek gerekmektedir. Neuber kuralı ile elastik-plastik, gerinme-gerinim değerine Denklem 5.1'de ifade edilen eşitlik ile dönüştürülmektedir. Formülasyonda K_t veya K_f çentik

kenarındaki elastik deformasyonu tanımlamaktadır. Şekil 5.72'de Neuber kuralı uygulamasına ait grafiksel ifade görülmektedir.

$$K_t S. K_t e = \sigma. \varepsilon$$

Şekil 5.72. Neuber kuralı grafiksel gösterimi.

Ncode ortamında analiz için gerekli olan tanımlamalar Şekil 5.73'te gösterildiği şekilde tanımlanarak analiz ön kabulleri belirlenmektedir.

	Name	Value		Description
Ξ	General			
	LoggingLevel	Info	•	The amount of detail to output to the message window during the r
	ResultsUpdateInterval	10		Time interval between processing result output
Ξ	AnalysisGroup			
	AnalysisGroup_GroupNames	*		Groups to process
	AnalysisGroup_MaterialAssignmentGroup	SelectionGroup	•	Sets the grouping type to be used for material mapping
	AnalysisGroup_SelectionGroupType	FEInput	•	Sets the grouping type to be used for extracting results
	AnalysisGroup_ShellLayer	TopAndBottom	•	Shell layer to use
	AnalysisGroup_SolutionLocation	AveragedNodeOnElement	•	Solution location
	AnalysisGroup_StressUnits	MPa	•	The units to use for stress values
Ξ	Compressed results (for display)			
	Compressed results (for display)_ChannelPerEvent	False	•	Whether to create a channel for each duty cycle event
Ξ	ENEngine			
	ENEngine_CertaintyOfSurvival	50		Required confidence level on damage results
	ENEngine_CheckStaticFailure	Warn	•	The action to take on static failure
	ENEngine_CombinationMethod	AbsMaxPrincipal	•	The method used to combine component stresses/strains
	ENEngine_ElasticPlasticCorrection	HoffmannSeeger	•	The correction method for elastic plastic transformation in biaxiality
	ENEngine_EventProcessing	Independent	•	How to process separate events in duty cycles
	ENEngine_MeanStressCorrection	SmithWatsonTopper	•	The method used to correct the damage calculation for mean stress
	ENEngine_MultiAxialAssessment	Standard	•	Whether to perform assessment of the multi-axial stress state
	ENEngine_OutputEventResults	False	•	Whether to output results per event or not for duty cycle processin
۲		III		P. C. C. C. C. C. C. C. C. C. C. C. C. C.

Şekil 5.73. nCODE şekil değiştirme ömür simülasyonu konfigürasyonu.

(5.1)

5.6.5.3. Yükleme frekans aralığı belirleme

Simülasyonda yol sinyalleri olarak modal koordinat sonuçlarının kullanılacağını daha önce ifade etmiştik. modal koordinat sonuçları yapının modlarının; uygulanan yol sinyalleri altında ne kadar tahrik olduklarını belirten yer değiştirme sonuçları içeren sonuçlardı. Modal koordinat sonuçlarının içinde çok yüksek frekanslar için oluşturulmuş ve gerçekte olması pek mümkün olmayan sonuçlar vardır. Simülasyon için belirli bir frekans aralığı belirlenerek gereksiz frekansların simülasyona katılmaması gerekmektedir.

Frekans aralığı belirlenirken dikkat edilmesi gereken en önemli nokta, yol simülasyonunda kullanılan sinyallerin frekans aralığı belirlenerek, bu frekansları içine alacak şekilde bir aralık belirlemektir. Önceki bölümlerde yol sinyallerinin 6-30 Hz arasında baskın olduğu görülmektedir. Bu nedenle frekans aralığı, Mod 7 ile Mod 20 arasını özellikle kapsanacak şekilde 5 farklı yükleme senaryosu ile analizler yapılarak araç yorulma davranışının frekanslara bağlı olarak davranışı incelenmiştir. Yükleme senaryolarına ait bilgiler Tablo 5.8'de verilmiştir.

	Yorulma Metodu	Frekans Aralığı	Mod Aralığı
1 . Simülasyon	S-N	12 - 50 Hz	Mod 7 – Mod 20
2 . Simülasyon	S-N	30 - 50 Hz	Mod 11 - Mod 20
3 . Simülasyon	S-N	40 - 50 Hz	Mod 14 - Mod 20
4 . Simülasyon	S-N	12 - 10110 Hz	Mod 7 - Mod 134
5 . Simülasyon	E-N	12 - 10110 Hz	Mod 7 - Mod 134

Tablo 5.8. Yol sinyalleri ve yapı mod frekansları karşılaştırılması.

5 farklı simülasyon ile elde edilen sonuç değerleri, SONUÇLAR bölümünde ayrıntılı olarak verilmiştir.

BÖLÜM 6. SONUÇLAR

Sonuçlar bölümünde; deneysel ve bilgisayar destekli yapılan çalışmalar kapsamında elde edilen sonuç grafikleri ve tablolar verilmektedir. Her süreç sonunda elde edilen sonuçlar diğer bir süreç için kaynak teşkil etmektedir. Bu nedenle sonuçlar süreç sıralamasına uygun şekilde 4 başlık altında aşağıda gösterildiği şekilde verilmektedir.

- Sonlu Elemanlar Modeli Sonuçları
- Toplanan Yol Sinyalleri İşleme Sonuçları
- Çoklu Cisim Simülasyonu Sonuçları
- Yorulma Simülasyonu Sonuçları

6.1. Sonlu Elemanlar Modeli Sonuçları

Sonlu Elemanlar modeli ile araç modeli tasarımının belirli şartlar altında doğrulanması amacıyla yapılan testlere ait sonuçlar bu bölümde verilmektedir.

Sonlu elemanlar yönteminden kaynaklı bazı zafiyetler nedeniyle model sonuçlarında meydana gelen tekil gerilme sonuçları gerçekçi sonuçlar vermediği için dikkate alınmamıştır. Genel olarak tekil gerilmeler, yük uygulanma bölgelerinde ve uygulamanın noktasal olduğu yerlerde görülmektedir. Bu nedenle aracın şasi ve tanker bölgeleri ile ilgilenildiği için aks modeli üzerinde meydana gelen gerilmeler dikkate alınmamıştır.

6.1.1. Yerçekimi ivmesi (1 g) etkisinde yapısal analiz sonuçları

Sonlu Elemanlar Modeli ile aracın kendi ağırlığının yer çekimi etkisi oluşturduğu deplasman sonuçları incelenmiş ve elde edilen yapısal gerilmeler von mises eşdeğer

gerilme sonuçlarına dönüştürülerek malzemeye ait akma ve kopma değerleri ile karşılaştırılmıştır.

Şekil 6.1'de tüm araç üzerindeki yer değiştirme sonuçları verilmekte olup, yer çekimi etkisi altında 4 mm olarak elde edilmiştir. Lastik ezilmesi ve benzeri dış etkiler ihmal edilmiştir.

Şekil 6.1. Yerçekimi ivmesi etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.2'de şasi üzerindeki toplam yer değiştirme sonuçları verilmekte olup, yer çekimi etkisi altında 3mm olarak elde edilmiştir. Genel olarak aracın ön bölgesi ve arka bölgesi sabit kalmakta karın bölgesi olarak ifade edilen orta bölge sehim yapmaktadır. Tanker araçları kolay esnemeyen bir üst yapıya sahip oldukları için sehim miktarları düşük olmaktadır.

Şekil 6.2. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde yer değiştirme sonuçları.

Şekil 6.3'de tüm araç üzerindeki eşdeğer gerilme dağılımı yer çekimi etkisi için elde edilmiş ve maksimum gerilme sonuçlarının 100 MPa değerinin altında olduğu

görülmektedir. Dingil bölgesinde meydana gelen tekil gerilme sonuçları dikkate alınmamıştır.

Şekil 6.3. Yerçekimi ivmesi etkisinde; yapısal analiz ile oluşan von mises eş değer gerilme sonuçları.

Şekil 6.4, Şekil 6.5 ve Şekil 6.6'da şasi bölgesine ait gerilme sonuçları ayrıntılı olarak gösterilmektedir. Eşdeğer gerilme sonuçlarının King-pin ve Dingil bölgerinde yüksek olduğu ve 100 MPa değerini geçmediği görülmektedir.

Şekil 6.4. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde oluşan von mises eş değer gerilme sonuçları.

Şekil 6.5. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde oluşan von mises eş değer gerilme sonuçları.

Şekil 6.6'da belirtilen gerilme sonuçları incelenerek gerilme yığılması oluşan noktalar strain-gage ölçümü için gerekli referans noktaların oluşturulması için değerlendirilmiştir.

Şekil 6.6. Yerçekimi ivmesi etkisinde; yapısal analiz ile şasi üzerinde oluşan von mises eş değer gerilme sonuçları.

6.1.2. Frenleme ivmesi (0,4 g) etkisinde yapısal analiz sonuçları

Aracın tanker bölümünde bulunan sıvının etkisi hidrostatik basınç olarak tanımlanarak tam yüklü durum için Frenleme kuvveti (0,4 g) etkisi altında yapılan yapısal analizler sonucunda deplasman ve von mises eşdeğer gerilme sonuçları elde edilmiştir.

Şekil 6.7 ve Şekil 6.8'de detaylı olarak verilen deplasman değerleri incelendiğinde aracın fren etkisiyle arka bölümünün 26 mm yukarı kalktığı ve ön bölümünün çöktüğü görülmektedir. Bu durum frenleme etkisinin doğal bir sonucudur.

Şekil 6.7. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.8. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.9 ve Şekil 6.10'da detaylı olarak verilen eşdeğer gerilme sonuçları incelendiğinde aracın fren etkisiyle king-pim bölgesinde 250 MPa değerlerine ulaşan gerilme sonuçları elde edilmiştir. Doğru sonuç vermeyen tekil gerilmeler dikkate alınmamıştır.

Şekil 6.9. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan von mises eş değer gerilme sonuçları.

Şekil 6.10. Frenleme ivmesi etkisinde; yapısal analiz ile oluşan von mises eş değer gerilme sonuçları.

6.1.3. Çukura düşme (50 mm) etkisinde yapısal analiz sonuçları

Aracın tanker bölümünde bulunan sıvının etkisi hidrostatik basınç olarak tanımlanarak tam yüklü durum için aracın bir tarafındaki tüm tekerlerin aynı anda 50mm yer değişimine uğraması ile elde edilen çukura düşme senaryosu etkisi altında yapılan yapısal analizler sonucunda deplasman ve von mises eşdeğer gerilme sonuçları elde edilmiştir.

Şekil 6.11, Şekil 6.12 ve Şekil 6.13 ile verilen deplasman sonuçları incelendiğinde tekerlerin sağ tekerlerinin çukura düşmesi sonucu aracın sağ bölgesinin 50 mm çöktüğü görülmektedir.

Şekil 6.11. Çukura düşme etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.12. Çukura düşme etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.13. Çukura düşme etkisinde; yapısal analiz ile şasi üzerinde oluşan yer değiştirme sonuçları.

Şekil 6.14, Şekil 6.15 ve Şekil 6.16 ile tüm araç ve şasi için çukura düşme senaryosu ile elde edilen eşdeğer gerilme sonuçları verilmektedir. Gerilme değerlerinin karın bölgesinde bazı kritik kesitlerde 300 MPa değerlerine ulaştığı görülmüştür. Belirlenen kritik bölgeler strain-gage yerleşimi için referans olarak değerlendirilmiştir.

Şekil 6.14. Çukura düşme etkisinde; yapısal analiz ile von mises eş değer gerilme sonuçları.

Şekil 6.15. Çukura düşme etkisinde; yapısal analiz ile von mises eş değer gerilme sonuçları.

Şekil 6.16. Çukura düşme etkisinde; yapısal analiz ile şasi üzerinde oluşan von mises eş değer gerilme sonuçları.

6.1.4. Tümsek geçme (50 mm) etkisinde yapısal analiz sonuçları

Aracın tanker bölümünde bulunan sıvının etkisi hidrostatik basınç olarak tanımlanarak tam yüklü durum için aracın bir tarafındaki en arka tekerin 50 mm yer değişimine uğraması ile elde edilen tümsek geçme senaryosu etkisi altında yapılan yapısal analizler sonucunda deplasman ve von mises eşdeğer gerilme sonuçları elde edilmiştir.

Şekil 6.17'de verilen deplasman sonuçları incelendiğinde tümsek geçme senaryosu sonucu aracın arka bölgesinin süspansiyon etkisi nedeniyle 50 mm'den daha az yükseldiği görülmüştür. Ortalama olarak arasın sağ bölgesi 26 mm yükselmiştir.

Şekil 6.17. Tümsek geçme etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.18, Şekil 6.19 ve Şekil 6.20 ile verilen eşdeğer gerilme sonuçları incelendiğinde tümsek geçme senaryosu sonucu aracın arka makas kulağı bölgesinde gerilme değerlerinin 250 MPa değerlerine ulaştığı görülmüştür.

Şekil 6.18. Tümsek geçme etkisinde; yapısal analiz ile oluşan von mises eş değer gerilme sonuçları.

Şekil 6.19. Tümsek geçme etkisinde; yapısal analiz ile oluşan von mises eş değer gerilme sonuçları.

Şekil 6.20. Tümsek geçme etkisinde; yapısal analiz ile şasi üzerinde oluşan von mises eş değer gerilme sonuçları.

6.1.5. Burkulma (3°) etkisinde yapısal analiz sonuçları

Aracın tanker bölümünde bulunan sıvının etkisi hidrostatik basınç olarak tanımlanarak tam yüklü durum için aracın king-pim bölgesi 3° yer değişimine uğratılarak 3° Burkulma etkisi altında yapısal deformasyon ve gerilme sonuçları elde edilmiştir. Bu senaryo gerçek kullanım şartlarında yapının rijitliği nedeni ile olması çok muhtemel olmayan bir senaryodur. Aracın üzerindeki burulma etkisi altındaki kritik noktaların tespit edilmesi için faydalı olmaktadır.

Şekil 6.21 ve 6.22 ile gösterilen 3° Burkulma etkisi altındaki yapısal deplasmanlar yaklaşık 90 mm mertebelerindedir. Üstyapının rijitliği nedeniyle şasi üzerindeki deplasman değerleri 30 mm mertebelerinde olmuştur.

Şekil 6.21. 3° Burkulma etkisinde; yapısal analiz ile oluşan yer değiştirme sonuçları.

Şekil 6.22. 3° Burkulma etkisinde; yapısal analiz ile şasi üzerinde oluşan yer değiştirme sonuçları.

Şekil 6.23 ve 6.24 ile gösterilen 3° Burkulma etkisi altındaki yapısal eşdeğer gerilmeler yapının rijitliği nedeniyle oldukça yüksek çıkmıştır. Gerçekçi olmayan bu değerler sadece kritik noktaları bölgesel olarak belirlenmesine yardımcı olması amacıyla kullanılmıştır.

Şekil 6.23. 3° Burkulma etkisinde; yapısal analiz ile oluşan eş değer von mises gerilme sonuçları.

Şekil 6.24. 3° Burkulma etkisinde; yapısal analiz ile şasi üzerinde oluşan eş değer von mises gerilme sonuçları.

6.1.6. Doğal frekans (modal) analiz sonuçları

Modal Analiz sonucu olarak yapının doğal frekansları ve o frekanslara ait yapısal davranış deformasyon, gerilme ve gerinim değeri yapının 20 modu için elde edilmiştir. Yapının modlarına göre yer değiştirme değişimi sonuçları Şekil 6.25'de 20 mod için gösterilmektedir.

Şekil 6.25. Modal analiz - yer değiştirme sonuçları.

Şekil 6.25 ile verilen yapısal mod şekillerine ait yapısal mod-frekans eşleşmeleri Şekil 6.26'da ayrıntılı olarak verilmektedir. Şekil 6.26 incelendiğinde İlk 20 Modun 60 Hz altında olduğu görülmektedir. Bu yapısal modlar yol sinyalleri ile tahrik edileceği düşünülen modlardır.

Şekil 6.26. Modal analiz sonuçları; yapısal modlar ve frekansları.

15

53,145

20

58,7

6.1.7. Model derecesi düşürme (craig-bampton) mod sonuçları

35,408

5

26,732

10

Modal analiz çalışmaları ile elde edilen sonuçlarının; Craig-Bampton yöntemi ile model derecesi düşürülerek elde edilen mod değerleri Tablo 6.1 ve Tablo 6.2 ile verilmektedir. Toplamda elde edilen 134 adet mod şekli içerik olarak yapının sabitlendiği 19 noktanın sahip olduğu her bir serbestlik derecesi için ayrı ayrı hesaplanan mod şekilleri ve yapının normal mod şekillerinden oluşmaktadır.

7 -Mod Frekansı:	12,81	50 -Mod Frekansı:	290,1	93 -Mod Frekansı:	1983
8 -Mod Frekansı:	22,27	51 -Mod Frekansı:	310,3	94 -Mod Frekansı:	2015
9 -Mod Frekansı:	24,06	52 -Mod Frekansı:	348,9	95 -Mod Frekansı:	2032
10 -Mod Frekansı:	31,92	53 -Mod Frekansı:	367	96 - Mod Frekansı:	2051
11 -Mod Frekansı:	33,53	54 -Mod Frekansı:	400,1	97 -Mod Frekansı:	2075
12 -Mod Frekansı:	37,3	55 -Mod Frekansı:	401,1	98 -Mod Frekansı:	2081
13 -Mod Frekansı:	40,34	56 -Mod Frekansı:	424,5	99 - Mod Frekansı:	2388
14 -Mod Frekansı:	45,33	57 -Mod Frekansı:	455,3	100 - Mod Frekansı:	2402
15 -Mod Frekansı:	46,27	58 -Mod Frekansı:	479,8	101 - Mod Frekansı:	2956
16 -Mod Frekansı:	47,4	59 - Mod Frekansı:	524,5	102 -Mod Frekansı:	2992
17 -Mod Frekansı:	49,27	60 - Mod Frekansı:	530	103 - Mod Frekansı:	3040
18 -Mod Frekansı:	49,6	61 - Mod Frekansı:	538,8	104 -Mod Frekansı:	3201
19 - Mod Frekansı:	49,79	62 - Mod Frekansı:	583,3	105 - Mod Frekansı:	3319

Tablo 6.1. Model derecesi düşürme (Craig-Bampton) sonuçları.

-Bampto	n) sonu	ıçları (Devamı).	
605,4	10	6 -Mod Frekansı:	3332
643,1	10	7 -Mod Frekansı:	3400
651,4	10	8 -Mod Frekansı:	4118
677,1	10	9 -Mod Frekansı:	4356

Tablo 6.2. Model derecesi düşürme (Craig-Bampton) sonuçları (Devamı).

63 - Mod Frekansı:

21 -Mod Frekansı:	52,58	64 - Mod Frekansı:	643,1	107 -Mod Frekansı:	3400
22 -Mod Frekansı:	54,57	65 - Mod Frekansı:	651,4	108 - Mod Frekansı:	4118
23 -Mod Frekansı:	61,43	66 - Mod Frekansı:	677,1	109 - Mod Frekansı:	4356
24 -Mod Frekansı:	76,97	67 - Mod Frekansı:	707,3	110 - Mod Frekansı:	4638
25 -Mod Frekansı:	83,41	68 - Mod Frekansı:	708,3	111 - Mod Frekansı:	4643
26 -Mod Frekansı:	93,41	69 - Mod Frekansı:	738,6	112 -Mod Frekansı:	4680
27 -Mod Frekansı:	94,06	70 - Mod Frekansı:	760,1	113 - Mod Frekansı:	4685
28 - Mod Frekansı:	97,79	71 - Mod Frekansı:	795,8	114 -Mod Frekansı:	4692
29 - Mod Frekansı:	101,2	72 -Mod Frekansı:	848,1	115 -Mod Frekansı:	4914
30 -Mod Frekansı:	106,4	73 - Mod Frekansı:	865,7	116 - Mod Frekansı:	5039
31 -Mod Frekansı:	121,2	74 -Mod Frekansı:	871,9	117 - Mod Frekansı:	5391
32 -Mod Frekansı:	122,7	75 -Mod Frekansı:	900,1	118 -Mod Frekansı:	5443
33 - Mod Frekansı:	127,4	76 - Mod Frekansı:	932,6	119 - Mod Frekansı:	5594
34 - Mod Frekansı:	137,6	77 - Mod Frekansı:	933,9	120 - Mod Frekansı:	6691
35 -Mod Frekansı:	140,9	78 - Mod Frekansı:	957,9	121 -Mod Frekansı:	6755
36 - Mod Frekansı:	143,9	79 - Mod Frekansı:	991,4	122 -Mod Frekansı:	6807
37 - Mod Frekansı:	145,9	80 - Mod Frekansı:	1015	123 -Mod Frekansı:	6891
38 - Mod Frekansı:	160,9	81 - Mod Frekansı:	1070	124 -Mod Frekansı:	6916
39 - Mod Frekansı:	163,5	82 -Mod Frekansı:	1178	125 -Mod Frekansı:	7003
40 -Mod Frekansı:	171,8	83 -Mod Frekansı:	1256	126 - Mod Frekansı:	7014
41 -Mod Frekansı:	196,1	84 -Mod Frekansı:	1285	127 - Mod Frekansı:	7093
42 -Mod Frekansı:	202,3	85 -Mod Frekansı:	1393	128 - Mod Frekansı:	7212
43 -Mod Frekansı:	209,4	86 - Mod Frekansı:	1415	129 - Mod Frekansı:	9440
44 -Mod Frekansı:	210,5	87 - Mod Frekansı:	1416	130 - Mod Frekansı:	9480
45 -Mod Frekansı:	220,6	88 - Mod Frekansı:	1653	131 - Mod Frekansı:	9875
46 -Mod Frekansı:	222,3	89 - Mod Frekansı:	1660	132 -Mod Frekansı:	9893
47 - Mod Frekansı:	260,5	90 - Mod Frekansı:	1865	133 - Mod Frekansı:	1,01E+04
48 - Mod Frekansı:	273,1	91 - Mod Frekansı:	1899	134 -Mod Frekansı:	1,011E+04
49 - Mod Frekansı:	281,8	92 -Mod Frekansı:	1922		

6.2. Toplanan Yol Sinyalleri ve İşleme Sonuçları

20 - Mod Frekansı:

50,77

İvme ve birim şekil değişimi değerleri toplanan 5 farklı yol profiline ait genel yol bilgileri Tablo 6.3'de verilmiştir. Bu değerler elde edilirken GPS verileri kullanılmaktadır.

Yol Profili	Toplam Süre (dk)	Toplam Yol (Km)	Maks. Hız (Km/h)
Otoban (Asfalt)	30	47	100
Şehirlerarası (Asfalt)	25	15	94
Şehir İçi (Bozuk Asfalt)	15	29	84
Köy Yolları (Stabilize)	50	50	65
Offroad (Arazi)	5	4	40

Tablo 6.3. Sinyal toplanan yol profillerinin özellikleri.

6.2.1. İvme sinyalleri ait sonuçları

Müşteri araç kullanım profiline göre belirlenen 5 farklı yol tipinden; 7 adet ivme kanalı için toplanan yol sinyallerine ait ivme-zaman grafikleri Şekil 6.27 - Şekil 6.31'de gösterilmektedir.

İvme sinyallerinin genliklerine bakılarak genel olarak yol profillerinin karşılaştırılması mümkündür. Grafikler incelendiğinde Şekil 6.30 ve Şekil 6.31 ile gösterilen köy yolları ve Offroad yol tiplerine ait ivme sinyallerinin diğer yol sinyallerine göre yüksek olduğu ve bu nedenle bu yol tiplerinin araç üzerinde daha olumsuz etkileri olacağı görülmektedir.

Şekil 6.27. Otoban yol profili ivme sinyalleri.

Şekil 6.29. Şehirler arası yol profili ivme sinyalleri.

Şekil 6.30. Off-road yol profili ivme sinyalleri.

Şekil 6.31. Köy yolları yol profili ivme sinyalleri.

Yoldan toplanan ivme sinyalleri; göreceli hasar analizi ile işlenerek araç üzerindeki hasar ve yorma etkilerinin frekans bantlarına elde edilmiştir. Elde edilen göreceli hasar analizi sonuçları Şekil 6.32'de gösterilmektedir.

Şekil 6.32. Tanker ivme sinyallerine ait göreceli hasar analizi sonuçları.

Göreceli hasar analizleri incelendiğinde off-road ve köy-yollarının yorma etkilerinin tüm frekans bantları için baskın olduğu görülmektedir.

Göreceli hasar analizleri sonrasında; tüm yol profillerinin yorma etkilerini kapsayacak şekilde optimizasyon yapılması sonucu elde edilen eşdeğer yol profiline ait sonuçlar Tablo 6.4'de verilmektedir.

Tablo 6.4. Test eşleştirme analizi sonuçlar	1.
---	----

	Optimizasyon Yüzdesi	Hedef Km	Toplam Tekrar Sayısı
Eşdeğer Yol Profili	101,6	10 ⁶	73690
Hedef Yol Profili	100	10 ⁶	10 ⁴

Eşdeğer yol profilini ait 7 tahrik noktası için elde edilmiş ivme sinyal grafikleri ve kanal bilgileri Şekil 6.33 ve Tablo 6.5'te verilmektedir.

Şekil 6.33. Eşdeğer yol sinyali ivme verileri.

Kanal Adı	Maks. (g)	Ort. (g)	Min. (g)
Sağ Ön	10,24	-0,02	-10,24
Sağ Orta	14,80	-0,01	-14,66
Sağ Arka	17,35	0,01	-14,07
Sol Ön	16,58	0,02	-14,99
Sol Orta	16,85	-0,01	-16,53
Sol Arka	18,51	0,01	-16,38
King-pim	2,04	0,00	-1,55

Tablo 6.5. Eşdeğer yol sinyali ivme verileri kanal özellikleri.

6.2.2. Birim şekil değişimi sinyallerine ait sonuçları

Birim şekil değişimi için; 21 adet kanal ile 7 noktadan 3 eksenli rozet gerinim ölçer ile yoldan toplanan sinyallerine ait değerler Şekil 6.34 - Şekil 6.38 ile gösterilmektedir.

Şekil 6.34. Köy yollarından toplanan birim şekil değişimi sinyalleri.

Şekil 6.36. Şehir içi yollarından toplanan birim şekil değişimi sinyalleri.

Şekil 6.37. Şehirler arası yollarından toplanan birim şekil değişimi sinyalleri.

Şekil 6.38. Off-road yollarından toplanan birim şekil değişimi sinyalleri.

Rozet tipi gerinim ölçer ile 3 eksende toplanan gerinim sinyallerinin rozet dönüşüm fonksiyonu ile farklı yol profilleri için elde edilmiş asal gerinim ve gerilme değerleri Şekil 6.39 ve Şekil 6.40'da verilmektedir. Her sonuç kanalına ait maksimum, minimum ve ortalama gerilme ve gerinim değerleri Tablo 6.6 ve Tablo 6.7'da verilmiştir.

Şekil 6.39. Farklı yol profillerine ait asal gerilme sonuçları.

Peak valley (point)

Peak valley (point)

Şekil 6.40. Farklı yol profillerine ait asal gerinim sonuçları.

				1
Kanal Acıklaması	Kanal Adı	Maks.	Ort.	Min.
italiai / gittaliasi		(MPa)	(MPa)	(MPa)
OTOBAN-ASAL GERILIM	1 . NOKTA	54	46	38
OTOBAN-ASAL GERILIM	2 . NOKTA	85	66	45
OTOBAN-ASAL GERILIM	3 . NOKTA	63	42	20
OTOBAN-ASAL GERILIM	4 . NOKTA	92	71	53
OTOBAN-ASAL GERILIM	5 . NOKTA	56	49	40
OTOBAN-ASAL GERILIM	6 . NOKTA	90	71	52
OTOBAN-ASAL GERILIM	7 . NOKTA	-30	-73	-122
SEHIRICI YOLLAR-ASAL GERILIM	1 . NOKTA	57	44	31
SEHIRICI YOLLAR-ASAL GERILIM	2 . NOKTA	102	65	30
SEHIRICI YOLLAR-ASAL GERILIM	3 . NOKTA	81	40	13
SEHIRICI YOLLAR-ASAL GERILIM	4 . NOKTA	119	80	47
SEHIRICI YOLLAR-ASAL GERILIM	5 . NOKTA	62	47	37
SEHIRICI YOLLAR-ASAL GERILIM	6 . NOKTA	110	72	39
SEHIRICI YOLLAR-ASAL GERILIM	7 . NOKTA	26	-89	-201
SEHIRLERARASI YOLLAR-ASAL GERILIM	1 . NOKTA	71	43	26
SEHIRLERARASI YOLLAR-ASAL GERILIM	2 . NOKTA	119	66	23
SEHIRLERARASI YOLLAR-ASAL GERILIM	3 . NOKTA	96	42	17
SEHIRLERARASI YOLLAR-ASAL GERILIM	4 . NOKTA	204	75	34
SEHIRLERARASI YOLLAR-ASAL GERILIM	5 . NOKTA	67	45	30
SEHIRLERARASI YOLLAR-ASAL GERILIM	6 . NOKTA	130	71	25
SEHIRLERARASI YOLLAR-ASAL GERILIM	7 . NOKTA	43	-89	-263
KOY YOLLARI-ASAL GERILIM	1 . NOKTA	149	75	29
KOY YOLLARI-ASAL GERILIM	2 . NOKTA	120	60	17
KOY YOLLARI-ASAL GERILIM	3 . NOKTA	102	37	6
KOY YOLLARI-ASAL GERILIM	4 . NOKTA	330	119	30
KOY YOLLARI-ASAL GERILIM	5 . NOKTA	64	42	25
KOY YOLLARI-ASAL GERILIM	6 . NOKTA	116	66	23
KOY YOLLARI-ASAL GERILIM	7 . NOKTA	62	-89	-363
OFFROAD YOLLAR-ASAL GERILIM	1 . NOKTA	180	107	43
OFFROAD YOLLAR-ASAL GERILIM	2 . NOKTA	331	146	-23
OFFROAD YOLLAR-ASAL GERILIM	3 . NOKTA	149	53	-27
OFFROAD YOLLAR-ASAL GERILIM	4 . NOKTA	399	167	79
OFFROAD YOLLAR-ASAL GERILIM	5 . NOKTA	92	60	38
OFFROAD YOLLAR-ASAL GERILIM	6 . NOKTA	117	72	29
OFFROAD YOLLAR-ASAL GERILIM	7 . NOKTA	108	-97	-358

Tablo 6.6. Farklı yol profillerine ait asal gerilme sonuçları.

		Maks.	Ort.	Min.
Kanal Açıklaması	Kanal Adı	(µstrain)	(µstrain)	(µstrain)
OTOBAN-ASAL GERINIM	1 . NOKTA	2,57E-04	2,22E-04	1,89E-04
OTOBAN-ASAL GERINIM	2 . NOKTA	4,70E-04	3,63E-04	2,38E-04
OTOBAN-ASAL GERINIM	3 . NOKTA	2,60E-04	1,62E-04	6,88E-05
OTOBAN-ASAL GERINIM	4 . NOKTA	4,49E-04	3,51E-04	2,62E-04
OTOBAN-ASAL GERINIM	5 . NOKTA	2,45E-04	2,13E-04	1,76E-04
OTOBAN-ASAL GERINIM	6 . NOKTA	3,79E-04	2,96E-04	1,99E-04
OTOBAN-ASAL GERINIM	7 . NOKTA	-1,72E-04	-3,75E-04	-5,98E-04
SEHIRICI YOLLAR-ASAL GERINIM	1 . NOKTA	2,79E-04	2,14E-04	1,57E-04
SEHIRICI YOLLAR-ASAL GERINIM	2 . NOKTA	5,71E-04	3,61E-04	1,57E-04
SEHIRICI YOLLAR-ASAL GERINIM	3 . NOKTA	3,32E-04	1,53E-04	5,49E-05
SEHIRICI YOLLAR-ASAL GERINIM	4 . NOKTA	5,83E-04	3,92E-04	2,37E-04
SEHIRICI YOLLAR-ASAL GERINIM	5 . NOKTA	2,74E-04	2,05E-04	1,56E-04
SEHIRICI YOLLAR-ASAL GERINIM	6 . NOKTA	4,68E-04	3,01E-04	1,49E-04
SEHIRICI YOLLAR-ASAL GERINIM	7 . NOKTA	1,27E-04	-4,45E-04	-9,75E-04
SEHIRLERARASI YOLLAR-ASAL GERINIM	1 . NOKTA	3,19E-04	2,04E-04	1,14E-04
SEHIRLERARASI YOLLAR-ASAL GERINIM	2 . NOKTA	6,47E-04	3,60E-04	1,22E-04
SEHIRLERARASI YOLLAR-ASAL GERINIM	3 . NOKTA	3,99E-04	1,61E-04	7,80E-05
SEHIRLERARASI YOLLAR-ASAL GERINIM	4 . NOKTA	9,81E-04	3,66E-04	1,71E-04
SEHIRLERARASI YOLLAR-ASAL GERINIM	5 . NOKTA	3,09E-04	1,94E-04	1,22E-04
SEHIRLERARASI YOLLAR-ASAL GERINIM	6 . NOKTA	5,49E-04	2,98E-04	1,14E-04
SEHIRLERARASI YOLLAR-ASAL GERINIM	7 . NOKTA	1,84E-04	-4,43E-04	-0,001253111
KOY YOLLARI-ASAL GERINIM	1 . NOKTA	7,11E-04	3,44E-04	1,24E-04
KOY YOLLARI-ASAL GERINIM	2 . NOKTA	6,79E-04	3,40E-04	9,41E-05
KOY YOLLARI-ASAL GERINIM	3 . NOKTA	4,42E-04	1,47E-04	3,15E-05
KOY YOLLARI-ASAL GERINIM	4 . NOKTA	0,001569418	5,83E-04	1,51E-04
KOY YOLLARI-ASAL GERINIM	5 . NOKTA	2,93E-04	1,89E-04	1,14E-04
KOY YOLLARI-ASAL GERINIM	6 . NOKTA	4,93E-04	2,78E-04	8,81E-05
KOY YOLLARI-ASAL GERINIM	7 . NOKTA	2,68E-04	-4,41E-04	-0,00172438
OFFROAD YOLLAR-ASAL GERINIM	1 . NOKTA	8,37E-04	4,90E-04	1,83E-04
OFFROAD YOLLAR-ASAL GERINIM	2 . NOKTA	0,001666042	7,31E-04	-1,24E-04
OFFROAD YOLLAR-ASAL GERINIM	3 . NOKTA	5,65E-04	1,98E-04	-1,49E-04
OFFROAD YOLLAR-ASAL GERINIM	4 . NOKTA	0,0019213	8,19E-04	4,00E-04
OFFROAD YOLLAR-ASAL GERINIM	5 . NOKTA	4,40E-04	2,60E-04	1,55E-04
OFFROAD YOLLAR-ASAL GERINIM	6 . NOKTA	5,02E-04	3,04E-04	1,33E-04
OFFROAD YOLLAR-ASAL GERINIM	7 . NOKTA	4,85E-04	-4,72E-04	-0,001686641

Tablo 6.7. Farklı yol profillerine ait asal gerinim sonuçları.

Asal gerilme sonuçları elde edilen birim şekil değişimi kanalları ile yapılan Gerilme-Ömür analizi sonuçları Tablo 6.8'de verilmektedir.

Kanal Açıklaması	Kanal Adı	Ömür	Toplam Hasar
	1 . NOKTA	Sonsuz Ömür	0
	2 . NOKTA	Sonsuz Ömür	0
ΟΤΟΡΑΝ	3 . NOKTA	Sonsuz Ömür	0
(Asal Garilmolar)	4 . NOKTA	Sonsuz Ömür	0
(Asal Gerinnelei)	5 . NOKTA	Sonsuz Ömür	0
	6 . NOKTA	Sonsuz Ömür	0
	7 . NOKTA	Sonsuz Ömür	0
	1 . NOKTA	Sonsuz Ömür	0
	2 . NOKTA	Sonsuz Ömür	0
	3 . NOKTA	Sonsuz Ömür	0
(Acal Carilmalar)	4 . NOKTA	Sonsuz Ömür	0
(Asal Gerinneler)	5 . NOKTA	Sonsuz Ömür	0
	6 . NOKTA	Sonsuz Ömür	0
	7 . NOKTA	Sonsuz Ömür	0
	1.NOKTA	Sonsuz Ömür	0
	2 . NOKTA	Sonsuz Ömür	0
	3 . NOKTA	Sonsuz Ömür	0
(Acal Carilmolar)	4 . NOKTA	Sonsuz Ömür	0
(Asal Gerinneler)	5 . NOKTA	Sonsuz Ömür	0
	6 . NOKTA	Sonsuz Ömür	0
	7.NOKTA	7,817E5 tekrar	1,28E-06
	1.NOKTA	Sonsuz Ömür	0
	2 . NOKTA	Sonsuz Ömür	0
ΚΟΎ ΥΟΙ Ι ΑΡΙ	3 . NOKTA	Sonsuz Ömür	0
(Asal Garilmalar)	4 . NOKTA	4,294E4 tekrar	2,33E-05
(Asal Gerinneler)	5 . NOKTA	Sonsuz Ömür	0
	6 . NOKTA	Sonsuz Ömür	0
	7.NOKTA	1,14E5 tekrar	8,78E-06
	1.NOKTA	Sonsuz Ömür	0
	2 . NOKTA	1,489E4 tekrar	6,72E-05
	3 . NOKTA	Sonsuz Ömür	0
(Asal Gerilmeler)	4 . NOKTA	5499 tekrar	1,82E-04
	5 . NOKTA	Sonsuz Ömür	0
	6 . NOKTA	Sonsuz Ömür	0
	7.NOKTA	9,962E4 tekrar	1,00E-05

Tablo 6.8. nCODE gerilme-ömür analizi sonuçları.

Kanal Açıklaması	Kanal Adı	Maks. Nominal Gerilme	Min. Nominal Gerilme	Ömür
	1 . NOKTA	49	36	Sonsuz Ömür
	2 . NOKTA	90	45	Sonsuz Ömür
ΟΤΟΡΑΝ	3 . NOKTA	50	13	Sonsuz Ömür
(Asal Gerinimler)	4 . NOKTA	86	50	Sonsuz Ömür
	5 . NOKTA	47	34	Sonsuz Ömür
	6 . NOKTA	72	38	Sonsuz Ömür
	7 . NOKTA	-32	-114	Sonsuz Ömür
	1 . NOKTA	53	30	Sonsuz Ömür
	2 . NOKTA	109	30	Sonsuz Ömür
	3 . NOKTA	63	10	Sonsuz Ömür
ŞEFIIRIÇI YULLAR (Asəl Gerinimler)	4 . NOKTA	111	45	Sonsuz Ömür
	5 . NOKTA	52	30	Sonsuz Ömür
	6 . NOKTA	90	28	Sonsuz Ömür
	7 . NOKTA	32	-178	Sonsuz Ömür
	1 . NOKTA	61	22	Sonsuz Ömür
	2 . NOKTA	123	22	Sonsuz Ömür
	3 . NOKTA	76	15	Sonsuz Ömür
(Asal Gerinimler)	4 . NOKTA	179	24	Sonsuz Ömür
	5 . NOKTA	59	23	Sonsuz Ömür
	6 . NOKTA	105	21	Sonsuz Ömür
	7 . NOKTA	58	-214	Sonsuz Ömür
	1 . NOKTA	135	22	Sonsuz Ömür
	2 . NOKTA	129	17	Sonsuz Ömür
	3 . NOKTA	84	6	Sonsuz Ömür
(Asal Gerinimler)	4 . NOKTA	222	-3	1,627E5 tekrar
	5 . NOKTA	56	22	Sonsuz Ömür
	6 . NOKTA	94	17	Sonsuz Ömür
	7 . NOKTA	108	-254	3,934E5 tekrar
	1 . NOKTA	156	31	Sonsuz Ömür
	2 . NOKTA	250	-81	9,14E4 tekrar
	3 . NOKTA	108	-29	Sonsuz Ömür
(Asal Gerinimler)	4 . NOKTA	267	-20	1,083E5 tekrar
	5 . NOKTA	84	30	Sonsuz Ömür
	6 . NOKTA	96	25	Sonsuz Ömür
	7 . NOKTA	136	-252	3,337E5 tekrar

Tablo 6.9. nCODE şekil değiştirme-ömür analizi sonuçları.

6.3. Çoklu Cisim Simülasyonu Sonuçları

Çoklu Cisim Simülasyonu ile elde edilen statik haldeki tekerlek reaksiyon kuvvetleri ile prototip araç üzerinden ölçülen kuvvetler Tablo 6.10 ve Şekil 6.41'de verilmektedir. Sonuçlar karşılaştırıldığında prototip araç ile simülasyon modelinin yük dağılımlarının yakın çıktığı görülmüştür.

	TAM YÜKLEME SONUCU AĞIRLIK DAĞILIMI		
	MSC ADAM (Newton)	PROTOTIP (Newton)	
King-pim	114460	117100	
1. Dingil- Sol Teker (F ₁)	35655	35241	
1. Dingil- Sol Teker (F ₂)	35608	35841	
2. Dingil- Sağ Teker (F ₃)	32445	33210	
2. Dingil- Sol Teker (F ₄)	32398	32710	
3. Dingil- Sağ Teker (F ₅)	29190	28185	
3. Dingil- Sol Teker (F ₆)	29144	28185	

Tablo 6.10. Statik yükleme durumu; prototip araç ve çoklu cisim simülasyonu.

Şekil 6.41. MSC ADAMS statik yükleme durumu için teker reaksiyon kuvvetleri.

Yoldan toplanan sinyaller işlenerek elde edilen eşdeğer yol profili sinyalleri; Çoklu Cisim Simülasyonunda Tablo 6,11'de verilmekte olan SEM ait yapısal modların tahrik edilmesinde kullanılmıştır.

7 -Mod Frekansı:	12,81	50 - Mod Frekansı:	290,1	93 - Mod Frekansı:	1983
8 -Mod Frekansı:	22,27	51 - Mod Frekansı:	310,3	94 - Mod Frekansı:	2015
9 -Mod Frekansı:	24,06	52 - Mod Frekansı:	348,9	95 -Mod Frekansı:	2032
10 -Mod Frekansı:	31,92	53 - Mod Frekansı:	367	96 - Mod Frekansı:	2051
11 -Mod Frekansı:	33,53	54 - Mod Frekansı:	400,1	97 - Mod Frekansı:	2075
12 -Mod Frekansı:	37,3	55 - Mod Frekansı:	401,1	98 - Mod Frekansı:	2081
13 -Mod Frekansı:	40,34	56 - Mod Frekansı:	424,5	99 - Mod Frekansı:	2388
14 -Mod Frekansı:	45,33	57 - Mod Frekansı:	455,3	100 - Mod Frekansı:	2402
15 -Mod Frekansı:	46,27	58 - Mod Frekansı:	479,8	101 - Mod Frekansı:	2956
16 -Mod Frekansı:	47,4	59 - Mod Frekansı:	524,5	102 - Mod Frekansı:	2992
17 -Mod Frekansı:	49,27	60 - Mod Frekansı:	530	103 - Mod Frekansı:	3040
18 -Mod Frekansı:	49,6	61 - Mod Frekansı:	538,8	104 - Mod Frekansı:	3201
19 -Mod Frekansı:	49,79	62 - Mod Frekansı:	583,3	105 - Mod Frekansı:	3319
20 -Mod Frekansı:	50,77	63 - Mod Frekansı:	605,4	106 - Mod Frekansı:	3332
21 - Mod Frekansı:	52,58	64 - Mod Frekansı:	643,1	107 - Mod Frekansı:	3400
22 - Mod Frekansı:	54,57	65 - Mod Frekansı:	651,4	108 - Mod Frekansı:	4118
23 - Mod Frekansı:	61,43	66 - Mod Frekansı:	677,1	109 - Mod Frekansı:	4356
24 - Mod Frekansı:	76,97	67 - Mod Frekansı:	707,3	110 - Mod Frekansı:	4638
25 - Mod Frekansı:	83,41	68 - Mod Frekansı:	708,3	111 - Mod Frekansı:	4643
26 - Mod Frekansı:	93,41	69 - Mod Frekansı:	738,6	112 - Mod Frekansı:	4680
27 - Mod Frekansı:	94,06	70 - Mod Frekansı:	760,1	113 - Mod Frekansı:	4685
28 - Mod Frekansı:	97,79	71 - Mod Frekansı:	795 <i>,</i> 8	114 - Mod Frekansı:	4692
29 - Mod Frekansı:	101,2	72 - Mod Frekansı:	848,1	115 - Mod Frekansı:	4914
30 - Mod Frekansı:	106,4	73 - Mod Frekansı:	865,7	116 - Mod Frekansı:	5039
31 - Mod Frekansı:	121,2	74 - Mod Frekansı:	871,9	117 - Mod Frekansı:	5391
32 - Mod Frekansı:	122,7	75 - Mod Frekansı:	900,1	118 - Mod Frekansı:	5443
33 - Mod Frekansı:	127,4	76 - Mod Frekansı:	932,6	119 - Mod Frekansı:	5594
34 - Mod Frekansı:	137,6	77 - Mod Frekansı:	933,9	120 - Mod Frekansı:	6691
35 - Mod Frekansı:	140,9	78 - Mod Frekansı:	957 <i>,</i> 9	121 - Mod Frekansı:	6755
36 - Mod Frekansı:	143,9	79 - Mod Frekansı:	991,4	122 - Mod Frekansı:	6807
37 - Mod Frekansı:	145,9	80 - Mod Frekansı:	1015	123 - Mod Frekansı:	6891
38 - Mod Frekansı:	160,9	81 - Mod Frekansı:	1070	124 - Mod Frekansı:	6916
39 - Mod Frekansı:	163,5	82 -Mod Frekansı:	1178	125 - Mod Frekansı:	7003
40 - Mod Frekansı:	171,8	83 - Mod Frekansı:	1256	126 - Mod Frekansı:	7014
41 - Mod Frekansı:	196,1	84 - Mod Frekansı:	1285	127 - Mod Frekansı:	7093
42 - Mod Frekansı:	202,3	85 - Mod Frekansı:	1393	128 - Mod Frekansı:	7212
43 - Mod Frekansı:	209,4	86 - Mod Frekansı:	1415	129 - Mod Frekansı:	9440
44 -Mod Frekansı:	210,5	87 - Mod Frekansı:	1416	130 - Mod Frekansı:	9480
45 - Mod Frekansı:	220,6	88 - Mod Frekansı:	1653	131 - Mod Frekansı:	9875

Tablo 6.11. Sonlu elemanlar modeli titreşim analizi mod-frekans sonuçları.

Çoklu Cisim Simülasyon modeli ile eşdeğer yol profili sinyallerinin kullanıldığı analizler sonucunda yapıya ait modların tahrik değerlerinin elde edildiği modal koordinat sonuçları Şekil 6.42 - Şekil 6.44'de grafiksel gösterimle ve Tablo 6.12 ve Tablo 6.13 ve Tablo 6.14'de sayısal olarak verilmektedir.

Şekil 6.42. Modal koordinat sonuçları grafik gösterim.

Şekil 6.43. Modal koordinat sonuçları grafik gösterim (Devamı).

Şekil 6.44. Modal koordinat sonuçları grafik gösterim (Devamı).

Kanal Adı	Maks. (mm/mm)	Ort. (mm/mm)	Min. (mm/mm)	Kanal Adı	Maks. (mm/mm)	Ort. (mm/mm)	Min. (mm/mm)
Mode 1 Q	0	0	0	Mode 14 Q	0,42255	0,00076	-0,39987
Mode 2 Q	0	0	0	Mode 15 Q	0,96353	0,27847	-0,31842
Mode 3 Q	0	0	0	Mode 16 Q	0,96714	0,30368	-0,24339
Mode 4 Q	0	0	0	Mode 17 Q	0,77147	0,24387	-0,14963
Mode 5 Q	0	0	0	Mode 18 Q	0,10634	-0,02744	-0,15444
Mode 6 Q	0	0	0	Mode 19 Q	0,04513	-0,02656	-0,09874
Mode 7 Q	1,71963	0,01384	-1,60291	Mode 20 Q	0,14547	0,04256	-0,02473
Mode 8 Q	1,29188	0,01284	-1,12396	Mode 21 Q	0,09583	-0,00129	-0,08400
Mode 9 Q	9,57273	-0,75661	-8,39557	Mode 22 Q	0,62137	-0,00422	-0,49644
Mode 10 Q	0,25189	-0,01618	-0,26988	Mode 23 Q	0,34822	0,00176	-0,33010
Mode 11 Q	0,24464	0,01174	-0,22939	Mode 24 Q	0,09878	0,03878	-0,02261
Mode 12 Q	0,77028	0,00703	-0,61821	Mode 25 Q	0,14912	-0,00199	-0,17690
Mode 13 Q	0,47138	-0,00697	-0,48022	Mode 26 Q	0,39893	-0,09049	-0,61010

Tablo 6.12. Modal koordinat sonuçları.

Kanal Adı	Maks. (mm/mm)	Ort. (mm/mm)	Min. (mm/mm)		Kanal Adı	Maks. (mm/mm)	Ort. (mm/mm)	Min. (mm/mm)
Mode 27 Q	0,51015	-0,55177	-1,84973		Mode 67 Q	0,01708	-0,00012	-0,01841
Mode 28 Q	0,69544	-0,03834	-0,71321		Mode 68 Q	0,00711	0,00093	-0,00661
Mode 29 Q	3,15583	-0,41003	-4,47313		Mode 69 Q	0,01088	0,00031	-0,01030
Mode 30 Q	0,14569	-0,00192	-0,21352		Mode 70 Q	0,01383	-0,00003	-0,01480
Mode 31 Q	0,20533	-0,02751	-0,26184		Mode 71 Q	0,00734	0,00019	-0,00583
Mode 32 Q	0,25140	0,01373	-0,24102		Mode 72 Q	0,00803	0,00025	-0,00735
Mode 33 Q	0,16982	-0,00030	-0,19535		Mode 73 Q	0,01427	0,00347	-0,00582
Mode 34 Q	0,27951	0,02792	-0,27207		Mode 74 Q	0,01193	0,00041	-0,01388
Mode 35 Q	0,25423	0,00372	-0,20984		Mode 75 Q	0,00773	0,00014	-0,00883
Mode 36 Q	0,23676	-0,02238	-0,26806		Mode 76 Q	0,00481	0,00027	-0,00328
Mode 37 Q	0,25002	-0,00210	-0,26368	ļ	Mode 77 Q	0,00303	-0,00109	-0,00572
Mode 38 Q	0,68066	-0,03548	-0,66297	ļ	Mode 78 Q	0,01059	0,00127	-0,00576
Mode 39 Q	0,27222	-0,00661	-0,29310		Mode 79 Q	0,00531	-0,00009	-0,00445
Mode 40 Q	0,03384	0,00190	-0,02518	Î.	Mode 80 Q	0,00558	0,00005	-0,00566
Mode 41 Q	0,05965	-0,00064	-0,09348		Mode 81 Q	0,00334	-0,00002	-0,00309
Mode 42 Q	0,62487	0,04743	-0,54054	Î.	Mode 82 Q	0,01769	0,00032	-0,01703
Mode 43 Q	0,15277	0,02114	-0,11265	Î.	Mode 83 Q	0,00548	-0,00074	-0,00647
Mode 44 Q	0,09357	-0,00373	-0,08298	Î.	Mode 84 Q	0,00208	-0,00001	-0,00306
Mode 45 Q	0,13049	-0,00195	-0,13725		Mode 85 Q	0,00386	-0,00064	-0,00573
Mode 46 Q	0,05563	0,00000	-0,06816		Mode 86 Q	0,00288	-0,00028	-0,00289
Mode 47 Q	0,03924	0,00012	-0,03643		Mode 87 Q	0,00388	-0,00045	-0,00473
Mode 48 Q	0,02272	0,00747	-0,00867		Mode 88 Q	0,00269	-0,00021	-0,00423
Mode 49 Q	0,00334	-0,01048	-0,02269		Mode 89 Q	0,00199	-0,00003	-0,00234
Mode 50 Q	0,03574	0,00045	-0,02720		Mode 90 Q	0,00247	0,00001	-0,00227
Mode 51 Q	0,01241	0,00012	-0,00998		Mode 91 Q	0,01171	-0,00051	-0,01586
Mode 52 Q	0,04045	0,00033	-0,03971		Mode 92 Q	0,00193	-0,00002	-0,00281
Mode 53 Q	0,06298	-0,00150	-0,07327		Mode 93 Q	0,00157	0,00001	-0,00191
Mode 54 Q	0,02504	-0,00075	-0,02754		Mode 94 Q	0,00762	-0,00007	-0,00723
Mode 55 Q	0,11299	0,01329	-0,08695		Mode 95 Q	0,00225	-0,00001	-0,00258
Mode 56 Q	0,05840	0,00163	-0,05656		Mode 96 Q	0,00948	0,00012	-0,00761
Mode 57 Q	0,02736	0,00378	-0,02107		Mode 97 Q	0,00234	-0,00005	-0,00261
Mode 58 Q	0,02000	-0,00043	-0,02181		Mode 98 Q	0,00628	-0,00001	-0,00481
Mode 59 Q	0,01237	0,00005	-0,01266		Mode 99 Q	0,00252	0,00004	-0,00290
Mode 60 Q	0,01035	0,00029	-0,00991		Mode 100 Q	0,00193	0,00000	-0,00232
Mode 61 Q	0,03123	-0,00015	-0,01810		Mode 101 Q	0,00138	0,00002	-0,00098
Mode 62 Q	0,01266	-0,00144	-0,02189	ļ	Mode 102 Q	0,00036	0,00001	-0,00031
Mode 63 Q	0,01232	-0,00450	-0,02395		Mode 103 Q	0,00096	-0,00002	-0,00105
Mode 64 Q	0,00520	-0,00042	-0,00700		Mode 104 Q	0,00207	0,00001	-0,00193
Mode 65 Q	0,00721	-0,00023	-0,00800		Mode 105 Q	0,00059	-0,00002	-0,00064
Mode 66 Q	0,01076	-0,00347	-0,01871		Mode 106 Q	0,00073	-0,00006	-0,00092

Tablo 6.13. Modal koordinat sonuçları (Devamı).

Kanal Adı	Maks. (mm/mm)	Ort. (mm/mm)	Min. (mm/mm)	Kanal Adı	Maks. (mm/mm)	Ort. (mm/mm)	Min. (mm/mm)
Mode 107 Q	0,00155	0,00003	-0,00094	Mode 121 Q	0,00044	0,00000	-0,00037
Mode 108 Q	0,00046	0,00001	-0,00048	Mode 122 Q	0,00045	0,00007	-0,00043
Mode 109 Q	0,00029	-0,00003	-0,00031	Mode 123 Q	0,00041	-0,00001	-0,00039
Mode 110 Q	0,00071	-0,00002	-0,00069	Mode 124 Q	0,00043	0,00000	-0,00058
Mode 111 Q	0,00051	-0,00003	-0,00083	Mode 125 Q	0,00054	0,00002	-0,00034
Mode 112 Q	0,00063	-0,00014	-0,00103	Mode 126 Q	0,00073	0,00009	-0,00053
Mode 113 Q	0,00057	0,00000	-0,00060	Mode 127 Q	0,00033	0,00001	-0,00034
Mode 114 Q	0,00046	0,00000	-0,00055	Mode 128 Q	0,00034	0,00000	-0,00036
Mode 115 Q	0,00010	0,00000	-0,00013	Mode 129 Q	0,00011	0,00000	-0,00013
Mode 116 Q	0,00011	0,00000	-0,00011	Mode 130 Q	0,00008	0,00001	-0,00006
Mode 117 Q	0,00043	-0,00018	-0,00072	Mode 131 Q	0,00008	0,00001	-0,00008
Mode 118 Q	0,00037	-0,00011	-0,00063	Mode 132 Q	0,00009	0,00001	-0,00006
Mode 119 Q	0,00058	0,00012	-0,00032	Mode 133 Q	0,00009	-0,00002	-0,00012
Mode 120 Q	0,00030	0,00001	-0,00033	Mode 134 Q	0,00007	0,00000	-0,00007
Mode 89 Q	0,00199	-0,00003	-0,00234	Mode 121 Q	0,00044	0,00000	-0,00037
Mode 90 Q	0,00247	0,00001	-0,00227	Mode 122 Q	0,00045	0,00007	-0,00043
Mode 91 Q	0,01171	-0,00051	-0,01586	Mode 123 Q	0,00041	-0,00001	-0,00039
Mode 92 Q	0,00193	-0,00002	-0,00281	Mode 124 Q	0,00043	0,00000	-0,00058
Mode 93 Q	0,00157	0,00001	-0,00191	Mode 125 Q	0,00054	0,00002	-0,00034
Mode 94 Q	0,00762	-0,00007	-0,00723	Mode 126 Q	0,00073	0,00009	-0,00053
Mode 95 Q	0,00225	-0,00001	-0,00258	Mode 127 Q	0,00033	0,00001	-0,00034
Mode 96 Q	0,00948	0,00012	-0,00761	Mode 128 Q	0,00034	0,00000	-0,00036
Mode 97 Q	0,00234	-0,00005	-0,00261	Mode 129 Q	0,00011	0,00000	-0,00013
Mode 98 Q	0,00628	-0,00001	-0,00481	Mode 130 Q	0,00008	0,00001	-0,00006
Mode 99 Q	0,00252	0,00004	-0,00290	Mode 131 Q	0,00008	0,00001	-0,00008
Mode 100 Q	0,00193	0,00000	-0,00232	Mode 132 Q	0,00009	0,00001	-0,00006
Mode 101 Q	0,00138	0,00002	-0,00098	Mode 133 Q	0,00009	-0,00002	-0,00012
Mode 102 Q	0,00036	0,00001	-0,00031	Mode 134 Q	0,00007	0,00000	-0,00007

Tablo 6.14. Modal koordinat sonuçları (Devamı).

6.4. Yorulma Simülasyonu Sonuçları

Titreşim etkisi altında yapı üzerindeki yorulma etkisinin incelenmesi için farklı frekans aralıklarında simülasyonlar yapılarak sonuçları incelenmiş ve yapısal olarak kritik olabileceği düşünülen bölgeler elde edilmiştir. Yorulma Simülasyonu çalışmaları ile elde edile 5 farklı frekans aralığına ait analiz sonuçları bu bölümde verilmektedir.

6.4.1. 1. Simülasyon sonuçları (12-50 Hz)

 Simülasyonda 12-50 Hz aralığı kullanılarak yapının 7. Modu ile 20. Mod aralığı tahrik edilerek elde edilmiştir. 12-50 Hz arası genel olarak yol sinyalleri ile tahrik edildiği düşünülen frekans aralığını kapsamaktadır. Simülasyon sonuçları Şekil 6.45
Şekil 6.52'de verilmektedir.

Şekil 6.45. nCODE - 1. Simülasyonu sonucu - genel görünüş.

Şekil 6.46. nCODE - 1. Simülasyonu sonucu - ön bölge görünüş.

12-50 Hz arası simülasyon sonuçları incelendiğinde aracın tanker bağlantı konsolları üzerindeki kritik bölgeler olduğu Şekil 6.47 ve Şekil 6.48'de görülmektedir. Tanker üst yapısının aşırı rijit bir yapı olması nedeniyle şasi bölgesinden gelen kuvvetlere direnç göstermesi nedeniyle bu bölgelerde yorulma olması muhtemeldir.

Şekil 6.47. nCODE - 1. Simülasyonu sonucu - arka bölge görünüş.

Şekil 6.48. nCODE - 1. Simülasyonu sonucu - konsol bölgesi görünüş.

Ayrıca aracın tampon bölgesinde de kritik bölgeler meydana geldiği görülmüştür (Şekil 6.49). Bu bölgelerin gerçekten tahrik edilip edilmediğini anlamanın en kesin yolu frekans aralığını daraltarak yeni sonuçlar elde etmektedir. Tampon bölgesindeki sonuçları kesinleştirmek için 2. ve 3. Simülasyonlar icra edilmiştir.

Şekil 6.49. nCODE - 1. Simülasyonu sonucu - tampon bölgesi görünüş.

Şekil 6.50'de gösterildiği üzere aracın hava körüklerinin bağlantı braketlerinin destek sacları üzerinde de kritik bölgeler meydana geldiği görülmüştür.

Şekil 6.50. nCODE - 1. Simülasyonu sonucu - körük bölgesi görünüş.

Şekil 6.51'de konsol üzerinde meydana gelen kritik bölgeler daha ayrıntılı şekilde gösterilmiştir. Bu bölgeler araç üzerinde meydana gelen burulma ve frenleme etkileri ile yüksek gerilmelere çıkabildiği statik olarak yapılan analizler ile tespit edilmişti.

Şekil 6.51. nCODE - 1. Simülasyonu sonucu - körük bölgesi görünüş.

Şekil 6.52'de şasi ile dingil arasındaki bağlantısın sağlandığı makas kulakları üzerindeki kritik bölgeler görülmektedir.

Şekil 6.52. nCODE - 1. Simülasyonu sonucu - makas kulağı bölgesi görünüş.

6.4.2. 2. Simülasyon sonuçları (30-50 Hz)

2. Simülasyonda frekans aralığı 30-50 Hz olarak daraltılmış ve yapının 11. Modu ile 20. Mod aralığı kullanılmıştır. Bu sayede 1. Simülasyonda olduğu halde gerçekte tahrik olmayan modlar devre dışı bırakılarak asıl tahrik olan modların tespit edilmesi kolaylaşmaktadır. Simülasyon sonuçları Şekil 6.53 ve Şekil 6.54'de verilmektedir.

Şekil 6.53. nCODE - 2. Simülasyonu sonucu - genel görünüş.

Tampon bölgesinde elde edilen kritik bölgelerin 30-50 Hz aralığında olduğu Şekil 6.54 ile gösterilmektedir. Yoldan toplanan sinyallerin frekans analizleri sonucunda baskın frekansların 12-20 Hz arasında baskın olduğu bilinmektedir. Bu nedenle tampon bölgesinde meydana gelebilecek olası bir yorulma etkisinin mevcut yol sinyalleri ile olması çok mümkün değildir.

Şekil 6.54. nCODE - 2. Simülasyonu sonucu - tampon bölgesi görünüş.

6.4.3. 3. Simülasyon sonuçları (40-50 Hz)

3. Simülasyonda 40-50 Hz aralığı kullanılarak yapının 13. Modu ile 20. Mod aralığı tahrik edilerek elde edilmiştir. Belirlenen kritik bölgeler; yol sinyallerin baskın olduğu 12-20 Hz aralığında olmayan konsol şasi bağlantı bölgesindedir. Simülasyon sonuçları Şekil 6.55 ve Şekil 6.56'de verilmektedir.

Şekil 6.55. nCODE - 3. Simülasyonu sonucu - genel görünüş.

Şekil 6.56. nCODE - 3. Simülasyonu sonucu - genel görünüş.

6.4.4. 4. Simülasyon sonuçları (12-10110 Hz)

Yapıdaki yüksek frekanslı modlar sönümlenerek yutulduğu için hesaplamalara dahil edilmesi hatalı sonuçlara sebep olmaktadır. 4. Simülasyonda 12-10110 Hz frekans aralığı kullanılarak yapının 7. Modu ile 134. Mod aralığı tahrik edilerek tüm modların yol sinyalleri ile tahrik edildiği kabul edilerek analiz yapılmıştır. Bu sayede tüm frekansların hata etkisi görülmeye çalışılmıştır. Simülasyon sonuçları Şekil 6.57-Şekil 6.62'de verilmektedir.

Şekil 6.57. nCODE - 4. Simülasyonu sonucu - genel görünüş.

Simülasyon sonuçları incelendiğinde araç üzerinde gerçekçi olamayacak şekilde hasarlı bölgelerin oluştuğu, şekil 6.58'de aracın ön kin-pim bölgesinin tamamen yorulma hasarına uğradığı görülmektedir.

Şekil 6.58. nCODE - 4. Simülasyonu sonucu - ön bölge görünüş.

Şekil 6.59. nCODE - 4. Simülasyonu sonucu – konsol bölgesi görünüş.

Şekil 6.60 ve Şekil 6.61'de süspansiyon körük bağlantı sacı destek braketinin boydan boya yorulma çatlamasına uğradığı görülmektedir. Bu noktalarda oluşan hasarlar da yüksek frekanslı etkiler altında oluşan ve gerçekçi olmayan hasarları göstermektedir.

Şekil 6.60. nCODE - 4. Simülasyonu sonucu – dingil bölgesi görünüş.

Şekil 6.61. nCODE - 4. Simülasyonu sonucu – arka bölge görünüş.

Şekil 6.62'de makas kulağı destek sacı bağlantı noktasında kritik bölgeler olduğu görülmektedir.

Şekil 6.62. nCODE - 4. Simülasyonu sonucu - makas kulağı bölgesi görünüş.

6.4.5. 5. Simülasyon sonuçları (12-10110 Hz)

4. Simülasyon ile elde edilen sonuçlar gerilme-ömür analizi yaklaşımı ile yapılmıştır. Sonuçların gerinim-ömür olarak etkisinin incelenmesi amacıyla 5. simülasyonda 12-10110 Hz frekans aralığı gerinim-ömür analizi ile yapının 7. Modu ile 134. Mod aralığının tahrik edilmesi ile elde edilmiştir. Simülasyon sonuçları Şekil 6.63 - Şekil 6.67'de verilmektedir.

Şekil 6.63. nCODE - 5. Simülasyonu sonucu - genel görünüş.

Şekil 6.64. nCODE - 5. Simülasyonu sonucu - konsol bölgesi görünüş.

Gerinim-ömür analizi kullanılarak yapılan bu simülasyonda elde edilen kritik bölgelerin, 4. simülasyon sonuçları ile elde edilen bölgelerden farklı olmadığı görülmüştür. Sadece yorulma yaklaşımının değişmesi kritik bölgelerin ömür tekrar değerlerini değiştirmiştir.

Şekil 6.65. nCODE - 5. Simülasyonu sonucu – dingil bölgesi görünüş.

Şekil 6.66. nCODE - 5. Simülasyonu sonucu – plate bölgesi görünüş.

Şekil 6.67'de şasi ön bölgesinde meydana gelen hasar miktarı görülmektedir. Hasar bölgelerinin 4. Simülasyon sonuçları ile benzer olduğu görülmektedir.

Şekil 6.67. nCODE - 5. Simülasyonu sonucu – ön bölge görünüş.
BÖLÜM 7. TARTIŞMA VE ÖNERİLER

Türkiye şartlarında; yarı römork akaryakıt tankerinin şasisinin araç dayanımı açısından incelenmesi amacıyla yapılan deneysel ve bilgisayar destekli çalışmalar sonucunda; farklı yol tiplerinin yorma etkilerinin karşılaştırılması ve şasi üzerindeki etkilerinin dinamik olarak incelenmesine imkân sağlanmıştır.

Çalışmanın ilk adımında, tasarlanan aracın bilgisayar modeli kullanılarak elde edilen SEM ile yapılan, yer çekimi ivmesi, frenleme ivmesi, çukura düşme, tümsek geçme ve burkulma gibi birçok farklı senaryoyu kapsayan analizler yapılmış ve Bölüm 6.1'de sonuçları verilmiştir. Bu sonuçlar incelenerek modelin tasarımının ön doğrulaması statik şartlar için tamamlanmıştır. Analizlerde uygulanan bazı senaryolar gerçek hayatta olması çok muhtemel olmayan, modelin üzerindeki kritik bölgelerin daha iyi belirlenebilmesi amacıyla yapılmış senaryolardır. Statik analizlerin yanı sıra yapılan doğal frekans analizleri sonucunda yapının titreşim etkisi altındaki davranışı incelenmiş ve yapının ilk 20 modunun 7-60 Hz arasında olduğu Bölüm 6.1.6'da verilen sonuçlar incelenerek görülmüştür. Otomotiv sektöründe yapılan birçok çalışmadan bilindiği üzere yoldan gelen sinyallerin 0-50 Hz arasında etkili olduğu düşünüldüğünde, araç modelinin dinamik etkilere maruz kalacağı ve dinamik etkilerin aracın yorulma dayanımı üzerinde etkili olacağı sonucuna varılmıştır. Bu durum statik analizlerin yanında dinamik analizlerinde gerekliliğini getirmiştir.

Araç modelinin statik analizlerle kabul görmüş tasarımı ile bir prototip araç üretilerek hem statik testlerin gerçek şartlarda yapılması, ayrıca dinamik analiz çalışmaları için gerekli olan ivme ve birim şekil değişimi verilerin alınması sağlanmıştır. Yapılan statik analizler ile elde edilen kritik noktalar, bir sonraki çalışma olan yol verilerin toplanması için ölçüm bölgelerinin tespitinde yol göstermiştir. EK-A'da araç modeli üzerinde statik analizler sonucunda, araç enstrümantasyon çalışmaları için belirlenen 7 adet kritik noktalar verilmektedir.

Prototip arac ile 5 farklı yol profilinden toplanan ivme ve birim sekil değisimi sinyalleri yardımıyla, hem yolların göreceli yorma etkileri hem de araç şasisi üzerinde belirlenen kritik noktalardaki yorma etkileri Bölüm 6.2'de verilen sonuçlar doğrultusunda incelenmiştir. Toplanan ivme sinyallerinin frekans spektrum analizi yapıldığında 12-20 Hz arasında sinyallerin baskın olduğu görülmüştür. Aracın doğal frekansları ile yoldan toplanan sinyallerin frekansları çakışması, araç üzerinde dinamik faktörlerin etkili olmasını sağlamaktadır. Bu durum, doğal frekans analizleri dinamik ile kararlaştırılan analizin gerekliliği sonucunu bir kez daha doğrulamaktadır.

Yoldan toplanan sinyaller yardımıyla farklı yolların yorma etkilerine ait Bölüm 6.2'de verilen, ivme ve birim şekil değişimi değerleri ile yapılan yorulma analizlerine ait Tablo 6.8 ve Tablo 6.9 incelendiğinde, yorulma etkilerinin ölçüm yapılan 2, 4, 7 numaralı noktalarda Off-road ve köy yolları ile yapılan testlerde sonlu ömür elde edilmektedir. İvme ve birim şekil değişim sonuçları incelendiğinde Off-road ve köyyolları ile yapılan testlerde en yüksek yorma etkisinin oluştuğu görülmektedir. Yoldan toplanan sinyaller ile yol profillerinin göreceli olarak yorma etkilerinin yapılması sonraki çalışmalarda veri miktarını kısaltmak adına oldukça faydalı olmaktadır. Aracın dinamik analizleri için bilgisayar simülasyonlarında kullanılacak sinyallerin kısaltılması ve eşdeğer bir yorulma etkisi elde etmek amacıyla, yoldan toplanan ivme sinyalleri kullanılarak eşdeğer bir yol profili elde edilmiştir. Elde edilen eşdeğer yol profilinin, toplam yol profillerini her frekans bandı için karşılaması çok önemlidir. Dinamik simülasyonların frekans tabanında işlem yapması nedeniyle eksik veya tam karsılanmayan frekans bantları analizlerde hata veya sapmalara neden olabilmektedir. Eş değer yol profilinin uygunluğu için yapılana analizler sonucunda 10⁶ tekrar sonucunda aracın toplam ömrünü simüle ettiği Tablo 6.4'de verilen sonuçlar ile doğrulanmıştır.

Dinamik simülasyon çalışmaları öncesinde yük dağılımın doğrulanması amacıyla prototip üretilen araç modelinin tam dolu ağırlık dağılımı ve dinamik simülasyon

modeli ağırlık dağılımı Tablo 6.10'da verilen sonuçlarla doğrulanmıştır. Doğrulama sonrasında eş değer yol profilleri ile yapılan simülasyon çalışmaları sonucunda elde edilen ve Tablo 6.11'de verilen 134 yapısal moda ait modal koordinat sonuçları incelendiğinde 16-30 Hz arasındaki sonuçların yüksek değerlere sahip olduğu görülmektedir. Daha yüksek frekans değerine sahip modlar, gerçekte olması pek muhtemel olmayan modlar olup sadece yerel gerilme ve birim şekil değişimi değerlerinin daha doğru şekilde elde edilmesi için kullanılmıştır.

Araç şasisi üzerinde; yol profillerine bağlı olarak yorulma etkilerinin incelenmesi amacıyla elde edilen sonuçlar nCODE Design-life yazılımı yardımıyla birbirine entegre edilerek farklı frekans bantlarında analizler yapılmıştır. Frekans bantları seçilirken yol sinyalleri ile yapı modlarının tahrik frekansları dikkate alınmıştır. Şekil 7.1'de verilen yol sinyalleri ile yapı modlarının frekans karşılaştırılması incelendiğinde 12-20 Hz arasının baskın olduğu görülmektedir. Bu frekans bantları yoldan toplanan sinyaller ile oluşturulduğu için gerçek hayatta araca etki edecek frekans bantları olarak düşünülmektedir. Daha yüksek frekanslı modlar, yerel gerilmelerin daha doğru elde edilmesi için faydalı olmaktadırlar. Bu sonuçlar doğrultusunda yapılan simülasyonlarda bu aralık özellikle dikkate alınmıştır.

Şekil 7.1. Yol Sinyalleri ve Yapı Mod frekansları Karşılaştırılması.

Yapılan 5 farklı simülasyon ile 12 Hz ile 10110 Hz aralığında 12-50 Hz, 30-50 Hz, 40- 50 Hz, 12- 10110 Hz bantlarında analizler yapılmış ve sonuçları incelenmiştir. 12-50 Hz arasında yapılan 1. Simülasyon sonucunda elde edilen Bölüm 6.4.1'de gösterilen sonuclar incelendiğinde kritik hasar bölgelerinin içinde tampon bölgesinin de olduğu görülmektedir. Modelin yapısal modları incelendiğinde tampon bölgesini tahrik eden modların 8, 9, 12, 18 numaralı modlar olduğu ve bu modları 30-50 Hz aralığında olması nedeniyle tampon bölgesinde kritik hasarlanma meydana geldiği görülmüştür. Bu sonucu kesinleştirmek için 2. ve 3. Simülasyonlar ile 30-50 Hz ve 40-50 Hz bant aralığında yapılarak Sekil 6.54'de gösterilen tampon bölgesinin hasar değerinin yüksek çıktığı görülmüştür. Araca yoldan etki eden sinyallerin baskın frekansının 12-20 Hz olması nedeniyle tampon bölgesinin kritik olmadığına karar verilmiştir. Şasi üzerinde diğer tespit edilen konsol bölgeleri, dingil bölgeleri ve şasi önündeki bölgeler kritik bölge olarak ön görülmüştür. Kritik bölgelerin daha ayrıntılı olarak analiz edilebilmesi ve yerel gerilme ve birim şekil değişimlerinin daha yüksek doğrulukta hesaplanabilmesi amacıyla yüksek frekanslı modların da analizlere dahil edildiği 4. ve 5. Simülasyonlar yapılmıştır. Yerel gerilmelerin ve birim şekil değişimlerinin daha doğru elde edilmesi nedeniyle 1. Simülasyonda elde edilen kritik bölgelerin daha net şekilde incelenmesine olanak sağlanmıştır.

Sonuç olarak; yapılan çalışmalar ile bir ticari yarı römork akaryakıt tankeri şasisi üzerindeki farklı yol profillerinin yorma etkilerinin incelenmesi sağlanmıştır.

Elde edilen sonuçlar daha da uyumla hale getirilmesi ve bundan sonra yapılacak çalışmalara daha doğru sonuçlar aktarılması için bazı ek çalışmalar yapılması gerekmektedir. Bu çalışmalar, simülasyonların doğrulanması ve seri üretim öncesi son onayların verilmesi için gerekli olan dayanım ve kabul testleridir. Dayanım testleri, özel hızlandırılmış test pistlerinde veya laboratuvar ortamında hidrolik yol simülatörlerinde yapılmalıdır. Yapılacak olan bu testlerde aracın kritik bölgeleri enstrümantal edilmesi ve elde edilen sonuçlar ile simülasyon modellerine geri besleme sağlanmalıdır. Bu sayede simülasyon modelleri iyileştirilerek gerçek testlere olan ihtiyaçlar azaltılmalıdır.

KAYNAKLAR

- [1] http://romorkureticileri.com/TR/Makale/Romork_Nedir_-1, Erişim Tarihi: 07.04.2011.
- [2] TORLUN, F., Yük Taşıtlarının Taşıyıcı Aksamlarının Gerçek Yol Yükler Altında Analiz Edilmesi, Yüksel Lisans Tezi, Balıkesir Üniversitesi, Balıkesir, 2007.
- [3] YOLAÇ D., Bir Yolcu Otobüsünün Farklı Yol Kategorilerine Göre Ömrünün Hesaplanması, Yüksel Lisans Tezi, İstanbul Teknik Üniversitesi, 2012.
- [4] EREKE, M., Taşıtlarda Ömür Testleri Ders Notları, İstanbul Teknik Üniversitesi, Ders Sunum 1-8, 2010.
- [5] AKARSU C., Bir Ticari Kamyon Şasisine Bağlı Parçaların Titreşim Kaynaklı Yorulma Analizi, Yüksel Lisans Tezi, İstanbul Teknik Üniversitesi, 2012.
- [6] YAY, K., EREKE, M., Hızlandırılmış Taşıt Ömür Testlerinde Yol Verisi Kullanımına Yeni Bir Yaklaşım, İTÜ Dergisi, Cilt:2, Sayı:5, 61-73, 2003.
- [7] http://www.mira.co.uk/MIRA/media/MIRA/our-services/capabilities/ proving-ground/test-tracks/test-tracks-310.jpg, Erişim Tarihi: 03.04.2014.
- [8] http://www.toyota-motorsport.com/slideshowpro/albums/album-20/lg/Full-Car_Road_Simulator3.jpg, Erişim Tarihi: 03.04.2014.
- [9] http://www.cargobull.com/files/com/filemanager_files//Pressemeldungen/ 2013/700-SKI_Sicherheitstrailer/Road_Simulator_Cargobull_Validation_ Center.jpg, Erişim Tarihi: 03.04.2014.
- [10] http://www.otam.com.tr/DinamikDoc/doc05_10_2012_11_50_23DAYAN IM&OMUR.pdf, Erişim Tarihi: 07.04.2014.
- [11] http://www.turkcadcam.net/rapor/cae-analizleri, Erişim Tarihi: 01.02.2014.
- [12] http://en.wikipedia.org/wiki/Fatigue_(material), Erişim Tarihi: 07.04.2011.

- [13] RANKINE, W. J. M., On the causes of the unexpected breakage of the journals of railway axles, and on the means of preventing such accidents by observing the law of continuity in their construction. Minutes of Proceedings of Institution of Civil Engineers, London, 2: 105-108, 1842.
- [14] http://en.wikipedia.org/wiki/August_Wohler, Erişim Tarihi: 07.04.2011.
- [15] MINER, M.A., Cumulative damage in fatigue. Transactions of ASME Journal of Applied Mechanics 12: A159-A164, 1945.
- [16] PALMGREN, A., Note on theoretical and practical methods of calculating the carrying capacity of ball bearings, Proceedings of the Institution of Mechanical Engineers, 17: 385 429, 1922.
- [17] TAUSCHER H., Çev., GÜLEÇ Ş., ARAN A., Çeviri Çelik ve Dökme Demirlerin Yorulma Dayanımı, TÜBİTAK MBEAE MATBAASI, 1983.
- [18] YAŞAR M., Dizel Otomobil Pompa Milinin Yorulma Kırılması Analizi, 8. Uluslar Arası Kırılma Konferansı Bildiriler Kitabı, İstanbul, 2007.
- [19] YAŞAR, M., Dizel otomobil pompa milini yorulma kırılması analizi, 8. Uluslar Arası Kırılma Konferansı Bildiriler Kitabı, İstanbul, 2007.
- [20] http://upload.wikimedia.org/wikipedia/commons/9/96/Pedalarm_Bruch.jpg , Erişim Tarihi: 03.04.2014.
- [21] LMS Tecware User Manuel, (T.Y). Test Software, LMS International, Belgium, 2010.
- [22] http://dolbow.cee.duke.edu/TENSILE/tutorial/img21.png, Erişim Tarihi: 03.04.2014.
- [23] ARIDURU, S., Fatigue Life Calculation By Rainflow Cycle Counting Method, Master Thesis, Orta Doğu Teknik Üniversitesi, Ankara, 2004.
- [24] http://www.omega.com/subsection/general-purpose-strain-gages.html, Erişim Tarihi: 03.04.2014.
- [25] LEE Y., PAN J., HATHAWAY R. B, BARKEY M. E., Fatigue Testing and Analysis (Theory and Practice), 2005.
- [26] http://www.guven-kutay.ch/index_9.htm, Erişim Tarihi: 03.04.2014.
- [27] http://www.fea-optimization.com/ETBX, Erişim Tarihi: 03.04.2014.
- [28] http://www.mscsoftware.com/sites/default/files/inline-images/atv_4post_shaker2_1.jpg, Erişim Tarihi: 03.04.2014.

- [29] https://www.ecs.steyr.com/typo3temp/pics/d0cd67ab04.jpg, Erişim Tarihi: 03.04.2014.
- [30] FISCHER, P., WITTEVEEN, W., SCHABASSER, M., Integrated MBS-FE-Durability Analysis of Truck Frame Components by Modal Stress, ADAMS User Meeting, Rom, 2000.
- [31] AKTAŞ G., Ön Gerilmeli Beton Ve Betonarme Prefabrik Yapı Elemanı Üretimi İçin Bilgisayar Destekli Kalıp Tasarımı, Doktora Tezi, Çukurova Üniversitesi, Adana, 2005.
- [32] MO, K. H., SUH, K. W., HONG S. G., New Approach in Vehicle Durability Evaluation, Virtual Proving Ground, FISITA World Automotive Congress, Seoul, Korea, June 12-15, 2000.
- [33] KIM, H. S., YIM, H. J., KIM, C. B., Computational Durability Prediction of Body Structures in Prototype Vehicles, International Journal of Automotive Technology, Vol. 3, pp.129-135, 2002.
- [34] KIM, H. S., HWANG, Y. S., YOON, H. S., Dynamic Stress Analysis of a Bus Systems, Proceedings of the 2nd Worldwide Automotive Conference, MSC Software Corporation, Dearborn, MI, October 9-11, 2002.
- [35] CHIBA, S., AOYAMA K., YANABU, K., TACHIBANA, H., MATSUDA, K., UCHIKURA, M., Fatigue Strength Prediction of Truck Cab by CAE, Journal of Mitsubishi Motors Technical Review, Vol.15, pp. 54-60, 2003.
- [36] WANNENBURG, J., A Studyof Fatigue Loading on Automotive and Transport Structures, Doctorate Thesis in Mechanical Engineering, University of Pretoria, Pretoria, 2007.
- [37] CHINNARAJ K., MANGALARAMANAN S. P., LAKSHMANA RAO C., Dynamic Response Analysis of a Heavy Commercial Vehicle Subjected to Extreme Road Operating Conditions, 7th International Conference on Modern Practice in Stress and Vibration Analysis, Cambridge, UK, September 8-10, 2009.
- [38] WANG X., ZHAO G., TANG C., Analysis of Frequency Response and Fatigue of Car Body by Random Loading, 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, July 9-11, 2010.
- [39] RAHMAN, A. R., RAMİN, M. N., KURDİ, O., Stress analysis of heavy duty truck chassis as a preliminary data for its fatigue life prediction using FEM, Journal Mekanikal, 26, 76-85, 2008.

[41] KAĞNICI, F., ULAŞ, B., Araç Yorulma Analizi Sonucuna Göre Hasar Görülen Parçanın Dayanım ve NVH Açısından İyileştirilmesi, 6. Otomotiv Teknolojileri Kongresi, BURSA, 04 – 05 Haziran, 2012.

[40]

Netherlands, 2010.

- [42] HALFPENNY, A., Accelerated vibration testing based on fatigue damage spectra. White paper, nCode International, www.ncode.com.
- [43] CUNEDIOĞLU, Y., Muğan, A., Model Derecesi Düşürme Tekniklerinin Frekans ve Zaman Uzaylarında Analizi, İTÜ Dergisi, Cilt:5, Sayı:2, 98-110, 2006.
- [44] BAYRAKTAR, F., BELEK, T., Çamaşır Makinası Dinamik Davranışının Deneysel ve Teorik İncelenmesi, İTÜ Dergisi, Cilt:5, Sayı:2, 135-144, 2006.
- [45] ŞENER, A. Ş., Determination Of Vehicle Components Fatigue Life Based On Fea Method And Experimental Analysis, International Journal Of Electronics, Mechanical And Mechatroics Engineering, Vol.2 Num.1 pp. 133-145, 2010.
- [46] Rixen D., Dynamic Substructuring Concepts Tutorial, IMAC 2010, Delft University of Technology, The Netherlands, 2010.
- [47] YOON J. W., JUNG S. P., PARK T. W., PARK J. K., Fatigue analysis of the main frame of over head transportation vehicles using flexible multibody dynamics, Journal of Mechanical Science and Technology 24 (3), pp. 721~730, 2010.
- [48] MATTES R., Analysis of Dynamically Stressed Components based on Modal Parameters for Durability Optimization with FEMFAT ChannelMax, FEMFAT User Meeting, Steyr, 2009.
- [49] AMBROGI F., BRACCESI C., CİANETTI F., State Of Stress Evaluation Of Structural Elements By Modal Synthesis, Dipartimento di Ingegneria Industriale, Universitâ degli Studi di Perugia, Perugia, Italy, 2000.
- [50] USLU A., EYÜPOĞLU K., Msc Adams Kullanılarak Mekanik Sistemlerin İleri Düzey Dinamik Analizlerinin Yapılması, Lisans tezi, Yıldız Teknik Üniversitesi, İstanbul, 2011.
- [51] HBM- Ncode Designlife Theory Guide, HBM Software Corporation, 2013.
- [52] MSC ADAMS User Manuel, MSC Software Corporation, 2013.

[53] ÇORBACI, F. K., Sonlu Elemanlar Yöntemleri İle Yapısal Dinamik Analiz Cevaplarının Süper Elemanlar Ve Alt Yapılara Bölme İle İyileştirilmesi, Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, 2009.

EKLER

EK A: Strain gage yerleşim noktaları.

ÖZGEÇMİŞ

Mehmet AKSOY, 24.12.1983'de Trabzon'da doğdu. İlk, orta eğitimini Trabzon'da, lise eğitimini ise Sakarya'da tamamladı. 2003 yılında başladığı KTÜ Makine Mühendisliği bölümünü 2009 yılında bitirdi. 2011 yılında Sakarya Üniversitesi, Makina Mühendisliği Bölümünde yüksek lisans eğitimine başladı. 2010–2013 yılları arasında Tırsan Treyler A.Ş.'de Test ve Analiz mühendis olarak çalıştı. Bu süre içerisinde şirketin yeni ürün projeleri yanı sıra verimlilik projeleri ve toplam kalite yönetimi projelerinde aktif rol aldı. Şu anda Otokar Otomotiv ve Savunma Sanayi A.Ş. Şirketinde Test ve Doğrulama Mühendisi olarak görev yapmaktadır.