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SUMMARY 

 

 

 

Keywords: Fibonacci Numbers, Lucas Numbers, Generalized Fibonacci Numbers, 

Generalized Lucas Numbers, Diophantine Equations, Pell Equations, Congruences, 

Jacobi Symbol 

 

Investigations of the properties of generalized Fibonacci and Lucas sequences have 

been able to hold mathematician’s interest over time. These investigations have 

given rise to questions in when the terms of generalized Fibonacci and Lucas 

sequences are perfect square (= ). 

 

In this thesis, it is dealt with generalized Fibonacci numbers ( , )nU P Q  and 

generalized Lucas numbers ( , )nV P Q  of the form 2kx  with the special consideration 

that 1Q = ±  and 5k =  or 7.k =  

 

In Chapter 1, the historical information about Fibonacci’s life and Fibonacci and 

Lucas sequences are briefly mentioned. Then, the definitions of generalized 

Fibonacci and Lucas sequences are given. Since there is a close relation between the 

terms of these sequences and the solutions of certain Diophantine equations, it is 

mentioned about Diophantine equations and Pell equations, which are the special 

cases of Diophantine equations. Furthermore, the literature concerning generalized 

Fibonacci and Lucas numbers of the form 2kx  are given.  

 

In Chapter 2, the most important properties of generalized Fibonacci and Lucas 

numbers are listed. In the succeeding subchapters, generalized Fibonacci and Lucas 

numbers of the form 25x  are considered with special consideration that 1Q = ±  and 

some results are obtained. By the help of these results, it is observed the close 

relation between the terms of generalized Fibonacci and Lucas sequences and the 

solutions of certain Diophantine equations. Also, the equations 

( ,1) 5 ( ,1) ,n mU P U P= ) ,  ( , 1) 5 ( , 1) ,n mU P U P- = - ) ,  ( ,1) 5 ( ,1) ,n mV P V P= ) ,  and 

( , 1) 5 ( , 1)n mV P V P- = -  are solved. 

 

In Chapter 3, the equations ( ,1) 7 ,  ( ,1) 7 ( ,1) ,n n mU P U P U P= =7 ,  ( ,1) 7 ( ,1) ,n n m7 , ( , ) 77 , ( , ) 77 ,  ( ,1) 7 ( ,7  ( 1) 7 (7 , ( , ) 77 , ( , ) 77 , ( , ) 77 , ( ,1)7 , ( ,1), ( ,1)  ( ,1) 7 ,nV P = 7 ,  and 

( ,1) 7 ( ,1)n mV P V P=  are solved. 
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2kx  BİÇİMİNDEKİ GENELLEŞTİRİLMİŞ FİBONACCİ VE 
LUCAS SAYILARI 

 

 

ÖZET 

 

 

Anahtar kelimeler: Fibonacci Sayıları, Lucas Sayıları, Genelleştirilmiş Fibonacci 
Sayıları, Genelleştirilmiş Lucas Sayıları, Diyofant Denklemleri, Pell Denklemleri, 
Kongrüanslar, Jacobi Sembolü 

 

Genelleştirilmiş Fibonacci ve Lucas dizilerinin özelliklerini içeren araştırmalar 
zamanla matematikçilerin ilgisini çekmiştir. Bu araştırmalar hangi durumlarda 
genelleştirilmiş Fibonacci ve Lucas dizilerinin terimlerinin tamkare (= ) oldukları 
sorusunu akıllara getirmiştir. 
 

Bu tezde 2kx  biçimindeki genelleştirilmiş Fibonacci sayıları ( , )nU P Q  ve 

genelleştirilmiş Lucas sayıları ( , ),nV P Q  1Q = ±  ve 5k =  veya 7k =  özel şartları 

altında incelendi. 

 

Birinci bölümde, Fibonacci’nin hayatı ve Fibonacci ve Lucas dizileri hakkında 

tarihsel bilgiler verildi. Ardından, genelleştirilmiş Fibonacci ve Lucas dizilerinin 

tanımları verildi. Bu dizilerin terimleri ile bazı Diyofant denklemlerinin çözümleri 
arasındaki yakın ilişkiden dolayı Diyofant denklemleri ve Diyofant denklemlerinin 

özel durumları olan Pell denklemlerinden bahsedildi. Ayrıca, 2kx  biçimindeki 
genelleştirilmiş Fibonacci ve Lucas sayılarını içeren literatür bilgisi verildi. 

 

İkinci bölümde, genelleştirilmiş Fibonacci ve Lucas sayılarının en önemli özellikleri 

listelendi. İkinci bölümün alt bölümlerinde, 25x  biçimindeki genelleştirilmiş 
Fibonacci ve Lucas sayıları, 1Q = ±  özel şartları altında ele alındı ve bazı sonuçlar 

elde edildi. Elde edilen bu sonuçlar yardımıyla, genelleştirilmiş Fibonacci ve Lucas 
dizilerinin terimleri ile bazı Diyofant denklemlerinin çözümleri arasındaki yakın 
ilişki gözlemlendi. Ayrıca, ( ,1) 5 ( ,1) ,n mU P U P= ) ,  ( , 1) 5 ( , 1) ,n mU P U P- = - ) ,  

( ,1) 5 ( ,1) ,n mV P V P= ) ,  ve ( , 1) 5 ( , 1)n mV P V P- = -  denklemleri çözüldü.  

 

Üçüncü bölümde, ( ,1) 7 ,nU P = 7 ,  ( ,1) 7 ( ,1) ,n mU P U P= ) ,  ( ,1) 7 ,nV P = 7 ,  ve 

( ,1) 7 ( ,1)n mV P V P=  denklemleri çözüldü. 

 



 

 
 

CHAPTER 1. INTRODUCTION 

 

 

Leonardo Fibonacci, also called Leonardo Pisano or Leonard of Pisa, is the greatest 

mathematician of the European Middle Ages and has a significant impact on 

mathematics. Although his work is quite well known, little is known about his life. 

Leonard of Pisa (1175 1250)-  was born in Pisa, Italy.  

 

Fibonacci’s father Guglielmo Bonacci was a kind of merchant at Bugia, a town on 

the Northern Africa, located in present day Algeria. He wanted his son Fibonacci to 

follow his trade. So, he brought Fibonacci to Bugia and encouraged him to learn 

arithmetic and the skill of calculation. Fibonacci was educated by a Muslim 

schoolmaster, who introduced him Hindu-Arabic numeration system and some 

computational techniques.  

 

While most of Europe at that time were using Romen numerials, Fibonacci realised 

the many advantages of Hindu-Arabic system which was much more efficient and 

easier to work with. 

 

Fibonacci then travelled around the Mediterrenean visiting Egypt, Syria, Greece, 

South France, and Constantinople. During these visits, he became familiar with 

languages Latin, Arabic, and Greek. He came in contact with early works, especially 

with arithmetic, algebra, and geometry. After his extended visits to different countries 

of the world, Fibonacci made an extensive study of Greek, Babylonian, Indian, and 

Arabic mathematics. 

 

Fibonacci returned to Italy around 1200 and in 1202, he published his work Liber 

Abaci (Book of Counting), which was a major famous book in the Middle Ages 

provided a good deal of interest in mathematics for further study and research in 

arithmetic, algebra, and geometry. 
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Liber Abaci contained not only rules and algorithms for computing with Hindu-

Arabic numeration system, but also a large collection of interesting problem of 

various kinds. A second edition of Liber Abaci was published in 1228. 

 

Fibonacci produced other books such as Practica Geometriae (Practice of Geometry) 

in 1220 and Liber Quadratorum (Book of Square Numbers) in 1225. 

 

In spite of his many influential contributions to mathematics, Fibonacci is not most 

remembered for any of these reasons, but rather for a single sequence of numbers 

that bears his name, which comes from a problem he poses in Liber Abaci. 

 

The result of the problem generates the sequence of numbers, for which Fibonacci is 

the most famous: 

 

1,1,2,3,5,8,13,21,34,55,¼ 

 

The sequence of numbers above is known as Fibonacci sequence, in which each new 

number is the sum of the two numbers preceeding it. 

 

The terms of the Fiboancci sequence are referred to as Fibonacci numbers and the 

n th term of Fibonacci numbers is denoted by nF . The first and the second Fibonacci 

numbers are given as 1 2 1.F F= =  All the other terms are defined by the relation 

 

 1 1n n nF F F+ -= +   (1.1) 

 

for 2.n ³   

 

Sequences defined in this manner, in which each term is defined as a certain function 

of previous terms, are called recursive sequences. The process of assigning a 

numerical value to the individual term is called a recurrence process, and a specific 

equation that describes a recurrence process, like equation (1.1) above, is called as a 

recurrence relation. 
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It was the French mathematician François Edouard Anatole Lucas who gave the 

name Fibonacci sequence in May of 1876. He found many other important 

applications as well as having the series of numbers that are closely related to 

Fibonacci numbers, called Lucas numbers. And Lucas numbers are given as the 

following: 

 

2,1,3,4,7,11,18,29,47,76,¼ 

 

The terms of Lucas sequence are referred to as Lucas numbers and the n th Lucas 

number is denoted by .nL   As it is seen from the sequence of numbers above, the first 

and the second Lucas numbers are given as 1 2,L =  2 1L =  and therefore these 

numbers satisfy the recurrence relation 

 

1 1n n nL L L+ -= +  

 

for 2.n ³  

 

Fibonacci and Lucas numbers appear in almost every branch of mathematics, 

obviously in number theory, but also in differantial equations, probability, statistics, 

numerical analysis, and lineer algebra. They also occur in physics, biology, 

chemistry, and electrical engineering. For more detailed information about how 

Fibonacci and Lucas numbers appear in the branch of mathematics and also in 

nature, we refer the reader to [1]. 

 

If we look at ratios of consecutive Fibonacci numbers or Lucas numbers, we see that 

these ratios appear to approach a number close to 1.618...,  which is known as golden 

ratio. This property was first discovered by astronomer mathematician Johannes 

Kepler. 

 

Discovering the value of a Fibonacci number or a Lucas number can be sometimes 

tedious and difficult. For instance, finding the fifth Fibonacci number or Lucas 

number is not difficult but finding the twentieth Fiboancci number or Lucas number 
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is much more difficult since the process involves finding and summing the previous 

nineteenth terms. 

 

In 1843, the French mathematician Jacques Marie Binet (1786 1856)-  discovered a 

closed formula, called as Binet’s formula, which can find any Fibonacci number or 

Lucas number without having to find any of the previous numbers in the sequences. 

The Binet formulas are as follows: 

 

n n

nF
a b
a b
-

=
-

  and ,n n

nL a b= +  

 

where 
1 5

2
a

+
=   and 

1 5

2
b

-
=  [2]. 

 

Actually, these formulas were first discovered in 1718 by the French mathematician 

Abraham De Moivre (1667 1754)-  using generating functions, and also 

independently in 1844 by the French engineer mathematician Gabriel Lamé 

(1795 1870).-  

 

After people began to pay more analytical attention to the nature and surrounding 

them, they noticed that Fibonacci and Lucas numbers are everywhere. So that reason, 

many mathematicians started to deal with these numbers. 

 

In fact, both Fibonacci numbers and Lucas numbers have many beautiful, interesting 

and useful properties. Especially, congruences, divisibility properties, and many 

identities concerning these numbers are only a few of them and many studies have 

been made related to them. We can refer the reader to [3] to see the following 

congruences concerning Fibonacci and Lucas numbers. 

 

2 ( 1) (mod ),mn

mn r r mF F F+ º -  

2 ( 1) (mod ),mn

mn r r mL L F+ º -  

( 1)

2 ( 1) (mod ),m n

mn r r mL L L+
+ º -  
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and  

( 1)

2 ( 1) (mod ),m n

mn r r mF F L+
+ º -  

 

for all { }0nÎ È{ }0È  and , ,m rÎ ,  where m  is a nonzero integer.   

 

It was shown by using Binet’s formula that 2 .n n nF F L=  So, 2| .n nF F  In order to 

generalize this, mathematicians thought about under what conditions does | ?m nF F  It 

was proven that if | ,m n  then, | .m nF F  The converse of this statement was proven by 

L. Carlitz in 1964.  According to Carlitz, if | ,m nF F  then, | .m n   This divisibility 

property was also given by the same author [4] for Lucas numbers. The property is as 

follows: 

 

|m nL L   if and only if |m n   and n mk=   for some odd 0,k >  

 

where 2.m ³   

 

We now turn our attention to the generalizations of these sequences. 

 

It was the work of Lucas (1842 1891)-  [5] that generalized such sequences as 

follows: 

 

If P  and Q  are nonzero integers, then, the roots of the characteristic equation 

2 0X PX Q- + =  are 

 

 
2 4

2

P P Q
a

+ -
=  and 

2 4
.

2

P P Q
b

- -
=  

 

Hence,  

,Pa b+ =  ,Qab =  and 2 4 .P Qa b- = -  
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Assuming 2 4 0,P Q- ¹  the terms of the sequences ( )( , )nU P Q  and ( )( , )nV P Q  were 

defined by Binet’s formula, namely 

 

( , )
n n

nU P Q
a b
a b
-

=
-

 and ( , ) n n

nV P Q a b= +  

 

for 0.n ³  The sequences ( )( , )nU P Q  and ( )( , )nV P Q  are known as generalized 

Fibonacci and Lucas sequences, respectively. 

 

In 1965, A. F. Horadam [6, 7] introduced the recurrence sequence ( )( , ; , ) ,nW a b P Q  

or briefly ( ),nW  defined by 

 

 1 1 0 1,  ,  ,n n nW PW QW W a W b+ -= - = =   

 

and it generalizes many important sequences (see [8, 9]), for instance: 

 

a) The generalized Fibonacci sequence ( ),nU  where  

 

(0,1; , ).n nU W P Q= -  

 

b) The generalized Lucas sequence ( ),nV  where  

 

(2, ; , ).n nV W P P Q= -  

 

c) The Fibonacci sequence ( ),nF  where 

 

(0,1;1, 1).n nF W= -  

 

d) The Lucas sequence ( ),nL  where  
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(2,1;1, 1).n nL W= -  

 

e) The Pell sequence ( ),nP  where  

 

(0,1;2, 1).n nP W= -  

 

f) The Pell-Lucas sequence ( ),nQ  where  

 

(2,2;1, 1).n nQ W= -  

 

Hence, we define the generalized Fibonacci sequence and generalized Lucas 

sequence by the following recursions: 

 

0 1 1 1( , ) 0,  ( , ) 1,  ( , ) ( , ) ( , ),  1n n nU P Q U P Q U P Q PU P Q QU P Q n+ -= = = + ³  

and 

0 1 1 1( , ) 2,  ( , ) ,  ( , ) ( , ) ( , ),  1.n n nV P Q V P Q P V P Q PV P Q QV P Q n+ -= = = + ³  

 

( , )nU P Q  is called the n th generalized Fibonacci number and ( , )nV P Q  is called the 

n th generalized Lucas number. Also generalized Fibonacci and Lucas numbers for 

negative subscripts are defined as 

 

( , )
( , )

( )

n
n n

U P Q
U P Q

Q
-

-
=

-
 and 

( , )
( , )

( )

n
n n

V P Q
V P Q

Q
- =

-
 

 

for 1,n ³  respectively. For 2 4 0,P Q+ ¹  if 2( 4 ) / 2P P Qa = + +  and 

2( 4 ) / 2P P Qb = - +  are the roots of the characteristic equation 2 0,x Px Q- - =  

then, the Binet formulas, which give the terms of the sequences ( )nU  and ( ),nV  have 

the forms 
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( , )
n n

nU P Q
a b
a b
-

=
-

 and ( , ) n n

nV P Q a b= +  

 

for all .nÎ . 

 

Since ( , ) ( 1) ( , )n

n n nU U P Q U P Q= - = -  and ( , ) ( 1) ( , ),n

n n nV V P Q V P Q= - = -  it will 

be assumed that 1.P ³  Moreover, we assume that 2 4 0.P Q+ >  Instead of ( , )nU P Q  

and  ( , ),nV P Q  we will sometimes use nU  and ,nV  respectively. 

 

As is seen from the definition of the generalized Fibonacci sequence ( )nU  and 

generalized Lucas sequence ( ),nV  Fibonacci sequence ( ),nF  Lucas sequence ( ),nL  

Pell sequence ( ),nP  and Pell-Lucas sequence ( )nQ  are the special cases of the 

generalized Fibonacci sequence ( )nU  and generalized Lucas sequence ( ).nV  

Moreover, for 1,Q = -  we represent ( )nU  and ( )nV  by ( )( , 1)nU P -  and ( )( , 1) ,nV P -  

respectively. For more information about generalized Fibonacci and Lucas numbers, 

one can consult [10, 11, 12, 13]. 

 

Generalized Fibonacci and Lucas numbers have many useful properties. The 

following properties are connected with the greatest common divisor of them. 

 

Let m  and n  be positive integers, and ( , ).d m n=  Then, 

 

g) ( , ) ,m n dU U U=  

 

h) If 
m

d
 and 

n

d
 are odd, then, ( , ) ,m n dV V V=  

 

i) If ,m n=  then, ( , ) 1 or 2,m nU V =  
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E. Lucas [5, 14], using only elementary identities, proved the parts of the statements 

above (see also Carmichael [15]). Furthermore, these can be found in [16, 17, 18, 

19]. 

 

The divisibility properties of generalized Fibonacci and Lucas numbers are as 

follows: [10, 17, 18, 19, 20]. 

 

j) If 1,mU ¹  then, |m nU U  if and only if | .m n  

 

k) If 1,mV ¹  then, |m nV V  if and only if |m n  and 
n

m
 is odd. 

 

l) If 1,mV ¹  then, |m nV U  if and only if |m n  and 
n

m
 is even. 

 

Since there is a close relation between these numbers and certain Diophantine 

equations, we mention about Diophantine equations. 

 

A Diophantine equation is an equation in which only integer solutions are allowed. 

The name “Diophantine” comes from Diophantus, an Alexandrian mathematician of 

the third century A. D., but such equations have a very long history, extending back 

to ancient Egypt, Babylonia, and Greece. In general, a quadratic Diophantine 

equation is an equation of the form 

 

 2 2 0,ax bxy cy dx ey f+ + + + + =   (1.2) 

 

where , , , , ,a b c d e  and f  are fixed integers. The principal question when studying a 

given Diophantine equation is whether a solution exists, and in the case they exist, 

how many solutions there are and whether there is a general form for the solutions.  

 

Any Diophantine equation of the form 2 2x dy N- =   is known as Pell equation, 

where d  is not a perfect square and N  is any nonzero fixed integer. Pell equation is 
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a special case of (1.2). For 1,N = ±  the equations 2 2 1x dy- = ±  are known as 

classical Pell equations. The Pell equation is perhaps the oldest Diophantine equation 

that has interested mathematicians all over the world for probably more than a 1000 

years now. The name of this equation arose from Leonhard Euler’s mistakenly 

attributing its study to John Pell, who searched for integer solutions of the equations 

of this type in 17 th century. The notations ( , )x y  and x y d+  are used 

interchangeably to denote solutions of the equation 

 

 2 2 .x dy N- =   (1.3) 

 

If x u=  and y v=  are integers which satisfy the equation (1.3), then, we say that the 

number u v d+  is a solution of (1.3).  

 

Let us consider all the solutions x y d+  of the equation 

 

 2 2 1x dy- =   (1.4) 

 

with positive integers x  and .y  Among these solutions there is a least solution 

1 1 ,x y d+  in which 1x  and 1y  have their least positive values. The number 

1 1x y d+  is called the fundamental solution of (1.4). If 1 1x y d+  is the 

fundamental solution of (1.4), then, all positive integer solutions of (1.4) are obtained 

by the formula 

 

1 1( )n

n nx y d x y d+ = +  

 

with 1n ³ . While the equation (1.4) is always solvable if the positive number d  is 

not a perfect square, the equation 

 

 2 2 1x dy- = -   (1.5) 
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is solvable only for certain values of .d  If the equation (1.5) is solvable for a given 

integer d  and if 1 1x y d+  is the least solution with positive integers 
1x  and 

1,y  

then we say that 1 1x y d+  is the fundamental solution of (1.5). If 1 1x y d+  is the 

fundamental solution of (1.5), then, 2

1 1( )x y d+  is the fundamental solution of 

(1.4). So, the square of any solution of (1.5) is obviously a solution of (1.4). 

 

We now turn to the equation 

 

 2 2 ,u dv N- =   (1.6) 

 

where d  is a positive integer which is not a perfect square and N  is a nonzero 

integer. If u v da = +  is a solution of (1.6) and x y de = +  is a solution of (1.4), 

then also 

 

( )( ) ( ) ( )u v d x y d ux vyd uy vx dae = + + = + + +  

 

is a solution of (1.6).  Let 1 1 1u v da = +  and 2 2 2u v da = +  be any two given 

solutions of (1.6). Then, 1a  and 2a  are called associated solutions if there exists a 

solution x y de = +  of (1.4) such that 

 

1 2.a ea=  

 

The set of all solutions associated with each other forms a class of solutions of (1.6). 

The necessary and sufficient condition for the two given solutions 1 1 1u v da = +  

and 2 2 2u v da = +  belong to the same class is that the numbers 

 

1 2 1 2u u v v d

N

-
 and 1 2 1 2v u u v

N

-
 

 

are integers. 
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If K  is a class, then, { }|K u v d u v d K= - + Î  is also a class. The class K  and 

K  are said to be conjugates of each other. Conjugate classes are in general distinct, 

but may sometimes coincide. If ,K K=  then, we say that the class K  is ambiguous. 

 

Nagell [21] gives the fundamental solution in a given class K  as follows: 

 

Among all the solutions u v d+  in a given class ,K  we choose a solution 

* *u v d+  in the following way: Let *v  be the least nonnegative value of v  occuring 

in .K  If K  is not ambiguous, then, *u  is uniquely determined since * *u v d- +  

belongs to the conjugate class .K  If K  is ambiguous, we determine *u  by * 0.u ³  

The solution * *u v d+  defined in this way is said to be the fundamental solution of 

the class .K  For the fundamental solution note that *u  is the least value of u  

which is possible for u v d+  belongs to the class .K  Finally note that * 0u =  or 

* 0v =  if and only if K  is ambiguous. If 1,N = ±  clearly there is only one class, and 

then, it is ambiguous. If * *u v d+ is the fundamental solution of the class ,K  then, 

all positive integer solutions u v d+  of the class K  are given by  

 

* *( )( ),u v d u v d x y d+ = + +  

 

where x y d+  runs through all the solutions of (1.4). 

 

We now give criteria for finding the fundamental solutions of the various classes of 

solutions when (1.6) is solvable. Here are the statements as stated by Nagell [21, pp. 

204 208- ]. 

 

Let the number N  in (1.6) be positive. If 0 0u v d+  is the fundamental solution of 

the class K  of (1.6) and if 1 1x y d+  is the fundamental solution of (1.4), we have 

the inequalities 

 



13 
 

 

 

 1
0 0 1

1

1
0  and 0 ( 1) .

22( 1)

y N
v u x N

x
£ £ < £ +

+
 (1.7) 

 

Let the number N  be positive in (1.6) and consider the equation 

 

 2 2 .u dv N- = -   (1.8) 

 

If 0 0u v d+  is the fundamental solution of the class K  of (1.8) and if 1 1x y d+  is 

the fundamental solution of (1.4), we have the inequalities 

 

 1
0 0 1

1

1
0  and 0 ( 1) .

22( 1)

y N
v u x N

x
< < £ £ -

-
  (1.9) 

 

Furthermore, if p  is prime, then, the Pell equation 

 

 2 2u dv p- = ±   (1.10) 

 

has at most one solution u v d+  in which u  and v  satisfy the inequalities (1.7) or 

(1.9), respectively, provided 0.u ³  If the equation (1.10) is solvable, it has one or 

two classes of solutions, according as the prime p  divides 2d  or not. 

 

Further details on Diophantine equations and Pell equations can be found in [21, 22, 

23, 24, 25, 26, 27, 28, 29]. 

 

In order to see how Fibonacci and Lucas numbers are related to Diophantine 

equations, one can see the following: 

 

It is well known that all positive integer solutions of the Diophantine equations 

 

2 25 4x y- = ±  

and 
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2 2 1x xy y- - = ±  

 

are given by ( , ) ( , )n nx y L F=  and 1( , )n nF F+  with 1,n ³  respectively. 

 

Despite the elementary properties of Fibonacci and Lucas numbers are easily 

established, see [8], there are a number of more interesting and difficult questions 

connected with these numbers. One of them is about that under what conditions 

Fibonacci and Lucas numbers are perfect square? Although historical information is 

going to be done about this subject later, we only want to mention about that shortly. 

 

Many studies about Fibonacci and Lucas numbers which are perfect square have 

been done by mathematicians. And the results of these studies are used to solve 

certain Diophantine equations. For instance, after determining the Fibonacci and 

Lucas numbers which are perfect square, the equations 4 25 4,x y- = ±  

4 2 2 1,x x y y- - = ±  2 45 4,x y- = ±  and 2 2 4 1x xy y- - = ±  are easily solvable. In 

order to see the relations between these sequences and the equations above, we refer 

the reader to [1], [10], [30], and [31].  

 

Moreover, it is possible to see the generalized Fibonacci and Lucas numbers as 

solutions of certain Diophantine equations. For instance, all positive integer solutions 

of the equations 

 

2 2 2( 4) 4x P y- + = ±  and 2 2 2( 4) 4x P y- - =  

 

are given by ( )( , ) ( ,1), ( ,1)n nx y V P U P=  and ( )( , ) ( , 1), ( , 1)n nx y V P U P= - -  with 

1,n ³  respectively. And all positive integer solutions of the equations  

 

2 2 1x Pxy y- - = ±  and 2 2 1x Pxy y- + =  

 

are given by ( )1( , ) ( ,1), ( ,1)n nx y U P U P+= and ( )1( , ) ( , 1), ( , 1)n nx y U P U P+= - -  with 

1,n ³  respectively. 
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Interested readers can see [32, 33, 34, 35] for the solutions of the equations above. 

 

It is obvious that replacing x  by 2x  or  y  by 2y  into the equations above give some 

other Diophantine equations which can be easily solved if the generalized Fibonacci 

and Lucas numbers which are perfect square are known. 

 

We now collect here the studies containing the generalized Fibonacci and Lucas 

numbers of the form 2.kx  

 

Investigations of the properties of second order linear recurrence sequences have 

given rise to questions concerning whether, for certain pairs  ( , ),P Q  nU  or nV  is a 

perfect square ( ).= ).  In particular, the squares in sequences ( )nU  and ( )nV  were 

investigated by many authors.  

  

From a result of Ljunggren [36], it was shown that if 2,  1,P Q= =  and 2,n ³  then, 

nP =  precisely for 7,n =  and Pethő [46] showed that these are the only perfect 

powers in the Pell sequence (see also Cohn [47]). And it was also shown that 

2nP =  precisely for 2.n =  In 1964, Cohn [37] proved that if 1,P Q= =  then, the 

only perfect square greater than 1 in the sequence ( )nF  is 2

12 12F =  (see also Alfred 

[38], Burr [39], and Wyler [40]). Cohn [41] applied this result and a related result 

[42] to determine all solutions of several Diophantine equations. He [42], [43] also 

solved the equations 2nF =  and ,  2 .nL = ,  2 .=  Robbins [44], under the conditions 

that 1,P Q= =  found all solutions of the equation 2

nF px=  such that p  is prime and 

either 3(mod 4)p º  or 10000p <  and then, in 1991 the same author [45], using 

elementary techniques, found all solutions of the equation 2 ,nL px=  where p  is 

prime and 1000.p <  Cohn [41], [48] determined the squares and twice the squares in 

( )( , 1)nU P ±  and ( )( , 1)nV P ±  when P  is odd. Ribenboim and McDaniel [17] 

determined all indices n  such that ,nU = ,=  2 ,nU = ,  ,nV = ,  or 2 nV ==  for all odd 

relatively prime integers P  and .Q  Bremner and Tzanakis [49] extend the result of 

the equation nU =  by determining all generalized Fibonacci sequence ( )nU  with 



16 

 

 

12 ,U = ,=  subject only to the restriction that ( , ) 1.P Q =  In a latter paper, the same 

authors [50] show that for 2,...,7,n =  then, nU  is a square for infinitely many 

coprime ,P Q  and determine all sequences ( )nU  with ,nU = ,=  8,10,11.n =  And also 

in [51], they discuss the more general problem of finding all integers , ,n P Q  for 

which nU k=  for a given integer .k  

 

Although the problem for even values of P  seem to be harder, in 1998, Kagawa and 

Terai [52] considered a similar problem, such as the problem considered by 

Ribenboim and McDaniel [17], for the case when P  is even and 1.Q =  Using 

elementary properties of elliptic curves, they showed that if 2P t=  with t  even, 

( ,1) ,nU P = ,  2 ( ,1) ,nU P = ,  ( ,1) ,nV P = ,  or 2 ( ,1)nV P ==  implies 3n £  under some 

assumptions. Applying these results, the authors solved some Diophantine equations 

of the forms 4 2 24 ( 4) 1,x P y- + = ±  4 2 2( 4) 1,x P y- + = -  2 2 44( 4) 1,x P y- + = ±  and 

2 2 4( 4) 1.x P y- + =  

 

Besides, Mignotte and Pethő [53] proved that if 4,n >  then, 2( , 1)nU P wx- =  is 

impossible when { }1,2,3,6 ,wÎ  moreover these equations have solutions for 4n =  

only if 338.P =  Extending the method of Mignotte and Pethő, Nakamula and Pethő 

[54] gave the solutions of the equations ( ,1)nU P w= w  where { }1,2,3,6 .wÎ  In 

1998, Ribenboim and McDaniel [18] showed that if P  is even, 3(mod4),Q º  and 

,nU = ,=  then, n  is a square or twice an odd square and all prime factors of n  divides 

2 4 .P Q+  In a latter paper, for all odd values of P  and ,Q  the same authors [19] 

determined all indices n  such that 2

nU kx=  under the assumptions that for all 

integer 1,u ³  k  is such that, for each odd divisor h  of ,k  the Jacobi symbol 2uV

h

-æ ö
ç ÷
è ø

 

is defined and equals to 1.  Afterwards, they solved the equation 3nV =  for 

1,3(mod8),P º  3(mod 4),Q º  ( , ) 1P Q =  and solved the equation 3nU =  for all 

odd relatively prime integers P  and .Q  Moreover, Cohn [55] solved the equations 

2( , 1) ( , 1) ,n mU P U P x± = ±  2( , 1) 2 ( , 1) ,n mU P U P x± = ±  2( , 1) ( , 1) ,n mV P V P x± = ±  and 
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2( , 1) 2 ( , 1)n mV P V P x± = ±  when P  is odd. Keskin and Yosma [56] gave the solutions 

of the equations 22 ,n mF F x=  22 ,n mL L x=  23 ,n mF F x=  26 ,n mF F x=  26 .n mL L x=  

Also, Keskin and Şiar proved in [57] that there is no integer x  such that 25n mF F x=  

for 3.m ³  In [58], Şiar and Keskin, assuming 1,Q =  solved the equation 22n mV V x=  

when P  is even. They determined all indices n  such that 2

nV kx=  when |k P  and 

P  is odd. They show that there is no integer solution of the equations 23nV x=  and 

26nV x=  for the case when P  is odd and also they give the solutions of the equations 

23n mV V x=  and 26 .n mV V x=  More generally, a main theorem was proved by Shorey 

and Stewart [59]: 

 

Given 1,A³  there exists an effectively computable number 1,C ³  which depends on 

,A  such that if 0n >  and nU A=  or ,nV A= ,  then, .n C<  

 

This thesis deals with Fibonacci and Lucas numbers of the form ( , )nU P Q  and 

( , )nV P Q  with the special consideration that 1.Q = ±  

 

In Chapter 2,  we list the most important properties of the generalized Fibonacci and 

Lucas numbers nU  and ;nV  most of these are well known and the others are new. In 

the succeeding subchapters, we consider the generalized Fibonacci and Lucas 

numbers of the form 5  and determine all indices n  such that ( ,1) 5 ,nU P = ,  

( , 1) 5 ,nU P - = 5 ,  ( ,1) 5 ( ,1) ,n mU P U P= ) ,  and ( , 1) 5 ( , 1)n mU P U P- = -  under some 

assumptions on .P  We solve the equations ( ,1) 5nV P =  and ( , 1) 5nV P - =  when 

P  is odd. Moreover, we prove that the equations ( ,1) 5 ( ,1)n mV P V P=  and 

( , 1) 5 ( , 1)n mV P V P- = -  have no solutions. 

 

In Chapter 3,  the equations ( ,1) 7 ,nU P = 7 ,  ( ,1) 7 ( ,1) ,n mU P U P= ) ,  ( ,1) 7 ,nV P = 7 ,  

and ( ,1) 7 ( ,1)n mV P V P=  are solved under some assumptions on .P   
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Our method used in this thesis is elementary and the main tools that we employ are 

the Jacobi symbol 
*

*

æ ö
ç ÷
è ø

 that we make extensive use of it, divisibility properties, and 

congruence properties concerning generalized Fibonacci and Lucas numbers. 



 

 

 

CHAPTER 2. GENERALIZED FIBONACCI AND LUCAS 

NUMBERS OF THE FORM 25x  
 

 

In this chapter, we first list the most important properties of the generalized 

Fibonacci and Lucas numbers nU  and .nV  Then, we solve the equations 

( ,1) 5 , ( , 1) 5 , ( ,1) 5 ( ,1) ,n n n mU P U P U P U P= - = =5 , ( , 1) 5 , ( ,1) 5 ( ,1) ,n n n m5 , ( , 1) 5 , ( ,1) 55 , ( , 1) 5 , ( ,1) 55 , ( , 1) 5 , ( ,1) 5 ( ,5 , ( , 1) 5 , ( ,1) 5 ( ,5 , ( , 1) 5 , ( ,1) 55 , ( , 1) 5 , ( ,1) 55 , ( , 1) 5 , ( ,1) 55 , ( , 1) 5 , ( ,1)5 ( 1) 5 ( 1)( 1) 5 ( 1)  and ( , 1) 5 ( , 1)n mU P U P- = -  

under some assumptions on .P  And we solve the equations ( ,1) 5nV P =  and 

( , 1) 5nV P - =  when P  is odd. Moreover, we prove that the equations 

( ,1) 5 ( ,1)n mV P V P=  and ( , 1) 5 ( , 1)n mV P V P- = -  have no solutions. 

 

2.1.  Some Theorems and Identities 

 

In this subsection, we give some theorems, lemmas, and well known identities about 

generalized Fibonacci and Lucas numbers, which will be needed in the proofs of the 

theorems related to the title of this chapter.  

  

Definition 2.1.1. Let a  and b  be integers, at least one of which is not zero. The 

greatest common divisor of a  and ,b  denoted by ( , ),a b  is the largest integer which 

divides both a  and .b  

 

The first two theorems of the following four theorems are given for 1Q =  and the 

others for 1.Q = -  The proofs of them can be found in [60].  

 

Theorem 2.1.1. Let { }0 ,nÎ È{ }0 ,}È  ,m rÎ  and m  be a nonzero integer. Then, 

 

 2 ( 1) (mod )mn

mn r r mU U U+ º -  (2.1)  

and 
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2 ( 1) (mod ).mn

mn r r mV V U+ -º  (2.2) 

  

Theorem 2.1.2. Let { }0nÎ È{ }0È  and , .m rÎ .  Then,  

 

 ( 1)

2 ( 1) (mod )m n

mn r r mU U V+
+ -º  (2.3) 

and 

 ( 1)

2 ( 1) (mod ).m n

mn r r mV V V+
+ -º  (2.4) 

 

Theorem 2.1.3. Let { }0 ,nÎ È{ }0 ,}È  ,m rÎ  and m  be a nonzero integer. Then, 

 

 2 (mod )mn r r mU U U+ º  (2.5) 

and 

 2 (mod ).mn r r mV V U+ º  (2.6) 

 

Theorem 2.1.4. Let { }0nÎ È{ }0È  and , .m rÎ .  Then, 

 

 2 ( 1) (mod )n

mn r r mU U V+ -º  (2.7) 

and 

 2 ( 1) (mod ).n

mn r r mV V V+ -º  (2.8) 

 

We omit the proofs of the following two lemmas, as they are based on mathematical 

induction. 

 

Lemma 2.1.1. If n  is a positive even integer, then, 222 (mod )
n

nV Q Pº  and if n  is an 

odd positive integer, then, 
1

22 (mod ).
n

nV nPQ P
-

º  
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Lemma 2.1.2. If n  is a positive even integer, then, 
2

22 (mod )
2

n

n

n
U PQ P

-

º  and if n  

is an odd positive integer, then, 
1

22 (mod ).
n

nU Q P
-

º  

 

The following lemma can be found in [17] and [19]. 

 

Lemma 2.1.3. Let ,  ,P Q  and m  be odd positive integers, and 1.r ³  Then, 

 

(l) If 3 | ,m/  
2

 3(mod8),  if 1 and 1(mod 4)

7(mod8),  otherwise.
r m

r Q
V

= ºì
º í
î

 

(m) If 3 | ,m  
2

2(mod8).r m
V º  

 

When  and P Q  are odd, it follows from the lemma above 

 

 

2

1
1

rV

æ ö-
= -ç ÷ç ÷

è ø
 (2.9) 

  

for 1.r ³  

   

Before coming to the main results of this chapter several properties concerning 

generalized Fibonacci and Lucas numbers are needed. 

 

 ( )  and ( ) ,n n

n n n nU Q U V Q V- -= - - = -  (2.10) 

 2 ,n n nU U V=  (2.11) 

 2

2 2( ) ,n

n nV V Q= - -  (2.12) 

 2 2 2( 4 ) 4( ) ,n

n nV P Q U Q- + = -  (2.13) 

 ( )2 2

3 ( 4 ) 3( ) ,n

n n nU U P Q U Q= + + -  (2.14) 

 2

3 ( 3( ) ),n

n n nV V V Q= - -  (2.15) 

 ( )2 2 4 2 2 2

5 ( 4 ) 5( ) ( 4 ) 5 .n n

n n n nU U P Q U Q P Q U Q= + + - + +  (2.16) 
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If 5 | nU  or 25 | 4 ,P Q+  then, from (2.16),  we have  

 

 2

5 5 (5 )n

n nU U a Q= +  (2.17) 

 

for some 0.a ³  

 

Moreover, 

 

 4 2 2

5 ( 5( ) 5 ).n n

n n n nV V V Q V Q= - - +  (2.18) 

  

We immediately have from (2.18) that 

 

 
( )
( )

4 2

5 4 2

( ,1) ( ,1) 5 ( ,1) 5 , if  is even
( ,1) =

( ,1) ( ,1) 5 ( ,1) 5 , if  is odd.

n n n

n

n n n

V P V P V P n
V P

V P V P V P n

ì - +ï
í

+ +ïî

 (2.19) 

  

If 5 | P  and n  is odd, then, from Lemma 2.1.1, it is seen that 5 | .nV  Therefore (2.19) 

implies that  

 

 5 ( ,1) 5 ( ,1)(5 1)n nV P V P a= +  (2.20) 

  

for some positive integer .a  

 

Lemma 2.1.1 and the identity (2.13) give 

 

 5 | ( , 1) if and only if 5 |  and  is odd.nV P P n±  (2.21) 

 

Moreover, 

 

 ( )3 2 2 3

7 2 2 2( ) 2 ( ) .n n n

n n n n nV V V Q V Q V Q= - - - + -  (2.22) 
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By using (2.12), we readily obtain from (2.22) that 

 

 6 4 2 2 3

7 ( 7( ) 14 7( ) ).n n n

n n n n nV V V Q V Q V Q= - - + - -  (2.23) 

 

Then, we readily obtain from (2.23) that 

 

 
( )
( )

6 4 2

7 6 4 2

( ,1) ( ,1) 7 ( ,1) 14 ( ,1) 7 , if  is even
( ,1) =

( ,1) ( ,1) 7 ( ,1) 14 ( ,1) 7 , if  is odd.

n n n n

n

n n n n

V P V P V P V P n
V P

V P V P V P V P n

ì - + -ï
í

+ + +ïî

 (2.24) 

  

If 7 | P  and n  is odd, then, 7 | nV  from Lemma 2.1.1  and therefore from (2.24), it 

follows that 

 

 7 ( ,1) 7 ( ,1)(7 1)n nV P V P a= +  (2.25) 

 

for some positive integer .a  Moreover, we have 

 

 If  is odd and 1,  then 2 | 2 | 3 | ,n nP n V U n³ Û Û    (2.26) 

 If 1,  then |  iff |  and /  is odd,m m nV V V m n n m¹  (2.27) 

 If 1,  then |  iff | .m m nU U U m n¹  (2.28) 

 

Let 2 ,  2 ,   and a bm k n l k l= =  are odd, , 0,  and ( , ).a b d m n³ =  Then, 

 

 
, if ,

( , )
1 or 2,  if .

d

m n

V a b
U V

a b

>ì
= í

£î
 (2.29) 

 

If P  is odd, then, 

 

 ( )
1,  if 3 ,

( ,1),  ( ,1) =
2,  if 3 | ,

n n

n
U P V P

n

ì
í
î

,
 (2.30) 
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 3

2

( ,1)
1

( ,1)r

U P

V P

æ ö
=ç ÷ç ÷

è ø
 (2.31) 

 

for 2,r ³  

  

 

2

2

2

1,  if 5 |  or 1(mod5),5

( ,1) 1,  if 1(mod5),r

P P

V P P

æ ö ì- ºï
=ç ÷ íç ÷ º -ïîè ø

 (2.32) 

 

for 1.r ³  

  

Moreover, 

 

 

2

2

2

1,  if 5 |  or 1(mod5),5

( , 1) 1,  if 1(mod5),r

P P

V P P

æ ö ì- º -ï
=ç ÷ íç ÷- ºïîè ø

 (2.33) 

 

for 1r ³ .  

  

If 3 | ,P  then, from (2.12), we have 

 

 
2

( ,1) 2(mod3)rV P º  (2.34) 

 

for all positive integer .r  

 

If 3 | ,P/  then, from (2.12), we get 
2

( , 1) 2(mod3)rV P - º  for 1r ³  and therefore 

 

 

2

3
1.

( , 1)rV P

æ ö
=ç ÷ç ÷-è ø

 (2.35) 

 

If 3 | ,P  then, again from (2.12), we get 
2

( , 1) 2(mod3)rV P - º  for 2r ³  and therefore  
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2

3
1.

( , 1)rV P

æ ö
=ç ÷ç ÷-è ø

 (2.36) 

 

If 2,r ³  then, we immediately have from (2.12) that 
2

2

3
( , 1) 1 mod .

2
r

P
V P

æ ö-
- º - ç ÷

è ø
  

 

Under the condition that P  is odd, the congruence above gives 

 

 
2 2

2 2

( 3) / 2 3
1.

( , 1) ( , 1)r r

P P

V P V P

æ ö æ ö- -
= =ç ÷ ç ÷ç ÷ ç ÷- -è ø è ø

 (2.37) 

 

If 1,r =  then, 

 

 22
( , 1) ( , 1) 2(mod )rV P V P P- = - º -  (2.38) 

 

and if 2,r ³  then, from (2.12), we have 

 

 
2

( , 1) 2(mod ).rV P P- º  (2.39) 

 

Also, 

 

 1 1( , 1) ( , 1) ,( , 1)n n nV P U P U P+ -- = - - -  (2.40) 

 

for all .nÎ . 

 

In addition to the identities above, if P  is even, then, it is seen that 

 

 

 is even  is even,

 is odd  is odd,

 is even for all .

n

n

n

U n

U n

V n

Û

Û

Î .

 (2.41) 
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Most of the properties above are well-known (see, for example [61], Ch. 2); 

properties between (2.10) (2.15)-  can be found in [41], [17], [19], and [10]; 

properties between (2.26) (2.29)-  can be found in [41], [17], [19], and [16]; 

properties (2.30) and (2.31) can be found in [41], and [17], [19], respectively. Finally, 

property (2.41) can be found in [18]. The other properties are straightforward and the 

proofs of them are easy. So, we omit their proofs. 

 

2.2. Generalized Fibonacci and Lucas Numbers of the form x2
5  

 

In this subsection, we assume that 1.Q =  For brevity, let ( ,1)n nU U P=  and 

( ,1).n nV V P=  We determine all indices n  such that = 5nU  and = 5n mU U  under 

some assumptions on .P  We show that the equation = 5nV  has a solution only if 

=1n  for the case when P  is odd. Moreover, we prove that the equation = 5n mV V  

has no solutions. 

 

It is convenient to gather here the theorems, lemmas, and some results which will be 

used in the proofs of the main theorems of this subsection. 

  

We state the following theorem from [54]. 

 

Theorem 2.2.1. Let 0.P >  If 2

nU wx=  with { }1,2,3,6 ,wÎ  then, 2n £  except when 

( , , ) (2,4,3),  (2,7,1),  (4,4,2),  (1,12,1),  (1,3,2),  (1,4,3),  (1,6,2)P n w = , and (24,4,3).  

 

We have the following two theorems from [41], [48], and [17]. 

 

Theorem 2.2.2. If P  is odd, then, the equation 2

nV x=  has the solutions 

1,  ,n P= = ,  and 1P ¹  or 1,3n =  and 1P =  or 3n =  and 3.P =  

 

Theorem 2.2.3. If P  is odd, then, the equation 22nV x=  has the solutions 0n =  or 

6n =  and 1,5.P =  
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The first one of the following three theorems can be obtained from Theorem 6  and 

the others from Theorems 11 and 12  given in [55]. 

 

Theorem 2.2.4. Let P  be an odd integer, 2m ³  be an integer, and 22n mU U x=  for 

some integer .x  Then, 1P =  with 3,  2;n m= =  6,  2;n m= =  12,  3;n m= =  

12,  6;n m= =  or 5P =  with 12,  6.n m= =  

 

Theorem 2.2.5. Let P  be an odd integer, 1m ³  be an integer, and 2

n mV V x=  for 

some integer .x  Then, n m=  or 3,  1,  1.n m P= = =   

 

Theorem 2.2.6. Let P  be an odd integer, 1m ³  be an integer, and 22n mV V x=  for 

some integer .x  Then 6,  1,  1.n m P= = =   

 

We can give the following theorem from [58]. 

 

Theorem 2.2.7. Let 1k >  be a squarefree positive divisor of the odd integer .P  If 

2

nV kx=  for some integer ,x  then, 1n =  or 3.n =  

 

Now we give some well known theorems in number theory. For more detailed 

information, see [29] or [62]. 

 

Theorem 2.2.8. Let m  be an odd integer. Suppose that 2 2(mod )x a mº -  for some 

nonzero integers x  and .a  Then, 1(mod 4).m º  

 

We omit the proof of the following theorem since it can be easily seen by induction. 

 

Theorem 2.2.9. Let k  be an integer with 1.k ³  Then, 
2

3(mod 4).kL º  

 

By using Theorems 2.1.9 and 2.1.10, we readily obtain, 
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Corollary 2.2.1. Let a  be any nonzero integer. If 1,k ³  then, there is no integer x  

such that 2 2

2
(mod ).kx a Lº -  

 

We omit the proof of the following theorem due to Keskin and Demirtürk [63]. 

 

Theorem 2.2.10. All nonnegative integer solutions of the equation 2 25 1u v- =  are 

given by 3 3( , ) ( / 2, / 2)z zu v L F=  with ( 0)z ³  even and all nonnegative integer 

solutions of the equation 2 25 1u v- = -  are given by 3 3( , ) ( / 2, / 2)z zu v L F=  with 

( 1)z ³  odd. 

 

By using the theorem above, we can give the following theorem without proof. 

 

Theorem 2.2.11. All nonnegative integer solutions of the equation 

2 24 5x xy y- - = -  are given by 3 3 3( , ) ( / 2, / 2)z zx y L L+=  with ( 0)z ³  even and all 

nonnegative integer solutions of the equation 2 24 1x xy y- - = -  are given by 

3 3 3( , ) ( / 2, / 2)z zx y F F+=  with ( 1)z ³  odd. 

 

For the proofs of the following four theorems, one can consult [32, 33, 34, 35]. 

 

Theorem 2.2.12. All positive integer solutions of the equations 2 2 2( 4) 4x P y- + = ±  

are given by ( )( , ) ( ,1),  ( ,1)n nx y V P U P=  with 1.n ³  

 

Theorem 2.2.13. All positive integer solutions of the equation 2 2 2( 4) 4x P y- - =  

are given by ( )( , ) ( , 1),  ( , 1)n nx y V P U P= - -  with 1.n ³   

 

Theorem 2.2.14. All positive integer solutions of the equations 2 2 1x Pxy y- - = ±  

are given by ( )1( , ) ( ,1),  ( ,1)n nx y U P U P+=  with 1n ³ . 
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Theorem 2.2.15. All positive integer solutions of the equation 2 2 1x Pxy y- + =  are 

given by ( )1( , ) ( , 1),  ( , 1)n nx y U P U P+= - -  with 1.n ³  

 

Now we give the following results involving Fibonacci and Lucas numbers with 

nonnegative integers a  and .m  

 

 2 iff 0,1,2,12,mF a m= =  (2.42) 

 22 iff 0,3,6,mF a m= =  (2.43) 

 25 iff 0,5,mF a m= =  (2.44) 

 210 iff 0,mF a m= =  (2.45) 

 2 iff 1,3,mL a m= =  (2.46) 

 22 iff 0,6.mL a m= =  (2.47) 

 

The equations (2.42) and (2.43) are Theorems 3 and 4 in [43]; (2.44) follows from 

Theorem 3 in [44]; (2.45) follows from Theorem 3 in [64]; (2.46) and (2.47) are 

Theorems 1 and 2 in [43]. 

 

The following lemma can be proved by using Theorem 2.1.1. 

 

Lemma 2.2.1.  

 

2

2

2 | ,  if 5 | ,

5 | 3 | ,  if 1(mod5),

5 | ,  if 1(mod5),

n

n P

U n P

n P

ì
ï

Û º -í
ï ºî

 

and  

2 | ,  if 3 | ,
3 |

4 | ,  if 3 .
n

n P
U

n P

ì
Û í

î ...
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From this point on, we assume that , 1.m n ³  Now we prove two theorems which help 

us to determine for which values of ,n  the equation 2= 5nU x  has solutions and for 

which values of , ,m n  the equations 2= 5n mV V x  and 2= 5n mU U x  have solutions. 

 

Although the solutions of the equations given in the following first two theorems can 

be get by using computer programme MAGMA [65], we will solve them by using 

only elementary methods. 

 

Theorem 2.2.16. The only positive integer solution of the equation 

4 2 23 1= 5x x y+ +  is given by ( , ) = (1,1)x y  and the only positive integer solution of 

the equation 4 2 23 1= 5x x y- +  is given by ( , ) = (2,1).x y  

 

Proof: Assume that 4 2 23 1= 5x x y± +  for some positive integers x  and .y  

Multiplying both sides of the equations by 4  and completing the square give 

  

2 2(2 3) 5 = 5(2 ) .x y± -  

 

Then, it follows that 

 

( )22(2 ) 5 (2 3) / 5 = 1.y x- ± -  

 

By Theorem 2.2.10, we get 32 = / 2zy L  and 2

3(2 3) / 5 = / 2zx F±  for some odd 

positive  integer .z  Assume that >1.z  Then, we can write = 4 1z q±  for some > 0q  

and therefore = 2.2 1kz a±  with 2 aa  and 1.k ³  Thus by (2.3), we get  

 

3 3(4 1) 12 3 3 32.2 3 3 2
= = = (mod ),z q q k ka

F F F F F F L± ± ±±
º - º -  

i.e., 

3 2
2(mod ).z kF Lº -  

 

Substituting the value of 3zF  and rewriting the above congruence give  
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2

2
4 6 10(mod ).kx L± º -  

 

This shows that  

 

2

2
4 6 10(mod )kx L+ º -  or 2

2
4 6 10(mod )kx L- º -  

 

Then, it follows that  
2

2
4(mod )kx Lº -  

or  

2

2
1(mod ),kx Lº -  

 

which is a contradiction by Corollary 2.2.1. Thus =1z  and therefore 

2

32 3 = 5 / 2x F±  and 32 = / 2.y L  A simple computation shows that =1y  and =1x  

or = 2.x  This means that the equation 4 2 23 1= 5x x y+ +  has only the positive 

integer solution ( , ) = (1,1)x y  and the equation 4 2 23 1= 5x x y- +  has only the 

positive integer solution ( , ) = (2,1).x y   

 

Theorem 2.2.17. The equation 4 2 25 5 = 5x x y+ +  has no solutions x  and y  in 

positive integers. 

 

Proof: Assume that 4 2 25 5 = 5x x y+ +  for some positive integers x  and .y  Since 

2 2 2(2 2) (4 1) = 20 5,y y y+ + - +  it follows that  

 

2 2 2 2(2 2) (4 1) = (2 5) .y y x+ + - +  

 

Clearly, = (2 2,  4 1) =1d y y+ -  or 5.  Assume that =1.d  By the Pythagorean 

theorem, there exist positive integers a  and b  with ( , ) =1,a b  a  and b  are opposite 

parity, such that  

 

2 2 2 2 22 5 = ,  2 2 = 2 ,  4 1= .x a b y ab y a b+ + + - -  
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The latter two equations imply that 

  

 2 25 = 4 .a ab b- - -  (2.48) 

 

Thus by Theorem 2.2.11, we get 3 3= / 2,za L +  3= / 2zb L  for some nonnegative even 

integer .z  On the other hand, from the equations 2 25 = 4a ab b- - -  and 

2 2 22 5 = ,x a b+ +  we readily obtain 2 = ( 2 ).x a a b-  Since ( , ) =1,a b  it follows that, 

= ( , 2 ) =1r a a b-  or 2.  If =1,r  then, there exist coprime positive integers u  and v  

such that 2= ,a u  22 = .a b v-  Thus 2

3 3 = 2 = 2zL a u+  and therefore 3 3 = 6z +  by 

(2.47), which is impossible since z  is even. If = 2,r  then, 2= 2 ,a u  22 = 2 .a b v-  

Thus 2 2

3 3 = 4 = (2 )zL u u+  and therefore 3 3 =1z +  or 3  by (2.46). The first of these is 

impossible. And the second implies that = 0.z  Thus = 2,a  =1.b  Since 

2 2 22 5 = ,x a b+ +  it follows that = 0,x  which is impossible since x  is positive. 

Assume that = 5.d  Then, there exist positive integers a  and b  with ( , ) =1,a b  a  

and b  are opposite parity, such that  

 

2 2 2 2 22 5 = 5 5 ,  2 2 =10 ,  4 1= 5 5 .x a b y ab y a b+ + + - -  

 

The above first equation implies that 5 | x  and therefore = 5x t  for some positive 

integer .t  And the latter two equations imply that 2 25 = 5 20 5 ,a ab b- - -  i.e., 

2 21= 4 .a ab b- - -  Completing the square gives 2 2( 2 ) 5 = 1.a b b- - -  Thus by 

Theorem 2.2.10, we get 3 3= / 2,za F +  3= / 2zb F  for some odd positive integer .z  On 

the other hand, by using = 5 ,x t  from the equations 2 25 = 5 20 5a ab b- - -  and 

2 2 22 5 = 5 5 ,x a b+ +  we obtain 25 = ( 2 ).t a a b-  Since ( , ) =1,a b  clearly, 

( , 2 ) =1a a b-  or 2.  Assume that ( , 2 ) =1.a a b-  This implies that either 

2 2= 5 ,  2 =a u a b v-  or 2 2= ,  2 = 5 .a u a b v-  If the first of these is satisfied, then, it is 

seen that 2

3 3 =10zF u+  and therefore 3 3 = 0z +  by (2.45), which is impossible in 

positive integers. If the second is satisfied, then, it is seen that 2

3 3 = 2zF u+  and 

therefore 3 3 = 0,3z +  or 6  by (2.43). But it is obvious that the cases 3 3 = 0z +  and 
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3 3 = 3z +  are impossible in positive integers. If 3 3 = 6,z +  then, =1z  and therefore 

= 2,  =1.a b  Since 2 2 22 5 = 5 5 ,x a b+ +  it follows that 2 =10,x  which is impossible. 

Assume that ( , 2 ) = 2.a a b-  Then, either 2=10 ,a u  22 = 2a b v-  or 2= 2 ,a u  

22 =10 .a b v-  If the first of these is satisfied, then, 2 2

3 3 = 20 = 5(2 )zF u u+  and 

therefore 3 3 = 0z +  or 5  by (2.44), which are impossible in positive integers. If the 

second is satisfied, then, 2 2

3 3 = 4 = (2 )zF u u+  and therefore 3 3 = 0,1,2z +  or 12  by 

(2.42). But there does not exist any positive integer z  such that 3 3 = 0,1z +  or 2.  If 

3 3 =12,z +  then, we get = 3z  and therefore = 72,  =17.a b  Since 

2 2 22 5 = 5 5 ,x a b+ +  it follows that 2 =13680,x  which is impossible.  

 

Theorem 2.2.18. If P  is odd, then, the equation 2= 5nV x  has a solution only if 

=1.n  

 

Proof: Assume that 2= 5 .nV x  Then, by (2.21), it follows that 5 | P  and n  is odd. 

Hence, by Theorem 2.2.7, we have =1n  or = 3.n  If 3,n =   then, 

2 2

3 = ( 3) = 5 .V P P x+  Since 5 | ,P  it follows that 2 2( / 5)( 3) = .P P x+  Clearly, 

2= ( / 5, 3) =1d P P +  or 3.  Assume that =1.d  Then, 2= 5P a  and 2 23 =P b+  for 

some positive integers a  and .b  This implies that 2 3(mod5),b º  which is 

impossible. Assume that = 3.d  Then, we get 2=15P a  and 2 23 = 3P b+  for some 

positive integers a  and .b  It is seen from 2 23 = 3P b+  that 3 | P  and therefore 

= 3P c  for some positive integer .c  Hence, we obtain the Pell equation 2 23 =1.b c-  

It is well known that all positive integer solutions of this equation are given by 

 

( )( , ) = (4, 1) / 2, (4, 1)m mb c V U- -  

 

with 1.m ³  On the other hand, substituting 2=15P a  into = 3 ,P c  we get 2= 5 .c a  

So, we are interested in finding whether the equation (4, 1) = 5mU -  has a solution. 

Assume that the equation (4, 1) = 5mU -  has a solution. Since 35 | (4, 1),U -  it can 
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be seen that if 5 | (4, 1),mU -  then, 3 | m   and therefore = 3m r  for some positive 

integer .r  Thus from (2.14), we get  

 

( )2 2 2

3(4, 1) = (4, 1) = (4, 1) ( 4) (4, 1) 3 = (4, 1)(12 (4, 1) 3).m r r r r rU U U P U U U- - - - - + - - +

 

Clearly, ( )2(4, 1),12 (4, 1) 3 =1r rd U U= - - +  or 3.  Assume that =1.d  Then, either 

2(4, 1) = ,rU a-  2 212 (4, 1) 3 = 5rU b- +  or 2(4, 1) = 5 ,rU a-  2 212 (4, 1) 3 =rU b- +  for 

some positive integers a  and .b  But both of them are impossible since 

2 3(mod 4)b º  in these two cases. Assume that = 3.d  Then, either 

 

 2 2 2(4, 1) = 3 ,  12 (4, 1) 3 =15r rU a U b- - +  (2.49)  

or 

 2 2 2(4, 1) =15 ,  12 (4, 1) 3 = 3r rU a U b- - +  (2.50) 

 

for some positive integers a  and .b  Assume that (2.49) is satisfied. A simple 

computation shows that ( )2 22( (4, 1) 5 = 1.rU b- - -  Thus by Theorem 2.2.10, we 

obtain 32 (4, 1) = / 2r zU L-  for some odd positive integer .z  Substituting 

2(4, 1) = 3rU a-  into the previous equation gives 2

33 = / 4,za L  i.e., 2

2 3= / 4.zL a L  

This implies that 2 3| .zL L  Then, by (2.27), we get 2 | 3 ,z  which is impossible since z  

is odd. Assume that (2.50) is satisfied. It is easily seen that ( )2 22 (4, 1) 1= ,rU b- +  

that is, ( )22 2 (4, 1) 1,rb U- - =  implying that (4, 1) = 0.rU -  This is impossible since r  

is a positive integer. So = 3n  cannot be a solution. If =1,n  then, 1 = = 5 .V P .  It is 

obvious that this is a solution. 

 

By using Theorem 2.2.12, the immediate corollary follows. 

 

Corollary 2.2.2. The equations 4 2 225 ( 4) 4x P y- + = ±  have positive integer 

solutions only when 25P a=  with a  odd. 
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Theorem 2.2.19. Let 1.mV ¹  There is no integer x  such that 2= 5 .n mV V x  

 

Proof: Assume that 2= 5n mV V x  for some > 0.x  Then, by (2.21), it follows that 5 | P  

and n  is odd. Moreover, since | ,m nV V  there exists an odd integer t  such that =n mt  

by (2.27). Thus m  is odd. Therefore we have 2(mod )nV nP Pº  and 

2(mod )mV mP Pº  by Lemma 2.1.1. This shows that 2 25 (mod ),nP mPx Pº  i.e., 

25 (mod ).n mx Pº  Since 5 | ,P  it follows that 5 | .n  Also since = ,n mt  first, assume 

that 5 | .t  Then, = 5t s  for some odd positive integer s  and therefore = = 5 .n mt ms  

By (2.19), we readily obtain 4 2

5= = ( 5 5).n ms ms ms msV V V V V+ +  Since ms  is odd and 

5 | ,P  it follows that 5 | msV  by (2.21). Therefore ( )4 2 2( / ) ( 5 5) / 5 = .ms m ms msV V V V x+ +  

Clearly, ( )4 2/ ,  ( 5 5) / 5 =1.ms m ms msV V V V+ +  This implies that 4 2 25 5 = 5ms msV V b+ +  for 

some positive integer a  and .b  But this is impossible by Theorem 2.2.17. Now 

assume that 5 .t.  Since =n mt  and 5 | ,n  it is seen that 5 | .m  Then, we can write 

= 5rm a  with 5 aa  and 1.r ³  By (2.20), we readily obtain 

1 15 5
= = 5 (5 1)m r ra a

V V V a- +  for some positive integer 1.a  Thus we conclude that 

1 25
= = 5 (5 1)(5 1) (5 1)r

m r a ra
V V V a a a+ + ××× +  for some positive integers ia  with 

1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rA a a a+ + ××× +  It is obvious that 5 .A.A  Thus we have 

= 5 .r

m aV V A  Similarly, we see that 1 25
= = 5 (5 1)(5 1) (5 1)r

n r at rat
V V V b b b+ + ××× +  for 

some positive integers 
jb  with 1 .j r£ £  Let 1 2= (5 1)(5 1) (5 1).rB b b b+ + ××× +  It is 

obvious that 5 .B.  Thus we have = 5 .r

n atV V B  This shows that 25 = 5 5 ,r r

at aV B V Ax×  

i.e., 2= 5 .at aV B V Ax  By Lemma 2.1.1 and the identity (2.21), it is seen that 

2 25 (mod )atPB aPAx Pº  and therefore we get 25 (mod ).atB aAx Pº  Using the fact 

that 5 | ,P  we get 5 | .atB  But this is impossible since 5 ,  5 ,a t,  5 ,,  5 ,,  5 ,  and 5 .B.  

 

Theorem 2.2.20. If P  is odd and 5 | ,P  then, the equation 2= 5nU x  has a solution 

= 2,  = 5 .n P 5 . If 2 1(mod5),P º  then, the equation 2= 5nU x  has a solution = 5,n  
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=1.P  If P  is odd and 2 1(mod5),P º -  then, the equation 2= 5nU x  has no 

solutions. 

 

Proof: Assume that P  is odd and 5 | .P  Since 5 | ,nU  it follows that n  is even by 

Lemma 2.2.1. Then, = 2n t  for some positive integer .t  By (2.11), we get 

2

2= = = 5 .n t t tU U U V x  Clearly, ( , ) =1t tU V  or 2  by (2.30). Let ( , ) =1.t tU V  Then, 

either 

 

 2 2= ,  = 5t tU a V b  (2.51)  

or 

 2 2= 5 ,  =t tU a V b  (2.52) 

 

for some positive integers a  and .b  Assume that (2.51) is satisfied. By Theorem 

2.2.18, we get =1t  and therefore = 2.n  Then, = 5P  is a solution. Assume that 

(2.52) is satisfied. Since 5 | ,tU  it follows that t  is even by Lemma 2.2.1. Thus = 2t r  

for some positive integer .r  By using (2.12), we get 2 2

2 = 2 = ,r rV V b±  which is 

impossible. Let ( , ) = 2.t tU V  Then, either  

 

 2 2=10 ,  = 2t tU a V b  (2.53) 

or 

 2 2= 2 ,  =10t tU a V b  (2.54) 

  

for some positive integers a  and .b  Equation (2.53) has no solutions, because the 

values of t  and P  for which 2= 2tV b  are = 6t  and = 5P  by Theorem 2.2.3, which 

gives 2

6 = 3640 10 .U a¹  Assume that (2.54)  is satisfied. Since 5 | ,tV  it follows that 

t  is odd by (2.21). If =1,t  then, 2

1 =1= 2 ,U a  which is impossible. Assume that 

>1.t  Then, = 4 1t q±  for some >1.q  And so, by (2.1), we get 

2.2 1 1 2= (mod ),t qU U U U± ±º  implying that 22 1(mod ).a Pº  Since 5 | ,P  the previous 
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congruence becomes 22 1(mod5),a º  which is impossible since 
2

= 1.
5

æ ö -ç ÷
è ø

 The 

proof is completed for the case when P  is odd and 5 | .P  

 

Assume that 2 1(mod5).P º  Since 5 | ,nU  it follows that 5 | n  by Lemma 2.2.1. Thus 

= 5n t  for some positive integer .t  Since 2 1(mod5),P º  it is obvious that 25 | 4P +  

and therefore there exists a positive integer A  such that 2 4 = 5 .P A+  By (2.16), we 

get ( )2 2 4 2 2

5= = ( 4) 5( 4) 5 .n t t t tU U U P U P U+ ± + +  Substituting 2 4 = 5P A+  into the 

previous equation gives 2 4 2

5= = 5 (5 5 1).n t t t tU U U A U AU± +  Let 2 4 2= .t tB A U AU±  

Then, we get 2

5= = 5 (5 1) = 5 ,n t tU U U B x+  i.e., 2(5 1) = .tU B x+  It can be seen that 

( ,5 1) =1.tU B+  This shows that 2=tU a  and 25 1=B b+  for some positive integers 

a  and .b  By Theorem 2.2.1, we get 2t £  or =12t  and =1.P  If =1,t  then, = 5n  

and therefore we get 4 2 2

5 = 3 1= 5 .U P P x+ +  By Theorem 2.2.16, it follows that 

=1.P  So the equation 2= 5nU x  has a solution = 5n  and =1.P  If = 2,t  then, 

=10n  and therefore we obtain 2

10 = 5 ,U x  implying that 2

5 5 = 5U V x  by (2.11). Since 

55 | ,U  it follows that 2

5 5( / 5) = .U V x  By (2.30), clearly, 5 5( / 5, ) =1.U V  This implies 

that 2

5 = 5 ,U a  2

5 = .V b  Since 4 2

5 = 3 1,U P P+ +  it follows that =1P  by Theorem 

2.2.16. But then, 2

5 =11= ,V b  which is impossible. If =12t  and =1,P  then, it 

follows that = 60.n  Thus we obtain 2

60 = 5 ,U x  which is impossible by (2.44). The 

proof is completed for the case when 2 1(mod5).P º  

 

Assume that P  is odd and 2 1(mod5).P º -  Since 5 | ,nU  it follows that 3 | n  by 

Lemma 2.2.1 and therefore = 3n m  for some positive integer .m  Assume that m  is 

even. Then, = 2m s  for some positive integer s  and therefore = 6 .n s  Thus by (2.11), 

we get 2

6 3 3= = = 5 .n s s sU U U V x  By (2.30), clearly, 3 3( , ) = 2.s sU V  Then, either 

 

 2 2

3 3=10 , = 2s sU a V b  (2.55)  

or 
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 2 2

3 3= 2 , =10s sU a V b  (2.56) 

  

for some positive integers a  and .b  Assume that (2.55) is satisfied. By Theorem 

2.2.3, it follows that 3 = 6s  and =1,5.P  But this is impossible since 

2 1(mod5).P º -  Assume that (2.56) is satisfied. Since 
35 | ,sV  it follows that 5 | P  by 

(2.21). But this contradicts the fact that 2 1(mod5).P º -  Now assume that m  is odd. 

Then, by (2.14), we get ( )2 2

3= = ( 4) 3 .n m m mU U U P U+ -  Clearly, 

( )2 2, ( 4) 3 =1m mU P U+ -  or 3.  Since m  is odd, it follows that 3 mUmUm  by Lemma 

2.2.1 and therefore ( )2 2, ( 4) 3 =1.m mU P U+ -  Then, 

 

 2 2 2 2= 5 ,( 4) 3 =m mU a P U b+ -  (2.57)  

or 

 2 2 2 2= ,( 4) 3 = 5m mU a P U b+ -  (2.58) 

 

for some positive integers a  and .b  Assume that (2.57) is satisfied. Since m  is odd, 

we obtain 2 21=mV b+  by (2.13). This shows that = 0,mV  which is impossible. 

Assume that (2.58) is satisfied. Since both m  and P  are odd, it follows that =1m  

by Theorem 2.2.1. If =1,m  then, = 3n  and therefore 2 21= 5 ,P y+  which is 

impossible since we get 2 2(mod8)y º  in this case.   

 

By using Theorems 2.2.12 and 2.2.14, we give the following corollary. 

 

Corollary 2.2.3. The equations 4 2 225 5 1x Px y y- - = ±  and 2 2 425( 4) 4x P y- + = ±  

have positive integer solutions only when 1P =  or 25P a=  with a  odd. 

 

In [57], the authors show that the equation 2= 5n mF F x  has no solutions when 3.m ³  

Now, we give the following theorem. 

 



39 
 

 

 

Theorem 2.2.21. Let >1P  and >1.m  The equation 2= 5n mU U x  has no solutions in 

any of the following cases:  

 

(i): 2 1(mod5);P º  

(ii): 2 1(mod5),P º -  n  is odd, and P  is odd or 4 | ;P  

(iii): 2 1(mod5),P º -  n  is even, and P  is odd; 

(iv): P  is odd and 5 | .P  

 

Proof: Assume that 2= 5n mU U x  for some positive integer .x  Since | ,m nU U  it 

follows that |m n   by (2.28). Thus =n mt  for some positive integer .t  Since ,n m¹  

we have >1.t  

 

Case I: Let 2 1(mod5).P º  It is obvious that 25 | 4.P +  Since 5 | ,nU  it follows that 

5 | n  by Lemma 2.2.1. Now we divide the proof into two subcases. 

 

Subcase (i):  Assume that 5 | .t  Then, = 5t s  for some positive integer s  and 

therefore = = 5 .n mt ms  By (2.16), we obtain  

 

 ( )2 2 4 2 2 2

5= = ( 4) 5( 4) 5 = 5 .n ms ms ms ms mU U U P U P U U x+ ± + +  (2.59) 

 

It is easily seen that 2 2 4 2 25 | ( 4) 5( 4) 5.ms msP U P U+ ± + +  Also we have 

2 2 4 2 2 4 2( 4) 5( 4) 5 = 3 1ms ms ms msP U P U V V+ ± + + ± +  by (2.13). So rearranging the 

equation (2.59) gives 

  

( )2 4 2= ( / ) ( 3 1) / 5 .ms m ms msx U U V V± +  

 

Clearly, ( )4 2/ ,  ( 3 1) / 5 =1.ms m ms msU U V V± +  This implies that 4 2 23 1= 5ms msV V b± +  for 

some > 0.b  Thus by Theorem 2.2.16, we get =1msV  or = 2.msV  The first of these is 
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impossible. If the second is satisfied, then, = 0,ms  which contradicts the fact that 

>1.m  

 

Subcase (ii): Assume that 5 .t.  Since 5 | ,n  it follows that 5 | .m  Then, we can write 

= 5rm a  with 5 aa  and 1.r ³  Since 25 | 4,P +  it can be seen by (2.17) that 

1 15 5
= = 5 (5 1)m r ra a

U U U a- +  for some positive integer 1.a  And thus we conclude that 

1 25
= = 5 (5 1)(5 1) (5 1)r

m r a ra
U U U a a a+ + ××× +  for some positive integers ia  with 

1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rA a a a+ + ××× +  It is obvious that 5 AA  and we have 

= 5 .r

m aU U A  Similarly, we get 1 25
= = 5 (5 1)(5 1) (5 1)r

n r at rat
U U U b b b+ + ××× +  for 

some positive integers 
jb  with 1 .j r£ £  Let 1 2= (5 1)(5 1) (5 1).rB b b b+ + ××× +  It is 

obvious that 5 .B.  Thus we have = 5 .r

n atU U B  Substituting the new values of nU  

and mU  into 2= 5n mU U x  gives 25 = 5 5 .r r

at aU B U Ax×  This shows that   

2= 5 .at aU B U Ax  Since 5 ,B,  it follows that 5 | ,atU  implying that 5 | at  by Lemma 

2.2.1. This contradicts the fact that 5 aa  and 5 .t.  

 

Case II: Let 2 1(mod5)P º -  and n  is odd. Then, both m  and t  are odd. Thus we 

can write = 4 1t q±  for some 1.q ³  And so, by (2.1),  we get  

 

2

(4 1) 2.2 25 = = = (mod )m n q m mq m m mU x U U U U U± ± º . 

 

Using (2.11) gives 25 1(mod ).mx Vº  Since m  is odd, it follows that | mP V  by 

Lemma 2.1.1. Then, we have 

 

 25 1(mod )x Pº . (2.60) 

 

Assume that P  is odd. Then, (2.60) implies that 
5

1 = .
P

æ ö
ç ÷
è ø

 Since 2 1(mod5),P º -  it 

can be seen that 2(mod5).P º ±  Hence we get 
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5 2
1 = = = = 1,

5 5

P

P

±æ ö æ ö æ ö -ç ÷ ç ÷ ç ÷
è ø è ø è ø

 

 

a contradiction. Now assume that P  is even. If 8 | ,P  then, it follows from (2.60) that 

25 1(mod8),x º  which is impossible since we get 2 5(mod8)x º  in this case. If 4 | P  

and 8 ,P,,  then, from (2.60), we get 

  

25 1(mod / 4).x Pº  

 

This shows that 
5

= 1.
/ 4P

æ ö
ç ÷
è ø

 Since 2 1(mod5),P º -  it can be seen that 

/ 4 2(mod5).P º ±  Hence we get 

  

 
5 / 4 2

1= = = = 1,
/ 4 5 5

P

P

±æ ö æ ö æ ö -ç ÷ ç ÷ ç ÷
è ø è ø è ø

 

 

a contradiction. 

 

Case III: Let 2 1(mod5),P º -  n  is even, and P  is odd. Since = ,n mt  we divide the 

proof into two subcases. 

 

Subcase (i): Assume that t  is even. Then, = 2t s  for some positive integer .s  Thus 

we get 2

25 = / = / = ( / ) .n m ms m ms m msx U U U U U U V  Clearly, = ( / ,  ) =1ms m msd U U V  or 

2  by (2.30). Let =1.d  Then, either  

 

 2 2=  and = 5ms m msU U a V b  (2.61)  

or 

 2 2= 5  and =ms m msU U a V b  (2.62) 

 

for some positive integers a  and .b  Assume that (2.61) is satisfied. Since 5 | ,msV  it 

follows that 5 | P  by (2.21). This contradicts the fact that 2 1(mod5).P º -  Assume 
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that (2.62) is satisfied. By Theorem 2.2.2, we get = 3ms  and = 3.P  Since >1,m  it 

follows that = 3.m  This is impossible since we get 21= 5a  in this case. Let = 2.d  

This implies that either 

 

 2 2= 2  and =10ms m msU U a V b  (2.63)  

or 

 2 2=10  and = 2ms m msU U a V b  (2.64) 

 

for some positive integers a  and .b  Assume that (2.63) is satisfied. Since 5 | ,msV  it 

follows that 5 | P  by (2.21). This contradicts the fact that 2 1(mod5).P º -  Assume 

that (2.64) is satisfied. By Theorem 2.2.3, we get = 6ms  and =1,5.P  But this is 

impossible since 2 1(mod5).P º -  

 

Subcase (ii): Assume that t  is odd. Since >1,t  we can write = 4 1t q+  or = 4 3t q+  

for some > 0.q  On the other hand, since n  is even and = ,n mt  it follows that m  is 

even. Therefore we can write = 2rm a  with a  odd and > 0.r  Assume that 

= 4 1.t q+  Then, = = 4 = 2 2r kn mt qm m b m++ × +  with b  odd. Hence, we get 

  

2

2 2 2
5 = = (mod )m n r k m r kb m
U x U U U V+ +× +

º -  

 

by (2.3). Since 
2 2 2

( ,  ) = ( ,  ) =1m r k r r ka
U V U V+ +  by (2.29), it follows that 

2

2
5 1(mod ).r kx V +º -  But this is impossible. Because 

2

5
= 1

r kV +

æ ö
ç ÷
ç ÷
è ø

 and 

2

1
= 1

r kV +

æ ö-
ç ÷ -
ç ÷
è ø

 

by (2.32) and (2.9), respectively. Now assume that = 4 3.t q+  Then, we have 

= = 4 3 .n mt qm m+  And so, by (2.1), we get  

 

2

4 3 3 25 = = (mod ).m n qm m m mU x U U U U+ º  
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By using (2.11) and (2.14), we readily obtain 2 25 1(mod ),m mx V Vº -  which implies 

that 25 1(mod ).mx Vº -  Using the fact that = 2rm a  with a  odd, we have 

2

2
5 1(mod ),r a

x Vº -  implying that 2

2
5 1(mod )rx Vº -  by (2.27). But this is 

impossible since 

2

5
= 1

rV

æ ö
ç ÷
ç ÷
è ø

 and 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 by (2.32) and (2.9), respectively. 

 

Case IV: Let P  be odd and 5 | .P  Since 5 | ,nU  it follows that n  is even by Lemma 

2.2.1. Moreover, since | ,m nU U  there exists an integer t  such that =n mt  by (2.28). 

Assume that t  is even. Then, = 2t s  for some positive integer .s  By (2.11), we get 

2

2= = = 5 ,n ms ms ms mU U U V U x  implying that 2( / ) = 5 .ms m msU U V x  Clearly, 

( / ,  ) =1ms m msU U V  or 2  by (2.30). If ( / ,  ) =1,ms m msU U V  then, 

 

 2 2= ,  = 5ms m msU U a V b  (2.65)  

or 

 2 2= 5 ,  =ms m msU U a V b  (2.66) 

 

for some positive integers a  and .b  Assume that (2.65) is satisfied. Then, by 

Theorem 2.2.18, we get =1.ms  This contradicts the fact that >1.m  Assume that 

(2.66) is satisfied. Then, by Theorem 2.2.2, we have = 3ms  and = 3.P  But this is 

impossible since 5 | .P  If ( / ,  ) = 2,ms m msU U V  then, 

 

 2 2= 2 ,  =10ms m msU U a V b  (2.67)  

or 

 2 2=10 ,  = 2ms m msU U a V b  (2.68) 

 

for some positive integers a  and .b  Assume that (2.67) is satisfied. Then, by 

Theorem 2.2.4, we get =12,ms  = 6,m  = 5.P  On the other hand, since 5 | ,msV  it 

follows by (2.21) that 5 | P  and ms  is odd. This is a contradiction since =12.ms  

Equation (2.68) has no solutions, since the possible values for which 2= 2msV b  are 
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given by Theorem 2.2.3 and none of them gives a solution to 2=10 .ms mU U a  Now 

assume that t  is odd. Since =n mt  and n  is even, it follows that m  is even. 

Therefore we have 2( / 2) (mod )nU n P Pº  and 2( / 2) (mod )mU m P Pº  by Lemma 

2.1.2. This shows that  

 

2 2( / 2) 5( / 2) (mod ),n P m Px Pº  

i.e.,  

 

2( / 2) 5( / 2) (mod ).n m x Pº  

 

Since 5 | ,P  it is obvious that 5 | .n  Now we divide the remainder of the proof into 

two subcases. 

 

Subcase (i): Assume that 5 | .t  Then, = 5t s  for some positive integer s  and 

therefore = = 5 .n mt ms  By (2.16), we obtain  

 

 ( )2 2 4 2 2 2

5= = ( 4) 5( 4) 5 = 5 .n ms ms ms ms mU U U P U P U U x+ + + +  (2.69) 

 

Since ms  is even and 5 | ,P  it is seen that 5 | msU  by Lemma 2.2.1. Also we have 

2 2 4 2 2 4 2( 4) 5( 4) 5 = 3 1ms ms ms msP U P U V V+ + + + - +  by (2.13). So rearranging the 

equation (2.69) gives 

 

( )2 4 2= ( / ) ( 3 1) / 5 .ms m ms msx U U V V- +  

 

Clearly, ( )4 2/ ,  ( 3 1) / 5 =1.ms m ms msU U V V- +  This implies that 4 2 23 1= 5ms msV V b- +  for 

some > 0.b  Thus by Theorem 2.2.16, we get = 2,msV  implying that = 0,ms  which 

is impossible. 

 

Subcase (ii): Assume that 5 .t.  Since 5 | ,n  it follows that 5 | .m  Then, we can write 

= 5rm a  with 5 ,a,,,  2 | ,a  and 1.r ³  It can be seen by (2.17) that 
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1 15 5
= = 5 (5 1)m r ra a

U U U a- +  for some positive integer 1.a  And thus we conclude that 

1 25
= = 5 (5 1)(5 1) (5 1)r

m r a ra
U U U a a a+ + ××× +  for some positive integers 

ia  with 

1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rA a a a+ + ××× +  Then, we have = 5r

m aU U A . In a 

similar manner, we get 1 25
= = 5 (5 1)(5 1) (5 1)r

n r at rat
U U U b b b+ + ××× +  for some 

positive integers 
jb  with 1 j r£ £ . Let 1 2= (5 1)(5 1) (5 1).rB b b b+ + ××× +  It is obvious 

that 5 .B.  Thus we have = 5 .r

n atU U B  Substituting the new values of nU  and mU  

into 2= 5n mU U x  gives 

 

 25 = 5 5 .r r

at aU B U Ax×  (2.70) 

 

On the other hand, since a  and at  are even, it follows from Lemma 2.1.2 that 

2( / 2) (mod )atU at P Pº  and 2( / 2) (mod ).aU a P Pº  So (2.70) becomes 

  

2 25 ( / 2) 5 5 ( / 2) (mod ).r rat PB a PAx Pº ×  

 

Rearranging the congruence above gives 

 

2( / 2) 5( / 2) (mod ).at B a Ax Pº  

 

Since 5 | ,P  it follows that 5 | ( / 2) ,at B  implying that 5 | .atB  This contradicts the 

fact that 5 ,a,,  5 ,t,  and 5 .B.  

 

2.3.  On the Equations = 5nU  and = 5nV  

 

The purpose of this subchapter, assuming 3P ³  is odd and 1,Q = -  is to determine 

the values of n  such that = 5nV  and = 5 .nU 5 .  Moreover, we solve the equations 

= 5n mV V  and = 5 .n mU U .   

 

One can see the proofs of the following two theorems in [66]. 
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Theorem 2.3.1. Let 3P ³  be odd. If 2=nV kx  for some |k P  with >1,k  then, 

=1.n  

 

Theorem 2.3.2. Let 3P ³  be odd. If 2=nU kx  for some |k P  with >1,k  then, 

= 2n  or = 6n  and 3 | .P   

 

The following theorem is given in [17]. 

 

Theorem 2.3.3. Let 3P ³  be odd. If 2=nV x  for some integer ,x  then, =1.n  If 

2= 2nV x  for some integer ,x  then, = 3,n  = 3,27.P  

 

We state the following theorem due to Ribenboim and McDaniel [17]. 

 

Theorem 2.3.4. Let 3P ³  be odd. If 2= ,nU x  then, 1n =  or 6n =  and 3.P =   

 

The first one of the following three theorems can be obtained from Theorem 9 and 

the others from Theorems 14 and 15 given in [55]. 

 

Theorem 2.3.5. Let 3P ³  be odd, , >1m n  be integers. The equation 2= 2n mU U x  

has no solutions except for the cases = 6,n  = 3,m  = 3,27.P  

 

Theorem 2.3.6. The equation 2= ,n mV V x  where 3,P ³  and P  is odd, and > > 0n m  

has only the trivial solution = .n m   

 

Theorem 2.3.7. The equation 2= 2 ,n mV V x  where 3,P ³  and P  is odd, and , > 0m n  

has no solutions. 

 

The following lemma can be proved by using (2.5). 
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Lemma 2.3.1.  

 

2

2

2 | ,  if 5 | ,

5 | 3 | ,  if 1(mod5),

5 | ,  if 1(mod5).

n

n P

U n P

n P

ì
ï

Û ºí
ï º -î

 

 

Throughout this subsection, we assume that m  and n  are positive integers. 

 

Theorem 2.3.8. The equation 2= 5nV x  has a solution only if =1.n  

 

Proof: Assume that 2= 5nV x  for some integer .x  Since 5 | ,nV  it follows from (2.21) 

that 5 | .P  This implies that =1n  by Theorem 2.3.1. 

 

By using Theorem 2.2.13, we have 

 

Corollary 2.3.1. The equation 4 2 225 ( 4) 4x P y- - =  has positive integer solutions 

only when 25P a=  with a  odd. 

 

Theorem 2.3.9. There is no integer x  such that 2= 5 .n mV V x  

 

Proof: Assume that 2= 5 .n mV V x  Then, by (2.21), it is seen that 5 | P  and n  is odd. 

Moreover, since | ,m nV V  there exists an odd integer t  such that =n mt  by (2.27). 

Since n  and t  are odd and = ,n mt  m  is also odd. Hence, we have from Lemma 

2.1.1 that 2(mod )nV nP Pº ±  and 2(mod ).mV mP Pº ±  This implies that 

2 25 (mod ),nP mPx P± º ±  i.e., 25 (mod ).n mx Pº  Using the fact that 5 | ,P  it follows 

that 5 | .n  Firstly, assume that 5 | .t  Then, = 5t s  for some odd positive integer s  and 

therefore = = 5 .n mt ms  By (2.18), we immediately have 

4 2

5= = ( 5 5).n ms ms ms msV V V V V- +  Since ms  is odd and 5 | ,P  it follows that 5 | msV  by 

(2.21) and therefore 
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4 2
25 5

= .
5

ms ms ms

m

V V V
x

V

æ ö- +
ç ÷
è ø

 

 

Clearly, ( )4 2/ , ( 5 5) / 5 =1.ms m ms msV V V V- +  This implies that 2=ms mV V u  and 

4 2 25 5 = 5ms msV V v- +  for some positive integers u  and .v  Let = .msX V  Now we 

consider the equation 4 2 25 5 = 5 .X X v- +  It is obvious that 5 | .X  Assume that X  is 

odd. Then, we readily obtain 25 1(mod8),v º  which is impossible. Thus, X  is even. 

Since 4 2 2 25 5 = ( 3)( 2) 1,X X X X- + - - -  we immediately have  

 

( )2 25 1 mod( 3) .v Xº - -  

 

This means that 

 

2 2

5 1
= .

3 3X X

-æ ö æ ö
ç ÷ ç ÷- -è ø è ø

 

 

Since X  is even, it is easily seen that 

2 4

2
2

1
= ( 1) =1.

3

X

X

--æ ö -ç ÷-è ø
 On the other hand, 

using the fact that 5 | ,X  we get 

 

2

2

5 3 3 2
= = = = 1,

3 5 5 5

X

X

æ ö- -æ ö æ ö æ ö -ç ÷ç ÷ ç ÷ ç ÷-è ø è ø è øè ø
 

 

a contradiction. Secondly, assume that 5 .t..  Since =n mt  and 5 | ,n  it is seen that 

5 | .m  Then, we can write = 5rm a  with 5 aa  and 1.r ³  By (2.18), we obtain 

1 15 5
= = 5 (5 1)m r ra a

V V V a- +  for some positive integer 1.a  Thus, we conclude that 

1 25
= = 5 (5 1)(5 1) (5 1)r

m r a ra
V V V a a a+ + ××× +  for some positive integers ia  with 

1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rA a a a+ + ××× +  Thus, we have = 5 ,r

m aV V A  where 

5 .A.A..  In a similar manner, we see that 1 25
= = 5 (5 1)(5 2) (5 1).r

n r at rat
V V V b b b+ + ××× +  
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Thus, we have = 5 ,r

n atV V B  where 5 .B...  As a consequence, we get 

25 = 5 5 ,r r

at aV B V Ax×  implying that 2= 5 .at aV B V Ax  By Lemma 2.1.1, it is seen that 

2 25 (mod ),atPB aPAx P± º ±  i.e., 25 (mod ).atB aAX Pº  Since 5 | ,P  it follows that 

5 | .atB  But this is impossible since 5 ,a,  5 ,t,  and 5 .B.  

 

Theorem 2.3.9. If 3P ³  is odd, then, the equation 2= 5nU x  has a solution = 2n  

when 5 | P  and = 3n  when 2 1(mod5).P º  The equation 2= 5nU x  has no solutions 

when 2 1(mod5).P º -  

 

Proof: Assume that 2= 5nU x  for some integer .x  Dividing the proof into three 

cases, we have 

 

Case I: Let 5 | .P  Then, by Theorem 2.3.2, we see that = 2n  or = 6n  and 3 | .P  But, 

it can be easily shown that the equation 2= 5nU x  has no solutions for the case when 

= 6n  and 3 | .P  

 

Case II: Let 2 1(mod5).P º  Since 5 | ,nU  it follows from Lemma 2.3.1 that 3 | .n  

Hence, = 3n m  for some positive integer .m  Assume that m  is even. Then, = 2m s  

for some positive integer s  and therefore = 6 .n s  And so, by (2.11), we get 

2

6 3 3= = = 5 .n s s sU U U V x  Clearly, 3 3( ,  ) = 2s sU V  by (2.26) and (2.29). Then, either 

 

 2 2

3 3= 2 ,  =10s sU a V b  (2.71) 

or 

 2 2

3 3=10 ,  = 2s sU a V b  (2.72) 

 

for some positive integers a  and .b  Assume that (2.71) is satisfied. Since 35 | ,sV  it 

follows from (2.21) that 5 | .P  But this contradicts the fact that 2 1(mod5).P º  Now 

assume that (2.72) is satisfied. Then, by Theorem 2.3.3, we have 3 = 3s  and 

= 3,27.P  Therefore =1.s  If = 3,P  then, 2 2

3 = 1= 8 =10 ,U P a-  which is 
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impossible. If = 27,P  then, 2 2 2

3 = 1= 27 1=10 ,U P a- -  which is also impossible. 

Now assume that m  is odd. Then, by (2.14), we get ( )2

3 = ( 4) 3 .m m mU U P U- +  

Clearly, ( )2 2, ( 4) 3 =1m mU P U- +  or 3.  Then, it follows that 2 2 2( 4) 3 =mP U wa- +  for 

some { }1,3,5,15 .wÎ  Since 2 2

2( 4) 3 = 1m mP U V- + +  by (2.12) and (2.13), it is seen 

that 2

2 1= .mV wa+  Assume that >1.m  Then, = 4 1= 2 1rm q a± ±  with a  odd and 

2.r ³  Thus, 

 

2 2

2 2 2
= 1 1 ( 3)(mod )m rwa V V P V+ º - º - -  

 

by (2.8).  This shows that 

  

2

2 2 2

1 3
= .

r r r

w P

V V V

æ ö æ öæ ö- -
ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷
è ø è øè ø

 

 

By using (2.33),  (2.35),  and (2.36),  it can be seen that 

2

= 1
r

w

V

æ ö
ç ÷
ç ÷
è ø

 for = 3,5,15.w  

Moreover, 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 and 
2

2

3
= 1

r

P

V

æ ö-
ç ÷
ç ÷
è ø

 by (2.9) and (2.37), respectively. Thus, we 

get 

 

2

2 2 2

1 3
1 = = = 1,

r r r

w P

V V V

æ ö æ öæ ö- -
ç ÷ ç ÷ç ÷ -
ç ÷ ç ÷ç ÷
è ø è øè ø

 

 

which is impossible. Therefore =1m  and thus = 3.n  

 

Case III: Let 2 1(mod5).P º -  Since 5 | ,nU  it follows that 5 | n  by Lemma 2.3.1. 

Thus = 5n t  for some positive integer .t  Since 2 1(mod5),P º -  it is obvious that 

25 | 4P -  and therefore there exists a positive integer A  such that 
2 4 = 5 .P A-  By 
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(2.16), we get ( )2 2 4 2 2

5= = ( 4) 5( 4) 5 .n t t t tU U U P U P U- + - +  Substituting 

2 4 = 5P A-  into the preceding equation gives ( )2 4 2

5= = 5 5 5 1 .n t t t tU U U A U AU+ +  

Let 2 4 2= .t tB A U AU+  As a consequence, we have  

 

2

5= = 5 (5 1) = 5 ,n t tU U U B x+  

 

implying that 

 

2(5 1) = .tU B x+  

 

It can be easily seen that ( ,5 1) =1.tU B+  This shows that 2=tU a  and 
25 1=B b+  

for some ,  > 0.a b  By Theorem 2.3.4, we see that the only possible values of t  and 

P  for which 2=tU a  are =1t  or = 6t  and = 3.P  If =1,t  then, = 5n  and therefore 

we get 4 2 2

5 5= = = 3 1= 5 .n tU U U P P x- +  By Theorem 2.2.16, it follows that = 2,P  

which is impossible since P  is odd. If = 6,t  then, = 30.n  A simple computation 

shows that there is no integer x  such that 2

30 = 5U x  for = 3.P  

 

By using Theorems 2.2.13 and 2.2.15, we give the following corollary. 

 

Corollary 2.3.2. The equations 2 2 425( 4) 4x P y- - =  and 4 2 225 5 1x Px y y- + =  

have positive integer solutions only when 25P a=  with a  odd or 3 (2,1) / 2zP V=  

with 0z >  even. 

 

Theorem 2.3.10. Let 3P ³  and >1.m  The equation 2= 5n mU U x  has no solutions in 

any of the following cases: 

 

(i): 2 1(mod5);P º -  

(ii): P  is odd and 5 | ;P  

(iii): 2 1(mod5),P º  n  is odd, and P  is odd; 
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(iv): 2 1(mod5),P º  n  is even, and P  is odd. 

 

Proof: Assume that 2= 5n mU U x  for some > 0.x  Since | ,m nU U  it follows that |m n  

by (2.28). Thus, =n mt  for some > 0.t  Since ,n m¹  we have >1.t  

 

Case I: Let 2 1(mod5).P º -   It is obvious that 25 | 4.P -  On the other hand, since 

5 | ,nU  it follows that 5 | n  by Lemma 2.3.1. Dividing the proof into two subcases, 

we have 

 

Subcase (i): Assume that 5 | .t  Then, = 5t s  for some > 0s  and therefore 

= = 5 .n mt ms  By (2.16), we obtain  

 

 ( )2 2 4 2 2 2

5= = ( 4) 5( 4) 5 = 5 .n ms ms ms ms mU U U P U P U U x- + - +  (2.73) 

 

Since 25 | 4,P -  it is seen that 2 2 4 2 25 | ( 4) 5( 4) 5.ms msP U P U- + - +  Also, we have 

2 2 4 2 2 4 2( 4) 5( 4) 5 = 3 1ms ms ms msP U P U V V- + - + - +  by (2.13). Rearranging the equation 

(2.73), we readily obtain 

 

( ) ( )( )2 4 2= / 3 1 / 5 ,ms m ms msx U U V V- +  

 

where ( )( )4 2/ , 3 1 / 5 =1.ms m ms msU U V V- +  Hence, 2= ,ms mU U a  4 2 23 1 5ms msV V b- + =  for 

some , > 0.a b  By Theorem 2.2.16, we get = 2,msV  implying that = 0,ms  which is 

impossible. 

 

Subcase (ii): Assume that 5 .t.  Since 5 | ,n  it follows that 5 | .m  Then, we can write 

= 5rm a  with 5 aa  and 1.r ³  By (2.17), it is seen that 1 15 5
= = 5 (5 1)m r ra a

U U U a- +  

for some positive integer 1.a  Thus, we conclude that 

1 25
= = 5 (5 1)(5 1) (5 1)r

m r a ra
U U U a a a+ + ××× +  for some positive integers ia  with 
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1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rA a a a+ + ××× +  Then, we have = 5 ,r

m aU U A  where 

5 .A.A..  In a similar manner, we get 1 25
= = 5 (5 1)(5 1) (5 1)r

n r at rat
U U U b b b+ + ××× +  for 

some positive integers ib  with 1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rB b b b+ + ××× +  Hence, 

we have = 5 ,r

n atU U B  where 5 .B..  As a consequence, we get 

  

25 = 5 5r r

at aU B U Ax×  

i.e., 

2= 5 .at aU B U Ax  

 

Since 5 ,B,  it follows that 5 | ,atU  implying that 5 | at  by Lemma 2.3.1. This 

contradicts the fact that 5 aa  and 5 .t.  This concludes the proof for the case when 

2 1(mod5).P º -  

 

Case II: Let P  be odd and 5 | .P  Since 5 | ,nU  it is seen from Lemma 2.3.1 that n  is 

even. On the other hand, we have = .n mt  So, we first assume that t  is even. Then, 

= 2t s  for some > 0.s  By (2.11), we get 2

2= = = 5 ,n ms ms ms mU U U V U x  implying that 

( ) 2/ = 5 .ms m msU U V x  Clearly, ( )= / ,  =1ms m msd U U V  or 2  by (2.29). If =1,d  then, 

 

 2 2= ,  = 5ms m msU U a V b  (2.74)  

or 

 2 2= 5 ,  =ms m msU U a V b  (2.75) 

  

for some , > 0.a b  If (2.74) is satisfied, then, the only possible value of ms  for which 

2= 5msV b  is 1 by Theorem 2.3.1, which contradicts the fact that >1.m  If (2.75) is 

satisfied, then, by Theorem 2.3.3, we have =1,ms  which is impossible since >1.m  

If = 2,d  then,  

 

 2 2= 2 ,  =10ms m msU U a V b  (2.76)  

or 
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 2 2=10 ,  = 2ms m msU U a V b  (2.77) 

  

for some , > 0.a b  Suppose (2.76) holds. Then, by Theorem 2.3.5, we get = 6,ms  

= 3,m  = 3,27.P  But there is no integer b  such that 2

6 = 2V b  for the case when 

= 3P  or 27.  Suppose (2.77) holds. Then, by Theorem 2.3.3, the only possible values 

of ms  and P  for which 2= 2msV b  are = 3ms  and = 3,27.P  Since >1,m  it follows 

that = 3m  and therefore we obtain 2

3 3=10 ,U U a  which is impossible. Now assume 

that t  is odd. Since =n mt  and n  is even, it follows that m  is even. Hence, we have 

2( / 2) (mod )nU n P Pº ±  and 
2( / 2) (mod )mU m P Pº ±  by Lemma 2.1.2. This shows 

that 2 25 (mod ),
2 2

n m
P Px P± º ±  i.e., 25 (mod ).

2 2

n m
x Pº  Since 5 | ,P  it is seen that 

5 | .n  Dividing remainder of the proof into two subcases, we have 

 

Subcase (i): Let 5 | .t  Then, = 5t s  for some > 0s  and therefore = = 5 .n mt ms  By 

(2.16), we obtain 

 

 ( )2 2 4 2 2

5= = ( 4) 5( 4) 5 .n ms ms ms msU U U P U P U- + - +  (2.78) 

  

Since ms  is even and 5 | ,P  it is seen that 5 | msU  by Lemma 2.3.1. Also, we have 

2 2 4 2 2 4 2( 4) 5( 4) 5 = 3 1ms ms ms msP U P U V V- + - + - +  by (2.13). Hence, rearranging the 

equation (2.78) gives  

 

( )( )2 4 2= / ( 3 1) / 5 ,ms m ms msx U U V V- +  

 

where ( )4 2( / ), ( 3 1) / 5 =1.ms m ms msU U V V- +  This implies that 2=ms mU U a  and 

4 2 23 1= 5ms msV V b- +  for some , > 0.a b  Thus, by Theorem 2.2.16, we get = 2,msV  

implying that = 0,ms  which is impossible. 
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Subcase (ii): Let 5 .t..  Since 5 | ,n  it follows that 5 | .m  Then, we can write = 5rm a  

with 5 aa  and 1.r ³  By (2.17), it is seen that 1 15 5
= = 5 (5 1)m r ra a

U U U a- +  for some 

positive integer 1.a  Thus, 1 25
= = 5 (5 1)(5 1) (5 1)r

m r a ra
U U U a a a+ + ××× +  for some 

positive integers 
ia  with 1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1)rA a a a+ + ××× + . Then, we 

have = 5 ,r

m aU U A  where 5 .A.A  In a similar way, we get 

1 25
= = 5 (5 1)(5 1) (5 1)r

n r at rat
U U U b b b+ + ××× +  for some positive integers ib  with 

1 .i r£ £  Let 1 2= (5 1)(5 1) (5 1).rB b b b+ + ××× +  Hence, we have = 5 ,r

n atU U B  where 

5 .B..  Substituting the new values of nU  and mU  into 2= 5n mU U x  gives 

 

25 = 5 5r r

at aU B U Ax×  

i.e., 

2= 5 .at aU B U Ax  

 

On the other hand, since a  is even and at  is even, it follows from Lemma 2.1.2 that 

2(mod )
2

at

at
U P Pº ±  and 2(mod ).

2
a

a
U P Pº ±  Hence, we have 

 

2 25 (mod ),
2 2

at a
PB PAx P± º ±  

 

implying that 2 25 (mod ).
2 2

at a
B Ax Pº  Since 5 | ,P  it follows that 5 | ,

2

at
B  which 

shows that 5 | .atB  This contradicts the fact that 5 ,a,  5 ,t,,,  and 5 .B.  This 

concludes the proof for the case when 5 | .P  

 

Case III: Let 2 1(mod5),P º  n  is odd, and P  is odd. Then, both m  and t  are odd. 

Since 5 | ,nU  it follows immediately from Lemma 2.3.1 that 3 | .n  Using the fact that 

= ,n mt  we have 
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Subcase (i): Assume that 3 | .m  Since t  is odd, we can write = 4 1t q±  for some 

> 0.q  If = 4 1,t q+  then, = 2 2 1rt a× +  with a  odd and 1.r ³  And so, by (2.7), we 

get 
22 2

= = (mod ),rn mt r mam m
U U U U V

× +
º -  implying that 2

2
5 (mod ).rm mU x U Vº -  

Since 
2

( ,  ) =1m rU V  by (2.29), it follows that 
2

2
5 1(mod ),rx Vº -  which is impossible 

since 

2

5
= 1

rV

æ ö
ç ÷
ç ÷
è ø

 by (2.33) and 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 by (2.9). If = 4 1,t q-  then, by (2.5), we 

get 
(4 1) 2 2 2= = (mod ).n m q mq m m mU U U U U- × - º -  This shows that  

 

2

25 (mod ),m m mU x U Uº -  

implying that 

25 1(mod )mx Vº -  

 

by (2.11). Since 3 | ,m  it is seen by (2.27) that 3 | .mV V  Hence, we obtain 

2

35 1(mod ),x Vº -  i.e., 2 25 1(mod 3).x Pº - -  But this is impossible since  

 

2

2

5 ( 3) / 2 1
= = =1

( 3) / 2 5 5

P

P

æ öæ ö - -æ ö
ç ÷ç ÷ ç ÷- è øè ø è ø

 

and  

2 5

4
2

1
= ( 1) = 1.

( 3) / 2

P

P

-æ ö-
- -ç ÷-è ø

 

 

Subcase (ii): Assume that 3 .m...  Since =n mt  and 3 | ,n  it follows that 3 | t  and 

therefore = 3t s  for some > 0.s  Then, by (2.14), we get 

 

( )2 2 2

3= = ( 4) 3 = 5 ,n ms ms ms mU U U P U U x- +  

implying that  

( )2 2 2( / ) ( 4) 3 = 5 .ms m msU U P U x- +  
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Clearly, ( )( )2 2= / ,  ( 4) 3 =1 or 3.ms m msd U U P U- +  If =1,d  then, either  

 

 2 2 2 2= ,  ( 4) 3 = 5ms m msU U a P U b- +  (2.79) 

or 

 2 2 2 2= 5 ,  ( 4) 3 =ms m msU U a P U b- +  (2.80) 

 

for some , > 0.a b  Suppose that (2.79) is satisfied. Then, by (2.13), we get 

2 21= 5msV b-  and this gives by (2.12) that 2

2 = 5 1.msV b -  Since >1ms  is odd, 

= 4 1ms q±  for some > 0.q  Thus = 2 2 1rms a× ±  with a  odd and > 0.r  By using 

(2.8), we get 
2

2 2 2 2
5 1= (mod ).rmsb V V V V±- º - º -  This shows that 

2 2

2
5 1 ( 2)(mod ),rb P V- º - -  implying that 

2 2

2
5 ( 3)(mod ).rb P Vº - -  By using (2.9), 

(2.23), and (2.37), it is seen that 

 

2

2 2 2

1 5 3
1 = = 1,

r r r

P

V V V

æ öæ öæ ö- -
ç ÷ç ÷ç ÷ -
ç ÷ç ÷ç ÷
è øè øè ø

 

 

a contradiction. Suppose that (2.80) is satisfied. By combining two equations, it can 

be easily seen that 2 3(mod5),b º  which is impossible. If = 3,d  then, either 

 

 2 2 2 2= 3 ,  ( 4) 3 =15ms m msU U a P U b- +  (2.81)  

or 

 2 2 2 2=15 ,  ( 4) 3 = 3ms m msU U a P U b- +  (2.82) 

 

for some , > 0.a b  If we combine two equations given in (2.81), we readily obtain 

2 2(mod3),b º  which is impossible. Suppose (2.82) holds. Then, by (2.13), we get 

2 21= 3msV b-  and this gives by (2.12) that 2

2 = 3 1.msV b -  Since >1ms  is odd, 

= 4 1ms q±  for some > 0.q  Thus = 2 2 1rms a× ±  with a  odd and > 0.r  By using 

(2.8), we get 
2

2 2 2 2
3 1= (mod ).rmsb V V V V±- º - º -  This shows that 
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2 2

2
3 1 ( 2)(mod ),rb P V- º - -  implying that 

2 2

2
3 ( 3)(mod ).rb P Vº - -  By (2.35), 

(2.36), (2.9), and (2.37), it is seen that  

 

2

2 2 2

1 3 3
1 = = 1,

r r r

P

V V V

æ öæ öæ ö- -
ç ÷ç ÷ç ÷ -
ç ÷ç ÷ç ÷
è øè øè ø

 

 

a contradiction. 

 

Case IV: Let 2 1(mod5),P º  n  is even, and P  is odd. Since = ,n mt  we divide the 

proof into two subcases: 

 

Subcase (i): Assume that t  is even. Then, = 2t s  for some > 0.s  Hence, we 

immediately have 

  

2

2/ = / = ( / ) = 5 .n m ms m ms m msU U U U U U V x  

 

Clearly, = ( / , ) =1ms m msd U U V  or 2  by (2.29). If =1,d  then, 

 

 2 2= ,  = 5ms m msU U a V b  (2.83)  

or 

 2 2= 5 ,  =ms m msU U a V b  (2.84) 

  

for some , > 0.a b  Suppose (2.83) is satisfied. Since 5 | ,msV  it follows from (2.21) 

that 5 | ,P  which contradicts the fact that 2 1(mod5).P º  Now suppose (2.84) is 

satisfied. By Theorem 2.3.3, the only possible value of ms  for which 2=msV b  is 1,  

which is impossible since >1.m  If = 2,d  then,  

 

 2 2= 2 ,  =10ms m msU U a V b  (2.85)  

or 

 2 2=10 ,  = 2ms m msU U a V b  (2.86) 
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for some , > 0.a b  Obviously, (2.85) is not satisfied because of the same reason given 

above for (2.83). If (2.86) holds, then, it is seen by Theorem 2.3.3 that the only 

possible values of ms  and P  for which 2= 2msV b  are = 3ms  and = 3,27.P  But 

these are impossible since 2 1(mod5).P º  

 

Subcase (ii): Assume that t  is odd. Since >1,t  we can write = 4 1t q+  or = 4 3t q+  

for some > 0.q  On the other hand, since n  is even and = ,n mt  it follows that  m  is 

even. Therefore we can write = 2rm a  with a  odd and > 0.r  Assume that 

= 4 1.t q+  Then, = = 4 = 2 2r kn mt qm m b m++ × +  with b  odd. Hence, we get 

  

2

2 2 2
5 = = (mod )m n r k m r kb m
U x U U U V+ +× +

º -  

 

by (2.7). Since 
2 2 2

( ,  ) = ( ,  ) =1m r k r r ka
U V U V+ +  by (2.29), it follows that 

  

2

2
5 1(mod ).r kx V +º -  

 

This is impossible. Because 

2

5
= 1

r kV +

æ ö
ç ÷
ç ÷
è ø

 and 

2

1
= 1

r kV +

æ ö-
ç ÷ -
ç ÷
è ø

 by (2.33) and (2.9), 

respectively. Now assume that = 4 3.t q+  Then, we have = = 4 3 .n mt qm m+  And so, 

by (2.5), we get  

 

2

4 3 3 25 = = (mod ).m n qm m m mU x U U U U+ º  

 

By using (2.11) and (2.14), we readily obtain 

  

2 25 1(mod ),m mx V Vº -  

which implies that 

25 1(mod ).mx Vº -  

Using the fact that = 2rm a  with a  odd, we have 
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2

2
5 1(mod ),r a

x Vº -  

implying that  

2

2
5 1(mod )rx Vº -  

 

by (2.27). But this is impossible since 

2

5
= 1

rV

æ ö
ç ÷
ç ÷
è ø

 and 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 by (2.23) and (2.9), 

respectively. 



 

 

 
 

CHAPTER 3. ON THE LUCAS SEQUENCE EQUATIONS 

7nV =  AND 7n mV V=  

 

 

In this section, using congruences, with extensive reliance upon the Jacobi symbol, 

and by the help of the methods of solutions of Pell equations, we will solve the 

equations = 7 ,nU 7 ,  = 7 ,nV 7 ,  = 7 ,n mU U ,  and = 7 .n mV V .  For all odd values of P  

and =1,Q  the equation = 7nU  has only the solution ( , ) = (2,7 )n P 7 )  when 7 | P  

and the equation 2= 7nV x  has only the solution ( , ) = (1,7 )n P 7 )  when 7 | P  or 

( , ) = (4,1)n P  when 2 1(mod7).P º  We show that the equation = 7n mV V  is 

solvable if and only if 2 4(mod7)P º  and ( , ) (3,1).n m =  Moreover, we show that the 

equation = 7n mU U  has only the solution ( , , , ) = (8,4,1,1)n m P ) = (8,4,  when P  is odd. 

 

Now, we shall establish some theorems and lemmas which will be required later. 

 

The following two theorems can be found in [58]. 

 

Theorem 3.1. If P  is odd, then, the equation 2= 3nV x  has a solution =1n  or = 2n  

and if P  is even and 3 ,P,  then, the equation 2= 3nV x  has no solutions. 

 

Theorem 3.2. If P  is odd, 1,m ³  and 23 ,n mV V x=  then, 1m =  and 3.n =  

 

The following three lemmas can be proved by using Theorems 2.1.1 and 2.1.2. 
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Lemma 3.1.  

 

1(mod 2),  if 3 | ,
3 |

2(mod 4),  if 3 .
n

n P
V

n P

ºì
Û í

ºî .
 

 

Lemma 3.2.  

 

2

2

2

2 ,  if 7 | ,

4 |  and / 4 is odd, if 1(mod 7),
7 |

4 |  and / 4 is odd, if 2(mod 7),

3 |  and / 3 is odd, if 4(mod 7).

n

n P

n n P
V

n n P

n n P

ì
ï ºï

Û í
ºï

ï ºî

,  if 7 |,  if 7 |,  if 7 |

 

 

Lemma 3.3.  

 

2

2

2

2 | ,  if 7 | ,

8 | ,  if 1(mod 7),
7 |

16 | ,  if 2(mod 7),

6 | ,  if 4(mod 7).

n

n P

n P
U

n P

n P

ì
ï ºï

Û í
ºï

ï ºî

 

 

We state the following three lemmas without proof. 

 

Lemma 3.4. All positive integer solutions of the equation 2 27 2x y- =  are given by 

( )( )1 1( , ) 3 (16, 1) (16, 1) ,  17 (16, 1) (16, 1)m m m mx y U U U U+ += - - - - - -  with 0.m ³  

 

Lemma 3.5. All positive integer solutions of the equation 2 27 3x y- = -  are given by 

 

( )1 1( , ) 2 (16, 1) 5 (16, 1),  2 (16, 1) 4 (16, 1)m m m mx y U U U U+ += - + - - - -  

or 

( )1 1( , ) 5 (16, 1) 2 (16, 1),  2 (16, 1) (16, 1)m m m mx y U U U U- -= - + - - - -  with 0.m ³  
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Lemma 3.6. All positive integer solutions of the equation 2 23 1x y- =  are given by 

( )( , ) (4, 1) / 2,  (4, 1)m mx y V U= - -  with 1.m ³  

 

Lemma 3.7. The equation 4 27 3x y- = -  has no positive integer solutions. 

 

Proof:  Assume that the equation 4 27 3x y- = -  for some , 0.x y >  If y  is odd, then, 

it follows that 4 4(mod8)x º , which is impossible. Thus, y  is even and therefore x  

is odd. Note that the equation 4 27 = 3x y- -  implies that 

 

2 2 2( ) 7 = 3.x y- -  

 

By Lemma 3.5, we get  

 

2

1= 2 (16, 1) 5 (16, 1)m mx U U+ - + -  

or  

2

1= 5 (16 1) 2 (16, 1).m mx U U -- + -  

 

Assume that 2

1= 2 (16, 1) 5 (16, 1).m mx U U+ - + -  Since x  is odd, it is seen from (2.41) 

that m  is odd. Besides, 2

12 (16, 1)(mod5),mx U +º -  which implies that 15 | .mU +  It can 

be easily shown that 5 | (16, 1)mU -  iff 3 | .m  Thus, we get 1= 3m k+  for some > 0.k  

Since m  is odd, k  is even and therefore = 2 .k q  Hence, we have = 6 1m q-  with 

0.q >  And so, by (2.5), we get 

  

( )2

2 3 2 3 1 0 1 3= 2 (16, 1) 5 (16, 1) 2 (16, 1) 5 (16, 1) mod (16, 1) ,q qx U U U U U× × - -- + - º - + - -  

 

implying that 2 5(mod17),x º -  because 317 | (16, 1).U -  But this is impossible since 

 

5 1 5 2
= = = 1.

17 17 17 5

- -æ ö æ öæ ö æ ö -ç ÷ ç ÷ç ÷ ç ÷
è ø è øè ø è ø
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The details of the proof of the equality 2

1= 5 (16 1) 2 (16, 1),m mx U U -- + -  broadly 

similar to the above, are omitted. 

 

Lemma 3.8. The equation 4 29 21 3x y- = -  has no positive integer solutions. 

 

Proof: Dividing both sides of the equation above by 3  gives 2 47 3 1.y x- =  Now let 

us consider the equation 

 

 2 27 3 1.u v- =  (3.1) 

 

Since the fundamental solution of (3.1) is 2 7 3 3,+  it follows as a consequence of 

Theorem 2.2 given in [67] that all positive integer solutions of (3.1)  are given by 

( )1 1( , ) 2( ),  3( ) ,n n n nu v U U U U+ += - +  where = (150, 1).n nU U -  Therefore, we have 

2

1= 3( ).n nx U U+ +  It can be easily shown that 

 

 
(mod8),  if  is odd,

(mod8),  if  is even.
n

n n
U

n n

ì
º í

-î
 (3.2) 

 

Hence, if n  is odd, then, by (3.2), we have 2 3 3 3 3(mod8),x n nº - - + º -  a 

contradiction. If n  is even, then, by (3.2), we get 2 3 3 3 3(mod8),x n nº + - º  a 

contradiction. 

 

In [68], when =1,Q  Keskin and Karaatlı solved the equations = 5nU  and 

= 5n mU U  under some assumptions on .P  They solved the equations = 5nV  with 

P  odd and =1.Q  They showed that the equation = 5n mV V  has no solutions. These 

results were presented in the second subchapter of Chapter 2 of this thesis. Here we 

will solve the equations = 7 ,  = 7 ,n nU V7 ,  = 7 ,n n7 ,  7 ,  7 ,  7 ,  7 ,  7 ,  7 ,   = 7 ,n mU U ,  and = 7n mV V  under the 

conditions that P  is odd and =1.Q  
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We begin with the following theorem. This result will be used in the solution of the 

equation = 7 .nU . 

 

Theorem 3.3. If P  is an odd integer, then, there is no integer x  such that 2=14 .nV x  

Proof: Assume that 2=14nV x  and P  is odd. Since 2 | ,nV  we get 3 | n  by (2.26). The 

remainder of the proof is split into two cases. 

 

Case I: Assume that 7 | P  or 2 4(mod7).P º  Since 7 | ,nV  it is seen from Lemma 3.2 

that 2 .n.  Since 3 | ,n  we get = 3n t  and therefore 2 .t.  Thus we can write 

=12 3.n q±  And so, by (2.2), we obtain 12 3 3 6= (mod ),n qV V V U± º ±  which implies 

that 214 4 4(mod8).x Pº ± º  This shows that 2 2(mod 4),x º  a contradiction. 

 

Case II: Assume that 2 1(mod7)P º  or 2 2(mod7).P º  Since 7 | ,nV  it follows that 

= 4n t  for some odd t  by Lemma 3.2. Since 3 | ,n  we see that 3 | t  and therefore 

= 6 3.t q+  Thus, we can write = 24 12.n q+  Let 2 1(mod7).P º  And so, by (2.4), we 

get  

 

24 12 2 2 6 12 12 0 2= = 2(mod ),n q qV V V V V V+ × × + º º - º -  

 

 which implies that 2 214 2(mod 2).x Pº - +  Hence, we obtain 
2

7
1 = .

2P

-æ ö
ç ÷+è ø

 But this 

is impossible since 

 

2 21 1 2

2 2
2

7 2 3 4
= ( 1) ( 1) = = = 1.

2 7 7 7

P P
P

P

+ + æ ö- + -æ ö æ ö æ ö- - -ç ÷ç ÷ ç ÷ ç ÷+è ø è ø è øè ø
 

 

Now let 2 2(mod7).P º  Since = 24 12,n q+  it follows from (2.2) that 

24 12 2 3(4 2) 0 3= = 2(mod ),n q qV V V V U+ × + º º  which implies that 2 214 2(mod 1),x Pº +  

i.e., 
2

2 1
7 1 mod .

2

P
x

æ ö+
º ç ÷
è ø

 But this is also impossible since 
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2 1 2

4
2

7 ( 1) / 2 5 2
1 = ( 1) = = = 1.

( 1) / 2 7 7 7

P
P

P

- æ öæ ö + -æ ö æ ö= - -ç ÷ç ÷ ç ÷ ç ÷+ è ø è øè ø è ø
 

 

By Theorem 2.2.12, we have the following immediate corollary. 

 

Corollary  3.1. The equations 4 2 2196 ( 4) 4x P y- + = ±  have no positive integer 

solutions. 

 

Theorem  3.4. Let P  be odd. If 7 | ,P  then, 2= 7nV x  is possible if and only if 

( , ) (7 ,1).P n = 7 ,1).  If 7 | ,P/  then, 2= 7nV x  is impossible, except for the case 

( , ) (1,4).P n =   

 

Proof: Assume that 2= 7 ,nV x  7 | P  and P  is odd. Then, by Theorem 2.2.7, we get 

=1n  or = 3.n  If =1,n  then, 2

1 = = 7 .V P x  Therefore 1n =  is a solution. If = 3,n  

then, 2 2

3 = ( 3) = 7 .V P P x+  Since 7 | ,P  it follows that 2 2( / 7)( 3) = .P P x+  Clearly, 

2= ( / 7, 3) =1d P P +  or 3.  Let =1.d  Then, 2= 7P a  and 2 23 =P b+  for some 

, > 0.a b  This implies that 2 3(mod7),b º  which is impossible since 
3

= 1.
7

æ ö -ç ÷
è ø

 Let 

= 3.d  Then, we have 

 

 
2 2 2= 21  and 3 = 3 .P a P b+  (3.3) 

 

It is seen from (3.3) that 3 | P  and therefore 

 

 = 3P c  (3.4) 

 

for some > 0. c  Substituting (3.4) into (3.3), we immediately have the Pell equation 

2 23 =1.b c-  By Lemma 3.6, we have ( ) ( )( )( , ) = 4, 1 / 2,  4, 1m mb c V U- -  for some 

1.m ³  On the other hand, since 23 = 21 ,c a  we get 2= 7 .c a  So, we are interested in 

the solutions ( )4, 1 = 7 .mU - 7 .  Since 47 | (4, 1),U -  it can be easily shown that 
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7 | (4, 1)mU -  if and only if = 4m k  for some 1.k ³  Then, by (2.11), it follows that 

( ) ( ) ( )4 2 27 = 4, 1 = 4, 1 4, 1 .k k kU U V- - -(4 2 27 = 4,(4 2 2k k k(4 2 24 2 2(4 2 24 2 2(4,(4 2 24,4(4 2 24 2 24 2 2(  From (2.29) and (2.41), it is seen that 

( ) ( )( )2 24, 1 , 4, 1 = 2.k kU V- -  Then, either 

 

 ( ) ( )2 2

2 24, 1 = 2  and 4, 1 =14k kU u V v- -  (3.5) 

or 

 ( ) ( )2 2

2 24, 1 =14  and 4, 1 = 2k kU u V v- -  (3.6) 

 

for some positive integers u  and .v  From now on and until the end of this paragraph, 

instead of (4, 1)nU -  and (4, 1),nV -  we will write 
nU  and ,nV  respectively. Suppose 

(3.5) is satisfied. Clearly, 27 | .kV  Since 27 | ,V  it can be easily shown that k  is odd. 

Let = 4 1.k q±  By (2.5), we get  

 

2

2(4 1) 2 42 = (mod ).qu U U U± ±º  

 

Since 
48 | ,U  the previous congruence becomes 22 4(mod8),u º ±  which is 

impossible. Suppose (3.6) is satisfied. We show that if 2= 2 ,nV v  then, 3 | .n  Let 

= 6 ,n q r+  0 5.r£ £  Then, by (2.6), it follows that 3(mod ),n rV V Uº  implying that 

22 (mod5)rv Vº  since 35 | .U  From this, it follows that = 0r  or 3.  This shows that 

3 | .n  Returning to the equation 2

2 = 2 ,kV v  we have = 3 .k r  Thus 

2 2

6 3 2 2 2= = ( 3) = 2r r r rV V V V v× -  by (2.15). This implies that 2 22
2= ( 3).

2

r
r

V
v V -  On the 

other hand, since 2 212 = 4n nV U-  by (2.13), we see that 3 .nV .nVn  Thus, 

22
2,  3 =1.

2

r
r

V
V

æ ö-ç ÷
è ø

 Then, we have 2 2

2 3 = ,rV a-  which is impossible. 

 

Now we consider the case 2 1(mod7).P º  Since 7 | ,nV  it follows from Lemma 3.2 

that = 4n t  for some odd integer .t  Let >1.t  We can write = 4 1t q±  with 1q ³  and 
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therefore = 4 = 2 2 4,rn t a× ±  with a  odd and 3.r ³  Thus by (2.4), we get 

4 2
(mod ).rnV V Vº -  If = 3,r  then, 

 

 2

4 87 (mod )x V Vº -  (3.7) 

and if > 3,r  then, 

 2

4 2
7 (mod ).rx V Vº -  (3.8) 

 

Since 2

8 4= 2V V -  by (2.12), it follows that 
8 42(mod )V Vº -  and therefore 

42
2(mod ).rV Vº  Note that 4 2

4 4 2.V P P= + +  Since 2 1(mod7),P º  we see that 

47 |V  and therefore by (2.12), we have 8 2(mod7)V º -  and 
2

2(mod7).rV º  Besides, 

since P  is odd, it follows that 4 7(mod8)V º  and 8 7(mod8).V º   Also, 

 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 

 

by (2.9). Assume that 3,r =  so that, by (3.7), we have  

 

4

8 8 8

7 1
= .

V

V V V

æ ö æ öæ ö-
ç ÷ ç ÷ç ÷
è ø è øè ø

 

 

But this is impossible since  

 

8

8

7 2
= ( 1) = ( 1)( ) =1,

7 7

V

V

æ ö -æ ö- -ç ÷ ç ÷
è øè ø

 
8

1
= 1

V

æ ö-
-ç ÷

è ø
 

and  

84

8 4 4

2
= ( 1) = ( 1) =1.

VV

V V V

æ ö æ ö æ ö-
- -ç ÷ ç ÷ ç ÷

è ø è øè ø
 

 

Now assume that 3,r >  so that (3.8) is satisfied. Then, it follows that  
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4

2 2 2

7 1
= .

r r r

V

V V V

æ ö æ öæ ö-
ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷
è ø è øè ø

 

 

But this is also impossible since  

 

2

2

7 2
= ( 1) = ( 1) = 1,

7 7

r

r

V

V

æ ö æ ö æ öç ÷ - - -ç ÷ ç ÷ç ÷ç ÷ è øè øè ø
 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 

and  

4 2

4 42

2
= ( 1) = ( 1) = 1.

r

r

VV

V V V

æ ö æ ö æ ö
ç ÷ - - -ç ÷ ç ÷ç ÷ç ÷ è øè øè ø

 

 

Hence, we conclude that =1.t  Then, = 4n  and therefore 

2 2 2

4 = ( 2) 2 = 7 .nV P V x+ - =  Now, we consider the equation 2 27 = 2u v-  with 

2= 2.u P +  By Lemma 3.4, we get  

 

( )2

12 = 3 (16, 1) (16, 1) .m mP U U++ - - -  

 

From now on and until the end of the case 2 1(mod7),P º   instead of (16, 1),mU -  we 

will write .mU  Let = 4 ,m q r+  0 3.r£ £  Then, by (2.5), it follows that 

 

4 2(mod ),q r rU U U+ º  

 

leading to  

 

2

12 3( )(mod16)r rP U U++ º -  

 

since 216 | .U  A simple calculation shows that = 0r  and therefore 4 | .m  So, we can 

write =12 ,m q  12 4q+  or 12 8.q+  If =12 4,m q+  then, we obtain  
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2

12 5 12 4 5 4 32 3( ) 3( )(mod )q qP U U U U U+ ++ º - º -  

 

by (2.5). Since 
35 | ,U  we immediately have 2 2 0(mod5),P + º  which is impossible. 

The remainder of the proof is split into two cases. 

 

Case I: Let =12m q  with 0.q ³  If 0,q >  then, we can write =12 = 2 2 3 ,rm q a× ×  

with a  odd and 1.r ³  Thus by (2.7), we get 

 

2

22 2 3 1 2 2 3
2 = 3( ) 3(mod ),rr ra a

P U U V
× × + × ×

+ - º -  

leading to  

 

 2

2
5(mod / 2).rP Vº -  (3.9) 

 

If 2,r ³  then, a simple calculation shows that 
2

2(mod8)rV º  and 
2

1(mod5).rV º -  

Thus, 
2

/ 2 1(mod 4)rV º  and 
2

/ 2 2(mod5).rV º  From (3.9), it is seen that  

 

2 2

1 5
1 = .

/ 2 / 2r rV V

æ öæ ö-
ç ÷ç ÷
ç ÷ç ÷
è øè ø

 

 

But this is impossible since 

2

1
= 1

/ 2rV

æ ö-
ç ÷
ç ÷
è ø

 

and  

2

2

/ 25 2
= = = 1.

/ 2 5 5

r

r

V

V

æ ö æ ö æ öç ÷ -ç ÷ ç ÷ç ÷ç ÷ è øè øè ø
 

 

Hence, we get =1.r  By (2.7), it follows that 2

2 6 1 2 6 62 = 3( ) 3(mod ),a aP U U V× + ×+ - º -  

i.e., 2

65(mod / 2).P Vº -  This implies that  
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6 6

1 5
1 = .

/ 2 / 2V V

æ öæ ö-
ç ÷ç ÷
è øè ø

 

 

Using the fact that 
6 / 2 1(mod5)V º  and 

6 / 2 3(mod 4),V º  we readily obtain 

 

6

6 6

/ 21 5 1
1 = = ( 1) = ( 1) = 1,

/ 2 / 2 5 5

V

V V

æ öæ ö- æ ö æ ö- - -ç ÷ç ÷ ç ÷ç ÷
è øè øè øè ø

 

 

a contradiction. Thus, we get = 0.q  Then, = 0m  and therefore 2 2 = 3.P +  This 

gives that =1.P  

 

Case II: Let =12 8m q+  with 0.q ³  This implies that =12 4m u-  for some 0.u >   

Then, by (2.7), we get  

 

2

2 3 2 3 2 3 2 4 3 4 4 3 32 = 3( ) 3( ) 3( )(mod ).q qP U U U U U U V× × - × × - - -+ - º - º -  

 

A simple calculation shows that 311| ,V  
4 5(mod11),U º  and 3 2(mod11).U º  Thus, it 

is seen that 2 7(mod11),P º  which is impossible since 
7 4

= = 1.
11 11

-æ ö æ ö -ç ÷ ç ÷
è ø è ø

 

 

Assume that 2 2(mod7).P º  Since 7 | ,nV  it follows from Lemma 3.2 that = 4n t  for 

some odd integer .t  Similar arguments used for the case when 2 1(mod7)P º  show 

that =1.P  But this is impossible since 2 2(mod7).P º  

 

Assume that 2 4(mod7).P º  Since 7 | ,nV  it follows that = 3n t  for some odd integer 

t  by Lemma 3.2. Hence, 2

3= = ( 3)n t t tV V V V +  from (2.15). Clearly, 2( , 3) =1t tV V +  or 

3.  Let 2( , 3) =1.t tV V +  Then, either 

 

 2 2 2= ,  3 = 7t tV a V b+  (3.10) 

or 
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 2 2 2= 7 ,  3 =t tV a V b+  (3.11) 

 

for some positive integer a  and .b  But the two relations (3.11) lead to 

2 3(mod7),b º  which is impossible, hence (3.10) is satisfied. Solving the systems of 

equations 2= ,tV a  2 23 = 7tV b+  gives 4 27 = 3,a b- -  which has no positive integer 

solutions by Lemma 3.7. It is obvious that (3.11) is not satisfied. Because, we get 

2 3(mod7)b º  in this case. Let 2( ,  3) = 3.t tV V +  This implies that either 

 

 2 2 2= 3 ,  3 = 21t tV a V b+  (3.12) 

or 

 2 2 2= 21 ,  3 = 3t tV a V b+  (3.13) 

 

for some , > 0.a b  Assume that (3.12) is satisfied. Then, we get 4 29 21 = 3,a b- -  

which has no positive integer solutions by Lemma 3.8. Now assume that (3.13) is 

satisfied. Since 3 | tV  and t  is odd, it follows from Lemma 3.1 that 3 | .P  On the other 

hand, it is seen that 2

2= 2t tV V -  by (2.12). Combining the equation 2

2= 2t tV V -  with 

2 23 = 3tV b+  gives 2

2 = 3 1.tV b -  Let >1.t  Then, we can write = 4 1= 2 1rt q z± ±  

with z  odd and 2.r ³  And so, by (2.4), we get 2 22.2 2 2
= (mod ),t r rz

V V V V
±
º -  

implying that  

 

2 2

3 2
3 ( 2 1) (mod ).rb P U Vº - + - º -  

 

This means that 3

2

3
= 1.

r

U

V

æ ö-
ç ÷
ç ÷
è ø

 We have 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 and 3

2

= 1
r

U

V

æ ö
ç ÷
ç ÷
è ø

 by (2.9) and 

(2.31), respectively. On the other hand, 
2

2(mod3)rV º  by (2.34), leading to 

 

( ) ( )
1

2
22

2

3 2
= 1 = 1 = 1.

3 3

V
r

r

r

V

V

-æ ö æ ö æ öç ÷ - -ç ÷ ç ÷ç ÷ç ÷ è øè øè ø
 

Therefore, 
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( )( )( )3 3

2 2 2 2

3 1 3
= = 1 1 1 = 1,

r r r r

U U

V V V V

æ ö æ öæ öæ ö- -
ç ÷ ç ÷ç ÷ç ÷ - -
ç ÷ ç ÷ç ÷ç ÷
è ø è øè øè ø

 

 

which contradicts the displayed relation a few lines above. Hence, =1t  and therefore 

1 = = 21 .V P 1 .  But this contradicts the fact that 2 4(mod7).P º  

 

By using Theorem 2.2.12, we have the following corollary. 

 

Corollary  3.2. The equations 4 2 249 ( 4) 4x P y- + = ±  have positive integer solutions 

only when 1P =  or 25P a=  with a  odd. 

 

Theorem 3.5. If P  is odd, then, a relation of the form 27 ,n mV V x=  with 1,mV ¹  is 

possible if and only if 2 3 7 ,P = - +7 ,  (hence P  is given by Lemma 3.5) and 

( , ) = (3,1).n m  

 

Proof: The strategy of the proof is as follows. We will prove that, when 1mV ¹  and 

either P  is divisible by 7,  or 2 1,2(mod7),P º  then, the equation 2= 7n mV V x  is 

impossible. And then, we will prove that, if 2 4(mod7),P º  then, ( , ) (3,1).n m =  Note 

that, in this last case, the relation 2

3 17V V x=  is equivalent to 2 27 3,P x- = -  hence P   

is obtained by applying Lemma 3.5. 

 

Case I: Assume that 7 | P  and 2= 7 .n mV V x  Since 7 | ,nV  it follows from Lemma 3.2 

that 3n ³  is odd. Furthermore, since | ,m nV V  there exists an odd integer t  such that 

=n mt  by (2.27). Thus, m  is odd. Therefore, we have 2(mod )nV nP Pº  and 

2(mod )mV mP Pº  by Lemma 2.1.1. This shows that 2 27 (mod ),nP mPx Pº  i.e., 

27 (mod ).n mx Pº  Since 7 | ,P  it is obvious that 7 | .n  Since 7 | n  and = ,n mt  it is 

seen that 7 | .mt  Assume that 7 | .t  Then, = 7t s  for some odd positive integer s  and 

therefore = = 7 .n mt ms  By (2.22), we immediately have  

 



74 

 

 

( ) ( )2 3 2 6 4 2

7 2 2 27 = = 2 1 7 14 7 ,m n ms ms ms ms ms ms ms ms msV x V V V V V V V V V V= + - - = + + +  

 

by (2.24). This implies that 7  divides the parenthesis, i.e., 

 

( )3 2

2 2 27 | 2 1 .ms ms msV V V+ - -  

 

Hence, we get  

 

3 2
2 2 2 22 1

= .
7

ms ms ms ms

m

V V V V
x

V

æ ö+ - -
ç ÷
è ø

 

 

 We have 

 

3 2 6 4 2

2 2 22 1 7 14 7
, = , 1.

7 7

ms ms ms ms ms ms ms ms

m m

V V V V V V V V

V V

æ ö æ ö+ - - + + +
=ç ÷ ç ÷

è ø è ø
 

 

Then, 

 

2 3 2 2

2 2 2=  and 2 1= 7ms m ms ms msV V a V V V b+ - -  

 

for some , > 0.a b  By Theorem 2.2.5, we have 3,ms =  1,m =  and 1P =  or = .ms m  

If 1m =  and 1,P =   then, we see that 1 1,mV V P= = =  which is impossible since 

1.mV ¹  If ,ms m=  then, =1.s  Since = 7 ,n ms  we get = 7 .n m  By (2.4), it follows 

that 7 8 2 4 4= = = (mod ),n m m m m m mV V V V V V- × - -º -  implying that 2

47 (mod ).m mV x V Vº  

Since 4V  is odd, it follows by (2.29) that 2 4( , ) 1.mU V =  But 2 ,m m mU U V=  by (2.11), 

hence 4( , ) 1.mV V =  Therefore, the congruence becomes 2

47 1(mod ).x Vº  Using the 

fact that 7 | ,P  we have 

 

1
4

42

4

7 2
1 = = ( 1) = ( 1) = 1,

7 7

V
V

V

-æ ö æ ö æ ö- - -ç ÷ ç ÷ç ÷
è øè øè ø
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a contradiction. Now assume that 7 | ,t/  so that 7 | .m  So, we can write = 7rm a  with 

7 aa  and 1.r ³  By (2.25), we get ( )1 17 7
= = 7 7 1m r ra a

V V V a- +  for some positive 

integer 
1.a  Thus, we conclude that ( )( ) ( )1 27

= = 7 7 1 7 1 7 1r

m r a ra
V V V a a a+ + ××× +  for 

some > 0ia  with 1 .i r£ £  Let ( )( ) ( )1 2= 7 1 7 1 7 1 .rA a a a+ + ××× +  As a consequence, 

= 7 .r

m aV V A  It is clear that 7 .A.A  In a similar way, we see that 

( )( ) ( )1 27
= = 7 7 1 7 1 7 1r

n r at rat
V V V b b b+ + ××× +  for some > 0jb  with 1 .j r£ £  Thus, 

we have = 7 ,r

n atV V B  where ( )( ) ( )1 2= 7 1 7 1 7 1 .rB b b b+ + ××× +  Clearly, 7 .B.  Upon 

substituting the values of nV  and mV  into 2= 7 ,n mV V x  we obtain 

27 = 7 7 ,r r

at aV B V Ax×  implying that 2= 7 .at aV B V Ax  By Lemma 2.1.1, it is seen that 

2 27 (mod ),atPB aPAx Pº  which gives that ( )27 mod .atB aAx Pº  Since 7 | ,P  it 

follows that 7 | .atB  But this is impossible since 7 ,a,,  7 ,t,  and 7 .B.  

 

Case II:  Assume that 2 1(mod7).P º  From Lemma 3.2, it is seen that = 4n t  for 

some odd positive integer .t  Therefore, we can write =12n q  for some odd q  or 

=12 4n q±  for some even .q  Firstly, let =12n q . And so, by (2.2), we get 

12 2.6 0 6= = (mod ).n q qV V V V Uº  Since 5 3

6 = 4 3U P P P+ +  and P  is odd, it is easily 

seen that 68 | .U  Hence, we have 2(mod8).nV º  Secondly, let =12 4.n q±  Then, we 

immediately have from (2.2) that 12 4 2.6 4 4 6= = (mod ),n q qV V V V U± ± ±º  implying that 

4(mod8).nV Vº  Using the fact that 4 2

4 = 4 2V P P+ +  and P  is odd, we obtain 

4 7(mod8)V º  in this case. Hence, we conclude that 2,7(mod8).nV º  On the other 

hand, since | ,m nV V  we get =n ms  for some odd s  by (2.27). It is known that 4 | n  

and s  is odd. Hence, we see that 4 | m  and therefore = 4m u  for some odd .u  And 

so, with arguments similar to those a few lines above, we have 2,7(mod8).mV º  

Thus, 7 14,49 6,1(mod8).mV º º  As a consequence, 
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2

0

= 7 1,6 1 0,1,4,6(mod8).

4

n mV V x

ì ü
ï ï

º ºí ý
ï ï
î þ

 

 

But this contradicts the fact that 2,7(mod8).nV º  

 

Case III: Assume that 2 2(mod7).P º  Since 7 | ,nV  it follows from Lemma 3.2 that 

= 4n t  for some odd .t  Furthermore, since | ,m nV V  there exists an odd integer (>1)s  

such that =n ms  by (2.27). Thus, we can write = 4 1s q±  for some 1.q ³  Since 4 | n  

and s  is odd, it is seen that m  is even and also 4 | .m  Upon substituting =n ms  and 

= 4 1s q±  into ,nV  we get (4 1) 2 2 2= = = (mod )n ms m q mq m m mV V V V V U± × ± º  by (2.2). This 

implies that 
27 (mod )m m m mV x V U Vº  by (2.11). Dividing both sides of the congruence 

by mV  gives 
27 1(mod ).mx Uº  Since 4 | ,m  it is clear from (2.28) that 4 | .mU U  Since 

4 2 2=U U V  by (2.11), the preceding congruence becomes 
2

27 1(mod ),x Vº  i.e.,  

 

 2 27 1(mod 2).x Pº +  (3.14) 

 

This means that 
2

7
1.

2P

æ ö =ç ÷+è ø
 Using 2 2(mod7),P º  we get 

 

( ) ( )
2 21

2
2

7 2 4
1 = = 1 = 1 = 1,

2 7 7

P P

P

+ æ ö+æ ö æ ö- - -ç ÷ç ÷ ç ÷+è ø è øè ø
 

 

 a contradiction.  

 

Case IV: Assume that 2 4(mod7).P º  Since 7 | ,nV  it follows from Lemma 3.2 that 

= 3n t  for some odd positive integer .t  Moreover, since | ,m nV V  it is obvious that 

=n ms  for some odd >1s  by (2.27). And so, we can write = 4 1s q±  with 1.q ³  

Thus, we get = = 4 .n ms qm m±  From now on, we divide the proof into two 

subcases. 
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Subcase (i): Let 3 | .m  Then, by (2.28), it is clear that 
3 | .mU U  Substituting 

= 4n qm m±  into 
nV  and using (2.2) and (2.11), we obtain 

4 2 2= = (mod ),n qm m mq m m m mV V V V U V± × ± ±º  i.e., 27 1(mod ).mx Uº ±  Since 
3 | mU U  and 

2

3 = 1,U P +  we conclude that  

 

 2 27 1(mod 1).x Pº ± +  (3.15) 

 

It is clear from (3.15)  that 

 

2
2 1

7 1 mod .
2

P
x

æ ö+
º ± ç ÷

è ø
 

 

Let 
2

2 1
7 1 mod .

2

P
x

æ ö+
º ç ÷
è ø

 This shows that  

 

2

7
1.

( 1) / 2P

æ ö
=ç ÷+è ø

 

 

Since 2 4(mod7),P º  it follows that 
2 1

1(mod 7).
2

P +
º -  Hence, we get  

 

( ) ( )
( )22 1

4
2

1 / 27 1
1 = = 1 = = 1,

7 71 / 2

P P

P

-æ ö æ ö+ -æ öç ÷ ç ÷- -ç ÷ç ÷ ç ÷+ è øè ø è ø
 

 

a contradiction. Similarly 
2

2 1
7 1 mod

2

P
x

æ ö+
º - ç ÷

è ø
 leads to a contradiction. 

 

Subcase (ii): Let 3 .m.  Since 3 | n  and = ,n ms  it follows that 3 | s  and therefore 

= 3s k  for some odd .k  Thus, we get = = 3 .n ms mk  Substituting this into nV  gives 
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( )2

3= = 3n mk mk mkV V V V +  by (2.15). This implies that ( )2 27 = 3 ,m mk mkV x V V +  i.e., 

( )2 27 = 3 .mk
mk

m

V
x V

V
+  Clearly, 2= , 3 = 1mk

mk

m

V
d V

V

æ ö
+ç ÷

è ø
 or 3.  Let =1.d  Then, either 

 

 2 2 2= ,  3 = 7mk m mkV V a V b+  (3.16) 

or 

 2 2 2= 7 ,  3 =mk m mkV V a V b+  (3.17) 

 

for some , > 0.a b  We immediately see that (3.17) is not satisfied. Because the only 

possible value of mkV  for which 2 23 =mkV b+  is =1,mkV  which is impossible. Assume 

that (3.16) is satisfied. Then, by Theorem 2.2.5, we obtain 3,mk =  1,m =  and 1P =  

or = .mk m  If 3mk =  and 1,P =  then 2 2 3 2 2

33 3 ( 3 ) 3 19 7 ,mkV V P P b+ = + = + + = =  

which is impossible. If ,mk m=  then, =1.k  So, it is sufficent to consider the 

equation 2 23 = 7 .mV b+  From (2.12), it follows that 2

2 1= 7 .mV b+  Assume that >1.m  

Since m  is odd, we can write ( ) ( )2 = 2 4 1 = 2 2 2rm q z± ±  with z  odd and 2.r ³  

Then, by (2.4), we get 

 

2

2 22 2 2 2
= ( 2)(mod ),m r rz

V V V P V
× ±

º - º - +  

implying that  

2 2

3 2
7 ( 2 1) (mod ).rb P U Vº - + - º -  

 

This means that 3

2

7
1 = .

r

U

V

æ ö-
ç ÷
ç ÷
è ø

  We have 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 and 3

2

= 1
r

U

V

æ ö
ç ÷
ç ÷
è ø

 by (2.31) and 

(2.9), respectively. On the oher hand, it is easy to see that 
2

6(mod7)rV º  when 

2 4(mod7).P º  Thus, we get  

 

( ) ( )
1

2
22

2

7 6 1
= 1 = 1 = 1 = 1.

7 7 7

V
r

r

r

V

V

-æ ö æ ö -æ ö æ öç ÷ - - -ç ÷ ç ÷ ç ÷ç ÷ç ÷ è ø è øè øè ø
 



79 

 

 

Combining the above, we see that 

 

3 3

2 2 2 2

7 1 7
1 = = = ( 1)(1)(1) = 1,

r r r r

U U

V V V V

æ ö æ öæ öæ ö- -
ç ÷ ç ÷ç ÷ç ÷ - -
ç ÷ ç ÷ç ÷ç ÷
è ø è øè øè ø

 

 

a contradiction. Hence, we get =1m and therefore 3 3.n m= =  Substituting 1m =  

into 2

2 1= 7mV b+  gives 2 27 3P b- = -  which has solutions by Lemma 3.5. Thus, 

( , ) (1,3)m n =  is a solution. Let = 3.d  Then, we obtain 

 

 2 2 2= 3 ,  3 = 21mk m mkV V a V b+  (3.18) 

or 

 2 2 2= 21 ,  3 = 3mk m mkV V a V b+  (3.19) 

 

for some , > 0.a b  Assume that (3.18) is satisfied. Then, by Theorem 3.2, the only 

possible values of mk  and m  for which 2= 3mk mV V a  are = 3mk  and =1.m  This 

implies that 2 2

3 3 = 21 .V b+  Thus, we get 
2

3 4(mod7).V º  This is impossible since 

37 | .V  Now assume that (3.19) is satisfied. Since 3 | mkV  and mk  is odd, it is seen that 

3 | P  by Lemma 3.1. On the other hand, 2

2= 2mk mkV V -  by (2.12). Combining the 

equations 2

2= 2mk mkV V -  and 2 23 = 3 ,mkV b+  we get 2

2 = 3 1.mkV b -  Let 

= 4 1= 2 1rmk q z± ±  with z  odd and 2.r ³  And so, by (2.4), we obtain 

 

2 2 22 2 2
= (mod ),rmk r z

V V V V
× ±

º -  

implying that  

2 2

3 2
3 ( 2 1) (mod ).rb P U Vº - + - º -  

 

This shows that  

 

3

2

3
1 = .

r

U

V

æ ö-
ç ÷
ç ÷
è ø
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We have 

2

1
= 1

rV

æ ö-
ç ÷ -
ç ÷
è ø

 by (2.9), 3

2

= 1
r

U

V

æ ö
ç ÷
ç ÷
è ø

 by (2.31), and 
2

2(mod3)rV º  by (2.34). 

Thus, 

 

( ) ( )
1

2
22

2

3 2
= 1 = 1 = 1.

3 3

V
r

r

r

V

V

-æ ö æ ö æ öç ÷ - -ç ÷ ç ÷ç ÷ç ÷ è øè øè ø
 

 

Combining the above, we see that 

 

( )( )( )3 3

2 2 2 2

3 1 3
1 = = = 1 1 1 = 1,

r r r r

U U

V V V V

æ ö æ öæ öæ ö- -
ç ÷ ç ÷ç ÷ç ÷ - -
ç ÷ ç ÷ç ÷ç ÷
è ø è øè øè ø

 

 

a contradiction. 

 

Theorem 3.6. If P  is odd,  then, 2= 7nU x  is possible if and only if 7P =  and 

= 2.n   

 

Proof: Assume that 2= 7nU x  for some > 0.x  Since 7 | ,nU  it follows that = 2n t  for 

some positive integer t  by Lemma 3.3. And so, by (2.11), we get 

2

2= = = 7 .n t t tU U U V x  Clearly, ( , ) =1t tU V  or 2  by (2.29). Let ( ), =1.t tU V  Then, 

either  

 

 2 2= ,  = 7t tU a V b  (3.20) 

or 

 2 2= 7 ,  =t tU a V b  (3.21) 

 

for some , > 0.a b  Assume that (3.20) is satisfied. Then, by Theorem 3.4, the possible 

values of t  for which 2= 7tV x  are =1t  when 7 | P  and = 4, =1t P  when 

2 1(mod7).P º  If =1,t  then, = 2n  and therefore = 7P  is a solution. If = 4t  and 
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=1,P  then, 3 2

4 = 2 = 3 = ,U P P a+  which is impossible in integers. Now assume 

that (3.21) is satisfied. Since 7 | ,tU  it is seen from Lemma 3.3 that t  is even. Let 

= 2 .t m  Then, by (2.12), we see that 2 2

2= = = 2,t m mb V V V ±  which is impossible. Let 

( ), = 2.t tU V  Then, either  

 

 2 2= 2 ,  =14t tU a V b  (3.22) 

or 

 2 2=14 ,  = 2t tU a V b  (3.23) 

 

for some , > 0.a b  According to Theorem 3.3, (3.22) cannot hold. Assume that (3.23) 

is satisfied. Then, by Theorem 2.2.3, we have = 6t  and =1,5.P  But this is also 

impossible. For, otherwise we would have 2 2 3

6 3 314 = = = ( 1)( 3 ),a U U V P P P+ +  

which is impossible for 1,5.P =   

 

By Theorems 2.2.12 and 2.2.14, we give the following corollary. 

 

Corollary  3.3. The equations 2 2 449( 4) 4x P y- + = ±  and 4 2 249 7 1x Px y y- - = ±  

have positive integer solutions only when 27P a=  with a odd.  

 

Theorem 3.7. Let P  be odd, >1m  and 1.mU ¹  The equation 2= 7n mU U x  has 

solution only when 2 1(mod7),P º  in which case, the only solution is given by 

( , , , ) = (8,4,1,1).n m P x  

 

Proof: Assume that 2= 7n mU U x  with >1.m  Since | ,m nU U  it follows from (2.28) 

that | .m n  Thus, =n mt  for some positive integer .t  It is easy to see that .n m¹  

Then, we have >1.t  On the other hand, since 7 | ,nU  it is seen that n  is even by 

Lemma 3.3. Since n  is even and = ,n mt  either m  or t  is even. 
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Case I: t  is even. Then, = 2t s  for some > 0.s  By (2.11), we have 

2

2= = = 7 .n ms ms ms mU U U V U x  This yields that ( ) 2/ = 7 .ms m msU U V x  Clearly, 

( )/ , =1ms m msU U V  or 2  by (2.29). If ( )/ , =1,ms m msU U V  then, either 

 

 2 2= ,  = 7ms m msU U a V b  (3.24) 

or 

 2 2= 7 ,  =ms m msU U a V b  (3.25) 

 

for some positive integers a  and .b  By Theorem 3.4, the identity (3.24) is 

impossible when 2 2(mod7)P º   or 2 4(mod7).P º  If 7 | ,P  then, by Theorem 3.4, 

we have =1.ms  But this contradicts the fact that >1.m  If 2 1(mod7),P º   then, by 

Theorem 3.4, it follows that = 4ms  and =1.P  Since >1,m  we get = 4,m  =1s  or 

= 2,m  = 2.s  Let = 4,m  =1.s  Since = 2t s  and = ,n mt  we get = 8.n  Hence, 

2

8 4= 7 ,U U x  implying by (2.11) that 2

4 = 7 .V x  Since =1,P  we obtain =1.x  So, 

( , , , ) = (8,4,1,1)n m P x  is a solution. Now, let 2,m =  2.s =  Then, we readily obtain 

= 8n  and therefore 2

8 2= 7 .U U x  By (2.11), it follows that 2

2 4 = 7 .V V x  Since 47 | ,V  

we get 24
2 = .

7

V
V x  Clearly, 4

2 , = 1
7

V
V
æ ö
ç ÷
è ø

 by (2.29) and (2.26). Then, 2

2 = ,V a  

2

4 = 7V b  for some , > 0.a b  Since =1,P  it follows that 2 2

2 = 2 = 3 = ,V P a+  which 

is impossible. If (3.25) is satisfied, then, by Theorem 2.2.2, we have = 3ms  and 

=1P  or 3.  Since >1m  and = 3,ms  it follows that = 3.m  This implies that 

2

3 3= 7 ,U U x  which is impossible. If ( )/ ,  = 2,ms m msU U V  then, either 

 

 2 2= 2 ,  =14ms m msU U a V b  (3.26) 

or 

 2 2=14 ,  = 2ms m msU U a V b  (3.27) 

 

for some positive integers a  and .b  Clearly, (3.26) is excluded by Theorem 3.3. 

Suppose (3.27) is satisfied. Then, by Theorem 2.2.3, we have = 6ms  and =1,5.P  
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Since >1,m  it follows that = 2,3m  or 6.  If = 2,m  then, 2

6 2=14 ,U U a  implying 

that 2 2 2( 1)( 3) =14P P a+ +  which is impossible in integers for the case when 

=1,5.P  If = 3,m  then, 2

6 3=14 ,U U a  implying that 3 2( 3 ) =14 ,P P a+  which is 

impossible. Lastly, if = 6,m  then, 2

6 6=14 ,U U a  implying that 21=14 ,a  which is 

also impossible. 

 

Case II: t  is odd. Since =n mt  and n  is even, it follows that m  is even. Let 

= 2 .m s  Then, it follows that = 2n st  and so, by (2.11), we get 

2 2

2 2= = = 7 = 7 .n st st st st st stU U U V U x U V x  This implies that 2= 7 .st st

s s

U V
x

U V
 Clearly, 

= , = 1st st

s s

U V
d

U V

æ ö
ç ÷
è ø

 or 2.  Let =1.d  Then, either  

 

 2 2= ,  = 7st s st sU U a V V b  (3.28) 

or  

 2 2= 7 ,  =st s st sU U a V V b  (3.29) 

 

for some , 0.a b >  Suppose (3.28) is satisfied. Then, by Theorem 3.5, we get =1s  

and = 3.st  This implies that 2

3 1= ,U U a  that is, 2 21= ,P a+  which is impossible. 

Suppose (3.29) is satisfied. Then, by Theorem 2.2.5, we obtain 3,st =  1,s =  and 

1P =  or = .st s  If 3,st =  1,s =  and 1,P =  then from 2= 7 ,st sU U a  we have 

2

3 17 ,U U a=  leading to 22 7 ,a=  which is impossible. If ,st s=  then again from 

2= 7 ,st sU U a  we have 21= 7 ,a  which is impossible. Let = 2.d  Then, either  

 

 2 2= 2 ,  =14st s st sU U a V V b  (3.30) 

or  

 2 2=14 ,  = 2st s st sU U a V V b  (3.31) 
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for some positive integers a  and .b  Assume that (3.30) is satisfied. Then, by 

Theorem 2.2.4, the possible values of ,st  ,s  and P  for which 2= 2st sU U a  are 

= 3,st  = 2,s  1;P =  = 6,st  = 2,s  1;P =   =12,st  = 3,s  1;P =  =12,st  = 6,s  

1;P =  or 12,st =  6,s =  = 5.P  A simple computation shows that 214st sV V b=  is 

impossible under all the conditions that when 1.P =  If 5,P =  then, this is impossible 

for the case when 7 | P  or ( )2 1,2 mod7 .P º  On the other hand, since 7 | ,stV  it 

follows from Lemma 3.2 that = 3st r  with r  odd for the case when 2 4(mod7).P º  

This means that st  is odd. But this contradicts the fact that =12st  is even. Assume 

that (3.31) is satisfied. Then, by Theorem 2.2.6, we get 1s =  and 1.P =  Since 

2 ,m s=  it follows that 2.m =  Substituting this value of m  into 27n mU U x=  gives 

2 2

27 7 .nU U x x= =  By Theorem 3.6, the equation 27nU x=  is possible if and only if 

2.n =  As a consequence, we have 2m =  and 2.n =  But this is impossible since 

.n m¹   



 

 

 
CHAPTER 4. CONCLUSIONS AND SUGGESTIONS 
 

 

In this thesis we dealt with the generalized Fibonacci numbers ( , )nU P Q  and Lucas 

numbers ( , )nV P Q  of the form 2kx  with the special consideration that P  is odd and 

1.Q = ±  The cases 5k =  and 7k =  are the ones of interest to our thesis. The main 

tools that we employed are the Jacobi symbol that we made extensive use of it, 

divisibility properties, and congruences concerning generalized Fibonacci and Lucas 

numbers. In the second subchapter of Chapter 2 of this thesis, we, assuming 1,Q =  

considered the equations 2( ,1) 5nU P x=  and 2( ,1) 5 ( ,1)n mU P U P x=  under some 

assumptions on .P  Besides, we considered the equation 2( ,1) 5nV P x=  for the case 

when P  is odd. We also considered the equation 2( ,1) 5 ( ,1)n mV P V P x=  and proved 

that this equation has no solutions. Applying the results of findings, we solved some 

Diophantine equations. This work has been published in International Journal of 

Number Theory [68]. In the third subchapter of Chapter 2 we considered the similar 

problem for the case when 1.Q = -  Finally, in Chapter 3, for all odd values of ,P  we 

solved the equations 2( ,1) 7 ,nU P x=  2( ,1) 7 ( ,1) ,n mU P U P x=  2( ,1) 7 ,nV P x=  and 

2( ,1) 7 ( ,1) .n mV P V P x=  And again applying these results, we solved some Diophantine 

equations. Chapter 3 and the third subchapter of Chapter 2 are still under 

consideration in some journals. 

 

Except the works mentioned above, there are various works that can be made. For 

instance, the equations 2( , 1) 7 ,nU P x- =  2( , 1) 7 ( , 1) ,n mU P U P x- = -  2( , 1) 7 ,nV P x- =  

and 2( , 1) 7 ( , 1)n mV P V P x- = -  can be first solved. It is also possible to consider the 

equations 2( , 1)nU P kx± =  and 2( , 1)nV P kx± =  for another special values of prime k  

such that 11,  13, 17,...,k =  and in general for any prime .k  Considering the 
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equations 2( , 1) 5nV P x± =  and 2( , 1) 7nV P x± =  when P  is even is an open problem,  

yet.  

 

The equations 2( ,1)nV P kx=  and 2( , 1)nV P kx- =  were solved when P  is odd and 

|k P  in [58] and [66], respectively. Similarly, it can be investigated the solutions of 

the equations 2( , 1) 5nV P kx± =  and 2( , 1) 7nV P kx± =  under the conditions that P  is 

odd, |k P  and 1.k >   

 

In [69], Alexseyev and Tengely showed the finiteness of the terms of the form 

2 ,am b+  for fixed integers 0a ¹  and ,b  in a Lucas sequence ( , )nU P Q  or ( , )nV P Q  

with 1,Q = ±  unless this sequence is ( , )nV P Q  and 2.b = ±  In [66], Keskin solved the 

equations 2( , 1) 1,nV P kx- = 1,  2( , 1) 2 1,nV P kx- = 1,  and 2( , 1) 1nU P kx- = 1 when P  

is odd, |k P  and 1.k >  Moreover, the author solved the equations 

2( , 1) 1nV P wx- = 1  for { }2,3,6 .wÎ  So, the same problems can be considered for 

1.Q =  Furthermore, the equations 2( , 1) 5 1nV P kx± = ±  and 2( , 1) 7 1nV P kx± = ±  can 

be solved when P  is odd, |k P  and 1.k >  Also, it is possible to consider the 

equations 2( , 1) 5 1nV P x± = ±  and 2( , 1) 7 1.nV P x± = ±    
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