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SUMMARY

Keywords: Fibonacci Numbers, Lucas Numbers, Generalized Fibonacci Numbers,
Generalized Lucas Numbers, Diophantine Equations, Pell Equations, Congruences,
Jacobi Symbol

Investigations of the properties of generalized Fibonacci and Lucas sequences have
been able to hold mathematician’s interest over time. These investigations have
given rise to questions in when the terms of generalized Fibonacci and Lucas
sequences are perfect square (=LJ).

In this thesis, it is dealt with generalized Fibonacci numbers U, (P,Q) and

generalized Lucas numbers V,(P,Q) of the form kx* with the special consideration
that O=+1 and k=5 or k=7.

In Chapter 1, the historical information about Fibonacci’s life and Fibonacci and
Lucas sequences are briefly mentioned. Then, the definitions of generalized
Fibonacci and Lucas sequences are given. Since there is a close relation between the
terms of these sequences and the solutions of certain Diophantine equations, it is
mentioned about Diophantine equations and Pell equations, which are the special
cases of Diophantine equations. Furthermore, the literature concerning generalized

Fibonacci and Lucas numbers of the form kx” are given.

In Chapter 2, the most important properties of generalized Fibonacci and Lucas
numbers are listed. In the succeeding subchapters, generalized Fibonacci and Lucas

numbers of the form 5x” are considered with special consideration that O =+1 and

some results are obtained. By the help of these results, it is observed the close
relation between the terms of generalized Fibonacci and Lucas sequences and the
solutions of certain  Diophantine  equations. Also, the equations
u,(p1=su, (»nd, U(pr-H=5U,,(,P-D, V(P1)=5V (P,DL, and

V (P,—1)=5V (P,—1)U are solved.

In Chapter 3, the equations U, (P,1) =71, U (P,1)=7TU (P, ), V (P,1)=7L], and
V.(P,1)=7V (P,1)L] are solved.



kx> BICIMINDEKI GENELLESTIRILMIS FIBONACCI VE
LUCAS SAYILARI

OZET

Anahtar kelimeler: Fibonacci Sayilari, Lucas Sayilari, Genellestirilmis Fibonacci
Sayilar1, Genellestirilmis Lucas Sayilari, Diyofant Denklemleri, Pell Denklemleri,
Kongriianslar, Jacobi Sembolii

Genellestirilmis Fibonacci ve Lucas dizilerinin 6zelliklerini igeren arastirmalar
zamanla matematikg¢ilerin ilgisini ¢ekmistir. Bu arastirmalar hangi durumlarda
genellestirilmis Fibonacci ve Lucas dizilerinin terimlerinin tamkare (=LJ) olduklar
sorusunu akillara getirmistir.

Bu tezde kx’ bigimindeki genellestirilmis Fibonacci sayilart U, (P,Q) ve

genellestirilmis Lucas sayilart V (P,0), O==1 ve k=5 veya k=7 0zel sartlar1
altinda incelendi.

Birinci boliimde, Fibonacci’nin hayati ve Fibonacci ve Lucas dizileri hakkinda
tarihsel bilgiler verildi. Ardindan, genellestirilmis Fibonacci ve Lucas dizilerinin
tanimlar1 verildi. Bu dizilerin terimleri ile bazi Diyofant denklemlerinin ¢oziimleri
arasindaki yakin iliskiden dolayr Diyofant denklemleri ve Diyofant denklemlerinin

ozel durumlari olan Pell denklemlerinden bahsedildi. Ayrica, kx> bigimindeki
genellestirilmis Fibonacci ve Lucas sayilarini igeren literatiir bilgisi verildi.

Ikinci béliimde, genellestirilmis Fibonacci ve Lucas sayilarmin en énemli dzellikleri

listelendi. Ikinci boliimiin alt boliimlerinde, 5x° bicimindeki genellestirilmis
Fibonacci ve Lucas sayilari, O =+1 06zel sartlar1 altinda ele alind1 ve baz1 sonuglar

elde edildi. Elde edilen bu sonuclar yardimiyla, genellestirilmis Fibonacci ve Lucas
dizilerinin terimleri ile bazi Diyofant denklemlerinin ¢éztimleri arasindaki yakin
iliski gozlemlendi. Ayrica, U (P,1)=5U, (P,DU, U, (P,-1)=5U, (P,-1)L],

vV (P,1)=5V (P,DU, ve V (P,-1)=5V (P,—1)LJ denklemleri ¢oziildii.

Uglincii  bdlimde, U, (P,1)=70, U, (P,1))=7U, (P,D0, V (P,)=70, ve
V. (P,1)=7V (P,1)L denklemleri ¢oziildii.

Vi



CHAPTER 1. INTRODUCTION

Leonardo Fibonacci, also called Leonardo Pisano or Leonard of Pisa, is the greatest
mathematician of the European Middle Ages and has a significant impact on
mathematics. Although his work is quite well known, little is known about his life.

Leonard of Pisa (1175—1250) was born in Pisa, Italy.

Fibonacci’s father Guglielmo Bonacci was a kind of merchant at Bugia, a town on
the Northern Africa, located in present day Algeria. He wanted his son Fibonacci to
follow his trade. So, he brought Fibonacci to Bugia and encouraged him to learn
arithmetic and the skill of calculation. Fibonacci was educated by a Muslim
schoolmaster, who introduced him Hindu-Arabic numeration system and some

computational techniques.

While most of Europe at that time were using Romen numerials, Fibonacci realised
the many advantages of Hindu-Arabic system which was much more efficient and

easier to work with.

Fibonacci then travelled around the Mediterrenean visiting Egypt, Syria, Greece,
South France, and Constantinople. During these visits, he became familiar with
languages Latin, Arabic, and Greek. He came in contact with early works, especially
with arithmetic, algebra, and geometry. After his extended visits to different countries
of the world, Fibonacci made an extensive study of Greek, Babylonian, Indian, and

Arabic mathematics.

Fibonacci returned to Italy around 1200 and in 1202, he published his work Liber
Abaci (Book of Counting), which was a major famous book in the Middle Ages
provided a good deal of interest in mathematics for further study and research in

arithmetic, algebra, and geometry.



Liber Abaci contained not only rules and algorithms for computing with Hindu-
Arabic numeration system, but also a large collection of interesting problem of

various kinds. A second edition of Liber Abaci was published in 1228.

Fibonacci produced other books such as Practica Geometriae (Practice of Geometry)

in 1220 and Liber Quadratorum (Book of Square Numbers) in 1225.

In spite of his many influential contributions to mathematics, Fibonacci is not most
remembered for any of these reasons, but rather for a single sequence of numbers

that bears his name, which comes from a problem he poses in Liber Abaci.

The result of the problem generates the sequence of numbers, for which Fibonacci is

the most famous:

1,1,2,3,5,8,13,21,34,55,...

The sequence of numbers above is known as Fibonacci sequence, in which each new

number is the sum of the two numbers preceeding it.

The terms of the Fiboancci sequence are referred to as Fibonacci numbers and the

n th term of Fibonacci numbers is denoted by F,. The first and the second Fibonacci

numbers are given as [ = F, =1. All the other terms are defined by the relation

n+l n n—1 (1 N 1)

for n>2.

Sequences defined in this manner, in which each term is defined as a certain function
of previous terms, are called recursive sequences. The process of assigning a
numerical value to the individual term is called a recurrence process, and a specific
equation that describes a recurrence process, like equation (1.1) above, is called as a

recurrence relation.



It was the French mathematician Francois Edouard Anatole Lucas who gave the
name Fibonacci sequence in May of 1876. He found many other important
applications as well as having the series of numbers that are closely related to
Fibonacci numbers, called Lucas numbers. And Lucas numbers are given as the

following:

2,1,3,4,7,11,18,29,47,76,. ..

The terms of Lucas sequence are referred to as Lucas numbers and the nth Lucas

number is denoted by L . As it is seen from the sequence of numbers above, the first
and the second Lucas numbers are given as L, =2, L, =1 and therefore these

numbers satisfy the recurrence relation

Ln+1 = Ln +Ln—1

for n>2.

Fibonacci and Lucas numbers appear in almost every branch of mathematics,
obviously in number theory, but also in differantial equations, probability, statistics,
numerical analysis, and lineer algebra. They also occur in physics, biology,
chemistry, and electrical engineering. For more detailed information about how
Fibonacci and Lucas numbers appear in the branch of mathematics and also in

nature, we refer the reader to [1].

If we look at ratios of consecutive Fibonacci numbers or Lucas numbers, we see that
these ratios appear to approach a number close to 1.618..., which is known as golden

ratio. This property was first discovered by astronomer mathematician Johannes

Kepler.

Discovering the value of a Fibonacci number or a Lucas number can be sometimes
tedious and difficult. For instance, finding the fifth Fibonacci number or Lucas

number is not difficult but finding the twentieth Fiboancci number or Lucas number



1s much more difficult since the process involves finding and summing the previous

nineteenth terms.

In 1843, the French mathematician Jacques Marie Binet (1786—1856) discovered a
closed formula, called as Binet’s formula, which can find any Fibonacci number or
Lucas number without having to find any of the previous numbers in the sequences.

The Binet formulas are as follows:

and S = I_T\E [2].

where o =

Actually, these formulas were first discovered in 1718 by the French mathematician

Abraham De Moivre (1667—-1754) wusing generating functions, and also

independently in 1844 by the French engineer mathematician Gabriel Lamé

(1795-1870).

After people began to pay more analytical attention to the nature and surrounding
them, they noticed that Fibonacci and Lucas numbers are everywhere. So that reason,

many mathematicians started to deal with these numbers.

In fact, both Fibonacci numbers and Lucas numbers have many beautiful, interesting
and useful properties. Especially, congruences, divisibility properties, and many
identities concerning these numbers are only a few of them and many studies have
been made related to them. We can refer the reader to [3] to see the following

congruences concerning Fibonacci and Lucas numbers.

FvarH—r = (_ l)m” E (mOd Fm )’
L2mn+r = (_ l)mn Lr (mOd Fm )’

LZmrHr = (_ 1)(m+1)n Lr (mOd Lm )9



and

=(-1)"""F (mod L),

2mn+)

forall ne NuU {0} and m,r € 7., where m is a nonzero integer.

It was shown by using Binet’s formula that F, =F L. So, F,|F,,. In order to
generalize this, mathematicians thought about under what conditions does F, | F, ? It
was proven that if m|n, then, F, | F,. The converse of this statement was proven by

L. Carlitz in 1964. According to Carlitz, if F, |F,, then, m|n. This divisibility

property was also given by the same author [4] for Lucas numbers. The property is as

follows:

L,|L, ifandonlyif m|n and n=mk for some odd k >0,

where m > 2.
We now turn our attention to the generalizations of these sequences.

It was the work of Lucas (1842—-1891) [5] that generalized such sequences as

follows:

If P and Q are nonzero integers, then, the roots of the characteristic equation

X?*—PX+0Q=0 are
P+«/P2 and 5= «/

Hence,

a+f=P, afp=0, and a—f =P’ -40.



Assuming P’ —4Q # 0, the terms of the sequences (U, (P,Q)) and (V,(P,Q)) were

defined by Binet’s formula, namely

UP.0)= "~ and V,(P.0) = 4

for n>0. The sequences (U, (P,Q)) and (V,(P,Q)) are known as generalized

Fibonacci and Lucas sequences, respectively.

In 1965, A. F. Horadam [6, 7] introduced the recurrence sequence (Wn(a,b; P, Q)),

or briefly (W), defined by

/4

n+l

=PW,-OW,,, Wy=a, W, =b,
and it generalizes many important sequences (see [8, 9]), for instance:

a) The generalized Fibonacci sequence (U, ), where
U,=w(0,1;P,-Q).
b) The generalized Lucas sequence (V,), where
v, =W,(2.P;P,~Q).
¢) The Fibonacci sequence (F)), where
F,=W,(0,;1,-1).

d) The Lucas sequence (L, ), where



L =W (2,1;1,-1).
e) The Pell sequence (P,), where

P =w (0,1;2,-1).
f) The Pell-Lucas sequence (Q,), where

0, =W (2,2;1,-1).

Hence, we define the generalized Fibonacci sequence and generalized Lucas

sequence by the following recursions:

U,(P,0)=0, U,(P,0)=1, U,,(P,0)=PU,(P,0)+0QU, (P,0), n=>1
and

WP,0) =2, Vi(P,O)=P, V,,(P,O)= PV (P,O)+0OV, ,(P,0), n>1.

U,(P,Q) is called the nth generalized Fibonacci number and V, (P,Q) is called the

nth generalized Lucas number. Also generalized Fibonacci and Lucas numbers for

negative subscripts are defined as

~-U (P,0) V,(P,0)
— 2 and V. (P,Q) =22
—0) and V_,(P,Q) —0)

U, (P,0)=
for n>1, respectively. For P>+4Q#0, if a=(P+P'+40)/2 and

B=(P—+P>+4Q)/2 are the roots of the characteristic equation x*—Px—Q=0,
then, the Binet formulas, which give the terms of the sequences (U,) and (V,), have

the forms



U .(P,0)= “;_ﬂ" and V. (P,Q)=a" + "

for all neZ.

Since U, =U, (-P,Q)=(-D"U,(P,Q) and V, =V (-P,Q)=(-D"V (P,Q), it will
be assumed that P>1. Moreover, we assume that P* +4Q > 0. Instead of U, (P,Q)

and V (P,Q), we will sometimes use U, and V', respectively.

As is seen from the definition of the generalized Fibonacci sequence (U,) and
generalized Lucas sequence (V,), Fibonacci sequence (F),), Lucas sequence (L,),
Pell sequence (P)), and Pell-Lucas sequence (Q,) are the special cases of the
generalized Fibonacci sequence (U,) and generalized Lucas sequence (V).
Moreover, for O =—1, we represent (U,) and (V,) by (U,(P,—1)) and (V,(P,-1)),

respectively. For more information about generalized Fibonacci and Lucas numbers,

one can consult [10, 11, 12, 13].

Generalized Fibonacci and Lucas numbers have many useful properties. The

following properties are connected with the greatest common divisor of them.

Let m and n be positive integers, and d = (m,n). Then,

g U,U)=U,

V)=V,

m

h) If % and 3 are odd, then, (V,

i) If m=n, then, (U,,V,)=1o0r 2,



E. Lucas [5, 14], using only elementary identities, proved the parts of the statements
above (see also Carmichael [15]). Furthermore, these can be found in [16, 17, 18,

19].

The divisibility properties of generalized Fibonacci and Lucas numbers are as

follows: [10, 17, 18, 19, 20].

PDIEU, #1, then, U, |U, if and only if m | n.

K)If V7, %1, then, ¥, |V, if and only if m|n and - is odd.
m

)If ¥, %1, then, ¥, |U, if and only if m|n and - is even.
m

Since there is a close relation between these numbers and certain Diophantine

equations, we mention about Diophantine equations.

A Diophantine equation is an equation in which only integer solutions are allowed.
The name “Diophantine” comes from Diophantus, an Alexandrian mathematician of
the third century A. D., but such equations have a very long history, extending back
to ancient Egypt, Babylonia, and Greece. In general, a quadratic Diophantine

equation is an equation of the form

ax’ +bxy+cy’ +dx+ey+ f =0, (1.2)
where a,b,c,d,e, and f are fixed integers. The principal question when studying a
given Diophantine equation is whether a solution exists, and in the case they exist,

how many solutions there are and whether there is a general form for the solutions.

Any Diophantine equation of the form x*—dy’ =N is known as Pell equation,

where d is not a perfect square and N is any nonzero fixed integer. Pell equation is
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a special case of (1.2). For N =1, the equations x’—dy> =+1 are known as

classical Pell equations. The Pell equation is perhaps the oldest Diophantine equation
that has interested mathematicians all over the world for probably more than a 1000
years now. The name of this equation arose from Leonhard Euler’s mistakenly

attributing its study to John Pell, who searched for integer solutions of the equations
of this type in 17th century. The notations (x,y) and x+ y\/d_ are used

interchangeably to denote solutions of the equation
x> —dy’ = N. (1.3)

If x=u and y =v are integers which satisfy the equation (1.3), then, we say that the

number u +vx/c7 is a solution of (1.3).

Let us consider all the solutions x + y\/d_ of the equation

x'—dy’ =1 (1.4)

with positive integers x and y. Among these solutions there is a least solution
X, + yI\/d_ , in which x, and y, have their least positive values. The number

x,+y~d is called the fundamental solution of (1.4). If x +y~/d is the

fundamental solution of (1.4), then, all positive integer solutions of (1.4) are obtained

by the formula

x, +y,Nd =(x +yNd)"

with n>1. While the equation (1.4) is always solvable if the positive number d is

not a perfect square, the equation

X —dy’ =-1 (1.5)
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is solvable only for certain values of d. If the equation (1.5) is solvable for a given

integer d and if x, + yI\/E is the least solution with positive integers x, and y,,
then we say that x, + yI\/Z 1s the fundamental solution of (1.5). If x, + y,«/d_ is the

fundamental solution of (1.5), then, (x1+y1«/3 )* is the fundamental solution of

(1.4). So, the square of any solution of (1.5) is obviously a solution of (1.4).

We now turn to the equation
u>—dv* =N, (1.6)

where d is a positive integer which is not a perfect square and N is a nonzero
integer. If a=u +v\/d— is a solution of (1.6) and & = x+y\/3 is a solution of (1.4),

then also

a£=(u+v\/E)(x+y\/d_)=(ux+vyd)+(uy+vx)\/d_

is a solution of (1.6). Let o, =u, +v,Nd and «, :u2+v2\/d_ be any two given
solutions of (1.6). Then, «, and «, are called associated solutions if there exists a

solution & =x+ y«/d_ of (1.4) such that
o, =é&a,.

The set of all solutions associated with each other forms a class of solutions of (1.6).

The necessary and sufficient condition for the two given solutions o, =u, +v1\/3

and o, =u, + VQ\/Z belong to the same class is that the numbers

uu, —v,v,d Vi, — UV,

and

are integers.
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If K is a class, then, K = {u—v\/a u+v«/d_eK} is also a class. The class K and

K are said to be conjugates of each other. Conjugate classes are in general distinct,

but may sometimes coincide. If K = K, then, we say that the class K is ambiguous.
Nagell [21] gives the fundamental solution in a given class K as follows:

Among all the solutions u+v\/g in a given class K, we choose a solution
u +v'\d in the following way: Let v" be the least nonnegative value of v occuring
in K. If K is not ambiguous, then, u" is uniquely determined since —u' +v'\/d
belongs to the conjugate class K. If K is ambiguous, we determine u” by u” >0.
The solution " +v*\/3 defined in this way is said to be the fundamental solution of
the class K. For the fundamental solution note that ‘u‘ is the least value of |u|
which is possible for u+wld belongs to the class K. Finally note that " =0 or
v’ =0 if and only if K is ambiguous. If N =1, clearly there is only one class, and
then, it is ambiguous. If u' +v*«/d_ is the fundamental solution of the class K, then,

all positive integer solutions u + w/d of the class K are given by
u+wd =W’ +v*\/d_)(x+yx/d_),
where x+ y\/E runs through all the solutions of (1.4).

We now give criteria for finding the fundamental solutions of the various classes of
solutions when (1.6) is solvable. Here are the statements as stated by Nagell [21, pp.
204 -208].

Let the number N in (1.6) be positive. If u, +v0\/3 is the fundamental solution of

the class K of (1.6) and if x, + ylﬁ is the fundamental solution of (1.4), we have

the inequalities
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os%sM and0<|u0|s,/l(xl+1)zv. (1.7)
J2(x, +1) 2

Let the number N be positive in (1.6) and consider the equation
u’—dv’ =—N. (1.8)

If u, +v0\/d_ is the fundamental solution of the class K of (1.8) and if x, + ylxlld_ is

the fundamental solution of (1.4), we have the inequalities

0<v, <IN and 0 <|u,| < /l(xl “1)N. (1.9)
J2(x, - 1) 2

Furthermore, if p is prime, then, the Pell equation
w—dv’ =+p (1.10)

has at most one solution u +v\/d_ in which u and v satisfy the inequalities (1.7) or
(1.9), respectively, provided u >0. If the equation (1.10) is solvable, it has one or

two classes of solutions, according as the prime p divides 2d or not.

Further details on Diophantine equations and Pell equations can be found in [21, 22,

23,24, 25, 26, 27, 28, 29].

In order to see how Fibonacci and Lucas numbers are related to Diophantine

equations, one can see the following:

It is well known that all positive integer solutions of the Diophantine equations

x? —5y2 =44

and
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x*—xy—y> ==l

are given by (x,y)=(L,,F,) and (F,, ,F,) with n>1, respectively.

+1°

Despite the elementary properties of Fibonacci and Lucas numbers are easily
established, see [8], there are a number of more interesting and difficult questions
connected with these numbers. One of them is about that under what conditions
Fibonacci and Lucas numbers are perfect square? Although historical information is

going to be done about this subject later, we only want to mention about that shortly.

Many studies about Fibonacci and Lucas numbers which are perfect square have
been done by mathematicians. And the results of these studies are used to solve

certain Diophantine equations. For instance, after determining the Fibonacci and
Lucas numbers which are perfect square, the equations x*—5y° =44,
x'—x'y—y’=+1, x*-5y* =44, and x*-xp°—y* =+l are easily solvable. In

order to see the relations between these sequences and the equations above, we refer

the reader to [1], [10], [30], and [31].

Moreover, it is possible to see the generalized Fibonacci and Lucas numbers as
solutions of certain Diophantine equations. For instance, all positive integer solutions
of the equations

x’ —(P2 Jr4)y2 =+4 and x* —(P2 —4)y2 =4

are given by (x,y)= (Vn (P,)), U, (P, 1)) and (x,y)= (Vn(P,—l), U, (P,—l)) with

n > 1, respectively. And all positive integer solutions of the equations

x’—Pxy—y> =+l and X’ —Pxy+)° =1

are given by (x,y)= (Un+1 (P, U (P, 1)) and (x,y)= (Un+l (P,-1),U (P, —1)) with

n > 1, respectively.
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Interested readers can see [32, 33, 34, 35] for the solutions of the equations above.

It is obvious that replacing x by x*> or y by )’ into the equations above give some

other Diophantine equations which can be easily solved if the generalized Fibonacci

and Lucas numbers which are perfect square are known.

We now collect here the studies containing the generalized Fibonacci and Lucas

numbers of the form Ax’.

Investigations of the properties of second order linear recurrence sequences have

given rise to questions concerning whether, for certain pairs (P,Q), U, or V, is a
perfect square (=[J). In particular, the squares in sequences (U,) and (V,) were

investigated by many authors.

From a result of Ljunggren [36], it was shown that if P=2, O =1, and n>2, then,
P =01 precisely for n=7, and Pethd [46] showed that these are the only perfect
powers in the Pell sequence (see also Cohn [47]). And it was also shown that

P =201 precisely for n=2. In 1964, Cohn [37] proved that if P=0=1, then, the

only perfect square greater than 1 in the sequence (F,) is F, =12 (see also Alfred
[38], Burr [39], and Wyler [40]). Cohn [41] applied this result and a related result
[42] to determine all solutions of several Diophantine equations. He [42], [43] also
solved the equations F, =201 and L, =[], 21 Robbins [44], under the conditions
that P=Q =1, found all solutions of the equation F, = px’ such that p is prime and
either p=3(mod4) or p<10000 and then, in 1991 the same author [45], using
elementary techniques, found all solutions of the equation L = px®, where p is
prime and p <1000. Cohn [41], [48] determined the squares and twice the squares in
(Un (P,il)) and (Vn(P,J_rl)) when P is odd. Ribenboim and McDaniel [17]
determined all indices n such that U, =1, 2U =], V =L, or 2V, =] for all odd
relatively prime integers P and Q. Bremner and Tzanakis [49] extend the result of

the equation U, =[] by determining all generalized Fibonacci sequence (U,) with
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U,, =], subject only to the restriction that (P,Q)=1. In a latter paper, the same
authors [50] show that for n=2,...,7, then, U, is a square for infinitely many
coprime P,Q and determine all sequences (U,) with U, =1, n=28,10,11. And also
in [51], they discuss the more general problem of finding all integers n, P,Q for

which U, = k[ for a given integer k.

Although the problem for even values of P seem to be harder, in 1998, Kagawa and
Terai [52] considered a similar problem, such as the problem considered by

Ribenboim and McDaniel [17], for the case when P is even and Q=1. Using
elementary properties of elliptic curves, they showed that if P=2¢ with ¢ even,
u,(r.hH=, 2U (P,H=1, V (P,1)=0], or 2V (P,1)=0J implies n <3 under some
assumptions. Applying these results, the authors solved some Diophantine equations
of the forms 4x* — (P> +4)y” =+1, x*—(P*+4)y* =—1, X’ —4(P* +4)y* =+1, and

X' —(P*+4)y* =1.

Besides, Mignotte and Pethd [53] proved that if n>4, then, Un(P,—l):wx2 is
impossible when we {1,2,3,6}, moreover these equations have solutions for n =4

only if P=338. Extending the method of Mignotte and Pethd, Nakamula and Petho
[54] gave the solutions of the equations U,(P,1)=wl] where we{l,2,3,6}. In

1998, Ribenboim and McDaniel [18] showed that if P is even, Q=3(mod4), and
U, =L, then, n is a square or twice an odd square and all prime factors of » divides
P> +4Q. In a latter paper, for all odd values of P and O, the same authors [19]

determined all indices n such that U, =kx’ under the assumptions that for all

_V,,
integer u >1, k is such that, for each odd divisor % of k, the Jacobi symbol ( h2 J

is defined and equals to 1. Afterwards, they solved the equation V, =30 for
P=1,3(mod8), O=3(mod4), (P,Q)=1 and solved the equation U,k =301 for all
odd relatively prime integers P and Q. Moreover, Cohn [55] solved the equations

U,(P,+)=U, (P,x1)x*, U, (P,x1)=2U, (P,£)x*, V (P,xl)=V (P,+1)x’, and
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V (P,£1)=2V (P,+1)x* when P is odd. Keskin and Yosma [56] gave the solutions
of the equations F, =2F x*, L =2L x’, F =3Fx’, F,=6F x’, L =6L x°.
Also, Keskin and Siar proved in [57] that there is no integer x such that F, =5F x*
for m>3. In [58], Siar and Keskin, assuming Q =1, solved the equation V, =2V x°
when P is even. They determined all indices n such that ¥, =kx* when k| P and
P is odd. They show that there is no integer solution of the equations ¥, =3x” and
V =6x" for the case when P is odd and also they give the solutions of the equations

V. =3V x* and V, =6V, x*. More generally, a main theorem was proved by Shorey

and Stewart [59]:

Given A >1, there exists an effectively computable number C >1, which depends on

A, such thatif n>0 and U, = AU or V, = AL], then, n<C.

This thesis deals with Fibonacci and Lucas numbers of the form U (P,Q) and

V (P,Q) with the special consideration that O ==+1.

In Chapter 2, we list the most important properties of the generalized Fibonacci and
Lucas numbers U, and V ; most of these are well known and the others are new. In

the succeeding subchapters, we consider the generalized Fibonacci and Lucas

numbers of the form 5[] and determine all indices »n such that U, (P,1)=50]
vu,(r,-1=s54, U (P,1)=5U, (P,HL, and U, (P,-1)=5U, (P,—1)J under some
assumptions on P. We solve the equations V, (P,1)=50 and V, (P,—1)=50L] when
P is odd. Moreover, we prove that the equations V (P,1)=5V (P,1)J and

V (P,—1)=5V (P,—1)LJ have no solutions.

In Chapter 3, the equations U (P,1)=71, U (P,1)=7U (P,DU, V (P,1)="70L]

and V, (P,1)=7V (P,1)L] are solved under some assumptions on P.
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Our method used in this thesis is elementary and the main tools that we employ are

*

the Jacobi symbol ( j that we make extensive use of it, divisibility properties, and

*

congruence properties concerning generalized Fibonacci and Lucas numbers.



CHAPTER 2. GENERALIZED FIBONACCI AND LUCAS
NUMBERS OF THE FORM 5x°

In this chapter, we first list the most important properties of the generalized

Fibonacci and Lucas numbers U, and V,. Then, we solve the equations
u,wnH=5s1,U r-n=5,U(P1)=5U_(P,H, and U, (P,-1)=5U, (P,-1)U
under some assumptions on P. And we solve the equations V, (P,1)=50 and
V (P,-1)=50 when P is odd. Moreover, we prove that the equations

Vv (P,1)=5V (P,HU and V (P,—1)=5V (P,—1)1 have no solutions.

2.1. Some Theorems and Identities

In this subsection, we give some theorems, lemmas, and well known identities about
generalized Fibonacci and Lucas numbers, which will be needed in the proofs of the

theorems related to the title of this chapter.

Definition 2.1.1. Let a and b be integers, at least one of which is not zero. The

greatest common divisor of a and b, denoted by (a,b), is the largest integer which

divides both a and b.

The first two theorems of the following four theorems are given for Q=1 and the

others for Q =—1. The proofs of them can be found in [60].

Theorem 2.1.1. Let ne N U{O} , m,r €7 and m be a nonzero integer. Then,

U, . =()"U (modU,) 2.1)

and
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Vv, =(=1)""V.(modU,). (2.2)

Theorem 2.1.2. Let ne N u{O} and m, r € Z. Then,

=(=D)""U (modV’,) (2.3)

2mn+r
and
= (=)™ (modV,). (2.4)

2mn+r

Theorem 2.1.3. Let neNuU {O}, m,r € 7 and m be a nonzero integer. Then,

U2mn+r = Ur (mOd Um ) (25)
and
Vsmir =V, (modU,). (2.6)

Theorem 2.1.4. Let ne NU{0} and m, r € Z. Then,

U2mn+r = (_ 1)” Ur (mOd I/m) (27)
and

Vymir =(=D"V (mod V). (2.8)

We omit the proofs of the following two lemmas, as they are based on mathematical

induction.

Lemma 2.1.1. If n is a positive even integer, then, V, = 202 (mod P*) and if # is an

n—1

odd positive integer, then, V, = nPQ 2 (mod P?).
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n-2
Lemma 2.1.2. If » is a positive even integer, then, U, E%PQ 2 (mod P*) and if n

n—1
is an odd positive integer, then, U, =Q * (mod P?).

The following lemma can be found in [17] and [19].

Lemma 2.1.3. Let P, O, and m be odd positive integers, and » >1. Then,

W If3fm, V.

2

_ | 3(mod38), if r =1 and O =1(mod 4)
"m | 7(mod8), otherwise.

(m) If 3|m, ¥, =2(mod8).

When P and Q are odd, it follows from the lemma above

~1
os

for r>1.

Before coming to the main results of this chapter several properties concerning

generalized Fibonacci and Lucas numbers are needed.

U,=~(-Q)'U, and V., =(-0)'"V,, (2.10)
U,,=UV,, (2.11)

Vo =V,2=2(-0)", (2.12)
V(P +40)U," =4(-0)", (2.13)
U, =U,((P*+4Q)U, +3(-0)"), (2.14)
Ve =V, (7,2 =3(-0)"), (2.15)

Us, =U, (P’ +40)°U,* +5(-0)"(P* +4Q)U,’ +50™"). (2.16)
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If 5|U, or 5| P*+4Q, then, from (2.16), we have

Us, =5U,(5a+Q™) (2.17)
for some a > 0.
Moreover,
Ve =V, (0, =5(=0)"V,> +50™). (2.18)
We immediately have from (2.18) that

V,(P.0)(V, (P.1) =5V (P,1)+5),if n is even
V., (P,1)= (2.19)
V,(P.)(V,H(P.1)+5V] (P,1)+5), if n is odd.

If 5| P and n is odd, then, from Lemma 2.1.1, it is seen that 5|V . Therefore (2.19)

implies that

V., (P,1)=5V (P,1)(5a+1) (2.20)
for some positive integer a.
Lemma 2.1.1 and the identity (2.13) give

5|V, (P,£1) if and only if 5| P and # is odd. (2.21)
Moreover,

Voo =V, (V) = (=0, =207V, +(-0)"). (2.22)
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By using (2.12), we readily obtain from (2.22) that
Vo =V, (1,0 =T(=0)'V,* +140°V,” = 7(=0)™). (223)
Then, we readily obtain from (2.23) that

V.(P)(V(PD) =TV, (P1)+14V,}(P,1)~7), if n is even
V,,(P,1)= (2.24)
V,(P)(V(PD)+TV, (P +14V,2(P,1)+7), if n is odd.

If 7| P and n is odd, then, 7|V, from Lemma 2.1.1 and therefore from (2.24), it

follows that

V(B =7V, (P,1)(7Ta+1) (2.25)

for some positive integer a. Moreover, we have

IfPisoddand n>1, then 2|V, < 2|U, < 3|n, (2.26)
IfV, #1, then V, |V, iff m|n and n/m is odd, (2.27)
IfU, #1, then U, |U, iffm|n. (2.28)

Let m=2"k, n=2"1, k and [ are odd, a,b>0, and d = (m,n). Then,

V,,ifa>b,

Uu.,V)= 2.29
.7 {10r2, ifa<bh. (2.29)

If P is odd, then,

L if31n,

(U, (P, V,(P,1))= {2’ i£3)n, (2.30)



U,(P,1) 1
v, )

for r>2,
5 _|-Lif 5| P or P* =1(mod 5),
V., (P.]) 1, if P> =—1(mod5),
for r>1.
Moreover,
( 5 J_ {—1, if 5| P or P> =—1(mod5),
V., (P,—1) 1, if P> =1(mod5),
for r>1.

If 3| P, then, from (2.12), we have

v, (P,1)=2(mod3)

for all positive integer r.

If 3] P, then, from (2.12), we get V, (P,—1) =2(mod3) for »>1 and therefore

[;Jl
Vzr (Po_l)
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2.31)

(2.32)

(2.33)

(2.34)

(2.35)

If 3| P, then, again from (2.12), we get V. (P,—1) =2(mod3) for »>2 and therefore
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3

P’ -
If =2, then, we immediately have from (2.12) that V, (P,—1) = —l(mod 5 3}.

Under the condition that P is odd, the congruence above gives

(P2—3)/2: P’ -3 :1 (237)
v,(P,-1) | \V,(P.-1)) '

If »=1, then,

V, (P,~1)=V;(P,~1)=-2(mod P) (2.38)

and if » > 2, then, from (2.12), we have

V, (P,~1)=2(mod P). (2.39)

Also,

V,(2,-1)=U,,(P,-)-U,,,(P,~1) (2.40)

forall neZ.

In addition to the identities above, if P is even, then, it is seen that

U, is even < n is even,
U, is odd < n is odd, (2.41)

V. is even for all n € N.
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Most of the properties above are well-known (see, for example [61], Ch. 2);

properties between (2.10)—(2.15) can be found in [41], [17], [19], and [10];
properties between (2.26)—(2.29) can be found in [41], [17], [19], and [16];

properties (2.30) and (2.31) can be found in [41], and [17], [19], respectively. Finally,
property (2.41) can be found in [18]. The other properties are straightforward and the

proofs of them are easy. So, we omit their proofs.

2.2. Generalized Fibonacci and Lucas Numbers of the form 5x>

In this subsection, we assume that Q=1. For brevity, let U =U, (P,1) and
V., =V (P,1). We determine all indices n such that U, =5[] and U, =5U, ] under
some assumptions on P. We show that the equation ¥, =501 has a solution only if

n=1 for the case when P is odd. Moreover, we prove that the equation V, =5V []

has no solutions.

It is convenient to gather here the theorems, lemmas, and some results which will be

used in the proofs of the main theorems of this subsection.

We state the following theorem from [54].

Theorem 2.2.1. Let P>0. If U, =wx” with we {1,2,3,6}, then, n<2 except when

(P,n,w)=(2,4,3), (2,7,1), (4,4,2), (112,1), (1,3,2), (1,4,3), (1,6,2), and (24,4,3).

We have the following two theorems from [41], [48], and [17].

Theorem 2.2.2. If P is odd, then, the equation V, =x" has the solutions

n=1, P=, and P#1 or n=1,3 and P=1 or n=3 and P=3.

Theorem 2.2.3. If P is odd, then, the equation V, = 2x” has the solutions n=0 or

n=6 and P=1,5.
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The first one of the following three theorems can be obtained from Theorem 6 and

the others from Theorems 11 and 12 given in [55].

Theorem 2.2.4. Let P be an odd integer, m >2 be an integer, and U, =2U, x> for
some integer x. Then, P=1 with n=3, m=2; n=6 m=2; n=12, m=3;

n=12, m=6; or P=5 with n=12, m=6.

Theorem 2.2.5. Let P be an odd integer, m>1 be an integer, and ¥, =V x* for

some integer x. Then, n=m or n=3, m=1, P=1.

Theorem 2.2.6. Let P be an odd integer, m>1 be an integer, and V, =2V, x> for

some integer x. Then n=6, m=1, P=1.

We can give the following theorem from [58].

Theorem 2.2.7. Let k£ >1 be a squarefree positive divisor of the odd integer P. If

vV = kx* for some integer x, then, n=1 or n=3.

Now we give some well known theorems in number theory. For more detailed

information, see [29] or [62].

Theorem 2.2.8. Let m be an odd integer. Suppose that x° =—a’(modm) for some

nonzero integers x and a. Then, m =1(mod4).

We omit the proof of the following theorem since it can be easily seen by induction.

Theorem 2.2.9. Let k be an integer with £ >1. Then, L, =3(mod4).

By using Theorems 2.1.9 and 2.1.10, we readily obtain,
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Corollary 2.2.1. Let a be any nonzero integer. If k£ >1, then, there is no integer x

2 _ 2
such thatx” = —a”(mod L, ).

We omit the proof of the following theorem due to Keskin and Demirtiirk [63].

Theorem 2.2.10. All nonnegative integer solutions of the equation u*>—5v" =1 are
given by (u,v)=(L,,/2,F, /2) with z(=0) even and all nonnegative integer
solutions of the equation u’—5v* =—1 are given by (u,v)=(L,,/2,F, /2) with

z(>1) odd.
By using the theorem above, we can give the following theorem without proof.

Theorem 2.2.11. All nonnegative integer solutions of the equation

x* —4xy—y’> =-5 are given by (x,y)=(L,..,/2,L,./2) with z(>0) even and all

z+3
nonnegative integer solutions of the equation x*—4xy—y>=-1 are given by

(x,»)=(F,;/2,F,, /2) with z(=1) odd.
For the proofs of the following four theorems, one can consult [32, 33, 34, 35].

Theorem 2.2.12. All positive integer solutions of the equations x” — (P> +4)y* =+4

are given by (x,y)=(V,(P,1), U,(P,1)) with n>1.

Theorem 2.2.13. All positive integer solutions of the equation x° —(P° —4)y’> =4

are given by (x,y)=(V,(P,-1), U,(P,~1)) with n>1.

Theorem 2.2.14. All positive integer solutions of the equations x* —Pxy—y” ==1

are given by (x,y) = (Un+l (P, U, (P, l)) with n>1.
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Theorem 2.2.15. All positive integer solutions of the equation x> —Pxy+ y° =1 are

given by (x,»)=(U,.,(P,-1), U,(P,~1)) with n>1.

Now we give the following results involving Fibonacci and Lucas numbers with

nonnegative integers a and m.

F, =ad’iff m=0,1,2,12, (2.42)
F, =2a"iffm=0,3,6, (2.43)
F, =54"iffm=0,5, (2.44)
F, =10a*iff m =0, (2.45)
L, =a’iffm=1,3, (2.46)
L, =2a"iff m=0,6. (2.47)

The equations (2.42) and (2.43) are Theorems 3 and 4 in [43]; (2.44) follows from
Theorem 3 in [44]; (2.45) follows from Theorem 3 in [64]; (2.46) and (2.47) are
Theorems 1 and 2 in [43].

The following lemma can be proved by using Theorem 2.1.1.

Lemma 2.2.1.
2|n, if 5| P,
5|U, < 13| n, if P> =-1(mod5),
5|n, if P> =1(mod5),
and

2|n, if 3| P,
3|U, & ]
4|n, if 31 P.



30

From this point on, we assume that m,n>1. Now we prove two theorems which help
us to determine for which values of 7, the equation U, =5x’ has solutions and for

which values of m, n, the equations ¥, =5V x* and U, =5U, x> have solutions.

Although the solutions of the equations given in the following first two theorems can
be get by using computer programme MAGMA [65], we will solve them by using

only elementary methods.

Theorem 2.2.16. The only positive integer solution of the equation
x*+3x* +1=5y7 is given by (x,y)=(1,1) and the only positive integer solution of

the equation x* —3x” +1=>5)" is given by (x,y)=(2,1).

Proof: Assume that x*+3x’+1=5)> for some positive integers x and y.

Multiplying both sides of the equations by 4 and completing the square give

(2x+3)" -5=52y)".

Then, it follows that
2y)? =5((2x+3)/5) =—1.

By Theorem 2.2.10, we get 2y=1L, /2 and (2x’+3)/5=F, /2 for some odd
positive integer z. Assume that z>1. Then, we can write z=4¢g +1 for some ¢ >0
and therefore z=2.2"a+1 with 2{ a and k >1. Thus by (2.3), we get

F, = F;(4qi1) = ‘F;Zqi3 =F

22K34+3

=-F,=-F(modL,),

1e.,

£y, =—-2(mod L ).

Substituting the value of F; and rewriting the above congruence give
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4y’ +6= ~10(mod L , ).

This shows that

4’ +6= ~10(mod L ;) or 4x* —6= ~10(mod L ;)

Then, it follows that
x” = —4(mod sz)

or

x* = ~l(mod L , ),

which is a contradiction by Corollary 2.2.1. Thus z=1 and therefore

2x*+3=5F,/2 and 2y =L,/2. A simple computation shows that y=1 and x=1
or x=2. This means that the equation x*+3x>+1=5)" has only the positive
integer solution (x,y)=(1,1) and the equation x*-3x°+1=5)" has only the

positive integer solution (x,y)=(2,1).

Theorem 2.2.17. The equation x*+5x”+5=5y" has no solutions x and y in

positive integers.

Proof: Assume that x*+5x°+5=5)" for some positive integers x and y. Since

y+2)* +@y—1)> =20y" +5, it follows that
Qy+2) +@y—-1) =2x>+5)".

Clearly, d=Q2y+2, 4y—1)=1 or 5. Assume that d=1. By the Pythagorean
theorem, there exist positive integers a and b with (a,b)=1, a and b are opposite

parity, such that

2x*+5=a"+b*, 2y+2=2ab, 4y—-1=a’ -b".
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The latter two equations imply that

~5=a"—4ab-b". (2.48)

Thus by Theorem 2.2.11, we get a=L,_;/2, b=L, /2 for some nonnegative even

integer z. On the other hand, from the equations -5=a°—4ab—b> and
2x*+5=a’+b°, we readily obtain x* = a(a—2b). Since (a,b)=1, it follows that,
r=(a,a—2b)=1 or 2. If »=1, then, there exist coprime positive integers u and v

such that a=u’, a—2b=v*. Thus L

...y =2a=2u’ and therefore 3z+3=6 by
(2.47), which is impossible since z is even. If »=2, then, a=2u’, a—2b=2".
Thus L, ,, =4u’ =(2u)’ and therefore 3z+3=1 or 3 by (2.46). The first of these is
impossible. And the second implies that z=0. Thus a=2, b=1. Since
2x>+5=a’+b, it follows that x=0, which is impossible since x is positive.

Assume that d =5. Then, there exist positive integers a and b with (a,b)=1, a

and b are opposite parity, such that

2x> +5=5a"+5b", 2y+2=10ab, 4y —1=5a" —5b".

The above first equation implies that 5|x and therefore x=35¢ for some positive
integer f. And the latter two equations imply that —5=5a>—20ab—5b", i.e.,
—1=a’ —4ab—b*. Completing the square gives (a—2b)°—5b>=-1. Thus by

Theorem 2.2.10, we get a=F,_, /2, b=1F, /2 for some odd positive integer z. On

z+3

the other hand, by using x=>5¢, from the equations —5=5a>—20ab—5b> and
2x*+5=5a"+5b", we obtain 5t =a(a—2b). Since (a,b)=1, clearly,

(a,a—2b)=1 or 2. Assume that (a,a—2b)=1. This implies that -either

a=5u’, a-2b=v" or a=u’, a—2b=>5v". If the first of these is satisfied, then, it is

seen that F,_, =10u’ and therefore 3z+3=0 by (2.45), which is impossible in

positive integers. If the second is satisfied, then, it is seen that F,_,=2u’ and

z+3

therefore 3z+3=0,3 or 6 by (2.43). But it is obvious that the cases 3z4+3=0 and
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3z+3 =3 are impossible in positive integers. If 3z+3 =6, then, z=1 and therefore
a=2, b=1. Since 2x* +5=>5a" +5b°, it follows that x* =10, which is impossible.
Assume that (a,a—2b)=2. Then, either a=10u>, a—-2b=2v or a=2u’,
a—2b=10v". If the first of these is satisfied, then, F,_,=20u’=5Qu)’ and

therefore 3z+3=0 or 5 by (2.44), which are impossible in positive integers. If the

second is satisfied, then, F,_,=4u’=(2u)’ and therefore 3z+3=0,1,2 or 12 by

z+3

(2.42). But there does not exist any positive integer z such that 3z+3=0,1 or 2. If

3z+3=12, then, we get z=3 and therefore a=72, b=17. Since

2x> +5=>5a” +5b°, it follows that x* =13680, which is impossible.

Theorem 2.2.18. If P is odd, then, the equation ¥, =5x* has a solution only if

n=1.

Proof: Assume that V, =5x. Then, by (2.21), it follows that 5| P and n is odd.
Hence, by Theorem 2.2.7, we have n=1 or n=3. If n=3, then,
V,=P(P*+3)=5x". Since 5|P, it follows that (P/5)(P’+3)=x". Clearly,
d=(P/5,P>+3)=1 or 3. Assume that d =1. Then, P=54" and P>*+3=5h" for
some positive integers a and b. This implies that b* =3(mod5), which is

impossible. Assume that d =3. Then, we get P=154" and P> +3=3b" for some

positive integers a and b. It is seen from P>+3=3b" that 3| P and therefore

P =3¢ for some positive integer c. Hence, we obtain the Pell equation 5 -3¢ =1.

It is well known that all positive integer solutions of this equation are given by

(b,0)=(V,,(4,-1)/2,U,,(4,-1))

with m >1. On the other hand, substituting P=154" into P=3c, we get c=5a".
So, we are interested in finding whether the equation U, (4,—1) =501 has a solution.

Assume that the equation U, (4,—1)=50L] has a solution. Since 5|U,(4,-1), it can
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be seen that if 5|U, (4,-1), then, 3|m and therefore m=3r for some positive

integer 7. Thus from (2.14), we get
Uu,4,-H)=U,.4,-1)= Ur(4,—l)((P2 —HU?(4,-1) +3) =U (4,-1)(12U7(4,-1)+3).

Clearly, d=(Ur(4,—1),12Uf(4,—1)+3)=1 or 3. Assume that d =1. Then, either
U (4,~-)=a, 12U (4,-1)+3=5b" or U, (4,-1)=5a>, 12U’ (4,-1)+3=5b" for
some positive integers a and b. But both of them are impossible since

b* =3(mod4) in these two cases. Assume that d =3. Then, either

U, (4,-1)=3a>, 12U} (4,-1)+3=15b (2.49)
or

U (4,-1)=154%, 12U>(4,-1)+3=3b (2.50)

for some positive integers a and b. Assume that (2.49) is satisfied. A simple
computation shows that (2(U,(4,—1))2—5b2 =—1. Thus by Theorem 2.2.10, we
obtain 2U (4,-1)=L, /2 for some odd positive integer z. Substituting
U,(4,—1)=3a" into the previous equation gives 3a’ =L, /4, ie., La’ =1L, /4.
This implies that L, | L, . Then, by (2.27), we get 2|3z, which is impossible since z
is odd. Assume that (2.50) is satisfied. It is easily seen that (2Ur(4,—1))2 +1=0%,
that is, b* —(2U,(4,~1))’ =1, implying that U, (4,~1)=0. This is impossible since r
is a positive integer. So n =3 cannot be a solution. If n=1, then, ;=P =501 It is

obvious that this is a solution.

By using Theorem 2.2.12, the immediate corollary follows.

Corollary 2.2.2. The equations 25x*—(P’+4)y° =44 have positive integer

solutions only when P =54 with a odd.
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Theorem 2.2.19. Let ¥, # 1. There is no integer x such that ¥, =5V x°.

Proof: Assume that ¥, =5V, x* for some x> 0. Then, by (2.21), it follows that 5| P
and n is odd. Moreover, since V, |V, , there exists an odd integer ¢ such that n = m¢
by (2.27). Thus m is odd. Therefore we have ¥V =nP(modP?) and
V. =mP(mod P*) by Lemma 2.1.1. This shows that nP =5mPx*(modP?), i..,

n=5mx’(mod P). Since 5| P, it follows that 5|n. Also since n=mt, first, assume

that 5|¢. Then, #=235s for some odd positive integer s and therefore n=m¢ = Sms.
By (2.19), we readily obtain V, =V, =V, (Vi +5V. +5). Since ms is odd and
5| P, it follows that 5|V, by (2.21). Therefore (¥, /¥,)((V,, +5V,. +5)/5)=x".

Clearly, (V v, v

ms m? ms

+5V2 +5)/5)=1. This implies that V} +5V,. +5=5b" for

some positive integer a and b. But this is impossible by Theorem 2.2.17. Now

assume that 51¢ Since n=m¢ and 5|n, it is seen that 5|m. Then, we can write
m=5a with 5fa and r2>1. By (2.20), we readily obtain
v, =V5ru =5V5r_,a(5a1 +1) for some positive integer a@,. Thus we conclude that
v, =V5ra =5V (5a,+1)(5a,+1)---(5a, +1) for some positive integers a, with
1<i<r. Let A=(5a,+1)(5a,+1)---(5a, +1). It is obvious that 5 A. Thus we have
V,=5V A Similarly, we see that V = V, = 5V ,(5b,+1)(5b, +1)---(5b, +1) for
some positive integers b, with 1< j<r. Let B=(5b +1)(5b,+1)---(5b. +1). It is
obvious that 51 B. Thus we have ¥, =5"V, B. This shows that 5V, B=5-5V, Ax’,
ie, V,B=5V Ax’. By Lemma 2.1.1 and the identity (2.21), it is seen that

atPB = 5aPAx* (mod P*) and therefore we get atB =5aAx’(mod P). Using the fact

that 5| P, we get 5| atB. But this is impossible since 5t a, 51¢, and 51 B.

Theorem 2.2.20. If P is odd and 5| P, then, the equation U, =5x has a solution

n=2, P=500. If P*=1(mod5), then, the equation U, =5x" has a solution n=35,
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P=1. If P is odd and P*=-1(mod5), then, the equation U, =5x" has no

solutions.

Proof: Assume that P is odd and 5|P. Since 5|U,, it follows that n is even by

Lemma 2.2.1. Then, n=2¢ for some positive integer t. By (2.11), we get
U,=U, =UV, =5x*. Clearly, (U,,V;)=1 or 2 by (2.30). Let (U,,V,)=1. Then,

either

U=a, V=5 (2.51)
or

U =54%, V,=b’ (2.52)

for some positive integers a and b. Assume that (2.51) is satisfied. By Theorem
2.2.18, we get =1 and therefore n=2. Then, P=50L] is a solution. Assume that

(2.52) 1s satisfied. Since 5|U,, it follows that ¢ is even by Lemma 2.2.1. Thus ¢ =2r
for some positive integer . By using (2.12), we get V, =V’ +2=5*, which is

impossible. Let (U,,V,) = 2. Then, either

U, =10a>, V, =2b* (2.53)
or

U =2a’, V,=10b" (2.54)

t

for some positive integers a and b. Equation (2.53) has no solutions, because the

values of ¢ and P for which ¥, =2b” are t=6 and P=35 by Theorem 2.2.3, which
gives U, =3640 = 10a’. Assume that (2.54) is satisfied. Since 5|V, it follows that

t is odd by (2.21). If t=1, then, U, =1=2a", which is impossible. Assume that
t>1. Then, ¢t=4g+1 for some ¢g>1. And so, by (2.1), we get

U,=U,,,, =U, (modU,), implying that 2a”> =1(mod P). Since 5| P, the previous
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congruence becomes 24’ =1(mod5), which is impossible since (%)Z—l. The

proof is completed for the case when P is odd and 5| P.

Assume that P? =1(mod5). Since 5|U,, it follows that 5|n by Lemma 2.2.1. Thus
n=5t for some positive integer ¢. Since P* =1(mod5), it is obvious that 5| P* +4
and therefore there exists a positive integer A such that P* +4=54. By (2.16), we
get U, =U,, =U,((P* +4)’U; £5(P* +4)U; +5). Substituting P*+4=54 into the
previous equation gives U, =U,, =5U,(54°U; +54U7 +1). Let B= AU} + AU;.
Then, we get U, =U,, =5U,(5B+1)=5x", i.e., U,(5B+1)=x’. It can be seen that
(U,,5B+1)=1. This shows that U, =a” and 5B+1=5> for some positive integers
a and b. By Theorem 2.2.1, we get £ <2 or t=12 and P=1. If t=1, then, n=35
and therefore we get U, = P*+3P’> +1=5x". By Theorem 2.2.16, it follows that
P=1. So the equation U, =5x” has a solution n=5 and P=1. If +=2, then,
n=10 and therefore we obtain U,, = 5x°, implying that UV, = 5x” by (2.11). Since
5|Us, it follows that (U, /5)V, = x*. By (2.30), clearly, (U, /5,V;)=1. This implies
that U, =5a°, V,=b. Since U, = P*+3P* +1, it follows that P=1 by Theorem
2.2.16. But then, V, =11=5", which is impossible. If r=12 and P=1, then, it
follows that n=60. Thus we obtain U,, =5x°, which is impossible by (2.44). The

proof is completed for the case when P* =1(mod5).

Assume that P is odd and P’ =—1(mod5). Since 5|U,, it follows that 3|n by

Lemma 2.2.1 and therefore n=3m for some positive integer m. Assume that m is
even. Then, m = 2s for some positive integer s and therefore n = 6s. Thus by (2.11),

we get U, =U,, =U, V,, =5x". By (2.30), clearly, (U,,,V,,) =2. Then, either

R4

U, =10a%,V, =2b° (2.55)

or
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U,, =2a’,V, =10b (2.56)

for some positive integers a and b. Assume that (2.55) is satisfied. By Theorem

2.2.3, it follows that 3s=6 and P=1,5. But this is impossible since
P? =—1(mod5). Assume that (2.56) is satisfied. Since 5|V, it follows that 5| P by
(2.21). But this contradicts the fact that P* =—1(mod5). Now assume that m is odd.

Then, by (2.14), we get U,=U,, =U,((P’+4U.-3). Clearly,

m

(Um,(P2 +4)Uf1—3)=1 or 3. Since m is odd, it follows that 31U, by Lemma

2.2.1 and therefore (Um,(P2 +HU? —3) =1. Then,

U, =5a%,(P* +4)U> -3=b’ (2.57)
or

U =a,(PP+4HU. -3=5b (2.58)

for some positive integers a and b. Assume that (2.57) is satisfied. Since m is odd,

we obtain ¥V’ +1=5" by (2.13). This shows that ¥, =0, which is impossible.
Assume that (2.58) is satisfied. Since both m and P are odd, it follows that m =1

by Theorem 2.2.1. If m=1, then, n=3 and therefore P2+1=5y2, which 1is

impossible since we get y* =2(mod8) in this case.
By using Theorems 2.2.12 and 2.2.14, we give the following corollary.

Corollary 2.2.3. The equations 25x* —5Px’y—y’ =+1 and x* —25(P° +4)y* =+4

have positive integer solutions only when P=1 or P=5a" with a odd.

In [57], the authors show that the equation F, =5F x” has no solutions when m> 3.

Now, we give the following theorem.
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Theorem 2.2.21. Let P>1 and m > 1. The equation U, =5U, x has no solutions in

any of the following cases:

@i): P’ =1(mod5);

(i)): P> =—1(mod5), n is odd, and P is odd or 4| P;
(iii): P> =—1(mod5), n iseven, and P is odd;

(iv): P isoddand 5| P.

Proof: Assume that U, =5U, x> for some positive integer x. Since U, |U,, it
follows that m|n by (2.28). Thus n=m¢ for some positive integer ¢. Since n # m,

we have t>1.

Case I: Let P’ =1(mod5). It is obvious that 5| P> +4. Since 5|U,, it follows that

5|n by Lemma 2.2.1. Now we divide the proof into two subcases.

Subcase (i): Assume that 5|z, Then, #=35s for some positive integer s and

therefore n = mt =5S5ms. By (2.16), we obtain

U,=U

n Sms

=U,,((P*+4) U, +5(P* +4)U,, +5)=5U,x". (2.59)

It is easily seen that 5[(P*+4) U} +5(P°+4)U: +5. Also we have
(PP +4)°U +5(PP+4U. +5=V" +3V> +1 by (2.13). So rearranging the

equation (2.59) gives

X =, /U)Vh £3V, +1)/5).

ms

Clearly, (U,m /U, (Vi+312 +1)/5) =1. This implies that ¥} +3V> +1=5b" for

some b>0. Thus by Theorem 2.2.16, we get V| =1 or V, = 2. The first of these is
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impossible. If the second is satisfied, then, ms =0, which contradicts the fact that

m>1.

Subcase (ii): Assume that 51 ¢. Since 5]|n, it follows that 5|m. Then, we can write
m=5a with 5¢a and r>1. Since 5|P°+4, it can be seen by (2.17) that
U,= Usra = 5U5r—la(5al +1) for some positive integer a,. And thus we conclude that
u,=U, = 5'U,(5a, +1)(5a, +1)---(5a,+1) for some positive integers a, with
1<i<r. Let A=(5a,+1)(5a,+1)---(5a, +1). It is obvious that 51 4 and we have
U,=5U,A. Similarly, we get U, =U_ =5U,(5b+1)(5b,+1)---(5b, +1) for
some positive integers b, with 1< j<r. Let B=(5b +1)(5b, +1)---(5b, +1). It is
obvious that 5{ B. Thus we have U, =5"U_B. Substituting the new values of U,
and U, into U,=5U x> gives 5U,B=5-5U Ax’. This shows that
U,B=5U,6A4x". Since 51 B, it follows that 5|U,

implying that 5|at by Lemma

to

2.2.1. This contradicts the fact that 5 a and 51 7.

Case II: Let P> =—1(mod5) and 7 is odd. Then, both m and ¢ are odd. Thus we

can write t =4g *1 for some ¢ >1. And so, by (2.1), we get

5Umx2 = Un = U(4qi1)m = U

2.2mg+tm

=U, (modU,,).

Using (2.11) gives 5x* =1(modV,). Since m is odd, it follows that P|V, by

Lemma 2.1.1. Then, we have

5x*> =1(mod P). (2.60)

Assume that P is odd. Then, (2.60) implies that 1= (%J Since P* =-1(mod5), it

can be seen that P =+2(mod5). Hence we get
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a contradiction. Now assume that P is even. If 8| P, then, it follows from (2.60) that
5x* =1(mod8), which is impossible since we get x* =5(mod8) in this case. If 4| P

and 8 1 P, then, from (2.60), we get

5x* =1(mod P/ 4).

This shows that (%jZI. Since P’>=-1(mod5), it can be seen that

P/4=42(mod5). Hence we get

-2
P/4 5 5 ’
a contradiction.

Case III: Let P° =—1(mod5), n is even, and P is odd. Since n =mt, we divide the

proof into two subcases.

Subcase (i): Assume that ¢ is even. Then, ¢ =2s for some positive integer s. Thus

we get 5x°=U, /U, =U, /U =W, /U)V,. Clearly, d=U, /U, V,)=1 or
2 by (2.30). Let d =1. Then, either

U,=Ua andV, =5b (2.61)
or

U, ,=5Ua" andV, =b (2.62)

for some positive integers a and b. Assume that (2.61) is satisfied. Since 5|V, it

follows that 5| P by (2.21). This contradicts the fact that P> =—1(mod5). Assume
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that (2.62) is satisfied. By Theorem 2.2.2, we get ms =3 and P =3. Since m>1, it

follows that m =3. This is impossible since we get 1=75a" in this case. Let d = 2.

This implies that either

U, =2Ua and V, =10b (2.63)
or

U, =10U,a" and V, =2b" (2.64)

for some positive integers a and b. Assume that (2.63) is satisfied. Since 5|V, it
follows that 5| P by (2.21). This contradicts the fact that P> =—1(mod5). Assume
that (2.64) is satisfied. By Theorem 2.2.3, we get ms =6 and P =1,5. But this is

impossible since P> =—1(mod5).

Subcase (ii): Assume that ¢ is odd. Since #>1, we can write t=4¢g+1 or t =4g+3
for some g > 0. On the other hand, since n is even and n =mt¢, it follows that m is
even. Therefore we can write m=2"a with a odd and r>0. Assume that
t=4q+1. Then, n=mt =4gm+m=2-2""b+m with b odd. Hence, we get

5U x*=U, = U, =-U,(modV )

2"

by (2.3). Since (U,.V,,)=(, .V, )=1 by (229), it follows that

2r+k 2r+k

C : 5 -1
5x* =—1(mod V,..) But this is impossible. Because {—] =1 and [—] =-1
by (2.32) and (2.9), respectively. Now assume that ¢r=4g+3. Then, we have
n=mt =4gm+3m. And so, by (2.1), we get

sUu x*=U,=U,, ., =U, (modU,,).

gm+3m
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By using (2.11) and (2.14), we readily obtain 5x” =V’ —1(modV, ), which implies
that 5x’=-1(modV,). Using the fact that m=2"a with a odd, we have

SxZE—l(moder ), implying that szz—l(moder) by (2.27). But this is

-1
impossible since {Vi] =1 and {V—J =—1 by (2.32) and (2.9), respectively.

2" 2"

Case IV: Let P be odd and 5| P. Since 5|U,, it follows that n is even by Lemma
2.2.1. Moreover, since U, |U,, there exists an integer ¢ such that n=mt by (2.28).
Assume that ¢ is even. Then, ¢ =2s for some positive integer s. By (2.11), we get
u,=u,,=U,V, =5Ux>, implying that (U, /U, WV, =5x". Clearly,

W, /U,, V,)=1o0r2 by (2.30).1f U, /U,, ¥, )=1, then,

u.=Ua,V, =5b (2.65)

or

Ums = SUmaz’ Vms = b2 (266)

for some positive integers a and b. Assume that (2.65) is satisfied. Then, by
Theorem 2.2.18, we get ms=1. This contradicts the fact that m >1. Assume that
(2.66) is satistied. Then, by Theorem 2.2.2, we have ms =3 and P =3. But this is
impossible since 5| P. If (U, /U, V, )=2, then,

U, =2U,a", V, =10b (2.67)
or

Ums = IOUmaz’ Vms = 2b2 (268)

for some positive integers a and b. Assume that (2.67) is satisfied. Then, by

Theorem 2.2.4, we get ms =12, m=6, P=35. On the other hand, since 5|V, it
follows by (2.21) that 5| P and ms is odd. This is a contradiction since ms =12.

Equation (2.68) has no solutions, since the possible values for which V= 2b" are
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given by Theorem 2.2.3 and none of them gives a solution to U, =10U, a’. Now

assume that ¢ is odd. Since n=mr and n is even, it follows that m 1is even.

Therefore we have U, =(n/2)P(mod P*) and U, =(m/2)P(mod P*) by Lemma
2.1.2. This shows that

(n/2)P=5(m/2)Px*(mod P*),

1.€.,
(n/2)=5(m/2)x*(mod P).

Since 5| P, it is obvious that 5|n. Now we divide the remainder of the proof into

two subcases.

Subcase (i): Assume that 5|¢z. Then, #=35s for some positive integer s and

therefore n = mt =5S5ms. By (2.16), we obtain

Uy = Uspy =Uy (P +4Y Uy, +S(F + U, +5) =SU, . (269)

Sms

Since ms is even and 5| P, it is seen that 5|U, by Lemma 2.2.1. Also we have
(PP +4)YU +5(P*+HU. +5=V" =3V> +1 by (2.13). So rearranging the

equation (2.69) gives

X =, /U)W =3V, +1)/5).

Clearly, (U, /U, (¥, =3V, +1)/5)=1. This implies that ¥\ -3V, +1=5b" for

some b>0. Thus by Theorem 2.2.16, we get V =2, implying that ms =0, which

ms

is impossible.

Subcase (ii): Assume that 51¢. Since 5]|n, it follows that 5|m. Then, we can write

m=5"a with 5ta, 2|a, and r=1. It can be seen by (2.17) that
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U,=U, =50, (5a,+1) for some positive integer @,. And thus we conclude that
u,=U,. =5"U, (5a,+1)(5a,+1)---(5a. +1) for some positive integers a, with
1<i<r. Let A=(5a,+1)(5a,+1)---(5a,+1). Then, we have U, =5U_A. In a
similar manner, we get U, = Usrm =5"U,(5b,+1)(5b, +1)---(5b. +1) for some
positive integers b, with 1< j<r.Let B=(5H +1)(5b, +1)---(5b, +1). It is obvious
that 51 B. Thus we have U, =5"U_B. Substituting the new values of U, and U,

into U, =5U, x> gives
5U,B=5-5U,Ax". (2.70)

On the other hand, since a and at are even, it follows from Lemma 2.1.2 that

U, =(at/2)P(mod P*) and U, =(a/2)P(mod P*). So (2.70) becomes
5" (at/2)PB=5-5(a/2)PAx*(mod P?).
Rearranging the congruence above gives
(at/2)B =5(a/2)Ax*(mod P).

Since 5| P, it follows that 5|(at/2)B, implying that 5|a¢B. This contradicts the
factthat 5ta, 51¢, and 51 B.

2.3.  On the Equations U, =501 and V, =50

The purpose of this subchapter, assuming P >3 is odd and O =-1, is to determine

the values of n such that ¥, =5[] and U, =5L1. Moreover, we solve the equations

V. =5V, 0 and U, =5U, .

One can see the proofs of the following two theorems in [66].
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Theorem 2.3.1. Let P>3 be odd. If ¥, = kx* for some k| P with k>1, then,

n=1.

Theorem 2.3.2. Let P>3 be odd. If U, =kx* for some k|P with k>1, then,

n=2orn=6and 3| P.

The following theorem is given in [17].

Theorem 2.3.3. Let P>3 be odd. If ¥, =x* for some integer x, then, n=1. If

v =2x for some integer x, then, n=3, P=3,27.

We state the following theorem due to Ribenboim and McDaniel [17].

Theorem 2.3.4. Let P>3 beodd. If U, = x*, then, n=1 or n=6 and P=3.

The first one of the following three theorems can be obtained from Theorem 9 and

the others from Theorems 14 and 15 given in [55].

Theorem 2.3.5. Let P>3 be odd, m,n>1 be integers. The equation U, =2U, x*

has no solutions except for the cases n=6, m=3, P=3,27.

Theorem 2.3.6. The equation ¥, =V, x*, where P>3, and P is odd, and n>m>0

has only the trivial solution n = m.

Theorem 2.3.7. The equation V, =2V, x*, where P>3, and P is odd, and m,n >0

has no solutions.

The following lemma can be proved by using (2.5).
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Lemma 2.3.1.

2|n, if 5| P,
5|U, << 3|n, if P? =1(mod5),
5|n, if P* =—1(mod5).

Throughout this subsection, we assume that m and »n are positive integers.

Theorem 2.3.8. The equation ¥/, =5x” has a solution only if n=1.

Proof: Assume that ¥/, = 5x° for some integer x. Since 5|V, it follows from (2.21)

that 5| P. This implies that » =1 by Theorem 2.3.1.

By using Theorem 2.2.13, we have

Corollary 2.3.1. The equation 25x* — (P> —4)y* =4 has positive integer solutions

only when P =5a” with a odd.

Theorem 2.3.9. There is no integer x such that ¥, =5V, x*.

Proof: Assume that ¥, =5V x*. Then, by (2.21), it is seen that 5| P and n is odd.
Moreover, since V, |V , there exists an odd integer ¢ such that n=mzt by (2.27).
Since n and ¢ are odd and n=mt, m is also odd. Hence, we have from Lemma
2.1.1 that ¥V, =+nP(modP?) and V, =+mP(modP?). This implies that
+nP = +5mPx*(mod P?), i.e., n="5mx’(mod P). Using the fact that 5| P, it follows
that 5|n. Firstly, assume that 5|¢. Then, =155 for some odd positive integer s and
therefore n=mt = 5ms. By (2.18), we immediately have

V.=V, =V, (Vi -5V +5). Since ms is odd and 5| P, it follows that 5|V, by

ms

(2.21) and therefore
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14 5

m

@(Vn‘; =V +5J:x2

Clearly, (V,,/V,.(Vs —5V,. +5)/5)=1. This implies that ¥, =V,u* and
Vi 512 +5=5/" for some positive integers u and v. Let X =V . Now we
consider the equation X*—5X?+5=5V". It is obvious that 5| X. Assume that X is

odd. Then, we readily obtain 5v° =1(mod8), which is impossible. Thus, X is even.

Since X*—5X° +5=(X"-3)(X" -2)—1, we immediately have
5v* =—1(mod(X* -3)).

This means that

(X25—3JZ(X;1—3)

X%-4

Since X is even, it is easily seen that (X;—IJ =(-1) =1. On the other hand,

2

using the fact that 5| X, we get

a contradiction. Secondly, assume that 51 ¢. Since n=m¢ and 5|n, it is seen that
5|m. Then, we can write m=5"a with 5fa and r>1. By (2.18), we obtain
V=V, =5V5Ha(5a1 +1) for some positive integer a,. Thus, we conclude that
v, =V5ra =5V (5a, +1)(5a, +1)---(5a,+1) for some positive integers a, with
1<i<r. Let A=(5a,+1)(5a,+1)---(5a,+1). Thus, we have V, =5V A, where

51 A. In a similar manner, we see that V, = V, = 5V ,(5b, +1)(5b, +2)---(5b, +1).
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Thus, we have V =5V B, where 5tB. As a consequence, we get
5V, ,B=5-5V Ax*, implying that V B =5V Ax’. By Lemma 2.1.1, it is seen that
+atPB = +5aPAx” (mod P*), i.e., atB=5aAX*(modP). Since 5| P, it follows that
5| atB. But this is impossible since 5 a, 51¢, and 51 B.

Theorem 2.3.9. If P>3 is odd, then, the equation U, =5x has a solution n=2
when 5| P and n=3 when P’ =1(mod5). The equation U, =5x* has no solutions

when P? =—1(mod5).

Proof: Assume that U, =5x> for some integer x. Dividing the proof into three

cases, we have

Case I: Let 5| P. Then, by Theorem 2.3.2, we see that n=2 or n=06 and 3| P. But,
it can be easily shown that the equation U, = 5x” has no solutions for the case when

n=6 and 3| P.

Case II: Let P’ =1(mod5). Since 5|U,, it follows from Lemma 2.3.1 that 3|n.

Hence, n=3m for some positive integer m. Assume that m is even. Then, m =2s
for some positive integer s and therefore n=6s. And so, by (2.11), we get

U, =U, =U,V, =5x". Clearly, (U,,, V;,) =2 by (2.26) and (2.29). Then, either

4

U, =2d*, V, =100’ (2.71)
or
U, =10d%, V, =2b° (2.72)

for some positive integers a and b. Assume that (2.71) is satisfied. Since 5|V, it

follows from (2.21) that 5| P. But this contradicts the fact that P> =1(mod5). Now
assume that (2.72) is satisfied. Then, by Theorem 2.3.3, we have 3s=3 and
P=3,27. Therefore s=1. If P=3, then, U,=P -1=8=10a’, which is
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impossible. If P=27, then, U, = P> —1=27>-1=10a", which is also impossible.
Now assume that m is odd. Then, by (2.14), we get U, =U, ((P2 -4U,, +3).
Clearly, (Um,(P2 -HU? +3) =1 or 3. Then, it follows that (P> —4)U_ +3 = wa’ for
some we{l,3,5,15}. Since (P’ -4)U. +3=V,,+1 by (2.12) and (2.13), it is seen

that ¥, +1=wa’. Assume that m>1. Then, m=4g+1=2"a+1 with a odd and

r>2. Thus,

wa’ =V, +1=1-V, E—(P2—3)(modV2r)

by (2.8). This shows that

A

By using (2.33), (2.35), and (2.36), it can be seen that (V

2}”

Jl for w=3,5,15.

— 2 f—
Moreover, [V—l] =—1 and [PV 3} =1 by (2.9) and (2.37), respectively. Thus, we

2" 2"

get

which is impossible. Therefore m =1 and thus n =3.

Case III: Let P’ =—1(mod5). Since 5|U,, it follows that 5|n by Lemma 2.3.1.
Thus n=>5t for some positive integer ¢. Since P> =-1(mod5), it is obvious that

5| P> —4 and therefore there exists a positive integer 4 such that P> —4=5A4. By
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(2.16), we get U, =U,=U, ((P2 — AU +5(P* = U +5). Substituting
P> —4=54 into the preceding equation gives U, =U,, =5U, (SAZUt4 +54U7 +l).

Let B= AU + AU]. As a consequence, we have
U =U, =5U (5B +1)=5x,
implying that
U.(5B+1)=x".

It can be easily seen that (U,,5B+1)=1. This shows that U, =a” and 5B+1 =b
for some a, b>0. By Theorem 2.3.4, we see that the only possible values of ¢ and
P for which U, =a” are t=1 or =6 and P=3. If t=1, then, n=>5 and therefore
we get U, =U,, =U, = P* =3P +1=5x". By Theorem 2.2.16, it follows that P =2,
which is impossible since P is odd. If #=6, then, n=30. A simple computation

shows that there is no integer x such that U,, = 5x* for P =3.
By using Theorems 2.2.13 and 2.2.15, we give the following corollary.

Corollary 2.3.2. The equations x°—25(P*—4)y*=4 and 25x"-5Px’y+)° =1
have positive integer solutions only when P=5a" with @ odd or P=V, (2,1)/2

with z >0 even.

Theorem 2.3.10. Let P>3 and m > 1. The equation U, = 5U, x> has no solutions in

any of the following cases:

(i): P’ =—1(mod5);
(ii): P isodd and 5| P;

(iii): P> =1(mod5), n is odd, and P is odd;
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(iv): P> =1(mod5), n is even, and P is odd.

Proof: Assume that U, =5U, x> for some x> 0. Since U, |U,, it follows that m|n

by (2.28). Thus, n=mt for some ¢>0. Since n#m, we have ¢ >1.

Case I: Let P’ =—1(mod5). It is obvious that 5| P> —4. On the other hand, since
5|U,, it follows that 5|n by Lemma 2.3.1. Dividing the proof into two subcases,

we have

Subcase (i): Assume that 5|z. Then, #=5s for some s>0 and therefore

n=mt =5ms. By (2.16), we obtain

U,=U,, =U, ((P’=47U,, +5(P* -4)U,, +5)=5U,x". (2.73)
Since 5| P* —4, it is seen that 5|(P* —4)’U’ +5(P* —4)U> +5. Also, we have
(PP =4)°U} +5(P*—4)U’ +5=V' -3V’ +1 by (2.13). Rearranging the equation

(2.73), we readily obtain

ms ms

¥ =(U,, 1U,) (V=372 +1)/5),
where (U, /U, (Vi =3V, +1)/5)=1. Hence, U, =U,a’, Vi =3V, +1=5b for
some a,b>0. By Theorem 2.2.16, we get V, =2, implying that ms =0, which is

impossible.

Subcase (ii): Assume that 51 7. Since 5]|n, it follows that 5|m. Then, we can write
m=5"a with 5ta and r>1. By (2.17), it is seen that U, = U5r = 5U5r_1 (5a,+1)
for some positive integer a,. Thus, we conclude that

u,=U, =5"U,(5a,+1)(5a, +1)---(5a. +1) for some positive integers a, with
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1<i<r. Let A=(5a,+1)5a,+1)---(5a.+1). Then, we have U, =5"U_ A, where
5t A. In a similar manner, we get U, = u, = 5'U,,(5b,+1)(5b, +1)---(5b, +1) for
some positive integers b, with 1<i<r. Let B=(5h, +1)(5b, +1)---(5b, +1). Hence,

we have U, =5"U B, where 51 B. As a consequence, we get

5U,B=5-5U,Ax"
1.€.,

U, B=5U,64x".

Since 51 B, it follows that 5|U,, implying that 5|ar by Lemma 2.3.1. This
contradicts the fact that 51 a and 51 ¢ This concludes the proof for the case when

P? =—1(mod5).

Case II: Let P be odd and 5| P. Since 5|U,, it is seen from Lemma 2.3.1 that 7 is
even. On the other hand, we have n=mt. So, we first assume that ¢ is even. Then,
t=2s for some s>0. By (2.11), we get U, =U,, =U, V, =5U, x*, implying that

ms- ms

(U, /U, )V, =5x". Clearly, d =(U,, /U,, V, )=1 or 2 by (2.29). If d =1, then,

ms

U, =Ugd,V, =5b (2.74)

ms
or

U, =504V, =b (2.75)

ms

for some a,b> 0. If (2.74) is satisfied, then, the only possible value of ms for which
V. =5b" is 1 by Theorem 2.3.1, which contradicts the fact that m>1. If (2.75) is

satisfied, then, by Theorem 2.3.3, we have ms =1, which is impossible since m >1.

If d =2, then,

U, =2Ua,V, =10b (2.76)

or
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Ums = IOUmaz’ Vms = 2b2 (277)

for some a,b>0. Suppose (2.76) holds. Then, by Theorem 2.3.5, we get ms =6,
m=3, P=3,27. But there is no integer b such that V =2p* for the case when

P =3 or 27. Suppose (2.77) holds. Then, by Theorem 2.3.3, the only possible values

of ms and P for which V, =2b* are ms=3 and P=3,27. Since m>1, it follows
that m =3 and therefore we obtain U, =10U,a’, which is impossible. Now assume
that ¢ is odd. Since n=mt and n is even, it follows that m is even. Hence, we have

U, =+(n/2)P(mod P*) and U, =+(m/2)P(mod P*) by Lemma 2.1.2. This shows

that i%PEiS%sz(mosz), ie., gES%xz(modP). Since 5| P, it is seen that

5| n. Dividing remainder of the proof into two subcases, we have

Subcase (i): Let 5|¢. Then, =155 for some s >0 and therefore n=mt=>5ms. By

(2.16), we obtain

U, =U

n Sms

=U,, ((P*=4)U,, +5(P* - 4)U., +5). (2.78)

Since ms is even and 5| P, it is seen that 5|U, by Lemma 2.3.1. Also, we have
(PP =4)°U} +5(P*-4)U> +5=V' -3V’ +1 by (2.13). Hence, rearranging the

equation (2.78) gives

X =(U,, /U, )V =3V +1)/5),

where (U, /U,), (Vi =3V, +1)/5)=1. This implies that U, =U,a" and
Vi -3y2 +1=5b for some a,b>0. Thus, by Theorem 2.2.16, we get V, =2,

implying that ms =0, which is impossible.
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Subcase (ii): Let 517 Since 5]|n, it follows that 5|m. Then, we can write m=5"a

with 51 a and r>1. By (2.17), it is seen that U = u, = 5U5r_1a(5al +1) for some
positive integer aq,. Thus, U =U, =5U, (5a,+1)(5a,+1)---(5a. +1) for some
positive integers a, with 1<i<7r. Let 4= (5a,+1)(5a,+1)---(5a, +1). Then, we
have U,=5U,4, where 5f{4 In a similar way, we get
u,=U, = 5'U,,(5b, +1)(5b, +1)---(5b,+1) for some positive integers b, with
1<i<r. Let B=(5b,+1)(5b,+1)---(5b, +1). Hence, we have U, =5"U_B, where

51 B. Substituting the new values of U, and U,, into U, =5U, x" gives

5U,B=5-5U Ax’
1.e.,

U,B="5U,4x",

On the other hand, since a is even and ar is even, it follows from Lemma 2.1.2 that

a

U, = i%tP(mosz) and U, = i%P(mosz). Hence, we have
i%tPB ~ iS%Psz(mosz),

implying that a—tB =52 432 (mod P*). Since 5| P, it follows that 5| a—ZB, which
2 2 2

shows that 5|atB. This contradicts the fact that 5fa, 517, and 5t B. This

concludes the proof for the case when 5| P.

Case III: Let P° =1(mod5), n is odd, and P is odd. Then, both m and ¢ are odd.
Since 5|U,, it follows immediately from Lemma 2.3.1 that 3|n. Using the fact that

n=mt, we have
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Subcase (i): Assume that 3|m. Since ¢ is odd, we can write t=4g+1 for some
q>0.If t=4qg+1, then, t=2-2"a+1 with a odd and »>1. And so, by (2.7), we

get U =U, =U22

2! am+m

_ . . 2
=-U,(modV,), implying that 5U, x°=-U, (modV).

Since (U, Vz,.) =1 by (2.29), it follows that 5x* =—1(mod V), which is impossible

2" 2"

since {Vij =1 by (2.33) and [;—IJ =—1 by (2.9). If t=4g—1, then, by (2.5), we

get U, =U, U

2-2mg—m

=-U, (modU,,). This shows that

@g-1) —
5U, x> =-U, (modU,,),
implying that

5x* =—1(modV,)

by (2.11). Since 3|m, it is seen by (2.27) that V,|V . Hence, we obtain

5x> =-1(modV}), i.e., 5x* =—1(mod P’ —3). But this is impossible since

5 (P =3)/2 :(—_1}1
(P*-3)/2 5 5

R PR
((P2—3)/2j_( D 3

and

Subcase (ii): Assume that 31 m. Since n=mt and 3|n, it follows that 3|z and
therefore # =3s for some s> 0. Then, by (2.14), we get
U,=U,,, =U, ((P*-4U,, +3)=5U,x",
implying that
U,, /U ((P*=4U,, +3)=5x".
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Clearly, d =(U,, /U,, ((P*=4)U}, +3))=1or 3. If d =1, then, cither

U =Ua, (PP-4U. +3=5b (2.79)

ms
or

Ums = SUmaz’ (P2 _4)Ujls +3 = b2 (280)

for some a,b>0. Suppose that (2.79) is satisfied. Then, by (2.13), we get
V2 —1=5b> and this gives by (2.12) that ¥, =5b"—1. Since ms>1 is odd,
ms =4g=x1 for some g >0. Thus ms=2-2"a+1 with a odd and »>0. By using

(2.8), we get SHb-1=V,

2ms

=-V,=-V,(modV,). This shows that
5b* —1=—(P* —2)(mod V), implying that 5b* = —(P*> —3)(mod V). By using (2.9),

(2.23), and (2.37), it is seen that

a contradiction. Suppose that (2.80) is satisfied. By combining two equations, it can
be easily seen that b* =3(mod5), which is impossible. If d =3, then, either

U, =3Ua, (PP-4U. +3=15b" (2.81)
or

U, =15U a4, (PP-4)U> +3=3b" (2.82)

for some a,b>0. If we combine two equations given in (2.81), we readily obtain
b*> =2(mod3), which is impossible. Suppose (2.82) holds. Then, by (2.13), we get
V2 —1=3b> and this gives by (2.12) that V,, =3b>—1. Since ms>1 is odd,
ms =4q+£1 for some ¢ >0. Thus ms=2-2"a+1 with a odd and r>0. By using

(2.8), we get 3b—1=V,

2ms

=-V,=-V,(modV,). This shows that
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3b* —1=—(P*-2)(modV,,), implying that 3b*=—(P*-3)(modV,). By (2.35),

(2.36), (2.9), and (2.37), it 1s seen that

a contradiction.

Case IV: Let P° =1(mod5), n is even, and P is odd. Since n=mt, we divide the

proof into two subcases:

Subcase (i): Assume that 7 is even. Then, t=2s for some s>0. Hence, we

immediately have

Un /Um = U2ms /Um = (Ums /Um )Vms = sz'

Clearly, d=(U, /U,,V, )=1 or 2 by (2.29). If d =1, then,

ms

U,=Uad,V, =5b

ms

or

U, =5U0.a,V, =b

ms

(2.83)

(2.84)

for some a,b>0. Suppose (2.83) is satisfied. Since 5|V, , it follows from (2.21)

that 5| P, which contradicts the fact that P> =1(mod5). Now suppose (2.84) is

satisfied. By Theorem 2.3.3, the only possible value of ms for which ¥, =5" is 1,

which is impossible since m>1. If d =2, then,

U, =204, V, =10b
or

U, =100 a>, V, =2b

(2.85)

(2.86)
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for some a,b > 0. Obviously, (2.85) is not satisfied because of the same reason given
above for (2.83). If (2.86) holds, then, it is seen by Theorem 2.3.3 that the only

possible values of ms and P for which ¥, =2b> are ms=3 and P=3,27. But

these are impossible since P* =1(mod5).

Subcase (ii): Assume that ¢ is odd. Since #>1, we can write f =4g+1 or t =4g+3
for some g > 0. On the other hand, since » is even and n =mit, it follows that m is
even. Therefore we can write m=2"a with a odd and r>0. Assume that
t=4q+1. Then, n=mt=4gm+m=2-2""b+m with b odd. Hence, we get

SU x*=U,=U

22" K pam

= _Um (mOd V;H—k )

by (2.7). Since (U, I/2r+k) = (Uzr , V2r+k) =1 by (2.29), it follows that

m

5x* =—1(modV ., ).

This is impossible. Because (i}l and {—1]—1 by (2.33) and (2.9),

2r+k 2r+k

respectively. Now assume that # =4¢g+3. Then, we have n=mt =4gm+3m. And so,

by (2.5), we get

sUu x*=U,=U,, ., =U, (modU,,).

gm+3m

By using (2.11) and (2.14), we readily obtain

5x* =V —1(modV,),
which implies that
5x* =—1(modV).

Using the fact that m =2"a with a odd, we have
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5x* =—1(mod v, )
implying that
5x* =—1(mod V)

by (2.27). But this is impossible since (VLJ =1 and [;—1} =—1 by (2.23) and (2.9),

2" 2"

respectively.



CHAPTER 3. ON THE LUCAS SEQUENCE EQUATIONS
V. =70 AND V, =7V, 0

In this section, using congruences, with extensive reliance upon the Jacobi symbol,
and by the help of the methods of solutions of Pell equations, we will solve the

equations U, =701, V, =70, U, =7U L, and V, =7V [l For all odd values of P
and Q =1, the equation U, =701 has only the solution (n,P)=(2,7C]) when 7|P
and the equation ¥, =7x* has only the solution (n,P)=(1,7)) when 7|P or
(n,P)=(4,1) when P’>=1(mod7). We show that the equation V, =7V [ is
solvable if and only if P*> =4(mod7) and (n,m)=(3,1). Moreover, we show that the
equation U, =7U, [ has only the solution (n,m, P,l])=(8,4,1,1) when P is odd.

Now, we shall establish some theorems and lemmas which will be required later.

The following two theorems can be found in [58].

Theorem 3.1. If P is odd, then, the equation V, = 3x* has a solution n=1 or n=2

and if P isevenand 31t P, then, the equation V, = 3x* has no solutions.

Theorem 3.2. If P isodd, m>1, and V, =3me2, then, m=1 and n=3.

The following three lemmas can be proved by using Theorems 2.1.1 and 2.1.2.
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Lemma 3.1.
n=1(mod?2), if 3| P,
3|V, & .
n=2(mod4), if 31 P.
Lemma 3.2.
2+tn,if7|P,
4|n and n/4 is odd, if P* =1(mod 7),
T, < . o
4|nand n/4 is odd, if P* =2(mod 7),
3|n and n/3 is odd, if P> = 4(mod 7).
Lemma 3.3.

2|n, if 7| P,
8|n, if P> =1(mod?7),
16| n, if P> =2(mod7),
6| n, if P> =4(mod7).

71U, <

n

We state the following three lemmas without proof.

Lemma 3.4. All positive integer solutions of the equation x> —7)° =2 are given by

(,2) =(3(U,,(16,~1)~ U, (16,-1)), 17U, (16,~1)~U,,(16,~1)) with m >0,
Lemma 3.5. All positive integer solutions of the equation x> —7y” =—3 are given by
(x,y)= (2Um+1 1e6,-1)+5U, (16,-1), 2U, ., (16,-1)—-4U (16, —1))

or

(x,»)=(5U,,(16,~1)+2U, ,(16,~1), 2U, (16,~1)~U,, ,(16,~1)) with m>0.
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Lemma 3.6. All positive integer solutions of the equation x> —3)° =1 are given by

)=V, 4,-1/2, U, (4,-1)) with m=>1.
Lemma 3.7. The equation x* —7y” =-3 has no positive integer solutions.

Proof: Assume that the equation x* —7y*> =3 for some x,y>0. If y is odd, then,
it follows that x* =4(mod8), which is impossible. Thus, y is even and therefore x

is odd. Note that the equation x* —7y* = -3 implies that

By Lemma 3.5, we get

x> =2U, (16,-1)+5U, (16,-1)
or

x> =5U, (16-1)+2U, (16,~1).

Assume that x*> =2U, (16,—1)+5U, (16,—1). Since x is odd, it is seen from (2.41)
that m is odd. Besides, x* =2U, (16,—1)(mod5), which implies that 5|U, .. It can
be easily shown that 5|U, (16,—-1) iff 3| m. Thus, we get m+1=3k for some k > 0.

Since m is odd, k is even and therefore k£ =2g. Hence, we have m=6g—1 with

g > 0. And so, by (2.5), we get
x* =2U,, (16,-1)+5U,,, ,(16,-1)=2U,(16,—1)+5U_,(16,~1)(mod U;(16,-1)),

implying that x* =—5(mod17), because 17|U,(16,—1). But this is impossible since

M-
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The details of the proof of the equality x* =5U, (16—1)+2U, ,(16,—1), broadly

similar to the above, are omitted.

Lemma 3.8. The equation 9x* —21y” = -3 has no positive integer solutions.

Proof: Dividing both sides of the equation above by 3 gives 7y* —3x* =1. Now let

us consider the equation

Tu® =3 =1. (3.1)

Since the fundamental solution of (3.1) is 2J7 +343, it follows as a consequence of

Theorem 2.2 given in [67] that all positive integer solutions of (3.1) are given by

(u,v)=(2WU,,,-U,), 3U,,, +U,)), where U, =U,(150,—1). Therefore, we have

+1

x> =3U

n+l

+U,). It can be easily shown that

(3.2)

n

{ n(mod38), if n is odd,

—n(mod8), if n is even.

Hence, if n is odd, then, by (3.2), we have x’=-3n-3+43n=-3(mod8), a
contradiction. If n is even, then, by (3.2), we get x> =3n+3-3n=3(mod8), a

contradiction.

In [68], when QO=1, Keskin and Karaath solved the equations U, =5[] and
U, =5U, ] under some assumptions on P. They solved the equations ¥, = 5[] with
P odd and Q=1. They showed that the equation ¥, =5V [] has no solutions. These

results were presented in the second subchapter of Chapter 2 of this thesis. Here we

will solve the equations U, =701, ¥V =70, U, =7U, L, and V, =7V, [J under the

conditions that P is odd and O =1.
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We begin with the following theorem. This result will be used in the solution of the
equation U, = 7L

Theorem 3.3. If P is an odd integer, then, there is no integer x such that V, = 14x°.

Proof: Assume that V/, =14x” and P is odd. Since 2|V, we get 3|n by (2.26). The

remainder of the proof is split into two cases.

Case I: Assume that 7| P or P> =4(mod7). Since 7|V,, it is seen from Lemma 3.2
that 2tn Since 3|n, we get n=3¢t and therefore 217 Thus we can write
n=12g+3. And so, by (2.2), we obtain V, =V}, ., =+V;(modU;), which implies

that 14x* = +4P = 4(mod8). This shows that x> = 2(mod4), a contradiction.

Case II: Assume that P’ =1(mod7) or P*=2(mod7). Since 7|V,, it follows that
n=4t for some odd ¢+ by Lemma 3.2. Since 3|n, we see that 3|7 and therefore

t =6q+3. Thus, we can write n=24g+12. Let P> =1(mod 7). And so, by (2.4), we

get

V,= Vz4q+12 = I/2»2-6q+12 =V, =-V, =-2(mod/)),

n

which implies that 14x”> =-2(mod P* +2). Hence, we obtain 12( ) But this

P +2

is impossible since

7\ S S (Pe2) (3 (4
(P2+2]_( Do e ( 7 j (7) (J -

Now let P>=2(mod7). Since n=24g+12, it follows from (2.2) that

V, =Vasyir =Vasugery =Vo =2(modUs;), which implies that 14x* =2(mod P* +1),

P?+1

ie., 7x° = l[mod j But this is also impossible since
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1=[+J:(_1)T (wj(zj(_zjl
(P*+1)/2 7 7 7

By Theorem 2.2.12, we have the following immediate corollary.

Corollary 3.1. The equations 196x* —(P* +4)y* =+4 have no positive integer

solutions.

Theorem 3.4. Let P be odd. If 7| P, then, ¥V, =7x" is possible if and only if
(P,n)=(700,1). If 7fP, then, V,=7x" is impossible, except for the case
(P,n)=(1,4).

Proof: Assume that ¥, =7x*, 7| P and P is odd. Then, by Theorem 2.2.7, we get
n=1or n=3.1If n=1, then, V,=P=7x". Therefore n=1 is a solution. If n=3,
then, ¥, = P(P* +3)=7x". Since 7| P, it follows that (P/7)(P>+3)=x". Clearly,

d=(P/7,P>+3)=1 or 3. Let d=1. Then, P=7a* and P>*+3=5b> for some
a,b>0. This implies that 5*> =3(mod7), which is impossible since (%j =-1. Let

d =3. Then, we have
P=21a* and P> +3=3b". (3.3)
It is seen from (3.3) that 3| P and therefore
P=3c (3.4

for some ¢>0. Substituting (3.4) into (3.3), we immediately have the Pell equation
b*—-3c> =1. By Lemma 3.6, we have (b,c)=(V, (4,-1)/2, U, (4,~1)) for some
m>1. On the other hand, since 3c=21a°, we get ¢ =7a’. So, we are interested in

the solutions U, (4,-1)=700. Since 7|U,(4,—1), it can be easily shown that
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71U, (4,-1) if and only if m =4k for some k >1. Then, by (2.11), it follows that
10=U,,(4,-1)=U,, (4,-1)V,, (4,~1). From (2.29) and (2.41), it is seen that

(U (4,-1),V,, (4,—1)) = 2. Then, either

Uy (4,-1)=2u" and V,, (4,-1) =14V (3.5)
or

U,, (4,-1)=14u* and V,, (4,-1)=2V’ (3.6)

for some positive integers # and v. From now on and until the end of this paragraph,

instead of U, (4,—1) and V,(4,—1), we will write U, and V , respectively. Suppose
(3.5) is satistied. Clearly, 7|7,,. Since 7|V,, it can be easily shown that & is odd.
Let k =4g=*1. By (2.5), we get

2u* = U,y =U,, (modU,).

Since 8|U,, the previous congruence becomes 2u’=+4(mod8), which is
impossible. Suppose (3.6) is satisfied. We show that if ¥, =27, then, 3|n. Let
n=6g+r, 0<r<5. Then, by (2.6), it follows that V =V (modU,), implying that
2v? =V (mod5) since 5|U,. From this, it follows that »=0 or 3. This shows that

3|n. Returning to the equation V,, =2v’, we have k=3r. Thus

%

V.. =V, =V, (V,—3)=2v" by (2.15). This implies that v’ = ;’ (V. =3). On the

3.2r

other hand, since V’>—12U’=4 by (2.13), we see that 3{V,. Thus,

(%, V2 —3) =1. Then, we have V;. —3=a’, which is impossible.

Now we consider the case P’ =1(mod?7). Since 7|V,, it follows from Lemma 3.2

that n=4¢ for some odd integer ¢. Let #>1. We can write ¢t =4¢g+1 with ¢ >1 and
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therefore n=4tr=2-2"a+4, with a odd and r>3. Thus by (2.4), we get
V,==V,(modV,). If r =3, then,

7x* =-V,(modV;) (3.7)
and if » > 3, then,

7x* =¥, (mod V). (3.8)

Since V,=V;-2 by (2.12), it follows that V,=-2(modV,) and therefore

V, =2(modV,). Note that V, =P*+4P* +2. Since P’ =1(mod7), we see that
7|V, and therefore by (2.12), we have V, =-2(mod7) and Vzr =2(mod 7). Besides,

since P is odd, it follows that V, = 7(mod8) and V; = 7(mod8). Also,

But this is impossible since

R N R Ve AT e B N
e[ E)reneda 5
Vil Bl o222
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Now assume that » >3, so that (3.8) is satisfied. Then, it follows that

and
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But this is also impossible since

) PN 0 PN -2 TR e
FFefs o) [
Vool o o[ 2 )=
el

Hence, we  conclude that t=1. Then, n=4 and  therefore

and

V,=(P*+2)’—-2=V, =7x". Now, we consider the equation u’-7v*=2 with

u=P>+2. By Lemma 3.4, we get

P’ +2=3(U,,(16,-1)~U, (16,-1)).

From now on and until the end of the case P> =1(mod7), instead of U, (16,-1), we

will write U, . Let m=4g+r, 0<r <3. Then, by (2.5), it follows that

U

4q+r

=U, (modU,),

leading to

P> +2=3(U,, —U )(mod16)

since 16|U,. A simple calculation shows that » =0 and therefore 4|m. So, we can

write m=12q, 12g+4 or 12g+8. If m=12¢g +4, then, we obtain
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P’ +2= 3Uigss —Uizgra) =3(Us U, )(mod Uy)

by (2.5). Since 5|U,, we immediately have P’ +2 =0(mod5), which is impossible.

The remainder of the proof is split into two cases.

Case I: Let m=12qg with ¢>0. If ¢ >0, then, we can write m=12¢=2-2"-3a,
with @ odd and »>1. Thus by (2.7), we get

2 _ —
Pre2= 3(U2.2r Jasl Uz-z"~3u =—3(mod VZ" ):
leading to
P? =-5(mod V2 /2). 3.9

If »>2, then, a simple calculation shows that Vzr =2(mod8) and Vzr =—1(mod)).

Thus, Vzr /2=1(mod4) and Vzr /2 =2(mod5). From (3.9), it is seen that

1[ _1 J[ 5 ]
V.2 \v. /2
2 2

But this is impossible since

and

Hence, we get 7 =1. By (2.7), it follows that P’ +2=3(U,,,., —U,.,)=-3(modV,),

6a+1

i.e., P> =-5(modV¥, /2). This implies that
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lz[n_/lzjﬂns/zj'

Using the fact that V, /2 =1(mod5) and V, /2 =3(mod4), we readily obtain

(- 5 ) (Ve/2)_ . (1)
1_(1/6/2}(1/6/2] (1)[ 5 j (1)(5j L

a contradiction. Thus, we get ¢=0. Then, m=0 and therefore P’ +2=23. This

gives that P=1.

Case II: Let m=12¢g+8 with ¢ >0. This implies that m =12u—4 for some u > 0.
Then, by (2.7), we get

P +2= 3WUs329-3 =Uss044) =3(U_, =U) =3(U, U, )(mod V).

A simple calculation shows that 11|V}, U, =5(mod11), and U, =2(mod11). Thus, it

is seen that P* =7(mod11), which is impossible since (%j = (I—Tj =-1.
Assume that P? =2(mod 7). Since 7|V, it follows from Lemma 3.2 that n=4¢ for

some odd integer ¢. Similar arguments used for the case when P’ =1(mod7) show

that P=1. But this is impossible since P> =2(mod 7).

Assume that P? =4(mod 7). Since 7|V,, it follows that n =3¢ for some odd integer

t by Lemma 3.2. Hence, V,

n

=V, =V.(V? +3) from (2.15). Clearly, (V,,V> +3)=1 or
3. Let (V,,V> +3) =1. Then, either

V.=a’, V}+3=1b" (3.10)

t

or
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V.=7a’, V}+3=b" (3.11)
for some positive integer a and b. But the two relations (3.11) lead to

b*> =3(mod 7), which is impossible, hence (3.10) is satisfied. Solving the systems of
equations ¥, =a’®, V?+3=7b" gives a*—7b° =-3, which has no positive integer

t

solutions by Lemma 3.7. It is obvious that (3.11) is not satisfied. Because, we get

b* =3(mod7) in this case. Let (V,, V> +3)=3. This implies that either

V.=3a*, V?+3=21p° (3.12)

t

or

V.=2la’, V}+3=3b" (3.13)

for some a,h>0. Assume that (3.12) is satisfied. Then, we get 9a* —21b° = -3,
which has no positive integer solutions by Lemma 3.8. Now assume that (3.13) is

satisfied. Since 3|V, and ¢ is odd, it follows from Lemma 3.1 that 3| P. On the other
hand, it is seen that V> =V,, —2 by (2.12). Combining the equation V> =V,, —2 with
V?+3=3b" gives V,,=3b>—1. Let ¢>1. Then, we can write t=4g+1=2"z+1

with z odd and r>2. And so, by (2.4), we get V,, =V

22" z42

= -V, (mod Vzr ),

implying that

3b* =—(P* +2-1)=-U,(mod V).

2"

This means that [;U3Jl. We have (;—IJI and {%Jl by (2.9) and
2" 2"

(2.31), respectively. On the other hand, Vzr =2(mod3) by (2.34), leading to

Therefore,
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[%73][%][%}[%(1)(1)(1)1,

which contradicts the displayed relation a few lines above. Hence, ¢ =1 and therefore

V. = P =210 But this contradicts the fact that P? =4(mod 7).
By using Theorem 2.2.12, we have the following corollary.

Corollary 3.2. The equations 49x* — (P> +4))” =+4 have positive integer solutions

only when P=1 or P=>5a" with a odd.

Theorem 3.5. If P is odd, then, a relation of the form ¥, =7V x*, with V #1, is

possible if and only if P*=-3+70, (hence P is given by Lemma 3.5) and
(n,m)=(3,1).

Proof: The strategy of the proof is as follows. We will prove that, when ¥ #1 and
either P is divisible by 7, or P> =1,2(mod7), then, the equation ¥, =7V x* is
impossible. And then, we will prove that, if P> =4(mod7), then, (n,m)=(3,1). Note
that, in this last case, the relation ¥, =7V,x> is equivalent to P> —7x* =-3, hence P

is obtained by applying Lemma 3.5.

Case I: Assume that 7| P and ¥, =7V, x*. Since 7|V, it follows from Lemma 3.2
that n>3 is odd. Furthermore, since V, |V, there exists an odd integer ¢ such that
n=mt by (2.27). Thus, m is odd. Therefore, we have V, =nP(modP’) and
V. =mP(mod P*) by Lemma 2.1.1. This shows that nP=7mPx’(modP?), i.e.,

n=7Tmx*(mod P). Since 7|P, it is obvious that 7|n. Since 7|n and n=mt, it is
seen that 7|mt¢. Assume that 7|z. Then, t =7s for some odd positive integer s and

therefore n = mt ="Tms. By (2.22), we immediately have
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W, =V, =V, =V, (Vo + Vo =2V

2ms 2ms 2ms

~1) =V, (Ve + TV +14V,7 +7),

by (2.24). This implies that 7 divides the parenthesis, i.e.,
TN (Vo + Vo =2V =1)-

2ms 2ms 2ms

Hence, we get

, VmS(W I ) /4 —1J

X = 2ms 2ms 2ms
Vm

7

We have

v 7 v’ 7

m

(@ me+V;,,s—2V2,,,s—1j:[@ V,fs+7V,;2+14me+7J_1

Then,

V. =Va adV, +V. =2V, —1=7b"

ms 2ms 2ms 2ms

for some a,b>0. By Theorem 2.2.5, we have ms =3, m=1, and P=1 or ms=m.
If m=1 and P=1, then, we see that V =V, =P =1, which is impossible since
V. #1. If ms=m, then, s=1. Since n="Tms, we get n="Tm. By (2.4), it follows

=7,

2-4m—m

that V =V, =V,

8m—m

=-V_ (modV,), implying that 7V x* =V (modV,).

Since V, is odd, it follows by (2.29) that (U,,.V,)=1. But U, =U,V, , by (2.11),

m? m’ m?>

hence (V,

m

,V,)=1. Therefore, the congruence becomes 7x°=1(modV,). Using the

fact that 7| P, we have

NN S ATVENCATS
1—(V4j(1) (J(D(J 1,
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a contradiction. Now assume that 7 | ¢, so that 7|m. So, we can write m =7"a with

7fa and r>1. By (2.25), we get V, =V =7V, (7a,+1) for some positive
integer a,. Thus, we conclude that ¥, =V =7V, (7a,+1)(7a,+1)--(7a, +1) for
some a, >0 with 1<i<r. Let 4=(7a,+1)(7a,+1)---(7a, +1). As a consequence,

V=TV A Tt is clear that 714 In a similar way, we see that

V,=V, =TV, (7b+1)(7b,+1)-+(7b,+1) for some b, >0 with 1<j<r. Thus,

we have V, =7V, B, where B=(7b+1)(7b,+1)---(7b, +1). Clearly, 71 B. Upon
substituting the values of ¥, and V, into V,=7V x’, we obtain
7V .B=7-TV, Ax*, implying that V ,B=7V,Ax’. By Lemma 2.1.1, it is seen that
atPB =7aPAx*(mod P*), which gives that atB=7aAx’(modP). Since 7|P, it

follows that 7| azB. But this is impossible since 7{a, 71, and 71 B.

Case II: Assume that P> =1(mod7). From Lemma 3.2, it is seen that n=4¢ for
some odd positive integer ¢. Therefore, we can write n=12q for some odd g or
n=12g+4 for some even ¢. Firstly, let n=12¢g. And so, by (2.2), we get
V, =V, =V, =Vo(modUy). Since U, =P’ +4P’+3P and P is odd, it is easily
seen that 8|U,. Hence, we have V, =2(mod8). Secondly, let n=12g+4. Then, we
immediately have from (2.2) that V, =V, ., =V,4,., =V.,(modU,), implying that
V. =V,(mod8). Using the fact that ¥, =P*+4P’>+2 and P is odd, we obtain
V, =7(mod8) in this case. Hence, we conclude that V, =2,7(mod8). On the other
hand, since V, |V,, we get n=ms for some odd s by (2.27). It is known that 4|n
and s is odd. Hence, we see that 4|m and therefore m =4u for some odd u. And

so, with arguments similar to those a few lines above, we have V =2,7(mod8).

Thus, 7V, =14,49 = 6,1(mod8). As a consequence,
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0
V. =7V x*=1,641}+=0,1,4,6(mod8).
4

But this contradicts the fact that V, =2,7(mod8).

Case III: Assume that P> =2(mod 7). Since 7|V, it follows from Lemma 3.2 that
n =4t for some odd ¢. Furthermore, since V, |V, there exists an odd integer s(>1)
such that n=ms by (2.27). Thus, we can write s =4¢g 1 for some ¢ >1. Since 4|n
and s is odd, it is seen that m is even and also 4 |m. Upon substituting n =ms and

=V (modU,,) by (2.2). This

ms 2-2mg+m

s=4qgxl into V,, we get V, =V, =V, .., =V,
implies that 7V, x* =V, (modU, V, ) by (2.11). Dividing both sides of the congruence
by ¥, gives 7x* =1(modU,,). Since 4|m, it is clear from (2.28) that U, |U, . Since

U, =U,V, by (2.11), the preceding congruence becomes 7x” =1(modV,), i.e.,

7x* = 1(mod P* +2). (3.14)

This means that (Pz 2) =1. Using P* =2(mod7), we get
+

A (E g

a contradiction.

Case IV: Assume that P° =4(mod 7). Since 7|V, it follows from Lemma 3.2 that
n=3t for some odd positive integer t. Moreover, since V, |V, , it is obvious that
n=ms for some odd s>1 by (2.27). And so, we can write s =4g+1 with g>1.
Thus, we get n=ms=4gm+tm. From now on, we divide the proof into two

subcases.
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Subcase (i): Let 3|m. Then, by (2.28), it is clear that U,|U,. Substituting

n=4gm+m into V¥V ~ and using (2.2) and (2.11), we obtain
Vo =Vimim =Varmgim =Ven(modU, V), ie., 7x* =%l(modU,,). Since U,|U, and

U, = P> +1, we conclude that

7x* =+1(mod P* +1). (3.15)

It is clear from (3.15) that

2
7x* = il(mod P 2+1j.

P?+1

Let 7x* = l[mod j This shows that

A
(PP+1)/2)

2

Since P* =4(mod?7), it follows that Pl

=-1(mod 7). Hence, we get

2

a contradiction. Similarly 7x* = —l(mod j leads to a contradiction.

Subcase (ii): Let 31 m. Since 3|n and n=ms, it follows that 3|s and therefore

s =3k for some odd k. Thus, we get n=ms =3mk. Substituting this into V' gives
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V, = Vs =V, (V5 +3) by (2.15). This implies that 77,x* =V, (V,; +3). ie.

n

7x* = %(ank +3). Clearly, d = (%,ank +3J =1 or 3. Let d =1. Then, either

m m

v.=Va, V., +3=17b (3.16)
or

V.= a, V., +3=b (3.17)

for some a,b>0. We immediately see that (3.17) is not satisfied. Because the only
possible value of V,, for which V +3=5" is V,, =1, which is impossible. Assume
that (3.16) is satisfied. Then, by Theorem 2.2.5, we obtain mk =3, m=1, and P=1
or mk=m. If mk=3 and P=1, then V> +3=V"+3=(P'+3P)’ +3=19="7b,
which is impossible. If mk=m, then, k=1. So, it is sufficent to consider the

equation V) +3=7b". From (2.12), it follows that ¥, +1=7b". Assume that m>1.
Since m is odd, we can write 2m=2(4g+1)= 2(2’z)i2 with z odd and r>2.
Then, by (2.4), we get

Ve =V, , . ==V, =~(P*+2)(modV,),

" 22"z
implying that
7h* =—(P* +2-1)=-U,(mod V).

This means that 1[;%}. We have {;—IJI and [%Jl by (2.31) and

2" 2r 2r

(2.9), respectively. On the oher hand, it is easy to see that Vzr =6(mod7) when

P?> =4(mod 7). Thus, we get
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Combining the above, we see that

I A S U el N | VA I 25 B _
1[ VJ Mmu CHmO=

a contradiction. Hence, we get m =1and therefore n=3m=3. Substituting m=1

into ¥, +1=7b" gives P?—7b*>=-3 which has solutions by Lemma 3.5. Thus,

(m,n)=(1,3) is a solution. Let d = 3. Then, we obtain

V. =3V.d, V2 +3=21p (3.18)
or

v.=2Wa, V., +3=3b" (3.19)

for some a,b>0. Assume that (3.18) is satisfied. Then, by Theorem 3.2, the only
possible values of mk and m for which V, =3V a® are mk=3 and m=1. This
implies that V7 +3=21b". Thus, we get V; =4(mod7). This is impossible since
7|V,. Now assume that (3.19) is satisfied. Since 3|V, and mk is odd, it is seen that
3| P by Lemma 3.1. On the other hand, V>, =V,  —2 by (2.12). Combining the
equations V' =V, -2 and V. +3=3b", we get V, =3b"-1. Let

mk =4q+1=2"z+1 with z odd and » >2. And so, by (2.4), we obtain

Vi =V, =—V>(modV,),

22" 24
implying that
3 =—(P*+2-1)=— J(mod V).

This shows that
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We have [;—IJI by (2.9), (%J =1 by (2.31), and Vzr =2(mod3) by (2.34).

2" 2"

Thus,

Combining the above, we see that

(IR g

Il
|
[a—
-

a contradiction.

Theorem 3.6. If P is odd, then, U, =7x" is possible if and only if P =7 and
n=2.

Proof: Assume that U, = 7x° for some x> 0. Since 7|U,, it follows that n=2¢ for
some positive integer ¢ by Lemma 3.3. And so, by (2.11), we get

U,=U, =UV,=7x". Clearly, (U,V,)=1 or 2 by (2.29). Let (U,,V;)=1. Then,

27t

either

U=a* V=170 (3.20)
or

U=7a,V,=b (3.21)

for some a,b> 0. Assume that (3.20) is satisfied. Then, by Theorem 3.4, the possible
values of ¢ for which V, =7x> are t=1 when 7|P and ¢=4,P=1 when

P? =1(mod7). If t =1, then, n=2 and therefore P =70 is a solution. If =4 and
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P=1, then, U, = P’+2P=3=4a’, which is impossible in integers. Now assume
that (3.21) is satisfied. Since 7|U,, it is seen from Lemma 3.3 that ¢ is even. Let
t =2m. Then, by (2.12), we see that b* =V, =V, =V +2, which is impossible. Let

(U V) = 2. Then, either

27t

U =2a’, V,=14b" (3.22)

t

or

U =14a’, V,=2b" (3.23)

for some a,b> 0. According to Theorem 3.3, (3.22) cannot hold. Assume that (3.23)
is satisfied. Then, by Theorem 2.2.3, we have t=6 and P=1,5. But this is also

impossible. For, otherwise we would have 14a* =U, =UJV, = (P> +1)(P’+3P),

which is impossible for P =1,5.

By Theorems 2.2.12 and 2.2.14, we give the following corollary.

Corollary 3.3. The equations x° —49(P>+4)y* =44 and 49x* -7Px’y—y* ==+1

have positive integer solutions only when P =7a” with a odd.

Theorem 3.7. Let P be odd, m>1 and U, #1. The equation U, =7U, x> has

solution only when P’ =1(mod7), in which case, the only solution is given by

(n,m,P,x)=(8,4,1,1).

Proof: Assume that U, =7U, x> with m>1. Since U, |U,, it follows from (2.28)
that m|n. Thus, n=mt for some positive integer ¢. It is easy to see that n#m.
Then, we have #>1. On the other hand, since 7|U,, it is seen that n is even by

Lemma 3.3. Since #n is even and n = mt, either m or ¢ is even.
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Case I: ¢t is even. Then, 7r=2s for some s>0. By (2.11), we have
u,=U,,=UV =70 x*. This yields that (U, /U,)V, =7x*. Clearly,

ms ms- ms ms

(U, /U,.V, )=1or2 by (229).1f (U, /U,.V, )=1, then, either

U, =Uad, V, =7b (3.24)

or

U, =704V, =b’ (3.25)

for some positive integers a and b. By Theorem 3.4, the identity (3.24) is
impossible when P*=2(mod7) or P’ =4(mod7). If 7| P, then, by Theorem 3.4,
we have ms =1. But this contradicts the fact that m >1. If P> =1(mod7), then, by
Theorem 3.4, it follows that ms =4 and P=1. Since m>1, we get m=4, s=1 or
m=2, s=2. Let m=4, s=1. Since t=2s and n=mt, we get n=28. Hence,
U, =7U,x*, implying by (2.11) that ¥, =7x. Since P=1, we obtain x=1. So,
(n,m,P,x)=(8,4,1,1) is a solution. Now, let m =2, s=2. Then, we readily obtain

n=38 and therefore U, =7U,x". By (2.11), it follows that V,V, =7x". Since 7|V,
Vi _ > Vi _ 2
we get V27—x. Clearly, V2,7 =1 by (2.29) and (2.26). Then, V,=a",

V,=17b" for some a,b>0. Since P=1, it follows that V, = P> +2=3=a’, which

is impossible. If (3.25) is satisfied, then, by Theorem 2.2.2, we have ms =3 and

P=1 or 3. Since m>1 and ms=3, it follows that m=3. This implies that

U, =7U,x", which is impossible. If (U, /U

m?>

V.. )=2, then, either

U, =2Ud° V, =14p (3.26)

ms

or
U, =140 a>, vV, =2b (3.27)

ms

for some positive integers a and b. Clearly, (3.26) is excluded by Theorem 3.3.
Suppose (3.27) is satisfied. Then, by Theorem 2.2.3, we have ms=6 and P=1,5.
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Since m>1, it follows that m=2,3 or 6. If m=2, then, U, =14U,a’, implying
that (P* +1)(P*+3)=14a4> which is impossible in integers for the case when
P=1,5. If m=3, then, U,=14U,a’, implying that (P°+3P)=14a’, which is
impossible. Lastly, if m=6, then, U, =14U6a2, implying that 1=144", which is

also impossible.

Case II: ¢ is odd. Since n=mt and n is even, it follows that m is even. Let

m=2s. Then, it follows that »n=2st+ and so, by (2.11), we get

st st st st” st

U =U, =UV, =7U, x>=7U_V x*. This implies that £Q=7x2. Clearly,
n 2 2st U

N s

d =(%,&J=1 or 2. Let d =1. Then, either

N N

U,=Ua’, V,=7Vb (3.28)

st N

or

U,=710.a, Vv, =Vp’ (3.29)

for some a,b>0. Suppose (3.28) is satisfied. Then, by Theorem 3.5, we get s=1
and st=3. This implies that U, =U,a’, that is, P> +1=a", which is impossible.
Suppose (3.29) is satisfied. Then, by Theorem 2.2.5, we obtain st=3, s=1, and
P=1 or st=s. If st=3, s=1, and P=1, then from U,6=7Ua’, we have
U,=7U,a’, leading to 2=7a’, which is impossible. If st=s, then again from

U, =7U.a*, we have 1="7a’, which is impossible. Let d = 2. Then, either

U,=2U.a’, V,=14V.b’ (3.30)
or

th = 14U§a2’ V;t = 2I/§b2 (331)
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for some positive integers a and b. Assume that (3.30) is satisfied. Then, by
Theorem 2.2.4, the possible values of sz, s, and P for which U, =2U.a’ are
st=3, s=2, P=1, st=6, s=2, P=1, st=12, s=3, P=1;, st=12, s=6,
P=1; or st=12, s=6, P=5. A simple computation shows that V, =14V.b* is
impossible under all the conditions that when P=1. If P =35, then, this is impossible
for the case when 7|P or P’ 51,2(m0d7). On the other hand, since 7|V, it

follows from Lemma 3.2 that sz =37 with » odd for the case when P’ =4(mod?7).

This means that s¢ is odd. But this contradicts the fact that sz =12 is even. Assume

that (3.31) is satisfied. Then, by Theorem 2.2.6, we get s=1 and P=1. Since
m=2s, it follows that m=2. Substituting this value of m into U, =7U, x"° gives
U, =7U,x* =7x’. By Theorem 3.6, the equation U, =7x” is possible if and only if

n=2. As a consequence, we have m=2 and n=2. But this is impossible since

n=+m.



CHAPTER 4. CONCLUSIONS AND SUGGESTIONS

In this thesis we dealt with the generalized Fibonacci numbers U, (P,Q) and Lucas
numbers V, (P,Q) of the form kx* with the special consideration that P is odd and

O=+1. The cases k=5 and k=7 are the ones of interest to our thesis. The main

tools that we employed are the Jacobi symbol that we made extensive use of it,
divisibility properties, and congruences concerning generalized Fibonacci and Lucas

numbers. In the second subchapter of Chapter 2 of this thesis, we, assuming O =1,
considered the equations U, (P,1)=5x* and U, (P,1)=5U, (P,1)x> under some
assumptions on P. Besides, we considered the equation V,(P,1)=5x> for the case

when P is odd. We also considered the equation V,(P,1)=5V, (P,1)x* and proved

that this equation has no solutions. Applying the results of findings, we solved some
Diophantine equations. This work has been published in International Journal of
Number Theory [68]. In the third subchapter of Chapter 2 we considered the similar
problem for the case when Q =—1. Finally, in Chapter 3, for all odd values of P, we

solved the equations U, (P,1)=7x*, U, (P,)=7U, (P,)x*, V (P,1)=7x>, and
V. (P,1)=17V, (P,1)x’. And again applying these results, we solved some Diophantine

equations. Chapter 3 and the third subchapter of Chapter 2 are still under

consideration in some journals.

Except the works mentioned above, there are various works that can be made. For
instance, the equations U, (P,—1)=7x*, U (P,-1)=7U, (P,-1)x*, V (P,~1)=7x",
and V, (P,—1)=7V, (P,—1)x’ can be first solved. It is also possible to consider the
equations U, (P,*+1)=kx* and V,(P,%1)= kx> for another special values of prime &

such that k=11, 13,17,.., and in general for any prime k. Considering the
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equations V,(P,+1)=5x" and V, (P,+1)=7x> when P is even is an open problem,

yet.

The equations V,(P,1)=kx* and V,(P,—1)=kx* were solved when P is odd and
k| P in [58] and [66], respectively. Similarly, it can be investigated the solutions of
the equations V,(P,+1)=5k¢* and V,(P,+1)=7kx* under the conditions that P is
odd, k| P and k>1.

In [69], Alexseyev and Tengely showed the finiteness of the terms of the form

am’ +b, for fixed integers a =0 and b, in a Lucas sequence U, (P,Q) or V, (P,Q)
with O ==1, unless this sequence is V,(P,Q) and b==2. In [66], Keskin solved the
equations V (P,-1)=kx’ F1, V,(P,—1)=2k* 1, and U, (P,—1)=kx<*F1 when P
is odd, k|P and k>1. Moreover, the author solved the equations
V. (P,—1)=wx’F1 for we{2,3,6}. So, the same problems can be considered for
QO =1. Furthermore, the equations V,(P,+1)=5kx’ +1 and V,(P,+1)=7k<* £1 can
be solved when P is odd, k|P and k>1. Also, it is possible to consider the

equations V,(P,+1)=5x>+1 and V,(P,+1)=7x" 1.
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