T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TERMAL BARİYER KAPLAMALARDA KULLANILAN STRONSİYUM-ZİRKONAT TOZUNUN ÜRETİMİ, PLAZMA SPREY TEKNİĞİ İLE KAPLANMASI VE KARAKTERİZASYONU

YÜKSEK LİSANS TEZİ

Göksun SÖNMEZ

Enstitü Ana Bilim Dalı	:	METALURJİ VE MALZEME MÜHENDİSLİĞİ
Tez Danışmanı	:	Doç. Dr. Nil TOPLAN

Haziran 2016

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TERMAL BARİYER KAPLAMALARDA KULLANILAN STRONSİYUM-ZİRKONAT TOZUNUN ÜRETİMİ, PLAZMA SPREY TEKNİĞİ İLE KAPLANMASI VE KARAKTERİZASYONU

YÜKSEK LİSANS TEZİ

Göksun SÖNMEZ

Enstitü Ana Bilim Dalı :

: METALURJİ VE MALZEME MÜHENDİSLİĞİ

Bu tez 30.06.2016 tarihinde aşağıdaki jüri tarafından oybirliği ile kabul edilmiştir.

Doç. Dr. Nil TOPLAN Jüri Başkanı

Necip ÜNLÜ Üye M. Unlin

Doç. Dr.

Yrd. Doç. Dr. Ekrem ALTUNCU Üye

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Göksun SÖNMEZ 30.06.2016

TEŞEKKÜR

Yüksek lisans tezi çalışmalarım sırasında her zaman yanımda olan, beni yönlendiren, gerek kavramsal çerçevede gerekse bilimsel içerikte fikirleri ile desteğini esirgemeyen, büyük fedakarlık gösteren danışmanım Doç. Dr. Nil TOPLAN'a, ve Prof. Dr. H. Özkan TOPLAN başta olmak üzere yardımını esirgemeyen tüm değerli bölüm hocalarıma ve bölüm başkanı Prof. Dr. Sakin ZEYTİN'e şükranlarımı sunarım.

Teknik olarak ve uygulama esnasında deneyim ve desteğini benden esirgemeyen ve büyük fedakârlık gösteren Sakarya Üniversitesi Metalurji ve Malzeme Mühendisliği Laboratuvarı teknikerlerine, Plazma sprey kaplamaların hazırlanmasında büyük emek veren Senkron Yüzey Teknolojileri San. Ve Dış Tic. Ltd. Şti. çalışanlarına teşekkürlerimi sunarım. Ayrıca 2014-50-01-045 numaralı proje çalışmama maddi olarak destek veren SAÜ-Bilimsel Araştırma Projeleri Komisyonu Başkanlığı yetkililerine teşekkür ederim.

Ayrıca tez hazırlığım sırasında bana her türlü konuda yardım eden çalışma arkadaşım Serhat KURT'a ve son olarak bugünlere ulaşmamda kuşkusuz en büyük pay sahibi olan ve her konuda desteklerini gördüğüm aileme teşekkürlerimi sunarım.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR	vi
ŞEKİLLER LİSTESİ	vii
TABLOLAR LİSTESİ	xii
ÖZET	xiii
SUMMARY	xiv

BÖLÜM 1.

GİRİŞ	1

BÖLÜM 2.

TERMAL SPREY KAPLAMALARDA KULLANILAN TOZLARIN	
ÜRETİM YÖNTEMLERİ VE ÖZELLİKLERİ	3
2.1. Mekanik Yöntemler	6
2.1.1. İşleme teknikleri	6
2.1.2. Kırma ve öğütme	6
2.1.3. Mekanik alaşımlama (M/A)	8
2.2. Atomizasyon	9
2.3. Kimyasal Yöntemler	11
2.3.1. Sol-jel	11
2.3.2. Püskürtme-kurutma	14
2.3.3. Dondurucu kurutma	14
2.3.4. Aglomerasyon ve sinterleme	14
2.4. Kaplama Tozlarının Özellikleri	18
2.4.1. Toz morfolojisi	18

2.4.2. Toz tane boyutu	19
2.4.3. Tozların kimyasal karakterizasyonu	20
2.5. Kalite Kontrol	22

BÖLÜM 3.

TERMAL BARİYER KAPLAMALARIN ÜRETİM TEKNOLOJİLERİ	24
3.1. Plazma Sprey Kaplama Teknolojisi	24
3.2. Kaplama oluşumu ve mikroyapısal özellikler	26

BÖLÜM 4.

SrZrO3 KORUYUCU KAPLAMALAR	29
4.1. Giriş	29
4.2. Termal Bariyer Kaplamalar	30
4.3. SrZrO ₃ Kaplamalar	37
4.3.1. SrZrO ₃ sistemi	37

BÖLÜM 5.

DENEYSEL ÇALIŞMALAR	42
5.1. Deneysel Program	42
5.2. Deneysel Çalışmalarda Kullanılan Cihazlar	45
5.2.1. Tek eksenli karıştırıcı	45
5.2.2. Kurutma fırını (etüv)	45
5.2.3. Numune kalıplama/Pres	46
5.2.4. Sinterleme fırını	46
5.2.5. Halkalı öğütücü değirmen	47
5.2.6. Elek analizi	48
5.2.7. Toz Akış hızı ölçüm cihazı	48
5.2.8. Toz boyut analizi	50
5.2.9. Yoğunluk testi düzeneği	50
5.2.10. Dielektrik sabiti ölçüm cihazı	51
5.2.11. Basınçlı kumlama makinası	52
5.2.12. Plazma sprey kaplama sistemi	52

5.2.13. Yüzey pürüzlülük ölçüm cihazı	54
5.2.14. Metalografik numune hazırlama cihazları	56
5.2.15. Mikrosertlik ölçüm cihazı	57
5.2.16. X-Ray difraktometre cihazı (XRD)	58
5.2.17. Taramalı elektron mikroskobu (SEM)	58
5.2.18. Termal şok testi ısıl işlem firini	59
5.3. Deneysel Çalışmalarda Kullanılan Malzemeler	59
5.3.1. Kaplama üretiminde kullanılan tozlar	59

BÖLÜM 6.

DENEYSEL SONUÇLAR VE İRDELEME	61
6.1. Toz Karakterizasyon Çalışmaları	61
6.1.1. Toz boyut dağılımı analizi	61
6.1.2. Toz akış hızı	62
6.1.3. Tozların SEM görüntüleri ve EDS analizleri	62
6.1.4. Tozların XRD faz analizleri	67
6.1.4.1. Başlangıç tozlarının faz analizi	67
6.1.4.2. SrZrO ₃ tozunun faz analizi	68
6.1.5. SrZrO3'ın yoğunluk testi	69
6.1.6. SrZrO ₃ 'ın dielektrik özelliği	71
6.2. Kaplama Karakterizasyonu	71
6.2.1. Mikroyapı analizi	73
6.2.2. Kaplamanın yüzey pürüzlülüğü	77
6.2.3. Mikro sertlik ölçümü	78
6.2.4. Termal şok testi	80
6.2.5. Kaplamanın XRD faz analizi	87

BÖLÜM 7.

GENEL SONUÇLAR VE ÖNERİLER	89
7.1. Sonuçlar	89
7.2. Öneriler	90
KAYNAKLAR	92
ÖZGEÇMİŞ	96

SİMGELER VE KISALTMALAR

А	: Numunenin alanı (m ²)
APS	: Atmosferik Plazma Sprey
С	: Numunenin kapasitansı (F)
D _{H2O}	: Suyun yoğunluğu
DTA	: Diferansiyel termal analiz
EB-PVD	: Elektron ışını ile fiziksel buhar biriktirme
EDS	: Enerji dağılımlı X-ışınları analizi
FBB	: Fiziksel buhar biriktirme
Hv	: Vickers Sertlik birimi
HVOF	: Yüksek hız oksijen yakıt termal sprey prosesi
KBB	: Kimyasal buhar biriktirme
μm	: Mikrometre
ppm	: Milyonda bir
SEM	: Taramalı Elektron Mikroskobu
SrCO ₃	: Stronsiyum-Karbonat
TBK	: Termal Bariyer Kaplamalar
TGA	: Termogravimetrik analizler
Wa	: Kuru numunenin havadaki ağırlığı
Wb	: Su emdirilmiş numunenin su içindeki asılı ağırlığı
Wc	: Su emdirilmiş numunenin havadaki ağırlığı
XRD	: X-ışınları Difraktometresi
YSZ	: Yitriya (Y ₂ O ₃) ile stabilize zirkonya (ZrO ₂)
ZrO_2	: Zirkonya
3	: Dielektrik sabiti
E ₀	: Boşluğun dielektrik sabiti (8.854x10 ⁻¹² F/m)
Er	: Test cihazının bağıl dielektrik sabiti

ŞEKİLLER LİSTESİ

Şekil 2.1. Termal sprey teknolojilerinde kullanılan toz formdaki kaplama	
malzemeleri	3
Şekil 2.2. Termal sprey yönteminde kullanılan kaplama malzemeleri	6
Şekil 2.3. Partikül ufalanması ve verimliliğinin kontrolü ile ilgili değişkenler,	
(a) düşük hız, (b) Optimum hız, (c) Yüksek hızda dönen değirmen	
içindeki bilyalar ve çubuklar	7
Şekil 2.4. Yüksek enerjili atritör tipi bilyalı değirmenin şematik gösterimi	7
Şekil 2.5. Mekanik alaşımlama (M/A) prosesinin şematik gösterimi	9
Şekil 2.6. Mekanik alaşımlama sırasında bilya-toz-bilya çarpışması	9
Şekil 2.7. Atomizasyon prosesinin ayrıntılı gösterimi	10
Şekil 2.8. Sol-jel tekniği ile toz üretiminin şematik gösterimi	12
Şekil 2.9. Sol-jel prosesinin üretim aşamaları ve proses esnasında gözlemlenen	
yoğunluk değişimi	13
Şekil 2.10. Partiküllerin sinterlenmesi esnasında meydana gelen fiziksel proses,	
(a) Partiküllerin bir araya gelerek birbirlerine katılması, (b) Kalan	
porozite	15
Şekil 2.11. Sinterleme prosesi ile üretilen tozlar ve özellikleri	16
Şekil 2.12. Aglomerasyon ve sinterleme prosesi ile üretilmiş tozların özellikleri	17
Şekil 2.13. Üretim yöntemine bağlı olarak elde edilen toz morfolojileri	19
Şekil 2.14. Termal sprey kaplama yöntemine bağlı olarak kullanılan toz tane boyu	ıtu
dağılımı	20

Şekil 2.15. Malzeme kimyası ve planlanan uygulama arasındaki ilişki	22
Şekil 2.16. Tozlar için kalite kontrol prosedürleri	23
Şekil 3.1. Termal sprey prosesleri ile üretilen kaplamaların tipik mikroyapısal özellikleri	27
Şekil 3.2. Zirkonya esaslı termal bariyer kaplamanın kırılma kesiti görüntüleri ve mecut süreksizlikler	28
Şekil 3.3. Kaplama kalitesine ve dayanımına etki eden faktörler	28
Şekil 4.1. Tipik termal bariyer kaplama yapısı	31
Şekil 4.2. Bir gaz türbin kanatçığı ve üzerine uygulanmış termal bariyer kaplamanın kesit görüntüsü	32
Şekil 4.3. Çeşitli malzemelerin spesifik mukavemet-sıcaklık eğrileri	33
Şekil 4.4. Altlık malzemesinin değişimine bağlı olarak ısıl dayanımların zamanla artışı	34
Şekil 4.5. Silika tabakasının oluşumu ve bozunması	35
Şekil 4.6. Termal bariyer kaplamaların genel yapısı ve özellikleri	35
Şekil 4.7. SrZrO ₃ ortorombik kristal yapı	38
Şekil 4.8. Stronsiyum-Zirkonat'ın polimorfik dönüşüm sıcaklıkları	38
Şekil 4.9. ZrO ₂ -SrO faz diyagramı	39
Şekil 4.10. SrZrO ₃ Termal genleşme katsayısı (1600°C' de 6 saat)	40
Şekil 4.11. SrZrO ₃ 'ın (1600°C'de 6 saat) termofiziksel özellikleri	40
Şekil 5.1. SrZrO ₃ kaplama tozunun ve kaplamaların üretim akım şeması	43
Şekil 5.2. Tozların karıştırılmasında kullanılan MSE marka tek eksenli karıştırıcı	45
Şekil 5.3. Ecocell marka kurutma fırını (etüv)	46
Şekil 5.4. MSE marka presleme cihazı	46

Şekil 5.5. Sinterleme işleminin yapıldığı MSE marka kamara tipi sinterleme	
firini	47
Şekil 5.6. RETSCH marka halkalı değirmen	47
Şekil 5.7. Eleme işleminde kullanılan RETSCH marka titreşimli elek	
sistemi	48
Şekil 5.8. Toz akış hızı ölçüm cihazı HALL Flowmeter HF100	49
Şekil 5.9. Toz boyut analizi cihazı MICROTRAC S3500	50
Şekil 5.10. Dielektrik sabiti ölçüm cihazı HIOKI 3532-50 LCR HiTESTE	51
Şekil 5.11. Altlık malzemesinin kumlanmasında kullanılan SAPİ marka basınçlı	
kumlama makinası	52
Şekil 5.12. a. Sulzer Metco plazma sprey sistemi b. robotik sisteme bağlı F4 plazm	na
sprey tabancası c. kontrol paneli	53
Şekil 5.13. Kaplama öncesi ve kaplama sonrası numunelerin makro görüntüleri	54
Şekil 5.14. a. MAHR M1 Yüzey pürüzlülük ölçüm cihazı, b. Aritmetik Ortalama Pürüzlülük (Ra), c. Maksimum Pürüzlülük Derinliği (Rz)	55
Şekil 5.15. Metalografik numune hazırlama cihazları (a) Struers Accutom-5	
marka hassas kesme cihazı, (b) Soğuk bakalite alma işleminin	
gerçekleştirildiği Struers Evopac marka vakum alma cihazı, (c)	
Zımparalama ve parlatma işleminin yapıldığı Struers TegraPol-21	
marka otomatik zımparalama ve parlatma cihazı	56
Şekil 5.16. Optik ve yüzey incelemelerinin yapıldığı ZEIS marka optik ve stereo mikroskop	57
Şekil 5.17. LEICA VM HTMOT marka mikrosertlik ölçüm cihazı	57
Şekil 5.18. RIGAKU marka X-Ray difraktometre cihazı	58
Şekil 5.19. JEOL JSM6060LV marka SEM cihazı	58
Şekil 5.20. Termal şok testine tabi tutulan numunenin işlem görmemiş hali, 1000°	C
ve 1200°C'deki termal şok testi sonrası makro görüntüleri	59

Şekil 6.1. SrZrO ₃ kaplama tozu toz boyut dağılımı	61
Şekil 6.2. a. SrCO3 tozuna ait SEM görüntüsü, b. EDS analizi	62
Şekil 6.3. a. ZrO ₂ tozuna ait SEM görüntüsü, b. EDS analizi	63
Şekil 6.4. a. SrCO3-ZrO2 toz karışımına ait SEM görüntüsü, b. EDS analizi	63
 Şekil 6.5. a. 1350 °C' de 24 saat sinterlenmiş SrZrO₃ tozuna ait SEM görüntüsü, b. EDS analizi 	64
Sekil 6.6. a. 1600 °C'de 4 saat sinterlenmis SrZrO ₃ tozuna ait SEM görüntüsü, b.	
EDS analizi	65
Şekil 6.7. a. Başlangıç karışım, b. 1250°C ve c. 1350°C' de 24 saat, d. 1600°C' de	;
4 saat, e. 1600°C' de 6 saat sinterlenmiş SrZrO3 tozuna ait SEM	
görüntüleri	66
Şekil 6.8. a. ZrO ₂ b. SrCO ₃ tozuna ait XRD analizi	67
Şekil 6.9. Farklı sıcaklıklarda sinterlenen SrZrO3 kaplama tozuna ait XRD	
paternleri	70
Şekil 6.10. SrZrO ₃ 'ın dielektrik özelliği	72
Şekil 6.11. a.SrZrO3 kaplama yapısının, b. Kaplama tabakasının ve c. Bağ	
tabakanın optik mikroskop görüntüleri	74
Şekil 6.12. a. SrZrO ₃ kaplama arayüzeyi, b. SrZrO ₃ üst kaplama tabakası, c. SrZrO ₃ + Bağ tabaka, d. Bağ tabaka SEM görüntüleri	75
Şekil 6.13. SrZrO3 kaplama tabakasının SEM görüntüsü ve EDS analizi	76
Şekil 6.14. NiCrCoAlY bağ tabakasının SEM görüntüsü ve EDS analizi	77
Şekil 6.15. SrZrO3 kaplama tabakası, NiCrCoAlY bağ tabaka ve AISI 304 altlık	
malzemesinin ortalama sertlik değerleri, Hv 0.05	79
Şekil 6.16. 1000°C'deki termal çevrim sonrası makro görüntüler	82
Şekil 6.17. 1200°C'deki termal çevrim sonrası makro görüntüler	84
Şekil 6.18. SrZrO ₃ kaplanmış numunelerin termal şok öncesi, 1000 °C ve 1200	
°C'deki termal şok sonrası XRD grafikleri	85

Şekil 6.19. Termal şok öncesi ve sonrası mikroyapı görüntüleri		
Şekil 6.20. 1200°C'de 27 çevrim sonrası numune sol-sağ kenar ve ortasından mikroyapı görüntüleri	85	
Şekil 6.21. SrZrO ₃ kaplanmış numunelerin termal şok öncesi, 1000 °C ve 1200		
°C'deki termal şok sonrası XRD grafikleri	88	

TABLOLAR LİSTESİ

Tablo 2.1. Çeşitli malzemelere ait toz üretim metotları	5
Tablo 3.1. Termal sprey proseslerinin sınıflandırılması	25
Tablo 4.1. TBK malzemesi olarak YSZ ve SrZrO ₃ seramik malzemelerin avantaj ve dezavantajları	32
Tablo 4.2. Termal bariyer kaplamalarda kullanılan çeşitli kaplama malzemeleri ve özellikleri	36
Tablo 4.3. SrZrO ₃ 'e ait bazı mekanik özellikler	37
Tablo 4.4. SrZrO ₃ ve YSZ'nin ergime noktaları	41
Tablo 4.5. SrZrO ₃ ve YSZ'nin mekanik özellikleri	41
Tablo 5.1. SrZrO ₃ kaplamalara ait plazma sprey parametreleri	53
Tablo 5.2. SrZrO ₃ kaplama üretiminde kullanılan başlangıç hammaddelerinin	
kimyasal analizleri	60
Tablo 5.3. Kullanılan kaplama malzemelerinin fiziksel özellikleri	60
Tablo 6.1. SrZrO ₃ yoğunluk ölçümleri	71
Tablo 6.2. Kaplamanın yüzey pürüzlülük değerleri	78

ÖZET

Anahtar kelimeler: SrZrO₃, Plazma Sprey Kaplama, Termal şok

Mevcut çalışmada 1300°C üzerindeki çalışma sıcaklıklarında termal bariyer kaplama malzemesi olan YSZ'ye alternatif olarak kullanılan ve uygulama alanı bulan SrZrO₃ kaplama tozunun ve kaplamaların üretimi amaçlanmıştır. TBK sistemleri arasında SrZrO₃ ise YSZ'ye göre daha yüksek termal genleşme katsayısına ve daha düşük termal iletkenlik katsayısına sahip olması nedeniyle YSZ'ye alternatif bir malzeme olarak düşünülmekte ve üzerinde kapsamlı araştırmalar sürdürülmektedir. SrZrO3 tozu üretimi için Sr/Zr atomik oranı 1.136 mol oranındaki toz karışımı saf su ile karıştırılarak bilyalı değirmende 2 saat homojen bir şekilde karıştırılmış ve sonra etüvde 100°C'de 24 saat kurutulmuştur. SrZrO₃ kaplama tozuna yeterli akıcılık kazandırmak amacı ile; etüvde kurutulan tozlar 5 gr'lık numuneler halinde 2.5 cm'lik paslanmaz çelik kalıp kullanılarak 2 ton yük altında preslenmiştir. 1250°C 24 saat ve 1350°C 24 saat sinterlenen ve öğütülüp elenen tozların yeterli akıcılıkta olmaması nedeni ile aynı oranlarda tartılıp hazırlanan SrZrO3 toz bileşimi 1600°C'de 4 saat süre ile hava atmosferinde katı hal sinterleme tekniği ile sinterlenmiştir. Sinterlenen tabletler halindeki SrZrO₃ numuneler havanda öğütüldükten sonra eleme işlemine tabi tutulmuş ve 45-125 µm toz boyut aralığındaki tozlar kaplama tozu olarak ayrılmıştır. Kaplama tozunun ayrıca partikül boyut dağılımı, akış hızı belirlenmiştir. Üretilen SrZrO₃ kaplama tozunun plazma sprey yöntemiyle kaplanabilirliği (F4MB plazma sprey tabancası ile) araştırılmıştır. Paslanmaz çelik üzerine yapılan plazma sprey kaplamanın mikro görüntüsü ve sertlik değeri alınmıştır. Üretilen kaplama tozunun ve kaplamanın SEM-EDS ile mikroyapı analizileri, XRD ile faz analizi, termal şok ve yoğunluk testleri gerçekleştirilmiştir

PLASMA SPRAY DEPOSITION, CHARACTERIZATION AND PRODUCTION OF STRONTIUM ZIRCONATE COATING POWDER USED FOR THERMAL BARRIER COATINGS

SUMMARY

Keywords: SrZrO₃, Atmospheric plasma spraying, Thermal cycling

The objective of the present work is to produce strontium zirconate (SrZrO₃) coating powder and coatings which are used for application as materials for thermal barrier coatings (TBC) at operating temperatures >1300°C. In this study, strontium zirconate was coated by atmospheric plasma spraying technique on stainless steel (SS304) substrates. Strontium zirconate is produced by solid phase synthesis from zirconium dioxide and strontium carbonate. Starting powders were a high grade ZrO_2 and commercial SrCO₃ (Aldrich,>98%, Munich, Germany). Powders calcined at 1250°C and 1350°C for 24 h, 1600°C for 4 h and 6 h with a heating rate of 5 K/min. The powders were calibrated the correct particle size for plasma spraying. Atmospheric plasma spraying (APS) technique is generally used for depositing ceramic materials due to the high enthalpy and temperature available in the plasma jet. Depending on the process parameters, the temperature at the core of plasma jet can be as high as 10.000–15.000 K and any metal or ceramic powder injected into the plasma jet can be melted and spray coated. The injected spray grade powder particles are rapidly melted, accelerated and propelled at high velocity to the substrate surface. By virtue of its low thermal conductivity, high melting point SrZrO₃ ceramic has potential applications for thermal barrier coatings (TBC). The resulting powders and coatings were characterized using SEM-EDS and XRD techniques. It was also measured on the physical properties such as density, velocity and particle size distribution of the coating powder.

BÖLÜM 1. GİRİŞ

Günümüzde, Termal bariyer amacıyla kullanılmakta olan malzemelerin servis ömürlerini calısma performansını arttırmak icin cesitli ve vöntemler kullanılmaktadır. Türbin malzemelerinin (süper alaşımlar), bulk (kitlesel) olarak üretilmesi hem maliyet açısından hem de malzemeyi işleme açısından çeşitli sıkıntılar doğurmaktadır. Bundan dolayı malzemelerin sadece çalışan yüzeyinin (fonksiyonel yüzey) cevresel etkilere karşı korunabilmesi ve arzu edilen özelliklerin sağlanması için koruyucu bir tabaka ile kaplanması yaygın olarak kullanılmaktadır. Malzemelerde genel olarak termal etkilere, korozyona ve aşınmaya karşı dirençli yapıların elde edilmesi istenilmektedir. Bu yapıların oluşturulması da malzeme yüzeyine tabaka halinde seramik ve kompozit esaslı malzemelerin biriktirilmesi ile sağlanabilmektedir.

Yüksek sıcaklıkta çalışan gaz türbin motorları, dizel motorlar, ısı değiştiriciler, roket nozulları gibi bileşenler yüksek sıcaklıklarda fiziksel, kimyasal, mekaniksel ve ısıl etkilere maruz kalmaktadır. Bu etkilere karşı yüzeyin performansını arttırmak için yüksek sıcaklıkta üstün performans sağlayan kaplama malzemeleri kullanılmaktadır. Bu kaplama malzemeleri genelde toz formdadır. Toz formunda olan kaplama malzemeleri de çeşitli yöntemler ile fonksiyonel yüzeyler üzerine biriktirilmektedir.

Günümüzde, türbin motorlarında yanma verimliliğini artırabilmek için daha yüksek sıcaklıklara çıkmak gerekmektedir. Dolayısıyla gaz türbinlerinin yüksek sıcaklığa maruz kalan bölgelerinin yüksek sıcaklığa, yüksek sıcaklıktaki aşınmaya ve yüksek sıcaklıktaki korozyona dayanıklı malzemelerden üretilmesi gerekmektedir. Ancak yüksek sıcaklığa dayanıklı malzemelerin kütlesel olarak üretilmesi hem maliyet açısından hem de malzemeyi işleme açısından çok büyük problemlere neden olmaktadır. Bu yüzden maliyet açısından daha uygun bir altlık malzemesinin

fonksiyonel yüzeyine yüksek sıcaklığa dayanıklı bir seramik katmanın biriktirilmesi ile altlık malzemesi termal yalıtım görevini üstlenmektedir. Bu uygulamaya termal bariyer kaplamalar adı verilmektedir. Termal bariyer kaplama uygulamaları genelde altlık malzemesi üzerine seramik toz malzemeler biriktirilerek gerçekleşmektedir. Bu biriktirme işlemi de genelde termal sprey kaplama teknolojisin alt prosesi olan APS (atmosferik plazma sprey) tekniği ile gerçekleştirilir.

Termal sprey kaplama teknolojilerinde kullanılan kaplama tozlarının özellikleri, üretilecek olan kaplama özellikleri ile doğrudan ilişkilidir. Bundan dolayı uygun kaplama malzemesi seçimi ve doğru proses kullanımı ile istenilen kaplama yapısı elde edilir.

Günümüzde en yaygın kullanılan üst tabaka termal bariyer kaplama malzemesi; düşük termal iletkenliği, süper alaşım türbin malzemeleri ile uyumlu yüksek termal genleşme özellikleri ve yüksek termal çevrim ömrüne sahip olması nedeniyle ağ. % 7-8 Y₂O₃ ile stabilize ZrO₂ (YSZ) esaslı kaplamalardır. YSZ polimorfik bir yapıya olup, 1200 °C'nin üzerinde faz dönüşümleri ve sinterleşme etkisi nedeniyle uzun süreli kullanımlarda koruyuculuk özelliklerini kaybetmektedir [1]. Stronsiyum Zirkonat (SrZrO₃) 1300 °C'nin üzerindeki sıcaklıklarda kullanılan termal bariyer kaplama uygulamalarında YSZ (Yitriya Stabilize Zirkonya) kaplama malzemesine alternatif olarak geliştirilmiştir [2]. Bu çalışma YSZ' ye alternatif olarak SrZrO₃ kaplama tozunun üretilmesi, karakterize edilmesi ve plazma sprey yöntemi ile paslanmaz çelik altlıklar üzerine plazma sprey kaplanması ve karakterizasyonunu kapsamaktadır.

BÖLÜM 2. TERMAL SPREY KAPLAMALARDA KULLANILAN TOZLARIN ÜRETİM YÖNTEMLERİ VE ÖZELLİKLERİ

Termal sprey kaplamalarda prensip olarak toz, tel ve çubuk formunda malzemeler kullanılmaktadır. Elektrik ark sprey ve tel alev sprey prosesleri dışındaki diğer termal sprey proseslerinde kaplama malzemesi olarak toz kullanılmaktadır (Şekil 2.1.).

Şekil 2.1. Termal sprey teknolojilerinde kullanılan toz formdaki kaplama malzemeleri [3].

Spreylenmiş haldeki kaplama bazı uygulamalar için önceden belirlenmiş parametrelerin ayarlanması ile karakterize edilebilir. Bu parametreler kuvvetli olarak toz malzemesine ve sprey prosesine bağlıdır. Proses esnasında, başlangıç malzemesinin özellikleri, toz partikülünün jet içerisinde veya alev içerisindeki uçuşu ve altlık üzerine sıçraması esnasında değişebilir. Bu değişimler malzemenin redüklenmesi, oksitlenmesi, hızlı katılaşması ve soğuması ile sonuçlanabilir. Bu yüzden tozun seçimi, olası değişimler göz önüne alınarak yapılmalıdır [4].

Toz özelliklerinin kaplamanın kalitesine etkisi oldukça önemli olduğundan dikkatli olarak karakterize edilmelidir. Bu özellikler basitçe fiziksel ve kimyasal özellikler olarak ayrılabilir. Tozların fiziksel özellikleri şunlardır [4];

- Granülometri

- İç ve dış morfoloji

- Görünür yoğunluk ve akışkanlık

- Termal özellikler, diferansiyel termal analiz (DTA) ve termogravimetrik analizler (TGA).

En önemli ana kimyasal özellik kimyasal bağdır. Bağ tipleri, filmler ve kaplamaların oluşumunda malzemelerin birçok önemli özelliğini belirler [4].

İyonik bağlar kimyasal olarak kararlı ve inert malzemelerde bulunur. Al₂O₃
 ve ZrO₂ gibi,

- Kovalent bağlar sert ve tok malzemelerde bulunur. Elmas, SiC, Si₃N₄ gibi,

- Metalik bağlar çok iyi yapışan ve tok malzemelerde bulunur. Birçok metal (Ti ve Ta gibi), bazı karbürler (WC ve TiC) ve nitrürler (TaN ve CrN gibi) gibi.

Kaplamaların kalitesi aşağıdaki kimyasal özellikler ile belirlenmektedir [4];

- Kimyasal kompozisyon
- Faz bileşimi
- Element dağılımı

Termal sprey kaplama uygulamalarında kullanılan tozlar bir jet veya alev içerisine gaz ortamında veya bir sıvı ortamda süspanse edilmektedir. Sıvı içerisinde süspanse edilmesi ile küçük boyutta partiküller oluşturulur ve böylelikle nanoyapılı kaplamalar elde edilebilir [4].

Toz üretiminde kullanılan endüstriyel metotlar temel olarak malzeme tipine bağlıdır. Tablo 2.1.'de çeşitli toz malzemelere ait üretim yöntemleri görülmektedir. Bu tabloda gösterilenler toz üretim metotlarının tamamını kapsamamaktadır. Ancak verilen metodlar endüstride popüler ve kazançlı olan proseslerdir.

Metaller	Yüzeyi			
ve	Seramikler	kaplanmış	Kompozit	
alaşımlar		kompozit tozlar	aglomeratlar	
-Vakumda, inert gaz	- Ergitme veya	- Kimyasal	-Püskürtme-	
ortamında, hava veya su	sinterleme ve kırma	yüzey kaplama	kurutma	
atomizasyonu	-Püskürtme-kurutma	- Gözenekli	-Yüksek	
- Ergitme veva sinterleme	-Yüksek sıcaklıkta	yüzey kaplama	sıcaklıkta	
ve kırma	kendiliğinden	- Mekanik	kendiliğinden	
	sentezleme	alaşımlama	sentezienie	
- Mekanik alaşımlama	Coz fozi mototlar		- Mekanik	
			alaşımlama	

Tablo 2.1. Çeşitli malzemelere ait toz üretim metotları [5]

Termal sprey proseslerinde kullanılan toz formundaki malzemeler istenen fiziksel ve kimyasal özelliklerine göre çeşitli yöntemler ile üretilmektedir. Bu yöntemler dört ana kategoride toplanmıştır.

- Mekaniksel yöntemler
- Kimyasal yöntemler
- Elektrolitik Yöntemler
- Atomizasyon

2.1. Mekanik Yöntemler

2.1.1. Kırma ve öğütme

Kırma işleminin amacı, mekanik enerji vererek büyük boyutlu parçaların ufak boyuta indirilmesidir. Çoğunlukla seramiklere uygulanır, çünkü metaller plastik deformasyona uğrar, ufak parçalara ayrılamazlar. Yüksek saflıkta biriktirme, hammaddelerin bir elektrik fırınında ergitilmesiyle sağlanır. Kırma işleminde çekiçli değirmen, çeneli kırıcılar, döner kırıcılar ve öğütücüler kullanılır [5].

Seramiklerin ve bazı metallerin mekanik etki ve deformasyon ile tane boyutu indirgenebilir. Kırmayı takiben partikül boyutunu kontrol eden öğütme işlemi gerçekleştirilir. Öğütme, gevrek, kırılgan malzemelerin (bazı metaller ve birçok seramikler) ve kolayca işlenebilen metallerin çok küçük parçalara ufalanması, toz haline gelebilmesi olayıdır. Oluşan ürünler 5 µm'den küçük olmak üzere düzensiz şekildedirler. Bu yüzden çok küçük olan tozlar sınıflandırılır ve bu prosesin bir sonraki aşamasında aglomerasyon işlemine tabi tutularak termal püskürtme işlemine uygun formda tozlar elde edilir. Şekil 2.2.'de ergitme ve kırma prosesi ve bu proses ile üretilmiş tozların özellikleri yer almaktadır.

Şekil 2.2. Termal sprey yönteminde kullanılan kaplama malzemeleri [5].

Gerek çubuk gerekse bilyalı değirmende ekipmanların ömrü çubukların veya bilyaların hızına bağlıdır ve prosesin verimliliğini de etkilemektedir (Şekil 2.3.). Bilyaların (veya çubukların) dönüş sırasında en üst noktadan, öğütülecek malzemenin üzerine düşmesi gerekmektedir (Şekil 2.3b). Eğer değirmen çok hızlı dönüyor ise, merkezkaç kuvvetinden dolayı, öğütücü malzeme düşemeyecektir. Ayrıca öğütücü malzemeler değirmenin yan kısımlarına çarparak aşınmayı hızlandırarak ufalanmalara sebep olacaktır (Şekil 2.3c). Düşük hızlardaki öğütücü ortamda, öğütücü malzemesi öğütülmek istenilen malzemenin bütününe etki edemez, yalnızca değirmenin dip kısmında kendi kendine döner (Şekil 2.3c). Optimum bir hız ile çubuk veya bilyeler sürekli olarak bir çağlayanın akması gibi tozların üstüne düşer ve kırma işlemi gerçekleşir (Şekil 2.3b) [3]. Şekil 2.4.'te yüksek enerjili atritör tipi bilyalı değirmenin şematik gösterimi mevcuttur [3].

Şekil 2.3. Partikül ufalanması ve verimliliğinin kontrolü ile ilgili değişkenler. (a) düşük hız, (b) Optimum hız, (c) Yüksek hızda dönen değirmen içindeki bilyalar (ve çubuklar).

Şekil 2.4. Yüksek enerjili atritör tipi bilyalı değirmenin şematik gösterimi [5].

Öğütme işleminde öncelikli amaçlar şunlardır:

- Partiküllerin ve aglomeratların boyutlarını indirgemek,
- Partiküllerin ayrılmasını engellemek veya tek fazlı partiküllerin tercihli olarak yönlendirilmesini sağlamak,
- Çoklu bileşene sahip toz sistemlerinde, bileşenlerin homojen dağılmasını sağlamak

Değirmenle öğütme prosesinde üç ana aşama vardır. Başlangıçta agregaların boyutlarını hızlı bir Şekilde indirgeme, tek tek partiküllerin kırılmaları ve en sonunda da uzayan değirmen işlemiyle birlikte çok küçük tanelerin yeniden aglomere edilmesidir. Başlangıçta 10-15 mikron olan agregalar işlemin sonunda 0,1 mikron toz boyutuna kadar öğütülür [5].

2.1.2. Mekanik alaşımlama (M/A)

Yüksek enerjili atritör tipi değirmenlerde öğütme işleminin yanı sıra mekanik alaşımlama adı verilen proseste uygulanmaktadır. Mekanik alaşımlama başlangıçta elementsel formda olan tozlardan dengede ve dengede olmayan fazların her ikisinin de sentezlenmesinde kullanılan yararlı ve kolay bir tekniktir. Ekonomik bir proses olmakla beraber önemli teknik avantajlara da sahiptir. En önemli avantajı normal olarak birbirine karışmayan, diğer tekniklerle üretilemeyen yeni alaşımların üretilebilmesini mümkün kılmasıdır. Mekanik alaşımlama literatürde tozların (farklı metaller veya alaşımlar\bileşikler) birlikte karıştırılarak öğütülmesi işlemi olarak tanımlanmaktadır. Bu proseste malzeme transferi ile homojen bir alaşım elde edilir. Şekil 2.5.'te mekanik alaşımla prosesinin şematik gösterimi yer almaktadır [6].

Şekil 2.5. Mekanik alaşımlama (M/A) prosesinin şematik gösterimi [6].

M/A, tekrarlı deformasyon-kaynaklanma-kırılma mekanizması yoluyla homojen alaşım elde etmek için malzeme transferini kapsayan toz karışımlarının birlikte öğütülmesi işlemidir. İki çelik bilyanın çarpışması esnasında tozların bir kısmı Şekil 2.6.'da gösterildiği gibi bu bilyaların arasında kalır [7].

Şekil 2.6. Mekanik alaşımlama sırasında bilya-toz-bilya çarpışması [6].

2.2. Atomizasyon

Atomizasyon, ergimiş metal damlalarının birbiri içerisinde veya katı bir yüzeye temas etmeden önce küçük damlacıklar halinde dağılması ve hızlıca soğuması işlemidir. Bu metotta temel prensip, ergimiş metali, ince akışlı ve yüksek enerjili gaz veya sıvı etkisine maruz bırakarak parçalamaktır. Hava, azot ve argon genel olarak

kullanılan gazlardır. Sıvı olarak ise sıklıkla su kullanılmaktadır [8]. Şekil 2.7.'de Atomizasyon prosesine ait çeşitli bileşenler yer almaktadır.

Atomizasyon genelde metal tozu üretiminde kullanılan en yaygın toz üretim yöntemidir. Bu üretim tekniği üç ana bölüme ayrılır. Bunlar;

- Ergitme
- Atomizasyon (Eriyik metal damlalarını daha küçük boyutlarda parçalamak)
- Katılaşma ve soğuma

Elenmiş toz

Şekil 2.7. Atomizasyon prosesinin ayrıntılı gösterimi [5].

Atomizasyon prosesi dört ayrı kategoriye ayrılmaktadır. Bunlar;

- Su atomizasyon yöntemi,
- Gaz atomizasyon yöntemi,
- Santrifüj yöntemi,
- Döner elektrot (REP) yöntemi,
- Vakum atomizasyon yöntemi.

Termal sprey tozu üretimi için, bu kategoriler içerisinden sadece gaz ve su Atomizasyon yöntemleri kullanılmaktadır. Partikül boyutu 10 ile 250 arasında gaz ve su atomizasyonun da genel prensip devamlı akış halinde olan sıvı metal damlacıklarını kendi içerisinde gaz veya su akışı ile parçalamaktır. Proses parametrelerinin değişimi, partikül morfolojisinin ve partikül boyutunun değişmesine izin verir [5].

2.3. Kimyasal Yöntemler

Kimyasal yöntemler ile termal sprey tozu üretimi aşağıdaki prosesler ile yapılmaktadır.

- Sol-jel prosesi,
- Püskürtme-kurutma
- Dondurucu kurutma,
- Aglomerasyon ve sinterleme.

2.3.1. Sol-jel

Sol-jel prosesi seramik tozları ve özellikle oksitlerin üretiminde kullanılan bir kimya mühendisliği prosesidir. SOL' un anlamı kimyasal bileşenlerin başlangıç solüsyonunu ifade eder ki, işlemin sonunda tozlar buradan imal edilir. JEL ise seramik malzemenin son ürününü ifade eder. Metaller, ayrı, birbirinden bağımsız partiküller oluşturmak amacıyla solüsyonların (çözeltilerin) birbirleriyle karıştırılması esasına dayanır. Unutulmamalıdır ki, partiküller çözeltiden çökelti oluşturarak elde edilmez, aksine sıvı içinde asılı durup zamanla birbirlerine doğru toplanırlar. Bu yöntemle üretilen seramik tozları; kromya, alümina ve stabilize edilmiş zirkonyadır [5].

Başlangıçta hammadde olarak inorganik metal tuzları ve metal alkoksitler gibi metal organik bileşikler kullanılır. Sol-jel prosesinde hidroliz ve polimerizasyon reaksiyonu sonucu "sol" yapısı elde edilir. Şekil 2.8.'de görüldüğü gibi Sol' ün farklı prosesleri ile seramik malzemenin değişik formları oluşturulabilir.

Şekil 2.8. Sol-jel tekniği ile toz üretiminin şematik gösterimi [10].

Sol-jel tekniğini ve bu teknik ile üretilen tozlar aşağıda belirtilen niteliklere sahiptir;

- Düşük sıcaklıklarda gerçekleştirilir. Bu açıdan yüksek enerji gerektiren reaksiyonlardan daha ekonomiktir.

- Önceden belirlenen boyut ve morfolojilerde tozlar üretilebilmektedir. Gerekli boyutlarda çok fazla miktarlarda toz imalatı yapılabilmektedir. Termal püskürtme tozlarına bakıldığında küresel şekilli tozlar burada rutin olarak üretilmektedir ki, bu da kaplanacak tozların kolayca akışını sağlar.

 Toz kompozisyonu kolayca kontrol edilebilir, örneğin çok bileşenli tozlar üretilebilir. Ayrıca ürün içindeki gözenek yapısı da partiküllerin aglomere olması nedeniyle kontrol edilebilir.

- Proses, çözelti kimyası metotlarıyla gerçekleştirilir. Bu teknik toz harmanlama, karıştırmayla kıyaslandığında çok uygun kalmaktadır. Zararlı uçucular, tozlar ortaya çıkmaması diğer bir avantajıdır, toksit veya çevreye zararlı malzemeler üretilmemiş olur [5].

Sol-jel yöntemi ile üretilen bir tozun üretimi Şekil 2.9.'da gösterilmiş ve üretim aşamaları aşağıda listelenmiştir.

Şekil 2.9. Sol-jel prosesinin üretim aşamaları ve proses esnasında gözlemlenen yoğunluk değişimi [5].

Aşama-1: bileşenler solüsyona konulur. Sıvı bileşenler genelde su veya alkoldür. Çözücü ya inorganik nitrat klorür ya da metal-organik bir bileşendir. Bunlar atomik seviyede karıştırılır ve oldukça homojen kompozisyonlar olması beklenir.

Aşama-2: Yukarıdaki çözelti hala SOL olmamışsa SOL haline getirilir. 150 nanometre (0,15 mikron)' den küçük olan partiküller bir araya toplanır. Ph'ının ayarlanmasıyla SOL, kararlı hale getirilir. Aksi halde SOL aglomere olmaya devam eder.

Aşama-3: Bu aşama jelleşme evresidir. Su veya alkol gibi çözücüler giderilerek daha sert, dijit bir yapı elde edilir. Jel hâlâ oldukça plastik veya viskoz olabilir. İşlem değişkenleri Ph, sıcaklık ve zamandır.

Aşama-4: Jel istenilen morfolojiye getirilir. Bu küresel, fiberli veya kaplama formunda olabilir. Termal püskürtme tozları küresel morfolojide olurlar. Buna sprey kurutma adı verilir. Bu morfolojiler jelleşme aşaması kontrol altında tutularak da verilebilir.

Aşama-5: Kalan çözücü uzaklaştırılır ve JEL final tozu vermek üzere kalsine edilir. Bu son sıcaklık geleneksel metotların sıcaklığından düşüktür. Örneğin, silika 600°C'den 1000°C'ye kadarki sıcaklıklarda kalsine edilir [5].

2.3.2. Püskürtme-kurutma

Püskürtme-kurutma tekniği kimi zaman aglomerasyon olarak da ifade edilir. Bu teknik birçok malzemenin aglomere edilmesine izin vermektedir. Püskürtme-kurutma toz üretim tekniği ile aşağıdaki malzemelerin üretimi yapılabilmektedir [4];

- Metaller (molibden gibi),

- Oksitler ve oksit alaşımları (CrO₂+TiO₂ veya ZnO+Al₂O₃ gibi),
- Nitratlar ve nitrat oksit karışımları (Si₃N₄+ Al₂O₃+Y₂O₃ gibi),
- Sermetler (TiC+Ni veya WC-Co gibi).

Yakın geçmişte çok ince partiküllerin aglomere edilerek uygulanması, çok iyi mekanik özelliklere sahip nanoyapılı kaplamalar elde edilmiştir.

Püskürtme kurutma tekniği, 1 ile 10 mikron arasındaki ince boyutlu tozlar aglomere edilir. Toz boyutu, nozul geometrisi ve Atomizasyon basıncı değiştirilerek kontrol edilir. Bu yöntemle üretilen toz malzemesinin kimyası homojen değildir. Ancak bu metot, ham madde temininin kolay olması, ucuz olması, küresel morfolojide ve serbest akışkanlığa sahip tozların üretilmesi açısından caziptir [5].

2.3.3. Dondurucu kurutma

Dondurucu kurutma prosesinde solüsyon kullanılabileceği gibi, üretilecek olan tozların çeşitli bileşenlerini içeren bir emülsiyon da kullanabilir. Malzeme damlacıkları -30°C'deki (-86°F) heksan (C₆H₁₄) ile karıştırılarak hızlıca soğutulur ve dondurulur. Dondurulmuş olan malzeme sistemden filtrelenerek katı faz formunu alır. Son aşamada ise düşük basınçlarda ve ortam sıcaklığında çözücü buharlaştırılarak süblime olur ve ortamdan giderilir [5].

2.3.4. Aglomerasyon ve sinterleme

Aglomerasyon, partiküllerin daha sıkı bir yapı alması için bir araya getirilmesi yani bağlanmasıdır. Bunun için kullanılan iki metottan birincisi bir bağlayıcı kullanılması, diğeri ise sinterlemedir. Bunlar sol-jel metodunda da kullanılırlar. Sinterleme, partiküllerin basınç ve ısı etkisiyle bir araya getirilmesidir. Preslenen malzeme, ergime noktasının altına kadar bir sıcaklığa ısıtılır, bağlayıcı da katılarak, partiküller arasındaki kimyasal difüzyon mekanizmasından yararlanılarak, sinterleme yapılır [5].

Şekil 2.10.'da tek tek partiküllerin yakınlaşması ve bağlanması gösterilmiştir. Bununla beraber, yapıda bir miktar porozite kalır. Yüksek basma kuvvetleri, yüksek sinterleme sıcaklığı ve daha uzun sinterleme süreleri kullanılarak bu porozite problemi giderilir.

Şekil 2.10. Partiküllerin sinterlenmesi esnasında meydana gelen fiziksel proses. (a) Partiküllerin bir araya gelerek birbirlerine katılması, (b) Kalan porozite [5].

Bağlayıcı ile tozların birleştirmesi, alümina-titanya, yitriya-zirkonya vb. gibi farklı malzemelere uygulanabilmektedir. Bağlayıcı malzeme polivinil-alkol veya karboksimetil selüloz gibi organik esaslı olabilir. Partikül boyut dağılımının düzenli olması için, aglomerasyonun başarısı açısından, partiküller elekten geçirilmelidir [5].

Oksitler, karbürler ve sermetler bu yöntemle üretilirler. Bu prosesle üretilen toz partikülleri kısa ve düzensiz morfolojiye sahip olduğundan akıcılığı nispeten zayıftır. Plazma veya alev içerisinde küreselleşme sağlanarak, bu parametre geliştirilebilir. Küreselleşmenin amacı iç porozite oluşumunu önlemektir [4].

Şekil 2.11.'de sinterleme prosesinin hazırlık aşamaları, sinterleme prosesi ile üretilen tozlar ve bu tozların özellikleri yer almaktadır.

Şekil 2.11. Sinterleme prosesi ile üretilen tozlar ve özellikleri [3].

Aglomerasyonda hemen küresel şekil elde edilemez. Küresele yakın şekilde bir morfoloji elde edilir ki bu, tozun beslenmesini negatif yönde etkiler. Sinterlenmiş tozların teorik yoğunluğu, ergimiş tozların yoğunluğundan daha düşüktür. Düşük yoğunluklu yapıların çekme mukavemeti de düşük olur. Fakat bunlar tekrar şarjda kullanılırlar; çünkü besleme maliyetleri düşük olacaktır [5].

Küresel formda aglomeratlar şeklinde üretilen tozlar, yoğunlaştırma işlemine tabi tutulur. Bu işlem sinterleme veya plazma yoğunlaştırma olarak iki farklı şekilde uygulanabilir. Yoğunlaştırma sürecinin bir avantajı tozların bir araya getirilmesinde kullanılan organik bağlayıcıların giderilmesine katkı sağlamasıdır [3].

Termal sprey uygulamalarında kullanılacak tozların, aglomerasyon sonrası yoğunlaştırma işlemine tabi tutulması önemlidir. HVOF ve D-Gun gibi yüksek basınç kuvvetlerinin hakim olduğu sprey proseslerinde toz partikülleri, yoğunlaştırma işlemine tabi tutulmadığı zaman kaplama sürecinde aglomeratlar parçalanabilir ve ergitme alevi (hüzmesi) içerisinde dağılabilir. Bu durum kaplama prosesinin birikme verimini azaltır [3].

Aglomere ve sonrasında yoğunlaştırılmış tozlar iyi ergime davranışı ve iyi akışkanlık özelliği gösterir. Başlangıç tozlarına ve kullanılan sisteme bağlı olarak 20 ila 800 μm büyüklüğündeki partiküller aglomerasyonla üretilebilir. Aglomere edilmiş tozlara tipik örnekler Mo, WC-Co, Cr₃C₂-NiCr, Al₂O₃-TiO₂'dir [3]. Şekil 2.12.'te aglomerasyon ve sinterleme prosesleri ile üretilmiş tozların özellikleri ve SEM görüntüleri verilmiştir.

Şekil 2.12. Aglomerasyon ve sinterleme prosesi ile üretilmiş tozların özellikleri [3].

Mevcut çalışmada termal sprey kaplama tozu üretim yöntemi olarak katı hal sinterleme tekniği tercih edilmiştir. SrZrO₃ seramik malzemesinin ergime sıcaklığı 2756°C'lerde olup; bu tozun ergitme yöntemiyle üretilmesi laboratuar imkanlarımız şartlarında mümkün olmadığından; bu üretim yöntemi tercih edilmiştir. Ayrıca soljel yönteminde kullanılan başlangıç hammaddelerinin maliyet değerleri ve üretilen toz boyut aralığının optimizasyonu konusunda yeterli bilgi birikimine sahip olunmadığından bu yöntem tercih edilmemiştir.

2.4. Kaplama Tozlarının Özellikleri

Termal sprey kaplamalarda, optimum tabaka özelliklerine amaca uygun proses ve malzeme seçimi ile ulaşılır. Kaplamanın yüzey kalitesi ve mikroyapı özelliği olan; porozite, lamellar mikroyapı, kimyasal bileşim ve faz yapısı özelliklere doğrudan etki eder. Kaplama özellikleri, kullanılan toz özellikleri, sprey teknolojisi ve kaplama şartlarından etkilenir [3].

Kaplamaların kalitesi, kullanılan tozların tane boyut dağılımına, tane şekli ve morfolojisi ile kimyasal bileşimine bağlıdır.

2.4.1. Toz morfolojisi

Termal sprey kaplama uygulamalarında kullanılan tozların morfolojisi, yoğunluğu ve akış özellikleri, tozun ergitme bölgesine beslenmesinde önemlidir. Tozun ergime bölgesine düzensiz beslenmesi, tozun homojen ergimemesine ve üretilen kaplamada kalınlık ve bilesim farklılığına yol açabilir. Sekil 2.13.'de kaplama uygulamalarında kullanılan tozların morfolojileri şematik olarak gösterilmiştir. Şekil 2.13.'den de görüldüğü gibi; kaplama uygulamalarında kullanılan tozlar çok farklı morfolojilere sahiptir. Kaplama prosesinde tozun enerji kaynağına beslenmesine ve sprey hüzmesi içinde ergime davranışına partikülün/tozun dış şekli etki eder. Küresel toz şekli, bir taraftan, akış davranışını (ergitme bölgesine mükemmel beslenebilme) geliştirirken diğer taraftan tozun minimum yüzey/hacim oranı nedeniyle ısı transferini ve buna bağlı olarak partiküllerin ergime davranışını olumsuz yönde etkiler. Buna karşılık, tozun düzensiz (irregular) şekilli (küçük dal benzeri çıkıntılarının) olması, tozun çok hızlı ergimesini sağlar. Bu tür morfolojiye sahip tozlar çok çabuk birbirlerine yapışır ve bunun sonucunda tozlar tabancanın ergitme bölgesine zavıf bir şekilde beslenir. Partikül şekli, üretim prosesiyle kontrol edilir. Toz yüzeyinin %100 düz, kimyasal olarak tamamen homojen, ve yoğun, ve düz olduğunu düşünmek yanlıştır. Partikül şekli, toz haznesinden plazma torkuna taşınmasında etkin unsurdur. Bundan dolayı, bu karakteristik özellik yüksek kalitede üretim için zaruri şarttır. Ayrıca partikül boyut dağılımı diğer bir önemli parametredir. Yoğun yapıda kaliteli kaplamalar elde

etmek için plazma alevine doğru optimum güzergah seçilmek durumundadır. İdeal morfoloji, küresel olmalıdır, iğnesel, düzlemsel partiküllerle karşılaşılsa da bu kaplamanın iyi özelliklerini azaltıcı bir durum oluşturur [5].

Tozların şekil ve boyutları kullanılan üretim sürecine ve yöntemine kuvvetle bağlıdır. Şekil 2.13.'da üretim yöntemine bağlı olarak elde edilen toz çeşitleri görülmektedir. Üretim prosesi, sinterleme, ergitme ve öğütme olan tozlar bulk, yoğun, iri veya ince taneli ve alaşım ürünü olabilir. Sinterlenmiş toz kütlesinde/tanesinde porozite varlığı söz konusudur. Aglomerasyon ile üretilmiş tozlar, küresel formda, porozitesi yüksek, nispeten orta ve ince taneli heterojen bir yapı arz etmektedir. Gaz veya su ortamında atomize edilen tozlar, küresel (gaz atomize) veya düzensiz küresel (su atomize) morfolojide olabilir [3].

<u>Toz Tipi</u> <u>Üretim</u>	Eritilmiş Öğütülmüş	Sinterlenmiş Öğütülmüş	aglomere sinterlenmiş	küresel	atomize edilmiş
				0	0000
Partikül Şekli	bulk-köşeli	bulk-köşeli	küresel	küresel	küresel -düzensiz
<u>Mikroyapı</u> <u>- Porozite</u> -Tane boyutu <u>Homojenite</u>	yoğun İri- ince alaşımlı	yoğun-poroz İri- ince alaşımlı	Poroz orta - ince alaşımlı (heterojen)	yoğun - içi boş orta - ince alaşımlı (heterojen)	poroz - içi boş ince alaşımlı

Şekil 2.13. Üretim yöntemine bağlı olarak elde edilen toz morfolojileri [3].

2.4.2. Toz tane boyutu

Kaplama uygulamalarında kullanılan tozun tane boyutu ve boyut dağılım aralığı en önemli parametrelerden biridir. Seçilen kaplama yöntemine bağlı olarak kullanılan tozun tane boyut dağılımı +45 -100 µm arasında değişmektedir. Genel kaide olarak 45 µm altındaki tozlar akıcılığı engellediği için termal sprey uygulamalarında
kullanılmazlar. İnce boyutlu tozlar, toz besleme ünitesinin tıkanmasına veya arızalanmasına yol açabilir. Uygulamalarda kullanılan her kaplama yöntemi ve her toz için belirli bir tane boyut dağılım aralığına ihtiyaç duyulur. Toz boyut dağılımında genellikle alt ve üst limitler belirtilir. Tane boyutunun seçilen kaplama yöntemine uygun olmaması veya istenen limitlerin çok altında veya üzerinde olması kaplama üzerine olumsuz etki yapar. Tane boyutunun çok büyük olması, tozların yeterince ergimemesine çok küçük olması ise ergitme bölgesine kötü beslenebilmesine yol açar [3].

Şekil 2.14.'de termal sprey yöntemine bağlı olarak kullanılan toz tane boyutu dağılımı verilmiştir.

Şekil 2.14. Termal sprey yöntemine bağlı olarak kullanılan toz tane boyutu dağılımı [3].

2.4.3. Tozların kimyasal karakterizasyonu

Tozlar kimyaları açısından üç gruba ayrılır. Elementel tozlar, göreceli olarak yüksek saflıkta malzemelerdir ve kimyasal analiz safsızlıkların miktarı üzerine yoğunlaşır. Öncelik karbon, oksijen ve azot seviyelerindedir. Bu değerler yanma teknikleri ile kolaylıkla ölçülebilir. Çeşitli tozlar ve teknikler kullanılarak yapılan çalışmalarda, % 10'a yakın farklılıklar gözlenmiştir. Bu yüzden yüksek hassasiyet yaygın değildir [11].

Ön karışımlı tozlar, iki veya daha fazla farklı tozun birleştirilmiş halidir. Buna yaygın bir örnek, ısıtıldığında bronzu oluşturan bakır ve kalay tozlarıdır. Safsızlık düzeyleri ve karışımın uygun biçimde bileşik hale getirilmesi, ön karışımlı tozlarla ilgili kimyasal sorunlardır. Tamamen bileşik hale getirilen kimyasal tozlar, tek bir parçacığı oluşturan bileşenlerin tamamını içerir. Bu tür tozlarda bileşim bütünlüğü ve safsızlıklar önemlidir. Normal analitik kimya teknikleri bütün tozlar için uygundur. ve bu teknikler emisyon veya floresan spektroskopisine dayanır [11].

Tozların kütlesel kimya bilgisinden öte, toz yüzeyi bileşimi önemli bir özelliktir. Yüzeyler genelde kirlilik bakımından zengindir. Bazı tozlarda oksijen, nem ve diğer uçuculardan kaynaklanan yüzey kirliliği, indirgeme testindeki ağırlık kaybı ile tahmin edilebilir. Bu işlem basit olarak tozun hidrojen içerisinde ısıtılması sonucu oksitlerin, polimerlerin ve indirgenebilir bileşenlerin, oluşturduğu % ağırlık kaybıdır. Metalik tozlarda, seramik kalıntı miktarı asitle çözülerek ölçülür. Metal içerisindeki oksit kalıntıları, metali çözen bir asitle belirlenebilir. Bazı malzemelerde, toz sertliği safsızlık düzeyi hakkında genel bir bilgi verir. Diğer durumlarda, dağılma ve ıslanma için önemli olan yüzey yükü, asitliğe karşı zeta potansiyometreler veya basit toz paketleme testleri ile ölçülür [11].

Bir tozun kütlesel kimyasal karakterizasyonu, istenilen hassasiyete bağlı olarak yağ analiz, emisyon veya alev spektroskopisi, atomik absorbsiyon, X-ışını kırınımı veya X-ışını floresan teknikleri ile elde edilir. Emisyon spektroskopisi ve X-ışını floresan teknikleri, yaklaşık 10 ppm gibi düşük hassasiyetlerle rutin analiz olarak kullanılır. İleri teknikler, analitik doğruluğu 0,01 ppm seviyelerine genişleten kapasitededir [11].

Elektron veya iyon demeti ile analizi, küçük hacimlerin kimyasal analizi için kullanışlıdır. Bununla birlikte bu mikro analiz teknikleri, tipik olarak yarı sayısal ve yavaş oldukları için rutin analizler için uygun değildir. Son olarak X-ışını fotoelektron spektroskopisi, Auger veya diğer özel teknikler kullanarak yüzey analizi mümkündür. Burada düşük enerji elektronları, yüzeye yakın bölgelerden uyarılır. Bu elektronlar, toz yüzeyinde mevcut kimyasal türlere ait bilgi aktarır [11].

2.5. Kalite Kontrol

Termal sprey kaplamalar, kaplama malzemesinin kimyası ve tipi, malzeme morfolojisi, partikül boyut dağılımı, sprey prosesi ve/veya uygulamalarına göre sınıflandırılabilir. Mühendislik uygulamalarında tozun ilk başlangıçtaki kimyası ve formu ortaya konulmalıdır. Kaplama malzemesi seçimi için bu ilişkiyi anlamak çok önemlidir. Bu durum Şekil 2.15.'te gösterilmiştir [5].

Şekil 2.15. Malzeme kimyası ve planlanan uygulama arasındaki ilişki [5].

Malzemeler arasında doğru karşılaştırma yapabilmek için uygun standartların ve test prosedürlerinin bilinmesi gerekir. Bu öngörüler tek başlarına değil, termal püskürtme prosesleri ile birlikte düşünülmelidir. Çünkü bu aynı zamanda kaplama kalitesini de etkiler. Dikkate alınması gereken bazı kalite kontrol testleri: toz üretimi, partikül boyutu, toz kalite kontrolü, malzeme kimyası, Hall debisi, püskürtme tabloları ve kullanım özellikleridir. Kullanılmak istenilen kaplama sistemine göre, mevcut standartların herhangi biri uygulanmalıdır [12].

Tozlara uygulanacak kalite kontrol prosesi, tozların yığılma ve kaplanma performanslarını değerlendirmeyi kasteder. Püskürtme parametrelerinin uygun olup olmadığı bıçakla kazıma testiyle anlaşılır [12].

Bir termal püskürtme operasyonu sırasında tork önüne konan bir engelden geçen tozların analizini öngörür. En iyi toz/püskürtme koşulları sıkı bir bağlanma yapısı için gereklidir [12]. Şekil 2.16.'de Tozlar için kalite kontrol prosedürleri şeması gösterilmektedir.

Şekil 2.16. Tozlar için kalite kontrol prosedürleri [12].

BÖLÜM 3. TERMAL BARİYER KAPLAMALARIN (TBK) ÜRETİM TEKNOLOJİLERİ

Termal bariyer kaplama (TBK) tabakalarından beklenen özelliklere bağlı olarak proses türü belirlenmektedir. Kaplama prosesleri yatırım, uygulama maliyetleri ile mikro yapısal özelliklere bağlı olarak farklılıklar sergilemektedir. Seramik esaslı üst TBK katmanının üretiminde genel olarak iki tür kaplama prosesinden yararlanılmaktadır. Bu yöntemler: atmosferik plazma sprey (APS) prosesi (1960'lı yıllar), teknolojisi 1980'li yıllara dayanan elektron ışını ile fiziksel buhar biriktirme (EB-PVD) prosesidir. EB-PVD prosesinin APS prosesine göre en önemli üstünlüğü mikro yapısal karakteristik özellikleri ile ilişkili olarak yüksek sıcaklıklarda çalışma koşullarında yüksek termal ve mekanik gerilmeler etkisi altında daha yüksek performansa sahip olmasıdır. Yatırım ve çalışma maliyetleri açısından değerlendirildiğinde APS prosesine olan ilgi daha fazladır [13]. Bağ tabakanın üretiminde ise atmosferik plazma sprey (APS), düşük basınçlı plazma sprey (LPPS), vakum plazma sprey (VPS), kontrollü atmosferde plazma sprey (KAPS) ve yüksek hızda oksi yakıt sprey (HVOF) prosesleri kullanılabilmektedir [13]. Bu bağlamda APS prosesi kaplama üretim hızı, proses kontrol kabiliyeti ve üretim maliyetleri açısından hem seramik tabakanın hem de bağ tabakanın üretiminde atomosferik koşullarda boyutsal sınırlama olmaksızın üretime imkan vermesi nedeniyle daha fazla tercih edilmektedir.

3.1. Plazma Sprey Kaplama Teknolojisi

APS teknolojisi, termal sprey (TS) kaplama teknolojileri ailesinin önemli bir parçasıdır. TS kaplama prosesleri metalik ve metalik olmayan toz/tel formundaki malzemelerin ergiyik/yarı ergiyik halde önceden yüzeyi hazırlanmış altlık üzerine hızla püskürtülerek yüzeyde hızlı katılaşma sonucunda kaplamanın biriktirilmesi esasına dayanmaktadır. TS prosesleri alev sprey, ark sprey ve plazma sprey olmak üzere üç ana grupta sınıflandırılmaktadır (Tablo 3.1.). TS prosesleri altlık yüzeyini termal etkilere, korozyona, aşınmaya karşı korumak amacıyla hızla yaygınlaşan bir kullanım alanına sahiptir. Bunun yanında aşınmış, boyutu değişmiş veya hasar görmüş parçalarda tamir ve dolgu amaçlı kaplama olanağı sağlamaktadır [14].

Proses	Alev Sprey		Plazma Sprey		Ark Sprey	
Reaksiyon	Yanma Reak.		Plazma Oluşumu		Elektrik Ark Oluşumu	
Sıcaklık	2200-3900 °C		5500-11000 °C		5500 °C	
Parçacık Hızı	30-180 m/sn, 600-1000 m/sn		240-1220 m/sn		240 m/sn	
Birikme Hızı	7-141	cg/saat	5-23 kg/saat		16 kg/saat	
Hiz/Ortam	Düşük hız	Yüksek Inz	Atmosferik	Kontrollü Atmosfer	Atmosferik	Kontrollii Atmosfer
Proses Smrfi	Toz alev sprey Tel alev sprey	HVOF D-gun	Düşük hızda APS Yüksek hızda APS	VPS- vakum LPPS- düşük basınç IPS-inert gaz SPS-koruyucu gaz KAPS-kont. atm. UPS- su altında	Ark sprey	-Vakum -Koruyucu gaz -İnert gaz
Özel Prosesler Çözelti plazma sprey SPPS, Lazer plazma sprey LPS, Rf plazma sprey Rf-PS, Soğuk sprey-CS						

Tablo 3.1. Termal sprey proseslerinin sınıflandırılması [14]

Termal sprey proseslerinde kaplamanın ergitilmesi için gerekli olan yüksek ısı, ark oluşumunu takiben plazma oluşumunda önemli rol oynayan Ar, He, H₂, N₂ plazma gazlarının karışımlarının iyonizasyon, dissosiye reaksiyonları ile veya H₂, Kerosen, Bütan, Propan gibi gazların O₂ ile yanma reaksiyonu sonucunda veya elektrodlar arasında oluşan yüksek enerjili ark oluşumu ile elde edilmektedir. Yüksek kinetik enerjiye ve yüksek termal enerjiye ulaşan parçacıklar ergiyik veya kısmi ergiyik formda yüzeye belirli bir mesafeden püskürtülmektedir. Püskürtme esnasında ergiyik forma giren yapıya droplet adı verilmektedir. Dropletlerin yüksek hızda yüzeye çarpmasıyla birlikte hızlı katılaşma ($\approx 10^6$ K/sn) gerçekleşmektedir. Yüzeyde hızla katılaşan bu yapılara splat adı verilmektedir. Splatların birbiri üzerinde katılaşarak sonucunda yüzeyde karakteristik lamelli bir yapışması kaplama yap1s1 gözlenmektedir. Dropletin sahip olduğu kinetik ve termal enerji ile püskürtme esnasında ortam, altlık yüzeyi ve plazma jeti ile parçacık etkileşimleri kaplama kalitesini belirlemektedir. Plazma sprey prosesinin yüksek ısı girdisine (5500-11000°C) sahip olması nedeniyle yüksek ergime noktasına sahip metalik, seramik, seramik+metalik ve çeşitli kompozit esaslı malzemelerin yüzeyde biriktirilmesine olanak sağlamaktadır. Yüzeyde püskürtme esnasında önemli bir ısı yükü veya termal gerilme sonucu distorsiyon söz konusu değildir. Plazma tabancalarında ve kaplama ünitelerinde gelişmeler aracılığıyla kaplama kalitesi ve birikme veriminde önemli gelişmeler gözlenmektedir. Plazma sprey kaplama ünitelerinde robotik uygulamalar ve uygun proses parametreleri ile arzulanan kaplama özellikleri ve kaplama kalınlıkları elde edilebilmektedir. Kaplama mikroyapısı proses parametreleri ile kolaylıkla kontrol edilebilmektedir [14].

3.2. Kaplama oluşumu ve mikroyapısal özellikler

Plazma sprey prosesinde kaplama mikroyapısı genel olarak; plazma jeti oluşumunu takiben tozun plazma jetine beslemesi ile plazma jeti içinde tozun uçuş davranışından, tozun ergime davranışından, dropletlerin yüzeye çarpma sonrası deformasyon davranışından, dropletlerin hızla katılaşarak splat oluşumu ve splatlar arası etkileşimlerden etkilenmektedir. Plazma püskürtme prosesi için ideal durum plazma jetine enjekte edilen tüm toz parçacıklarının altlık yüzeyine ulaşana kadar geçen süre içinde ergime sıcaklığının üzerinde sıcaklıklara erişmesi ve toz parçacıklarının tamamen ergimiş halde olabildiğince yüksek hızlarda yüzeye ulaşması arzulanmaktadır [16]. Yüksek parçacık hızları parçacığın ergimesi için gerekli sürenin kısalmasına dolayısıyla yetersiz ergime oluşumlarına neden olabilmektedir. Görüleceği üzere uygun ergitme koşulları ile toz parçacıklarının ivmelendirilmesi arasında uyum kaplama yapısını belirlemektedir [15]. Plazma sprey ile üretilen lamelli kaplama yapısı oldukça heterojen bir yapıya sahiptir. Kaplama mikroyapısında proses parametrelerine bağlı olarak farklı boyut, biçim ve dağılımda porozite, çatlak, ergimemiş parçacık oluşumları gözlenebilmektedir (Şekil 3.1.). Arzulanan kaplama kalınlığı ve birikme verimi; plazma tabancası proses parametrelerine bağlı olarak, toz besleme hızı, altlık yüzeyine göre tabancanın bağıl hızı ve paso sayısı ile kontrol edilmektedir [16].

Şekil 3.1. Termal sprey prosesleri ile üretilen kaplamaların tipik mikroyapısal özellikleri [16].

Plazma sprey prosesi ile üretilen kaplamaların sertlik, porozite ve mekanik dayanım gibi özellikleri doğrudan mikroyapı ile ilişkilidir. Örneğin mikroyapıda porozite oluşumuna neden olan proses parametrelerinin belirlenmesi kaplama yoğunluğu ve yapısma özelliklerinin kontrol edilebilmesini sağlanmaktadır. Bu nedenle mikroyapı oluşumunu ve kaplama kalitesini etkileyen faktörlerin iyi bir şekilde anlaşılması gerekmektedir. Kaplama yapısında farklı konum ve boyutlarda mevcut birçok süreksizlik türü plazma tabancası parametrelerine bağlı olarak kaplama performansını önemli ölçüde etkilemektedir [17-19]. Arayüzeye dik porlar ve çatlaklar kaplamanın rijitliğini azaltmaktadır. Bu durum termal şok direnci açısından oldukça önem taşımaktadır. Bu şekilde mevcut süreksizlik (segmentasyon çatlakları) yapısı bilinçli olarak üretilerek kaplama termal çevrim ömrü artırılmaya calısılmaktadır. Termal yalıtım özelliği büyük boyutlu porozite ve delaminasyonlar ile geliştirilmektedir. Yatay çatlakların mevcudiyeti ise üst seramik tabaka ile ara bağ tabaka arasında gelişerek kaplamanın dökülmesine neden olmaktadır. Genellikle bu tür dökülme problemleri kaplamalarda açık kenarlarda daha fazla karşılaşılmaktadır. Şekil 3.2.'de görüleceği üzere seramik kaplama tabakası birçok farklı boyutlarda ve konumlarda süreksizlik içermektedir. Şekil 3.3.'de kaplama kalitesine etki eden faktörler şematik olarak gösterilmektedir.

Şekil 3.2. Zirkonya esaslı termal bariyer kaplamanın kırılma kesiti görüntüleri ve mevcut süreksizlikler [16].

Şekil 3.3. Kaplama kalitesine ve dayanımına etki eden faktörler [15].

BÖLÜM 4. SrZrO3 KORUYUCU KAPLAMALAR

4.1. Giriş

Malzemelerin yüzey özelliklerinin iyileştirilmesi, çevresel etkilere karşı korunabilmesi ve arzu edilen özelliklerin sağlanması için yüzeylerinin koruyucu bir tabaka ile kaplanması yaygın olarak kullanılmaktadır. Malzemelerde genel olarak yüksek sıcaklığa, korozyona ve aşınmaya karşı dirençli yapıların elde edilmesi istenilmektedir. Bu yapıların oluşturulması da malzeme yüzeyine farklı tekniklerle (CVD, PVD, termal sprey) metal, seramik, kompozit, plastik ve bunların kombinasyonu şeklinde biriktirilmesi ile sağlanabilmektedir.

Uçak endüstrisinde (türbin paleleri, motor yanma odaları), uzay araçlarında, roket nozullarında, enerji santrallerinde (gaz türbinleri), otomotiv endüstrisinde (piston, subaplar, motor bileşenleri), ısı değiştiricilerde, izolasyon amaçlı ve yüksek sıcaklığa maruz kalan malzemelerin yüzeyini mekaniksel, fiziksel, kimyasal ve termal etkilere karşı korumak ancak seramik esaslı bir tabaka ile kaplanarak sağlanmaktadır. Amaç yüzeyde ısı kayıplarını azaltmak ve yüksek verimlilik sağlamaktır.

Bir içten yanmalı motorun performansını arttırmak, üretilen iş ve ısı enerjisinin büyük bir yüzdesinin faydalı enerji olarak kullanılmasını sağlamaktır. İçten yanmalı motorlarda iş üreten enerji toplam enerjinin, %30-40'ı civarında olup, geri kalan enerjinin %60-70'i ise motor parçalarını yüksek sıcaklıktan koruma amacıyla yapılmış olan soğutma sistemi ve 500- 600 °C sıcaklıktaki egzoz gazları tarafından atmosfere atılmaktadır [20].

Bu amaçla geliştirilmiş olan yüksek sıcaklıktaki fiziksel, kimyasal, mekanik ve termal etkilere karşı dayanım sağlayan seramik esaslı kaplamalara termal/çevresel

bariyer kaplamalar adı verilmektedir. Stronsiyum Zirkonat (SrZrO₃) 1300°C'nin üzerindeki sıcaklıklarda kullanılan termal bariyer kaplama uygulamalarında YSZ (Yitriya Stabilize Zirkonya) kaplama malzemesine alternatif olarak geliştirilmiştir [2]. SrZrO₃ kaplamaları açıklamadan önce termal bariyer kaplamaları açıklamak gerekmektedir. SrZrO₃ kaplamalar hakkında daha detaylı bilgi sonraki bölümde anlatılacaktır.

4.2. Termal Bariyer Kaplamalar

Uzay araçlarında, uçak motorlarında ve gaz türbinlerinin yüksek sıcaklığa maruz kalan bileşenlerinde, ısı kaybının ve gaz salınımlarının azaltılması için verimliliğin artması gerekmektedir. Daha yüksek yanma sıcaklığı hem yüksek verimlilik hem de düşük gaz salınımı isteklerini karşılamaktadır. Daha yüksek yanma sıcaklığını sağlamak ancak daha yüksek sıcaklıklara dayanıklı malzeme kullanımı ile mümkündür. Günümüzde daha yüksek sıcaklıkta yanma sağlanması, yüksek sıcaklıktan izole eden seramik esaslı termal/çevresel bariyer kaplamalar, metal yüzeyine uygulanmaktadır.

TBK (termal bariyer kaplama) sistemi, biri metalik diğeri seramik esaslı olmak üzere iki farklı tabakadan meydana gelir. Metalik tabaka, bağ tabakası olarak adlandırılır ve MCrAIY (M: Co, Fe, Ni) olarak bilinen süper alaşım esaslı bir kaplamadır. Bağ tabakasının TBK'lardaki fonksiyonu, altlığı anti-oksidan olarak korumak ve üst seramik tabakanın altlık yüzeyine yapışmasını sağlamaktır. Seramik üst tabaka ise; genellikle termal bariyer kaplamalarının vazgeçilmez malzemesi olan ısıl iletkenliği düşük, termal genleşme katsayısı nispeten yüksek, muhtelif katkılarla (Örn. Y₂O₃, CaO, MgO, CeO₂) kimyasal kararlılığı sağlanmış ZrO₂ (zirkonyum oksit)'tir [21].

Modern gaz türbin motorlarında çalışma sıcaklık ve şartlarının şiddetlenmesi, servis ve bakım süreci maliyetleri de göz önüne alındığında daha uzun kullanım sürelerine erişilmesi bu gereksinimleri karşılayacak malzeme seçimini sınırlamakta ve zorlaştırmaktadır. Bu nedenle sürekli olarak daha üstün özelliklere sahip TBK

malzeme kompozisyonu arayışı sürdürülmektedir. TBK malzemesi seçiminde temel gereksinimler şunlardır [25];

- Altlık malzeme ile genleşme katsayılarının yakın veya eşdeğer olması,

- Altlık malzemeye iyi yapışma direnci,
- Yüksek ergime noktası,

- Oda sıcaklığı ile çalışma sıcaklığı arasında faz dönüşümü göstermemesi (faz stabilitesi),

- Düşük termal iletkenlik,
- Kimyasal inertlik (yakıt atıkları ile reaksiyon riskine karşın),
- Yüksek erozyon direnci,
- Poroziteli mikroyapının kararlılığı (düşük sinterleşme hızı).

Şekil 4.1.'de termal bariyer kaplama yapısı gösterilmektedir [22].

Şekil 4.1. Tipik termal bariyer kaplama yapısı [22].

Gaz türbin motorları gibi yüksek sıcaklık uygulamalarında TBK malzemesi olarak en iyi performans gösteren ve en yaygın kullanılan malzeme yitriya stabilize zirkonyadır (7-8 YSZ). YSZ esaslı malzeme CaO veya MgO ile stabilize zirkonya esaslı kaplama malzemesine göre Na₂SO₄ ve V₂O₅ korozyonuna karşı üstün performans görülmektedir [23]. Şekil 4.2.'de bir gaz türbin kanatçığına uygulanmış termal bariyer tabakası ve kesit görüntüsü yer almaktadır.

Şekil 4.2. Bir gaz türbin kanatçığı ve üzerine uygulanmış termal bariyer kaplamanın kesit görüntüsü [24].

Belirtilen sınırlayıcı özellikler nedeniyle sayılı malzeme TBK malzemesi olarak kullanılabilmektedir. TBK malzemesi olarak bazı seramik malzemelerin avantaj ve dezavantajları Tablo 4.1.'de sergilenmektedir.

		r		
	-Yüksek ergime sıcaklığı	-1873 K'de sinterlenme		
	-Düşük termal iletkenlik			
SrZrO ₃	-Yüksek termal genleşme			
	katsayısı			
	-Yüksek termal genleşme	-1473 K üzerinde sinterlenme		
	-Düşük termal iletkenlik	-1443 K üzerinde faz dönüşümü		
7-8 YSZ	-Yüksek termal şok direnci	-Korozyon		
		-Oksijen geçirgenliği		

Tablo 4.1. TBK malzemesi olarak YSZ ve SrZrO3 seramik malzemelerin avantaj ve dezavantajlari [25]

TBK'larda altlık malzemesi de önemli bir bileşendir. Altlık malzemesi yüksek sıcaklığın verdiği etkiye dayanabilecek özellikteki malzemelerden seçilmelidir. Yüksek sıcaklığa maruz kalan seramik kaplamanın termal iletkenliği düşük olmalıdır. Çünkü termal iletkenlik arttıkça ısıl yalıtımda düşmektedir. Yüksek sıcaklığa maruz kalan termal bariyer tabakasından kaplandığı altlık malzemesine de

bir miktar ısı geçişi olmaktadır. Dolayısıyla seramik kaplanmış olan altlık malzemesi de yüksek sıcaklığa maruz kalmaktadır. Bu yüzden altlık malzemesi de yüksek sıcaklıktaki mekaniksel, fiziksel, kimyasal ve termal etkilere karşı dayanıklı malzemelerden seçilmelidir. Malzemelerin sıcaklıkla mukavemetini gösteren tipik bir grafik Şekil 4.3.'te gösterilmiştir.

Şekil 4.3. Çeşitli malzemelerin spesifik mukavemet-sıcaklık eğrileri [2].

Yukarıdaki eğriye göre Ni esaslı süper alaşımlar en yüksek sıcaklıkta en iyi spesifik mukavemete sahip altlık malzemesi olarak görülmektedir. TBK'larda kullanılan seramik malzemeler altlık malzemesini belli bir sıcaklığa kadar koruyabilmektedir. Türbin bileşenlerinde kullanılan süper alaşımların tipik ergime dereceleri 1230-1315°C arasındadır. Yanma gazlarının sıcaklığı ise 1370°C'nin üzerindedir.

Günümüz gaz türbini motorlarında yüksek sıcaklıklara maruz kalan kesitlerde (türbin kanatları, nozullar, yanma odası vb.) kullanılan metalik yapı bileşenlerinin ergime sıcaklığına ulaşan sıcaklıklardaki (1400-1500°C) davranışı ve dayanıklılık (sürünme, oksidasyon, termal yorulma vb.) özellikleri motorun çalışma performansını sınırlayan en önemli etkenlerdir. Servis sıcaklıklarının metallerin ergime sıcaklıklarına yaklaşması ve üzerine çıkması metallerin (süper alaşımlar, titanyum alaşımları) korumasız bir şekilde kullanımını önemli ölçüde sınırlamaktadır. Bu nedenle seramik esaslı termal bariyer kaplamalar yüksek gaz sıcaklıklarından metalik bileşenleri koruma görevini üstlenmektedirler. YSZ'nin oksijeni geçirmesi ile yüksek sıcaklıklarda ortaya çıkan oksidasyon sorunları ve metal ile seramik kaplamalar arası termal genleşme uyumsuzlukları kaplamaların yüzeyden dökülmesine, delaminasyona ve çatlak oluşumlarına yol açmıştır. Bu durumda tasarımcılar gaz türbin motor teknolojisinde metaller yerine alternatif olarak seramik esaslı parçalar kullanmaya başlayarak teknolojik bir devrim başlatmışlardır (Şekil 4.4.).

Şekil 4.4. Altlık malzemesinin değişimine bağlı olarak ısıl dayanımların zamanla artışı [2].

Günümüzün termal bariyer kaplamaları ile birlikte çalışan süper alaşımlar yüksek sıcaklık kendi limitlerine doğru ilerlemektedirler. Günümüzde oksit seramikleri en yüksek ısıl dayanıma sahip altlık malzemeleri olarak görülmektedir. Ancak oksit seramiklerinin kırılma tokluklarının düşük olması bu malzeme grubunun altlık malzemesi olarak kullanılmasını kısıtlamaktadır. Bundan dolayı daha yüksek çalışma Özellikle silisyum esaslı malzemeler (SiC takviyeli SiC seramik matrisli kompozitler ve monolitik Si₃N₄) bu konuda yoğun ilgi görmektedir. Silisyum esaslı seramiklerin yanma ortamında hızlı bir büzülme göstermesi ve su buharı ile reaksiyonu etkisiyle silisyum kabuğunun hızlı bir yüzey bozunumuna neden olması dikkat çekici olup, önlem alınmasını gerektirmektedir. Aksi halde yanma ortamı içerisinde eriyik tuzların silika kabuğu üzerine olumsuz etkileri silisyum esaslı seramik bileşenlerin hasara uğramasına neden olmaktadır. Bu nedenle gaz türbin motorlarında sıcak kesitlerde kullanılan silisyum esaslı seramik bileşenlerin uygulamaları için seramiği ortam etkilerinden güvenilir bir şekilde korumak amacıyla dıştan çevresel bariyer (ÇBK) kaplamalar veya diğer adıyla koruyucu kaplamalar geliştirilmiştir. Kullanım alanları ve çalışma sıcaklıklarının artması ile SiC ve Si₃N₄ sıcaklığa maruz kaldıklarında yüzeylerinde koruyucu SiO₂ tabakası meydana getirirler. Ne yazık ki gaz türbini ortamında kullanıldıklarında bu malzemelerin kullanımını sınırlayacak

bazı temel faktörler vardır. Na, V ve S elementlerinin varlığı gaz türbini ortamında korozif özellik taşıyacak koruyucu silika tabakası ile reaksiyona girecek Na₂O, V₂O₅, SO₂, ve SO₃ gazlarını oluşturarak düşük ergime dereceli silikatlar meydana getirirler (Şekil 4.5.). Bu silikatların oluşumu birkaç ağır boşluk hatalarını doğurur ki malzeme kaybı ve porozite de artış meydana gelir [26].

Şekil 4.5. Silika tabakasının oluşumu ve bozunması [2].

Bu reaksiyonlar sonucu malzemede meydana gelen Si kayıpları porozite artışına, boşluk hatalarına ve dolayısı ile malzemede hasara yol açmaktadır. Bu amaçla TBK/ÇBK'lar veya koruyucu kaplamalar geliştirilmiştir. Başarılı bir çevresel bariyer kaplama için istenilen şartlar Şekil 4.6.'da gösterilmiştir. Bunlar çevresel bariyer kaplamanın çok katlı tabakalar arasında ve çevresel bariyer kaplamalı kompozit malzemelerin ara yüzeyleri arasında kimyasal kararlılık ve su buharı kararlılıkları, düşük termal genleşme ve gerilimleri en aza indirmek için faz kararlılıkları ve yanma ortamlardaki çevresel dayanıklılıktır. Aynı zamanda çevresel bariyer kaplama için ısı yalıtım potansiyelini en yükseğe çıkarmak için düşük ısıl iletkenliğe sahip olması istenmektedir.

Şekil 4.6. Termal bariyer kaplamaların genel yapısı ve özellikleri [27].

TBK'lar veya koruyucu kaplamalar belirtilen özellikleri sağlamak durumundadır. Bu özellikleri sağlayan birçok malzeme grubu mevcuttur. Bu malzemeler mullit, kalsiyum alümina silikat (CAS), yitriyum silikat, baryum stronsiyum alümina silikat (BSAS) ve nadir toprak elementlerinin (NT) silikatları gibi sınırlı malzeme grubudur. Tablo 4.2.'de çeşitli TBK/ÇBK malzemeleri ve özellikleri yer almaktadır [28].

Malzeme Özellik	Mullit	BSAS	$NT_2Si_2O_7$
Silika aktivitesi	1,0	<0,2	<0,2
Termal genleşme			
katsayısı	5,3	5,0-5,2	5,0-8,2
(TGK) (10 ⁻⁰ ⁰ C)			
Sıcaklık limiti (⁰ F)	>2400	>2400	>2400
Avantajları SiC ile T		İyi TGK, düşük	İyi TGK, düşük
	uyumluluğu	silika aktivitesi	silika aktivitesi

Tablo 4.2. Termal bariyer kaplamalarda kullanılan çeşitli kaplama malzemeleri ve özellikleri [28]

Tablo 4.2.'deki çeşitli TBK malzemeleri ve bu malzemelerin kombinasyonu ile koruyucu kaplamalar uygulanmaktadır. Koruyucu kaplamaları uygulamak için farklı kaplama teknikleri geliştirilmiştir. İstenilen kaplama özelliğine göre farklı tekniklerle koruyucu kaplamalar altlık üzerine uygulanmaktadır. Termal bariyer kaplamalar CVD, PVD, termal sprey kaplama teknolojileri, sol-jel, vakum infiltrasyon ve birçok kaplama tekniği ile uygulanabilmektedir.

4.3. SrZrO₃ Kaplamalar

4.3.1. SrZrO₃ sistemi

SrZrO₃ (stronsiyum zirkonat) kaplamalar gaz türbinlerinde, uçak motorlarında ve yüksek sıcaklığa maruz kalan yapı bileşenlerinde termal bariyer kaplama (TBK) amaçlı olarak uygun bir altlık malzemesi üzerine biriktirilmektedir. SrZrO₃ kaplamalarda temel mantık TBK mantığı ile paraleldir ve Si esaslı (SiC, Si₃N₄ gibi) ve seramik matrisli kompozit (SiC/SiC, SiC-C/C) altlık malzemelerini yüksek sıcaklıkta fiziksel, kimyasal, mekaniksel ve termal etkilere karşı korumaktır.

SrZrO₃ kaplamaları anlayabilmek için ilk olarak SrZrO₃ kaplama malzemesini anlamak gerekmektedir. SrZrO₃ yitriya stabilize zirkonya (YZS) malzemelere alternatif olarak TBK uygulamaları için ürerilmiştir. SrZrO₃ kaplamaların termal genleşme katsayısı YSZ kaplamlara göre 1200°C'nin üzerinde en az %4.5 daha fazladır. SrZrO₃'e ait bazı özellikler Tablo 4.3.'de belirtilmiştir. SrZrO₃'in mekanik özellikleri YSZ'ye nazaran daha düşük young modülü, sertlik ve kırılma tokluğu gösterir. Sinterleme oranı YSZ kaplamalarınkinin yarısından az olduğu görülmüştür [29].

Kristal yapı	Ortorombik
	a 0.5816
Latis parametreleri, nm	b 0.8225
	c 0.5813
Ergime sıcaklığı, K	2883
Termal genleşme katsayısı, K ⁻¹	10.9 ×10 ⁻⁶
Young Modülü, E	269
Sertlik, Vickers Hv	5.74
(Kararlı Hal) Sinterleme oranı 1200°C'de, s ⁻¹	1.04 ×10 ⁻⁹

Tablo 4.3. SrZrO₃'e ait bazı mekanik özellikler [30]

Perovskitler (ABO₃) yüksek ergime noktası, düşük termal iletkenlik ve yüksek termal genleşme katsayısı karakterize ederler. A yada B iyonlarının özellikleri malzemenin özelliklerini seçici bir şekilde etkiler. İdeal perovskit kübik simetridir. Üç boyutlu olarak düşünülürse, köşelerde BO₆ (ZrO₆) oktahedra, B katyonu bu oktahedraların merkezinde, A katyonu onların arasındaki boşlukların merkezindedir. Oktahedral bükülme perovskitlerde çokça görülen bir distoriyondur. Bu BO₆ oktahedranın aynı zamanda yapıyı koruyarak bükülmesi anlamına gelir [29].

SrZrO₃'e ait kristal yapı Şekil 4.7.'de polimorfik dönüşüm sıcaklıkları ise Şekil 4.8.'de belirtilmiştir [31].

Şekil 4.7. SrZrO3 ortorombik kristal yapı[31].

SrZrO₃ üç sıcaklıkta faz dönüşümü gösterir. Bu sırada diğerlerine göre küçük hacim değişiklikleri gösterir. Aşağıda Şekil 4.8.'de SrZrO₃'ın gösterilen faz dönüşüm sıcaklıkları ısı kapasitesi ölçümü ile, sadece ortorombikten geçiş termal genleşme ölçümleriyle bulunmuştur [29].

750°C	840°	°C	1130°C	
Ortorombik \rightarrow	Ön- tetragonal	\rightarrow Tetragon	al \rightarrow	Kübik
sürekli	c/a < 1 sür	reksiz c/a > 1	sürekli	

Şekil 4.8. Stronsiyum-Zirkonat'ın polimorfik dönüşüm sıcaklıkları [29].

Şekil 4.9.'da ZrO₂-SrO faz diyagramına ait faz dönüşümleri, yeni oluşan yapılar ve dönüşüm sıcaklıkları verilmiştir. Faz diyagramında da görüldüğü üzere SrZrO₃ fazı ZrO₂ - %50mol SrO oranında oluşmaktadır. SrO'nin buharlaşarak kayba uğraması göz önüne alınarak SrZrO₃ fazını üretmek için 1.136 atomik oranı baz alınarak kaplama tozu üretimi gerçekleştirilmiştir.

Şekil 4.9. ZrO₂-SrO faz diyagramı [29].

750°C'nin altındaki sıcaklıklarda SrZrO₃ malzemesinin termal genleşme katsayısı YSZ' den daha düşüktür fakat SrZrO₃ kaplama malzemesinin test sıcaklıklarında % 4.5 daha fazladır (Şekil 4.10). Büyük termal genleşme katsayısı termal genleşmede görülen bağ tabaka ile kaplama tabakası arasındaki stresi azaltır. Kaplamalara yapılan termal genleşme ölçümleri SrZrO₃ malzemesinin yüksek sıcaklıklarda kullanılabilirliğini göstermiştir. SrZrO₃ 1200°C üzerindeki servis koşullarında plazma sprey kaplamaların kullanımına olanak sağlar. Ayrıca Şekil 4.11.'te SrZrO₃'ın termofiziksel özellikleri verilmiştir.

Şekil 4.10. SrZrO3 Termal genleşme katsayısı (TGK) (1600°C' de 6 saat) [29].

Şekil 4.11. SrZrO3'ın (1600°C'de 6 saat) termofiziksel özellikleri [29].

SrZrO₃ kaplama malzemesi YSZ'ye göre daha yüksek ergime sıcaklığına sahiptir. Bu özellik kaplamaların yüksek sıcaklıklarda kullanımına olanak sağlar (Tablo 4.4.). Tablo 4.5.'te de SrZrO₃ ve YSZ'nin mekanik özellikleri verilmiştir.

Malzeme	Ergime Noktası, K		
YSZ	~2600 K		
SrZrO ₃	3000 K		

Tablo 4.4. SrZrO3 ve YSZ'nin ergime noktaları [32]

Tablo 4.5. SrZrO3 ve YSZ'nin mekanik özellikleri [29]

Malaama	Young modulü	Sertlik	Kırılma tokluğu	
Marzeme	(GPa)	(GPa)	$(MPa.m^{1/2})$	
SrZrO ₃	170 ± 4	9.2 ± 0.1	1.5 ± 0.1	
YSZ	210 ± 10	13± 1	1 – 2	

BÖLÜM 5. DENEYSEL ÇALIŞMALAR

5.1. Deneysel Program

Mevcut çalışmanın amacı kullanımı hızlı bir şekilde artan Yitriya Stabilize Zirkonya (YSZ) kaplamalar yerine daha yüksek sıcaklıklarda (\geq 1300°C) kullanılabilen SrZrO₃ kaplamaların üretimidir. Çalışma iki aşamadan oluşmaktadır. Öncelikle ticari olarak SrZrO₃ kaplama tozunun temin edilememesinden dolayı; SrZrO₃ kaplama tozu katıkatı faz sinterlemesi yöntemi ile üretilmiş, ikinci aşamada ise üretilen SrZrO₃ tozunun ısıya dayanıklı paslanmaz çelik altlık üzerine atmosferik plazma sprey kaplama tekniği ile kaplanması gerçekleştirilmiştir.

SrZrO₃ tozu üretimi için Sr/Zr atomik oranı 1.136 mol (50,2g ZrO₂+70,96g SrCO₃) oranındaki toz karışımı saf su ile karıştırılarak bilyalı değirmende bilya kullanılmadan 2 saat homojen karışım sağlanmış ve sonra etüvde 100°C'de 24 saat kurutulmuştur. SrZrO₃ kaplama tozuna yeterli akıcılık kazandırmak için hidrolik presle tabletler halinde şekillendirilen tozlar (5g'lık numuneler halinde 2.5cm'lik paslanmaz çelik kalıp kullanılarak 2 ton yük altında) farklı sıcaklık ve sürelerde sinterleme işlemine maruz bırakılmıştır. 1250°C ve 1350°C 24 saat sinterlenen ve öğütülüp elenen tozların yeterli akıcılıkta olmaması nedeni ile aynı oranlarda tartılıp hazırlanan SrZrO₃ toz bileşimi 1600°C'de 4 saat süre ile hava atmosferinde katı-katı olarak sinterlenmistir. Sinterlenen tabletler halindeki SrZrO₃ numuneler havanda öğütüldükten sonra eleme işlemine tabi tutulmuş ve +45-125 µm toz boyut aralığındaki tozlar kaplama tozu olarak ayrılmıştır. Ayrıca Arşimet prensibi ile yoğunluk testi için aynı atomik oranlar kullanılarak hazırlanan SrZrO₃ toz bileşimi bilyalı değirmende yaş olarak homojen karıştırma ve etüvde kurutma işleminden sonra, 1400°C'de 2 saat SrCO₃'ın parçalanması için beklendikten sonra toz halinde 1600°C'de 4 saat sinterlenmistir.

Şekil 5.1. SrZrO3 kaplama tozunun ve kaplamalarının üretim akım şeması.

Sinterlenen tozlar havanda öğütüldükten sonra hidrolik pres yardımıyla tabletler haline getirilerek 1600°C'de 6 saat daha sinterleme işlemine tabi tutulmuştur. Sinterleme sıcaklığında SrCO₃'ın parçalanma ve SrZrO₃'ın oluşum reaksiyonları eşitlik 5.1. ve 5.2'de görülmektedir [33].

$$SrCO_3 \rightarrow SrO + CO_2$$
 (5.1)
 $SrCO_3 + ZrO_2 \rightarrow SrZrO_3 + CO_2$ (5.2)

Sinterlenen numuneler MSE marka pres yardımıyla tabletler halinde şekillendirilmiştir. Şekillendirilen 2,5 cm çapındaki tabletler 1600 °C'de 6 saat süre ile sinterlenmiştir. Tüm sinterleme aşamalarında MSE marka asansörlü sinterleme firini kullanılmış olup; ısıtma-soğutma hızı 10°C/dk olarak uygulanmıştır.

Kullanılan başlangıç toz malzemeleri ZrO₂, SrCO₃ ve üretilen SrZrO₃ kaplama tozunun, SEM (Taramalı elektron mikroskobu) ve EDS analizi ile mikroyapısı incelenmiş XRD (X-ray difraktometre) ile faz analizi tespit edilmiştir. Şekil 5.1.'de SrZrO₃ kaplama tozunun ve kaplamaların üretim akım şeması verilmiştir.

SrZrO₃'nin plazma sprey yöntemi ile kaplanması öncesinde kullanılan paslanmaz çelik altlık malzemeleri dikkatli olarak ultrasonik banyoda temizlenmiş ve sonrasında kumlanarak üretimden gelen kirliliklerin giderilmesi ve yüzey pürüzlülüğü sağlanmıştır. Üretilen ve karakterize edilen SrZrO₃ kaplama tozları plazma sprey kaplama prosesi ile paslanmaz çelik altlık malzemeler üzerine kaplanmıştır. Altlık ile SrZrO₃ kaplama tabakası arası NiCrCoAlY bağ tabaka kaplaması yapılmıştır. Kaplama işlemi sonucu elde edilen farklı bileşimlerin kaplama sonrası yüzey pürüzlülük değeri (Ra), Mitutoyo Suftest 211 marka cihazla µm cinsinden ölçülmüştür.

Üretilen SrZrO₃ kaplamaların karakterizasyonu için ara yüzey mikro yapısı optik ve SEM mikroskopları yardımıyla detaylandırılmış, XRD faz analizi ile kaplama faz yapısı tayini edilmiş, kaplamaların sertliği Vickers sertlik ölçüm testiyle ölçülmüştür. 3cm çapındaki paslanmaz çelik altlıklar üzerine yapılan SrZrO₃ kaplamaların termal şok testi 1000 ve 1200°C sıcaklıklarda 5 dk fırında ısıtma 2 dk fırın dışında hava ile soğutma şeklinde 1 çevrim toplam 7 dk olarak belirlenmiştir. Termal şok testi şartları Saral'ın YSZ kaplamalara uygulamış olduğu termal şok testi ile aynı şartlarda gerçekleştirilmiş olup, mevcut çalışmada YSZ'ye alternatif olarak geliştirilen SrZrO₃ kaplamaların termal şok testi sonuçları ile karşılaştırılacaktır [35].

5.2. Deneysel Çalışmalarda Kullanılan Cihazlar

5.2.1. Tek eksenli karıştırıcı

Toz üretimi esnasında dikkat edilmesi gereken en önemli etkenlerden birisi homojen karışımın sağlanmasıdır. Bu tez çalışmasında tozların homojen bir şekilde karışımını sağlamak amacıyla Şekil 5.2.'de görülen MSE marka tek eksenli karıştırıcıda 200 rpm hızla 3 saat süre ile öğütme işlemi uygulanmıştır.

Şekil 5.2. Tozların karıştırılmasında kullanılan MSE marka tek eksenli karıştırıcı.

5.2.2. Kurutma fırını (etüv)

Hem öğütme ve karıştırma işleminde bünyede bulunan suyun uzaklaştırılması hem de plazma sprey kaplama uygulamasından önce kullanılan tozda mevcut bulunan nemi tozdan uzaklaştırmak için 100°C'de 24 saat süre ile Ecocell marka kurutma fırını (Şekil 5.3.) kullanılmıştır.

Şekil 5.3. Ecocell marka kurutma firini (etüv).

5.2.3. Numune kalıplama/Press

Sinterleme işlemini kolaylaştırmak için Şekil 5.4.'teki MSE marka kalıplama cihazında başlangıç karışımındaki tozlar 5 g'lık numuneler halinde 2 ton yük altında 2.5 cm çaplı paslanmaz çelik kalıplar kullanılarak preslenmiştir.

Şekil 5.4. MSE marka presleme cihazı.

5.2.4. Sinterleme fırını

Bu çalışmada toz karışımlarının sinterlenmesine yardımcı olmak amacıyla, 1600°C'ye çıkabilen MSE marka asansörlü sinterleme fırını (Şekil 5.5.) kullanılmıştır. Sinterleme işlemi iki kademeli olarak gerçekleştirilmiştir. Hazırlanan

SrZrO₃ toz karışımları 1250°C 24 saat, 1350°C 24 saat, 1600°C 4 saat sürelerde sinterlenmiş ve öğütülüp eleme işlemine tabi tutulmuştur. Uygulanan 3 farklı sinterleme şartlarında üretilen tozların plazma sprey kaplama işlemi için yeterli akıcılıkta olmaması üzerine, en yüksek sıcaklıkta sinterlenen tozlar, preslenmiş tabletler halinde tekrar sinterleme işlemine tabi tutulmuşlardır. Şekillendirilen 2.5 cm çapındaki tabletler 1600°C'de 6 saat süre ile sinterlenmiştir. Tüm sinterleme aşamalarında MSA marka asansörlü sinterleme fırını kullanılmış olup; ısıtma-soğutma hızı 10°C/dk olarak uygulanmıştır.

Şekil 5.5. Sinterleme işleminin yapıldığı MSE marka kamara tipi sinterleme firini.

5.2.5. Halkalı öğütücü değirmen

Sinterlenmiş tabletlerin kaplama toz boyut aralığına indirgenmesi için RETSCH marka halkalı değirmen (Şekil 5.6.) kullanılmıştır.

Şekil 5.6. RETSCH marka halkalı değirmen.

5.2.6. Elek analizi

Plazma sprey kaplama uygulamalarında kullanılan tozlar belirli bir partikül boyut aralığına (+45 -125 μ m) sahip olmalıdır. Üretilen SrZrO₃ kaplama tozları eleme işlemi uygulanmasıyla istenilen toz boyut aralığına getirilmiştir. Bu işlem için Fritsch marka titreşimli elek sistemi (Şekil 5.7) kullanılmıştır.

Şekil 5.7. Eleme işleminde kullanılan RETSCH marka titreşimli elek sistemi.

5.2.7. Toz Akış hızı ölçüm cihazı

Üretilen SrZrO₃ kaplama tozlarının akıcılık özellikleri Şekil 5.8.'de görülmekte olan HALL Flowmeter toz akış hızı ölçüm cihazı ile gerçekleştirilmiştir.

Termal sprey kaplama tozları için en önemli kalite kriteri, kaplama malzemesinin düzenli bir şekilde tabancaya beslenmesini sağlayan akışkanlık kabiliyetidir. Akışkanlık kabiliyeti, toz üretimi ve geliştirilmesinde esas amaçtır. Bir tozun akışkanlığını, tozu oluşturan taneciklerin birbiri üzerinden kolayca akması veya birbirine yapışmasına neden olan toz morfolojisi belirler. Tozun akış davranışı, üretilen kaplama verimine etki eder. Kullanılan termal sprey yöntemine bağlı olarak tozun akış davranışı ve ergitme bölgesine beslenebilmesi farklılık arz eder. Alev sprey yönteminde, kaplama tozları, tabanca ucunda oluşturulan bir vakum yardımıyla emilerek, ergitme bölgesine beslenirken, plazma sprey, HVOF ve D-Gun proseslerinde toz tabancaya taşıyıcı gaz yardımıyla taşınır. Besleme sistemlerinin türü: titreşimli toz besleme, disk veya spiral türü toz besleme, tozun akış davranışına etki eder. Ayrıca tozun nem içeriği deney sonuçlarını olumsuz yönde etkileyebilir. Toz akışkanlığı DIN ISO 4490 yöntemine göre kalibre edilmiş huni (Akış metre-Hall flowmeter) yardımıyla bulunur [3].

Hall akış ölçer 2,5 mm çaplı deliği olan 600 açılı bir hunidir. Alt kısmında da 25 ml hacme sahip bir yoğunluk kabı bulunmaktadır. Şekil 5.8.'de Hall akış ölçer cihazı ve kesit alanın gösterildiği resimler yer almaktadır.

Akış hızı, 50 g ağırlığındaki bir tozun, Hall akış ölçerden aktığı saniye cinsinden süre olarak ifade edilir. Kısa akış süreleri tozların serbest akışını, uzun akış süreleri ise tozlar arasındaki yüksek sürtünmeyi gösterir. Test genellikle, %5 gibi bir hataya karşılık gelen 2-3 sn arasında tekrarlanabilirliğe sahiptir. Görünür yoğunluk ve akış süreleri, huni ve hassas hacimli bir kabın birlikte kullanıldığı Hall akış ölçeri ile kolayca elde edilir [11].

Elde edilen değer, kaplama uygulamasında tozun yoğunluğuna bağlı olarak akış hızını verir. Toz imalatçısı firmalar, her toz için akışkanlık değerini belirli bir zaman değeri için g/cm³ olarak kullanıcılara bildirirler [3].

Şekil 5.8. Toz akış hızı ölçüm cihazı HALL Flowmeter HF100.

5.2.8. Toz boyut analizi

YSZ termal bariyer kaplamalara alternatif olarak üretilen SrZrO₃ kaplama tozlarının toz boyut analizi, elek analizi dışında MICROTRAC S3500 marka lazer toz tane boyut analizi cihazı ile de tespit edilmiştir (Şekil 5.9.).

Şekil 5.9. Toz boyut analizi cihazı MICROTRAC S3500.

5.2.9. Yoğunluk testi düzeneği

1600°C'de 4 saat toz olarak sinterlenen sonrasında preslenerek tablet haline getirilen SrZrO₃ 1600°C' de 6 saat tekrar sinterlenen numunelerin yoğunluğu ve porozite değerleri Arşimet yoğunluk testi düzeneği kullanılarak aşağıdaki eşitlikler (5.2-5.4) yardımıyla hesaplanmıştır.

Su emme = $(Wc-Wa) / Wa \ge 100$ (5.2)Bulk yoğunluk= numune kütlesi/yığınsal hacim= $[Wa/(Wc-Wb)] \ge D_{H20}$ (5.3)% Görünen porozite= $(açık porların hacmi/bulk hacmi) \ge 100 =$ (5.4)

D_{H2O}= Suyun yoğunluğu
Wa = Kuru numunenin havadaki ağırlığı
Wb = Su emdirilmiş numunenin su içindeki asılı ağırlığı
Wc = Su emdirilmiş numunenin havadaki ağırlığı

5.2.10. Dielektrik sabiti ölçüm cihazı

1600°C'de 4 saat toz olarak sinterlenen SrZrO₃, sonrasında 2 ton basınçla preslenerek tablet haline getirilip 1600°C'de 6 saat tekrar sinterlenmiştir. Numune alt ve üst yüzeylerine gümüş pasta sürülüp kurutulduktan sonra 600°C sıcaklığındaki fırın içerisinde 30 dakika bekletilmiştir. Dielektrik sabiti değerleri Şekil 5.10.'da görülen Dielektrik sabiti ölçüm cihazı kullanılarak aşağıdaki eşitlik (5.5-5.6) yardımıyla hesaplanmıştır.

$$\begin{aligned} & \mathcal{E} = \mathcal{E}_0 . \mathcal{E}_r = (t \ / A) . C \ [F/m] \end{aligned} \tag{5.5} \\ & \mathcal{E}_r = t.C \ / \ A . \mathcal{E}_0 = t.C \ / \ \pi (d/2)^2 . \ \mathcal{E}_0 \end{aligned}$$

- E : Dielektrik sabiti
- \mathcal{E}_0 : Boşluğun dielektrik sabiti (8.854x10⁻¹²)
- E_r : Test cihazının bağıl dielektrik sabiti
- t : Numunenin kalınlığı (m)
- A : Numunenin alanı (m²)
- C: Numunenin kapasitansı (F)
- d : Numunenin çapı (m)

Şekil 5.10. Dielektrik sabiti ölçüm cihazı HIOKI 3532-50 LCR HiTESTER

5.2.11. Basınçlı kumlama makinası

Plazma sprey kaplama işlemi mekanik bağlanma yoluyla gerçekleştirilen bir prosestir. Bu uygulamanın başarılı olabilmesi, kullanılan altlık malzemesinin yüzeyinin pürüzlendirilmesi ve altlık malzemesi yüzeyindeki üretimden gelen kirliliklerin giderilmesi ile mümkündür. Bu işlem ise kumlama makinası yardımıyla gerçekleşmektedir. Bu çalışmada altlık malzemesinin kumlanması 0-12 bar arasında çalışabilen SAPİ marka basınçlı kumlama makinası (Şekil 5.11.) ile gerçekleştirilmiştir.

Şekil 5.11. Altlık malzemesinin kumlanmasında kullanılan SAPİ marka basınçlı kumlama makinası.

5.2.12. Plazma sprey kaplama sistemi

Bu çalışmada plazma sprey kaplama uygulamalarında kullanılan ve mevcut en gelişmiş plazma sprey sistemi olan Sulzer Metco firmasına ait multicoat plazma sprey sistemi kullanılmıştır. Kaplama uygulamalarında F4 plazma sprey tabancası kullanılmıştır. Kaplama çalışmaları robotik sistemle otomatik olarak gerçekleştirilmiştir. Şekil 5.12.'de Sulzer Metco firmasına ait plazma sprey kaplama ünitesi ve kaplamaların gerçekleştirildiği robotik sisteme bağlı F4 plazma sprey tabancası görülmektedir.

(a)

(b)

(c)

Şekil 5.12. a. Sulzer Metco plazma sprey sistemi b. robotik sisteme bağlı F4 plazma sprey tabancası c. kontrol paneli.

Üretilmiş olan SrZrO₃ tozu Tablo 5.1.'de belirtilen parametreler doğrultusunda F4 plazma sprey tabancası ile 3×3 cm boyutlarında dairesel ve kare geometriye sahip paslanmaz çelik altlık üzerine manuel sistemler kullanılarak biriktirilmiştir. Kaplama öncesinde paslanmaz çelik altlık malzeme yüzeyi dikkatli olarak ultrasonik banyoda temizlenmiş ve sonrasında 1-2 bar basınç altında alümina kumlama malzemesi ile kumlanarak üretimden gelen kirlilikler giderilmiştir.

Kaplama Parametreleri	Akım (A)	Voltaj (V)	Güç (kW)	Argon (NLPM)	Hidrojen (NLPM)	Taşıyıcı gaz (NLPM)	Disk (%)	Karıştırıcı %
	500	66	33	80	15	10	6.2	12

Tablo 5.1. SrZrO3 kaplamalara ait plazma sprey kaplama parametreleri

Kaplama öncesi ve kaplama sonrası numunelerin makro görüntüleri Şekil 5.13.'da verilmiştir. Paslanmaz çelik altlık malzemesi üzerine 10-12 cm sprey mesafesi ile uygulanan SrZrO₃ tabakasının kaplama kalınlığı 300-500 µm arasında değişmektedir. NiCrAlY (Ni/Cr 80/20, +20-53 µm) bağ tabakanın kalınlığı ise 150-200µm arasında değişmektedir.

Şekil 5.13. Kaplama öncesi ve kaplama sonrası numunelerin makro görüntüleri.

5.2.13. Yüzey pürüzlülük ölçüm cihazı

Pürüzlülük, işleyici bir takımın yüzeyin bir ucundan diğer ucuna gitmesiyle oluşan pek çok çizikli, düzensiz kısa dalga boyu uzunluklarıdır. Yüzeydeki çizik izlerini normal yönde ölçmek ile çapraz yönde (açılı kesik çizgi) ölçmek arasında dalga boyu uzunluğu açısından fark vardır. Bu amaç için kullanılan parametreler;

Ra : Aritmetik ortalama sapma

Rz : 5 tane en yüksek 5 tane en alçak noktanın ortalaması

Rmax: Tüm ölçüm uzunluğu için maksimum yükseklik ile maksimum derinliğin toplamıdır.

Aritmetik Ortalama Pürüzlülük (Ra) yüzey pürüzlülük profiline karşılık gelen ykoordinatlarının mutlak değerlerinin aritmetik ortalamasıdır. İstatistik olarak konuşulursa, Ra aynı zamanda yüzey pürüzlülüğünün y-koordinatlarının merkez hattında ortalama aritmetik sapmasını tanımlar.

Maksimum Pürüzlülük Derinliği (Rz), yüzey pürüzlülük profilinin verilen ölçü bölümündeki en geniş profil tepesi Rp'nin yüksekliğine ve en derin profil Rv'nin derinliğine dayanan değerdir. Rz veya yüzey pürüzlülük profilinin en yüksek ve en düşük noktaları arasındaki dikey mesafe, yüzey pürüzlülüğüne karşılık gelen ykoordinat aralıklarının ölçülmesini sağlar.

Şekil 5.14. a. MAHR M1 Yüzey pürüzlülük ölçüm cihazı, b. Aritmetik Ortalama Pürüzlülük (Ra), c. Maksimum Pürüzlülük Derinliği (Rz)
5.2.14. Metalografik numune hazırlama cihazları

Plazma sprey kaplama uygulaması ile üretilen kaplamaların metalografik olarak hazırlanması için ilk aşamada kesme işlemi uygulanmıştır. Bu kesme işleminde oluşabilecek çatlakların engellenmesi için elmas diske sahip ve çok düşük hızlarda (min. 0.005 mm/sn) kesme işlemi yapabilen Struers Accutom-5 marka hassas kesme cihazı (Şekil 5.15.(a)) kullanılmıştır. Kesme işleminden sonra metalografik olarak incelenecek parçanın bakalite alınması işlemi uygulanmıştır. Bu işlem vakum altında olup, Epofix marka reçine ve sertleştirici kullanılarak Struers Evopac marka vakum alma cihazı (Şekil 5.15.(b)) ile gerçekleştirilmiştir. Soğuk bakalite alına işleminden sonra optik incelemelerin yapılabilmesi için zımparalama ve parlatma işleminin uygulanması gerekmektedir. Bu işlem için Struers TegraPol-21 marka otomatik zımparalama ve parlatma cihazı (Şekil 5.15.(c)) kullanılmıştır. Bu işlemleri işlemlerin en son aşamasında ise optik ve yüzey incelemeleri yapılmıştır. Bu işlemler ise ZEIS marka optik ve stereo mikroskoplar (Şekil 5.16.) kullanılarak yapılmıştır.

Şekil 5.15. Metalografik numune hazırlama cihazları (a) Struers Accutom-5 marka hassas kesme cihazı, (b) Soğuk bakalite alma işleminin gerçekleştirildiği Struers Evopac marka vakum alma cihazı, (c) Zımparalama ve parlatma işleminin yapıldığı Struers TegraPol-21 marka otomatik zımparalama ve parlatma cihazı.

Şekil 5. 16. Optik ve yüzey incelemelerinin yapıldığı ZEIS marka optik ve stereo mikroskop.

5.2.15. Mikrosertlik ölçüm cihazı

Üretilen kaplamaların mikrosertlik ölçümleri Struers Duramin A-300 marka mikrosertlik ölçüm cihazı (Şekil 5.17.) ile gerçekleştirilmiştir. 15 s süre 50 g yük uygulanarak kaplama yüzeyi ile bağ tabaka arası 3 ayrı noktadan 3 sıra halinde sertlik ölçümü yapılmıştır.

Şekil 5.17. LEICA VM HTMOT marka mikrosertlik ölçüm cihazı.

5.2.16. X-Ray difraktometre cihazı

Üretilen kaplama tozu ve SrZrO₃ kaplamaların faz kompozisyonlarını belirlemek amacıyla RIGAKU D/MAX/2200 marka X-Ray difraktometre cihazı (Şekil 5.18.) kullanılmıştır.

Şekil 5.18. RIGAKU marka X-Ray difraktometre cihazı.

5.2.17. Taramalı elektron mikroskobu (SEM)

Başlangıç hammaddeleri olan ZrO₂, SrCO₃ tozları, üretilen kaplama tozunun ve üretilen kaplama arayüzeyinin ve termal şok testi sonrası arakesitlerin mikroyapısal incelenmesinde JEOL JSM-6060LV marka SEM- EDS cihazı (Şekil 5.19.) kullanılmıştır.

Şekil 5.19. JEOL JSM6060LV marka SEM cihazı.

5.2.18. Termal şok testi ısıl işlem fırını

Termal şok testi 1000 ve 1200°C sıcaklıklarda 5 dk Proterm marka fırında ısıtma ve 2 dk fırın dışında hava ortamında soğutma şeklinde 1 çevrim toplam 7 dk olmak üzere işlem gerçekleştirilmiştir. Çevrimler sonucunda kaplamalarda çatlak, delaminasyon, altlıktan ayrılma ve dökülme olup olmadı gözlemlenmiştir. Şekil 5.20'de termal şok testine tabi tutulan numunenin işlem görmemiş hali, 1000°C ve 1200°C'deki termal şok testi sonrası makro görüntüleri verilmiştir.

Şekil 5.20. Termal şok testine tabi tutulan numunenin işlem görmemiş hali, 1000°C ve 1200°C'deki termal şok testi sonrası makro görüntüleri.

5.3. Deneysel Çalışmalarda Kullanılan Malzemeler

5.3.1. Kaplama üretiminde kullanılan tozlar

SrZrO₃ kaplama tozu üretimi katı-faz sinterlemesi ile gerçekleştirilmiştir. Tablo 5.2.'de SrZrO₃ tozu üretimi için kullanılan başlangıç hammaddeleri, özellikleri ve temin edildikleri firmalar, Tablo 5.3.'de ise kullanılan malzemelerin fiziksel özellikleri verilmiştir.

Tozlar ağ. %	ZrO ₂	SrCO ₃	HfO ₂	SiO ₂	Fe ₂ O ₃	Ni	Cr	Со	Al	Temin Edildiği Firma
ZrO ₂	97.64	-	1.89	0.15	0.03	-	-	-	-	Sigma- Aldrich
SrCO ₃	-	≥98	-	-	-	-	-	-	-	Sigma- Aldrich
NiCoCrAlY	-	-	-	-	-	80	13.0 - 21.0	18.0 - 28.0	10.0 - 15.0	Oerlikon

Tablo 5.2. SrZrO3 kaplama üretiminde kullanılan başlangıç hammaddelerinin kimyasal analizleri

Tablo 5.3. Kullanılan kaplama malzemelerinin fiziksel özellikleri

	Kullanılan Malzemeler						
Özellikler	Altlık	ZrO ₂	SrCO ₃	SrZrO ₃			
	(Paslanmaz Çelik)						
Ergime sıcaklığı (°C)	1400 - 1455	2700	1494	2800			
Yoğunluk (gr/cm ³)	8	5.68	3.74	5.46			
Termal genleşme katsayısı (10 ⁻⁶ /°C(1000°C))	18.7	7.6-10.5	-	10.6			
Termal iletkenlik	21.5 (W/m.°C) (500 °C)	0.69-2.4 (W/m.K)	~4.75 (W/m°C) (1000°C)	4.06 (W/m.K) (300K)			

BÖLÜM 6. DENEYSEL SONUÇLAR VE İRDELEME

6.1. Toz Karakterizasyon Çalışmaları

Plazma kaplama tozu üretiminde kullanılan başlangıç hammaddeleri olan SrCO₃ ve ZrO₂ tozlarına mikroyapı ve faz analizi, üretilen SrZrO₃ kaplama tozuna partikül boyut analizi, SEM-EDS ile mikroyapı analizi, XRD ile faz analizleri, partikül boyut aralığı ve akıcılık testleri gerçekleştirilmiştir.

6.1.1. Toz boyut dağılımı analizi

Sinterleme-öğütme yöntemi ile üretilen SrZrO₃ kaplama tozlarına plazma sprey kaplama işleminden önce toz boyut dağılımı için elek analizi yapılmıştır. +45-125 μ m aralığına elenmiş tozlar plazma sprey kaplama prosesi için ayrılmıştır. Kaplama prosesi için elenen tozların toz boyut dağılımı MICROTRAC S3500 lazer tane boyutu analiz cihazı ile de ölçülmüştür. Üretilen SrZrO₃ kaplama tozunun D₁₀ değeri 25.71 μ m D₅₀ değeri 89.31 μ m ve D₉₀ değeri ise 157.4 μ m'nin altında olduğu tespit edilmiş olup; detaylar Şekil 6.1.'de görülmektedir.

Şekil 6.1. SrZrO₃ kaplama tozu toz boyut dağılımı.

Toz akış hızı, 50 g ağırlığındaki tozun, Hall akış ölçerden aktığı saniye cinsinden süre olarak ifade edilmektedir. Akış süresinin kısalığı tozun akıcılık özelliğinin iyi olduğunu, uzun akış süreleri ise tozlar arasındaki sürtünmenin yüksek olduğunu ifade etmektedir [11]. Sonuç olarak 41,7 gr toz ortalama 47 s sürede akmıştır ve toz akış hızı 0,8872 gr/s olarak hesaplanmıştır. Plazma kaplama prosesi için hazırlanan SrZrO₃ kaplama tozlarının uygun akıcılıkta olduğu gözlenmiştir.

6.1.3. Tozların SEM görüntüleri ve EDS analizleri

Kaplama tozların üretiminde kullanılan toz formundaki başlangıç hammaddelerinin ve üretilen tozların SEM görüntüleri ve EDS analizleri gerçekleştirilmiştir. SrZrO₃ kaplama tozu üretiminde kullanılan SrCO₃ tozuna ait SEM görüntüsü Şekil 6.2.'de görülmektedir. SEM fotoğrafından SrCO₃ tozunun küresel şekilli toz morfolojisine sahip olduğu, toz boyutunun 10 µm'nin üzerinde ve tozların aglomerasyona uğradığı dikkat çekmektedir.

(a) Şekil 6.2. a. SrCO₃ tozuna ait SEM görüntüsü, b. EDS analizi.

SrZrO₃ tozunun üretiminde kullanılan ZrO₂ tozuna ait SEM görüntüsü ve EDS analizi ise Şekil 6.3.'de görülmektedir. Mikroyapıdan ZrO₂ tozunun düzensiz şekilli toz morfolojisine sahip olduğu ve aglomereler içermediği görülmektedir. Toz

boyutunun 1 µm'nin altında olduğu ve µm-altı boyutlu kristalitlerin mevcudiyeti de mikroyapıda kolaylıkla görülmektedir.

SrCO₃-ZrO₂ karışımının bilyalı değirmende yaş olarak öğütme ve etüvde kurutma sonrası SEM görüntüsü ve EDS analizi Şekil 6.4.'de verilmiştir. SEM mikroyapı görüntüsüne göre karışımın ZrO₂'ın toz tane yapısında gözlenmiş olan düzensiz toz morfolojisine sahip olduğu, öğütme işleminde aglomera olan SrCO3'ın yapıya homojen olarak dağılıp, tane boyutunun düştüğü belirtilebilir.

(a)

Şekil 6.3. a. ZrO2 tozuna ait SEM görüntüsü, b. EDS analizi.

Şekil 6.4. a. SrCO₃-ZrO₂ toz karışımına ait SEM görüntüsü, b. EDS analizi.

SrZrO₃ tozunun 1350°C'de 24 saat sinterleme-öğütme sonrasındaki SEM görüntüsü ve EDS analizi Şekil 6.5.'de verilmiştir. SEM fotoğrafına göre SrZrO₃ tozunun düzensiz morfolojiye sahip olduğu, sinterleme sıcaklığının etkisi ile tozlar arasında yayınmanın olduğu, toz boyutunun 5 μ m'nin altında olduğu görülmektedir. Gerek 1250°C gerekse 1350°C'de 24 saat sinterleme işlemi neticesinde toz boyunun 5 μ m'nin altında olması, sinterleme işlemini literatürde belirtilenden [29,30] daha yüksek sıcaklıklarda yapmayı gerektirmiştir.

Şekil 6.5. a. 1350 °C'de 24 saat sinterlenmiş SrZrO3 tozuna ait SEM görüntüsü, b. EDS analizi.

1600°C'de 4 saat sinterlenen SrZrO₃ tozuna ait SEM görüntüsü ve EDS analizi Şekil 6.6.'da verilmiştir. SEM fotoğrafina göre SrZrO₃ tozunun düzensiz morfolojisiye sahip olduğu ve toz yapısında porozitelerin olduğu dikkat çekmektedir. Yapıdaki gözeneklerin 1400°C'de SrCO₃'ın parçalanması sırasında CO₂ gaz çıkışından kaynaklandığı düşünülmektedir [36].

Şekil 6.6. a. 1600°C'de 4 saat sinterlenmiş SrZrO3 tozuna ait SEM görüntüsü, b. EDS analizi.

Şekil 6.7.'de farklı sıcaklıklarda sinterlenen SrZrO₃ tozlarının mikroyapısı görülmektedir. SrZrO₃ tozlarına ait mikroyapılarda tozların sinterlendiği sıcaklıklar arttıkça tane boyutunun artan yöndeki değişimi görülmektedir. 1250°C ve 1350°C'de 24 saat sinterleme işlemiyle plazma sprey kaplama tozu üretimi için gerekli toz boyut aralığına ulaşılamaması nedeniyle tozlar; 1600°C'de 4 ve 6 saat daha yüksek sıcaklıklarda sinterlenmiştir. Mikroyapılardan toz tane boyutundaki artış görülebilmektedir. 1600°C sıcaklıkta 2 farklı sürede sinterleme ile üretilen tozların her ikisinde de uygun akıcılık özellikleri elde edilmiştir.

Şekil 6.7. a. Başlangıç karışım, b. 1250°C ve c. 1350°C' de 24 saat, d. 1600°C' de 4 saat, e. 1600°C' de 6 saat sinterlenmiş SrZrO₃ tozuna ait SEM görüntüleri.

6.1.4. Tozların XRD faz analizleri

6.1.4.1. Başlangıç tozlarının faz analizi

SrZrO₃ kaplama tozu üretiminde kullanılan ZrO₂ ve SrCO₃ başlangıç tozlarının XRD analizleri Şekil 6.8.'de verilmiştir. ZrO₂ başlangıç tozu % 100 monoklinik- ZrO₂ fazından meydana gelmiştir. Kullanılan SrCO₃ başlangıç tozunun faz analizinde yaklaşın 2Θ =25'de en yüksek pik görülmektedir.

(b)

Şekil 6.8. a. ZrO₂ b. SrCO₃ tozuna ait XRD analizi.

6.1.4.2. SrZrO₃ tozunun faz analizi

Sr/Zr 1:136 atomik orana sahip SrCO₃-ZrO₂ başlangıç hammaddelerinin 3 saat tek eksenli karıştırıcı ile kuru olarak karıştırılması ve 1250°C ve 1350°C'de 24 saat, 1600°C'de 4 ve 6 saat atmosferik ortamda sinterlenmesi sonucu üretilen SrZrO₃ kaplama tozuna ait XRD paternleri Şekil 6.9.'de verilmiştir. XRD analizlerinden SrZrO₃ fazının 1250°C'lerde oluştuğu farklı sıcaklıklarda gerçekleştirilen sinterleme şartlarında faz yapısının benzer olduğu tespit edilmiştir. Daha yüksek sıcaklıklarda sinterleme işlemi üretilen kaplama tozuna yeterli akıcılık sağlamak için gerçekleştirilmiştir. Faz analizi sonuçlarının literatürdeki çalışmalarla örtüştüğü görülmüştür.

Pragatheeswaran ve arkadaşları Cerac şirketi ABD'den temin ettikleri SrZrO₃ kaplama tozunu 63-75µm toz boyut aralığına elemişler paslanmaz çelik altlık üzerine plazma sprey tekniği ile SrZrO₃ kaplamışlardır. Araştırmacılar kullandıkları kaplama tozunun ve kaplamanın faz analizinde SrZrO₃ fazını tespit etmişlerdir [34].

Zhang ve arkadaşları Sr/Zr 1:136 atomik orana sahip SrCO₃-ZrO₂ başlangıç hammaddelerini 1400°C'de 24 saat kalsine ettikten sonra azot gazı ile sprey kurutma yöntemiyle kurutulan tozları 1300°C'de 5 saat ısıl işleme tabi tutmuşlardır. Kalsinasyon sonrası tozun XRD analizinde ana faz olarak SrZrO₃ fazına ulaşmışlardır [30]. Malghe ve arkadaşları ise nano boyutta SrZrO₃ üretmek için başlangıç malzemeleri olarak SZO, ZrO(NO₃)₂.H₂O, okzalik asit ve Sr(NO₃)₂ kullanarak ürettikleri çökeltiyi kalsine ederek SrZrO₃ fazına ulaşmışlardır [37].

Ma ve arkadaşları katı hal reaksiyonu ile SrZrO₃ tozunu üretmek için SrCO₃ ve ZrO₂ başlangıç malzemelerini bilyalı değirmende yaş olarak öğütmüş kurutma işleminden sonra 1400°C'de kalsine edip tekrar öğütmüşlerdir. Isıl işleme tek faz SrZrO₃ malzemesi elde edilene kadar devam etmişlerdir. Soğuk pres ile şekillendirdikleri SrZrO₃ peletleri 1600°C'de 6 saat sinterlemişlerdir [29]. Üretilen tozun faz analizi mevcut çalışmayla benzerlik göstermektedir.

Matsuda ve arkadaşları SrZrO₃ tozunu üretmek için SrCO₃ ve ZrO₂ başlangıç malzemelerini mekanik olarak karıştırıp 1050°C'de kalsine etmiş, ardından presleyip 1500°C'de sinterlemişlerdir. XRD faz analizinde peroksit tipi tek faz SrZrO₃ tespit edilmiş olup; sonuçlar mevcut çalışmanın faz analiziyle örtüşmektedir [33].

Cavalcante ve arkadaşları Sr(NO₃)₂, Zr(OC₃H₇)₄, C₂H₆O₂ ve C₆H₈O₇ başlangıç malzemelerini kullanarak kimyasal yöntemle ürettikleri SrZrO₃ tozunu 350-1250 °C sıcaklık aralığında 2 saat tüp fırında atmosferik şartlarda ısıl işleme tabi tutmuşlardır. Bütün SrZrO₃ tozlarının ortorombik yapıda kristalize olduğunu tespit etmişlerdir. Bulunan faz analizi sonuçları mevcut çalışmayla aynıdır [31]. Li ve arkadaşlarının çalışmasındaki nanokristal SrZrO₃ tozunun XRD faz analizinin mevcut çalışma ile benzerlik gösterdiği görülmüştür [38]. Martinez ve çalışma grubu katı-hal reaksiyonu, erimiş tuzlar ve ultrason destekli üretim olmak üzere 3 farklı yöntemle üretmiş olduğu SrZrO₃ tozlarının XRD sonuçları mevcut çalışma ile örtüşmektedir [39].

6.1.5. SrZrO₃'ın yoğunluk testi

Toz halinde 1600°C'de sinterlenen SrZrO₃ numunelerin yoğunluk ölçümü için homojen olarak karıştırılan tozlar pres yardımıyla 2 ton basınç uygulayarak tabletler halinde şekillendirilip 1600°C'de 6 saat tekrar sinterlenmiş ve Arşimed prensibi yardımıyla yoğunluk testine tabi tutulmuştur. Tablo 6.1.'de SrZrO₃ numunelere ait yoğunluk değerleri görülmektedir. Tablodaki verilere göre ortalama bulk yoğunluk değeri 3,7331 gr/cm³ olarak bulunmuştur.

Yamanaka ve arkadaşları SrCeO₃ ve SrZrO₃ polikristalin numunelerini üretmek için CeO₂, ZrO₂, BaCO₃ 1000°C'deki reaksiyonun ardından 1500°C'de sinterleme yapmışlardır. Bulk yoğunlukları geometrik ölçümler yaparak hesaplamışlardır. SrCeO₃'ün bulk yoğunluk değerini %84, SrZrO₃'ün ise %93 olarak bulmuştur [40].

Şekil 6.9. Farklı sıcaklıklarda sinterlenen SrZrO3 kaplama tozlarına ait XRD paternleri

Shende ve arkadaşları Pechini metoduyla ürettikleri preslenmiş SrZrO₃ seramiklerin teorik yoğunluk değerleri (d=m/V) %64-67 arasında değişirken; 1520 °C'de 1 saat sinterlenen SrZrO₃ seramiklerinin teorik yoğunluk değerleri %94-98 arasında iken; sinterlenmiş SrZrO₃ seramiklerinin Arşimet prensibi ile teorik yoğunluk ölçümünde saf su yerine propanol kullandıklarında daha yüksek değerlerine ulaşmışlardır [41].

Numune	1	1 2		Ortalama	
Wa	5,7436	5,6752	5,7728	-	
Wb	4,5375	4,4671	4,5559	-	
Wc	6,0913	5,9860	6,0885	-	
Su Emme	6,0536	5,4764	5,4687	-	
Bulk Yoğunluk	3,6964	3,7363	3,7666	3,7331	
Relatif Yoğunluk %	81,3505	82,2303	82,8971	82,1593	
Görünür Porozite %	22,3773	20,4621	20,5989	21.1461	

Tablo 6.1. SrZrO3 yoğunluk ölçümleri

6.1.6. SrZrO₃'ın dielektrik özelliği

Şekil 6.10.'da SrZrO₃ numunesine ait frekans artışına bağlı olarak dielektrik sabitinin değişim grafiği yer almaktadır. Grafikten görüldüğü üzere frekansın artmasıyla dielektrik sabitinin azaldığı ve belirli bir frekans değerinden sonra sabitlendiği görülmektedir.

Malghe ve arkadaşları hidrolik pres kullanarak 5 ton basınçla SrZrO₃ tozlarını presleyerek tablet haline getirip 1300°C'de 3 saat sinterlemiştir. Peletlerin 25-300°C sıcaklık aralığında dielektrik sabitini ve dielektrik kaybını ölçmüşlerdir. Dielektrik sabiti frekansla ters orantılı olarak değişmiştir. Frekans arttıkça dielektrik sabiti düşmüştür. Oda sıcaklığında 100 Hz frekanstaki dielektrik sabiti değeri yaklaşık 385 iken 1MHz frekanstaki dielektrik sabiti değerini 140 olarak ölçmüşlerdir. Dielektrik kayıp miktarının frekans değeri arttıkça oda sıcaklığında 100Hz'de yaklaşık 0.46 değerinden 1MHz'de 0.04 değerine düştüğü tespit edilmiştir. Sıcaklık arttıkça dielektrik kayıp değerinin azaldığı da tespit edilmiştir. Mevcut çalışmada da frekans değeri arttıkça dielektrik sabiti değeriniştir. Sıcaklık arttıkça

Shende ve arkadaşları yüksek voltaj uygulamaları için Pechini metoduyla SrZrO₃ ve SrTiO₃ seramikleri üretmişlerdir. SrZrO₃ 1520°C'de 1 saat, SrTiO₃ ise 1400 °C'de 1 saat sinterlemişlerdir. 160 µm kalınlığındaki SrZrO₃'ın kırılma voltajı(mukavemeti) 40 V/µm, 120 µm kalınlığındaki SrTiO₃'ın kırılma voltajı değeri ise 35 V/µm olarak ölçmüşlerdir. SrZrO₃'ın dielektrik sabiti değeri 100 olarak ölçülmüştür. Aynı kalınlıktaki ve aynı enerji yoğunluğundaki kapasitör için dielektrik sabiti değeri arttıkça kırılma voltajı değerinin düştüğünü tespit etmişlerdir. Ayrıca frekans arttıkça dielektrik sabiti değerinin azaldığı görülmüştür [41]. Tang ve arkadaşları çalışmalarında SrZrO₃ seramiklerin yüksek dielektrik sabit (yaklaşık 60), yüksek kırılma voltajı 40 V/µm, düşük kaçak akım yoğunluğuna sahip olduğunu bulmuşlardır. Bu özellikler malzemelerin yüksek voltaj ve yüksek güvenilirlikte kapasitör yapımında kullanılmasını sağlamaktadır [42].

Şekil 6.10. SrZrO₃'ın dielektrik özelliği.

6.2. Kaplamanın Karakterizasyonu

Plazma sprey kaplama tekniği ile paslanmaz çelik altlık malzemeler üzerine SrZrO₃ tozu kaplanmış numunelere optik mikroskop ve SEM ile mikroyapı analizi, kaplama arayüzeyinden sertlik testi, kaplamaların yüzey pürüzlülüğü, kaplamanın faz yapısı ve termal şok testi gibi karakterizasyon işlemleri yapılmıştır. Bu karakterizasyon işlemlerinin sonuçları aşağıda verilmiştir.

6.2.1. Mikroyapı analizi

Isıya dayanıklı paslanmaz celik altlık üzerine biriktirilen NiCrCoAlY bağ tabaka ve SrZrO₃ seramik kaplamanın ara yüzey optik mikroyapı görüntüleri Şekil 6.11.(a)'da görülmektedir. Şekil 6.11.(b)'de SrZrO₃ kaplama tabakası, Şekil 6.11.(c)'de ise NiCrCoAlY bağ tabaka detaylı olarak görülmektedir. SrZrO₃ kaplamanın mikroyapısında porozitenin varlığı dikkat çekmekte olup; kaplama kalınlığının 323,6 μm, bağ tabakanın kalınlığının ise 139,88 μm olduğu tespit edilmiştir. Plazma sprey kaplamalara ait tipik lamelli mikroyapı görüntüsü mevcuttur. Porozitenin mevcudiyeti plazma sprey kaplamaların karakteristik bir özelliği olup kullanılan toz malzemenin özelliklerine bağlı olarak kaplamalarda %20'lere kadar porozite bulunabilir [35]. SrZrO₃ kaplamalara ait SEM görüntüsü Şekil 6.12.'de detaylandırılmıştır. Mikroyapılarda delaminasyon probleminin olmadığı görülmekle birlikte, porozitenin varlığı özellikle seramik üst tabakada dikkat çekmektedir. Şekilde kaplama arayüzeyi kullanılan paslanmaz çelik altlık, NiCrCoAlY bağ tabaka ve SrZrO₃ kaplama tabakası detaylı olarak görülmektedir. Sekil 6.13.'te SrZrO₃ seramik kaplama tabakasının SEM görüntüsü ve EDS analizi verilmiştir. 1 ve 2 kodlu bölgelerin SrZrO₃ kaplama bileşenlerini içerdiği, 3 kodlu daha koyu renkli görünen bölgede ise ZrO₂ oranının 1 ve 2 kodlu bölgelere göre daha fazla olduğu EDS analizi ile tespit edilmiştir. SrZrO₃ kaplama yapısında porozitelerin ve mikro çatlakların varlığı da dikkat çekmektedir. Ayrıca parlatma işlemi esnasında ergimemiş partiküllerin yüzeyden koptuğu ve geride mikroyapıda porozite oluşturdukları gözlenmiştir. Şekil 6.14.'te NiCrCoAlY bağ tabakasına ait SEM-EDS analizinde 1 kodlu koyu renkli bölgede Cr içeriğinin en fazla, 2 kodlu açık renkli bölgede ise Ni içeriğinin en fazla olduğu görülmektedir. Sreekumar ve arkadaşları grafit altlık üzerine YSZ ve SrZrO3 plazma sprey kaplamaların hazırlanmasıyla ilgili yapmış oldukları çalışmada SrZrO₃ kaplama optik mikroyapısında erimiş ve kısmen erimiş taneler ile plazma sprey kaplamaların karakteristik tanelerarası poroziteli yapısına (mevcut çalışmada olduğu gibi) sahip olduğunu tespit etmişlerdir [32].

Şekil 6.11. a.SrZrO3 kaplama yapısının, b. Kaplama tabakasının ve c. Bağ tabakanın optik mikroskop görüntüleri.

Pragatheeswaran ve arkadaşları paslanmaz çelik altlık üzerine +63-75m boyut aralığındaki kaplama tozu ile gerçekleştirmiş oldukları plazma sprey kaplamaların arayüzey SEM görüntüsünde tamamen ergimiş lamelli mikroyapı, erimiş küresel ve erimemiş partiküllerin mevcudiyetini gözlemlemişlerdir. Belirtilen bu yapı tipik plazma sprey mikroyapısını temsil etmektedir [34].

(a)

Şekil 6.12. a. SrZrO₃ kaplama arayüzey, b. SrZrO₃ üst kaplama tabakası, c. SrZrO₃ + Bağ tabaka, d. Bağ tabaka SEM görüntüleri

Şekil 6.13. SrZrO3 kaplama tabakasının SEM görüntüsü ve EDS analizi.

Şekil 6.14. NiCrCoAlY bağ tabakasının SEM görüntüsü ve EDS analizi.

6.2.2. Kaplamanın yüzey pürüzlülüğü

Kaplamaların yüzey pürüzlülüğü değerleri R_a,R_z ve R_{max} cinsinden ölçülmüş olup sonuçlar Tablo 6.2.'de verilmiştir. Yüzey pürüzlülüğü ölçümleri dikey ve yatay yönde olmak üzere her bir yüzey pürüzlülük türlerinden 3'er ölçüm alınarak bunların ortalaması tabloda görülmektedir. Yüzey pürüzlülüğünün artması kaplamaların açık porozitesini arttırmakta, bu durum ise kaplamanın açık atmosfer şartlarında korozyon dayanımını olumsuz etkilemektedir.

Saral yüksek lisans çalışmasında üretmiş olduğu kaplamalardan YSZ kaplamaların R_a yüzey pürüzlülük değerini 9.535 μ m, R_z 'yi 50.4 μ m ve R_{max} değerini 76.7 μ m olarak hesaplamıştır [35].

Yüzey pürüzlülüğü (µm)	Ra	Rz	\mathbf{R}_{max}
Dikey yön	9.57	50.88	62.33
Yatay yön	9.55	49.37	61.40
Ortalama değer	9.56	50.125	61.865

Tablo 6.2. Kaplamanın yüzey pürüzlülük değerleri

6.2.3. Mikro sertlik ölçümü

SrZrO₃ kaplamanın ve NiCrCoAlY (Ni/Cr 80/20, +20 -53μm) bağ tabaka ile paslanmaz çelik altlığın sertlik ölçümleri parlatılmış yüzey kaplama kesiti üzerinde LEICA VMHT MOT marka Vickers sertlik ölçüm cihazıyla yapılmıştır (Ölçüm parametreleri 50gr yük altında 15sn, 50x, Hv_{0,05}). Şekil 6.15.'de kaplama kesitinden alınan ortalama sertlik değerleri görülmektedir. Sertlik ölçümü için kaplama kesitine 50 g yük 15 sn süre ile uygulanmıştır. Mevcut çalışmada SrZrO₃ üst kaplamanın sertliği 557 Hv, NiCrCoAlY bağ tabakanın sertliği 312 Hv ve paslanmaz çelik altlığın sertliği ise 216 Hv olarak ölçülmüştür.

Şekil 6.15. SrZrO₃ kaplama tabakası, NiCrCoAlY bağ tabaka ve AISI 304 altlık malzemesinin ortalama sertlik değerleri, Hv 0.05.

Pragatheeswaran ve arkadaşları parlatılmış kaplama kesitine 10sn süre ile 50gr yük uygulayarak üretmiş oldukları SrZrO₃ kaplamanın sertliğini 100 mm püskürtme mesafesinde 24 kw güçteki kaplama tabancası ile yaklaşık olarak 2.501 GPa olarak bulmuşlardır. Araştırmacıların farklı püskürtme parametrelerindeki sertlik değerleri Şekil 6.16.'de görülmektedir [34].

Yamanaka ve arkadaşları ürettikleri SrZrO₃'ün sertlik değerini Vickers sertlik ölçüm cihazıyla 5.74 GPa olarak bulmuşlardır. Mevcut çalışmada ise SrZrO₃ kaplamanın sertlik değeri 5.462 GPa (557 Hv) olarak ölçülmüştür [40].

Mack ve çalışma grubu ticari SrCO₃ ve ZrO₂ tozlarını Sr/Zr 1.136 atomik oranında bilyalı değirmende karıştırdıktan sonra 1400°C'de 24 saat kalsine etmişlerdir. Bu yöntemle üretilen SrZrO₃ tozu ile plazma sprey tekniği ile kaplama üretmişlerdir. Üretilen kaplamanın Vickers sertlik değeri 591 GPa olarak ölçülmüştür [30]. SrZrO₃ kaplamaların termal şok deneyleri 5dk fırında ısıtma ve 2dk atmosfer ortamında yani firin dışında hava ile soğutma şeklinde 1 çevrim 7dk olarak belirlenmiştir. Çevrimlerde 1000 ve 1200°C olmak üzere iki farklı sıcaklık seçilmiştir. Çevrimler sırasında kaplamanın yüzeyinde çatlak, kaplamada kalkma veya dökülme olup olmadığı makro inceleme ile tespit edilmiştir. Termal şok testi sırasında belirli aralıkla alınan 1000 ve 1200°C'deki makro görüntüler Şekil 6.16. ve Sekil 6.17.'de verilmiştir. 1000°C'de 102 çevrime kadar gerçekleştirilen termal şok testinde; kaplama tabakasında kalkma, dökülme olmamış, sadece kaplama tabakasının kalınlığında azalma olmuş ve özellikle deformasyonun numunenin delik bölgesinde (kaplama islemi icin numunelerin sabitlenmesi icin acılmıs olan) ve kenarlarda meydana geldiği gözlenmiştir. 1200°C'de 27 çevrime kadar gerçekleştirilen termal şok testi sonucunda kaplamaların makro görüntüleri incelendiğinde 10. çevrimde numunenin delik bölgesi ve kenar kısımlarından renk değişimi gözlenmiştir. 10. Çevrim ile 20. Çevrim arasında kaplamada herhangi bir deformasyon, kaplama tabakasında kalkma, dökülme gözlenmezken; 20.cevrimden sonra kaplamadaki hasar hızlanmıştır. 27 çevrime kadar sürdürülen termal şok testinde kaplama tabakasındaki azalmanın kenarlardan merkez bölgeye doğru ilerlediği tespit edilmiştir. Saral YSZ kaplamalara yapmış olduğu termal şok dayanımı testinde 1000°C için kaplamaların 66 çevrime 1200°C'de ise 8 çevrime dayandığını bulmuştur [35].

Ma ve arkadaşları 30mm çapında 3mm kalınlığındaki IN738 altlık malzeme üzerine vakum plazma sprey tekniği ile NiCoCrAlY bağ tabakayı 150µm kalınlığında kaplamışlardır. Araştırmacılar termal şok testi için disk şeklindeki numuneleri gaz alev testine (doğal gaz ve oksijen gazı) tabi tutmuşlardır. Altlık malzemeyi kaplama yapılmayan yüzeyinden sıkıştırılmış hava ile soğutmuşlardır. Kaplama yüzey sıcaklığı pirometre ile ölçülmüştür. Termal şok testi 5dk alevle yüzey ısıtma 2dk sıkıştırılmış hava ile soğutma şartları altında yapılmıştır. Kaplama yüzeyinden gözle görülür bir dökülme olana kadar çevrim sürdürülmüştür. Deney sonucunda SrZrO₃ kaplamaların 1514 çevrime dayandığını tespit etmişlerdir.

Ma ve arkadaşları yapmış oldukları çalışmalarında termal şok testi sonrası faz analizinde SrZrO₃ kaplamalarda az da olsa tetragonal'-ZrO₂ pikini tespit etmişler. Bu durum buhar basınçları farklılığı (ZrO₂ (1×10⁻⁶ atm 2500°C) ve SrO (2×10⁻⁵ atm 2500°C)) ve termal püskürtme sırasında SrO'in ZrO₂'den daha fazla buharlaşma davranışı göstermesi neticesinde SrZrO₃ stokiometrisinde sapma olmasıyla açıklanmıştır [29].

Mevcut çalışmada ise Şekil 6.18.'da görüldüğü üzere termal şok testi sonrası SrZrO₃ kaplamaların faz analizinde 2Θ=29° çok düşük tetragonal'-ZrO₂ piki tespit edilmiştir. Bu durumun hızlı soğumadan kaynaklandığını ZrO₂-SrO faz diyagramı açıklamaktadır. SrZrO₃ kaplanmış numunelerin termal şok öncesi, 1000 °C ve 1200 °C'deki termal şok sonrası XRD grafiklerinde SrZrO₃ fazının pik şiddetindeki artış dikkat çekmektedir.

Vassen ve arkadaşları üç farklı zirkonat malzemesinin (SrZrO₃, BaZrO₃ ve La₂Zr₂O₇) termal bariyer kaplama malzemesi olarak kullanım potansiyelini araştırmışlardır. Çalışmalarında SrZrO₃'ın 730°C civarında faz dönüşümü göstererek hacimsel genleşme göstermesi nedeniyle termal bariyer kaplama amaçlı kullanımının uygun olmadığını, BaZrO₃'ın ise termal şok testinde erken hasara uğrayarak son derece zayıf termal ve kimyasal kararlılık göstermiştir. La₂Zr₂O₇ termal bariyer kaplama malzemelerine yeni aday olarak gösterilmiştir [2].

45.Çevrim

50.Çevrim

55.Çevrim

Şekil 6.16. 1000°C'deki termal çevrim sonrası makro görüntüler.

90.Çevrim

95.Çevrim

100.Çevrim

Şekil 6.16. (Devamı).

vrim 25.Çevrim 27.Çevrim 27.Çevrim şekil 6.17. 1200°C'deki termal çevrim sonrası makro görüntüler.

Şekil 6.18'de termal şok testi öncesi ve 1000°C ve 1200°C'lerde gerçekleştirilen termal şok sonrası makro ve mikro yapılar verilmiştir. Şekillerde 1000°C'de 102. çevrim, 1200°C'de de 27. Çevrim sonrası ara yüzey mikro yapıları görülmektedir. 1000°C'deki termal şok testi sonrası gerek makro görüntülerde gerekse SEM mikroyapı görüntülerinde kaplama arakesitinde kaplama takabasında delaminasyon gözlenmemiş iken; 1200°C'deki termal şok numunesinde SrZrO₃ seramik kaplama

tabakasında enine arayüzey çatlağı oluşmuştur ve kaplama tabakasının numune kenarlarından deformasyona uğradığı gözlenmiştir.

ve mikro yapı görüntüleri.

Şekil 6.19. Termal şok öncesi ve sonrası mikroyapı görüntüleri.

Şekil 6.19.'de termal şok sonrası numunelerin sağ-sol kenar ve orta bölgelerinden alınan mikroyapı görüntüleri verilmiştir. Özellikle 1200°C'de termal şok uygulanmış numunelerdeki delaminasyon ve enine çatlaklar dikkat çekecek boyuttadır. 1000°C'de ise enine çatlaklar daha dikkat çekmekte olup, her iki çevrimde de kaplama kalınlığında düşme olduğu fakat 1200°C'de daha fazla olduğu belirtilebilir. Bu durum Şekil 6.20.'de detaylandırılmıştır.

Şekil 6.20. 1200°C'de 27 çevrim sonrası numune sol-sağ kenar ve ortasından mikroyapı görüntüleri.

6.2.5. Kaplamanın XRD faz analizi

Zhang ve arkadaşları SrZrO₃ plazma sprey kaplamaların faz analizinde bütün kaplamalarda ana fazın SrZrO₃ olduğunu tespit etmişlerdir. Araştırmacılar yakın gelecekte SrZrO₃ kaplamaların termal şok testinin 1350°C'lerde yapılacağı öngörüsüyle 1350°C'de 72 saat sinterlemiş oldukları kaplamaların faz analizinde ikincil fazlarda farklılık olduğunu, ayrıca toz hazırlamada kullanılan Sr/Zr atomik oranının 1,136'dan plazma kaplama sonrası 1,049'a düştüğünü belirtmektedirler. Plazma sprey kaplama esnasında oluşan alevin sıcaklığı SrZrO₃'ın ergime sıcaklığından (2883 K) daha yüksek olduğundan, SrZrO₃ bu sıcaklıkta kolaylıkla

parçalanmaktadır (SrO-ZrO₂). SrO ve ZrO₂'nın ergime ve buhar basıncı gibi birbirinden farklı termofiziksel özelliklerinden dolayı SrO kaplama esnasında buharlaşarak daha hızlı kayba uğramaktadır (SrO, ZrO₂'den daha yüksek buhar basıncına sahip) [30].

Şekil 6.21. SrZrO₃ kaplanmış numunelerin termal şok öncesi, 1000 °C ve 1200 °C'deki termal şok sonrası XRD grafikleri.

SrZrO₃ kaplanmış numunelerin termal şok öncesi, 1000 °C ve 1200 °C'deki termal şok sonrası XRD grafikleri Şekil 6.21.'de verilmiştir. Termal şok sonrası yüksek sıcaklıklara çıkılması nedeniyle t'-ZrO₂ (tetragonal zirkonya) fazı oluştuğu görülmektedir.

Plazma sprey kaplama tekniğiyle SrZrO₃ kaplamalar üzerine yapılan araştırmalarda hem kaplama tozunun hem de kaplama tabakasının faz analizi sonuçlarının mevcut çalışma sonuçlarıyla paralellik gösterdiği gözlemlenmiştir [29,34].

BÖLÜM 7. SONUÇLAR VE ÖNERİLER

7.1. Sonuçlar

Mevcut tez çalışması; TBK amaçlı YSZ kaplamalara alternatif olarak SrZrO₃ kaplama tozunun üretilmesi ve üretilen kaplama tozunun plazma sprey kaplama tekniği ile kaplanabilirliğini, kaplama tozunun ve kaplamanın karakterizasyonunu kapsamaktadır. Çalışmada bulunan temel sonuçlar şunlardır;

SrZrO₃ kaplama tozunu üretmek için başlangıç malzemeleri olarak ZrO₂ ve
SrCO₃ tozları kullanılmıştır. Kullanılan başlangıç malzemelerinin mikroyapısı
incelenmiş ve faz analizi gerçekleştirilmiştir.

- SrZrO₃ kaplama tozu üretimi için; başlangıç tozları 1.136 Sr/Zr atomik oranında tartılmış, homojen karıştırılmış, hidrolik pres yardımıyla tabletler halinde şekillendirilmiş ve katı faz sinterleme metodu ile sinterlenmiştir.

- Üretilen kaplama tozlarına yeterli akıcılık kazandırmak ve toz tane boyutunu arttırmak amacıyla karışım tozları 1250°C, 1350°C ve 1600°C gibi farklı sıcaklık ve sürelerde sinterlenmiştir. Her bir sinterleme şartı için XRD analizi gerçekleştirilmiştir. Akıcılık testi uygulanarak optimum sinterleme sıcaklık ve süresi belirlenmiştir. Tüm sinterleme şartlarında SrZrO₃ fazı tespit edilmiş olmasına rağmen; en iyi toz akıcılığına 1600°C'de 6saat sinterlenen numunelerde ulaşılmıştır.

- Üretilen SrZrO₃ kaplama tozu sinterleme-öğütme metodu ile üretildiğinden dolayı düzensiz şekilli toz morfolojisine sahiptir. Sinterlenen tabletler halindeki numuneler mekanik öğütme işlemine tabi tutulduğundan toz tane şekli düzensiz ve karmaşık şekillidir.

- Katı faz sinterleme metodu ile üretilen +45-125µm aralığındaki SrZrO₃ kaplama tozu, plazma sprey kaplama prosesi ile kaplanabilirliğinin mümkün

olduğu gözlemlenmiştir. Üretilen kaplama tozunun mikroyapısı ve faz yapısı detaylandırılmıştır.

- Üretilen SrZrO₃ kaplamaların optik mikroskop ve SEM görüntüleri tipik tabakalı plazma sprey kaplama yapısını temsil etmektedir.

- Üretilen SrZrO₃ kaplamalara uygulanan Vickers mikrosertlik testi sonucunda ortalama 556,88 Hv sertlik değeri ölçülmüştür.

- SrZrO₃ kaplamalara uygulanan termal şok testi literatürdeki çalışmalarla benzerlik göstermiştir ve SrZrO₃ kaplamaların termal şok dayanımının YSZ kaplamalara göre daha yüksek olduğu kanıtlanmıştır.

- Üretilen SrZrO₃ kaplama tozunun plazma sprey kaplanabilirliği kanıtlanmıştır.

7.2. Öneriler

SrZrO₃ malzemesinin termal bariyer kaplamalarda oksidasyon direnci sağlaması, YSZ'den daha yüksek sıcaklıklarda kullanılabilmesi SrZrO₃ malzemesini önemli kılmaktadır. SrZrO₃ malzemesinin yüksek termal genleşme katsayısı, düşük termal iletkenlik, düşük sinterlenme hızı avantajları vardır. Bu yüzden bu çalışmada SrZrO₃ kaplama tozunun üretimi ve plazma sprey tekniği ile kaplanması konusu termal bariyer kaplamalar için umut verici bir araştırmadır. Ayrıca SrZrO₃ tozunun şu an için ticari anlamda üretilmemesi bu araştırmayı önemli kılan hususlar arasındadır. Türkiye' de toz üretimi, endüstriyel anlamda pek fazla ilgi görmemektedir ve bu yüzden yurtiçinden kaplama tozu temini mümkün olmadığından kaplama tozu ihtiyacı yurtdışından sağlanmaktadır. Bu yüzden Türkiye'de toz üretiminin yapılabilmesi için istihdam sağlanması ve katma değer oluşturması ülke ekonomisine önemli katkılar oluşturabilir. Bu çalışmaya paralel çalışma yapacak araştırmacılar için aşağıdaki hususlar önerilmektedir;

- SrZrO₃ tozunun sinterleme metodu ile üretilmesinde, 1250-1350°C'lerde de denemeler yapılarak en uygun sıcaklığın ve sürenin 1600°C'de 6 saat olduğu görülmüştür.

- SrZrO₃ tozu, sol-jel ve püskürtme-kurutma gibi diğer toz üretim yöntemleri ile üretilerek sinterleme metodu ile üretilen SrZrO₃ tozunun özellikleri ile karşılaştırılabilir.

- SrZrO₃ kaplama yapısında ergimemiş partiküller, porozite ve dikey çatlakların bulunması kaplamanın servis ömrünü etkileyeceğinden dolayı plazma sprey kaplama parametreleri optimize edilebilir.

- Bu çalışmada kullanılan paslanmaz çelik altlık malzemesi yerine Ni/Co esaslı süper alaşım altlık malzemesi üzerine SrZrO₃ kaplama biriktirilerek servis ömrü test edilebilir.

- SrZrO₃ sisteminin diğer perovskit yapılı BaZrO₃ üretilerek SrZrO₃ ile kıyaslanabilir. Ayrıca her iki bileşen aynı kaplama sisteminde kullanılarak performans testleri uygulanabilir.

- SrZrO₃ kaplama malzemesi YSZ ve CSZ gibi çevresel bariyer amaçlı olarak kullanılan kaplama malzemeleri ile kombine kullanılarak performansı ve servis ömrü arttırılabilir.

- SrZrO₃, BaZrO₃ ve La₂Zr₂O₇'ın ergime sıcaklıklarının yüksek olması, düşük termal iletkenlik ve yüksek termal genleşme katsayısına sahip olmaları, termal ve kimyasal kararlılıkları ve faz dönüşümü göstermemeleri bu perovskit grubunun termal bariyer kaplama uygulamalarında seçim kriterleridir. Yapılan deneysel çalışmalar sonucunda bu malzemelerden La₂Zr₂O₇'ın en ideal TBK malzemesi olduğu tespit edilmiştir. SrZrO₃ 730°C'lerde faz dönüşümü göstererek termal genleşmeye uğradığı için termal bariyer malzemesi olarak kullanımının mümkün olmadığı tespit edilmiştir. BaZrO₃ ise termal şok deneylerinde diğerlerinden daha önce deformasyon göstermiş ve termal ve kimyasal kararlılığı son derece zayıf bulunmuştur [2].
KAYNAKLAR

- [1] Altuncu, E., YSZ Ve CSZ Esaslı Termal Bariyer Kaplamaların Üretimi, Karakterizasyonu Ve Termal Çevrim Performanslarının Karşılaştırılması, Sakarya Üniversitesi, Fen Bilimler Enstitüsü, Metalurji ve Malzeme Anabilim Dalı, Doktora Tezi, 2011.
- [2] Vassen, R., Cao, X., Tietz F., Basu, D.and Stöver D., Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 83 [8] 2023–2028, 2000.
- [3] Üstel, F., Yılmaz, F., Termal Sprey Kaplama Teknolojisinde Kullanılan Kaplama Tozları ve Karakterizasyonu, 4th International Powder Metallurgy Conference, pp. 1203-1220, May 18-22, 2005.
- [4] Pawlowski, L., The Science and Engineering of Thermal Spray Coatings, Second Edition, 2008.
- [5] Berndt, C.C., Material Pruduction for Thermal Spray Process, Handbook of Thermal Spray Technology, pp. 133-159, 2004.
- [6] Suryanarayana, C., Mechanical Alloying, Powder Metal Technologies and Applications, ASM Handbook, Volume 7, pp. 184-185.
- [7] Dörtbölük, C., Alüminyum Matrisli Kompozit Malzemelerin Toz Metalurjisi Yöntemiyle Üretilmesi ve Karakterizasyonu, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, Metal Eğitimi Anabilim Dalı, Bilim Uzmanlığı Tezi, 2006.
- [8] Yılmaz, N.F., Production of Metal Powder by Gas Atomization, Gaziantep Üniversitesi, Makine Mühendisliği Bölümü, Master Tezi, 1996.
- [9] Yıldız, E.S., Gaz Atomizasyonu Yöntemi ile Metal Tozu Üretiminde Nozul Geometrisinin Toz Boyutuna Etkisinin Araştırılması, Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, 2007.
- [10] Kaya, T., Sol Jel Yöntemi ile ZrO₂-Al₂O₃ Seramik Kompozit Oksit Üretimi, Karakterizasyonu ve ZrO₂'nin Parametrik Etkilerinin İncelenmesi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği, 2006.

- [12] Zengin, S., Termal Sprey Teknolojisinde Kullanılan Tozların Karakterizasyonu, Sakarya Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Lisans Bitirme Tezi, 2005.
- [13] Nelson, W.A., Orenstein R.M., TBC experience in land-based gas turbines, Journal of Thermal Spray Tech.Vol. 6(2), 176-180, 1997.
- [14] Karaoğlanlı, A.C., Altuncu, E., Ozdemir, I., Turk, A., Ustel, F., Structure and Durability Evaluation of YSZ+Al₂O₃ Composite TBCs with APS and HVOF Bond Coats Under Thermal Cycling Conditions, Surface - Coatings Technology 205, S 369–373, 2011.
- [15] Knotek, O., Thermal spraying and detonation gun prosesses, Bunshah, R.F. (Ed.), Handbook of Hard Coatings: deposition technologies, properties and applications, Materials Science and Processing Technology Series, Noyes, 77-107, 2001.
- [16] Kulkarni, A.A., Goland A, Herman H., Allen A.J., Ilavsky J, Long G.G., Decarlo F., Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales, J. Thermal Spray Technology Volume 14(2) 239-250, 2005.
- [17] Herman, R.B., Plasma Spray Coating, Principles and Applications, VCH, USA, 1-100, 1996.
- [18] Fauchais, P., Understanding plasma spraying, J. Phys. D: Appl. Phys. 3, 86–108, 2004.
- [19] Nicholls, J.R., Advances in coating design for high performance gas turbines, MRS Bull. 28; 659–670, 2003.
- [20] Taşdıvar, D., Erkmen, E., İçten Yanmalı Motorların Termal Bariyer Kaplanması, Bilim ve Teknoloji Dergisi, Temmuz-Ağustos 2006.
- [21] Üstel, F., Yılmaz, M.B., Termal ve çevresel bariyer kaplamalar ve uygulamaları, IV. Uluslar arası Seramik Kongresi, Sakarya Üniversitesi; 413, Adapazarı, 30 Ekim-1 Kasım 2006.
- [22] Spitsberg, I., More, K., Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats, Materials Science and Engineering, A 417, pp. 322–333, 2006.
- [23] Slifka, A.J., Filla, B.J., Phelps, J.M., Bancke, G., Berndt, C.C., Thermal Conductivity of a Zirconia Thermal Barrier Coating, J. Therm. Technol., pp.43–46, 1998.

- [24] Padture, N.P., Gell, M., Jordan, E.H., Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science's compass, Volume 296, 280-288, April 2002.
- [25] Cao, X.Q., Vassen, R., Stoever, D., Ceramic Materials for Thermal Barrier Coatings, J. of the European Ceramic Society, pp. 1–10, 2004.
- [26] Jacobson, N.S., Corrosion of Silicon-based Ceramics in Combustion Environment, J. Am. Ceram. Soc., pp. 3–28, 1993.
- [27] Lee, K.N., Fox, D.S., Eldridge, J.I., Zhu, D., Bansal, N.P., Miller, R.A., Advanced Environmental Barrier Coatings Developed for SiC/SiC Composite Vanes, NASA.
- [28] Armstrong, B.L., Cooley, K.M., Haynes, J.A., Lgn, T., Slurry Based Environmental Barrier Coating (EBC) Concepts, 2002.
- [29] Ma, W., Mack, D., Vassen, R., Stöver, D., Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings, J. Am. Ceram. Soc., 91 [8] 2630–2635, 2008.
- [30] Zhang, Y., Mack, D., Jarligo, M., Cao, V., Partial Evaporation of Strontium Zirconate During Atmospheric Plasma Spraying, JTTEE5 18:694–701, 2009.
- [31] Cavalcante L.S., Simoes A.Z., Sczancoski J.C., Longo V.M., Erlo R., Escote M.T., Longo E., Varela J.A., SrZrO₃ Powders Obtained By Chemical Method: Synthesis, Characterization And Optical Absorption Behaviour, Solid State Sciences 9, 1020-1027, 2007.
- [32] Sreekumar, K.P., Ramanathan S., Venkatramani N., Preparation of Plasma Sprayed Coatings of Yttria Stabilized Zirconia and Strontium Zirconate and Studies on Their Interaction with Graphite Substrate, Plasma 2002 Symposium, Bharathiar University, 2002.
- [33] Matsudab, T., Yamanaka, S., Kurosakia, N., Kobayashib, S., High temperature phase transitions of SrZrO₃, Journal of Alloys and Compounds 351 (2003) 43–46.
- [34] Pragatheeswarana, A., Ananthapadmanabhanb, P.V., Chakravarthyb, Y., Subhakarbhandarib, Thiyagarajanb, T.K., Plasma spray deposition and characterization of strontium zirconate coatings, Ceramics International 40 (2014) 10441–10446.
- [35] Saral, U., Alümina İlavesinin YSZ Termal Bariyer Kaplamaların Mikroyapı ve Mekanik Özelliklerine Etkisi, Sakarya Üniversitesi, Fen Bilimler Enstitüsü, Metalurji ve Malzeme Anabilim Dalı, Yüksek Lisans Tezi, 2007.

- [37] Malghe, Y.S., Yadav, U.C., Synthesis, Characterization and Investigation of Dielectric Properties of Nanosized SrZrO₃, J. Therm. Anal. Calorim., 122:589-594, 2015.
- [38] Dongjae, L., Yunsang, L., Correlation Between Optical and Structural Properties in SrZrO3 Nanocrystals, New Physics: Sae Mulli, Vol62-Nu10, 2012.
- [39] Torres-Martínez, L.M., Huerta-Flores, A.M., SrZrO₃ powders: Alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting, Fuel, 158 (2015) 66–71.
- [40] Yamanaka, S., Kurosaki, K., Oyama, T., Thermophysical Properties of Perovskite-Type Strontium Cerate and Zirconate, J. Am. Ceram. Soc., 88[6] 1496-1499, 2005.
- [41] Shende, V.R., Krueger, D.S., Rossetti, G.A., Strontium Zirconate and Strontium Titanate Ceramic for High-Voltage Applications: Synthesis, Processing and Dielectric Properties, J. Am. Ceram. Soc., 84[7] 1648-50, 2001.
- [42] Tang, C., Lu, X., Huang, F., Structural and Elecric Properties of SrZrO₃ Thin Films with Different Annealing Conditions, Journal of Applied Physics, 105-061632, 2009.

ÖZGEÇMİŞ

Göksun SÖNMEZ 22.03.1991 yılında İstanbul'da doğdu. İlk ve orta öğretimini İstanbul'da tamamladıktan sonra İstanbul Üsküdar Çağrıbey Anadolu Lisesi'nden mezun oldu. 2009 yılında Sakarya Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği bölümünü kazandı. 2013 yılında bu bölümde lisans eğitimini tamamladıktan sonra aynı yıl Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Metalurji ve Malzeme Mühendisliği Anabilim Dalı'nda yüksek lisans eğitimine başlamıştır. Aynı zamanda 2015 yılında Marmara Üniversitesi, Güzel Sanatlar Fakültesi, Endüstri Ürünleri Tasarımı Bölümü'nü kazanmış ve ikinci lisans eğitimine başlamıştır.