T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TEK-A'LI ¹⁵¹⁻¹⁵⁹Eu VE ¹⁵¹⁻¹⁶¹Gd ÇEKİRDEKLERİNİN MANYETİK DİPOL UYARILMALARININ İNCELENMESİ

YÜKSEK LİSANS TEZİ

Gamze HOŞGÖR

Enstitü Anabilim Dalı

: FİZİK

Tez Danışmanı

: Doç. Dr. Hakan YAKUT

Aralık 2017

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

TEK-A'LI ¹⁵¹⁻¹⁵⁹Eu VE ¹⁵¹⁻¹⁶¹Gd ÇEKİRDEKLERİNİN MANYETİK DİPOL UYARILMALARININ İNCELENMESİ

YÜKSEK LİSANS TEZİ

Gamze HOŞGÖR

Enstitü Anabilim Dalı

FİZİK

Bu tez 27/12/2017 tarihinde aşağıdaki jüri tarafından oybirliği / oyçokluğu ile kabul edilmiştir.

:

Prof. Dr. Recep AKKAYA Jüri Başkanı Doç. Dr. Hakan YAKUT Üye

Doç. Dr. Mahmut BÖYÜKATA Üye **BEYAN**

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

> Gamze HOŞGÖR 27.12.2017 S.hosgien

TEŞEKKÜR

Lisansüstü çalışmamda danışmanlığımı üstlenen, tez konumun belirlenmesinden bitimine kadar geçen zorlu süreçte her daim yanımda olan, her konuda desteğini hep hissettiğim, bilgi ve tecrübelerinden çok şey öğrendiğim ve öğrenmeye devam edeceğim sevgili hocam ve danışmanım Doç. Dr. Hakan YAKUT'a teşekkür ederim.

Tez çalışmamın her aşamasında bana yardımcı olan, her türlü konuda desteğini, bilgi ve tecrübesini benden esirgemeyen, kendisinden çok şey öğrendiğim ve öğrenmeye devam edeceğim sevgili hocam Arş. Gör. Dr. Emre TABAR'a teşekkür ederim.

Katkı ve yardımlarından dolayı sevgili arkadaşım Huseynqulu QULİYEV'e, Elif KEMAH'a ve lisansüstü ders dönemim boyuncu engin bilgilerinden yararlandığım tüm Sakarya Üniversitesi Fizik Bölümü hocalarıma teşekkür ederim.

Bu çalışmanın maddi açıdan desteklenmesine olanak sağlayan Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Komisyon Başkanlığına (Proje No: 115F564) teşekkür ederim.

Lüsansüstü eğitimim boyunca kahrımı çekerek bana büyük destek veren tüm arkadaşlarıma ve can dostum Elvan ÖZ'e teşekkür ederim.

Hayatımın her alanında desteklerini her daim hissettiğim, varlıklarıyla güç veren, bana koşulsuz güvenen aileme teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	iv
ŞEKİLLER LİSTESİ	v
TABLOLAR LİSTESİ	vii
ÖZET	ix
SUMMARY	X
BÖLÜM 1.	
GİRİŞ	1
BÖLÜM 2.	
TEK KÜTLE NUMARALI ÇEKİRDEKLERDE MANYETİK DİPOL	
UYARILMALARI	4
2.1. Kuaziparçacık Fonon Nükleer Model (QPNM)	4
2.2. Tek Kütle Numaralı Çekirdeklerin Taban Durum Manyetik	
Özelliklerinin İncelenmesi	5
2.3. Tek Kütle Numaralı Deforme Çekirdeklerde Dönme Değişmez	
Kuaziparçacık Fonon Nükleer Model (RI-QPNM) Metodu	9
BÖLÜM 3.	
SAYISAL HESAPLAMALAR	14
3.1. ¹⁵¹⁻¹⁵⁹ Eu ve ¹⁵¹⁻¹⁶¹ Gd Çekirdeklerinde Taban Durum Manyetik	
Özelliklerin İncelenmesi	14
3.2. ¹⁵¹⁻¹⁵⁹ Eu ve ¹⁵¹⁻¹⁶¹ Gd Çekirdeklerinde Manyetik Dipol	
Uyarılmalarının İncelenmesi	22
3.2.1. ¹⁵¹⁻¹⁵⁹ Eu çekirdekleri için sayısal sonuçlar	22

3.2.2. ¹⁵¹⁻¹⁶¹ Gd çekirdekleri için sayısal sonuçlar	32
BÖLÜM 4.	
SONUÇLAR VE ÖNERİLER	43
VAVNAVLAD	16
KAI NAKLAK	40
EKLER	55
ÖZGEÇMİŞ	60

SİMGELER VE KISALTMALAR LİSTESİ

A	: Kütle Numarası
a ⁺ (a)	: Parçacık üretme (yoketme) operatörü
$\alpha^{+}(\alpha)$: Kuaziparçacık üretme (yoketme) operatörü
β	: Çekirdeğin Deformasyon Parametresi
B(<i>M</i> 1)	: İndirgenmiş Magnetik Dipol Uyarılma Ihtimali
Δ	: Gap Parametresi
δ	: Ortalama Alan Potansiyelinin Deformasyon Parametresi
Eu	: Evropiyum
Gd	: Gadolinyum
g_s	: Spin jiromanyetik faktörü
g_l	: Yörünge jiromanyetik faktörü
$g_s^{e\!f\!f}$: Efektif spin jiromanyetik faktörü
g_R	: Dönme jiromanyetik faktörü
Ι	: Spin
Κ	: Toplam Açısal Momentumun Simetri Eksenindeki İzdüşümü
λ	: Kimyasal Potansiyel
Ν	: Nötron Sayısı
π	: Parite
RI	: Dönme Değişmez
$Q^+(Q)$: Fonon üretme(yoketme) operatörü
QPNM	: Kuaziparçacık Fonon Nükleer Model
sqp	: Tek Kuaziparçacık
σ	: Spin Operatörü
μ	: Manyetik moment operatörü
Ζ	: Atom Numarası

ŞEKİLLER LİSTESİ

- Şekil 3.3. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için KPM, QTDA ve QRPA metotları kullanılarak hesaplanan teorik manyetik moment değerlerinin Tablo 3.1'deki deneysel manyetik moment verileri ile karşılaştırılması. Deneysel veriler hataları ile birlikte sunulmuştur..... 20
- Şekil 3.4. ¹⁵¹⁻¹⁵⁷Eu izotopları için teorik olarak hesaplanan B(M1↑) değerlerinin
 2-12 MeV enerji aralığındaki dağılımı. Burada düz çizgiler K₀-1
 uyarılma seviyelerine, kesikli çizgiler ise K₀+1 uyarılma seviyelerine
 M1 geçiş ihtimallerini göstermektedir. 23
- Şekil 3.5. ¹⁵⁰Sm ve ¹⁵¹Eu çekirdekleri için teorik olarak hesaplanan B(M1↑) değerlerinin enerjiye göre dağılımı. Üst grafikte ¹⁵⁰Sm çekirdeği için manyetik dipol geçiş ihtimallerinin K^π=1⁺ dalları kalın düz çizgi ile, alttaki grafikte ise ¹⁵¹Eu çekirdeği için taban durumdan K^π=3/2⁺ ve K^π=7/2⁺ seviyelerine B(M1↑) geçiş ihtimalleri sırası ile düz ve kesikli çizgilerle verilmiştir.

Şekil 3.7.	¹⁵¹⁻¹⁵³ Eu tek kütle numaralı çekirdeklerinin 2-12 MeV enerji						
	aralığındaki spin ve orbital $B(M1)$ spektrumları. $M1$ operatörünün						
	spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi						
	renk ile gösterilmiştir	30					
Şekil 3.8.	¹⁵⁵⁻¹⁵⁹ Eu tek kütle numaralı çekirdeklerinin 2-12 MeV enerji						
	aralığındaki spin ve orbital $B(M1)$ spektrumları. $M1$ operatörünün						
	spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi						
	renk ile gösterilmiştir	31					
Şekil 3.9.	¹⁵¹⁻¹⁵³ Gd izotopları için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin						
	2-12 MeV enerji aralığındaki dağılımı. Burada düz çizgiler K_0 -1						
	uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine						
	M1 geçiş ihtimallerini göstermektedir	32					
Şekil 3.10.	¹⁵⁵⁻¹⁶¹ Gd izotopları için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin						
	2-12 MeV enerji aralığındaki dağılımı. Burada düz çizgiler K_0 -1						
	uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine						
	M1 geçiş ihtimallerini göstermektedir	33					
Şekil 3.11.	¹⁶⁰ Gd ve ¹⁶¹ Gd çekirdekleri için teorik olarak hesaplanan $B(M1\uparrow)$						
	değerlerinin enerjiye göre dağılımı. Üst grafikte ¹⁵⁰ Sm çekirdeği için						
	manyetik dipol geçiş ihtimallerinin $K^{\pi}=1^+$ dalları kalın düz çizgi ile,						
	alttaki grafikte ise ¹⁵¹ Eu çekirdeği için taban durumdan $K^{\pi}=3/2^{-}$ ve						
	$K^{\pi}=7/2^{-}$ seviyelerine $B(M1\uparrow)$ geçiş ihtimalleri sırası ile düz ve kesikli						
	cizgilerle verilmistir	36					
Şekil 3.12.	¹⁵⁵ Gd ve ¹⁵⁷ Gd izotopları için teorik olarak hesaplanan $B(M1)$						
2	değerlerinin deneysel veriler ile karşılaştırılması. Burada düz çizgiler						
	K_0 -1 uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma						
	seviyelerine <i>M</i> 1 geçiş ihtimallerini göstermektedir	37					
Şekil 3.13.	¹⁵¹⁻¹⁵³ Gd tek kütle numaralı cekirdeklerinin 2-12 MeV enerji						
2	aralığındaki spin ve orbital $B(M1)$ spektrumları. M1 operatörünün						
	spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi						
	renk ile gösterilmiştir.	40					
Şekil 3.14.	¹⁵¹⁻¹⁵³ Gd tek kütle numaralı çekirdeklerinin 2-12 MeV enerji						
-	aralığındaki spin ve orbital B(M1) spektrumları.	41					

TABLOLAR LİSTESİ

- Tablo 3.1. $^{151-159}$ Eu ve $^{151-161}$ Gd çekirdeklerinin Δ ve λ çiftlenim parametreleri, δ_2 ortalamaalandeformasyonları,tabandurumNilssonkonfigürasyonları ve deneysel manyetik momentleri.15
- Tablo 3.3. $^{151-159}$ Eu ve $^{151-161}$ Gd çekirdekleri için KPM, SPM, QTDA ve QRPA
modelleri kullanılarak hesaplanan $g_s^{eff.}/g_s^r$ ve g_K değerlerinin deneysel
veriler ile karşılaştırılması.19
- Tablo 3.5. ¹⁵¹Eu ve ¹⁵³Eu çekirdekler için sırasıyla 2-4 MeV ve 2-3 MeV enerji aralığında RI-QPNM ile hesaplanan, $\sum_{I_f} B(M1\uparrow)$, $\sum_{I_f} g\Gamma_0^{red}(M1)$, $\sum_{I_f} g\Gamma_0(M1)$ ve \overline{E} değerlerinin deneysel veriyle karşılaştırılması. 28

Tablo 3.7.	¹⁵¹⁻¹⁵⁹ Eu çekirdeklerinin 4-12 MeV enerji aralığında K ^{π} uyarılma	
	seviyelerine M1 geçişleri için RI-QPNM ile hesaplanan $\sum_{I_f} B(M1\uparrow)$,	
	$\sum_{I_f} B_l(M1\uparrow), \sum_{I_f} B_{\sigma}(M1\uparrow)$ ve \overline{E} değerleri	30

- Tablo 3.8. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinde 2-4 MeV enerji aralığındaki $B(M1\uparrow) \ge 0.1 \mu_N^2$ olan K_0 -1 ve K_0 +1 uyarılma seviyelerinin RI-QPNM ile hesaplanan E_j enerjileri, tek kuaziparçacık $(N_{K\varsigma_q}^j)$, kuaziparçacık \otimes fonon karışım genlikleri $(G_{j,i\mu}^{K\varsigma_v})$, kuaziparçacık \otimes fonon yapıları $([Nn_z\Lambda\Sigma]\otimes Q_i)$ 33
- Tablo 3.9. ¹⁵⁵Gd ve ¹⁵⁷Gd çekirdekler için sırasıyla 2–3.5 MeV ve 2-4 MeV enerji aralığında RI-QPNM ile hesaplanan, $\sum_{I_f} B(M1\uparrow)$, $\sum_{I_f} g\Gamma_0^{red}(M1)$ ve $\sum_{I_f} g\Gamma_0(M1)$ ve \overline{E} değerlerinin deneysel veriyle karşılaştırılması....... 38
- Tablo 3.10. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin 2-4 MeV enerji aralığında K^{π} uyarılma seviyelerine M1 geçişleri için RI-QPNM ile hesaplanan $\sum_{I_f} B(M1\uparrow)$, $\sum_{I_f} B_I(M1\uparrow)$, $\sum_{I_f} B_{\sigma}(M1\uparrow)$, $\sum_{I_f} B_1(M1\uparrow)$, $\sum_{I_f} B_0(M1\uparrow)$, $\sum_{I_f} g\Gamma_0(M1)$, $\sum_{I_f} g\Gamma_0^{red}(M1)$ ve \overline{E} değerleri. 39

ÖZET

Anahtar kelimeler: Eu, Gd, Tek-Kütle, Deforme Çekirdek, Makas Mod, Spin-Flip, QPNM

Bu tez çalışmasında, nadir toprak bölgesinde yer alan tek-A'lı $^{151-159}$ Eu ve $^{151-161}$ Gd çekirdeklerinin taban durum manyetik özellikleri ve manyetik dipol uyarılmaları (*M*1) QPNM (Kuaziparçacık Fonon Nükleer Model) bazında teorik olarak ilk kez incelenmiştir.

Bu çekirdeklerin taban durumlarına ait teorik iç manyetik moment (g_K) , efektif spin jiromanyetik faktör $(g_s^{eff.})$ ve manyetik moment (μ) değerleri deneysel veriler ile karşılaştırılmış ve her bir çekirdek için spin-spin etkileşme güç parametresi belirlenmiştir. QPNM (Kuaziparçacık Fonon Nükleer Model) çerçevesinde yapılan hesaplamalar ayrıca KPM (Kuliev-Pyatov Metodu), SPM (Tek Parçacık Model) ve QTDA (Kuaziparçacık Tamm-Dancoff Yaklaşımı) modellerinin sonuçları ile de karşılaştırılmıştır.

Ayrıca bu çekirdeklerin manyetik dipol uyarılmaları RI (Dönme Değişmez)-QPNM kullanılarak teorik olarak incelenmiştir. RI-QPNM model, çekirdek hamiltoniyeninin kırılan dönme simetrisinin onarılmasını mümkün kılmaktadır. Restore edici kuvvetler ortalama alanla öz uyumlu olduklarından serbest parametre içermezler. Bu teori çerçevesinde elde edilen teorik sonuçlar mevcut deneysel veriler ile karşılaştırılmıştır.

INVESTIGATIONS OF THE MAGNETIC DIPOL EXCITATIONS OF THE ODD-MASS ¹⁵¹⁻¹⁵⁹EU AND ¹⁵¹⁻¹⁶¹GD

SUMMARY

Keywords: Eu, Gd, Odd-Mass, Deformed Nucleus, Scissors Mod, Spin-Flip, QPNM, RI-QPNM

In this thesis, the ground state magnetic properties and magnetic dipole excitations of rare earth elements ¹⁵¹⁻¹⁵⁹Eu and ¹⁵¹⁻¹⁶¹Gd nuclei have been theoretically investigated in framework of the QPNM (Quasiparticle Phonon Nuclear Model) for the first time.

The theoratical values of the ground state magnetic properties such as intrinsic magnetic moment (g_K) , effective spin gyromagnetic factor $(g_s^{eff.})$ and magnetic moment (μ) were compared with the available experimental data and the spin-spin interaction parameter was determined for each investigated nuclei. The results of QPNM calculations were also compared with the results of KPM (Kuliev-Pyatov Method), SPM (Single Particle Model) and QTDA (Quasiparticle Tamm-Dancoff Approximation).

The magnetic dipole excitations in these nuclei were also theoretically investigated by using RI-QPNM (Rotation Invariant Quasiparticle Phonon Nuclear Model). RI-QPNM model makes it is possible to restore of the broken rotational symmetry of nuclear hamiltonien. Due to the self-consistency of restoration forceses, they contain no arbitrary parameters. The results of calculations are compared with the available experimental data.

BÖLÜM 1. GİRİŞ

Tek kütle numaralı deforme çekirdeklerin manyetik dipol uyarılmalarının incelenmesi oldukça önemlidir. Bu çekirdeklerin manyetik dipol uyarılmalarını teorik olarak inceleyebilmek için spin-spin etkileşme güç parametresi (χ) ve efektif spin jiromanyetik faktör (g_s^{eff}) gibi parametrelerin belirlenmesi büyük önem arz eder. Geçmiş yıllarda yapılan pek çok çalışmada spin-spin etkileşme güç parametresi deneyle fit edilerek belirlenmiştir [1-7] ancak, bu uygulamanın geçerliliği tartışmaya açıktır. Spin-spin etkileşme güç parametresinin belirlenmesine yönelik Yakut vd. tarafından Kuaziparçacık Fonon Nükleer Model (QPNM)'e dayanarak geliştirilen bir metot [8], tek kütleli çekirdeklerde gözlenen spin polarizasyon olayını da başarılı bir şekilde açıklamaktadır [9-11]. Spin polarizasyon olayı, tek kütle numaralı çekirdeklerde, çift-çift korun dışında kalan tek nükleonun, korun 1⁺ fononları ile etkileşmesi sonucu oluşur. Bu durum, manyetik moment (μ) ve iç manyetik moment (g_K) gibi niceliklerin teorik öngörülerden sapmasına neden olmaktadır [12-14]. Bu sebeple spin polarizasyon olayının başarılı bir şekilde açıklanması gerektiği aşıkardır.

Tez çalışmasının bir bölümünde, tek-A'lı¹⁵¹⁻¹⁵⁹Eu ve¹⁵¹⁻¹⁶¹Gd çekirdekleri için taban durum manyetik özellikleri Yakut vd. tarafından geliştirilen bu metot çerçevesinde incelenmiştir. Spin-spin etkileşme güç parametresi ve efektif spin jiromanyetik faktör gibi manyetik dipol uyarılmalarının teorik olarak incelenmesi noktasında önem arz eden bazı büyüklükler, bu yöntem sayesinde başarılı bir şekilde tayin edilmiştir.

Deformasyon bölgesinde yer alan çekirdeklerde manyetik dipol uyarılmalarını teorik olarak açıklamak adına yapılan birçok çalışma mevcuttur [15-38]. Bunların içerisinde QPNM modeli şimdiye kadar geliştirilen diğer birçok modelin öngöremediği gözlenebilir niceliklere ait uyumlu sonuçlar verse de bu modelin çekirdeğe uygulanışında bazı sorunlarla karşılaşılmıştır. QPNM model uygulamalarında Hartre-Fock-Bogolyubov (HFB) yaklaşımları kullanılır. Bu yaklaşımdan ötürü tek parçacık hamiltonyenin birçok simetrisi kırılır. Simetri kırınımından ötürü ortaya çıkan ve çekirdeğin iç hareketiyle hiçbir ilgisi olmayan yeni modlar meydana gelir. Bu modlar literatürde sahte (spurious) haller olarak bilinmektedir. Bu sahte haller, gerçek enerji spektrumuna karışır ve bu durum teorik olarak elde edilen sonuçları kuvvetli bir şekilde etkiler [39]. Bu nedenle enerji spektrumlarının bu sahte hallerden ayrıştırılması ve hamiltonyenin kırılan dönme simetrisinin onarılması gerekmektedir. Bu problemin çözümüne yönelik tek A'lı iyi deforme çekirdeklerin *M*1 uyarılmaları için Tabar vd. tarafından [39] QPNM'e bağlı bir metot geliştirilmiştir. Dönme Değişmez Kuaziparçacık Fonon Nükleer Model (RI-QPNM) adı verilen bu metot, hamiltonyenin kırılan dönme simetrisini onarmaktadır. RI-QPNM, tek-A'lı çekirdeklerin manyetik dipol uyarılmalarını teorik olarak başarılı bir şekilde açıklamaktadır [39-41].

Düşük enerjili manyetik dipol (makas mod) uyarılmalarının çift-çift çekirdeklerde deneysel ve teorik olarak oldukça yoğun şekilde incelenmesi bu uyarılmaların belirgin özelliklerinin ortaya çıkmasını sağlamıştır. Tek-A'lı çekirdeklerde de bu modların varlığı ve özeliklerinin araştırılması üzerine birçok deneysel çalışma yapılmaktadır. Gelişen teknolojiyle birlikte daha hassas ölçümlerin yapılabildiği nükleer rezonans flüoresans (NRF) deneyleri, düşük enerjili manyetik dipol uyarılmalarının araştırılmasında oldukça seçici ve duyarlı bir yöntem olarak kullanılmaktadır [42]. Tek A'lı çekirdeklerde makas mod ilk kez 1993 yılında Bauske vd. tarafından ¹⁶³Dy çekirdeğine yapılan NRF deneyinde keşfedilmiştir [43]. Günümüze kadar ki süreçte birçok tek kütleli çekirdekte *M*1 uyarılmaları deneysel olarak araştırılmıştır [44-73]. Fakat bu gözlemleri destekleyici teorik çalışmalar sınırlı sayıda olduğundan bu nükleer yapıya ait uyarılmaların tam bir teorisinin oluşturulabilmesi için daha fazla teorik çalışmanın yapılması elzemdir.

Bu tez çalışmasında incelenen ve proton sayısı 63 olan Evropiyum (Eu) ile proton sayısı 64 olan Gadalinyum (Gd) çekirdekleri için literatürde sırasıyla ¹⁵¹Eu ve ¹⁵³Eu [74] izotopları ile ¹⁵⁵Gd [49] ve ¹⁵⁷Gd [42] izotoplarına ait NRF deneyleri bulunmaktadır. Öncelikli olarak tez konusunu oluşturan çekirdekler için taban durum manyetik özellikleri teorik olarak incelenmiş ve spin etkileşme sabitleri ile efektif g_s faktörler ilk kez belirlenmiştir. Daha sonra RI-QPNM çerçevesinde hesaplanan *M*1

uyarılmalarının geçiş özellikleri deneysel verilerle karşılaştırılmıştır. Ayrıca deneysel olarak çalışılmamış tek-A'lı $^{155-159}$ Eu ve 151,153,159,161 Gd çekirdeklerinin de taban durum manyetik özellikleri ve *M*1 geçiş ihtimalleri teorik olarak araştırılmıştır. Böylece bu çalışma Eu ve Gd çekirdeklerinin uzun izotop zincirlerinde *M*1 uyarılmalarının özelliklerinin sistematik olarak araştırıldığı ilk teorik çalışma olacaktır ve gelecekte yapılması muhtemel deneylere bir öngörü sağlayacağı açıktır.

Bu tez çalışmasının birinci bölümünde manyetik dipol uyarılmaları hakkında genel bilgilere yer verilmiştir. Tez konusunu oluşturan çekirdekler üzerine literatürde bulunan teorik ve deneysel çalışmalar kısaca ele alınmıştır.

İkinci bölümde, kullanılan teori hakkında bilgilere yer verilmiştir. Tek kütle numaralı çekirdeklerin taban durum manyetik özellikleri üzerine kullanılan teorinin ve RI-QPNM metodunun temel özellikleri ve matematiksel ifadeleri özetlenmiştir.

Üçüncü bölümde, bu tez konusunu oluşturan tek-A'lı ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin taban durum ve *M*1 uyarılmalarına ait sayısal hesaplama sonuçları yer almaktadır. Bu bölümde, tek-A'lı çekirdekler için elde edilen teorik sonuçlar, tek nükleonun dışında kalan kor çekirdeklerinin teorik sonuçlarıyla ve mevcut deneysel veriler ile karşılaştırılmıştır.

Dördüncü bölümde, elde edilen sonuçlar hakkında genel bir çıkarım ve öneriler yer almaktadır.

BÖLÜM 2. TEK KÜTLE NUMARALI ÇEKİRDEKLERDE MANYETİK DİPOL UYARILMALARI

2.1. Kuaziparçacık Fonon Nükleer Model (QPNM)

Tek-A'lı çekirdeklerde taban ve uyarılma durumlarının teorik olarak incelenmesi çekirdek yapısının anlaşılmasında oldukça önemlidir. Tek-A'lı çekirdeklerin düşük enerjili spektrumlarında çok sayıda tek kuaziparçacık bulunur. Ayrıca çift-çift çekirdeklerde de çok sayıda fonon titreşim modları mevcuttur. Bu durumlar göz önüne alındığında tek kütle numaralı çekirdeklerde çok sayıda kolektif titreşim seviyesinin var olması beklenmektedir [75]. Tek-A'lı çekirdeklerde bu tür titreşimlerin varlığı, yapılan deneysel çalışmalar ile ortaya konulmuştur [76]. Kolektif titreşim seviyelerinin yapısının tam olarak anlaşılabilmesi için, tek kuaziparçacık seviyeleri ile fonon titreşimleri arasındaki karışımları da hesaba katmak gerekmektedir [75]. Deforme çekirdeklerde kuaziparçacıklar ve fononlar arasındaki etkileşmeler üzerine ilk olarak 1965 yılında Soloviev [77] ve 1966 yılında Bes ve Cho Yi-Chung [78] tarafından çalışmalar yapılmıştır. Ayrıca Soloviev vd. tarafından yapılan çalışmalarda, nadir toprak bölgesinde ver alan 153 < A < 175 kütle aralığındaki tek-A'lı çekirdeklerin dönmesiz seviye yapılarının ve enerjilerinin de detaylı hesaplamaları rapor edilmiştir [79-81]. Benzer hesaplamalar Gareev vd. tarafından aktinit bölgesinde yer alan çekirdekler için de yapılmıştır [82]. Soloviev ve çalışma grubu yapılan bu çalışmalara dayanarak daha genel bir metot olan QPNM'i matematiksel olarak formülüze etmiştir [83]. QPNM, tek kuaziparçacık seviyelerinin parçalı yapısını, bir fononlu seviyeleri ve kuaziparçacık fonon seviyelerini çok sayıda nükleer seviye üzerinden hesaplayabilme imkanı verir [83]. Ayrıca bu model, tek-A'lı küresel çekirdeklerin seviye yapılarının ve manyetik momentlerin teorik olarak incelenmesinde de başarılı bir şekilde uygulanmıştır [84-87]. Bunun yanı sıra Yakut vd. tarafından geliştirilen yaklaşım ile tek kütle numaralı deforme çekirdeklerin taban durum manyetik özelliklerinin ve spin polarizasyon olayının açıklanmasında QPNM'in iyi sonuçlar verdiği görülmüştür [8-11]. QPNM pek çok çekirdek için tek kuaziparçacık, bir fonon ve kuaziparçacık⊗fonon durumlarını ve bu durumların parçalanmalarının hesaplanmasını mümkün kılar [88]. Burada QPNM metodundan kısaca bahsedilmiş olup modelin hesaplama şemasına ve çekirdeklere uygulanmasındaki işlem basamaklarına Ref. [39]'dan ulaşılabilir.

2.2. Tek Kütle Numaralı Çekirdeklerin Taban Durum Manyetik Özelliklerinin İncelenmesi

Tek kütleli çekirdeklerde tek kalan nükleon, korun manyetik dipol uyarılmaları ile etkileşir. Bu nedenle, bu tür çekirdeklerde taban durum manyetik özelliklerinin araştırılması ve teorik olarak izah edilmesi oldukça önemli bir husustur. Literatürde Arima-Horie [89] etkisi olarak bilinen bu durumdan ötürü spin kısmının (g_s) çekirdeğin manyetik momentine olan katkısı azalmaktadır [13,14,90-93]. Bu problemin çözümüne yönelik birçok teorik çalışma yapılmıştır [8,13,14,91-93]. Son olarak Yakut vd. tarafından QPNM'e dayanarak geliştirilen bir metot [8-11] ile tek-A'lı çekirdeklerin manyetik özellikleri başarılı bir biçimde açıklanmaya çalışılmıştır. Şimdi bu teorinin detaylarını kısaca ele alalım:

Eksenel simetrik ortalama alanda nükleonların çiftlenim ve spin-spin kuvvetleri ile etkileştiği bir sistem için QPNM hamiltonyeni aşağıdaki formdadır:

$$H = H_{sqp} + H_{coll.} + H_{int.}$$
(2.1)

Burada;

$$H_{sqp} = \sum_{s,\tau} \varepsilon_s(\tau) \alpha_{s\rho}^+ \alpha_{s\rho}$$
(2.2)

$$H_{coll.} = \frac{1}{2} \sum_{\tau,\tau'} \chi_{\tau\tau'} \sum_{ss'} \sigma_{ss'}^{(\mu)} L_{ss'} g_{ss'}^{i} \left(Q_{i}^{+} + Q_{i} \right) \sum_{mm'} \sigma_{mm'}^{(\mu)} L_{mm'} g_{mm'}^{i} \left(Q_{i}^{+} + Q_{i} \right)$$
(2.3)

$$H_{int.} = \sum_{\tau,\tau'} \chi_{\tau\tau'} \sum_{mm'} \sum_{ss'} \left\{ \sigma_{ss'}^{(\mu)} M_{ss'} \sigma_{mm'}^{(\mu)} L_{mm'} g_{mm'}^{i} D_{ss'}(\tau) \left(Q_{i}^{+} + Q_{i} \right) + \sigma_{ss'}^{(\mu)} L_{ss'} \sigma_{mm'}^{(\mu)} M_{mm'} g_{ss'}^{i} \left(Q_{i}^{+} + Q_{i} \right) D_{mm'}(\tau') \right\}$$
(2.4)

İlk terim H_{sqp} eksenel simetrik deforme Woods-Saxon potansiyeli içerir ve çekirdekteki kuaziparçacık hareketini ifade etmektedir. $H_{coll.}$ çift-çift kordaki 1⁺ fonon uyarılmalarını, $H_{int.}$ terimi ise tek parçacık hareketiyle kolektif hareket arasındaki ilişkiyi ifade eder. Hamiltonyen ile ilgili daha ayrıntılı bilgilere Ref [8,39]'dan ulaşabilirsiniz.

Tek kütle numaralı bir çekirdeğin K>1/2 durumu için dalga fonksiyonu (K: açısal momentumun simetri üzerindeki iz düşümü) [8-11,39];

$$\psi_{K}^{j}(\tau) = \left\{ N_{K}^{j} \alpha_{K}^{+}(\tau) + \sum_{i,v} G_{ij}^{KK_{v}} \alpha_{K_{v}}^{+}(\tau) Q_{i}^{+} \right\} |\psi_{0}\rangle \quad ; \quad (\mu = 0)$$
(2.5)

şeklinde seçilmiştir. Burada ψ_0 çift korun taban durum dalga fonksiyonudur. Ayrıca N_K^j tek kuaziparçacık, G_{ij}^{KKv} ise kuaziparçacık \otimes fonon seviyelerinin genlikleridir. Dalga fonksiyonu;

$$\left\langle \psi_{K}^{j}(\tau) \middle| \psi_{K}^{j}(\tau) \right\rangle = N_{K}^{j\,2} + \sum_{i,\nu} \left[G_{ij}^{KK_{\nu}} \right]^{2} = 1$$
(2.6)

normalizasyon koşulunu sağlamaktadır. $\psi_K^j(\tau)$ dalga fonksiyonu üzerinden (2.1) Hamiltoniyeninin beklenen değeri alındığında,

$$\left\langle \psi_{K}^{j}(\tau) \middle| H \middle| \psi_{K}^{j}(\tau) \right\rangle = \varepsilon_{K} N_{K}^{j2}(\tau) + 2\chi N_{K}^{j2}(\tau) \sum_{i,v} G_{ij}^{KK_{v}^{2}} \sigma_{KKv} M_{KKv} R_{q}^{i}(\tau,\tau') + \sum_{i,v} G_{i}^{KK_{v}^{2}} \left(\omega_{i} + \varepsilon_{K_{v}}(\tau) \right)$$

$$(2.7)$$

elde edilir. Dalga fonksiyonunun $N_K^j(\tau)$ ve $G_j^{KK_v}$ genlikleri Lagrange Çarpanlar Metodu (veya Varyasyon Metodu),

$$\delta\left\{\left\langle\psi_{K}^{j}(\tau)\left|H\right|\psi_{K}^{j}(\tau)\right\rangle-\left\langle0\left|H\right|0\right\rangle-\eta_{K}^{j}(\tau)\left[N_{K}^{j2}+\sum_{i,\nu}\left[G_{i}^{KK_{\nu}}\right]^{2}-1\right]\right\}=0$$
(2.8)

kullanılarak belirlenmektedir. (2.7) ve (2.8) ifadeleri yardımıyla N_K^j ve $G_i^{KK_v}$ 'ye göre varyasyon işlemi uygulanır ve elde edilen denklem sistemi çözülürse [8] aşağıdaki seküler denklem elde edilir:

$$P(\eta_K^j) \equiv \varepsilon_K - \eta_K^j - \sum_i \sum_{\nu} \frac{1}{\left(\chi F_n\right)^2 Z(\omega_i)} \frac{M_{KK_\nu}^2 \sigma_{KK_\nu}^2}{\varepsilon_{K_\nu} + \omega_i - \eta_K^j} = 0$$
(2.9)

Burada $\eta_{K}^{j}(\tau)$ seküler denklemin köküdür ve tek çekirdeğin enerjisini verir. Ayrıca,

$$Z(\omega_{i}) = \frac{1}{(-\chi F_{n})^{2}} Y_{n}(\omega_{i}) + \frac{q^{2}}{(1+\chi F_{p})^{2}} Y_{p}(\omega_{i})$$
(2.10)

ve

$$Y_{\tau}(\omega_{i}) = 4\omega_{i} \sum_{ss'} \frac{\varepsilon_{ss'} \sigma_{ss'}^{2} L_{ss'}^{2}}{(\varepsilon_{ss'}^{2} - \omega_{i}^{2})^{2}} \qquad F_{\tau}(\omega_{i}) = 2\sum_{ss'} \frac{\varepsilon_{ss'} \sigma_{ss'}^{2} L_{ss'}^{2}}{\varepsilon_{ss'}^{2} - \omega_{i}^{2}}$$
(2.11)

şeklindedir. Seküler denklem (2.9) ve normalizasyon şartı (2.6) kullanılarak $N_K^j(\tau)$ ve $G_j^{KK_v}$ genlikleri için aşağıdaki gibi genel bağıntılar bulunur:

$$N_{K}^{j-2} = 1 + \sum_{i,v} \frac{1}{\left(\chi F_{n}\right)^{2} Z(\omega_{i})} \frac{\sigma_{KK_{v}}^{2} M_{KK_{v}}^{2}}{\left(\varepsilon_{K_{v}} + \omega_{i} - \eta_{K}^{j}\right)^{2}}$$
(2.12)

$$G_{ij}^{KK_{\nu}} = -\frac{1}{\chi F_n \sqrt{Z(\omega_i)}} \frac{\sigma_{KK_{\nu}} M_{KK_{\nu}}}{\varepsilon_{K_{\nu}} + \omega_i - \eta_K} N_K^j$$
(2.13)

Tek kütle numaralı bir çekirdeğin manyetik dipol operatörünün z bileşeninin beklenen değeri, bu çekirdeğin iç manyetik momentine eşittir [9-11,39] ve bu değer,

$$\mu_{K_{0}} = g_{K_{0}}K_{0} = \left\{ g_{s}^{\tau} \left\{ 1 - 2N_{K_{0}}^{2}(\tau) \sum_{i,\nu} \frac{\chi M_{K_{0}K_{0}}^{\tau} R_{q}^{i}(\tau,\tau') R_{\tau}^{i}}{\left(\omega_{i} + \varepsilon_{K_{0}}^{\tau} - \eta_{K_{0}}\right)} \right\} - 2(g_{s}^{\tau'} - g_{l}^{\tau'}) N_{K_{0}}^{2}(\tau) \sum_{i,\nu} \frac{\chi M_{K_{0}K_{0}}^{\tau} R_{q}^{i}(\tau,\tau') R_{\tau'}^{i}}{\left(\omega_{i} + \varepsilon_{K_{0}}^{\tau} - \eta_{K_{0}}\right)} \right\} \frac{\sigma_{K_{0}K_{0}}^{(\mu=0)}}{2} + g_{\ell}^{\tau'} K_{0}$$

$$(2.14)$$

şeklindedir. (2.14) ifadesi Nilsson formülü [9-11,39],

$$\mu_{K_0} = g_{K_0} K_0 = \frac{1}{2} (g_s^{\tau} - g_l^{\tau}) \sigma_{K_0 K_0}^{(0)}(\tau) + g_l^{\tau} K_0(\tau)$$
(2.15)

ile karşılaştırıldığında efektif spin jiromanyetik faktör için analitik ifade aşağıdaki gibi elde edilir [9-11,39]:

$$g_{s}^{eff} - g_{l}^{\tau} = \left(g_{s}^{\tau} - g_{l}^{\tau}\right) \left\{ 1 - 2N_{K_{0}}^{2}(\tau) \sum_{i,\nu} \frac{\chi M_{K_{0}K_{0}}^{\tau} R_{q}^{i}(\tau,\tau') R_{\tau}^{i}}{\left(\omega_{i} + \varepsilon_{K_{0}}^{\tau} - \eta_{K_{0}}\right)} \right\} - 2\left(g_{s}^{\tau'} - g_{l}^{\tau'}\right) N_{K_{0}}^{2}(\tau) \sum_{i,\nu} \frac{\chi M_{K_{0}K_{0}}^{\tau} R_{q}^{i}(\tau,\tau') R_{\tau'}^{i}}{\left(\omega_{i} + \varepsilon_{K_{0}}^{\tau} - \eta_{K_{0}}\right)}$$

$$(2.16)$$

Bu analitik ifadedeki ikinci ve üçüncü terimlerin katkısı g_s spin faktöründe kayda değer bir azalmaya (renorm) sebep olmaktadır. Bu da tek-A'lı çekirdekte tek kalan nükleonun çift korun spin polarizasyonuna yol açmasından ileri gelmektedir [8-11,39].

2.3. Tek Kütle Numaralı Deforme Çekirdeklerde Dönme Değişmez Kuaziparçacık Fonon Nükleer Model (RI-QPNM) Metodu

Dönme Değişmez Kuaziparçacık Fonon Nükleer Model (RI-QPNM), tek parçacık hamiltonyeninin kırılan dönme simetrisinin onarıldığı bir yaklaşımdır. Hamiltonyenin dönme simetrisinin kırılma nedeni, QRPA ve QPNM yöntemlerinde kullanılan Hartree-Fock-Bogolyubov (HFB) yaklaşımıdır. Bu yaklaşımdan ötürü kırılan dönme simetrisi birçok sahte hal içerir ve bu sahte haller gerçek titreşimlere karışır [39]. Bu noktada, kırılan dönme simetrisinin onarılması ve sahte hallerin ortadan kaldırılması oldukça önemlidir.

N>Z olan çekirdeklerin çekirdek potansiyelleri izoskaler ve izovektör olmak üzere iki kısıma ayrılmaktadır. Bunun nedeni bu tür çekirdeklerin nötron ve proton ortalama alan potansiyellerinin farklı olmasıdır. Bu sebeple, kırılan hamiltonyenin onarılması için hem izoskaler hem de izovektör terimleri sistem hamiltonyeni ile öz uyumlu olmalıdır [33,94]. Bu bağlamda, Kuliev vd. (2000) çift-çift çekirdeklerin 1⁺ titreşim durumlarını sahte hallerden yalıtmak için çekirdek ortalama alan potansiyelinde izoskaler ve izovektör terimlerin olduğu bir yöntem kullanmışlardır [33]. Kuliev vd. tarafından geliştirilen bu metot ilk kez E. Tabar (2015) tarafından tek kütle numaralı çekirdeklerde dönme değişmezliğin restorasyonu için kullanılmıştır [39]. Şimdi bu teorinin detaylarını kısaca ele alalım:

Eksenel simetrik ortalama alanda nükleonların çiftlenim ve spin-spin kuvvetleri ile etkileştiği bir sistem için QPNM hamiltonyeni (2.1)'de verildiği gibidir.

Tek parçacık hamiltonyenin (H_{sqp}) kırılan dönme simetrisi izoskaler $(h_0^{boz}$ ve $h_0^{int.})$ ve izovektör $(h_1^{boz}$ ve $h_1^{int.})$ restorasyon kuvvetleri sayesinde onarılabilir. Bu kuvvetler;

$$h_0^{boz.} = -\frac{1}{2\gamma_0} \sum_{\mu=\pm 1} [H_{sqp} - V_1, J_{\mu}^{boz.}]^+ [H_{sqp} - V_1, J_{\mu}^{boz.}]$$
(2.17)

$$h_0^{\text{int.}} = -\frac{1}{2\gamma_0} \sum_{\mu=\pm 1} \left\{ [H_{sqp} - V_1, J_{\mu}^{qp}]^+ [H_{sqp} - V_1, J_{\mu}^{boz.}] + h.c. \right\}$$
(2.18)

$$h_1^{boz.} = -\frac{1}{2\gamma_1} \sum_{\mu=\pm 1} [V_1, J_{\mu}^{boz.}]^+ [V_1, J_{\mu}^{boz.}]$$
(2.19)

$$h_{1}^{\text{int.}} = -\frac{1}{2\gamma_{1}} \sum_{\mu=\pm 1} \left\{ [V_{1}, J_{\mu}^{qp}]^{+} [V_{1}, J_{\mu}^{boz.}] + h.c. \right\}$$
(2.20)

şeklindedir. Burada V_1 ortalama alan potansiyelini izovektör kısmıdır. J_{μ} (μ =±1) ise açısal momentum operatörünün küresel bileşenidir. *h.c.* hermitik eşlenik anlamına gelmektedir. γ_0 ve γ_1 etkileşme sabitleri,

$$\gamma^{(\mu)} = \left\langle \psi_{K_0}(\tau) \Big| [J_{\mu}^+, [H_{sqp}, J_{\mu}]] \Big| \psi_{K_0}(\tau) \right\rangle \qquad (\mu = \pm 1)$$

$$\gamma_1^{(\mu)} = \left\langle \psi_{K_0}(\tau) \Big| [J_{\mu}^+, [V_1, J_{\mu}]] \Big| \psi_{K_0}(\tau) \right\rangle \qquad (\mu = \pm 1)$$
(2.21)

ve

$$\gamma^{(-1)} = \gamma^{(+1)} = \gamma \qquad ; \qquad \gamma_1^{(-1)} = \gamma_1^{(+1)} = \gamma_1 \gamma_0 = \gamma - \gamma_1 \qquad ; \qquad \gamma = \gamma^n + \gamma^p \qquad ; \qquad \gamma_1 = \gamma_1^n - \gamma_1^p$$
(2.22)

olarak verilir. $|\psi_{K_0}(\tau)\rangle = \alpha_{K_0}^+(\tau)|\psi_0\rangle$ tek kütleli çekirdeğin taban durum dalga fonksiyonudur. γ_0 ve γ_1 etkileşme sabitleri tamamen ortalama alan parametreleriyle belirlendiklerinden dolayı h_0 ve h_1 etkin kuvvetleri ilave bir parametre içermez [39-41,95].

Simetri restorasyon terimlerinin hamiltonyene eklenmesi ile $[H_{inv.}, J_{\mu}] = 0$ olduğu gösterilebilir:

$$H \approx H_{sqp} + H_{coll.} + H_{int.} + h_0^{boz.} + h_0^{int.} + h_1^{boz.} + h_1^{int.}$$
(2.23)

Tek kütle numaralı bir çekirdekte K^{π} spininin bir seviyeyi temsil eden dalga fonksiyonu, tek kuaziparçacık ve kuaziparçacık \otimes fonon terimlerinden oluşmaktadır [39-41,95]. Bu dalga fonksiyonu;

$$\psi_{K}^{j}(\tau) = \left\{ \sum_{q} N_{\varsigma_{q}}^{j}(\tau) \alpha_{\varsigma_{q}}^{+}(\tau) + \sum_{i\mu} \sum_{\nu} G_{j}^{i\mu\nu} \alpha_{\nu}^{+}(\tau) Q_{i\mu}^{+} \right\} |\psi_{0}\rangle \quad ; \quad \mu = \pm 1$$

$$(2.24)$$

Bu dalga fonksiyonu;

$$\left\langle \psi_{K}^{j}(\tau) \middle| \psi_{K}^{j}(\tau) \right\rangle = \sum_{q} \left(N_{\varsigma_{q}}^{j} \right)^{2} (\tau) + \sum_{i\mu} \sum_{\nu} \left(G_{j}^{i\mu\nu} \right)^{2} = 1$$
(2.25)

normalizasyon şartına uymaktadır. Varyasyon prensibi;

$$\delta\left\{\left\langle\psi_{K}^{j}(\tau)\left|H_{inv.}\right|\psi_{K}^{j}(\tau)\right\rangle-\left\langle\psi_{K_{0}}(\tau)\right|H_{inv.}\left|\psi_{K_{0}}(\tau)\right\rangle-\eta_{K}^{j}\left[\sum_{q}\left(N_{\varsigma_{q}}^{j}\right)^{2}+\sum_{i\mu}\sum_{v}\left(G_{j}^{i\mu\nu}\right)^{2}-1\right]\right\}=0$$
(2.26)

kullanılarak tek kütle numaralı çekirdeğin taban ve uyarılmış durum enerjilerini veren seküler denklem

$$\det \begin{pmatrix} \left(\varepsilon_{K_{\varsigma_{1}}}^{\tau} - \eta_{K}^{j}\right) - F_{i}\left(\varsigma_{1},\varsigma_{1}\right) & -F_{i}\left(\varsigma_{1},\varsigma_{2}\right) & \dots & -F\left(\varsigma_{1},\varsigma_{n}\right) \\ -F_{i}\left(\varsigma_{2},\varsigma_{1}\right) & \left(\varepsilon_{K_{\varsigma_{2}}}^{\tau} - \eta_{K}^{j}\right) - F_{i}\left(\varsigma_{2},\varsigma_{2}\right) & \dots & -F\left(\varsigma_{2},\varsigma_{n}\right) \\ \dots & \dots & \dots & \dots \\ -F_{i}\left(\varsigma_{n},\varsigma_{2}\right) & -F_{i}\left(\varsigma_{n},\varsigma_{2}\right) & \dots & \left(\varepsilon_{K_{\varsigma_{n}}}^{\tau} - \eta_{K}^{j}\right) - F_{i}\left(\varsigma_{n},\varsigma_{n}\right) \end{pmatrix} = 0$$

$$(2.27)$$

elde edilir [39-41,95]. Burada;

$$F_{\tau}\left(\varsigma_{q},\varsigma_{m}\right) = \sum_{i\nu} \frac{\Lambda_{i\nu}\left(\varsigma_{q},\tau\right)\Lambda_{i\nu}\left(\varsigma_{m},\tau\right)}{\left(\omega_{i}+\varepsilon_{\nu}-\eta_{K}^{j}\right)} \quad , \quad \Lambda_{i\nu}\left(\varsigma_{q},\tau\right) = \chi R_{\mathcal{Q}}^{i}(\tau,\tau')M_{\varsigma_{q}\nu}\sigma_{\varsigma_{q}\nu}^{(J)}(i) \tag{2.28}$$

$$\sigma_{\varsigma_{q}\nu}^{(J)}(i) = \sum_{\mu} \left\{ \sigma_{\varsigma_{q}\nu}^{(\mu)} - j_{\varsigma_{q}\nu}^{(\mu)} \left[\frac{\gamma_{1} R_{0}^{i}(\tau) \varepsilon_{0}^{(-)} - (\gamma - \gamma_{1}) R_{1}^{i}(\tau) V_{1}^{(-)}}{\chi R_{Q}^{i}(\tau, \tau') (\gamma - \gamma_{1}) \gamma_{1}} \right] \right\}$$
(2.29)

şeklindedir. Ayrıca;

$$V_{1\tau}^{(-)} = V_{1\varsigma_q}^{\tau} - V_{1\nu}^{\tau}; \quad \varepsilon_{\tau}^{(-)} = \varepsilon_{\varsigma_q}^{\tau} - \varepsilon_{\nu}^{\tau}; \quad \varepsilon_{0}^{(-)} = \varepsilon_{\tau}^{(-)} - \tau_z V_{\tau}^{(-)}$$
(2.30)

$$R_{Q}^{i}(\tau,\tau') = R_{\tau}^{i} + qR_{\tau'}^{i} = \begin{cases} R_{n}^{i} + qR_{p}^{i}, \ odd - N \\ R_{p}^{i} + qR_{n}^{i}, \ odd - P \end{cases}; \quad R_{\tau'}^{i} = \sum_{ss'} \sigma_{ss'} L_{ss'} g_{ss'}^{i}$$
(2.31)

$$R_{0}^{i}(\tau) = \sum_{ss'} \varepsilon_{ss'} j_{ss'}^{(\mu)} L_{ss'} w_{ss'}^{i} \qquad \varepsilon_{ss'}^{\tau}(\tau) = \left(\varepsilon_{ss'}^{\tau} - \tau_{z} V_{1ss'}^{\tau}\right) R_{1}^{i}(\tau) = \sum_{ss'} V_{1ss'} j_{ss'}^{(\mu)} L_{ss'} w_{ss'}^{i} \qquad w_{ss'}^{i} = \psi_{ss'}^{i}(\tau) - \varphi_{ss'}^{i}(\tau)$$
(2.32)

ile verilir [39-41,95]. Seküler denklemin kökleri (η_{K}^{j} , j = 1, 2, 3,) tek kütleli çekirdeğin enerjisini verir. Ayrıca, determinantın boyutu belli bir K^{π} değerine sahip kuaziparçacık seviyelerinin sayısına eşittir. (2.27)'deki seküler denklem ve (2.25)'deki normalizasyon şartı kullanılarak tek kuaziparçacık ($N_{\xi_q}^{j}$) ve kuaziparçacık \otimes fonon ($G_{j}^{i\mu\nu}$) genlikleri bulunabilir.

$$\left(N_{\zeta_{q}}^{j}\right)^{-2} = 1 + \sum_{q \neq n} \frac{N_{\zeta_{q}}^{j}}{N_{\zeta_{n}}^{j}} + \sum_{i\mu} \sum_{\nu} \left(\frac{G_{j}^{i\mu\nu}}{N_{\zeta_{n}}^{j}}\right)^{2}$$
(2.33)

$$\frac{G_{j}^{i\mu\nu}}{N_{\varsigma_{n}}^{j}} = -\frac{\Lambda_{i\nu}^{\tau}(\varsigma_{n})}{\left(\boldsymbol{\omega}_{i} + \boldsymbol{\varepsilon}_{\nu}^{\tau} - \boldsymbol{\eta}_{K}^{\tau}\right)} - \sum_{q\neq n} \frac{N_{\varsigma_{q}}^{j}}{N_{\varsigma_{n}}^{j}} \frac{\Lambda_{i\nu}^{\tau}(\varsigma_{q})}{\left(\boldsymbol{\omega}_{i} + \boldsymbol{\varepsilon}_{\nu}^{\tau} - \boldsymbol{\eta}_{K}^{\tau}\right)}$$
(2.34)

Tek kütle numaralı çekirdeklerde taban durumdan uyarılmış durumlara indirgenmiş *M*1 geçiş olasılıkları aşağıdaki ifade ile belirlenir:

$$B(M1\uparrow;K_{0}\to K) = \langle I_{0}K_{0}1\mu | IK \rangle^{2} \left| \sum_{q} N_{\varsigma_{q}}^{j}(\tau) N_{\varsigma_{0}}(\tau) \mu_{\varsigma_{q}\varsigma_{0}}^{\tau} M_{\varsigma_{q}\varsigma_{0}}^{\tau} + N_{\varsigma_{0}}(\tau) G_{j}^{i\mu\varsigma_{0}} \sum_{\tau} \sum_{ss'} \mu_{ss'}^{\tau} L_{ss'}^{\tau} g_{ss'}^{i}(\tau) \right|^{2}$$

$$(2.35)$$

şeklindedir. Burada $\mu_{ss'}^{(\mu)}(\tau) = \sqrt{\frac{3}{4\pi}} \Big[(g_s^{\tau} - g_l^{\tau}) \langle s | s_{\mu} | s' \rangle + g_l^{\tau} \langle s | J_{\mu} | s' \rangle \Big] \quad \mu_N \text{ terimi } M1$ operatörünün tek parçacık matris elemanıdır [39-41,95].

Tek kütle numaralı deforme çekirdeklerde deneysel olarak parite tayini yapılamadığından *E*1 geçişlerini *M*1 geçişlerinden ayırmak mümkün değildir. Bu nedenle indirgenmiş dipol ve dipol radyasyon kalınlıkları aşağıdaki ifadeler yardımı ile hesaplanır:

$$g\Gamma_0(M1) = 11.547 \times E_{\gamma}^3 \times B(M1\uparrow) \qquad [meV]$$
(2.36)

$$g\Gamma_0^{red}(M1) = 11.547 \times B(M1\uparrow) \qquad \left[meV MeV^{-3}\right] \tag{2.37}$$

Burada $g = \frac{2J_0 + 1}{2J + 1}$ taban durum (J_0) ve uyarılmış durum spinine bağlı (J) istatistiksel bir faktördür [39-41,95].

Bir sonraki bölümde, bu bölümde bahsedilen teoriler kullanılarak ilk kez ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd için taban durum manyetik özellikleri ve manyetik dipol uyarılmaları sayısal olarak incelenmiştir.

BÖLÜM 3. SAYISAL HESAPLAMALAR

Tek kütle numaralı çekirdeklerin taban durum manyetik özelliklerinin ve manyetik dipol uyarılmalarının teorik olarak incelenmesi oldukça önemlidir. *M*1 spektrumlarını doğru bir şekilde tasvir edebilmek için efektif spin jiromanyetik faktör $(g_s^{eff.})$ ve etkileşme güç parametrelerinin (χ) uygun bir biçimde belirlenmesi şarttır. Bu da ancak, taban durum manyetik özelliklerinin teorik hesaplamalarının doğru bir biçimde yapılmasıyla mümkündür.

Bölümün ilk kısmında ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin taban durum manyetik özelliklerine ait sonuçlar sunulmuştur. Burada, her bir çekirdek için spin-spin etkileşme güç parametresi ve efektif spin jiromanyetik faktör nicelikleri belirlenmiştir. Bu değerler, bölümün ikinci kısımda incelenen çekirdekler için verilen *M*1 uyarılma özellikleri incelenirken direkt olarak kullanılmıştır. Taban durum hesaplamalarında Yakut vd. tarafından geliştirilen [8] ve kısım 2.2.'de verilen metot kullanılarak, *M*1 hesaplamaları ise ilk kez Tabar vd. tarafından geliştirilen [39] ve kısım 2.3.'de verilen metot kullanılarak yapılmıştır. İncelenen çekirdeklerin RI-QPNM hesaplamaları, deneysel veriler ve kor çekirdekleri ile de karşılaştırılmıştır.

3.1. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd Çekirdeklerinde Taban Durum Manyetik Özelliklerin İncelenmesi

Tek kütle numaralı çekirdeklerde, tek kalan nükleonun, korun 1⁺ fononları ile etkileşmesi, spin polarizasyonuna neden olur ve bundan ötürü, spin matris elemanının manyetik moment operatörüne katkısı azalır. Bu bağlamda spin polarizasyon olayının açıklanması oldukça önemlidir. QPNM çerçevesinde geliştirilen ve analitik ifadeleri bir önceki bölümde (kısım 2.2) verilen teori tek kütleli çekirdeklerde gözlenen spin polarizasyon olayını başarılı bir şekilde açıklamaktadır [9-11]. Bu kısımda, sözü geçen

teori kullanılarak ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin taban durum manyetik özellikleri incelenmiştir.

¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için yapılan taban durum hesaplamalarında çift korun I^πK=1⁺0 fononları kullanılmıştır. Bunun nedeni, mikroskobik modelde tek-A'lı çekirdeklerin taban durum ve bazı düşük enerjili uyarılma seviyeleri tek kalan nükleonun, korun K=0 fononları ile etkileşmesiyle oluşuyor olmasıdır [43]. Deforme Woods-Saxon potansiyelinin çözümü sonucu tek parçacık enerjileri elde edilmiştir. Ortalama alan deformasyon parametreleri (δ_2), Ref. [96]'de yer alan deneysel kuadropol moment değerlerinden elde edilen (β_2) deformasyon parametreleri kullanılarak hesaplanmıştır. Bu hesaplama $\delta_2 = 0,945\beta_2 \left[1-2,56A^{-2/3}\right]+0,34\beta_2^2$ denklemi [97] yardımıyla yapılmıştır [9]. Çiftlenim etkileşme sabitleri Ref. [83]'den alınmıştır. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin çiftlenim parametreleri (Δ ve λ), ortalama alan deformasyonları (δ_2), taban durum Nilsson konfigürasyonları ve deneysel taban durum manyetik momentleri (μ) [98] Tablo 3.1.'de verilmiştir.

				-	-			
Çekirdek	$\mathrm{K}^{\pi} [\mathrm{Nn}_{z}\Lambda]\Sigma$	β_2	δ_2	Δ _n (MeV)	Δ _p (MeV)	λ _n (MeV)	λ _p (MeV)	µden. [98]
¹⁵¹ Eu	5/2+ [413]↓	0.1931	0.167	0.827	0.946	-7.078	-7.136	3.4630(6)
¹⁵³ Eu	5/2+ [413]↓	0.3064	0.266	0.986	1.053	-7.159	-7.993	1.5324(3)
¹⁵⁵ Eu	5/2+ [413]↓	0.3410	0.296	0.957	1.057	-6.896	-8.653	1.52(2)
¹⁵⁷ Eu	5/2+ [413]↓	0.270^{*}	0.234	0.915	1.060	-6.295	-9.174	1.50(2)
¹⁵⁹ Eu	5/2+ [413]↓	0.280^{*}	0.243	0.892	1.066	-5.995	-9.791	1.38(2)
¹⁵¹ Gd	7/2⁻ [514]↓	0.3249	0.282	0.965	1.140	-8.580	-5.554	0.77(6)
¹⁵³ Gd	3/2⁻ [521]↑	0.206	0.178	0.983	1.078	-7.837	-6.115	0.38(8)
¹⁵⁵ Gd	3/2⁻ [521]↑	0.3120	0.271	0.977	1.052	-7.785	-6.817	-0.2572(4)
¹⁵⁷ Gd	3/2⁻ [521]↑	0.3378	0.294	0.937	1.051	-7.499	-7.415	-0.3398(7)
¹⁵⁹ Gd	3/2⁻ [521]↑	0.3484	0.303	0.908	1.054	-7.171	-8.006	-0.44(3)
¹⁶¹ Gd	5/2⁻ [523]↓	0.3534	0.308	0.891	1.056	-6.810	-8.590	-
*D - £[00]? J								

Tablo 3.1. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin Δ ve λ çiftlenim parametreleri, δ_2 ortalama alan deformasyonları, taban durum Nilsson konfigürasyonları ve deneysel manyetik momentleri.

*Ref [99]'den alınmıştır.

Daha önce yapılan manyetik moment analizleri göstermiştir ki [9-11,14,95,100,101], manyetik momentin izoskaler kısmında nötron ve proton g_s faktörleri birbirini güçlü bir şekilde yok eder ve bu nedenle manyetik moment hesaplamalarında izovektör kısım daha baskındır. Bu bilgi ışığında nötron-proton etkileşiminin en kuvvetli etkisinin q=-1'de ortaya çıktığı bilinmektedir. (2.14) ve (2.16) analitik ifadeleri kullanılarak g_K ve $g_s^{eff.}$ hesaplamaları yapılmış, bu hesaplamalar deneysel veriler ile karşılaştırılarak ¹⁵¹⁻¹⁵⁹Eu çekirdekleri için q=-1'de χ =40 MeV/A olarak, ¹⁵¹⁻¹⁶¹Gd çekirdekleri için ise, q=-1'de χ =10-40 MeV/A aralığında belirlenmiştir. Şekil 3.1.'de örnek olması açısından ¹⁵³Eu çekirdeği için taban durum g_K değerlerinin κ 'ya göre değişimi verilmiştir.

Şekil 3.1. ¹⁵³Eu çekirdeği için taban durum g_K değerlerinin κ 'ya göre değişimi. Taralı alan deneysel g_K değerini göstermektedir.

Bir seviyenin deneysel manyetik momenti ve g_R faktörü bilindiği taktirde deneysel g_K faktörü $g_K^{\text{exp.}} = ([(K+1)/K]\mu_{\text{exp.}} - g_R^{\text{exp.}})/K$ bağıntısı ile elde edilebilir (I=K) [8].

Şimdi her bir Eu ve Gd çekirdeğinin QPNM ile hesaplanan taban durum özellikleri ele alınacaktır. Tablo 3.2.'de ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için hesaplanan tek kuaziparçacık (N_{K_0}), kuaziparçacık \otimes fonon ($G_i^{K_0 v}$) genlikleri verilmiştir. Ayrıca her bir çekirdeğin taban durumuna en büyük katkıyı veren çift kor fonon enerjileri ve bu fononların çift kuaziparçacık yapıları da tabloda yer almaktadır.

		Sevi	ye Yapısı	Çift Korun Fonon Yapısı			
Çekirdek	K"	Tek Kuaziparçacık	Kuaziparçacık Øfonon	<i>ω</i> _i (MeV)	[NnzA]Σ	ψ_{ss} ,	
			$0.016\% [413] \downarrow \otimes O_{\odot}$	10 789	nn541↑-501↑	-0.508	
			0.01070[115] 0 270	10.709	pp530↑-521↓	-0.219	
			$0.010\% [413] \downarrow \otimes O_{-}$	10 917	nn431↓-640↑	0.528	
			0.01070[115] 0 271	10.917	pp523↑-514↓	0.146	
15115	5 / 2 +		$0.015\% [413] \downarrow \otimes O_{-}$	10.956	nn431↓-640↑	-0.460	
Eu	5/2	99.80% [413]↓	0.01070[115]+0272	10.950	pp523 ↑- 514↓	0.243	
			0.0129/ [412] 0.0	11 303	nn532↑-503↓	0.338	
			0.01270 [415] $\checkmark \otimes Q_{73}$	11.505	pp523 ↑- 514↓	-0.563	
			0.011% [413]	11.393	nn532↑-503↓	-0.610	
			$0.01170[413] \lor \otimes Q_{74}$		pp523 ↑- 514↓	-0.255	
			0.013% [413]	10.380	nn514 ↑- 505↓	0.174	
			0.01570 [415] $\checkmark \otimes Q_{62}$	10.380	pp532↓-512↓	0.494	
			$0.013\% [413] \downarrow \otimes O$	10.901	nn512↓-501↑	-0.136	
			0.01570 [415] • 0 \$270	10.701	pp541↓-521↓	0.476	
153Eu	5/2+	99.8% [413] ↓	$0.013\% [413] \downarrow \otimes O$	11 229	nn541↑-512↓	0.393	
Lu	512	JJ.070 [415] ♥	0.015/0[115] • 0 £72		pp541↓-521↓	-0.383	
			$0.020\% [413] \downarrow \otimes O_{e}$	11 497	nn431↓-640↑	0.345	
			0.00_0,00 [c] £ /4		pp541↓-521↓	-0.248	
			$0.013\% [413] \downarrow \otimes O_{-}$	11 549	nn431↓-640↑	-0.618	
					pp541↓-521↓	-0.140	
	5/2+	99.8% [413]↓	$0.018\% \ [413] \downarrow \otimes Q_{_{60}}$	10.347 10.535 11.526	nn550↑-530↑	0.121	
					pp431↑-422↓	-0.471	
¹⁵⁵ Eu			$0.011\% \ [413] \downarrow \otimes Q_{62}$ $0.017\% \ [413] \downarrow \otimes Q_{74}$		nn510↑-750↑	0.433	
					pp431↑-422↓	0.401	
					nn5501-5501	-0.191	
					pp550↑-521↓	0.526	
			$0.013\% [413] \downarrow \otimes Q_{66}$ $0.011\% [413] \downarrow \otimes Q_{70}$	10.183	nn4201~-6401	-0.265	
					pp532↓-512↓	-0.449	
	5/2+				$nn541 \downarrow -510^{-1}$	-0.411	
¹⁵⁷ Eu		99.8% [413]↓			pp532↓-512↓	0.293	
			$0.011\% [413] \downarrow \otimes Q_{73}$	10.860	nn541 -512↓	-0.265	
						pp530 -521↓	0.516
				$0.025\% \ [413] \downarrow \otimes Q_{74}$	11.301	nn541 -512	-0.130
			· · · · · · · · · · · · · · · · · · ·		pp5301-521↓	-0.431	
			$0.010\% \ [413] \downarrow \otimes Q_{38}$	8.287	nn532 -512	0.271	
					pp413 -404	-0.252	
¹⁵⁹ Eu			$0.016\% \ [413] \downarrow \otimes Q_{62}$	10.233	$nn514 -505\psi$	0.149	
					$pp532 + 512 + 510^{+}$	0.440	
	5/2+	99.8% [413]↓	$0.012\% \ [413] \downarrow \otimes Q_{67}$	10.750	nn541 + 510	0.397	
					$\frac{pp332 - 312 + 12}{pp541 + 512}$	-0.291	
			$0.012\% \ [413] \downarrow \otimes Q_{69}$	10.947	$nn530^{1}521$	0.323	
			····		$pp330 -321\psi$	0.401	
			$0.022\% \ [413] \downarrow \otimes Q_{_{71}}$	11.343	$m530^{521}$	-0.200	
			<u> </u>		$\frac{pp330+321}{nn523}$	0.122	
¹⁵¹ Gd	7/2-	99.9% [514]↓	$0.011\% \ [514] \downarrow \otimes Q_{47}$	8.921	$nn413^{-104}$	-0 501	
153CA	3/2-	99 9% [521] 1	0.001% [521] ↑ ∞0	2 1 80	$\frac{pp+15+-++++}{nn5/11^{+}521^{+}}$	0.707	
Gu	3/2	77.7/0 [J21]	$0.001 \approx [321] + \otimes \mathcal{Q}_1$	2.109	111341 -321	0.707	

Tablo 3.2. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin QPNM bazında hesaplanan taban durum yapısı. Burada kuaziparçacık \otimes fonon genlikleri $G_i^{K_0\nu} > 0.01$ ve iki kuaziparçacık genliklerinin $\psi_{ss'}^i$ fonon dalga fonksiyonuna katkısı %0.1'den daha büyük olan seviyeler verilmiştir.

		Sevi	Çift Korun Fonon Yapısı										
Çekirdek	K ⁿ	Tek Kuaziparçacık	Kuaziparçacık Øfonon	<i>w</i> _i (Me	V) [NnzΔ]Σ	$\psi_{ss'}$							
155 C 4	2/2-	00.00/ [521] 1	0.0110/ [521] 1 @0	0.722	nn514 ↑- 505↓	0.614							
Ga	3/2	99.9% [321]	$[521] + 0.011\% [521] + \otimes Q_{61}$	9.725	pp532↓-512↓	-0.148							
			0.011% [521] 1 @0	7 159	nn532↑-523↓	0.311							
			$0.01170 [321] + \otimes Q_{32}$	/.438	pp550↓-530↓	0.313							
157 C 4	3/2-	00.00/ [521] 1	$0.011\% [521] \uparrow \otimes Q_{53}$	0.016	nn651↑-642↓	-0.123							
¹⁰⁷ Gd		99.9% [321]		8.910	pp413 ↑- 404↓	-0.425							
			-	0.0120/ [521] 1 @0	0.505	nn523↑-503↑	-0.365						
			$0.01576[521] + \otimes Q_{63}$	9.505	pp431↓-411↓	-0.299							
			0.010% [521] 1 @0	5 0 1 0	nn651 ↑- 651↑	-0.117							
	3/2-	3/2-		$0.010\% [321] + \otimes Q_{13}$	5.818	pp550↓-550↓	0.663						
15901			2.12-	2 /2-	2 /2-	2/2-	2/2-	2/2-	00.00/ [521] 1	0.0120/ [521] 1 0.0	0.004	nn523↑-514↓	-0.131
Ga			99.9% [321]	$0.013\% [521] + \otimes Q_{50}$	9.024	pp541↓-521↓	0.401						
			0.220	nn523↑-503↑	-0.217								
			$0.01070 [521] + \otimes Q_{51}$	9.328	pp413 ↑- 404↓	0.559							
¹⁶¹ Gd	5/2-	99.9% [523]↓	$0.009\% \ [523] \downarrow \otimes Q_1$	2.696	nn523↓-512↑	0.706							

Tablo 3.2. (Devamı)

Tek kütle numaralı çekirdeklerde kuaziparçacık \otimes fonon etkileşmelerinin bir sonucu olarak dalga fonksiyonunun kuaziparçacık \otimes fonon bileşenleri taban ve uyarılmış durumdaki pek çok seviyeye karışmaktadır [83]. Sayısal hesaplamalar dalga fonksiyonunun tek kuaziparçacık kısmının ($N_{\xi_q}^{j}$) incelenen tek çekirdeklerin taban durum seviye yapısına katkısının ¹⁵¹⁻¹⁵⁹Eu çekirdekleri için yaklaşık % 99.8, ¹⁵¹⁻¹⁶¹Gd çekirdekleri için ise yaklaşık %99.9 olduğunu, seviye yapısına kuaziparçacık \otimes fonon kısmından ($G_j^{i\mu\nu}$) ise % 0.2'den daha küçük bir katkı geldiğini göstermektedir. Bu durum çalışmada ele alınan tek kütle numaralı çekirdeklerin taban durum seviye yapılarının kuaziparçacık \otimes fonon etkileşmelerinden zayıf biçimde etkilendiğini ortaya koymaktadır. Bu nedenle bu çekirdeklerin taban durumları baskın biçimde tek kuaziparçacık yapısına sahiptir.

Kuaziparçacık®fonon karışımlarının tek çekirdeklerin taban durum seviye yapılarına katkısı önemsenmeyecek kadar küçük olmasına rağmen, bu küçük karışımların koherent katkılarının tek çekirdeklerin taban durum $g_s^{eff.}/g_s^{\tau}$ ve g_K faktörleri üzerine etkisi çok büyüktür. Tablo 3.3.'te, KPM (Kuliev-Pyatov Metodu) SPM (Tek Parçacık Model), QRPA ve QTDA modelleri kullanılarak g_K ve $g_s^{eff.}$ hesaplamaları yapılmış ve bu sonuçlar deneysel veriler ile karşılaştırılmıştır.

Cekirdek g_s^{eff}/g_s^{τ}				$s_{\scriptscriptstyle K}$					
ÇEKITÜEK	KPM	QTDA	QRPA	Deney	SPM	KPM	QTDA	QRPA	Deney
¹⁵¹ Eu	0.562	0.584	0.542	0.767(16)	0.363	0.703	0.686	0.719	1.402(11)
¹⁵³ Eu	0.599	0.609	0.560	0.563(2)	0.294	0.639	0.630	0.672	0.670(2)
¹⁵⁵ Eu	0.600	0.607	0.563	0.553(11)	0.279	0.630	0.624	0.663	0.671(11)
¹⁵⁷ Eu	0.588	0.599	0.554	0.558(13)	0.317	0.660	0.650	0.688	0.684(11)
¹⁵⁹ Eu	0.584	0.595	0.553	0.545(13)	0.312	0.661	0.652	0.687	0.693(11)
¹⁵¹ Gd	0.538	0.540	0.681	0.691(67)	0.327	0.176	0.178	0.223	0.226(22)
¹⁵³ Gd	0.384	0.386	0.520	0.514(29)	0.300	-0.082	-0.082	0.156	0.154(89)
¹⁵⁵ Gd	0.456	0.457	0.565	0.593(1)	-0.595	-0.271	-0.272	-0.336	-0.352(0)
¹⁵⁷ Gd	0.642	0.642	0.693	0.685(1)	-0.649	-0.416	-0.417	-0.450	-0.444(1)
¹⁵⁹ Gd	0.801	0.802	0.818	0.833(50)	-0.666	-0.534	-0.534	-0.545	-0.556(33)
¹⁶¹ Gd	0.491	0.492	0.588	-	0.363	0.179	0.179	0.214	-

Tablo 3.3. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için KPM, SPM, QTDA ve QRPA modelleri kullanılarak hesaplanan g_s^{eff}/g_s^r ve g_K değerlerinin deneysel veriler ile karşılaştırılması.

Öncelikle modeller hakkında kısaca bilgi vermekte fayda vardır. KPM'de tek çekirdeğin dalga fonksiyonu tek ve üç kuaziparçacık bileşenlerinden oluşur. KPM, sadece kuaziparçacık etkileşmelerini göz önüne almaktadır. Ancak çalışmalar, tek kütle numaralı çekirdeklerde seviye yapılarının uygun bir şekilde tasvirinin sadece kuaziparçacık etkileşimlerini dikkate alarak değil, aynı zamanda kuaziparçacık ve fononlar arasındaki etkileşmelerin de hesaba katılmasıyla mümkün olabileceğini söylemektedir [83,88]. QTDA, bağımsız kuaziparçacık vakumudur. QRPA ise hem kuaziparçacık etkileşmelerini hem de kuaziparçacıklar arasındaki etkileşmeleri hesaba katır. Ayrıntılı bilgiler Ref. [8,39]'de yer almaktadır.

Tablo 3.3.'de verilen sonuçlar daha iyi görülmesi açısından Şekil 3.2.'de grafik olarak da verilmiştir. Tablo ve grafiklerden de görüldüğü gibi deneysel sonuçlar ile en iyi uyum QRPA metoduyla yapılan teorik hesaplamalarda elde edilmiştir. Ayrıca KPM ve QTDA ile yapılan hesaplama sonuçlarının da birbirine yakın olduğu görülmektedir. Bunun nedeni her iki modelde de BCS vakumunun tek çekirdeğin çift-çift koruna eşdeğer olmasıdır [39]. SPM modelinin deneysel değerlerden oldukça uzak olduğu Tablo 3.3.'de net bir şekilde görülmektedir. Bu yüzden bu modele Şekil 3.2.'de yer verilmemiştir. Dikkat edilirse teorik QRPA sonuçları ¹⁵³⁻¹⁵⁹Eu izotoplarının deneysel verileriyle benzer bir dağılım göstermekte ve oldukça uyumlu olduğu görülmekte iken, ¹⁵¹Eu çekirdeğinin deneysel verisi ile teorik sonuçlar arasında uyum oldukça azdır. g_K ve g_s^{eff} deneysel değerlerinin hesaplamaları μ_{den} değerine bağlıdır. 1965 yılında ¹⁵¹Eu çekirdeği için yapılan deneyde, ölçülen deneysel manyetik moment değeri

 $\mu_{den.}$ =3.4630(±6) ile verilmiştir [102]. Öte yandan bu çekirdek için yapılan hesaplamalarda elde edilen g_K ve $g_s^{eff.}$ değerlerinin diğer izotopların sergilediği dağılım ile uyum içerisinde olduğu da görülmektedir.

Şekil 3.2. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için hesaplanan KPM, QTDA ve QRPA sonuçlarının deneysel veriler ile karşılaştırılması. İlk grafikte deneysel g_K değerleri ile teorik hesaplamalar, ikinci grafikte ise deneysel $g_s^{eff.}$ değerleri ile teorik hesaplamalar karşılaştırılmıştır. Deneysel veriler hataları ile birlikte verilmiştir.

Son olarak Tablo 3.1.'de verilen deneysel manyetik moment değerleri, üç farklı yaklaşım ile ayrı ayrı hesaplanan teorik manyetik moment değerleri ile karşılaştırılmıştır. Burada da SPM modele, deneysel verilerden çok uzak olmasından ötürü yer verilmemiştir.

Şekil 3.3. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için KPM, QTDA ve QRPA metotları kullanılarak hesaplanan teorik manyetik moment değerlerinin Tablo 3.1'deki deneysel manyetik moment verileri ile karşılaştırılması. Deneysel veriler hataları ile birlikte sunulmuştur.

Şekil 3.3.'deki deneysel manyetik moment değerleri Ref. [98]'dan alınmıştır. Görüldüğü üzere deneysel ve teorik veriler arasında en iyi uyum QRPA hesaplarında elde edilmiştir. Buradaki teorik sonuçlar hiçbir serbest parametre içermemektedir. Deneysel manyetik momentler ile teorik QRPA sonuçları benzer bir eğilim (¹⁵¹Eu dışında) göstermektedir.

Buraya kadar yapılan çalışmaları özetlemek gerekirse; tek kütleli ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdekleri için yapılan taban durum hesaplamaları göstermiştir ki;

- a. Elde edilen $g_s^{eff.}/g_s^{\tau}$ sonuçları, fenomolojik değer $(g_s^{eff.}/g_s^{\tau} = 0.5 \cdot 0.7g_s^{\tau})$ ile uyum içindedir.
- b. Kuaziparçacık⊗fonon karışımlarının tek-A'lı ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinin taban durum dalga fonksiyonuna katkısı %0.02'den, ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin ise %0.01'den küçüktür (Tablo 3.2). Ancak elde edilen sonuçlar net bir şekilde göstermektedir ki, fonon karışımlarından gelen bu küçük katkılar, tek-A'lı çekirdeklerde gözlenen spin polarizasyon etkilerini açıklamakta yeterlidir. Ayrıca, g_s spin jiromanyetik faktörü uygun biçimde renormalize etmektedir.
- c. Bugüne kadar yapılan çalışmalarda, spin-spin kuvvetlerinin çift-çift çekirdeklerde hem 1⁺ seviyelerini ürettiğini hem de makas modu başarılı bir şekilde açıkladığını göstermiştir [8,34-38,103-107]. Bu nedenle spin-spin etkileşme güç parametresini belirlenmesi oldukça önemlidir. Tablo 3.3.'de verilen κ değerleri bir sonraki kısımda verilecek olan bu çekirdeklerin uyarılma durumlarına ait *M*1 özelliklerinin hesaplamalarında direkt olarak kullanılacaktır. Ayrıca burada belirlenen efektif spin jiromanyetik faktörler, hesaplanacak *M*1 uyarılmalarını deneyle uyumu bakımından önem arz etmektedir.
- d. Burada ayrıca manyetik momenti henüz bilinmeyen ¹⁶¹Gd çekirdeği için de teorik öngörülerde bulunulmuştur. Gelecekte yapılacak bir deneysel çalışmaya yön vereceği kanaatindeyiz.

3.2. ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd Çekirdeklerinde Manyetik Dipol Uyarılmalarının İncelenmesi

Bu bölümde tek kütle numaralı çekirdeklerdeki düşük enerjili manyetik dipol (M1) uyarılmaları Bölüm 2'de verilen mikroskobik RI-QPNM çerçevesinde teorik olarak incelenmiştir. Tek kütle numaralı çekirdeklerde uyarılma durumları tek kalan nükleon ile korun K=1 fononları ile etkileşmesiyle oluşmaktadır [39]. Bu nedenle uyarılmış durum hesaplamalarında çift-çift korun I^πK=1⁺1 RI-QRPA fononları kullanılmıştır. M1uyarılmalarının spin jiromanyetik faktöre kuvvetli biçimde bağlı olduğu bilinmektedir. Bu kısımda M1 uyarılmaları için verilen sayısal hesaplamaların tümünde bir önceki kısımda elde edilen efektif spin jiromanyetik faktörler kullanılmıştır. Ayrıca teoride M1 uyarılmalarının oluşmasından sorumlu olan spin-spin kuvvetlerinin güç parametreleri için yine bir önceki kısımda teorik ve deneysel taban durum iç manyetik momentlerin karşılaştırılmasıyla elde edilen değerler kullanılmıştır.

3.2.1. ¹⁵¹⁻¹⁵⁹Eu çekirdekleri için sayısal sonuçlar

¹⁵¹⁻¹⁵⁹Eu tek kütle numaralı izotoplarının taban durum spin ve pariteleri aynı olup $5/2^+$ 'dır. Bu durumda incelenecek *M*1 uyarılmalarının taban durumundan $3/2^+$ ve $7/2^+$ uyarılma durumlarına olması beklenir. Bu nedenle RI-QPNM hesaplamaları $5/2^+$ taban durumdan $3/2^+$ ve $7/2^+$ uyarılma durumlarına geçişler için yapılmıştır.

¹⁵¹⁻¹⁵⁹Eu tek kütle numaralı izotopları için RI-QPNM kullanılarak hesaplanan M1 gücünün 2-12 MeV enerji aralığındaki dağılımı Şekil 3.4.'te verilmiştir. Şekilde görüldüğü gibi 2-12 MeV enerji aralığında M1 gücü kuvvetli biçimde parçalanmıştır. Toplam açısal momentum vektörlerinin toplam özelliklerinde dolayı K_0 -1 spinine sahip seviyelerin sayısı K_0 +1 spinine sahip seviyelerin sayısının 3 katıdır. Bunun bir sonucu olarak K_0 -1 spinine sahip olan seviyeler K_0 +1 spinine sahip seviyelere göre daha çok parçalanmıştır.

Şekil 3.4. ¹⁵¹⁻¹⁵⁷Eu izotopları için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin 2-12 MeV enerji aralığındaki dağılımı. Burada düz çizgiler K_0 -1 uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine M1 geçiş ihtimallerini göstermektedir.

Tablo 3.4.'te ¹⁵¹⁻¹⁵⁹Eu tek kütle numaralı izotoplarının 2–4 MeV enerji aralığında yer alan $3/2^+$ ve $7/2^+$ uyarılma durumlarının RI-QPNM metodu ile hesaplanan seviye yapıları verilmiştir. Tabloda örnek olarak sadece $B(M1\uparrow) \ge 0.1 \mu_N^2$ olan seviyeler verilmiştir.
İzoton	E_i	$B(M1\uparrow)$	Vπ	N ^j	$G^{K_{\varsigma v}}$	Seviye Yapısı
izotop	(MeV)	(μ_{N}^{2})	K"	1 ' Κς _q	$\mathbf{U}_{j,i\mu}$	$\lfloor Nn_z \Lambda \Sigma \rfloor \otimes Q_i$
	2.475	0.114	$3/2^{+}$	0.009	0.999	$0.01 [422] \downarrow + 99.99 [413] \downarrow \otimes Q_3$
	2.501	0.169	$7/2^{+}$	0.040	0.999	$0.16 [413] \uparrow + 99.81 [413] \downarrow \otimes Q_3$
	2.661	0.350	$3/2^{+}$	0.010	0.999	$0.01 [422] \downarrow + 99.99 [413] \downarrow \otimes Q_4$
	2.680	0.150	$3/2^{+}$	0.008	0.999	$0.01 [422] \downarrow + 99.98 [413] \downarrow \otimes Q_4$
	2 (05	0.407	7/0+	0.051	0.000	%0.27 [413] \uparrow +%99.32 [413] \downarrow $\otimes Q_4$ +
	2.685	0.487	1/2	0.051	0.998	+%0.30 [413] $\downarrow \otimes Q_5$
						$\%0.10 [413] \uparrow +\%0.17 [413] \downarrow \otimes Q_6 +$
151 E 11	2.879	0.106	7/2+	0.031	0.999	$+\%99.72 [413] \downarrow \otimes O_7$
Lu	3 350	0.230	$3/2^{+}$	0.008	0 999	$\%0.01 [422] \downarrow +\%99.99 [413] \downarrow \otimes O_{12}$
	2.200	0.200	5,2	0.000	0.,,,,	$\%12\ 33\ [413]\uparrow+\%83\ 02\ [413]\downarrow\otimes O_{+}+$
	3.379	0.140	$7/2^{+}$	0.351	0.936	+%0.05[413] + %0.05[2] + %0.05[2] + %0.05[413] + %0.05[412] + %0.05[412] + %0.05[412] + %0.05[412] + %0.05[412] + %0.05[
	3.530	0.194	$7/2^{+}$	0.133	0.991	$\%1./8$ [413] $\downarrow +\%/8.91$ [413] $\downarrow \otimes Q_{14} +$
						$+1/.60$ [413] $\downarrow \otimes Q_{15}$
	3.636	0.294	$7/2^{+}$	0.362	0.932	$(13.13 [413] \uparrow + (3.63 [413]) \downarrow \otimes Q_{15} +$
						+%66.94 [413] $\downarrow \otimes Q_{16}$ +%13.04 [413] $\downarrow \otimes Q_{17}$
	2.694	0.123	$3/2^{+}$	0.001	0.999	99.99% $[413] \downarrow \otimes Q_3$
	2.721	0.204	$7/2^{+}$	0.020	0.999	$0.04[404] \downarrow +99.96[413] \downarrow \otimes Q_3$
	2.863	0.265	$3/2^{+}$	0.002	0.999	%99.99 [413] $\downarrow \otimes Q_4$
	2.869	0.113	$3/2^{+}$	0.001	0.999	%99.97 [413] $\downarrow \otimes Q_4$
	2.890	0.447	7/2+	0.036	0.999	$0.13 [404] \downarrow + 99.86 [413] \downarrow \otimes Q_4$
¹⁵³ Eu	2 968	0.964	7/2+	0.088	0.976	%97.62 $[404] \downarrow +\%0.13 [413] \downarrow \otimes Q_4 +$
	2.900	0.704	112	0.700	0.970	+%0.50 $[413] \downarrow \otimes Q_5$ +%1.52 $[413] \downarrow \otimes Q_7$
	3.061	0.122	$7/2^{+}$	0.019	0.999	$0.04 [404] \downarrow + 99.92 [413] \downarrow \otimes Q_6$
	3.513	0.153	$3/2^{+}$	0.001	0.999	%99.99 $[413] \downarrow \otimes Q_{12}$
	3.540	0.214	$7/2^{+}$	0.015	0.999	$0.02 \ [404] \downarrow + 99.98 \ [413] \downarrow \otimes Q_{12}$
	3.666	0.191	7/2+	0.003	0.999	$99.99 [413] \downarrow \otimes Q_{14}$
	2.338	0.110	$3/2^{+}$	0.006	0.999	$\%99.99 \ [413] \downarrow \otimes Q_3$
	2.365	0.160	7/2+	0.021	0.999	$0.05 [413] \downarrow + 99.95 [413] \downarrow \otimes Q_3$
	2.923	0.275	3/2+	0.002	0.999	%99.99 [413] $\downarrow \otimes Q_6$
	2.928	0.118	3/2+	0.002	0.999	$\%99.97 \ [413] \downarrow \otimes Q_6$
	2.950	0.397	7/2+	0.029	0.999	$0.09 \ [413] \downarrow + 99.90 \ [413] \downarrow \otimes Q_6$
	2.993	0.137	7/2+	0.035	0.999	$0.13 [413] \downarrow +999.86 [413] \downarrow \otimes Q_8$
¹⁵⁵ Eu	3.045	0.103	3/2+	0.002	0.999	$\%99.99$ [413] $\downarrow \otimes Q_8$
	3.458	0.207	7/2+	0.955	0.294	$91.31 [413] \downarrow + 1.47 [413] \downarrow \otimes Q_9 +$
						+%1.79 $[413] \downarrow \otimes Q_{11}$ +%2.32 $[413] \downarrow \otimes Q_{13}$
	3.487	0.325	7/2+	0.128	0.991	$\%1.65 \ [413] \downarrow +\%98.20 \ [413] \downarrow \otimes Q_{11}$
	3 630	0.410	7/2+	0 149	0 988	%2.23 [413]↓+%97.54 [413]↓ $\otimes Q_{13}$ +
	5.050	0.410	112	0.17)	0.700	+%0.12 [413] $\downarrow \otimes Q_{14}$
	3.599	0.203	$3/2^{+}$	0.003	0.999	%99.99 $[413] \downarrow \otimes Q_{13}$

Tablo 3.4. ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinde 2-4 MeV enerji aralığındaki $B(M1\uparrow) \ge 0.1 \mu_N^2$ olan K^π=3/2⁺ ve K^π=7/2⁺ uyarılma seviyelerinin RI-QPNM ile hesaplanan E_j enerjileri, tek kuaziparçacık ($N_{K\zeta_q}^j$), kuaziparçacık \otimes fonon karışım genlikleri ($G_{j,i\mu}^{K\zeta_p}$), kuaziparçacık \otimes fonon yapıları ($[Nn_z\Lambda\Sigma]\otimes Q_i$).

•	E .	$B(M1\uparrow)$		NI	CKCV	Seviye Yapısı
Izotop	J (MeV)	$(\boldsymbol{\mu}_N^2)$	K ^π	$I\mathbf{V}_{K\boldsymbol{\varsigma}_{q}}^{s}$	$G_{j,i\mu}$	$[Nn_z\Lambda\Sigma]\otimes Q_i$
	2.139	0.132	$7/2^{+}$	0.043	0.999	$0.19 [404] \downarrow + 99.80 [413] \downarrow \otimes Q_3$
	2.530	0.167	$3/2^{+}$	0.013	0.999	$0.02\% \ [422] \downarrow +99.99\% \ [413] \downarrow \otimes Q_5$
	2 5 5 2	0 225	7/2+	0.056	0.009	$0.31 [404] \downarrow + 0.16 [413] \downarrow \otimes Q_4 +$
	2.335	0.225	112	0.030	0.998	+%99.49 [413] $\downarrow \otimes Q_5$
	2.727	0.109	$7/2^{+}$	0.030	0.999	$0.09 [404] \downarrow + 99.88 [413] \downarrow \otimes Q_6$
	2.802	0.136	$3/2^{+}$	0.003	0.999	%100 [413] $\downarrow \otimes Q_7$
	2.828	0.191	$7/2^{+}$	0.019	0.999	$0.04 \ [404] \downarrow +99.95 \ [413] \downarrow \otimes Q_7$
	2.997	0.124	$3/2^{+}$	0.005	0.999	%100 [413] $\downarrow \otimes Q_8$
	3.022	0.155	$7/2^{+}$	0.054	0.999	%0.29 $[404]$ +%99.60 $[413]$ \downarrow $\otimes Q_8$
	3.266	0.134	$3/2^{+}$	0.009	0.999	$\%100 \ [413] \downarrow \otimes Q_{11}$
¹⁵⁷ Eu						%27.72 $[422] \downarrow +$ %36.80 $[413] \downarrow \otimes Q_{14} +$
	2 450	0.202	7/2+	0.520	0.950	+%1.09 [413] $\downarrow \otimes Q_{11}$ +%1.09 [413] $\downarrow \otimes Q_{12}$ +
	3.450	0.293	1/2	0.526	0.850	+%13.77 [413] $\downarrow \otimes Q_{13}$ +%2.81 [413] $\downarrow \otimes Q_{15}$ +
						+%9.90 [413] $\downarrow \otimes Q_{16}$
						$\%85.42 [413] \downarrow \otimes Q_{13} + \%0.30 [413] \downarrow \otimes Q_{11} +$
	3.473	0.311	7/2+	0.159	0.987	$+\%9.80 [413] \downarrow \otimes O_{14} + \%1.18 [413] \downarrow \otimes O_{16}$
						$\%36\ 06\ [413]\ +\ \%3\ 16\ [413]\ \downarrow \otimes Q_{1}$ +
	3.726	0.468	$7/2^{+}$	0.601		$+\%1.95 [413] \downarrow \otimes O +\%53.49 [413] \downarrow \otimes O$
	3 913	0.137	3/2+	0.003	0 999	$ 100 [413] \downarrow \otimes O_{16} $
	3 941	0.154	7/2 ⁺	0.064	0.998	$(0.40 \ [413])^{+} + (99.46 \ [413])^{\downarrow} \otimes O_{}$
	2.627	0.379	7/2+	0.070	0.997	%0.50 [413]↓+%99.29 [413]↓⊗0,
	2.605	0.277	3/2+	0.013	0.999	$\%0.02 [413] \downarrow +\%99.99 [413] \downarrow \otimes Q_6$
	2.610	0.119	$3/2^{+}$	0.013	0.999	$\%0.02 \ [413] \downarrow +\%99.99 \ [413] \downarrow \otimes Q_6$
	2.819	0.116	7/2+	0.001	0.999	$0.20 [413] \downarrow +99.75\% [413] \downarrow \otimes Q_7$
			= (0)	0.00 <i>5</i>	0.000	$0.74 [413] \downarrow +98.91\% [413] \downarrow \otimes Q_9 +$
	3.265	0.234	7/2+	0.085	0.996	$+0.13\%$ [413] $\downarrow \otimes Q_{11}$
	3.240	0.187	3/2+	0.002	0.999	99.99% $[413] \downarrow \otimes Q_9$
			- (-)			$(6.90 [413] \downarrow + (25.19 [413] \downarrow \otimes Q_{11} +$
¹⁵⁹ Eu	3.413	0.176	7/2+	0.262	0.964	+%65.41 [413] $\downarrow \otimes Q_{12}$ +%1.14 [413] $\downarrow \otimes Q_{13}$
						$(18.50 [413] \downarrow + (1.19 [413]) \downarrow \otimes Q_{11} +$
	3.589	0.143	$7/2^{+}$	0.430	0.902	$+\%2.01 \ [413] \downarrow \otimes O_{12} +\%67.62 \ [413] \downarrow \otimes O_{13} +$
						$+\%2.18 [413] \downarrow \otimes O_{12} +\%6.19 [413] \downarrow \otimes O_{12}$
						$\%0.22 \ [413] \downarrow +\%0.41 \ [413] \downarrow \otimes 0 +$
	3.693	0.134	$7/2^{+}$	0.047	0.998	$+9\%9858[413] \downarrow \otimes 0 +9\%071[413] \downarrow \otimes 0$
						$(100, 0.00 [412]] \times 0.0041 [412] \times 0.001 [412] = 0.001$
	3.859	0.146	$7/2^{+}$	0.084	0.996	$700./1$ [415] $\psi + 700.41$ [415] $\psi \otimes Q_{17} + 10000$ 70 [416] $\psi \otimes Q_{17} + 10000$
						+%98.70 [413] $\downarrow \otimes Q_{18}$

Tablo 3.4. (Devamı)

Tablo 3.4.'ten açıkça görülmektedir ki tek protonlu ¹⁵¹⁻¹⁵⁹Eu izotoplarında, 2-4 MeV enerji aralığındaki *M*1 geçişlerine en büyük katkı [413] $\downarrow \otimes Q_i$ konfigürasyonundan gelmektedir. Ele alınan izotoplarda baskın olan kuaziparçacık \otimes fonon bileşeninin dalga fonksiyonunun normuna katkısı %98'i aştığından $G_{j,i\mu}^{K_{CV}}$ genlikleri 1'e yakındır. Diğer yandan tek kuaziparçacık bileşenlerinin dalga fonksiyonuna katkısı 1.5 MeV'in üzerindeki enerjilerde çok küçüktür ve %0.1'i geçmemektedir. Bunun anlamı ¹⁵¹⁻¹⁵⁹Eu izotoplarında 2-4 MeV enerji aralığındaki *M*1 uyarılma seviyelerinin saf kuaziparçacık⊗fonon uyarılmaları olarak kabul edilebileceğidir. 2-4 MeV enerji aralığında K^π=3/2⁺ ve K^π=7/2⁺ uyarılma seviyelerine en büyük katkıyı veren kor fononlarının enerjileri çok sayıda iki kuaziparçacık konfigürasyonuna sahiptir ve bu durum sözü geçen seviyelerin kolektif yapıda olduklarını göstermektedir. ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinin 4 MeV üzerindeki seviye yapıları Ek-A'da sunulmuştur.

Tek kütle numaralı çekirdekleri çift-çift çekirdekleri ile karşılaştırmak, onların M1uyarılmalarına ait karakteristiklerini anlamak adına bilgi verici olabilir. Bu kapsamda örnek olması açısından Şekil 3.5.'te ¹⁵⁹Eu çekirdeğinin teorik olarak hesaplanan M1spektrumları, kor çekirdeği olan ¹⁵⁸Sm çekirdeğinin M1 spektrumları ile karşılaştırılmıştır. ¹⁵⁸Sm çekirdeği için RI-QPNM kullanılarak 2-4 MeV enerji aralığında hesaplanan manyetik dipol geçiş ihtimallerinin K^π=1⁺ dalları verilmiştir.

Şekil 3.5. ¹⁵⁰Sm ve ¹⁵¹Eu çekirdekleri için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin enerjiye göre dağılımı. Üst grafikte ¹⁵⁰Sm çekirdeği için manyetik dipol geçiş ihtimallerinin K^π=1⁺ dalları kalın düz çizgi ile, alttaki grafikte ise ¹⁵¹Eu çekirdeği için taban durumdan K^π=3/2⁺ ve K^π=7/2⁺ seviyelerine $B(M1\uparrow)$ geçiş ihtimalleri sırası ile düz ve kesikli çizgilerle verilmiştir.

Şekil 3.5.'te görüldüğü gibi tek kütle numaralı ¹⁵¹Eu çekirdeğinin *M*1 spektrumu, kor çekirdeği olan ¹⁵⁰Sm'a göre çok daha fazla parçalanmaktadır. Tek-A'lı çekirdeklerdeki bu parçalanma, tek kalan nükleonun korun her bir *M*1 uyarılma seviyesiyle ayrı ayrı etkileşmesinden ileri gelir [42]. Ayrıca *M*1 gücü kor çekirdekte tek bir seviyede toplanırken, tek-A'lı çekirdeklerde bu güç dört farklı *M*1 seviyesi tarafından paylaşılır [39]. Tek kütle numaralı çekirdeklerde *M*1 operatörü K_0 , $I_0=K_0$ taban durumdan kuantum sayıları sırasıyla [(K_0 -1, I_0 -1), (K_0 -1, I_0), (K_0 -1, I_0 +1), (K_0 +1, I_0 +1)] olan uyarılma seviyeleri ile birleşebilir. Öte yandan iki çekirdeğin *M*1 dağılımlarına bakıldığında birbirine benzer spektrumlara sahip oldukları görülmektedir. Bundan dolayı çift-çift korun dışındaki tek kalan nükleonun *M*1 enerji spektrumunda kaydadeğer değişikliklere sebep olmadığı ve bir gözlemci gibi davrandığı söylenebilir.

Tek protonlu ¹⁵¹Eu ve ¹⁵³Eu deforme çekirdeklerinde düşük enerjili dipol uyarılmalarının varlığı 2003 yılında Nord vd. (2003) tarafından Stuttgart'da (Almanya) bulunan Dynamitron hızlandırıcısında duyarlılığı arttırılmış NRF tekniği ile gerçekleştirilen deney sonucunda keşfedilmiştir [74]. Şekil 3.6.'da ¹⁵³Eu ve ¹⁵⁵Eu çekirdekleri için RI-QPNM ile elde edilen teorik *M*1 spektrumu, deneysel *M*1 spektrumu ile karşılaştırılmıştır.

Şekil 3.6. ¹⁵¹Eu ve ¹⁵³Eu izotopları için teorik olarak hesaplanan B(M1) değerlerinin deneysel veriler ile karşılaştırılması. Burada düz çizgiler K_0 -1 uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine M1 geçiş ihtimallerini göstermektedir.

Şekil 3.6.'dan görüldüğü gibi ¹⁵³Eu çekirdeği için RI-QPNM sonuçları *M*1 gücünün hem parçalanması hem de dağılımı bakımından deneysel veriyle uyumludur. Diğer taraftan¹⁵¹Eu çekirdeği için RI-QPNM ile elde edilen *M*1 spektrumu deneye göre daha çok parçalandığı ve daha fazla geçişe sahip olduğu görülmektedir. Her iki çekirdek için de düşük enerji bölgesinde gözlenen *M*1 piklerinin büyüklükleri RI-QPNM ile elde edilen *M*1 piklerinin büyüklüklerinden çok daha küçüktür. İncelenen çekirdeklerin *M*1 geçişlerinin dağılımlarından ziyade toplam özellikleri bakımından deneysel veriyle karşılaştırılması daha bilgi verici olmaktadır. Bunun için Tablo 3.5.'te ¹⁵¹Eu ve ¹⁵³Eu çekirdekleri için taban durumdan uyarılmış durumlara geçişler için teorik olarak hesaplanan $\sum B(M1)$ (toplam manyetik dipol gücü), $\sum \Gamma_0(M1)$ (toplam manyetik dipol radyasyon kalınlıkları), $\sum \Gamma_0^{red} (M1)$ (toplam indirgenmiş manyetik dipol radyasyon kalınlıkları) ve manyetik dipol uyarılmalarının yerleştiği ortalama enerjilerin (\overline{E}) deneysel sonuçlarla karşılaştırılması verilmiştir.

Tablo 3.5. ¹⁵¹Eu ve ¹⁵³Eu çekirdekler için sırasıyla 2-4 MeV ve 2-3 MeV enerji aralığında RI-QPNM ile hesaplanan, $\sum_{l_f} B(M1\uparrow), \sum_{l_f} g\Gamma_0^{red}(M1)$ ve $\sum_{l_f} g\Gamma_0(M1)$ ve \overline{E} değerlerinin deneysel [74] veriyle karşılaştırılması.

	K ^π	$\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $		Σ _{If} gI (m	C₀(<i>M</i> 1) neV)	Σ _{Ij} gΓ (meV	^{red} (M1) MeV ⁻³)	Ē (MeV)	
		RI-QPNM	DENEY	RI-QPNM	DENEY	RI-QPNM	DENEY	RI-QPNM	DENEY
	3/2+	1.459	-	478	-	17.5	-	2.984	-
¹⁵¹ Eu	7/2+	1.702	-	622.72	-	19.706	-	3.098	-
	Tüm	3.161	0.064 ± 0.01	1100.7	18.91±3.9	37.206	0.74±0.14	3.045	2.844
	3/2+	0.606	-	106.25	-	7.009	-	2.457	-
¹⁵³ Eu	7/2+	0.562	-	98.30	-	6.504	-	2.457	-
	Tüm	1.168	0.338±0.1	204.55	54.08±8.5	13.513	3.91±0.64	2.456	2.263

Tablo 3.5.'ten görüldüğü gibi ¹⁵¹Eu için 2-4 MeV enerji aralığında RI-QPNM ile teorik olarak elde edilen toplam indirgenmiş geçiş ihtimali ($\sum_{I_f} B(M1\uparrow) = 3.161 \mu_N^2$) deneysel değerin ($\sum B(M1\uparrow) = 0.064\pm0.01 \mu_N^2$) çok üzerindedir. ¹⁵³Eu çekirdeğinde ise 2-3 MeV enerji aralığında RI-QPNM ile teorik olarak hesaplanan toplam indirgenmiş geçiş ihtimali ($\sum_{I_f} B(M1\uparrow) = 1.168 \mu_N^2$) deneyde rapor edilen değerin ($\sum_{I_f} B(M1\uparrow) = 0.338\pm0.1 \mu_N^2$) yaklaşık 3 katıdır. Tablo 3.5.'teki verilerden, bu enerji aralıklarında ¹⁵¹Eu ve ¹⁵³Eu çekirdekleri için RI-QPNM ile hesaplanan toplam manyetik dipol ve toplam indirgenmiş manyetik dipol radyasyon kalınlıklarının deneyde rapor edilen değerlerden çok daha büyük oldukları görülmektedir. Ancak veriler deneysel ve teorik ortalama M1 rezonans enerjilerinin birbirleriyle uyumlu olduğunu göstermektedir.

Tablo 3.6.'da ¹⁵¹⁻¹⁵⁹Eu izotoplarının ait 2-4 MeV enerji aralığındaki *M*1 uyarılmalarına ait $\Sigma_{I_f}B(M1\uparrow)$ toplam manyetik dipol geçiş ihtimali, $\Sigma_{I_f}B_l(M1\uparrow)$ toplam orbital manyetik dipol geçiş ihtimali, $\Sigma_{I_f}B_{\sigma}(M1\uparrow)$ toplam spin manyetik dipol geçiş ihtimali, $\Sigma_{I_f}g\Gamma_0(M1)$ toplam manyetik dipol radyasyon kalınlığı, $\Sigma_{I_f}g\Gamma_0^{red}(M1)$ toplam indirgenmiş manyetik dipol radyasyon kalınlığı ve \overline{E} ortalama enerji değerleri verilmiştir.

Tablo 3.6. ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinin 2-4 MeV enerji aralığında K^{π} uyarılma seviyelerine M1 geçişleri için RI-QPNM ile hesaplanan $\sum_{I_f} B(M1\uparrow)$, $\sum_{I_f} B_l(M1\uparrow)$, $\sum_{I_f} B_\sigma(M1\uparrow)$, $\sum_{I_f} B_1(M1\uparrow)$, $\sum_{I_f} B_0(M1\uparrow)$, $\sum_{I_f} B_0(M1\uparrow)$, $\sum_{I_f} g\Gamma_0(M1\uparrow)$, $\sum_{I_f} g\Gamma_0(M1\uparrow)$, $\sum_{I_f} B_1(M1\uparrow)$, $\sum_{I_f} B$

Çekirdek	K ^π	$\Sigma_{I_f} B(M1\uparrow) \\ (\mu_N^2)$	$ \begin{array}{c} \Sigma_{I_f} B_l(M1\uparrow) \\ (\mu_{\rm N}^2) \end{array} $	$\frac{\Sigma_{I_f} B_{\sigma}(M1\uparrow)}{(\mu_{\rm N}^2)}$	$\Sigma_{I_f} B_1(M1\uparrow) \\ (\mu_N^2)$	$\frac{\Sigma_{I_f} B_0(M1\uparrow)}{(\mu_N^2)}$	$\frac{\sum_{I_f} \mathbf{g} \Gamma_0(M1)}{(\text{meV})}$	$\Sigma_{I_f} \mathbf{g} \Gamma_0^{red}(M1)$ (meV MeV ⁻³)	Ē (MeV)
	$3/2^{+}$	1.459	1.330	0.039	1.503	2×10-3	478	17.50	2.984
¹⁵¹ Eu	$7/2^{+}$	1.709	1.322	0.296	2.245	4×10 ⁻³	623	19.71	3.098
	Tüm	3.188	2.652	0.335	3.748	6×10 ⁻³	1101	37.21	3.045
	$3/2^{+}$	1.012	0.801	0.035	1.121	1×10-3	346	12.20	2.891
¹⁵³ Eu	$7/2^{+}$	2.459	2.729	0.076	2.444	1.5×10-3	842	28.46	3.057
	Tüm	3.471	3.530	0.111	3.565	2.5×10-3	1188	40.66	2.911
	$3/2^{+}$	1.298	1.113	0.035	1.322	3×10-3	509	15.03	3.110
¹⁵⁵ Eu	$7/2^{+}$	1.958	1.418	0.488	2.203	5×10-3	850	22.67	3.291
	Tüm	3.256	2.531	0.523	3.525	8×10 ⁻³	1315	37.70	3.199
	$3/2^{+}$	1.365	1.191	0.045	1.402	1×10-3	494	15.80	2.995
¹⁵⁷ Eu	$7/2^{+}$	2.588	2.787	0.070	2.605	4×10-3	731	19.96	2.799
	Tüm	3.953	3.978	0.115	4.007	5×10-3	1225	35.76	3.181
	3/2+	1.372	1.196	0.041	1.471	2×10-3	450	15.80	2.968
¹⁵⁹ Eu	$7/2^{+}$	1.705	1.303	0.322	2.307	4×10 ⁻³	625	19.73	3.085
	Tüm	3.077	2.499	0.363	3.778	6×10-3	1075	35.53	3.063

Tablo 3.6.'dan açıkça görülmektedir ki ¹⁵¹⁻¹⁵⁹Eu izotoplarında 2-4 MeV enerji aralığında yer alan *M*1 geçişleri baskın biçimde izovektör karakterli uyarılmalardır. Bu enerji aralığındaki toplam indirgenmiş *M*1 geçiş ihtimalleri yaklaşık olarak 3 μ_N^2 'ye eşittir ki bu değer çift-çift çekirdeklere ait sistematik ile örtüşmektedir. ¹⁵¹⁻¹⁵⁹Eu izotoplarında toplam *M*1 gücünün yerleştiği ortalama enerji 2.7.-3.2 MeV aralığında değişmektedir. Çift-çift kütle numaralı çekirdeklerde bu enerjinin yaklaşık 3 MeV civarında olduğu bilinmektedir. Bu durum tek kütle numaralı çekirdeklerde *M*1 rezonansının düşük enerjilere kaydığını göstermektedir. Tablo 3.7.'de ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinde 4-12 MeV yüksek enerji bölgesindeki toplam M1 gücüne dipol operatörünün spin ve orbital kısımlarından gelen katkılar sözü geçen enerji bölgesi iki kısma (4–8 MeV ve 8–12 MeV) ayrılarak incelenmiştir.

		$\Sigma_{I_f} \mathbf{B}($	(M1↑)	$\Sigma_{I_f} B_f$	(<i>M</i> 1↑)	$\Sigma_{I_f} B_{\sigma}$	(<i>M</i> 1↑)		\overline{E}
Cekirdek	K ^π	$(\mu_{\rm N}^2)$		(μ	$(\mu_{\rm N}^2)$		(2^{2}_{N})	(MeV)	
·····		4-8	8-12	4-8	8-12	4-8	8-12	4-8	8-12
		MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
151	7/2-	0.638	1.324	0.682	0.178	0.299	1.806	5.818	11.076
Eu	3/2-	0.611	1.257	0.666	0.213	0.268	1.890	5.816	10.945
153E.	7/2-	0.739	1.805	0.753	0.232	0.704	2.518	5.796	11.058
Eu	3/2-	0.674	1.603	0.708	0.240	0.340	2.313	5.693	11.012
15517	7/2-	1.022	1.680	0.997	0.257	0.374	2.253	5.691	11.174
Eu	3/2-	0.711	1.467	0.737	0.177	0.302	2.110	5.698	11.244
15715	7/2-	0.563	3.925	1.222	0.172	1.191	4.993	6.144	11.456
Eu	3/2-	0.374	3.233	0.313	0.173	0.336	4.460	6.054	11.228
1595-	7/2-	0.757	1.900	0.841	0.149	0.287	2.611	5.534	11.290
Eu	3/2-	0.655	1.533	0.705	0.227	0.206	2.328	5.359	11.137

Tablo 3.7. ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinin 4-12 MeV enerji aralığında K^{π} uyarılma seviyelerine *M*1 geçişleri için RI-QPNM ile hesaplanan $\sum_{l_\ell} B(M1\uparrow), \sum_{l_\ell} B_l(M1\uparrow), \sum_{l_\ell} B_\sigma(M1\uparrow)$ ve \overline{E} değerleri.

Çift-çift kütle numaralı çekirdeklerin düşük enerjili M1 uyarılmalarına ait önemli karakteristiklerinden biri uyarılmaların baskın biçimde orbital karakterli olmasıdır. Benzer bir durumun ¹⁵¹⁻¹⁵⁹Eu izotop zinciri düşük enerjili M1 uyarılmaları için araştırılması oldukça önemlidir. Şekil 3.7. ve Şekil 3.8.'de ¹⁵¹⁻¹⁵⁹Eu izotopları için taban durumdan uyarılma durumlarına M1 geçişleri için hesaplanan B(M1) gücüne manyetik dipol operatörünün spin ve orbital kısımlarından gelen katkılar gösterilmiştir. Spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi renk ile gösterilmiştir.

Şekil 3.7. $^{151-153}$ Eu tek kütle numaralı çekirdeklerinin 2-12 MeV enerji aralığındaki spin ve orbital B(*M*1) spektrumları. *M*1 operatörünün spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi renk ile gösterilmiştir.

Şekil 3.8. ¹⁵⁵⁻¹⁵⁹Eu tek kütle numaralı çekirdeklerinin 2-12 MeV enerji aralığındaki spin ve orbital B(M1) spektrumları. M1 operatörünün spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi renk ile gösterilmiştir.

Tek kütle numaralı ¹⁵¹⁻¹⁵⁹Eu izotoplarında özellikle 3-4 MeV enerji aralığına yerlesmis birkaç saf spin M1 geçişi bulunmasına rağmen Sekil 3.7. ve Sekil 3.8.'den bu izotopların düşük enerjili M1 uyarılmalarının baskın biçimde orbital karakterli olduğu görülmektedir. Orbital karakterli uyarılmalara manyetik dipol operatörünün spin kısmından gelen katkılar çok küçüktür. Ancak bu küçük spin karışımları M1 gücünü önemli ölçüde etkilemektedir. Örneğin ¹⁵⁹Eu çekirdeğinde 2.6 MeV'de taban durumdan $7/2^+$ seviyesine geçiş için hesaplanan M1 gücüne, M1 operatörünün orbital kısmından gelen katkı $B_l(M1\uparrow)=0.340 \ \mu_N^2$ iken spin kısmından gelen katkı $B_\sigma(M1\uparrow)=0.001 \ \mu_N^2$ 'dır. Hem orbital hem de spin kısımlarını içeren toplam güç ise $B(M1\uparrow)=0.379 \,\mu_{\rm N}^2$ bulunmuştur. Bu sonuç sözü geçen geçiş için manyetik dipol operatörünün spin ve orbital kısımlarının yapıcı girişimde bulunduğunu göstermektedir. 5 MeV'in üzerindeki enerji seviyeleri baskın olarak spin karakterlidir. Örneğin ¹⁵⁹Eu çekirdeğinde 11.934 MeV'de taban durumdan $7/2^+$ seviyesine geçiş için hesaplanan M1 gücüne, M1 operatörünün orbital kısmından gelen katkı $B_l(M1\uparrow)=0.034 \mu_N^2$ iken spin kısmından gelen katkı $B_{\sigma}(M1\uparrow)=0.950 \,\mu_{\rm N}^2$ 'dır. Hem orbital hem de spin kısımlarını içeren toplam güç ise $B(M1\uparrow)=0.622 \mu_{\rm N}^2$ bulunmuştur.

3.2.2. ¹⁵¹⁻¹⁶¹Gd çekirdekleri için sayısal sonuçlar

Tek kütle numaralı ¹⁵³⁻¹⁵⁷Gd izotoplarının taban durum spin ve pariteleri $3/2^{-}$ değerine, ¹⁵¹Gd çekirdeğinin taban durum spin ve paritesi $7/2^{-}$ değerine, ¹⁶¹Gd çekirdeğinin taban durum spin ve paritesi ise $5/2^{-}$ değerine sahiptir. Bu nedenle tek kütle numaralı ¹⁵³⁻¹⁵⁷Gd çekirdeklerinde taban durumdan $1/2^{-}$ ve $5/2^{-}$ seviyelerine, ¹⁵¹Gd çekirdeğinde 5/2⁻ ve $9/2^{-}$ seviyelerine, ¹⁶¹Gd çekirdeğinde ise $3/2^{-}$ ve $7/2^{-}$ seviyelerine *M*1 uyarılmaları gerçekleşebilir. Bu nedenle RI-QPNM hesaplamaları ele alınan çekirdeklerin taban durumlarından yukarıda belirtilen uyarılma durumlarına geçişler için yapılmıştır.

Tek kütle numaralı ¹⁵¹⁻¹⁶¹Gd izotopları için RI-QPNM kullanılarak hesaplanan M1 gücünün 2-12 MeV enerji aralığındaki dağılımı Şekil 3.9. ve Şekil 3.10.'da verilmiştir. Şekilden görüldüğü 2-12 MeV enerji aralığında M1 gücü kuvvetli biçimde parçalanmıştır. ^{153,155,159}Gd çekirdeklerinin M1 spektrumlarındaki parçalanma diğer tek kütle numaralı Gd izotoplarının M1 spektrumlarındaki parçalanmadan daha büyüktür. Daha önceki kesimde belirtildiği gibi toplam açısal momentum vektörlerinin toplam özelliklerinden dolayı K_0 -1 spinine sahip seviyelerin sayısı K_0 +1 spinine sahip seviyelerin sayısının 3 katıdır. Bunun bir sonucu olarak K_0 -1 spinine sahip olan seviyeler K_0 +1 spinine sahip seviyelere göre daha çok parçalanmıştır.

Şekil 3.9. ¹⁵¹⁻¹⁵³Gd izotopları için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin 2-12 MeV enerji aralığındaki dağılımı. Burada düz çizgiler K_0 -1 uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine M1 geçiş ihtimallerini göstermektedir.

Şekil 3.10. ¹⁵⁵⁻¹⁶¹Gd izotopları için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin 2-12 MeV enerji aralığındaki dağılımı. Burada düz çizgiler K_0 -1 uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine M1 geçiş ihtimallerini göstermektedir.

Tablo 3.8.'de tek kütle numaralı ¹⁵¹⁻¹⁶¹Gd izotoplarının 2–4 MeV enerji aralığında yer alan uyarılma durumlarının RI-QPNM ile hesaplanan seviye yapıları verilmiştir. Tabloda örnek olarak sadece $B(M1\uparrow)\geq 0.1\mu_N^2$ olan seviyeler gösterilmiştir.

Tablo 3.8. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinde 2-4 MeV enerji aralığındaki $B(M1\uparrow) \ge 0.1 \mu_N^2$ olan K_0 -1 ve K_0 +1 uyarılma seviyelerinin RI-QPNM ile hesaplanan E_j enerjileri, tek kuaziparçacık $(N_{K\varsigma_q}^j)$, kuaziparçacık \otimes fonon karışım genlikleri $(G_{j,i\mu}^{K\varsigma_0})$, kuaziparçacık \otimes fonon yapıları $([Nn_z\Lambda\Sigma]\otimes Q_j)$.

İzotop	E _j (MeV)	$B(M1\uparrow)$ (μ_N^2)	K ^π	$N^{j}_{{\it K}{\it \varsigma}_{q}}$	$G^{Karphi u}_{j,i\mu}$	Seviye Yapısı $\left[Nn_{z}\Lambda\Sigma\right]\otimes Q_{i}$
	2.758	0.305	5/2-	0.005	0.999	%99.99 $[514] \downarrow \otimes Q_7$
	2.763	0.131	5/2-	0.005	0.999	%99.99 $[514] \downarrow \otimes Q_7$
	2.785	0.455	9/2-	0.008	0.999	%100 $[514] \downarrow \otimes Q_7$
151 C 4	2.884	0.163	5/2-	0.010	0.999	%99.99 $[514] \downarrow \otimes Q_8$
IsiGa	2.910	0.247	9/2-	0.007	0.999	%100 $[514] \downarrow \otimes Q_8$
	3.378	0.114	5/2-	0.009	0.999	$99.99 [514] \downarrow \otimes Q_{13}$
	3.404	0.172	9/2-	0.003	0.999	$99.99 [514] \downarrow \otimes Q_{13}$
	3.867	0.129	9/2-	0.001	0.999	%100 $[514] \downarrow \otimes Q_{17}$

	E_i	$B(M1\uparrow)$		λıj	CKSV	Seviye Yapısı
Izotop	(MeV)	$(\boldsymbol{\mu}_N^2)$	<i>K</i> *	$I \mathbf{V} K \boldsymbol{\varsigma}_q$	$G_{j,i\mu}$	$[Nn_z \Lambda \Sigma] \otimes Q_i$
	2.310	0.107	1/2-	0.041	0.999	%0.17 $[521]$ +%99.99 $[521]$ $\downarrow \otimes Q_2$
	2.330	0.151	5/2-	0.045	0.998	$0.21 [512] \uparrow + 99.68 [521] \uparrow \otimes Q_2$
	2.423	0.112	5/2-	0.009	0.999	%0.01 [512] \uparrow +%99.97 [521] $\uparrow \otimes Q_3$
¹⁵³ Gd	2.556	0.135	5/2-	0.016	0.999	$0.03 [512]$ + $99.93 [521]$ $\otimes Q_6$
	3.308	0.118	1/2-	0.013	0.999	%0.02 [521] \uparrow +%99.99 [521] $\uparrow \otimes Q_{16}$
	2 2 2 4	0.100	<i></i>	0.010	0.000	%0.02 [512]↑+%99.70 [521]↑⊗Q ₁₆ +
	3.334	0.188	5/2-	0.013	0.999	+%0.21 [541] $\uparrow \otimes Q_{18}$
	2.586	0.276	1/2-	0.005	0.999	$99.99 [521] \uparrow \otimes Q_{10}$
	2.591	0.103	1/2-	0.005	0.999	$99.99 [521] \uparrow \otimes Q_{10}$
155 C 4	2 (40	0 411	5/2-	0.001	0.000	$0.01\% [523] \downarrow +\% 0.44 [532] \downarrow \otimes Q_5 +$
Ga	2.640	0.411	5/2	0.001	0.999	+%99.55 [521]↑⊗ <i>Q</i> ₁₀
	2.943	0.154	5/2-	0.001	0.999	$0.14 [532] \downarrow \otimes Q_6 + 99.86 [521] \uparrow \otimes Q_{13}$
	3.099	0.119	5/2-	0.003	0.999	$99.99 [521] \uparrow \otimes Q_{14}$
	2.271	0.185	1/2-	0.015	0.999	%100 $[521]$ $\uparrow \otimes Q_4$
	2.298	0.264	5/2-	0.005	0.999	%99.99 $[521]$ $\uparrow \otimes Q_4$
	2.710	0.323	1/2-	0.002	0.999	%100 $[521]$ $\land \otimes Q_6$
	2.715	0.323	1/2-	0.002	0.999	$\%100 [521] \uparrow \otimes Q_6$
157 0 1	2.737	0.488	5/2-	0.005	0.999	%99.99 $[521]$ $\uparrow \otimes Q_6$
¹³⁷ Gd	3.368	0.101	1/2-	0.002	0.999	$\%100 [521] \uparrow \otimes Q_{11}$
	3.395	0.151	5/2-	0.001	0.999	$\%100 [521] \uparrow \otimes Q_{11}$
	3.680	0.215	1/2-	0.002	0.999	$100 [521] \otimes Q_{14}$
	3.702	0.316	5/2-	0.001	0.999	$100 [521] \otimes Q_{14}$
	3.841	0.132	5/2-	0.001	0.999	$100 [521] \otimes Q_{15}$
	2.207	0.161	1/2-	0.003	0.999	%99.99 $[521]$ $\uparrow \otimes Q_2$
	2.232	0.257	5/2-	0.028	0.999	$0.08 [532] \downarrow + 99.92 [521] \uparrow \otimes Q_2$
	2.669	0.234	1/2-	0.002	0.999	%100 $[521]$ $\uparrow \otimes Q_4$
	2.674	0.100	1/2-	0.002	0.999	%100 $[521]$ $\land \otimes Q_4$
	2.726	0.349	5/2-	0.003	0.999	%99.99 $[521] \downarrow \otimes Q_4$
	2.768	0.310	1/2-	0.006	0.999	%99.99 $[521] \downarrow \otimes Q_6$
150 0 1	2.773	0.133	1/2-	0.006	0.999	%99.99 $[521] \downarrow \otimes Q_6$
¹⁵⁾ Gd	2.793	0.444	5/2-	0.026	0.999	%0.07 [532] \downarrow +%99.93 [521] $\uparrow \otimes Q_6$
	3.167	0.130	5/2-	0.006	0.999	%99.99 $[521] \downarrow \otimes Q_8$
	3.285	0.130	1/2-	0.005	0.999	$\%100 [521] \uparrow \otimes Q_{10}$
	3.311	0.200	5/2-	0.014	0.999	$0.02 [532] \downarrow +999.97 [521] \uparrow \otimes Q_{10}$
	3.842	0.249	5/2-	0.026	0.999	$0.07 [532] \downarrow + 99.91 [521] \uparrow \otimes Q_{14}$
	3.931	0.189	1/2-	0.001	0.999	%100 [521]↑⊗ <i>Q</i> ₁₅
	3.958	0.287	5/2-	0.006	0.999	%99.99 [521]↑⊗Q ₁₅

Tablo 3.8. (Devamı)

İzotop	E _j (MeV)	$\frac{B(M1\uparrow)}{(\mu_N^2)}$	K ^π	$N^{j}_{K_{\mathcal{S}_{q}}}$	$G^{Karphi u}_{j,i\mu}$	Seviye Yapısı $\left[Nn_z \Lambda \Sigma \right] \otimes Q_i$
	2.499	0.303	3/2-	0.058	0.998	$0.34 [523] \downarrow +99.10 [523] \downarrow \otimes Q_3$
	2.517	0.130	3/2-	0.058	0.998	$0.34 [523] \downarrow +999.10 [523] \downarrow \otimes Q_3$
	2.541	0.467	7/2-	0.005	0.999	%99.97 $[523] \downarrow \otimes Q_3$
	2.815	0.303	3/2-	0.103	0.994	%1.07 $[523]$ +%98.80 $[523]$ $\downarrow \otimes Q_5$
¹⁶¹ Gd	2.820	0.130	3/2-	0.103	0.994	%1.07 $[523]$ +%98.80 $[523]$ $\downarrow \otimes Q_5$
	2.846	0.424	7/2-	0.046	0.998	%99.71 [523] $\downarrow \otimes Q_5$
	3.874	0.108	3/2-	0.007	0.999	$99.99 [523] \downarrow \otimes Q_{13}$
	3.897	0.162	3/2-	0.006	0.999	$99.99 [523] \downarrow \otimes Q_{14}$
	3.925	0.241	7/2-	0.020	0.999	%0.04 [514] \downarrow +%99.93 [523] $\downarrow \otimes Q_{14}$

Tablo 3.8. (Devamı)

Tablo 3.8.'den açıkça görülmektedir ki 2-4 MeV enerji aralığındaki *M*1 geçişlerine en büyük katkı tek kütleli ¹⁵³⁻¹⁵⁹Gd çekirdeklerinde [521] $\uparrow \otimes Q_i$ konfigürasyonlarından, ¹⁵¹Gd ve ¹⁶¹Gd çekirdeklerinde ise sırasıyla [514] $\downarrow \otimes Q_i$ ve [523] $\downarrow \otimes Q_i$ konfigürasyonlarından gelmektedir. Tek nötronlu ¹⁵¹⁻¹⁶¹Gd çekirdeklerinde baskın olan kuaziparçacık \otimes fonon bileşenlerinin, çekirdeklerin dalga fonksiyonlarının normuna katkısı %98'i aştığından $G_{j,i,\mu}^{K_{CV}}$ genlikleri 1'e yakındır. Diğer yandan tek kuaziparçacık bileşenlerinin dalga fonksiyonuna katkısı 1.5 MeV'in üzerindeki enerjilerde çok küçüktür ve %0.1'i geçmemektedir. Bunun anlamı tek kütle numaralı ¹⁵¹⁻¹⁶¹Gd izotoplarında 2-4 MeV enerji aralığındaki *M*1 uyarılma seviyelerinin saf kuaziparçacık \otimes fonon uyarılmaları olarak kabul edilebileceğidir. Ele alınan tek-A'lı Gd izotoplarında, 2-4 MeV enerji aralığındaki uyarılma seviyelerine en büyük katkıyı veren kor fononları çok sayıda iki kuaziparçacık konfigürasyonuna sahiptirler. Bu durum sözü geçen izotoplardaki düşük enerjili *M*1 uyarılma seviyelerin kolektif yapıda olduklarını göstermektedir. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin 4 MeV üzerindeki seviye yapıları Ek-B'de sunulmuştur.

Şekil 3.11.'de örnek olması açısından ¹⁶¹Gd çekirdeğinin teorik olarak hesaplanan *M*1 spektrumları, kor çekirdeği olan ¹⁶⁰Gd çekirdeğinin *M*1 spektrumları ile karşılaştırılmıştır. ¹⁶⁰Gd çekirdeği için RI-QPNM kullanılarak 2-4 MeV enerji aralığında hesaplanan manyetik dipol geçiş ihtimallerinin $K^{\pi}=1^+$ dalları verilmiştir.

Şekil 3.11. ¹⁶⁰Gd ve ¹⁶¹Gd çekirdekleri için teorik olarak hesaplanan $B(M1\uparrow)$ değerlerinin enerjiye göre dağılımı. Üst grafikte ¹⁵⁰Sm çekirdeği için manyetik dipol geçiş ihtimallerinin K^π=1⁺ dalları kalın düz çizgi ile, alttaki grafikte ise ¹⁵¹Eu çekirdeği için taban durumdan K^π=3/2⁻ ve K^π=7/2⁻ seviyelerine $B(M1\uparrow)$ geçiş ihtimalleri sırası ile düz ve kesikli çizgilerle verilmiştir.

Şekil 3.11.'de görüldüğü gibi tek kütle numaralı ¹⁶¹Gd çekirdeğinin *M*1 spektrumu, kor çekirdeği olan ¹⁶⁰Gd'a göre çok daha fazla parçalanmaktadır. Bu sonuç tıpkı bir önceki kısımda sözü edilen ¹⁵¹Eu ve kor çekirdeği ile benzerdir. Tek-A'lı çekirdeklerdeki bu parçalanma, tek kalan nükleonun korun her bir *M*1 uyarılma seviyesiyle ayrı ayrı etkileşmesinden ileri gelir [42]. Ayrıca *M*1 gücü kor çekirdekte tek bir seviyede toplanırken, tek-A'lı çekirdeklerde bu güç dört farklı *M*1 seviyesi tarafından paylaşılır [39]. Tek kütle numaralı çekirdeklerde *M*1 operatörü K_0 , $I_0=K_0$ taban durumdan kuantum sayıları sırasıyla [(K_0 -1, I_0 -1), (K_0 -1, I_0), (K_0 -1, I_0 +1), (K_0 +1, I_0 +1)] olan uyarılma seviyeleri ile birleşebilir.

¹⁵⁵Gd ve ¹⁵⁷Gd deforme çekirdeklerinde düşük enerjili dipol uyarılmalarının varlığı sırasıyla 1996 yılında Nord vd. tarafından [49], 1996 yılında ise Margraf vd. tarafından [42] NRF tekniği ile gerçekleştirilen deney sonucunda keşfedilmiştir. ¹⁵⁵Gd ve ¹⁵⁷Gd deforme çekirdeklerinin deneysel olarak belirlenen taban durum spin ve pariteleri aynı

Şekil 3.12. ¹⁵⁵Gd ve ¹⁵⁷Gd izotopları için teorik olarak hesaplanan B(M1) değerlerinin deneysel veriler ile karşılaştırılması. Burada düz çizgiler K_0 -1 uyarılma seviyelerine, kesikli çizgiler ise K_0 +1 uyarılma seviyelerine M1 geçiş ihtimallerini göstermektedir.

¹⁵⁵Gd ve ¹⁵⁷Gd çekirdekleri için sırasıyla 2-3.5 MeV ve 2-4 MeV enerji aralığında deneysel olarak gözlenen *M*1 gücündeki parçalanma RI-QPNM hesaplamaları ile oldukça başarılı biçimde tasvir edilmiştir. Ayrıca deneysel ve teorik *M*1 seviyeleri bu enerji aralıklarındaki yerleşimleri bakımından da uyumludur. Ancak ¹⁵⁷Gd çekirdeğinde RI-QPNM spektrumundaki parçalanmanın özellikle 2.5 MeV ve 2.9 MeV civarına yerleşmiş deneysel *M*1 geçişlerini açıklamak için yeterli olmadığı görülmektedir. Bunun yanında her iki çekirdek için de elde edilen *M*1 güçleri deneyde gözlenenden çok daha büyüktür. Bu enerji aralıklarında *M*1 uyarılmalarının toplam özelliklerinin tartışılması daha bilgi verici olacaktır. Tablo 3.9.'da ¹⁵⁵Gd ve ¹⁵⁷Gd çekirdeklerinde taban durumdan uyarılmış durumlara geçişler için teorik olarak hesaplanan $\sum B(M1)$ (toplam manyetik dipol gücü), $\sum \Gamma_0(M1)$ (toplam manyetik dipol radyasyon kalınlıkları), $\sum \Gamma_0^{red}(M1)$ (toplam indirgenmiş manyetik dipol radyasyon kalınlıkları) ve manyetik dipol uyarılmalarının yerleştiği ortalama enerjilerin (\overline{E}) deneysel sonuçlarla karşılaştırılması verilmiştir.

Tablo 3.9. ¹⁵⁵Gd [49] ve ¹⁵⁷Gd [42] çekirdekler için sırasıyla 2–3.5 MeV ve 2-4 MeV enerji aralığında RI-QPNM ile hesaplanan, $\sum_{I_f} B(M1\uparrow)$, $\sum_{I_f} g\Gamma_0^{red}(M1)$ ve $\sum_{I_f} g\Gamma_0(M1)$ ve \overline{E} değerlerinin deneysel veriyle karşılaştırılması.

	K ^π	$\Sigma_{I_f} \mathbf{B}$	$\frac{\Sigma_{I_f} \mathbf{B}(M1\uparrow)}{(\mu_N^2)}$		Γ ₀ (<i>M</i> 1) eV)	Σ _{If} gΓ (meV	^{red} ₀ (M1) MeV ⁻³)	Ē (MeV)	
		RI-QPNM	DENEY	RI-QPNM	DENEY	RI-QPNM	DENEY	RI-QPNM	DENEY
	1/2	0.733	-	162	-	8.5	-	2.752	-
¹⁵⁵ Gd	5/2	0.860	-	209	-	9.96	-	2.827	-
	Tüm	1.593	0.534±0.1	371	119.6±18	18.46	6.18±0.9	2.695	2.650
	1/2	1.012	-	554	-	18.3	-	3.014	-
¹⁵⁷ Gd	5/2	1.036	-	530	-	17.5	-	3.017	-
	Tüm	2.048	1.597±0.2	1084	442.1±69	35.8	18.48±2.72	3.016	2.820

¹⁵⁵Gd çekirdeği için 2-3.5 MeV enerji aralığında RI-QPNM ile $\sum_{I_f} B(M1\uparrow) = 1.593 \mu_N^2$ olarak hesaplanan toplam indirgenmiş geçiş ihtimali deneyde rapor edilen $\sum B(M1\uparrow) = 0.534\pm0.1 \mu_N^2$ değerinden yaklaşık 3 kat daha büyüktür. Benzer şekilde aynı enerji aralığında RI-QPNM ile hesaplanan toplam manyetik dipol ve toplam indirgenmiş manyetik dipol radyasyon kalınlıkları da deneyde rapor edilen değerlerden çok daha büyüktür. Tablo 3.9.'daki sonuçlar RI-QPNM hesaplamalarının *M*1 rezonansının yerleştiği ortalama enerji değerini deneysel değerle uyumlu olarak tahmin ettiğini göstermektedir.

¹⁵⁷Gd çekirdeği için RI-QPNM ile 2-4 MeV enerji aralığında hesaplanan toplam indirgenmiş geçiş ihtimali ($\sum_{I_f} B(M1\uparrow) = 2.048 \, \mu_N^2$) deneysel değerinden ($\sum B(M1\uparrow) = 1.597 \pm 0.24 \, \mu_N^2$) yaklaşık olarak 0.5 μ_N^2 kadar büyüktür. Bu enerji aralığında hesaplanan toplam manyetik dipol ve toplam indirgenmiş manyetik dipol radyasyon kalınlıklarının da deneyde gözlenen değerlerden yaklaşık 2 kat büyüktür. RI-QPNM sonuçlarından ¹⁵⁷Gd çekirdeği için ortalama *M*1 rezonans enerjisinin deneysel değerine göre daha yüksek enerjilere kaydığı görülmektedir.

	, °								
Çekirdek	K ^π	$\frac{\Sigma_{I_f} B(M1\uparrow)}{(\mu_N^2)}$	$\frac{\Sigma_{I_f} B_l(M1\uparrow)}{(\mu_N^2)}$	$\Sigma_{I_f} B_{\sigma}(M1\uparrow) \\ (\mu_{\rm N}^2)$	$ \begin{array}{c} \Sigma_{I_f} B_1(M1\uparrow) \\ (\mu_{\rm N}^2) \end{array} $	$\Sigma_{I_f} B_0(M1\uparrow) \\ (\mu_N^2)$	$\frac{\sum_{I_f} g\Gamma_0(M1)}{(\text{meV})}$	$\Sigma_{I_f} \mathbf{g} \Gamma_0^{red}(M1)$ (meV MeV ⁻³)	Ē (MeV)
	5/2-	1.138	0.846	0.076	1.121	4.1×10 ⁻⁴	391	13.33	3.073
¹⁵¹ Gd	9/2-	1.211	0.908	0.077	1.203	4.8×10 ⁻⁴	425	14.02	3.123
	Tüm	2.349	1.754	0.153	2.324	8.9×10 ⁻⁴	816	27.35	3.112
	1/2-	0.921	0.861	0.068	1.036	1.8×10 ⁻⁴	274	10.70	2.872
¹⁵³ Gd	5/2-	0.894	0.857	0.072	0.844	1.6×10 ⁻⁴	262	10.36	2.858
	Tüm	1.815	1.718	0.140	1.880	3.4×10 ⁻⁴	536	21.06	2.860
	1/2-	0.978	0.953	0.063	0.981	5×10-4	303	11.30	2.819
¹⁵⁵ Gd	5/2-	0.890	0.828	0.038	0.887	5×10-4	226	10.34	3.050
	Tüm	1.860	1.781	0.101	1.868	10×10 ⁻⁴	529	21.64	3.010
	1/2-	1.580	1.012	0.145	1.579	9×10 ⁻⁴	554	18.30	3.014
¹⁵⁷ Gd	5/2-	1.520	1.096	0.123	1.521	6×10 ⁻⁴	539	17.60	3.025
	Tüm	3.100	2.108	0.268	3.100	15×10 ⁻⁴	1093	35.90	3.022
	1/2-	1.875	0.962	0.344	1.860	3.4×10 ⁻³	603	21.69	2.932
¹⁵⁹ Gd	5/2-	2.059	1.027	0.367	2.049	3.4×10 ⁻³	742	23.83	3.036
	Tüm	3.934	1.989	0.711	3.909	6.8×10 ⁻³	1345	45.52	3.014
	3/2-	1.478	1.091	0.109	1.727	0.1×10 ⁻²	542	17.10	2.770
¹⁶¹ Gd	7/2-	1.421	1.088	0.059	1.435	2.2×10 ⁻²	522	16.45	3.060
	Tüm	2.899	2.179	0.168	3.162	2.3×10 ⁻²	1064	33.55	3.060

Tablo 3.10. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin 2-4 MeV enerji aralığında K^{π} uyarılma seviyelerine M1 geçişleri için RI-QPNM ile hesaplanan $\sum_{I_f} B(M1\uparrow), \sum_{I_f} B_l(M1\uparrow), \sum_{I_f} B_\sigma(M1\uparrow), \sum_{I_f} B_1(M1\uparrow), \sum_{I_f} B_0(M1\uparrow), \sum_{I_f} B_0(M1\uparrow), \sum_{I_f} g\Gamma_0(M1$

Tablo 3.10.'dan açıkça görülmektedir ki tek nötronlu ¹⁵¹⁻¹⁶¹Gd izotoplarında 2-4 MeV enerji aralığında yer alan M1 geçişleri baskın biçimde izovektör karakterli uyarılmalardır. Bu enerji aralığındaki toplam indirgenmiş M1 geçiş ihtimalleri yaklaşık olarak 3 μ_N^2 'ye eşittir ki bu değer çift-çift çekirdeklere ait sistematik ile örtüşmektedir. Tek nötronlu ¹⁵¹⁻¹⁶¹Gd izotoplarında toplam M1 gücünün yerleştiği ortalama enerji 2.7-3.2 MeV aralığında değişmektedir. Çift-çift kütle numaralı çekirdeklerde bu enerjinin yaklaşık 3 MeV civarında olduğu bilinmektedir. Bu durum tek kütle numaralı ¹⁵¹⁻¹⁶¹Gd çekirdeklerinde M1 rezonansının düşük enerjilere kaydığını göstermektedir.

Tablo 3.11.'de ¹⁵¹⁻¹⁶¹Gd çekirdeklerinde 4-12 MeV yüksek enerji bölgesindeki toplam M1 gücüne dipol operatörünün spin ve orbital kısımlarından gelen katkılar sözü geçen enerji bölgesi iki kısma (4–8 MeV ve 8–12 MeV) ayrılarak incelenmiştir.

		$\Sigma_{I_f} \mathbf{B}($	(<i>M</i> 1↑)	$\Sigma_{I_f} B_l$	(<i>M</i> 1↑)	$\Sigma_{I_f} B_{c}$	$_{\tau}(M1\uparrow)$	A	Ē
İzotop	Kπ	$(\mu_{\rm N})$		μ	$(\mu_{\rm N})$		u _N)	(Iviev)	
•		4-8	8-12	4-8	8-12	4-8	8-12	4-8	8-12
		MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
15104	5/2-	1.820	2.314	1.545	0.241	0.589	3.398	5.608	9.984
Ga	9/2-	2.818	2.344	1.498	0.248	0.467	3.519	4.440	9.975
153 С 4	1/2-	0.341	0.150	0.391	0.089	0.126	1.661	6.181	10.730
Ga	5/2-	0.308	1.215	0.330	0.098	0.354	1.751	6.126	10.705
1550 4	1/2-	0.547	1.423	0.609	0.116	0.256	2.060	5.975	10.366
Ga	5/2-	0.432	1.617	0.390	0.110	0.188	2.389	5.884	10.424
157 С 4	1/2-	0.961	2.886	0.597	0.146	0.751	3.972	6.486	9.372
Ga	5/2-	1.115	2.783	0.823	0.186	0.873	3.893	6.345	9.400
159 - 1	1/2-	3.774	3.718	1.599	0.197	3.594	4.808	6.234	8.684
Ga	5/2-	3.810	3.463	1.580	0.195	3.541	4.492	6.214	8.641
161 C 4	3/2-	1.292	1.866	1.215	0.206	0.397	2.511	5.678	10.316
Ga	7/2-	1.699	2.004	1.662	0.271	0.456	2.710	5.417	10.276

Tablo 3.11. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinin 4-12 MeV enerji aralığında K^{π} uyarılma seviyelerine *M*1 geçişleri için RI-QPNM ile hesaplanan $\sum_{I_t} B(M1\uparrow), \sum_{I_t} B_t(M1\uparrow), \sum_{I_t} B_{\sigma}(M1\uparrow)$ ve \overline{E} değerleri.

Çift-çift kütle numaralı çekirdeklerin düşük enerjili M1 uyarılmalarına ait önemli karakteristiklerinden biri uyarılmaların baskın biçimde orbital karakterli olmasıdır. Benzer bir durumun tek kütle numaralı ¹⁵¹⁻¹⁶¹Gd izotop zincirinin düşük enerjili M1 uyarılmaları için araştırılması oldukça önemlidir. Şekil 3.13. ve Şekil 3.14.'te tek kütle numaralı ¹⁵¹⁻¹⁶¹Gd izotopları için taban durumdan uyarılma durumlarına M1 geçişleri için hesaplanan B(M1) gücüne manyetik dipol operatörünün spin ve orbital kısımlarından gelen katkılar gösterilmiştir. Spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi renk ile gösterilmiştir.

Şekil 3.13. ¹⁵¹⁻¹⁵³Gd tek kütle numaralı çekirdeklerinin 2-12 MeV enerji aralığındaki spin ve orbital B(*M*1) spektrumları. *M*1 operatörünün spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi renk ile gösterilmiştir.

Şekil 3.14. ¹⁵¹⁻¹⁵³Gd tek kütle numaralı çekirdeklerinin 2-12 MeV enerji aralığındaki spin ve orbital B(*M*1) spektrumları. *M*1 operatörünün spin ve orbital kısımlarından gelen katkılar sırasıyla kırmızı ve mavi renk ile gösterilmiştir.

RI-QPNM hesaplamalarına göre tek kütle numaralı ¹⁵¹⁻¹⁵⁷Gd ve ¹⁶¹Gd izotoplarında özellikle 3 MeV civarında düşük *M*1 gücüne sahip birkaç adet saf spin *M*1 geçişi mevcuttur. ¹⁵⁹Gd çekirdeğinde diğer çekirdeklerden farklı olarak 3 MeV'dekilere ek 2.5 MeV civarında da saf spin *M*1 geçişleri bulunmaktadır. Diğer taraftan Şekil 3.13. ve Şekil 3.14'den ele alınan tek nötronlu ¹⁵¹⁻¹⁶¹Gd izotoplarının düşük enerjili *M*1 uyarılmalarının baskın biçimde orbital karakterli olduğu görülmektedir. Orbital karakterli uyarılmalara manyetik dipol operatörünün spin kısmından gelen katkılar çok küçüktür. Ancak bu küçük spin karışımları *M*1 gücünü önemli ölçüde etkilemektedir. Örneğin ¹⁵⁷Gd çekirdeğinde 2.710 MeV'de taban durumdan 5/2⁻ seviyesine geçiş için hesaplanan *M*1 gücüne, *M*1 operatörünün orbital kısmından gelen katkı *B*₁(*M*1↑)=0.351 μ_N^2 iken spin kısmından gelen katkı $B_{\sigma}(M1↑)$ =0.011 μ_N^2 'dır. Hem orbital hem de spin kısımlarını içeren toplam güç ise B(*M*1↑)=0.488 μ_N^2 olarak bulunmuştur. Bu sonuç sözü geçen geçiş için manyetik dipol operatörünün spin ve orbital kısımlarının yapıcı girişimde bulunduğunu göstermektedir. 5 MeV'in üzerindeki enerji seviyeleri baskın olarak spin karakterlidir. Örneğin ¹⁵⁷Gd çekirdeğinde 11.934 MeV'de taban durumdan 7/2⁺ seviyesine geçiş için hesaplanan *M*1 gücüne, *M*1 operatörünün orbital kısmından gelen katkı $B_l(M1\uparrow)=0.019 \mu_N^2$ iken spin kısmından gelen katkı $B_\sigma(M1\uparrow)=0.444 \mu_N^2$ 'dır. Hem orbital hem de spin kısımlarını içeren toplam güç ise $B(M1\uparrow)=0.279 \mu_N^2$ bulunmuştur.

BÖLÜM 4. SONUÇLAR VE ÖNERİLER

Bu tez çalışmasında periyodik tablonun nadir toprak bölgesinde yer alan ¹⁵³⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd tek kütle numaralı deforme çekirdeklerinde taban durum manyetik özellikleri ve manyetik dipol uyarılmaları mikroskobik Dönme Değişmez (RI-) Kuaziparçacık Fonon Nükleer Model (QPNM) ile araştırılmış, elde edilen sonuçlar mevcut deneysel verilerle karşılaştırılmıştır.

Bu tez çalışmasında incelenen tek kütleli çekirdeklerin taban durum manyetik özellikleri QPNM bazında ilk kez ele alınmıştır ve elde edilen önemli sonuçlar aşağıda maddeler halinde verilmiştir.

- a. Teorik hesaplamaların sonuçları tek-A'lı tüm çekirdeklerde spin polarizasyonun etkin olduğunu göstermiş ve spin-spin kuvvetlerinin izovektör (q=-1) kısmının daha baskın olduğunu ortaya koymuştur.
- b. Taban durumda dalga fonksiyonuna en büyük katkıyı tek-kuziparçacıkların verdiği (%99 civarı) ve kuaziparçacık⊗fonon kısmının da dalga fonksiyonuna katkısının küçük olduğu (%1 civarı) görülmüştür.
- c. Efektif spin g_s faktöre kuaziparçacık-fonon etkileşimlerinden gelen bu çok küçük katkılar büyük kolektif bir etki göstererek g_s 'de önemli bir azalmaya (renormuna) sebep olmaktadır.
- d. Mevcut deneysel manyetik moment verileriyle uyumlu teorik sonuçlar elde edilmiştir. Ayrıca manyetik momenti henüz ölçülmemiş olan ¹⁶¹Gd çekirdeğinin manyetik momenti de teorik olarak öngörülmüştür. Kütle numarasına bağlı olarak manyetik momentlerin çizimi göstermiştir ki deneysel verilerin uyduğu benzer eğilimi teorik QRPA sonuçları da göstermektedir.

Ayrıca çalışılan çekirdeklerin M1 uyarılma durumlarının seviye genişlikleri ve indirgenmiş geçiş ihtimalleri gibi özellikleri RI-QPNM çerçevesinde teorik olarak ilk kez ele alınmıştır. Sonuçlardan elde edilen önemli çıkarımlar aşağıda maddeler halinde sıralanmıştır.

- a. Tek-A'lı çekirdekler için gerçekleştirilen deneylerde parite tayini yapılamadığından, E1 ve M1 geçişleri birbirinden ayırt edilememektedir. Bu yüzden, düşük enerji bölgesindeki tüm geçişler M1 uyarılmaları olarak kabul edilmektedir. İncelenen çekirdeklerde düşük enerji bölgesinde hesaplanan toplam M1 güçlerinin deneysel sonuçlardan çok daha büyük olduğu görülmüştür. Tek-A'lı çekirdeklerde seviye yoğunluğundan ötürü M1 spekturumlarında kuvvetli bir parçalanma olduğu bilinmektedir. Dolayısıyla da çok sayıda küçük M1 seviyeleri NRF deneylerinde dedektör tarafından tespit edilemeyerek fona gömülü kalmaktadır. Bunun sonucu olarak da deneylerde elde edilen toplam M1 güç değerleri teorik hesaplamaların oldukça altında kalmaktadır.
- b. İncelenen çekirdekler için RI-QPNM ile elde edilen M1 spekturumlarında parçalanma çift-çift çekirdeklerin M1 spektrumundan daha fazladır. Bunun nedeni, M1 gücünün tek kütleli çekirdekte dört farklı M1 seviyesi tarafından paylaşılmış olmasıdır. Bu durum açısal momentum vektörlerinin toplam özelliklerinden ileri gelmektedir.
- c. Tek-A'lı ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd cekirdeklerinin seviye yapılarına bakıldığında uvarılmıs durumlarda tek-kuaziparçacık katkılarının azaldığı ve kuaziparçacık⊗fonon karışımlarından gelen katkıların ise arttığı görülmüştür. Buradan uyarılmış durumların sevive yapısının baskın bicimde kuaziparçacık⊗fonon karışımlarından oluştuğu söylenebilir. Ayrıca bu seviyelerin yapısına çok sayıda kuaziparçacık⊗fonon karışımı katkıda bulunduğundan tek çekirdeklerdeki uyarılma durumlarının güçlü kolektif yapıda olduklarını da göstermektedir.

- d. Tek kütleli çekirdekler ile kor çekirdeklerinin M1 dağılımlarına bakıldığında benzer spektrumlara sahip olduğu görülmektedir. Bundan ötürü, çift-çift korun dışında kalan tek nükleonun M1 spektrumlarında bir gözlemci gibi davrandığı söylenebilir. Tek kalan nükleonun esas itibariyle üstlendiği rol M1 uyarılmalarının parçalanmasıdır.
- e. Hesaplamalarda enerji dağılımına göre birkaç bölgeye ayrılmış manyetik dipol uyarılmalarının var olduğu görülmektedir. 5 MeV'e kadar olan seviyelerde orbital kısmın daha baskın olduğu daha yüksek enerji seviyelerinde ise *M*1 geçiş ihtimaline spin kısmının katkısının daha büyük olduğu ortaya çıkmıştır.
- f. 2-4 MeV enerji aralığına yerleşen M1 uyarılmalarının (makas mod) 3 MeV civarında yerleştiği, toplam M1 gücünün deneysel verilerinkinden 2-3 kat daha büyük olduğu görülmüştür.

Bu çalışma tek-A'lı ¹⁵¹⁻¹⁵⁹Eu ve ¹⁵¹⁻¹⁶¹Gd çekirdek serileri için yapılan ilk teorik çalışmadır. Elde edilen sonuçların literatürdeki büyük bir eksikliğin giderilmesi yolunda atılan önemli bir adım olduğunu söylenebilir. İleri ki dönemlerde, bu tek kütle numaralı çekirdekler için E1 uyarılmalarının da teorik olarak araştırılması amaçlanmaktadır. Böylece deneysel spektrumda paritesine göre ayrıştırılamayan E1 ve M1 seviyeleri teorik olarak hesaplanabilecek ve deneysel verilere yön verebilecektir.

KAYNAKLAR

- [1] Malov, L., Nesterenko, V., Soloviev, V., Low-energy octupole resonances in deformed nuclei. Journal of Physics G: Nuclear Physics, 3, L219, 1977.
- [2] Soloviev, V.G., Microscopic description of vibrational states in deformed nuclei. Progress in Particle and Nuclear Physics, 28, 49-74, 1992.
- [3] Soloviev, V.G., Sushkov, A.V., Shirikova, N.Y., Gamma-ray transitions between excited states in ¹⁶⁸Er. Journal of Physics G: Nuclear and Particle Physics, 20, 113-134, 1994.
- [4] Soloviev, V.G., Sushkov, A.V., Shirikova, N.Y., Description of low-lying vibrational and two-quasiparticle states in ¹⁶⁶Er. Physical Review C, 51, 551-558, 1995.
- [5] Soloviev, V., Sushkov, A., Shirikova, N.Y., Low-lying magnetic dipole strength in ¹⁶³Dy. Physical Review C, 53, 1022, 1996.
- [6] Soloviev, V.G., Sushkov, A.V., Shirikova, N.Y., Vibrational excitations in deformed nuclei in rare-earth and actinide regions. Progress in Particle and Nuclear Physics, 38, 53-61, 1997.
- [7] Soloviev, V.G., Sushkov, A.V., Shirikova, N.Y., Iudice, N.L., Low-lying magnetic and electric dipole transitions in odd-mass deformed nuclei: A microscopic approach. Nuclear Physics A, 613, 45-68, 1997.
- [8] Yakut, H., Nadir toprak deforme çekirdeklerinde kolektif dipol seviyelerinin elektrik ve manyetik dipol özelliklerinin incelenmesi. Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2009.
- [9] Yakut, H., Guliyev, E., Guner, M., Tabar, E., Zenginerler, Z., QPNM calculation for the ground state magnetic moments of odd-mass deformed nuclei: ^{157–167}Er isotopes. Nuclear Physics A, 888, 23-33, 2012.
- [10] Yakut, H., Tabar, E., Kuliev, A.A., Zenginerler, Z., Kaplan, P., Ground state magnetic properties of odd neutron Dy isotopes. International Journal of Modern Physics E, 22, 1350076(1–13), 2013.

- [12] Kuliev, A.A., Pyatov, N.I., Magnetic dipole interactions in deformed nuclei. Sov. J. Nucl. Phys., 9, 185-189, 1969.
- [13] Yakut, H., Kuliev, A., Guliyev, E., Investigations of the g_K-factors in the ^{175,177,179}Hf Isotopes. AIP Conference Proceedings, 1072, 258-261, 2008.
- [14] Yakut, H., Kuliev, A.A., Guliyev, E., Yıldırım, Z., Intrinsic g_K factors of oddmass ¹⁶⁷⁻¹⁷⁹Lu isotopes. Pramana–J. Phys, 73, 829-837, 2009.
- [15] Hamamoto, I., Åberg, S., Microscopic description of a low-lying $K^{\pi}=1^+$ mode in ¹⁵⁶Gd. Physics Letters B, 145, 163-166, 1984.
- [16] Barrett, B., Halse, P., *M*1 transition strength in the SU(3) limit of the generalized IBM-2. Physics Letters B, 155, 133-136, 1985.
- [17] Scholten, O., Heyde, K., Van Isacker, P., Jolie, J., Moreau, J., Waroquier, M., Sau, J., Mixed-symmetry states in the neutron-proton interacting boson model. Nuclear Physics A, 438, 41-77, 1985.
- [18] Zamick, L., Comparison of magnetic dipole excitations in the $f_{7/2}$ shell region with the new collective excitations in ¹⁵⁶Gd Physical Review C, 31, 1955, 1985.
- [19] Faessler, A., Nojarov, R., Low-energy isovector quadrupole vibrations. Physics Letters B, 166, 367-371, 1986.
- [20] Hammaren, E., Schmid, K., Faessler, A., Grümmer, F., Microscopic prediction of the M1 strength distributions in medium heavy nuclei. Physics Letters B, 171, 347-352, 1986.
- [21] Nojarov, R., Bochnacki, Z., Faessler, A., Microscopic calculation of the restoring force for scissor isovector vibrations. Zeitschrift für Physik A Hadrons and Nuclei, 324, 289-298, 1986.
- [22] Castel, B., Zamick, L., New spin excitation modes in nuclei. Physics Reports, 148, 217-247, 1987.
- [23] Liu, H., Zamick, L., Rotational model and shell model pictures of magnetic dipole excitations. Physical Review C, 36, 2057, 1987.
- [24] Iudice, N.L., Richter, A., Orbital magnetic dipole excitations in deformed nuclei and the scissors mode. Physics Letters B, 228, 291-298, 1989.
- [25] Faessler, A., Khoa, D.T., Grigorescu, M., Nojarov, R., Low-lying magnetic dipole excitations in actinide nuclei. Physical review letters, 65, 2978, 1990.

- [26] Faessler, A., Nojarov, R., Scholtz, F., Magnetic dipole electroexcitations in rare-earth nuclei. Nuclear Physics A, 515, 237-272, 1990.
- [27] Zawischa, D., Speth, J., Spin-flip magnetic dipole states in deformed nuclei. Physics Letters B, 252, 4-8, 1990.
- [28] De Coster, C., Heyde, K., Magnetic dipole spin resonance in rare-earth nuclei. Physical review letters, 66, 2456-2459, 1991.
- [29] Hamamoto, I., Magnusson, C., Deformation dependence of magnetic dipole strength below 4 MeV in doubly even rare earth nuclei. Physics Letters B, 260, 6-10, 1991.
- [30] Rangacharyulu, C., Richter, A., Wörtche, H., Ziegler, W., Casten, R., Strong correlation and saturation of E2 and M1 transition strengths in even-even rareearth nuclei. Physical Review C, 43, R949, 1991.
- [31] Sarriguren, P., de Guerra, E.M., Nojarov, R., Faessler, A., M1 spin strength distribution in ¹⁵⁴Sm. Journal of Physics G: Nuclear and Particle Physics, 19, 291, 1993.
- [32] Raduta, A., Iudice, N.L., Ursu, I., Description of orbital and spin excitations within a projected spherical single-particle basis. Nuclear Physics A, 584, 84-102, 1995.
- [33] Kuliev, A.A., Akkaya, R., Ilhan, M., Guliyev, E., Salamov, C., Selvi, S., Rotational-Invariant Model of the States with $K^{\pi}=1^+$ and their Contribution to the Scissors Mode. International Journal of Modern Physics E, 9, 249-261, 2000.
- [34] Kuliev, A.A., Guliyev, E., Gerçeklioğlu, M., The dependence of the scissors mode on the deformation in the ^{140–150}Ce isotopes. Journal of Physics G: Nuclear and Particle Physics, 28, 407-414, 2002.
- [35] Bektaşoğlu, M., Yakut, H., Low-Lying Dipole Strengths in ^{162,164}Dy Nuclei. Acta Physica Polonica B, 37, 2705-2712, 2006.
- [36] Guliyev, E., Ertuğral, F., Kuliev, A.A., Low-lying magnetic dipole strength distribution in the γ-soft even-even ¹³⁰⁻¹³⁶Ba. The European Physical Journal A-Hadrons and Nuclei, 27, 313-320, 2006.
- [37] Ertuğral, F., Guliyev, E., Kuliev, A.A., Low lying magnetic and electric dipole strength distribution in the even-even ^{164–170}Er. AIP, AIP Conference Proceedings, 899, 109-110, 2007.
- [38] Guliyev, E., Kuliev, A.A., Ertugral, F., Low-lying dipole excitations in the deformed even-even isotopes ¹⁵⁴⁻¹⁶⁰Gd. Acta Physica Polonica B, 40, 829-837, 2009.

- [39] Tabar, E., Tek Kütle Numaralı Nadir Toprak Deforme Çekirdeklerinin Makas Mod Uyarılmalarının İncelenmesi. Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2015.
- [40] Tabar, E., Yakut, H., Kuliev, A.A., Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy oddmass ¹⁸¹Ta nucleus. International Journal of Modern Physics E, 25, 1650053, 2016.
- [41] Tabar, E., Kuliev, A.A., Microscopic investigation of the low-lying magnetic dipole transitions in the odd-mass 155–169 Ho isotopes. Nuclear Physics A, 964, 1-17, 2017.
- [42] Margraf, J., Eckert, T., Rittner, M., Bauske, I., Beck, O., Kneissl, U., Maser, H., Pitz, H.H., Schiller, A., Von Brentano, P., Systematics of low-lying dipole strengths in odd and even Dy and Gd isotopes. Physical Review C, 52, 2429-2443, 1995.
- [43] Bauske, I., Arias, J.M., Von Brentano, P., Frank, A., Friedrichs, H., Heil, R.D., Herzberg, R.-D., Hoyler, F., Van Isacker, P., Kneissl, U., First observation of scissors mode states in an odd-mass nucleus. Physical review letters, 71, 975-978, 1993.
- [44] Goldring, G., Loebenstein, H., Barloutaud, R., Branching Ratios and Magnetic Dipole Transition Probabilities in Odd-A Rotational Nuclei. Physical Review, 127, 2151, 1962.
- [45] Seaman, G., Bernstein, E., Palms, J., M1 Transition Probabilities in Odd-Mass Deformed Nuclei. Physical Review, 161, 1223, 1967.
- [46] Huxel, N., Ahner, W., Diesener, H., von Neumann-Cosel, P., Rangacharyulu, C., Richter, A., Spieler, C., Ziegler, W., De Coster, C., Heyde, K., Search for low-lying magnetic dipole strength in the heavy odd-mass nucleus ¹⁶⁵Ho. Nuclear Physics A, 539, 478-486, 1992.
- [47] Bauske, I., Arias, J., Von Brentano, P., Frank, A., Friedrichs, H., Heil, R., Herzberg, R.-D., Hoyler, F., Van Isacker, P., Kneissl, U., First observation of scissors mode states in an odd-mass nucleus. Physical review letters, 71, 975, 1993.
- [48] Margraf, J., Eckert, T., Rittner, M., Bauske, I., Beck, O., Kneissl, U., Maser, H., Pitz, H., Schiller, A., Von Brentano, P., Systematics of low-lying dipole strengths in odd and even Dy and Gd isotopes. Physical Review C, 52, 2429, 1995.

- [49] Nord, A., Schiller, A., Eckert, T., Beck, O., Besserer, J., Von Brentano, P., Fischer, R., Herzberg, R.-D., Jäger, D., Kneissl, U., Systematic study of the fragmentation of low-lying dipole strength in odd-A rare earth nuclei investigated in nuclear resonance fluorescence experiments. Physical Review C, 54, 2287-2295, 1996.
- [50] Schlegel, C., von Neumann-Cosel, P., Richter, A., Van Isacker, P., Unexpected properties of the scissors mode in the odd-mass nucleus ¹⁶⁷Er. Physics Letters B, 375, 21-25, 1996.
- [51] Besserer, J., Beck, O., Von Brentano, P., Eckert, T., Herzberg, R.-D., Jäger, D., Kneissl, U., Margraf, J., Maser, H., Nord, A., Fragmentation of low-lying dipole strength in the odd-mass nucleus ¹³³Cs. Physical Review C, 56, 1276-1280, 1997.
- [52] Ginocchio, J., Leviatan, A., Magnetic dipole sum rules for odd-mass nuclei. Physical review letters, 79, 813, 1997.
- [53] Enders, J., Huxel, N., Kneissl, U., von Neumann-Cosel, P., Pitz, H., Richter, A., Unresolved dipole strength in spectra of the 157 Gd (γ , γ') reaction. Physical Review C, 57, 996, 1998.
- [54] Wolpert, A., Beck, O., Belic, D., Besserer, J., Von Brentano, P., Eckert, T., Fransen, C., Herzberg, R.-D., Kneissl, U., Margraf, J., Low-lying dipole excitations in the heavy, odd-mass nucleus ¹⁸¹Ta. Physical Review C, 58, 765-770, 1998.
- [55] Siem, S., Guttormsen, M., Ingeberg, K., Melby, E., Rekstad, J., Schiller, A., Voinov, A., Level densities and γ -strength functions in ^{148,149}Sm. Physical Review C, 65, 044318, 2002.
- [56] Nord, A., von Neumann-Cosel, P., Pietralla, N., Enders, J., Richter, A., Kohstall, C., von Brentano, P., Fransen, C., Werner, V., Linnemann, A., Lowenergy photon scattering experiments of ^{151,153}Eu, ¹⁶³Dy, and ¹⁶⁵ Ho and the systematics of the M1 scissors mode in odd mass rare earth nuclei. Phys. Rev., 67, 034307, 2003.
- [57] Krtička, M., Bečvář, F., Honzátko, J., Tomandl, I., Heil, M., Käppeler, F., Reifarth, R., Voss, F., Wisshak, K., Evidence for M1 Scissors Resonances Built on the Levels in the Quasicontinuum of ¹⁶³Dy Physical review letters, 92, 172501, 2004.
- [58] Bondarenko, V., Honzatko, J., Tomandl, I., Von Egidy, T., Wirth, H.-F., Sukhovoj, A., Malov, L., Simonova, L., Alexa, P., Bērziņš, J., Low-spin mixed particle–hole structures in ¹⁸⁵W. Nuclear Physics A, 762, 167-215, 2005.

- [59] Bertozzi, W., Caggiano, J.A., Hensley, W.K., Johnson, M.S., Korbly, S., Ledoux, R., McNabb, D.P., Norman, E., Park, W.H., Warren, G.A., Nuclear resonance fluorescence excitations near 2 MeV in ²³⁵U and ²³⁹Pu Physical Review C, 78, 041601, 2008.
- [60] Bondarenko, V., Tomandl, I., Wirth, H.-F., Honzatko, J., Sukhovoj, A., Malov, L., Simonova, L., Hertenberger, R., Von Egidy, T., Bērziņš, J., Nuclear structure of ¹⁸⁷W studied with (n, γ) and (d, p) reactions. Nuclear Physics A, 811, 28-76, 2008.
- [61] Scheck, M., Choudry, S., Elhami, E., McEllistrem, M., Mukhopadhyay, S., Orce, J., Yates, S., Pauli blocking in the low-lying, low-spin states of ¹⁴¹Pr Physical Review C, 78, 034302, 2008.
- [62] Agvaanluvsan, U., Larsen, A., Chankova, R., Guttormsen, M., Mitchell, G., Schiller, A., Siem, S., Voinov, A., Enhanced Radiative Strength in the Quasicontinuum of ¹¹⁷Sn. Physical review letters, 102, 162504, 2009.
- [63] Pietralla, N., Li, T., Fritzsche, M., Ahmed, M., Ahn, T., Costin, A., Enders, J., Li, J., Müller, S., von Neumann-Cosel, P., Competition between excited core states and $1\hbar\omega$ single-particle excitations at comparable energies in ²⁰⁷Pb from photon scattering. Physics Letters B, 681, 134-138, 2009.
- [64] Nyhus, H., Siem, S., Guttormsen, M., Larsen, A., Bürger, A., Syed, N., Tveten, G., Voinov, A., Radiative strength functions in ^{163,164}Dy Physical Review C, 81, 024325, 2010.
- [65] Yevetska, O., Enders, J., Fritzsche, M., von Neumann-Cosel, P., Oberstedt, S., Richter, A., Romig, C., Savran, D., Sonnabend, K., Dipole strength in the 235 U(γ , γ') reaction up to 2.8 MeV. Physical Review C, 81, 044309, 2010.
- [66] Chyzh, A., Baramsai, B., Becker, J., Bečvář, F., Bredeweg, T., Couture, A., Dashdorj, D., Haight, R., Jandel, M., Kroll, J., Measurement of the ¹⁵⁷Gd (n, γ) reaction with the DANCE γ calorimeter array. Physical Review C, 84, 014306, 2011.
- [67] Kwan, E., Rusev, G., Adekola, A., Dönau, F., Hammond, S., Howell, C., Karwowski, H., Kelley, J., Pedroni, R.S., Raut, R., Discrete deexcitations in ²³⁵U below 3 MeV from nuclear resonance fluorescence. Physical Review C, 83, 041601, 2011.
- [68] Guttormsen, M., Bernstein, L., Bürger, A., Görgen, A., Gunsing, F., Hagen, T., Larsen, A., Renstrøm, T., Siem, S., Wiedeking, M., Observation of large scissors resonance strength in actinides. Physical review letters, 109, 162503, 2012.

- [69] Kroll, J., Baramsai, B., Becker, J., Bečvář, F., Bredeweg, T., Couture, A., Chyzh, A., Dashdorj, D., Haight, R., Jandel, M., Scissors Mode in Gd Nuclei. EDP Sciences, EPJ Web of Conferences, 21, 04005, 2012.
- [70] Kroll, J., Baramsai, B., Mitchell, G., Agvaanluvsan, U., Bečvář, F., Bredeweg, T., Chyzh, A., Couture, A., Dashdorj, D., Haight, R., Strength of the scissors mode in odd-mass Gd isotopes from the radiative capture of resonance neutrons. Physical Review C, 88, 034317, 2013.
- [71] Kroll, J., Bečvář, F., Krtička, M., Valenta, S., Baramsai, B., Mitchell, G., Walker, C., Bredeweg, T., Couture, A., Haight, R., Scissors mode of Gd nuclei measured, with the DANCE detector. Physica Scripta, 2013, 014009, 2013.
- [72] Guttormsen, M., Bernstein, L., Görgen, A., Jurado, B., Siem, S., Aiche, M., Ducasse, Q., Giacoppo, F., Gunsing, F., Hagen, T., Scissors resonance in the quasicontinuum of Th, Pa, and U isotopes. Physical Review C, 89, 014302, 2014.
- [73] Reviol, W., Janssens, R., Frauendorf, S., Sarantites, D., Carpenter, M., Chen, X., Chiara, C., Hartley, D., Hauschild, K., Lauritsen, T., Characterization of octupole-type structures in ²²¹Th Physical Review C, 90, 044318, 2014.
- [74] Nord, A., Enders, J., de Almeida Pinto, A.E., Belic, D., Von Brentano, P., Fransen, C., Kneissl, U., Kohstall, C., Linnemann, A., von Neumann-Cosel, P., Low-energy photon scattering experiments of ^{151, 153}Eu, ¹⁶³Dy, and ¹⁶⁵Ho and the systematics of the M1 scissors mode in odd-mass rare-earth nuclei. Physical Review C, 67, 034307(1-23), 2003.
- [75] Bunker, M.E., Reich, C.W., A survey of nonrotational states of deformed odd-A nuclei (150<A<190). Reviews of Modern Physics, 43, 348-423, 1971.
- [76] Jain, A.K., Sheline, R.K., Sood, P.C., Jain, K., Intrinsic states of deformed odd-A nuclei in the mass regions $(151 \le A \le 193)$ and $(A \ge 221)$. Reviews of Modern Physics, 62, 393-509, 1990.
- [77] Soloviev, V.G., On collective nonrotational states of odd-mass deformed nuclei. Physics Letters, 16, 308-311, 1965.
- [78] Bes, D.R., Yi-Chung, C., The γ-vibrations in odd-mass rare-earth nuclei. Nuclear Physics, 86, 581-610, 1966.
- [79] Soloviev, V.G., Vogel, P., Structure of the ground and excited states of oddmass deformed nuclei in the region 153£A£187. Nuclear Physics A, 92, 449-474, 1967.
- [80] Soloviev, V.G., Malov, L.A., A model for describing the structure of highly excited states in deformed nuclei (I). Nuclear Physics A, 196, 433-451, 1972.

- [82] Gareev, F.A., Ivanova, S.P., Malov, L.A., Soloviev, V.G., Single-particle energies and wave functions for the saxon-woods potential and the levels of odd-A nuclei in the actinide region. Nuclear Physics A, 171, 134-164, 1971.
- [83] Soloviev, V.G., Theory of complex nuclei. New York: Pergamon Press, 1976.
- [84] Gorbachev, B.I., Levon, A., Nemets, O.F., Fedotkin, S.N., Stepanenko, V.A., Magnetic moments of isomeric states in ¹⁴¹Pr and ¹⁴³Pm and paramagnetism of the promethium and praseodymium. Zhurnal Ehksperimental'noj i Teoreticheskoj Fiziki, 87, 3-13, 1984.
- [85] Levon, A., Fedotkin, S.N., Vdovin, A., Magnetic moments of odd spherical nuclei. Soviet Journal of Nuclear Physics, 43, 912-917, 1986.
- [86] Ponomarev, V.Y., Safarov, R.R., The contribution of "quasiparticleÄphonon" components into magnetic moments of lowlying states in odd spherical nuclei. P4, 88-146, 1988.
- [87] Vdovin, A., Safarov, R.R., Galinskij, E.M., Pauli principle and magnetic moments of odd spherical nuclei. P4, 88-170, 1988.
- [88] Soloviev, V.G., Theory of atomic nuclei: Quasiparticles and phonons. Institute of Physics Publishing Bristol and Philadelphia, 1992.
- [89] Zhao, E., Recent progress in theoretical studies of nuclear magnetic moments. Chinese Science Bulletin, 57, 4394-4399, 2012.
- [90] De Boer, J., Rogers, J.D., Concerning the magnetic properties of deformed nuclei in the region 153£A£187. Physics Letters, 3, 304-306, 1963.
- [91] Bochnacki, Z., Ogaza, S., Spin polarization effect and the magnetic moments of odd-mass deformed nuclei. Nuclear Physics, 69, 186-192, 1965.
- [92] Bochnacki, Z., Ogaza, S., Spin polarization effect on the fast allowed beta transitions between deformed odd-mass nuclei. Nuclear Physics A, 102, 529-533, 1967.
- [93] Kuliev, A.A., Pyatov, N.I., Spin polarization effects in odd-mass deformed nuclei. Physics Letters B, 28, 443-445, 1969.
- [94] Guliyev, E., Kolektif çekirdek uyarılmaları ve sel g-çekirdek çarpıştırıcıları ile nükleer spektroskopi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Fizik Mühendisliği Ana Bilim Dalı, 2002.

- [95] Tabar, E., Yakut, H., Kuliev, A.A., Quliyev, H., Hoşgör, G., Magnetic moments and g factors in odd-A Ho isotopes. Chinese physics C, 0-0, 2017.
- [96] Raman, S., Nestor, C.W., Tikkanen, P., Transition probability from the ground to the first-excited 2⁺ state of even–even nuclides. Atomic Data and Nuclear Data Tables, 78, 1-128, 2001.
- [97] Bohr, A., Mottelson, B., Nuclear Structure, Vol. 1. Benjamin, New York and Amsterdam, 1969.
- [98] Stone, N.J., Table of nuclear magnetic dipole and electric quadrupole moments. Atomic Data and Nuclear Data Tables, 90, 75-176, 2005.
- [99] Moller, P., Nix, J.R., Myers, W., Swiatecki, W., Nuclear ground-state masses and deformations. Atomic data and nuclear data tables, 59, 185-381, 1995.
- [100] Yakut, H., Kuliev, A., Guliyev, E., Investigations of the g_K-factors in the ^{175,177,179}Hf Isotopes. AIP, AIP Conference Proceedings, 1072, 258-261, 2008.
- [101] Hoşgör, G., Yakut, H., Tabar, E., Spin polarization effects on magnetic dipole moment of ^{153,155}Eu. AIP Conference Proceedings, 1815, 060011, 2017.
- [102] Evans, L., Sandars, P.G.H., Woodgate, G.K., Relativistic effects in many electron hyperfine structure III. Relativistic dipole and quadrupole interaction in europium and remeasurement of the nuclear magnetic dipole moments of ¹⁵¹Eu and ¹⁵³Eu. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 289, 114-121, 1965.
- [103] Ertuğral, F., Guliyev, E., Kuliev, A.A., Yıldırım, Z., Fine structure of the dipole excitations of the even-even ¹⁶⁰Gd nucleus in the spectroscopic region. Open Physics, 7, 731-737, 2009.
- [104] Guliyev, E., Kuliev, A.A., Ertuğral, F., Low-lying magnetic and electric dipole strength distribution in the ¹⁷⁶Hf nucleus. The European Physical Journal A, 39, 323-333, 2009.
- [105] Yıldırım, Z., Deforme çekirdeklerde makas mod seviyelerinin beta bozunum özelliklerinin incelenmesi. Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü, 2009.
- [106] Guliyev, E., Kuliev, A.A., Ertuğral, F., Systematic investigation of the lowenergy dipole excitations in ^{176,178,180}Hf within rotational, translational and Galilean invariant quasiparticle RPA. Nuclear Physics A, 915, 78-89, 2013.
- [107] Zenginerler, Z., Guliyev, E., Kuliev, A.A., Yakut, H., Soluk, G., Systematic investigation of the low-lying dipole excitations in even-even ¹²⁴⁻¹³⁶Ba isotopes. European Physical Journal A, 49, 1-7, 2013.

EKLER

EK A: ¹⁵¹⁻¹⁵⁹Eu çekirdeklerinin 4-12 MeV enerji aralığında seviye yapıları

Tablo A.1. ¹⁵¹⁻¹⁵⁹Eu çekirdeğinde 2-12 MeV enerji aralığındaki $B(M1\uparrow) \ge 0.1 \mu_N^2$ olan K^π=3/2⁺ ve K^π=7/2⁺ uyarılma seviyelerinin RI-QPNM ile hesaplanan E_j enerjileri, tek kuaziparçacık ($N_{K_{\zeta V}}^j$), kuaziparçacık \otimes fonon karışım genlikleri ($G_{j,i\mu}^{K_{\zeta V}}$), kuaziparçacık \otimes fonon yapıları ($[Nn_z\Lambda\Sigma]\otimes Q_j$).

	E .	$B(M1\uparrow)$		NI	C KCV	Seviye Yapısı
Izotop	(MeV)	$(\boldsymbol{\mu}_N^2)$	K ^π	$IN_{K\varsigma_q}$	$G_{j,i\mu}$	$\left[Nn_{z}\Lambda\Sigma\right] \otimes Q_{i}$
	11.554	0.207	3/2+	0.019	0.999	$0.04[413] \downarrow +97.5[413] \downarrow \otimes Q_{213}$
	11 (40	0.120	7/0+	0.047	0.009	$0.23[413] \downarrow + 0.23[413] \downarrow \otimes Q_{216} +$
	11.040	0.120	1/2	0.047	0.998	$12.62[413] \downarrow \otimes Q_{213} + 6.65[413] \downarrow \otimes Q_{215}$
¹⁵¹ Eu	11 (52	0 407	7/0+	0.002	0.005	$0.85[413] \downarrow + 0.85[413] \downarrow \otimes Q_{213} +$
	11.032	0.427	1/2	0.092	0.993	$26.29[413] \downarrow \otimes Q_{216} + 11.66[413] \downarrow \otimes Q_{211}$
	12 114	0 274	7/0+	0.071	0.007	$0.51[413] \downarrow + 88.55[413] \downarrow \otimes Q_{228} +$
	12.114	0.274	1/2*	0.071	0.997	$2.62[413] \downarrow \otimes Q_{229} + 2.26[413] \downarrow \otimes Q_{225}$
	10.963	0.103	$3/2^{+}$	0.007	0.999	$99.99[413] \downarrow \otimes Q_{198}$
	10.070	0.129	7/0+	0.029	0.006	$0.08[413] \downarrow +92.90[413] \downarrow \otimes Q_{198}+$
	10.970	0.138	1/2	0.028	0.990	$+\%6.71[413] \downarrow \otimes Q_{199}$
	11.549	0.126	$3/2^{+}$	0.003	0.999	$51.1[413] \downarrow \otimes Q_{216} + 848.9[422] \downarrow \otimes Q_{48}$
	11 551	0.116	2/2+	0.012	0.000	$0.02[413] \downarrow + 0.051[422] \downarrow \otimes Q_{48} +$
¹⁵³ Eu	11.551	0.110	5/2*	0.015	0.013 0.999	+%48.8[413] $\downarrow \otimes Q_{216}$
	11 565	0.255	7/2+	0.028	0.002	$0.15[413] \downarrow + 0.88[413] \downarrow 0.0000000000000000000000000000000000$
	11.505	0.233	1/2	0.038	0.993	$+\%18.65[413] \downarrow \otimes Q_{217}$
	11 595	0 287	7/2+	0.020	0.002	$0.15[413] \downarrow + 80.55[413] \downarrow \otimes Q_{217} +$
	11.565	0.287	1/2	0.039	0.992	$+\%16.71[413] \downarrow \otimes Q_{216}$
	12.087	0.120	$7/2^{+}$	0.023	0.997	$0.06[413] \downarrow +98.63[413] \downarrow \otimes Q_{231}$
	4.386	0.169	$7/2^{+}$	0.006	0.999	$99.99[413] \downarrow \otimes Q_{21}$
	4.623	0.139	$7/2^{+}$	0.010	0.999	$99.99[413] \downarrow \otimes Q_{23}$
	11.067	0.103	3/2+	0.005	0.999	$99.99[413] \downarrow \otimes Q_{203}$
	11.070	0.148	7/2+	0.022	0.997	$99.36[413] \downarrow \otimes Q_{203} + 0.34[413] \downarrow \otimes Q_{207}$
155	11.100	0.145	7.0	0.010	0.000	$0.04[413] \downarrow +99.44[413] \downarrow \otimes Q_{207} +$
¹⁵⁵ Eu	11.132	0.145	1/2+	0.019	0.998	$+\%0.32[413] \downarrow \otimes Q_{203}$
	11.753	0.207	3/2+	0.008	0.999	$96.3[413] \downarrow \otimes Q_{226} + 93.6[422] \downarrow \otimes Q_{52}$
	11.801	0.111	7/2+	0.022	0.997	$96.76[413] \downarrow \otimes Q_{228} + \% 2.13[413] \downarrow \otimes Q_{226}$
	11.962	0.120	3/2+	0.007	0.999	$99.99[413] \downarrow \otimes Q_{233}$
	11.970	0.258	7/2+	0.032	0.995	$0.11[413] \downarrow +98.83[413] \downarrow \otimes Q_{233}$

İzotop	E _j (MeV)	$B(M1\uparrow)$ (μ_N^2)	K ^π	$N^{j}_{{\scriptscriptstyle K}{\varsigma_q}}$	$G^{Karsigma v}_{j,i\mu}$	Seviye Yapısı
						$\lfloor Nn_z \Lambda \Sigma \rfloor \otimes Q_i$
	10.574	0.110	$3/2^{+}$	0.012	0.999	$99.99[413] \downarrow \otimes Q_{199}$
	10.586	0.100	7/2+	0.035	0.994	$0.12[413] \downarrow +94.81[413] \downarrow \otimes Q_{199} +$
						$+\%2.33[413] \downarrow \otimes Q_{201} +\%1.88[413] \downarrow \otimes Q_{200}$
	10.841	0.120	$3/2^{+}$	0.011	0.999	$99.99[413] \downarrow \otimes Q_{208}$
	10.854	0.164	$7/2^{+}$	0.040	0.999	$0.17[413] \downarrow +98.10[413] \downarrow \otimes Q_{208}$
	11.465	0.135	$3/2^{+}$	0.012	0.999	$81.2[413] \downarrow \otimes Q_{223} + 16.7[413] \downarrow \otimes Q_{222}$
	11.478	0.124	3/2+	0.011	0.999	$0.01[413] \downarrow + 98.2[413] \downarrow \otimes Q_{224}$
	11.500	0.210	7/2+	0.046	0.998	$0.22[413] \downarrow + 0.98[413] \downarrow \otimes Q_{224} +$
						$+\%17.28[413] \downarrow \otimes Q_{222} +\%6.63[413] \downarrow \otimes Q_{227}$
	11.565	0.112	3/2+	0.010	0.999	$99.8[413] \downarrow \otimes Q_{227}$
157 E 11	11 577	0.130	7/2+	0.034	0.998	$0.12[413] \downarrow + 86.74[413] \downarrow \otimes Q_{227} +$
Ľu	11.577					$+\%5.13[413] \downarrow \otimes Q_{231} +\%1.59[413] \downarrow \otimes Q_{228}$
	11 721	0.653	3/2+	0.026	0.999	$0.07[413] \downarrow + 89.1[413] \downarrow \otimes Q_{231} +$
	11.721					$+\%10.1[422] \downarrow \otimes Q_{57}$
	11.826	0.797	7/2+	0.084	0.996	$0.71[413] \downarrow + 0.44.62[413] \downarrow \otimes Q_{231} +$
						$+\%34.03[413] \downarrow \otimes Q_{234} +\%11.84[413] \downarrow \otimes Q_{232}$
	11.875	0.101	$3/2^{+}$	0.010	0.999	$99.99[413] \downarrow \otimes Q_{234}$
	11.924	1.172	7/2+	0.102	0.994	$1.05[413] \downarrow +%47.5[413] \downarrow \otimes Q_{234} +$
						$+\%18.93[413] \downarrow \otimes Q_{231} + \%12.56[413] \downarrow \otimes Q_{235} +$
						$+\%11.70[413] \downarrow \otimes Q_{236}$
	11.062	0.210	7/2+	0.053	0.008	$0.29[413] \downarrow + 78.62[413] \downarrow \otimes Q_{236} +$
	11.903	0.310	1/2	0.055	0.998	$+\%10.09[413] \downarrow \otimes Q_{237} +\%3.75[413] \downarrow \otimes Q_{231}$
	4.234	0.135	$7/2^{+}$	0.011	0.999	$99.95[413] \downarrow \otimes Q_{23}$
	11.679	0.112	7/2+	0.042	0.999	$0.18[413] \downarrow + 84.78[413] \downarrow \otimes Q_{225} +$
						$+\%6.94[413] \downarrow \otimes Q_{227} +\%3.48[413] \downarrow \otimes Q_{223}$
¹⁵⁹ Eu	11.812	0.101	3/2+	0.022	0.999	$0.05[413] \downarrow +97.0[413] \downarrow \otimes Q_{227} +$
						$+\%2.7[413] \downarrow \otimes Q_{228}$
	11.812	0.235	$3/2^{+}$	0.022	0 999	$0.05[413] \downarrow +97.0[413] \downarrow \otimes Q_{227} +$
		0.200	0,2	0.022	0.777	$+\%2.7[413] \downarrow \otimes Q_{228}$
	11.934	0.622	7/2+	0.106	0.994	$\%1.14[413] \downarrow +\%43.42[413] \downarrow \otimes Q_{227} +$
						$+\%12.39[413] \downarrow \otimes Q_{232} +\%11.90[413] \downarrow \otimes Q_{233}$
	12.025	0.298	7/2+	0.077	0.997	$0.6[413] \downarrow + 86.38[413] \downarrow \otimes Q_{233} +$
						$+\%7.75[413] \downarrow \otimes Q_{227}$

Tablo A.1. (Devamı).

Tablo B.1. ¹⁵¹⁻¹⁶¹Gd çekirdeklerinde 2-12 MeV enerji aralığındaki $B(M1\uparrow) \ge 0.1 \mu_N^2$ olan K_0 -1 ve K_0 +1 uyarılma seviyelerinin RI-QPNM ile hesaplanan E_j enerjileri, tek kuaziparçacık $(N_{K_{\zeta V}}^j)$, kuaziparçacık \otimes fonon karışım genlikleri $(G_{j,i\mu}^{K_{\zeta V}})$, kuaziparçacık \otimes fonon yapıları $([Nn_z\Lambda\Sigma]\otimes Q_i)$.

İzotop	E,	$B(M1\uparrow)$	K ^π	$N^{j}_{{\scriptscriptstyle K}_{{\scriptscriptstyle {m arsigma}}_q}}$	$G^{Karsigma v}_{j,i\mu}$	Seviye Yapısı
	(MeV)	$(\boldsymbol{\mu}_N^2)$				$\left[Nn_{z}\Lambda\Sigma\right] \otimes Q_{i}$
	4.049	0.126	5/2-	0.003	0.999	$99.99[514] \downarrow \otimes Q_{21}$
	4.049	0.190	9/2-	0.002	0.999	$99.99[514] \downarrow \otimes Q_{21}$
	4.114	0.162	9/2-	0.002	0.999	$99.99[514] \downarrow \otimes Q_{22}$
¹⁵¹ Gd	4.114	0.108	5/2-	0.005	0.999	$99.99[514] \downarrow \otimes Q_{22}$
	4.220	0.136	5/2-	0.001	0.999	$99.99[514] \downarrow \otimes Q_{23}$
	4.220	0.203	9/2-	0.001	0.999	$\%100[514] \downarrow \otimes Q_{23}$
	4.221	0.139	5/2-	0.010	0.999	$0.01[514] \downarrow +0.099.99[514] \downarrow \otimes Q_{23}$
	8.426	0.112	9/2-	0.003	0.999	$99.98[514] \downarrow \otimes Q_{108}$
	9.781	0.120	9/2-	0.003	0.999	$99.98[514] \downarrow \otimes Q_{155}$
	9.817	0.136	5/2-	0.002	0.999	$99.99[514] \downarrow \otimes Q_{156}$
	9.817	0.318	5/2-	0.002	0.999	$99.99[514] \downarrow \otimes Q_{156}$
	9.818	0.480	9/2-	0.007	0.999	$0.01[514] \downarrow + 99.73[514] \downarrow \otimes Q_{156}$
	10.451	0.148	5/2-	0.002	0.999	$99.99[514] \downarrow \otimes Q_{172}$
	10.451	0.223	9/2-	0.003	0.999	$99.99[514] \downarrow \otimes Q_{172}$
	10.675	0.106	9/2-	0.002	0.999	$99.99[514] \downarrow \otimes Q_{179}$
	10.890	0.244	5/2-	0.012	0.999	$\%0.02[512] \downarrow +\%89.98[521] \downarrow \otimes Q_{185} +$
						$+\%9.45[521] \downarrow \otimes Q_{186}$
	10.894	0.125	1/2-	0.016	0.999	$(47.10[521]) \downarrow \otimes Q_{185} + (47.30[521]) \downarrow \otimes Q_{186} +$
						$+\%4.10[521] \downarrow \otimes Q_{187}$
	11.278	0.194	5/2-	0.012	0.999	$0.02[512] \downarrow +99.92[521] \downarrow \otimes Q_{196}$
¹⁵³ Gd	11.280	0.130	1/2-	0.013	0.999	$0.02[512] \downarrow +99.30[521] \downarrow \otimes Q_{196}$
	11.677	0.128	5/2-	0.016	0.999	$0.03[512] \downarrow +95.84[521] \downarrow \otimes Q_{208} +$
						$+\%3.77[512] \downarrow \otimes Q_{116}$
	11.696	0.100	1/2-	0.033	0.994	$0.11[521] \downarrow + 86.0[521] \downarrow \otimes Q_{208} +$
						$+\%4.60[541] \downarrow \otimes Q_{211} + \%1.40[541] \downarrow \otimes Q_{210}$
	9.728	0.142	5/2-	0.005	0.999	$\%99.91[521] \downarrow \otimes Q_{143}$
	10.099	0.113	5/2-	0.004	0.999	$99.79[521] \downarrow \otimes Q_{156} + 0.13[532] \downarrow \otimes Q_{158}$
	10.477	0.292	5/2-	0.008	0.999	$0.01[523] \downarrow + 99.61[521] \downarrow \otimes Q_{170} +$
						$+\%0.26[532] \downarrow \otimes Q_{170}$
¹⁵⁵ Gd	10.478	0.184	1/2-	0.014	0.000	$0.02[521] \downarrow + 95.6[521] \downarrow \otimes Q_{170} +$
					0.999	$+\%3.4[521] \downarrow \otimes Q_{170}$
	10.694	0.127	5/2-	0.004	0.999	$99.99[521] \downarrow \otimes Q_{175}$
	11.211	0.101	1/2-	0.005	0.999	$91.8[521] \downarrow \otimes Q_{189} + 98.1[521] \downarrow \otimes Q_{189}$
	11.211	0.163	5/2-	0.005	0.999	$99.95[521] \downarrow \otimes Q_{189}$

İzotop	E_{j}	<i>B</i> (<i>M</i> 1↑)	K ^π	N_{Kc}^{j}	$G_{iiii}^{K_{\mathcal{S}^{v}}}$	Seviye Yapısı
	(<i>MeV</i>)	$(\boldsymbol{\mu}_{N}^{z})$	- 10	54	<i>j,;µ</i>	$ \underbrace{[Nn_z \Lambda \Sigma] \otimes \mathcal{Q}_i}_{n \in \mathbb{Z}^2} $
	6.673	0.241	5/2-	0.001	0.999	%99.98[521]↓⊗Q ₆₆
	6.674	0.161	1/2-	0.002	0.999	$99.9[521] \downarrow \otimes \mathcal{Q}_{66}$
	7.183	0.118	5/2-	0.001	0.999	$\%99.99[521] \downarrow \otimes \mathcal{Q}_{80}$
	8.233	0.149	1/2-	0.005	0.999	$\%99.9[521] \downarrow \otimes \mathcal{Q}_{112}$
	8.233	0.222	5/2-	0.005	0.999	$\%99.86[521] \downarrow \otimes Q_{112}$
	8.923	0.131	5/2-	0.003	0.999	$99.98[521] \downarrow \otimes Q_{135}$
	9.366	0.148	1/2-	0.005	0.999	$99.7[521] \downarrow \otimes Q_{152}$
¹⁵⁷ Gd	9.366	0.210	5/2-	0.006	0.999	$ \$92.81[521] ↓ ⊗Q_{152} + \$6.93[532] ↓ ⊗Q_{122} + + \$0.13[523] ↓ ⊗Q_{120} $
	9.408	0.747	5/2-	0.004	0.999	$99.73[521] \downarrow \otimes Q_{153} + 0.12[512] \downarrow \otimes Q_{48}$
	9.409	0.216	1/2-	0.012	0.999	$0.02[521] \downarrow +99.0[521] \downarrow \otimes Q_{153}$
	9.409	0.504	1/2-	0.012	0.999	$0.02[521] \downarrow +99.0[521] \downarrow \otimes Q_{153}$
	9.538	0.156	1/2-	0.005	0.999	$\%99.8[521] \downarrow \otimes Q_{158}$
	9.538	0.227	5/2-	0.004	0.999	$\$99.7[521] \downarrow \otimes Q_{158} + \$0.27[512] \downarrow \otimes Q_{51}$
	9.503	0.126	5/2-	0.001	0.999	$99.98[521] \downarrow \otimes Q_{156}$
	10.132	0.112	5/2-	0.002	0.999	$99.98[521] \downarrow \otimes Q_{173}$
	10.429	0.129	5/2-	0.001	0.999	$99.95[521] \downarrow \otimes Q_{187}$
	4.191	0.335	5/2-	0.024	0.997	$0.06[532] \downarrow + 99.92[521] \downarrow \otimes Q_{17}$
	4.192	0.214	1/2-	0.001	0.999	$99.99[521] \downarrow \otimes Q_{17}$
	4.651	0.163	1/2-	0.001	0.999	$99.99[521] \downarrow \otimes Q_{21}$
	4.651	0.250	5/2-	0.018	0.998	$\%0.03[532]$ ↓+ $\%99.66[521]$ ↓ $\otimes Q_{21}$ + + $\%0.29[532]$ ↓ $\otimes Q_{10}$
	5.236	0.121	1/2-	0.001	0.999	$99.99[521] \downarrow \otimes Q_{34}$
	5.236	0.186	5/2-	0.024	0.997	$0.06[532] \downarrow +99.91[521] \downarrow \otimes Q_{34}$
	6.025	0.141	1/2-	0.001	0.999	$\$99.99[521] \downarrow \otimes Q_{47}$
	6.025	0.209	5/2-	0.004	0.999	$99.99[521] \downarrow \otimes Q_{47}$
	6.436	0.104	1/2-	0.003	0.999	$99.99[521] \downarrow \otimes Q_{56}$
¹⁵⁹ Gd	6.437	0.174	5/2-	0.038	0.993	$0.15[532] \downarrow +99.65[521] \downarrow \otimes Q_{56}$
	6.979	0.595	1/2-	0.002	0.999	$99.99[521] \downarrow \otimes Q_{72}$
	6.979	0.873	5/2-	0.016	0.999	$0.03[532] \downarrow +99.95[521] \downarrow \otimes Q_{72}$
	7.109	0.275	1/2-	0.005	0.999	$99.99[521] \downarrow \otimes Q_{75}$
	7.109	0.414	5/2-	0.013	0.999	$0.02[532] \downarrow + 99.97[521] \downarrow \otimes Q_{75}$
	7.255	0.180	1/2-	0.002	0.999	$99.99[521] \downarrow \otimes Q_{78}$
	7.255	0.266	5/2-	0.003	0.999	$\%99.99[521] \downarrow \otimes Q_{78}$
	8.088	0.160	1/2-	0.003	0.999	$99.8[521] \downarrow \otimes Q_{104}$
	8.089	0.272	5/2-	0.012	0.999	0.02[532] ↓ + $97.82[521]$ ↓ $0.02[532]$ ↓ + + $0.02[521]$ ↓ $0.020000000000000000000000000000000000$

Tablo B.1. (Devamı)

İzotop	\boldsymbol{E}_{i}	$B(M1\uparrow)$	K ^π	$N^{j}_{{\scriptscriptstyle K}{\varsigma_q}}$	$G^{^{Karsigma v}}_{j,i\mu}$	Seviye Yapısı
	(MeV)	$(\boldsymbol{\mu}_N^2)$				$[Nn_z \Lambda \Sigma] \otimes Q_i$
	8.222	0.140	5/2-	0.002	0.999	$99.99[521] \downarrow \otimes Q_{107}$
	8.252	0.114	1/2-	0.006	0.999	$\%69.0[532] \downarrow \otimes Q_{70} + \%30.9[521] \downarrow \otimes Q_{109}$
	8.252	0.250	1/2-	0.002	0.999	$\%69.5[521] \downarrow \otimes Q_{109} + \%30.5[532] \downarrow \otimes Q_{70}$
	o 252	0.520	5/2-	0.012	0.000	$0.02[532] \downarrow +97.96[521] \downarrow \otimes Q_{109} +$
	8.232	0.339	3/2	0.012	0.999	$+\%1.95[532] \downarrow \otimes Q_{70}$
	8.370	0.103	5/2-	0.012	0.999	$0.02[532] \downarrow +99.94[521] \downarrow \otimes Q_{115}$
¹⁵⁹ Gd	8.449	0.106	5/2-	0.002	0.999	$99.99[521] \downarrow \otimes Q_{118}$
	8.560	0.488	1/2-	0.004	0.999	$\%99.99[521] \downarrow \otimes Q_{_{123}}$
	8.560	0.733	5/2-	0.006	0.999	$\%99.98[521] \downarrow \otimes Q_{123}$
	8.583	0.271	1/2-	0.003	0.999	$99.99[521] \downarrow \otimes Q_{126}$
	8.583	0.400	5/2-	0.003	0.999	$99.99[521] \downarrow \otimes Q_{126}$
	8.900	0.195	1/2-	0.003	0.999	$99.99[521] \downarrow \otimes Q_{140}$
	8.900	0.292	5/2-	0.004	0.999	$\%99.95[521] \downarrow \otimes Q_{\scriptscriptstyle 140}$
	4.162	0.290	7/2-	0.002	0.999	$99.99[523] \downarrow \otimes Q_{17}$
	4.734	0.182	3/2-	0.006	0.999	$\%99.90[523] \downarrow \otimes Q_{25}$
	4.735	0.276	7/2-	0.012	0.998	$\%1.02[514] \downarrow +\%99.97[523] \downarrow \otimes Q_{25}$
	4.885	0.114	7/2-	0.003	0.999	$99.99[523] \downarrow \otimes Q_{27}$
	10.074	0.101	3/2-	0.001	0.999	$99.90[523] \downarrow \otimes Q_{174}$
	10.075	0.141	7/2-	0.013	0.998	$0.02[514] \downarrow +99.66[523] \downarrow \otimes Q_{174}$
	10.107	0.184	3/2-	0.002	0.999	$99.90[523] \downarrow \otimes Q_{175}$
¹⁶¹ Gd	10.108	0.293	7/2-	0.010	0.998	$\%1.01[514] \downarrow +\%99.79[523] \downarrow \otimes Q_{175}$
	10.488	0.112	7/2-	0.002	0.999	$99.99[523] \downarrow \otimes Q_{190}$
	10.588	0.115	3/2-	0.008	0.999	$99.90[523] \downarrow \otimes Q_{191}$
	10.588	0.171	7/2-	0.005	0.999	$99.99[523] \downarrow \otimes Q_{191}$
	10.873	0.125	3/2-	0.003	0.999	$98.2[523] \downarrow \otimes Q_{203} + 91.8[512] \downarrow \otimes Q_{171}$
	10.873	0.191	7/2-	0.001	0.999	$99.98[523] \downarrow \otimes Q_{203}$
	10.904	0.146	3/2-	0.003	0.999	$99.90[523] \downarrow \otimes Q_{204}$
	10.904	0.218	7/2-	0.003	0.999	$99.99[523] \downarrow \otimes Q_{204}$

Tablo B.1. (Devamı)
ÖZGEÇMİŞ

Gamze Hoşgör, 08.08.1990'da Sakarya'da doğdu. İlkokulu Ahmet Akkoç İlköğretim Okulu'nda, ortaokulu Dr. Nuri Bayar İlköğretim Okulu'nda, lise eğitimini ise Anadolu Kız Meslek Lisesi'nde tamamladı. 2010 yılında başladığı Gazi Üniversitesi Fizik Bölümü'nü 2015 yılında bitirdi. Aynı yıl içerisinde Sakarya Üniversitesi Fen Bilimleri Enstitüsü Fizik Bölümünde yüksek lisans eğitimine başladı. Halen aynı bölümde yüksek lisans eğitimini sürdürmektedir.