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ÖZET 

 

 

Anahtar Kelimeler: 2-Norm, n-Norm, Dizi Uzayı, Orlicz Fonksiyonu, Hemen Hemen 

Yakınsaklık, Genelleştirilmiş Fark Matrisi, Riesz Ortalama, Ağırlıklı İstatistiksel 
Yakınsaklık. 

 

Bu tez çalışması beş bölümden oluşmaktadır. Birinci bölümde, bazı temel tanım ve 
teoremler verildi. İkinci bölümde, 2-norm ve n-norm kavramları ile ilgili bazı temel 
tanım ve teoremler verildi. İkinci bölümün bir kısmı, üçüncü bölüm ve dördüncü 
bölümler bu tezin orijinal kısmını oluşturmaktadır.  
 

Üçüncü bölümde 2-normlu uzaylarla ilgili kısımlar bulunurken üçüncü bölümde n-

normlu uzaylarla ilgili çalışmalar yer almaktadır. Üçüncü bölümde, iki alt başlık yer 

almaktadır. Bu bölümün ilk kısmında, yeni bir genelleştirilmiş ( )Bm
h  fark matrisi 

tanımlanarak 2-normlu uzayda bazı ( )Bm
h -fark istatistiksel yakınsak dizi uzayları 

tanıtıldı ve bazı topolojik özellikleri incelendi. Aynı bölümün ikinci kısmında ise, 
Riesz ortalama ile türetilen bazı yeni dizi uzayları tanıtıldı. Ayrıca, ağırlıklı hemen 

hemen istatistiksel yakınsaklık ve [ , ]nR p, ]np,, -istatistiksel yakınsaklık kavramları 

tanıtılarak bu kavramlar arasındaki ilişki incelendi.  
 

Dördüncü bölümün ilk kısmında, Lacunary dizisi ve Riesz ortalaması tanımları 
birleştirilerek n-normlu uzayda ağırlıklı hemen hemen lacunary istatistiksel 
yakınsaklık olarak adlandırılan yeni bir kavram tanıtıldı. Bu yeni kavramla hemen 
hemen lacunary istatistiksel yakınsaklık ve ağırlıklı hemen hemen istatiksel 
yakınsaklık arasındaki ilişki incelendi. Dördüncü bölümün ikinci kısmında, bir 
sonsuz matris, Orlicz fonksiyonu ve genelleştirilmiş B-fark matrisi kullanılarak bazı 
dizi uzayları tanıtıldı. Son kısmında ise reel lineer n-normlu uzayında Orlicz 
fonksiyonu yardımıyla, lacunary dizisi içeren bazı dizi uzayları tanıtılarak bu dizi 
uzaylarının bazı topolojik özellikleri incelendi.  
 

Son bölümde ise elde edilen temel sonuçlar özetlendi. 
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SOME SEQUENCE SPACES DEFINED IN n-NORMED SPACES 

 

SUMMARY 

 

 

Key Words: 2-Norm, n-Norm, Sequence Space, Orlicz Function, Almost 

Convergence, Generalized Difference Matrix, Riesz Mean, Weighted Almost 

Lacunary Statistical Convergence. 

 

This thesis contains five chapters. In the first chapter, some basic definitions and 

theorems are given. In the second chapter, some fundamental definitions and 

theorems related to the concepts of 2-normed space and n-normed space, are given. 

A part of the second chapter, the third and fourth chapters are original parts of this 

study. The third chapter is related to the concept of 2-normed space while the studies 

related with n-normed space are located in the fourth chapter.  

 

The third chapter consists of two parts. In the first part of this chapter, a new 

generalized difference ( )Bm
h  matrix is defined and some ( )Bm

h -difference statistically 

convergent sequence spaces in 2-normed space are introduced. In the second part of 

it, some new sequence spaces derived by Riesz mean are introduced. Further, new 

concepts of statistical convergence which will be called weighted almost statistical 

convergence, [ , ]nR p, ]np,, -statistical convergence in 2-normed space, are defined and 

some relations between them are investigated.  

 

There are three parts in the fourth chapter. In the first part of it, we obtain a new 

concept of statistical convergence which is called weighted almost lacunary 

statistical convergence in n-normed space by combining both of the definitions of 

lacunary sequence and Riesz mean. We examine some connections between this 

notion with the concept of almost lacunary statistical convergence and weighted 

almost statistical convergence, where the base space is a real n-normed space. In the 

second part of this chapter, some new sequence spaces associated with multiplier 

sequence by using an infinite matrix, an Orlicz function and generalized B -

difference operator on a real n-normed space are introduced. In the last part of it, 

some sequence spaces, involving lacunary sequence, in a real linear n-normed space 

are introduced.  

 

In the last section of this thesis, the main results, which were obtained, are 

summarized. 



 

 

 

CHAPTER 1. INTRODUCTION 

 

 

In this section, review of the literature, some basic definitions and theorems, which 

are necessary throughout this thesis, are given. 

 

1.1. Definitions and Preliminaries 

 

Definition 1.1.1. [1] A vector (linear) space ( ), ,.X +  over a field F  (  or ) is a 

non-empty set X  whose elements are called vectors, and in which two operations 

addition and scalar multiplication, are defined, 

  

( )
:

,

X X X

x y x y

+ ´ ®

® +
                                  

( )
. :

, .

F X X

x xl l

´ ®

®
 

 

such that for all , Fl mÎ  and , ,x y z XÎ  with the following familiar algebraic 

properties: 

 

.i x y y x+ = +  

.ii ( ) ( )x y z x y z+ + = + +  

.iii There exists XqÎ  such that x xq+ =  

.iv There exists x X- Î  such that ( )x x q+ - =  

.v 1.x x=  

.vi ( ). . .x y x yl l l+ = +  

.vii ( ). . .x x xl m l m+ = +  

.viii ( ) ( ). . . .x xl m l m=  

 

Definition 1.1.2. [2] Let F =  or F =  



2 

 

 

( ) ( ) ( ){ }: ,k kw x x x F k x k x= = ® ® =k k,F kk k,F kk kk k,  

 

denotes the space of all sequences, then w  together with co-ordinatewise addition 

and scalar multiplication defined by ( ) ( )( ) ( ),k k k kx y x y® +  and ( )( ) ( ), k kx xl l®  

respectively, is a linear space over F . 

 

Example 1.1.3. [3] The space of p -summable sequences pl  ( )1 p£ < ¥  

 

1

( ) : ,1
pp

k k

k

l x x w x p
¥

=

ì ü
= = Î < ¥ £ < ¥í ý
î þ

å                                                          (1.1.1) 

 

is a vector space with the algebraic operations defined as usual in connection with 

sequences, that is, 

 

( ) ( ) ( )1 2 1 2 1 1 2 2, ,... , ,... , ,...x x h h x h x h+ = + +  and ( ) ( )1 2 1 2, ,... , ,...a x x ax ax= . 

 

In fact, ( ) p

jx lx= Î  and ( ) p

jy lh= Î  implies px y l+ Î , as follows readily from 

the Minkowski inequality; also px la Î . 

 

Example 1.1.4. [3] The space of all continuous real valued functions on [ , ]a b  which 

is called [ ],C a b  is a vector space. Each point of this space is a continuous real 

valued function on [ , ]a b . The set of all these functions forms a real vector space with 

the algebraic operations defined in the usual way: 

 

( )( ) ( ) ( )x y t x t y t+ = +  and ( )( ) ( ) ( ),x t x ta a a= Î ) . 

 

In fact, x y+  and xa  are continuous real-valued functions defined on [ , ]a b  if x  and 

y  are such functions and aÎ . 
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Definition 1.1.5. [4] A subset Y of a linear space X is said to be a linear subspace if  

1 2x x Y+ Î  whenever 1 2,x x YÎ  and x Ya Î  whenever FaÎ  and x YÎ .  

 

Note that a linear subspace is itself a linear space.  

 

Example 1.1.6. [2] { }0 ( ) : lim 0 ,k k
k

c x x w x
®¥

= = Î =  

 

( ){ }: lim ,  k k
k

c x x w x l l
®¥

= = Î = $ Î , 

 

{ }( ) : sup ,k k
k

l x x w x¥
Î

= = Î <¥k kk kpp  

 

The sequence spaces 
0 , ,c c l¥  are all linear with the co-ordinatewise operations as 

defined in w . Moreover, the spaces 
0 , ,c c l¥  are linear subspaces of w . 

 

Another special subspace of any vector space X  is { }0Y = . 

 

Fact 1.1.7. [3] Let 1p >  and define q  by 
1 1

1
p q
+ = . p  and q  are then called 

conjugate exponents. The Hölder’s inequality for sums is given as follows: 

 

1 1

1 1 1

p qp q

k k k k

k k k

x y x y
¥ ¥ ¥

= = =

æ ö æ ö
£ ç ÷ ç ÷
è ø è ø

å å å .                                                                       (1.1.2) 

 

This inequality was given by O. Hölder in 1889. If 2p = , then 2q =  and (1.1.2) 

yields the Cauchy-Schwarz inequality for sums 

 

2 2

1 1 1

k k k k

k k k

x y x y
¥ ¥ ¥

= = =

£å å å . 
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Fact 1.1.8. [3] Let 1p ³ , then the following inequality is called Minkowski 

inequality for sums: 

 

1 1 1

1 1 1

p p pp p p

k k k k

k k k

x y x y
¥ ¥ ¥

= = =

æ ö æ ö æ ö
+ £ +ç ÷ ç ÷ ç ÷

è ø è ø è ø
å å å . 

 

Definition 1.1.9. [3] A linear combination of vectors 
1,..., mx x  of a vector space X  is 

expression of the form 

 

1 1 2 2 ... m mx x xa a a+ + +  

 

where the coefficients 
1 2, ,..., ma a a  are any scalars. 

 

For any nonempty subset M XÌ  the set of all linear combinations of vectors of M  

is called the span of M , written span M . 

Obviously, this is a subspace Y  of X , and it is said that Y  is spanned or generated 

by M . 

 

Definition 1.1.10. [3] Linear independence and dependence of a given set M  of 

vectors ( )1,..., 1rx x r ³  in a vector space X  are defined by means of the equation 

 

1 1 2 2 ... 0r rx x xa a a+ + + = ,                                                                                    (1.1.3) 

 

where 
1,..., ra a  are scalars. Clearly, equation (1.1.3) holds for 

1 2 ... 0ra a a= = = = . 

If this is the only r -tuple of scalars for which (1.1.3) holds, the set M  is said to be 

linearly independent. M  is said to be linearly dependent if M  is not linearly 

independent, that is, if (1.1.3) also holds for some r -tuple of scalars, not all zero. 

 

Remark 1.1.11. [3] An arbitrary subset M  of X  is said to be linearly independent if 

every nonempty finite subset of M  is linearly independent. M  is said to be linearly 

dependent if any finite subset of M  is linearly dependent. 



5 

 

 

Result 1.1.12. [3] A motivation for this terminology results from the fact that if 

{ }1,..., rM x x=  is linearly dependent, at least one vector of M  can be written as a 

linear combination of others; for instance,  if (1.1.3) holds with an 0ra ¹ , then M  is 

linearly dependent and we may solve (1.1.3) for 
rx  to get 

 

1 1 1 1... , 1,2,..., 1
j

r r r j

r

x x x j r
a

b b b
a- -

-æ ö
= + + = = -ç ÷

è ø
. 

 

Definition 1.1.13. [3] A vector space X  is said to be finite dimensional if there is a 

positive integer n  such that X  contains a linearly independent set of n  vectors 

whereas any set of 1n+  or more vectors of X  is linearly dependent. n  is called the 

dimension of X , written dimn X= . By definition, { }0X =  is finite dimensional 

and dim 0X = . If X  is not finite dimensional, it is said to be infinite dimensional. 

 

In analysis, infinite dimensional vector spaces are of greater interest than finite 

dimensional ones. For instance, [ , ]C a b  and pl  are infinite dimensional, whereas 
nn

 

and 
nn
 are n-dimensional. 

 

Definition 1.1.14. [3] If dim X n= , a linearly independent n -tuple of vectors of X  

is called a basis for X  (or a basis in X ). If { }1,..., ne e  is a basis for X , every 

x XÎ  has a unique representation as a linear combination of the basis vectors: 

 

1 1 ... n nx e ea a= + + . 

 

Example 1.1.15. [3] For instance, a basis for 
nn

 is 

 

( )1 1,0,...,0e = , ( )2 0,1,0,..., 0e = , … , ( )0,0,...,0,1ne = . 

 

More generally, if X  is any vector space, not necessarily finite dimensional, and B  

is a linearly independent subset of X  which spans X , then B  is called a basis (or 
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Hamel basis) for X . Hence if B  is a basis for X , then every nonzero x XÎ  has a 

unique representation as a linear combination of (finitely many) elements of B  with 

nonzero scalars as coefficients. 

 

Remark 1.1.16. [3] Every vector space { }0X ¹  has a basis. 

 

Theorem 1.1.17. [3] Let X  be an n-dimensional vector space. Then any proper 

subspace Y  of X  has dimension less than n. 

 

Definition 1.1.18. [1] A metric space is a pair ( ),X d , where X  is a non-empty set 

and d  is a metric on X  (or distance function on X ), that is, a function such that 

:d X X´ ®  satisfying the following conditions for all ,x y  and z  in X  

 

.i ( ), 0d x y ³ , 

.ii ( ), 0d x y =  if and only if x y= ,  

.iii ( ) ( ), ,d x y d y x= , 

.iv ( ) ( ) ( ), , ,d x y d x z d z y£ + . 

 

Example 1.1.19. [3] The set of all real numbers , is a metric space, taken with the 

usual metric defined by  

 

( )1 ,d x y x y= - . 

 

Example 1.1.20. [3] The metric space 
nn

, called the Euclidean space 
nn

, is 

obtained by taking the set of all ordered n-tuples of real numbers, 

written ( ) ( )1 1,..., , ,...,n nx yx x h h= = , etc., and the Euclidean metric defined by  

 

( ) ( )2

2

1

,
n

i i

i

d x y x h
=

= -å . 
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Definition 1.1.21. [3] The norm on a real or complex vector space X  is a real- 

valued function such that . : X ® , satisfying the following conditions: 

 

. 0i x ³ , for x XÎ  and 0x =  if and only if x q= , 

.ii x xa a= , for aÎ  and x XÎ , 

.iii x y x y+ £ + , for ,x y XÎ . 

 

The normed space is denoted by ( ), .X .  

 

A norm on X  defines a metric d  on X  which is given by  

 

( ) ( ), , ,d x y x y x y X= - Î  

 

and is called the metric induced by the norm. 

 

Every metric on a vector space can not be obtained from a norm. A counter example 

is the space of all bounded or unbounded sequences of complex numbers w . Its 

metric d  defined by  

 

( )
1

1
,

2 1

j j

j
j j j

d x y
x h

x h

¥

=

-
=

+ -
å  

 

where ( )jx x=  and ( )jy h=  can not be derived from a norm. A metric d  induced 

by a norm on a normed space X  satisfies the followings 

 

( ) ( ). , ,i d x a y a d x y+ + =  

( ) ( ). , ,ii d x y d x ya a a=  

 

for all , ,x y a XÎ  and every scalar a . 
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Example 1.1.22. [3] Euclidean space 
nn

 is a normed space with norm defined by 

 

1

22

1

n

j

j

x x
=

æ ö
= ç ÷
è ø
å . 

 

We note in particular that in 
33
 2 2 2

1 2 3x x x x x= = + + . The norm generalizes the 

elementary notion of the length x  of a vector. 

 

Example 1.1.23. [3] The space [ , ]pL a b  of p -th integrable functions on [ ],a b , 

( )1 p£ < ¥ , is a normed space with the norm given by 

 

( )
1

b p
p

a

x x t dt
æ ö

= ç ÷
è ø
ò . 

 

Definition 1.1.24. [3] A sequence ( )nx  in a normed space X  is convergent if X  

contains an x  such that 

 

lim 0n
n

x x
®¥

- = . 

 

Definition 1.1.25. [3] A sequence ( )nx  in a normed space X  is Cauchy if for every 

0e >  there is an nÎ  such that 

 

m nx x e- < , for all ,m n N> . 

 

If every Cauchy sequence in a normed space X  is convergent to a x XÎ , then X  

is said to be complete normed space, that is; Banach space. 

 

Example 1.1.26. [3] The space pl  is a Banach space with the usual norm given by 
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1

1

pp

j

j

x x
¥

=

æ ö
= ç ÷
è ø
å . 

 

Example 1.1.27. [3] The space [ , ]C a b  is a Banach space with the norm given by 

 

( )
[ , ]

max
t a b

x x t
Î

= . 

 

Theorem 1.1.28. [3] A subspace Y  of a Banach space X  is complete if and only if 

the set Y  is closed in X . 

 

Definition 1.1.29. [3] If ( )kx  is a sequence in a normed space X , we can associate 

with ( )kx  the sequence ( )ns  of partial sums 

 

1 2 ...n ns x x x= + + +  

 

where 1,2,...n = . If ( )ns  is convergent, say 
ns s® , that is, 0ns s- ® , then the 

series 
1

k

k

x
¥

=
å  is said to converge or to be convergent, s  is called the sum of the 

series. 

 

Definition 1.1.30. [3] If a normed space X  contains a sequence ( )ne  with the 

property that for every x XÎ  there is a unique sequence of scalars ( )na  such that 

 

( )1 1 ... 0n nx e ea a- + + ®  as n®¥. 

 

Then ( )ne  is called a Schauder basis (or basis) for X . The series 
1

k k

k

ea
¥

=
å  which has 

the sum x  is then called the expansion of x  with respect to ( )ne , and we write 
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1

k k

k

x ea
¥

=

=å . 

 

Example 1.1.31. [3] pl  has a Schauder basis, namely ( )ne , where ( )n nje d= , that is, 

ne  is the sequence whose thn -term is 1 and all other terms are zero; thus 

 

( )1 1,0,0,0,...e =  

( )2 0,1,0,0,...e =  

……………….. 

( )0,0,...,0,1,0,...ne =  

……………….. 

 

Definition 1.1.32. [3].A norm .  on a vector space X  is said to be equivalent to a 

norm 
0

.  on X  if there are positive numbers a  and b  such that for all x XÎ  we 

have 

 

0 0
a x x b x£ £ . 

 

Equivalent norms on X  define the same topology for X . 

 

In a normed space we can add vectors and multiply vectors by scalars, just as in 

elementary vector algebra. Furthermore, the norm on such a space generalizes the 

elementary concept of the length of a vector. However, what is still missing in a 

general normed space, and what we would like to have if possible, is an analogue of 

the familiar dot product 

 

1 1 2 2 3 3.a b a b a b a b= + +
 

 

and resulting formulas, notably 
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.a a a=  

and the condition for orthogonality (perpendicularity) 

 

. 0a b =  

 

which are important tools in many applications. Hence the question arises whether 

the dot product and orthogonality can be generalized to arbitrary vector spaces. In 

fact, this can be done and leads to inner product spaces and complete inner product 

spaces, called Hilbert spaces. Inner product spaces are special normed spaces. 

Historically they are older than general normed spaces. Their theory is richer and 

retains many features of Euclidean space, a central concept being orthogonality. In 

fact, inner product spaces are probably the most natural generalization of Euclidean 

space. The whole theory was initiated by the work of D. Hilbert [5] in 1912. 

 

Definition 1.1.33. [3] An inner product space on X  is a mapping of X X´  into the 

scalar field K  of X ; that is, with every pair of vectors x  and y  there is associated a 

scalar which is written and is called the inner product of x  and y , such that for all 

vectors x , y , z  and scalars a  we have 

 

. , 0, , 0i x x x x³ =  if and only if 0x = , 

. , ,ii x y y x= , 

. , ,iii x y x ya a= , 

. , , ,iv x y z x z y z+ = + . 

 

An inner product on X  defines a norm on X  given by 

 

,x x x=                                                                                                         (1.1.4)                                      

 

and a metric on X  given by 
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( ), ,d x y x y x y x y= - = - - . 

 

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach 

spaces. In ( )ii , the bar denotes complex conjugation. Consequently, if X  is a real 

vector space, we simply have 

 

, ,x y y x=      (symmetry). 

 

Definition 1.1.34. [1] A norm on an inner product space satisfies the parallelogram 

equality: 

 

2 2 2 2
2 2x y x y x y+ + - = + .                                                                         

 

If a norm does not satify the parallelogram law, it can not be obtained from an inner 

product by the use of (1.1.4). Not all normed spaces are inner product spaces. 

 

Example 1.1.35. [3] The space 2l  is a Hilbert space with inner product defined by 

 

1

, j j

j

x y x h
¥

=

=å
 

 

where ( )1,..., ,...nx x x=  and ( )1,..., ,...ny h h=  in 2l  and the bar denotes complex 

conjugation. The norm is defined by 

 

1

22

2
1

, j

j

x x x x
¥

=

æ ö
= = ç ÷

è ø
å . 

 

Example 1.1.36. [3] The space pl  with 2p ¹  is not an inner product space, hence is 

not a Hilbert space. 
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Definition 1.1.37. [3] An element x  of an inner product space X  is said to be 

orthogonal to an element y XÎ  if 

 

, 0x y = . 

 

It is also said that x  and y  are orthogonal, and it is written x y^ . Similarly, for 

subsets ,A B XÌ  it is written x A^  if x a^  for all a AÎ , and A B^  if a b^  for  

all a AÎ  and all b BÎ . 

 

Definition 1.1.38. [6] On a normed space ( ), .X , the functional 2:g X ®  

defined by the formula 

 

( ) ( ) ( )( ), : , ,
2

x
g x y x y x yl l+ -= + , 

 

where 

 

( ) ( )1

0
, : lim

t
x y t x ty xl -

± ®±
= + - , 

 

satisfies the following properties: 

 

( ) 2
. ,i g x x x=  for all x XÎ , 

( ) ( ). , ,ii g x y g x ya b ab=  for all ,x y XÎ , ,a b Î , 

( ) ( )2
. , ,iii g x x y x g x y+ = +  for all ,x y XÎ , 

( ). ,iv g x y x y£  for all ,x y XÎ . 

 

If, in addition, the functional ( ),g x y  is linear in y XÎ , it is called a semi-inner 

product on X . 

 

Example 1.1.39. [6] The functional 
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( ) ( ) ( ) ( )2 1
, : sgn , ,

p p p

k k k k kp
k

g x y x x x y x x y y l
- -

= = = Îå                           (1.1.5) 

defines a semi-inner product on the space pl , for 1 p£ <¥ , where .
p

 is the usual 

norm on pl . 

 

Definition 1.1.40. [6] Using a semi-inner product g , one may define the notion of 

orthogonality on X . In particular, it can be defined 

 

( ), 0gx y g x y^ Û = .                                                                                         (1.1.6) 

 

Note that since g  is in general not commutative, gx y^  does not imply that 

gy x^ . Further, one can also define the g -orthogonal projection of y  on x  by 

 

( )
2

,
:x

g x y
y x

x
=

 

 

and call 
xy y-  the g -orthogonal complement of y  on x . Notice here that 

g xx y y^ - . 

 

Definition 1.1.41. [4] A paranorm : ,g X ® ,  X  being a linear space, satisfies 

0,=)(qg  ( ) = ( ),g x g x-  ( ) ( ) ( )g x y g x g y+ £ +  and scalar multiplication is 

continuous, i.e. ,ll ®r  0)( ®- xxg r  as ¥®r  imply that 0)( ®- xxg r

r ll  as 

¥®r  where rl , are scalars and )( rx , XxÎ , where q  is the zero vector in the 

linear space .X  A paranorm g  for which ( ) 0g x =  implies x q=  is called a total 

paranorm on ,X  and the pair ( , )X g  is called a total paranormed space. 

 

Definition 1.1.42. [7] Let X  and Y  be two subsets of w . By ),,( YX  we denote the 

class of all matrices of A  such that =)(xAm  kmkk
xaå¥

1=
 converges for each NÎm , 

the set of all natural numbers, and the sequence =Ax  YxA mm Î¥
1=))((  for all .x XÎ   



15 

 

 

Theorem 1.1.43. [1] Let )(= mkaA  be an infinite matrix of complex numbers. Then 

A  is said to be regular if and only if it satisfies the following well-known Silverman-

Toeplitz conditions: 

 

.i
1

sup mk
m k

a
¥

=

< ¥å  

.ii lim 0mk
m

a
®¥

= , for each NÎk , 

.iii
1

lim 1mk
m

k

a
¥

®¥
=

=å . 

 

Definition 1.1.44. [8] Let A  be a non-negative regular summability matrix. Then a 

sequence )(= kxx  is said to be A -statistically convergent to a number x  if 

( ) ( )
1

lim 0A mk K
m

k

K a kd c
¥

®¥
=

= =å  or equivalently lim 0mk
m

k K

a
®¥

Î

=å  for every 0>e  where 

{ }: kK k x x e= Î - ³: kx: xx-kx: xx  and ( )K kc  is the characteristic function of K . We denote 

this limit by st lim x=A x- . 

 

Definition 1.1.45. [9] Let ( )klL =  be a sequence of nonzero scalars. Then for a 

sequence space E  the multiplier sequence space ( )E L , which associated with 

multiplier sequence L , is defined as ( ) ( ) ( ){ }:k k kE x w x ElL = Î Î .  

 

Lemma 1.1.46. [10] Let ( )kp p=  be a positive sequence of real numbers with 

,=inf hpkk  sup ,k kp H=  and { }1max 1,2HD -= . Then for all CÎkk ba ,  for all 

,NÎk  we have 

 

( )k k kp p p

k k k ka b D a b+ £ +  and { }max ,kp h Hl l l£  for lÎ . 

 

Definition 1.1.47. [11] A sequence space E  is said to be solid (or normal) if 

( ) Exk Î  implies ( ) Exkk Îa  for all sequences of scalars ( )ka  with 1£ka  for all 
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.kÎ .  

 

Lemma 1.1.48. [12] Every closed linear subspace F  of an arbitrary linear normed 

space ,E  different from ,E  is a nowhere dense set in E . 

 

Definition 1.1.49. [11] An Orlicz function is a function [ ) [ )¥®¥ 0,0,:M  which is 

continuous, non-decreasing and convex with ( ) 0,=0M  ( ) 0>xM  for 0>x  and 

( ) ¥®xM  as x®¥. It is well known if M  is a convex function then 

( ) ( )M x M xa a£  with 1<<0 a . 

 

Definition 1.1.50. [13] By a lacunary sequence ( )rk=q  where 0=0k , we will mean 

an increasing sequence of non-negative integers with ¥®- -1rr kk  as r ®¥ . The 

intervals determined by q  will be denoted by ( ]rrr kkI ,= 1- . We write 
1r r rh k k -= - . 

The ratio 
1-r

r

k

k
 will be denoted by 

rq . 

 

Definition 1.1.51. [14] If K  is a subset of natural numbers , and the set 

{ }:nK j K j n= Î £  and nK  will denote the cardinality of 
nK . Natural density of 

K  is given by ( ) 1
: limn nK K

n
d = , if it exists. 

 

Definition 1.1.52. [15] The sequence ( )jx x=  is statistically convergent to x  

provided that for every 0e >  the set ( ) { }: : : jK K j xe x e= = Î - ³j xxjx: j xxxxjx: j  has natural 

density zero. 

 

Definition 1.1.53. [16] Let )( kp  be a sequence of non-negative real numbers and 

nn pppP +++= ...21  for nÎ . Then Riesz transformation of )( kxx =  is defined 

as:  
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1

1
: .

n

n k k

kn

t p x
P =

= å                                                                                                     (1.1.7) 

 

If the sequence )( nt  has a finite limit x  then the sequence  x  is said to be ( ), nR p -

convergent to x . Let us note that if  ¥®nP  as ¥®n  then Riesz transformation is 

a regular summability method, that is it transforms every convergent sequence to 

convergent sequence and preserves the limit. 

 

If 1=kp  for all NÎk  in (1.1.7), then Riesz mean reduces to Cesaro mean 
1C  of  

order one. 

 

In general, statistical convergence of weighted mean is studied as a regular matrix 

transformations. In [17] and [18], the concept of statistical convergence is 

generalized by using Riesz summability method and it is called weighted statistical 

convergence. 

 

Theorem 1.1.54. [19] A sequence x  is almost convergent to a number x   if and only 

if ( ) x®xtkm
 as ,¥®k  uniformly in ,m  where 

 

1 1...
( ) m m m k

km

x x x
t x

k

+ + -+ + +
= , NÎk , 0m³ .                                                     (1.1.8) 

 

We write f -lim x x=  if x  is almost convergent to x . 

 

Theorem 1.1.55. [20] A sequence ( )= jx x  is strongly almost convergent to a 

number   if and only if ( ) 0kmt x ex- ®  as k ®¥ , uniformly in m , where 

= ( )jx e xx x- -  for all j  and )(1,1,1,...=e . 

 

If x  is strongly almost convergent to x , we write [ ]f -lim x x= . It is easy to see that  

[ ]f f l¥Ì Ì  and each inclusion is proper. 
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The notion of difference sequence space was introduced by Kızmaz [21]. It was 

further generalized by Et and Çolak [22]. 

 

Definition 1.1.56. [22] ( ) ( ) ( ){ }ZxwxxZ kk ÎDÎD mm :==  for =Z  ¥l , c  and 0c  

where m  is a non-negative integer, kkkkk xxxxx =,= 0

1

11 DD-DD +
-- mmm  for all NÎk . 

 

Dutta [23] introduced the following difference sequence spaces using a new 

difference operator. 

 

Definition 1.1.57. [23] }:)(={=)( )()( ZxwxxZ k ÎDÎD hh  for =Z  ¥l , c  and 0c  

where )(=)(= )()( hhh --DD kkk xxxx  for all k , .NÎh  

 

Dutta [24] introduced the sequence spaces ( )( ).,. , ,c pm
hD , ( )( )0 .,. , ,c pm

hD , 

( )( ).,. , ,l pm
h¥ D , ( )( ).,. , ,m pm

hD  and ( )( )0 .,. , ,m pm
hD  where ,h mÎ  and 

=)(= )()( kxx m
h

m
h DD  )( 1

)(

1

)( h
m
h

m
h -

-- D-D kk xx  and kk xx =0

)(hD  for all k , NÎh  which is 

equivalent to the following binomial representation: 

 

( ) ( )
=0

= 1
v

k k v

v

x x
v

m
m

hh

m
-

æ ö
D - ç ÷

è ø
å . 

 

Definition 1.1.58. [25] The generalized difference matrix )(= mkbB , which is a 

generalization of ( )1
D - difference operator, is defined for all ,k mÎ  by  

 

( )
( )

, =

( , ) = , = 1

0, (0 < 1) or ( > )

mk

r k m

b r s s k m

k m k m

ì
ï

-í
ï £ -î

. 

 

Definition 1.1.59. [26] The generalized Bm
-difference operator is equivalent to the 

following binomial representation: 
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( )
=0

= v v

k k v

v

n
B x B x r s x

v

m
m m m-

-

æ ö
= ç ÷

è ø
å . 

 

Başarır and Kayıkçı [26] defined the matrix )(= mm
mkbB  which reduced the difference 

matrix 
m
(1)D  in case 1,=r  1s = - .  

 

 



 

 

 

CHAPTER 2. THE CONCEPTS OF 2-NORMED SPACE AND n-

NORMED SPACE 

 

 

In this section, some fundamental definitions and theorems related to the concepts of 

2-normed space and n-normed space, are given. 

 

2.1. The Concept of 2-Norm and Relation with The Concept of 2-Metric 

 

As well known, in the present mathematics, one of the most important notions is the 

notion of metrics, which is fundamental in geometry, analysis and others. We 

certainly admit the importance of the notion of metrics. However, we must recognize 

that the notion of metrics has a limitation. To pass the limitation, we need a new 

notion. One of the treatments is to consider a 2 -metric space introduced by S. Gähler 

[27] which is based on the researches of K. Menger [28]. The notion of a metric is to 

be regarded as a generalization of the notion of the distance between two points. On 

the other hand, the notion of 2 -metric spaces is obtained by a generalization of the 

notion of area. The area in the Euclidean plane is uniquely determined by given three 

points in the plane [29]. 

 

Definition 2.1.1. [27] Let X ¹Æ . We consider a mapping which is defined on the 

set of all triples of points ( ), ,x y z  of X  into the reals such that 

{ }: 0X X Xr +´ ´ ® È{ }: 0{+: 0: 0: 0: 0: 0: 0  satisfies  

 

.i There are three points , ,x y z  such that ( ), , 0x y zr ¹ , 

.ii ( ), , 0x y zr =  if and only if at least two points of three points are equal,  

.iii ( ) ( ) ( ), , , , , ,x y z x z y y z xr r r= = =… ( ( ), ,x y zr  is symmetric for , ,x y z ), 

.iv ( ) ( ) ( ) ( ), , , , , , , ,x y z x y w x w z w y zr r r r£ + + .  
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Then r  is called a 2 -metric on X  and ( ),X r  is called a 2 -metric space. 

 

Example 2.1.2. [30] Every Euclidean space of finite dimension 2d ³  has a 2 -

metric defined by 

 

( )

1
2 2

1
1

, , : 1
2

1

i j

i j

i j

i j

x x

x y z y y

z z

r
<

æ ö
ç ÷

= ç ÷
ç ÷ç ÷
è ø

å  

 

where , ,i i ix y z  are the coordinates of , ,x y z , respectively. 

 

Definition 2.1.3. [30] For each positive real e  we define the e -nbd (neighborhood) 

for two points a  and b  in X  as the set ( ),U a be  of all points x  in X  such that 

( ), ,x y zr e< . Let V  be the set of all intersections ( ),
i i iU a beÇ  of finitely many 

ie -

nbds of arbitrary points ,i ia b  in X . { }V  forms a basis for the 2 -metric topology of 

X . This topology is called the natural topology or the topology generated by the 2 -

metric r  in X . 

 

The totality of all set ( ) ( ),
i iW a U a beå = Ç  with arbitrary n and arbitrary pairs 

( ) ( ) ( ){ }1 1 2 2, , , ,..., ,n nb b be e eS =  forms a complete system of neighborhoods of the 

point a . 

 

Definition 2.1.4. [30] A 2 -norm on a vector space X  of d  dimension, where 

2³d , is a function , : X X× × ´ ®  which satisfies the following conditions for all 

, ,x y z XÎ  and for any aÎ . 

 

i.  , = 0x y  if and only if x  and y  are linearly dependent, 

ii. , = ,x y y x , 

iii. , = ,x y x ya a , 
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iv. , , , .x y z x z y z+ £ +   

 

The pair ( )××,,X  is then called a 2 -normed space. For any 2 -normed space X , we 

put ( ), , ,x y z y x z xr = - - . Then the 2 -normed space X  becomes a 2 -metric 

space. 

 

Example 2.1.5. [31] Let ( ), .,.X  be an inner product space, equipped with the 

standard  2 -norm 

 

1

2, ,
, :

, ,S

x x x y
x y

y x y y
= .                                                                                      (2.1.1) 

 

Note that geometrically ,x y  represents the area of the parallelogram spanned by x  

and y . The determinant is known as the Gramian of x  and y . Euclidean 2-norm on 

2
R  is given by 

 

1 2 2

1 2 1 2

1 2

, = , = ( , ), = ( , )
E

x x
x y abs x x x y y y

y y

æ ö
Îç ÷

è ø

2 ,                                       (2.1.2) 

 

where the subscript E  is for Euclidean. The standard 2-norm is exactly same as the 

Euclidean 2-norm if 
2X = 2
. 

 

For 
2X = 2
, from the equation (2.1.1) we obtain a better inequality ,

S S S
x y x y£  

which is a special case of Hadamard’s inequality ([32]) where : ,
S

x x x=  and the 

inner product .,.  defined in Example 1.1.35. 

 

Example 2.1.6. [33] Consider the space Z   for ,l c¥  and 0c . Let us define:  
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, = sup sup i j j i
i j

x y x y x y
¥

Î Î
-p p i j j

i j

p p i j ji j j
Î Îi j

,                                                                               (2.1.3) 

  

where ( ),...,= 21 xxx  and ( ) .,...,= 21 Zyyy Î  Then .,.  is a 2-norm on Z . 

 

Definition 2.1.7 [34] Let { },y z  be a linearly independent set on a 2-normed space  

( ), .,.X . A sequence ( )kx  in X  is called a Cauchy with respect to the set { },y z  if  

,lim , 0i j i jx x y®¥ - =  and ,lim , 0i j i jx x z®¥ - = . 

 

Definition 2.1.8. [35] A sequence ( )jx x=  in 2-normed space ( ), .,.X  is called a 

Cauchy sequence with respect to the .,.  if ,lim , 0i j i jx x z®¥ - = , for every nonzero  

z XÎ . 

 

There are two definitions of Cauchy sequences in 2-normed spaces. Definition 2.1.8 

is clearly stronger than the Definition 2.1.7.  

 

Definition 2.1.9. [34] A sequence ( )jx x=  in a linear 2-normed space X  is called a 

convergent sequence, if there is an x  in X  such that lim , 0j
j

x zx
®¥

- =  for every 

nonzero z  in X . 

 

Similar to the Definition 2.1.7 we have another definition of convergent sequences in 

2-normed space, clearly weaker than the Definition 2.1.9. We will give the related 

details after the definitions of convergent and Cauchy sequences in n-normed spaces. 

 

A linear 2-normed space in which every Cauchy sequence is convergent is called a 2-

Banach space. 

 

Example 2.1.10. [34] Let 
nP  denote the set of all real polynomials of degree n£  on 

the interval [0,1]. Define vector addition and scalar multiplication in the usual 

manner. Hence 
nP  is a linear space over the reals. Let { }2

0

n

i i
x

=
 be 2 1n+  arbitrary but 
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distinct fixed points in [0,1]. Let , nf g PÎ . Define , 0f g =  if f and g are linearly 

dependent, and define ( ) ( )
2

0

,
n

i i

i

f g f x g x
=

=å  if f  and g  are linearly independent. 

Then ( ), .,.nP  is a 2-Banach space. 

 

On the other hand, there is a linear 2-normed space of dimension 3 which is not a 2-

Banach space (such an example is given by A. White in [34]). But every 2-normed 

space of dimension 2 is a 2-Banach space when the underlying field is complete. 

 

Definition 2.1.11. [36] A sequence ( )jx x=  is said to be statistically convergent to 

x  if for every 0>e  the set { }: : ,jK j x zx e= Î - ³jx: j x ,x: ,  has natural density zero for 

each nonzero z  in ,X  in other words ( )jx x=  statistically convergent to x  in 2-

normed space ( ).,.,X  if { }1
lim : , 0j
j

j x z
j

x e
®¥

Î - ³ =j: j ,,: ,, , for each nonzero z  in .X  

For 0x = , we say this is statistically null. 

 

2.2. The Concepts of 2-Inner Product and n-Inner Product 

 

Along with the 2-norm, we have the standard 2-inner product .,. . : X X X´ ´ ®  

given by the formula 

 

, ,
, :

, ,

x y x z
x y z

z y z z
= . 

 

Observe here that 
1

2, ,x z x x z=  [31]. 

 

Definition 2.2.1. [31] Let X  be a real vector space of dimension 2d ³ . The real-

valued function .,. .  which satisfies the following properties on 
3X  is called a 2 -

inner product on X , and the pair ( ), .,. .X  is called a 2 -inner product space. 
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. , 0i x x z ³ ; , 0x x z =  if and only if x  and z  are linearly dependent, 

. , ,ii x y z y x z= , 

. , ,iii x x z z z x= , 

. , ,iv x y z x y za a= , for aÎ , 

1 2 1 2. , , ,v x x y z x y z x y z+ = + . 

 

The concept of 2-normed spaces was first introduced by Gähler [30], while that of 2-

inner product spaces was developed by Diminnie, Gähler and White [37, 38]. Their 

generalization for 2n ³  may be found in Misiak’s works [39, 40]. 

 

Definition 2.2.2. [39] Let 2n ³  be an integer and X  be a real vector space of 

dimension d n³ . A real-valued function .,. .,...,.  on 
1nX +
 satisfying the following 

five properties: 

 

1 1 2. , ,..., 0ni z z z z ³ ; 1 1 2, ,..., 0nz z z z =  if and only if 
1 2, ,..., nz z z  are linearly 

dependent, 

1 1 2 1 1 2. , ,..., , ,...,n i i i inii z z z z z z z z= , for every permutation ( )1 2, ,..., ni i i  of 

( )1, 2,..., n , 

2 2, ,..., , ,...,. n nx y z z y x ziii z= , 

2 2. , ,..., , ,...,n niv x y z z x y z za a= , for aÎ , 

2 2 2. ', ,..., , ,..., ', ,...,n n nv x x y z z x y z z x y z z+ = +  

 

is called an n-inner product on X , and the pair ( ), .,. .,...,.X  is called an n-inner 

product space. 
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2.3. The Concepts of n-Norm and n-Normed Spaces 

 

On an n-inner product space ( ), .,. .,...,.X , the following function 

1 2 1 1 2, ,..., : , , ,...,n nz z z z z z z=  defines an n-norm, which enjoys the following 

four properties given in Definition 2.3.1 [41]. 

 

Definition 2.3.1. [33] Let 2n ³  be an integer and X  be a real vector space of 

dimension d n³  ( d may be infinite). A real-valued function .,...,.  on 
nX  

satisfying the following four properties 

 

1 2. , ,..., 0ni x x x =  if and only if 1 2, ,..., nx x x  are linearly dependent, 

1 2. , ,..., nii x x x  is invariant under permutation, 

1 2 1 2. , ,..., , ,...,n niii x x x x x xa a= , for any aÎ , 

2 2 2. ', ,..., , ,..., ', ,...,n n niv x x x x x x x x x x+ £ + ,  

 

is called an n-norm on X , and the pair ( ), .,...,.X  is called an n-normed space. 

 

For recent results on n-normed spaces and n-inner product spaces, see, for example 

[33], [39-52]. 

 

Example 2.3.2. [45] Any real inner product space ( ), .,.X  can be equipped with 

the standard n-norm ( )1,..., : det ,n i jx x x x= , which can be interpreted as the 

volume of the n-dimensional parallelepiped spanned by 
1,..., nx x XÎ . On 

nn
, this n-

norm can be simplified as ( )1,..., : det ,n i jx x x x=  where 

1( ,..., ) , 1,...,n

i i inx x x i n= Î =, 1,.n , 1,., 1,,, . 

 

Example 2.3.3. [44] Any inner product space ( ), .,.X  can be equipped with the 

standard n-inner product 



27 

 

 

2

2 2 2 2

2

2

, , ,

, , ,
, ,..., :

, , ,

n

n

n

n n n n

x y x z x z

z y z z z z
x y z z

z y z z z z

=

nx z,,

2 nz z22 ,22

n n n nn n nz z,n n nn n nn n n ,,,

. 

 

Observe here that the induced n-norm 
2 2, ,..., : , ,...,n nx z z x x z z=  represents the 

volume of the n-dimensional parallelepiped spanned by 
2, ,..., nx z z . 

 

Definition 2.3.4. [33] A sequence ( )kx  in an n-normed space ( ), .,...,.X  is said to 

be convergent to some x XÎ  in the n-norm if for each 0e >  there exists a positive 

integer ( )0 0n n e=  such that 2, ,...,k nx x y y e- <  for all 
0k n³  and for every 

nonzero 
2,..., ny y XÎ . 

 

Similar to the 2-normed spaces, we have a new definition of Cauchy sequence for n-

normed space as follows. 

 

Definition 2.3.5. Let { }1: ,..., nA a a=  be a linearly independent set on an n-normed 

space ( ), .,...,.X . Then we say that a sequence ( )kx  in X  is said to be a Cauchy 

with respect to the set A  if 
2,

lim , ,..., 0
nk l i i

k l
x x a a

®¥
- = , for { } { }2 ,..., 1,...,ni i nÌ . 

 

Definition 2.3.6. [33] A sequence ( )kx  in an n-normed space ( ), .,...,.X  is said to 

be a Cauchy with respect to the n-norm if 
2

,
lim , ,..., 0k l n

k l
x x y y

®¥
- = , for every 

nonzero 
2,..., ny y XÎ . 

 

Definition 2.3.6 is clearly stronger than Definition 2.3.5. But in some cases, like 

finite dimensional case and the standard case the two definitions are equivalent. 

What is not clear is in the infinite dimensional case. But from the results in [42, 43] 

we understand that the two definitions are still equivalent in pl  and 
pL  spaces. We 
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will show this for pl , it can be done similarly for 
pL . Now we need some lemmas 

which were given in [42]. 

 

Lemma 2.3.7. (Lemma 2.2, [42]) 

( )
1

1

1 1,..., ! ...p
n np p p

x x n x x
-

£  holds for every 
1,...,

p

nx x lÎ . 

 

Lemma 2.3.8. (Proposition 2.3, [42]) Let { }1,..., na a  be a linearly independent set on 

pl . Then the following function 

 

{ } { }
2

2

1

*

,..., 1,...,

: , ,...,
n

n

p
p

i ip p
i i n

x x a a
Ì

é ù
= ê ú
ê úë û

å   

 

defines a norm on pl . 

 

Lemma 2.3.9. (Proposition 2.5, [42]) Let { }1,..., na a  be a linearly independent set on 

pl . Then the norm 
*

p
x  is equivalent to the usual norm 

p
x  on pl . Precisely, for 

every px lÎ  we have 

 

( )
( )

{ } { }
2

2

1

1
1 * 1

,..., 1,...,
1

,...,
! ...

2 1 ...
n

n

p
ppn p

p
i ip p pp p

i i n
np p

n a a
x x n a a x

n a a

-

Ì

é ù
£ £ ê ú

é ù- + + ê úë ûë û
å . 

 

By the following theorem, we will show that the Definition 2.3.6 and the Definition 

2.3.5 are equivalent for pl . 

 

Theorem 2.3.10. ( )kx  is a Cauchy sequence in pl  according to Definition 2.3.6 if 

and only if there exists a linearly independent set { }1,..., nA a a=  such that ( )kx  is 

Cauchy sequence in pl  with respect to the set A . 
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Proof. Assume that ( )kx  is a Cauchy sequence in pl  according to Definition 2.3.6. 

Then 
2

,
lim , ,..., 0k l n pk l

x x y y
®¥

- = , for every 2 ,..., p

ny y lÎ . Hence, there exists a 

linearly independent set { }1,..., nA a a=  on pl , 
2,

lim , ,..., 0
nk l i i

pk l
x x a a

®¥
- = , for any 

{ } { }2 ,..., 1,...,ni i nÌ . Thus, we obtain the Definition 2.3.5. 

Now, suppose that ( )kx  is a Cauchy sequence in pl  according to Definition 2.3.5. 

Then for { } { }2 ,..., 1,...,ni i nÌ  we have
2,

lim , ,..., 0
nk l i i

pk l
x x a a

®¥
- = . Hence, we obtain 

 

{ } { }

{ } { }

2

2

2

2

1

*

, ,
,..., 1,...,

1

,
,..., 1,...,

lim lim , ,...,

lim , ,...,

0

n

n

n

n

p
p

k l k l i ip pk l k l
i i n

p
p

k l i i
pk l

i i n

x x x x a a

x x a a

®¥ ®¥
Ì

®¥
Ì

é ù
- = -ê ú

ê úë û

é ù
= -ê ú
ê úë û

=

å

å . 

 

By Lemma 2.3.9, we then conclude that 
,
lim 0k l pk l

x x
®¥

- = . Hence, for every 

2 ,..., p

ny y lÎ , we have by Lemma 2.3.7 

 

( )
1

1

2 2
, ,
lim , ,..., ! lim ... 0p

k l n k l np p p pk l k l
x x y y n x x y y

-

®¥ ®¥
- £ - = . 

 

Thus, we obtain 

 

2
,
lim , ,..., 0k l n pk l

x x y y
®¥

- =  for every 2 ,..., p

ny y lÎ . This completes the proof. 

 

We obtain the following corollary by the inspire of the theorem above. 

 

Corollary 2.3.11. Let { }1: ,..., nA a a=  and { }1: ,..., nB b b=  be linearly independent 

sets on pl . ( )kx  is a Cauchy sequence with respect to the set A  if and only if ( )kx  is 

a Cauchy sequence with respect to the set B . 
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Proof. Let ( )kx  be a Cauchy sequence in pl  with respect to the set A . Then from 

Theorem 2.3.10, ( )kx  is a Cauchy sequence in pl  according to Definition 2.3.6. 

Thus, we have from Theorem 2.3.10 that there exists a linearly independent set, i.e., 

say, { }1,..., nB b b=  such that ( )kx  is a Cauchy sequence in pl  with respect to the set 

B . For the converse, change the position of A  and B . Hence, we have the result. 

 

Remark 2.3.12. By replacing the phrases “ ( )kx  is Cauchy” with “ ( )kx  converges to 

x ” and “
k lx x- ” with “

kx x- ”, we see that the analogues of Definition 2.3.5, 

Definition 2.3.6, Theorem 2.3.10 and Corollary 2.3.11 hold for convergent 

sequences. 

 

Gunawan et. al. [46] interested in computing the “volume” of the n-dimensional 

parallelepiped spanned by a linearly independent set of n vectors in a normed space. 

In the space pl , which is given by (1.1.1), they used the known semi-inner product 

g  given by (1.1.5) and obtained, in general, !n  ways of doing it, depending on the 

order of the vectors. Given a finite sequence of linearly independent vectors 

( )1,..., 2nx x n ³  in X , they constructed a left g -orthogonal sequence * *

1 ,..., nx x  such 

that *

1 1:x x=  and, for 2,...,i n= , 

 

( )
1

* :
i

i i i S
x x x

-
= - ,                                                                                                   (2.3.1) 

 

where { }* * *

1 1 2 1span , ,...,i iS x x x- -= . Then * *

i g jx x^  for , 1,...,i j n=  with i j< . They 

defined the “volume”  of the n -dimensional parallelepiped spanned by 

1 2, ,..., nx x x XÎ  to be  

 

( ) *

1

1

,..., :
n

n i

i

V x x x
=

=Õ .                                                                                         (2.3.2) 

 

Due to the limitation of g , however, ( )1,..., nV x x  may not be invariant under  
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permutations of ( )1,..., nx x . This is important to indicate the difference between the 

usual norm and n-norm. They also show that all resulting “volumes” satisfy one 

common inequality which can be seen in the following theorem.  

 

Theorem 2.3.13. (Theorem 1, [44]) Let { }1,..., nx x  be a linearly independent set of 

vectors in pl . For any permutation ( )1,..., ni i  of ( )1,..., n , define ( )
1
,...,

ni iV x x  as in 

(2.3.2) by using the semi-inner product g  in (1.1.5), with 
1

*

1 : ix x=  and so forth as in 

(2.3.1). Then we have 

 

( ) ( )
1

1

1,..., ! ,...,
n

p
i i n p

V x x n x x£ . 

 

The following example illustrates the situation in 
1l . Let ( )1 1,0,0,...x =  and 

( )2 1,1,0,...x = . Put *

1 1x x=  and  

( ) ( )

( ) ( ) ( )

1

1 2*

2 2 2 2 12

1 1

,

1,1,0,... 1. 1,0,0,... 0,1,0,...

x

g x x
x x x x x

x
= - = -

= - =

 

 

( ) * *

1 2 1 21 1
, 1.1 1V x x x x= = = . 

 

But if we put *

1 2x x=  and  

 

( ) ( )

( ) ( )

2

2 1*

2 1 1 1 22

2 1

2

,

2
1,0,0,... . 1,1,0,...

2

x

g x x
x x x x x

x
= - = -

= -

 

( ) 1 1
1,0,0,... , ,0,...

2 2

æ ö= - ç ÷
è ø

 

1 1
, ,0,...

2 2

æ ö= -ç ÷
è ø

, 
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then we have 

 

( ) * *

2 1 1 21 1
, 2.1 2V x x x x= = = . 

 

Meanwhile, 

 

1 1

1 2 1
2 2

1
,

2

j k

j k j k

x x
x x

x x
= åå  

1 0 0 11

1 1 1 12

æ ö
= +ç ÷

è ø
 

( )1
1 1 1

2
= + = . 

 

Hence, we see that 

 

( )
1 2 1 2 1
, 2 ,i iV x x x x£  for each permutation ( )1 2,i i  of ( )1, 2 . 

 



 

 

 

CHAPTER 3. SOME SEQUENCE SPACES IN 2-NORMED 

SPACE 

 

 

3.1. Some Generalized Difference Statistically Convergent Sequence Spaces in 2-

Normed Space  

 

In this section, a new generalized difference matrix ( )Bm
h  is defined and some ( )Bm

h -

difference statistically convergent sequence spaces in a real linear 2-normed space 

are introduced. Also some topological properties of these spaces are investigated. 

 

By ( ).,.w , ( ).,. ,c  ( ).,. ,oc  ( ).,.c , ( )0 .,.c , ( ).,.l¥ , ( ).,.m  and ( )0 .,.m  we 

denote the spaces of all, convergent, null, statistically convergent, statistically null, 

bounded, bounded statistically convergent and bounded statistically null X  valued 

sequence spaces, where ( ).,.,X  is a real 2-normed space. By ( )0,0,...q =  we mean 

the zero element of .X  

 

In this section, we define the generalized difference matrix ( )Bm
h  and we introduce 

difference sequence spaces ( )( ), , .,.c B pm
h , ( )( )0 , , .,.c B pm

h , ( )( ), , .,.m B pm
h , 

( )( )0 , , .,.m B pm
h , ( )( ), , .,.c B pm

h , ( )( )0 , , .,.c B pm
h , ( )( ), , .,.l B pm

h¥ , ( )( ), , .,.W B pm
h , 

which are defined on a real linear 2-normed space. We investigate some topological 

properties of the spaces ( )( )0 , , .,.c B pm
h , ( )( ), , .,.c B pm

h , ( )( ), , .,.m B pm
h , and 

( )( )0 , , .,.m B pm
h  including linearity, existence of paranorm and solidity. Further, we 

show that the sequence spaces ( )( ), , .,.m B pm
h  and ( )( )0 , , .,.m B pm

h  are complete 

paranormed spaces where the base space is a 2-Banach space. Moreover, we give 

some inclusion relations. 
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By the notation 
stat

kx x® , we mean that 
kx  is statistically convergent to x , throughout 

this thesis. Let ,m n  be non-negative integers and ( )kpp =  be a sequence of strictly 

positive real numbers. Then we define new sequence spaces as follows: 

 

( )( ) ( ) ( ) ( )

stat

= .,. : , 0,
, , .,. =

for every nonzero and for some

p
k

k jx x w B x z
c B p

z X X

m
m h
h

x

x

ì üÎ - ®ï ï
í ý
ï ïÎ Îî þ

, 

 

( )( ) ( ) ( ) ( )

stat

0

= .,. : , 0,
, , .,. =

for every nonzero

p
k

k kx x w B x z
c B p

z X

m
m h
h

ì üÎ ®ï ï
í ý
ï ïÎî þ

, 

 

( )( ) ( ) ( ) ( )
1

= .,. : , < ,sup
, , .,. =

for every nonzero

p
k

k k
k

x x w B x z
l B p

z X

m
m h
h ³¥

ì üæ öÎ ¥ç ÷ï ï
è øí ý

ï ïÎî þ

, 

 

( )( ) ( ) ( ) ( )= .,. : , = 0,lim
, , .,. =

for every nonzero and for some

p
k

k k
k

x x w B x z
c B p

z X X

m
m h
h

x

x
®¥

ì üÎ -ï ï
í ý
ï ïÎ Îî þ

, 

 

( )( ) ( ) ( ) ( )
0

= .,. : , = 0,lim
, , .,. =

for every nonzero

p
k

k k
k

x x w B x z
c B p

z X

m
m h
h ®¥

ì üÎï ï
í ý
ï ïÎî þ

, 

 

( )( ) ( ) ( ) ( )
=1

1
= .,. : , = 0,lim

, , .,. =

for every nonzero and for some

j p
k

k k
j k

x x w B x z
W B p j

z X X

m
m h
h

x

x

®¥

ì ü
Î -ï ï

í ý
ï ïÎ Îî þ

å
, 

 

( )( ) ( )( ) ( )( ), , .,. = , , .,. , , .,.m B p c B p l B pm m m
h h h¥Ç  

 

and 

 

( )( ) ( )( ) ( )( )00 , , .,. = , , .,. , , .,.m B p c B p l B pm m m
h h h¥Ç , 
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where ( ) ( )( ) ( ) ( )
1 1

k k
k

B x B x rB x sB xm m m m
hh h h h

- -
-= = +  and ( )

0 =k kB x xh  for all ,NÎk  which is 

equivalent to the binomial representation as follows: 

 

( )
=0

= v v

k k v

v

B x r s x
v

m
m m

hh

m -
-

æ ö
ç ÷
è ø

å . 

 

In this representation, we obtain the matrix ( )1
Bm  defined in [26] for >1m  and in [25] 

for =1m . 

 

.i If we take = 0m  and =1kp  for all kÎ , then the sequence spaces above are 

reduced to ( ).,.c , ( )0 .,.c , ( ).,.l¥ , ( ).,.c , ( )0 .,.c , ( ).,.W , ( ).,.m  and 

( )0 .,.m , respectively. 

 

.ii If we take 1,=r  1,= -s  then the sequence spaces ( )( ), , .,.c B pm
h , 

( )( )0 , , .,.c B pm
h , ( )( ), , .,.l B pm

h¥ , ( )( ), , .,.W B pm
h , ( )( ), , .,.m B pm

h , ( )( )0 , , .,.m B pm
h  

are reduced to ( )( ), , .,.c pm
hD , ( )( )0 , , .,.c pm

hD , ( )( ), , .,.l pm
h¥ D , ( )( ), , .,.W pm

hD , 

( )( ), , .,.m pm
hD  and ( )( )0 , , .,.m pm

hD , respectively, which are studied in [24]. 

 

.iii By taking 1=kp  for all ,NÎk  then these sequence spaces are denoted by 

( )( ) , .,.c Bm
h , ( )( )0 , .,.c Bm

h , ( )( ), .,.l Bm
h¥ , ( )( ), .,.c Bm

h , ( )( )0 , .,.c Bm
h , ( )( ), .,.W Bm

h , 

( )( ), .,.m Bm
h  and ( )( )0 , .,.n

m
m B , respectively. 

 

.iv If we take =1r , = 1s - , 1=kp  for all kÎ , then these sequence spaces are 

denoted by ( )( ), .,.c m
hD , ( )( )0 , .,.c m

hD , ( )( ), .,.l m
h¥ D , ( )( ), .,.c m

hD , ( )( )0 , .,.c m
hD , 

( )( ), .,.W m
hD , ( )( ), .,.m m

hD  and ( )( )0 , , .,.m pm
hD , respectively. 
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Theorem 3.1.1. Let ( )kpp =  be a sequence of strictly positive real numbers. Then 

the sequence spaces ( )( ), , .,.Z B pm
h  are linear spaces where 

0 0, , , , ,Z c c l W m m¥= . 

 

Proof. We prove the theorem only for the space ( )( ), , .,.c B pm
h . The others can be 

proved similarly. Let ( )= ,kx x ( ) ( )( )= , , .,.ky y c B pm
hÎ . Then there exist 

1 2, Xx x Î  

such that for every nonzero z XÎ   

 

( )

stat

1, 0
kp

kB x zm
h x- ®  and ( )

stat

2 , 0
kp

kB y zm
h x- ® .  

 

Let ,a b  be scalars. Then we have for every nonzero z XÎ  

 

( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )( )
( ) ( ) ( ) ( )

1 2

1 2

1 2

stat

1 2

,

,

, ,

max , , max , , 0 ,

k

k

k

k k

p

k k

p

k k

p

k k

p p
h H h H

k k

B x y z

B x B y z

B x z B y z

D B x z D B y z

m
h

m m
h h

m m
h h

m m
h h

a b az bz

a z b z

a z b z

a a z b b z

+ - +

= - - -

£ - + -

£ - + - ®

 

 

as k ®¥  where inf , supk k k kh p H p= =  and ( )1max 1,2HD -= . Hence the 

sequence space ( )( ), , .,.c B pm
h  is a linear space. 

 

Theorem 3.1.2. For any two sequences ( )kpp =  and ( )ktt =  of positive real 

numbers and for any two 2-norms 
1

.,.  and 
2

.,.  on X  we have  

( )( ) ( )( )1 2
, , .,. , , .,.Z B p Z B pm m

h hÇ ¹Æ , where 
0 0, , ,Z c c m m= . 

 

Proof. The proof follows from the fact that the zero element belongs to each of the 

sequence spaces involved in the intersection. 
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Theorem 3.1.3. Let ( ), .,.,.X  be a 2-Banach space. Then the spaces 

( )( ), , .,.m B pm
h , ( )( )0 , , .,.m B pm

h  are paranormed sequence spaces, paranormed by 

 

( ) ( )
'

,

= ,sup

p
k

H

k
k z X

g x B x zm
h

qÎ ¹ Î,

p
k z X,

p
qk z Xk z Xk z Xk z X,k z Xk z X

,  

 

where { }' = max 1,H H  and ,sup= kk
pH  inf .k kh p=   

 

Proof. We will prove the theorem for the sequence space ( )( )0 , , .,.m B pm
h . It can be 

proved for the space ( )( ), , .,.m B pm
h  similarly. 

Clearly ( ) ( )xgxg =-  and ( ) 0.=qg  From the following inequality, we have 

 

( ) ( ) ( ) '

,

= ,sup

p
k

H

k k
k z X

g x y B x y zm
h

qÎ ¹ Î
+ +

,

p
k z X,

p
qk z Xk z Xk z Xk z X,k z Xk z X

 

             
( ) ( )

' '

, ,

, ,sup sup

p p
k k

H H

k k
k z X k z X

B x z B y zm m
h h

q qÎ ¹ Î Î ¹ Î
£ + ( )

, ,
(p ( k k)

k z X k z X, ,k z X

,( k kk k))h h( )h hh h(h hh h) k kk kk kk k(k kk kp
k z X

) k kk k(k kk k(p,
q q, ,, ,k z Xk z X, ,, ,, ,k z X k z Xk z X k z X

( )
k z Xk z X

( )
k z X k z Xk z X, ,k z X k z Xk z X k z Xk z X k z X, ,, ,, ,, ,

. 

 

This implies that ( ) ( ) ( )g x y g x g y+ £ + . 

 

To prove the continuity of scalar multiplication, assume that ( )nx  be any sequence of 

the points in ( )( )0 , , .,.m B pm
h  such that ( ) 0®- xxg n  and ( )nl  

be any sequence of 

scalars such that .ll ®n  Since the inequality ( ) ( ) ( )xxgxgxg nn -+£  holds by 

subadditivity of g , then ( )( )nxg  is bounded. Thus we have 

 

( ) ( )
'

,

= ,sup

p
k

Hn n

n n k k
k z X

g x x B x x zm
h

q
l l l l

Î ¹ Î
- -

,
n n kp

k z X,
n n kp

qk z Xk z Xk z Xk z X,k z Xk z X  
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{ }( ) ( )

1

''

,

max , ,sup

p
k

h H HH

n n k
k z X

B x zm
h

q
l l l l

Î ¹ Î
£ - -

,
n n kp

k z X,qk z Xk z Xk z Xk z X,k z Xk z X

 

{ }( ) ( ) ( )
1

''

,

max , ,sup

p
k

h H HH n

k
k z X

B x x zm
h

q
l l

Î ¹ Î
+ -

,

p
k z X,qk z Xk z Xk z Xk z X,k z Xk z X

 

{ }( ) ( )
1

'
= max ,

h H H n

n n g xl l l l- -  

{ }( ) ( )
1

'
max ,

h H H ng x xl l+ -  

 

which tends to zero as n®¥. Hence, g  is a paranorm on the sequence space 

( )( )0 , , .,.m B pm
h . 

 

To prove that ( )( )0 , , .,.m B pm
h  is complete, assume that ( )ix  is a Cauchy sequence in 

( )( )0 , , .,.m B pm
h . Then for a given e  ( )0 < < 1e , there exists a positive integer 0N  

such that ( ) ,< eji xxg -  for all 
0,i j N³ . This implies that 

 

( ) ( )
'

,

, <sup

p
k

Hi j

k k
k z X

B x B x zm m
h h

q
e

Î ¹ Î
-

,

p
k z X,qk z Xk z Xk z Xk z X,k z Xk z X

, 

 

for all 
0,i j N³ . It follows that for every nonzero z XÎ , 

 

( ) ( ) , <i j

k kB x B x zm m
h h e- , 

 

for each 1³k  and for all 
0,i j N³ . Hence ( )( )i

kB xm
h  is a Cauchy sequence in X  for 

all kÎ . Since X  is a 2-Banach space, ( )( )i

kB xm
h  is convergent in X  for all ,kÎ ,  

so we write ( )( ) ( )( )i

k kB x B xm m
h h®  as i®¥ . Now we have for all 

0,i j N³ , 
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( ) ( ) '

,

, <sup

p
k

Hi j

k k
k z X

B x x zm
h

q
e

Î ¹ Î
-

,

p
k z X,qk z Xk z Xk z Xk z X,k z Xk z X

 

( ) ( ) '

,

, <suplim

p
k

Hi j

k k
j k z X

B x x zm
h

q
e

®¥ Î ¹ Î

ì üï ï
Þ -í ý

ï ïî þ
p

k z Xk z Xk z X

p
,k z X,qk z Xk z Xk z Xk z X,k z Xk z X

 

( ) ( ) '

,

, <sup

p
k

Hi

k k
k z X

B x x zm
h

q
e

Î ¹ Î
Þ -

,

p
k z X, qk z Xk z Xk z Xk z X,k z Xk z X

 

 

for all 
0i N³ . It follows that ( ) ( )( )0 , , .,.ix x m B pm

h- Î . Since 

( ) ( )( )0 , , .,.ix m B pm
hÎ  and ( )( )0 , , .,.m B pm

h  is a linear space, so we have 

( ) ( )( )0= , , .,.i ix x x x m B pm
h- - Î . This completes the proof. 

 

Theorem 3.1.4. .i If 
1 2Z ZÌ , then ( )( )1 , , .,.Z B pm

h Ì ( )( )2 , , .,.Z B pm
h  and the 

inclusion is strict, where 
1Z  and 

2Z  are equal to 
0, ,c c l¥ . 

.ii If 
1 2m m< , then ( )( )1 , , .,.Z B pm

h Ì ( )( )2 , , .,.Z B pm
h  and the inclusion is strict, where 

0, ,Z c c l¥= . 

 

Proof. The parts of proof ( )( )1 , , .,.Z B pm
h Ì ( )( )2 , , .,.Z B pm

h  and ( )( )1 , , .,.Z B pm
h Ì  

( )( )2 , , .,.Z B pm
h  are easy. To show the inclusions are strict, choose 

1 0=Z c , cZ =2 , 

( ) ( )22 ,== kkxx k  and consider the 2-norm .,.
E

 as given in (2.1.2), let 1=kp  for all 

kÎ , =1h , = 2m , =1r , = 1s - , then ( )( ).,.,2

1BcxÎ  but ( )( )2

0 1
, .,.x c BÏ . If we 

choose cZ = , ( ) ( )22 ,== kkxx k  and 1=kp  for all kÎ , =1h , = 2m  =1r , 

= 1s - , then ( )( ).,.,2

1BcxÎ  but ( )( )1

1
, .,.x c BÏ . These complete the proofs of parts 

(i) and (ii) of the theorem, respectively. 

  

Theorem 3.1.5. .i ( )( ), .,.c Bm
h Ì ( )( ), .,.c Bm

h  and the inclusion is strict. 
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.ii ( )Ì.,.c ( )( ), .,.c Bm
h  and the inclusion is strict. 

.iii ( )( ), .,.c Bm
h  and ( )( ), .,.l Bm

h¥  overlap but neither one contains the other.  

 

Proof. .i It is clear that ( )( ), .,.c Bm
h Ì ( )( ), .,.c Bm

h . To show that the inclusion is 

strict, choose the sequence ( )kxx =  such that, 

 

( )
( )
( )

2

2

0, , =
=

0,0 ,
k

k k n
B x

k n

m
h

ìï
í

¹ïî
                                                                                 (3.1.1) 

 

where { }0-ÎNn , and consider the 2-norm .,.
E

 as given in (2.1.2). Then we obtain 

( ) ( ).,.kB x cm
h Î , but ( ) ( ).,. .kB x cm

h Ï  That is, kx Î ( )( ), , .,.c B pm
h , but 

( )( ), , .,.kx c B pm
hÏ . 

 

.ii It is easy to see that ( )Ì.,.c ( )( ), .,.c Bm
h . To show that the inclusion is strict, let 

us take ( ) ( )kkxx k ,==  and consider the 2-norm .,.
E

 as given in (2.1.2), =1h , 

=1m , =1r , = 1s - , then ( )( ).,.,1

1BcxÎ   but ( ).,.x cÏ . 

 

.iii Since the sequence q=x  belongs to each of the sequence spaces, the 

overlapping part of the proof is obvious. For the other part of the proof, consider the 

sequence defined by (3.1.1) and the 2-norm .,.
E

 as given in (2.1.2). Then x  Î  

( )( ), .,.c Bm
h , but ( )( ), .,.x l Bm

h¥Ï . Conversely if we choose ( )( ) ( )= 1,0,1,0,...kB xm
h  

where ( )kkk ,=  for all = 0,1k , then ( ) kB xm
h Î ( ).,.¥l  but ( ) kB xm

h  Ï  ( ).,.c . That is, 

( )( ), .,.x l Bm
h¥Î  but x  Ï  ( )( ), .,.c Bm

h . 

 

Theorem 3.1.6. The space ( )( ), , .,.Z B pm
h  is not solid in general, where =Z c , 0c , 

m , 
0m .  
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Proof. To show that the space is not solid in general, consider the following 

examples.  

 

Example 3.1.7. Let = 3h , =1m , =1r , 1= -s  and consider the 2-norm .,.
¥

 as 

given by (2.1.3). Let 5=kp  for all kÎ . Consider the sequence ( )kx , where 

( )i

kk xx =  is defined by ( ) ( ),...,,= kkkxi

k  for each fixed kÎ . Then 

( )( ).,.,,1

3 pBZxk Î  for =Z c , m . Then ( )( ).,.,,1

3 pBZxk Î  for =Z c , m .  Let 

( )= 1
k

ka - , then ( ) ( )( ).,.,,1

3 pBZxkk Ïa  for =Z c , m . Thus ( )( ).,.,,1

3 pBZ  for 

=Z c , m  is not solid in general.  

 

Example 3.1.8. Let = 3h , =1m , =1r , 1= -s  and consider the 2-norm .,.
¥

 as 

given by (2.1.3). 1=kp  for all odd k  and 2=kp  for all even k . Consider the 

sequence ( ),kx  where ( )i

kk xx =  is defined by ( ) ( )3,3,...i

kx =  for each fixed .NÎk  

Then ( )( ).,.,,1

3 pBZxk Î  for 0=Z c , 0m . Let ( )= 1
k

ka - , then ( ) ( )( ).,.,,1

3 pBZxkk Ïa  

for 0=Z c , 0m . Thus ( )( ).,.,,1

3 pBZ  for 0=Z c , 0m  is not solid in general. 

  

Theorem 3.1.9. The spaces ( )( )0 , , .,.m B pm
h  and ( )( ), , .,.m B pm

h  are nowhere dense 

subsets of ( )( ), , .,.l B pm
h¥ . 

 

Proof. From the Theorem 3.1.3, it follows that ( )( )0 , , .,.m B pm
h  and ( )( ), , .,.m B pm

h  

are closed subspaces of ( )( ), , .,.l B pm
h¥ . Since the inclusion relations  

( )( ) ( )( ) ( )( ) ( )( )0 , , .,. , , .,. , , , .,. , , .,.m B p l B p m B p l B pm m m m
h h h h¥ ¥Ì Ì  are strict, the 

spaces ( )( )0 , , .,.m B pm
h  and ( )( ), , .,.m B pm

h  are nowhere dense subsets of 

( )( ), , .,.l B pm
h¥  by Lemma 1.1.48.  
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Theorem 3.1.10. Let ( )kpp =  be a sequence of non-negative bounded real numbers 

such that 0inf >kk p . Then ( )( ) ( )( ) ( )( )..,.,,.,.,,.,.,, pBmpBlpBW n

m

n

m

n

m ÌÇ ¥  

 

Proof. Let ( ) ( )( ) ( )( ), , .,. , , .,.kx W B p l B pm m
h h¥Î Ç . Then for a given > 0e , we have 

 

( )

( )

( )
=1 =1

,

1 1
, ,

j jp p
k k

k k

k k
p
k

B x L z
k

B x L z B x L z
j j

m
h

m m
h h

e- ³

- ³ -å å  

           ( )
1

: ,
p
k

kk j B x L z
j

m
he eì ü

³ £ - ³í ý
î þ

. 

 

If we take the limit for j ®¥ , it follows that ( ) ( )( ), , .,.kx c B pm
hÎ  from the 

inequality above. Since ( ) ( )( ), , .,.kx l B pm
h¥Î , we have the result. 

 

3.2. Some Sequence Spaces Derived by Riesz Mean in a Real 2-Normed Space 

 

In this part of this chapter, we introduce some new sequence spaces derived by Riesz 

mean and the notions of almost and strongly almost convergence in a real 2-normed 

space. Some topological properties of these spaces are investigated. Further, new 

concepts of statistical convergence which will be called weighted almost statistical 

convergence, almost statistical convergence and [ , ]nR p, ]np,, -statistical convergence in a 

real 2-normed space, are defined. Also, some relations between these concepts are 

investigated. 

 

Let A  and B  be any sequence spaces. We use the notation regreg BA Ì  to mean if 

the sequence x  converges to the limit x  in A , then the sequence x  converges to the 

same limit in B . 

 

Now, we introduce some new sequence spaces derived by weighted mean and 

notions of almost and strongly almost convergence in a real 2-normed space as  
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follows: 

 

( ) ( )
=1

1
.,. : , = 0,lim

, , .,. =

uniformly in , for some and for every nonzero

n

k km
n kn n

x w p t x e z
R p P

m z X

x

x

®¥

ì ü
Î -ï ïé ù í ýë û

ï ïÎî þ

åùR û, .,.nR p,, ùù, .,.R p, , 

 

( ) ( ) ( )
=1

1
.,. : , = 0,lim

, , .,. =

uniformly in , for some and for every nonzero

n

k km
n knn

x w p t x e z
PR p

m z X

x

x

®¥

ì ü
Î -ï ï

í ý
ï ïÎî þ

å), .,.. )nR p, , 

 

( ) ( )
=1

1
.,. : , = 0,lim

, , .,. =

uniformly in , for some and for every nonzero

n

k km
n knn

x w p t x e z
PR p

m z X

x

x

®¥

ì ü
Î -ï ï

í ý
ï ïÎî þ

å
=, .,.nR p,, , 

 

where ( )kmt x  is defined as in (1.1.8). 

 

If we take 0=m  then the sequence spaces , , .,.nR pé ùë ûé ùé ùé ùé ùé ùR pë ûë ûë ûë ûë û, , .,.n, ,, ,R p, ,, ,é ùé ùé ùé ùé ùé ù, , .,., ,, ,R p, ,, , , ( ), , .,.nR p ), .,.nR p,, , , , .,.nR p, , .,.n, ,, ,R p, ,, ,  

reduce to the sequence spaces ,1, .,.Cé ùë û , ( ),1, .,.C , ,1, .,.C , respectively as 

follows: 

 

( ) ( )0

=1

1
.,. : , = 0,lim

,1, .,. =

for some and for every nonzero

n

k k
n kn

x w p t x e z
C P

z X

x

x

®¥

ì ü
Î -ï ï

é ù í ýë û
ï ïÎî þ

å
, 

 

( ) ( ) ( )0

=1

1
.,. : , = 0,lim

,1, .,. =

for some and for every nonzero

n

k k
n kn

x w p t x e z
PC

z X

x

x

®¥

ì ü
Î -ï ï

í ý
ï ïÎî þ

å
, 

 

( ) ( )0

=1

1
.,. : , = 0,lim

,1, .,. =

for some and for every nonzero

n

k k
n kn

x w p t x e z
PC

z X

x

x

®¥

ì ü
Î -ï ï

í ý
ï ïÎî þ

å
. 
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Let Z  be any sequence space. If ZxÎ  and x®jx  as ¥®j , then x  is said to be 

Z -convergent to x . 

 

Now, we define a new type of statistical convergence and investigate some inclusion 

relations. 

 

Definition 3.2.1. A sequence x  is said to be weighted almost statistically convergent 

to x  if for every 0>e   

 

( ){ }1
: , = 0,lim n k km

n
n

k P p t x e z
P

x e
®¥

£ - ³  uniformly in ,m  

 

for every nonzero XzÎ . By ( ), .,.
R

S ), .,.
R

, we denote the set of all weighted almost 

statistically convergent sequences in a 2-normed space. 

 

In the definition above, if we take 1=kp  for all NÎk  then we obtain the definition 

of almost statistical convergence. That is, x  is called almost statistically convergent 

to x  if for every 0>e   

 

( ){ }1
: , = 0,lim km

n

k n t x e z
n

x e
®¥

£ - ³  

 

uniformly in ,m  for every nonzero XzÎ . We denote the set of all almost 

statistically convergent sequences in a 2-normed space by ( ), .,.S . 

 

Theorem 3.2.2. If the sequence x  is ( ), , .,.nR p ), , .,.n, ,, ,R p, ,, , -convergent to x  then the sequence 

x  is weighted almost statistically convergent to x .  

 

Proof. Let the sequence x  be ( ), , .,.nR p ), , .,.n, ,, ,R p, ,, , -convergent to x  and  
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( )=enmK ( ){ }: ,n k kmk P p t x e zx e£ - ³ .  

 

Then for a given 0>e , we have  

 

( )
( )

( )

( ){ }

=1 =1

1 1
, ,

1
: ,

n n

k km k km

k kn n
k K

nm

n k km

n

p t x e z p t x e z
P P

k P p t x e z
P

e

x x

e x e

Î

- ³ -

³ £ - ³

å å
 

 

for each 0³m  and for every nonzero .XzÎ  Hence we obtain that the sequence x  is 

weighted almost statistically convergent to x  by taking the limit as n®¥.  

 

Now, we give a new definition which will be used in the next theorem. 

 

Definition 3.2.3. A sequence x  is said to be , nR pé ùë ûùR ûnR p, ùù
nR p, -statistically convergent to x  if 

for every 0>e   

 

{ ( ) }1
: , = 0,lim nm

n

k n x e z
n

w x e
®¥

£ - ³  

 

uniformly in ,m  for every nonzero XzÎ , where ( ) ( )
=1

1
=

n

nm k km

kn

x e p t x e
P

w x x- -å .  

By ( )[ , ]R p
n

S
[ , ]R p[ , ][ , ]

n
[ , ][ , ]

, we denote the set of all , nR pé ùë ûùR ûnR p, ùù
nR p, -statistically convergent sequences in 2-

normed space. 

 

Theorem 3.2.4. Let ¥®nP  as n®¥ and ( ) ,k kmp t x e z Mx- £  for all NÎk , for 

each 0³m  and for every nonzero .XzÎ  Then the following statements are true: 

 

.i ( ) ( )
reg reg

, .,. , , .,.nR
S R pÌ)R ), .,. )R )

reg
, .,.nR p,, , 
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.ii ( ) ( )[ , ]reg
reg

, .,.
R R p

n
S SÌ

[ , ]reg
reg

R R pR R pR R pR R pR R p) [ , ][ , ]reg
, .,.

n
[ , ][ , ]

S) [ , ]
, .,.

R R pR R pR R pR R p)R R p[ , ]
, .,.

R R pR R p
.  

 

Proof. .i  Let x  be convergent to x  in ( ), .,.
R

S ), .,.
R

 and let us take  

 

( ) ( ){ }= : ,nm n k kmK k P p t x e ze x e£ - ³ . 

 

Since ( ) ,k kmp t x e z Mx- £  for all NÎk , for each 0³m , for every nonzero XzÎ  

and ¥®nP  as n®¥, then for a given 0>e  we have  

 

( )
( )

( )

( )

( )

=1 =1

=1

1 1
, = ,

1
,

n n

k km k km

k kn n
k K

nm

n

k km

kn
k K

nm

p t x e z p t x e z
P P

p t x e z
P

e

e

x x

x

Î

Ï

- -

+ -

å å

å
 

( ){ }1
: ,n k km

n n

n
M k P p t x e z

P P
x e e£ £ - ³ +  

( ){ }1
: ,n k km

n

M k P p t x e z
P

x e e£ £ - ³ +  

 

for each 0³m  and for every nonzero XzÎ . Since e  is arbitrary, we have 

( ), , .,.nx R pÎ ), .,.nR p,  by taking the limit as n®¥. 

 

.ii Let x  be convergent to x  in ( ), .,.
R

S ), .,.
R

, then 0=)(
1

enm

n

n K
P

lim ¥®  where 

( ){ }( ) = : ,nm n k kmK k P p t x e ze x e£ - ³ . Then for each 0³m  and for every 

nonzero XzÎ  we have  

 

( ) ( )
=1

1
, = ,

n

nm k km

kn

x e z p t x e z
P

w x x- -å  
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( ) ( )

( )
=1 =1

1
= ,

n n

k km

k kn
k K k K

nm nm

p t x e z
P

e e

x

Î Ï

æ ö
ç ÷

+ -ç ÷
ç ÷
è ø

å å  

( )

( )
( )

( )
=1 =1

1 1
, ,

n n

k km k km

k kn n
k K k K

nm nm

p t x e z p t x e z
P P

e e

x x

Î Ï

£ - + -å å  

( )nm

n n

M n
K

P P
e e£ +  

 

which leads us by taking the limit as ¥®n , uniformly in m  that we get x  

converges to x  in , , .,.nR pé ùë ûé ùé ùé ùé ùé ùR pë ûë ûë ûë ûë û, , .,.n, ,, ,R p, ,, ,é ùé ùé ùé ùé ùé ù, , .,., ,, ,R p, ,, , . Hence, we can say that the sequence x  is , nR pé ùë ûùR ûnR p, ùù
nR p, -

statistically convergent to x . This completes the proof. 

 

Now, we introduce a new sequence space as follows. 

 

( ) ( )
=1

1
: , = 0,uniformly in ,lim

, , .,. , =

for some and for every nonzero

n
q
k

k km
n knn n

x p t x e z m
PR p q

z X

x

x

®¥

ì ü
-ï ï

í ý
ï ïÎî þ

å
n nn nn nn nn nR p q,,, , .,., , .n nn nn nn nn n,, .,., ., , 

 

where )( kq  is a bounded sequence of strictly positive real numbers with = infk kh q  

and = supk kH q . If )( kq  is constant, then ( ), , .,. ,n nR p qn nn nn nn nn nR p q,, , .,., , .n nn nn nn nn n,, .,., .,  reduces to ( ), , .,. ,nR p qnR p q,, , .,., , . .n . 

If we take 1=kq  for all NÎk , then we get the sequence space ( ), , .,.nR p ), .,.nR p,,  which is 

defined in the beginning of this part. 

 

Theorem 3.2.5. Let ¥®nP  as n®¥ and )( kq  be a bounded sequence of strictly 

positive real numbers with = infk kh q , = sup <k kH q ¥  and ' = max (1, )H H . Then 

( ), , .,. ,n nR p qn nn nn nn nn nR p q,, , .,., , .n nn nn nn nn n,, .,., .,  is a linear topological space paranormed (need not be total) by  

 

( )
1

'

1, 1 =1

1
( ) = ,sup

n Hq
k

k km
n m kn

z X

g x p t x z
P

q
³ ³
¹ Î

æ ö
ç ÷
è ø
å , 
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and ( ), , .,. ,nR p qnR p q,, , .,., , .n  is a seminormed sequence space by  

 

( )
1

1, 1 =1

1
= ,sup

n qq

k km
n m kn

z X

x p t x z
P

q
³ ³
¹ Î

æ ö
ç ÷
è ø
å . 

 

Proof. It is easy to see that ( ), , .,. ,n nR p qn nn nn nn nn nR p q,, , .,., , . .n nn nn nn nn n,, .,., .,.  is a linear space with coordinatewise 

addition and scalar multiplication. We will prove that )(xg  is a paranorm on 

( ), , .,. ,n nR p qn nn nn nn nn nR p q,, , .,..n nn nn nn nn n,, .,., ., . We omit the proof the case 1= ³qqk  for all NÎk  which x  is a 

seminorm. Clearly 0=)(qg , )(=)( xgxg -  and g  is subadditive. To prove the 

continuity of scalar multiplication, assume that )( rx  be any sequence of the points in 

( ), , .,. ,n nR p qn nn nn nn nn nR p q,, , .,., , .n nn nn nn nn n,, .,., .,  such that 0)( ®- xxg r  as ¥®r  and )( rl  be any sequence of 

scalars such that ll ®r  as .¥®r  Since the inequality 

 

)()()( xxgxgxg rr -+£  

 

holds by subadditivity of ,g  )( rxg  is bounded. Thus, by using Minkowski’s 

inequality for 1³kq  we have 

 

( )

{ }( )
( )

1

1, 1 =1

1

1

1
( ) = sup ,

max , ( )

max , ( )

z X

n Mq
kr r

r k km r
n m kn

h H M r

r r

h H rM

g x x p t x x z
P

g x

g x x

q

l l l l

l l l l

l l

¹ Î
³ ³

æ ö
- -ç ÷

è ø

£ - -

+ -

å

 

 

which tends to zero as ¥®r . Moreover, the result holds for 1<<0 kq  by using 

Lemma 1.1.46. This proves the fact that g  is a paranorm on ( ), , .,. ,n nR p qn nn nn nn nn nR p q,, , .,., , .n nn nn nn nn n,, .,., ., . 
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Theorem 3.2.6. If the following conditions hold, then 

( ) ( ), , .,. , , .,. .n R regreg
R p q SÌ ), .,. )RnR p q, , .,. ,, , .,. ,n  

 

.i 1<<0 q  and ( )0 , < 1kmt x e zx£ - . 

.ii ¥£ <1 q  and ( )1 , <kmt x e zx£ - ¥ . 

 

Proof. Let a sequence x  be ( ), , .,. ,nR p qnR p q,, , .,., , .n -convergent to the limit x . Since 

( ) ( ), ,
q

k km k kmp t x e z p t x e zx x- ³ -  for case (i) and (ii), then we have  

 

( ) ( )

( )

( )

=1 =1

=1

1 1
, ,

1
,

1
( )

n n
q

k km k km

k kn n

n

k km

kn
k K

nm

nm

n

p t x e z p t x e z
P P

p t x e z
P

K
P

e

x x

x

e e

Î

- ³ -

³ -

³

å å

å  

 

for each 0³m  and for every nonzero XzÎ . We get the result if we take the limit as 

¥®n . That is, 0=)(
1

enm

n

n K
P

lim ¥®  where  

 

( ) { ( ) }= : , .nm n k kmK k P p t x e ze x e£ - ³  

 

Hence x  converges to x  in ( ), .,.
R

S ), .,.
R

. This completes the proof.  

 

Theorem 3.2.7. Let ( ) ,k kmp t x e z Mx- £  for all NÎk , for each 0³m , for every 

nonzero XzÎ  and ¥®nP  as ¥®n . If the following conditions hold, then 

( ) ( ), .,. , , .,. ,nR reg reg
S R p qÌ)R ), .,. )R nR p q, , .,. ,, , .n . 
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.i 1<<0 q  and ( )1 , <kmt x e zx£ - ¥ . 

.ii ¥£ <1 q  and ( )0 , < 1kmt x e zx£ - . 

 

Proof. Assume that x  converges to x  in ( ), .,.
R

S ), .,.
R

 and ¥®nP  as n®¥. Then for 

0,>e  we have 0=))(( ed nmK  where  

 

( ){ }( ) = : , .nm n k kmK k P p t x e ze x e£ - ³  

 

Since ( ) ,k kmp t x e z Mx- £  for all NÎk , for each 0³m  and for every nonzero 

XzÎ , then we have  

 

( )
( )

( )

( )

( )

=1 =1

=1

1 1
, ,

1
,

=

n n
q q

k km k km

k kn n
k K

nm

n
q

k km

kn
k K

nm

n n

p t x e z p t x e z
P P

p t x e z
P

T T

e

e

x x

x

Ï

Î

- £ -

+ -

¢+

å å

å  

 

for each 0³m  and for every nonzero XzÎ , where 

 

( )

( )
=1

1
= ,

n
q

n k km

kn
k K

nm

T p t x e z
P

e

x

Ï

-å  and 

( )

( )
=1

1
= ,

n
q'

n k km

kn
k K

nm

T p t x e z
P

e

x

Î

-å .  

 

For ( )enmKkÏ , we have 

 

( )

( )
=1

1
= , <

n
q

n k km

kn n
k K

nm

n
T p t x e z

P P
e

x e e

Ï

- £å
 

 

for each 0³m  and for every nonzero XzÎ . If ( )enmKkÎ , then 
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( )

( )
( )

( ) ( )
=1 =1

1 1
= , ,

n n
q'

n k km k km nm

k kn n n
k K k K

nm nm

M
T p t x e z p t x e z K

P P P
e e

x x e

Î Î

- £ - £å å  

 

for each 0³m  and for every nonzero XzÎ . If we take the limit as ¥®n , since 

0=))(( ed nmK  then x  converges to x  in ( ), , .,. ,nR p qnR p q,, , .,., , .n . This completes the proof.  

 



 

 

 

CHAPTER 4. SOME SEQUENCE SPACES IN n-NORMED SPACE 

 

 

In this section, some sequence spaces are introduced and some topological properties 

related with these spaces are given. 

 

4.1. On Some Spaces of Almost Lacunary Convergent Sequences Derived by 

Riesz Mean and Weighted Almost Lacunary Statistical Convergence in a Real 

n-Normed Space 

 

In this subsection, we introduce some new spaces of almost convergent sequences 

derived by Riesz mean and lacunary sequence in a real n-normed space. By 

combining both of the definitions of lacunary sequence and Riesz mean, we obtain a 

new concept of statistical convergence which will be called weighted almost 

lacunary statistical convergence in a real n-normed space. We examine some 

connections between this notion with the concept of almost lacunary statistical 

convergence and weighted almost statistical convergence, where the base space is a 

real n-normed space. 

 

Let ( ), .,...,.X  be an n-normed space and ( ), .,...,.w , ( ), .,...,.l¥  be the set of all 

sequences and all bounded sequences in n-normed space, respectively.  

 

We need some new notations, which will be used throughout this chapter, by 

combining both of the definitions of lacunary sequence and Riesz mean: 

 

Let ( )rkq =  be a lacunary sequence, ( )kp  be a sequence of positive real numbers 

such that :
r

r kk I
H p

Î
=å , 

](0,
:

r r
k kk k

P p
Î

=å , 
](1 10,

:
r r

k kk k
P p

- -Î
=å , 

1

: r

r

k

r

k

P
Q

P -

= , 
0 0P =  

and the intervals determined by q  and ( )kp  are denoted by (
1

' ,
r rr k kI P P
-

ù= û . It is easy 
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to see that 
1r rr k kH P P
-

= - . If we take 1kp =  for all kÎ , then 
rH , 

rkP , 
1rkP
-

, 
rQ  

and 'rI  reduce to ,rh  
rk , 

1rk - , 
rq  and 

rI , respectively. 

 

If ( )rkq =  is a lacunary sequence and 
rP ®¥  as r ®¥ , then ' ( )

rkPq =  is a 

lacunary sequence, that is, 
0 0P = , 

1
0

r rk kP P
-

< <  and 
1r rr k kH P P
-

= - ®¥  as r ®¥ . 

 

Throughout the paper, we take 
rP ®¥  as r ®¥ . 

 

We define the following sets as follows: 

 

( ) 1 1

1 1

.,...,. : lim ( ), ,..., = 0, uniformly in ,
=

for every nonzero ,...,  and for some  

km n
k

n

x l t x e z z m
F

z z X

x

x

¥ -®¥

-

ì üÎ -ï ï
í ý

Îï ïî þ
 

 

and 

 

[ ]
( ) ( )1 1

1 1

.,...,. : lim , ,..., = 0, uniformly in ,
=

for every nonzero ,...,  and for some 

km n
k

n

x l t x e z z m
F

z z X

x

x

¥ -®¥

-

ì üÎ -ï ï
í ý

Îï ïî þ
, 

 

where ( )kmt x  is defined as in (1.1.8). We write x=limxF -  if x  is almost 

convergent to x  in n-normed space and [ ] x=lim xF -  if x  is strongly almost 

convergent to x  in n-normed space. Taking advantages of (iii) and (iv) conditions of 

2-norm, it is easy to see that the inclusions [ ] ( ).,...,.F F l
¥

Ì Ì  hold. 

 

Now, we define some new sequence spaces in a real n-normed space as follows: 

 

( ) 1 1

1 1

1
: lim , ,..., 0,  uniformly in ,

, ,

for every nonzero ,...,  and for some  

r

k km n
r

k Ir rn

n

x p t x e z z m
R p H

z z X

x
q

x

-®¥
Î

-

ì ü
- =ï ï

é ù = í ýë û
ï ïÎî þ

å
n
ùR q =û,rR p,, ùù,R p,, q , 
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( )
( ) 1 1

1 1

1
: lim , ,..., 0,  uniformly in ,

, ,

for every nonzero ,...,  and for some  

r

k km n
r

k Irr
n

n

x p t x e z z m
HR p

z z X

x
q

x

-®¥
Î

-

ì ü- =ï ï
= í ý
ï ïÎî þ

å),r
n

R p,, q = , 

 

( )1 1

1 1

1
: lim , ,..., 0,  uniformly in ,

, ,

for every nonzero ,...,  and for some  

r

k km n
r

k Irr
n

n

x p t x e z z m
HR p

z z X

x
q

x

-®¥
Î

-

ì ü- =ï ï
= í ý
ï ïÎî þ

å
,r

n
R p,, qq = . 

 

The following results are obtained for some special cases: 

 

.i If we take 0=m , then the sequence spaces , ,r
n

R p qé ùë ûn
ùR q û,rp,, ùù,R p,, q , ( ), ,r

n
R p q ),r

n
R p,, q , , ,r

n
R p q,r

n
R p,, qq  

reduce to the sequence spaces [ ]1, n
C q , ( )1, n

C q , 1, n
C q , respectively as follows: 

 

[ ] ( )0 1 1

1

1 1

1
: lim , ,..., 0,  

,

for every nonzero ,...,  and for some  

r

k k n
r

k Irn

n

x p t x e z z
C H

z z X

x
q

x

-®¥
Î

-

ì ü
- =ï ï

= í ý
ï ïÎî þ

å
, 

 

( )
( )0 1 1

1

1 1

1
: lim , ,..., 0,  

,

for every nonzero ,...,  and for some  

r

k k n
r

k Irn

n

x p t x e z z
HC

z z X

x
q

x

-®¥
Î

-

ì ü- =ï ï
= í ý
ï ïÎî þ

å
, 

 

( )0 1 1

1

1 1

1
: lim , ,..., 0,  uniformly in ,

,

for every nonzero ,...,  and for some  

r

k k n
r

k Irn

n

x p t x e z z m
HC

z z X

x
q

x

-®¥
Î

-

ì ü- =ï ï
= í ý
ï ïÎî þ

å
. 

 

.ii If we take 1kp =  for all kÎ , then the sequence spaces above reduce to the 

following spaces: 

 

[ ] ( ) 1 1

1 1

1
: lim , ,..., 0,  uniformly in ,

for every nonzero ,...,  and for some  

r

k km n
r

k Irn

n

x p t x e z z m
w h

z z X

q

x

x

-®¥
Î

-

ì ü
- =ï ï

= í ý
ï ïÎî þ

å
, 
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( )
( ) 1 1

1 1

1
: lim , ,..., 0,  uniformly in ,

for every nonzero ,...,  and for some  

r

k km n
r

k Irn

n

x p t x e z z m
hw

z z X

q

x

x

-®¥
Î

-

ì ü- =ï ï
= í ý
ï ïÎî þ

å
, 

 

( )1 1

1 1

1
: lim , ,..., 0,  uniformly in ,

for every nonzero ,...,  and for some  

r

k km n
r

k Irn

n

x p t x e z z m
hw

z z X

q

x

x

-®¥
Î

-

ì ü- =ï ï
= í ý
ï ïÎî þ

å
. 

 

.iii Let us choose ( ) 2r

rkq = =  for 0r > , then these sequence spaces given above 

reduce to the following spaces: 

 

( ) 1 1

1

1 1

1
: lim , ,..., 0,  uniformly in ,

,

for every nonzero ,...,  and for some  

r

k km n
r

kr rn

n

x p t x e z z m
R p P

z z X

x

x

-®¥
=

-

ì ü
- =ï ïé ù = í ýë û

ï ïÎî þ

å
n

ïùR = í
ïï

ûrR p, ùù
rR p,

ï
íí , 

 

( ) ( ) 1 1

1

1 1

1
: lim , ,..., 0,  uniformly in ,

,

for every nonzero ,...,  and for some  

r

k km n
r

krr
n

n

x p t x e z z m
PR p

z z X

x

x

-®¥
=

-

ì ü
- =ï ï

= í ý
ï ïÎî þ

å)r
n

R p,
ï
ìì

= í
ïï

ï
íí , 

 

1 1

1

1 1

1
: lim , ,..., 0,  uniformly in ,

,

for every nonzero ,...,  and for some  

r

k km n
r

krr
n

n

x p t x e z z m
PR p

z z X

x

x

-®¥
=

-

ì ü
- =ï ï

= í ý
ï ïÎî þ

å
r

n
R p,

ïx
ìì

= í
ïïx

ï
íí . 

 

.iv If we select ( ) 2r

rkq = =  for 0r >  and the base space as ( ), .,.X  then these 

sequence spaces above reduce to the sequence spaces which can be seen in 

Subsection 3.2. 

 

.v If we choose 1kp =  for all kÎ  and ( ) 2r

rkq = =  for 0r > , then these sequence 

spaces above reduce to the sequence spaces [ ] ( )1 1 1, ,C C C . 
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Now, we give the following theorem to demonstrate some inclusion relations among 

the sequence spaces [ ]1,C q , ( )1,C q , 1,C q , , ,r
n

R p qé ùë ûn
ùR q û,rp,, ùù,R p,, q , ( ), ,r

n
R p q ),r

n
R p,, q , , ,r

n
R p q,r

n
R p,, qq  with 

the spaces F  and [ ]F . 

 

Theorem 4.1.1. The following statements are true: 

 

i. ( ) [ ]1[ ] , , , , , , ,r r r nn nn
F R p R p R p Cq q q qé ùÌ Ì Ì Ìë û [ 1,1( ) [

n n
[ 1[ 1[ ,1q qq ( ) [ 1( )( )r r rr r r( )

n n
( )

n nn n
p, ,, ,r r rr r rr r r( ), , ,, , ,, , ,( ), ,, ,, ,( ), ,, ,, ,, ,( ) é ùqq, ,, , , ,, ,, ,, ,( ) ë ûr r rr r r

n nn n
,,r r rr r rr r r,,,, ,,,,,,,,,,, ,, ,, ,, ,, ,, ,,,,,,,, ,, ,, ,, ,, , , 

ii.  ( ) [ ]1[ ] , , , , ,r r nnn
F F R p R p Cq q qé ùÌ Ì Ì Ìë û) [

n
[[[[q )) é ùqq)r r)

n
p, ,, ,r r),, ))), , ) ë ûr rr r ,,r rr rr r,,,, ,,,,,,,,,,, ,, ,, ,, ,, ,, ,,,,,,,, , , 

iii.  ( ) [ ]1 1 1[ ] , , , , ,r n nn
F R p C C Cq q q qÌ Ì Ì Ìr

n
p, ,, ,r qq, ,, , . 

 

Proof. We give the proof only for (i). The proofs of (ii) and (iii) can be done, 

similarly. So we omit them. Let [ ]x FÎ  and [ ]F -lim .= xx  Then 

( )1 1, ,..., 0km nt x z zx -- ®  as ,¥®k  uniformly in m , for every nonzero 

1 1,..., nz z X- Î . Since 
rH ®¥  as r ®¥ , then its weighted lacunary mean also 

converges to x  as r ®¥ , uniformly in m . This proves that , ,r
n

x R p qÎ ,r
n

R p, qq  and [ ]F -

lim , ,r
n

x R p q= ,r
n

R p,, qq -lim .= xx  Also since  

 

( ) ( )1 1 1 1

1 1
, ,..., , ,...,

r r

k km n k km n

k I k Ir r

p t x e z z p t x e z z
H H

x x- -
Î Î

- £ -å å

( )1 1

1
, ,...,

r

k km n

k Ir

p t x e z z
H

x -
Î

£ -å  

 

then it follows that ( )[ ] , , , , , ,r r r
n nn

F R p R p R pq q qé ùÌ Ì Ì ë û( )( )r r rr r r( )
n n

( )
n nn n

p, ,, ,r r rr r rr r r( ), , ,, , ,, , ,( )q qq ( )( ), ,, ,, ,( ), ,, ,, ,, ,( ) é ùq,,,, ,, , , ,, ,, ,, ,( ) ë û,r r rr r r
n nn n

r r rr r rr r r,,, ùù,,,,,, q,,,,,,,,,,,  and [ ]F -

lim , ,r
n

x R p q= ,r
n

R p,, qq -lim =x ( ), ,r
n

R p q ),r
n

R p,, q -lim =x , ,r
n

R p q,r
n

R p,, qq -lim .= xx  Since uniform 

convergence of ( ) 1 1

1
, ,...,

r

k km n

k Ir

p t x e z z
H

x -
Î

-å  for every nonzero 
1 1,..., nz z X- Î  

with respect to m  as r ®¥  implies convergence for 0=m  it follows that 
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[ ]1, , ,r nn
R p Cq qé ù Ìë ûn

ùR qq ûrR pp, ,, ,, ,rR p, ,, ,, ,, ,, ,  and , ,r
n

R p qé ùë ûn
ùR q û,rR p, ùù,R p,, q -lim x = [ ]1, n

C q -lim x = x . This completes the 

proof.             

 

Theorem 4.1.2. Let ( )rkq =  be a lacunary sequence and lim inf 1r rQ > . Then 

( ) ( ), , ,r r
n n

R p R p qÍ) ( ),r r) (
n n

( )R p R p) (, ,, ,) (r rr r) ( ,) ( q ) with ( ), r
n

R p )r
n

R p, -lim x = ( ), ,r
n

R p q ),r
n

R p,, q -lim x = x . 

 

Proof. Suppose that lim inf 1r rQ > , then there exists a 0d >  such that 1rQ d³ +  

for sufficiently large values of r , which implies that 
1

r

r

k

H

P

d
d

³
+

. If ( ), r
n

x R pÎ )r
n

R p,  with 

( ), r
n

R p )r
n

R p, -lim x = x , then for sufficiently large values of r , we have 

 

( )

( ) ( )
1

1 1

1

1

1 1 1 1

1 1

1
, ,...,

1
, ,..., , ,...,

r

r

r r

rr

k

k km n

kk

k k

k km n k km n

k k kk

p t x e z z
P

p t x e z z p t x e z z
P

x

x x
-

-
=

-

- -
= = +

-

æ ö
= - + -ç ÷

è ø

å

å å
 

( )

( )

1 1

1 1

1
, ,...,

1
. , ,...,

1

rr

r

r
k km n

k Ik r

k km n

k Ir

H
p t x e z z

P H

p t x e z z
H

x

d
x

d

-
Î

-
Î

æ ö
³ -ç ÷

è ø

³ -
+

å

å
 

 

for each 0m³  and for every nonzero 
1 1,..., nz z X- Î . Then, it follows that 

( ), ,r
n

x R p qÎ ),r
n

R p,, q )  with ( ), ,r
n

R p q ),r
n

R p,, q -lim x = x , by taking the limit as r ®¥ . This 

completes the proof. 

 

Theorem 4.1.3. Let ( )rkq =  be a lacunary sequence with lim supr rQ <¥ . Then 

( ) ( ), , ,r r
n n

R p R pq Í) ( )r r) (
n n

( )R p R p) (, , ,, , ) (r rr r) (, ,,, ) (q )  with ( ), ,r
n

R p q ),r
n

R p,, q -lim x = ( ), r
n

R p )r
n

R p, -lim x = x . 

 

Proof. Let ( ), ,r
n

x R p qÎ ),r
n

R p,, q )  with ( ), ,r
n

R p q ),r
n

R p,, q -lim x = x . Then for 0e > , there exists 
0q  

such that for every 
0q q>   
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( ) 1 1

1
, ,...,

q

q k km n

k Iq

L p t x e z z
H

x e-
Î

= - <å ,                                                        (4.1.1) 

 

for each 0m³  and for every nonzero 
1 1,..., nz z X- Î , that is, we can find some 

positive constant M  such that 

 

for all  
q

M qL £ .                                                                                               (4.1.2) 

 

lim supr rQ <¥  implies that there exist some positive number K  such that 

 

for all  1
r

Q K r£ ³ .                                                                                           (4.1.3) 

 

Therefore for 
1 rr

k r k- < £ , we have by (4.1.1), (4.1.2) and (4.1.3)  

 

( )

( )

( ) ( )

( ) ( )

1

1 21

0

1 1

1

1 1

1

1 1 1 1

1 1 1 1

1
, ,...,

1
, ,...,

1
, ,..., , ,..., ...

, ,..., ... , ,...,

r

r

r

q r

r

k km n

kr

k

k km n

kk

k km n k km n

k I k Ik

k km n k km n

k I k I

p t x e z z
P

p t x e z z
P

p t x e z z p t x e z z
P

p t x e z z p t x e z z

x

x

x x

x x

-

-

-
=

-
=

- -
Î Î

- -
Î Î

-

£ -

æ
= - + - +ç

è

ö
+ - + + - ÷÷

ø

å

å

å å

å å

 

( )

( ) ( )

0 0 0 0

1

0 0

1 1

1 1 2 2 1 1

1 2 1

1
... ...

... ...

r

r r

q q q q r r

k

q q r

k k

L H L H L H L H L H
P

M
H H H H H

P P

e
-

- -

+ +

+

= + + + + + +

£ + + + + + +
 

( ) ( )
1 0 2 1 1 1 10 0 0 0

1 1

... ...
q q q q r r

r r

k k k k k k k k k k

k k

M
P P P P P P P P P P

P P

e
- + -

- -

= - + - + + - + - + + -  

0 0

1 1

q r q

r r

k k k

k k

P P P
M

P P
e

- -

-
= +  

0

1

q

r

k

k

P
M K

P
e

-

£ + , 
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for each 0m³  and for every nonzero 
1 1,..., nz z X- Î . Since 

1rkP
-
®¥  as r ®¥ , we 

get ( ), r
n

x R pÎ )r
n

R p,  with ( ), r
n

R p )r
n

R p, -lim x = x . This completes the proof. 

 

Corollary 4.1.4. Let 1<lim inf lim supr r r rQ Q£ <¥ . Then ( ) ( ), , ,r r
n n

R p R pq =) ( )r r) (
n n

( )R p R p) (, , ,) (r rr r) (, ,) (q )  

and ( ), ,r
n

R p q ),r
n

R p,, q -lim x = ( ), r
n

R p )r
n

R p, -lim x = x . 

 

Proof. It follows from Theorem 4.1.2 and Theorem 4.1.3. 

 

In the following theorem, we give the relations between the sequence spaces ( )
n

wq  

and ( ), r
n

R p )r
n

R p, . 

 

Theorem 4.1.5. .i If 1kp <  for all kÎ , then ( ) ( ), rn n
w R pq Í )r

n
R p,  and 

( ) ( )-lim , -lim .rn n
w x R p xq x= =)r

n
p ), -lim, )r ) li) lim) -lim)  

.ii If 1kp >  for all kÎ  and r

r

H

h

æ ö
ç ÷
è ø

 is upper-bounded, then ( ) ( ), r nn
R p wqÍ) (r

n
R p ) (, r  and 

( ) ( ), -lim -lim r nn
R p x w xq x= =)r ) li)

n
R p ), -lim, )r . 

 

Proof. .i If 1kp <  for all kÎ , then 
r rH h<  for all rÎ . So, there exist an 1M , a 

constant, such that 10 1r

r

H
M

h
< £ <  for all rÎ . Let ( )

n
x wqÎ  with 

( ) -lim 
n

w xq x= , then for an arbitrary 0e >  we have 

 

( ) ( )1 1 1 1

1

1 1 1
, ,..., , ,...,

r r

k km n km n

k I k Ir r

p t x e z z t x e z z
H M h

x x- -
Î Î

- £ -å å , 

 

for each 0m³  and for every nonzero 
1 1,..., nz z X- Î . Therefore, we get the result by 

taking the limit as r ®¥ . 
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.ii Let 1kp >  for all kÎ , then 
r rH h>  for all rÎ . Suppose that r

r

H

h

æ ö
ç ÷
è ø

 is 

upper-bounded, then there exists  an 
2M  constant such that 21 r

r

H
M

h
< £ < ¥  for all 

rÎ . Let ( ), r
n

x R pÎ )r
n

R p,  and ( ), -lim .r
n

R p x x=)r ) li)
n

R p ), -lim, )r  So the result is obtained by taking 

the limit as r ®¥  for each 0m³  and for every nonzero 
1 1,..., nz z X- Î , from the 

following inequality: 

 

( ) ( )1 1 2 1 1

1 1
, ,..., , ,...,

r r

km n k km n

k I k Ir r

t x e z z M p t x e z z
h H

x x- -
Î Î

- £ -å å . 

 

Now, we define a new concept of statistical convergence in n-normed space, which 

will be called weighted almost lacunary statistical convergence: 

 

Definition 4.1.6. The weighted almost lacunary density of K Í  is denoted by 

( ) ( ) ( )
,

1
limr rR

r

K K
Hq

d e®¥=) (,R q ) (R
K

q
 if the limit exists. We say that the sequence ( )jx x=  

is said to be weighted almost lacunary statistically convergent to x  if for every 

0e > , the set ( ) ( ){ }1 1' : , ,...,r r k km nK k I p t x e z ze x e-= Î - ³  has weighted 

lacunary density zero, i.e., 

 

( ){ }1 1

1
lim ' : , ,..., 0r k km n
r

r

k I p t x e z z
H

x e-®¥
Î - ³ =                                            (4.1.4) 

 

uniformly in ,m  for every nonzero 
1 1,..., nz z X- Î . In this case, we write ( )( ),

,
R

S n
q ),

,
R

n) ,R q
-

lim x x= . By ( )( ),
,

R
S n

q ),
,

R
n) ,R q

 we denote the set of all weighted almost lacunary 

statistically convergent sequences in n-normed space. 

 

.i If we take 1kp =  for all kÎ  in (4.1.4) then we obtain the definition of almost 

lacunary statistical convergence in n-normed space, that is, x  is called almost 
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lacunary statistically convergent to x  if for every 0e > , the set 

( ) ( ){ }1 1: , ,...,r km nK k I t x e z zq e x e-= Î - ³  has lacunary density zero, i.e. 

 

( ){ }1 1

1
lim : , ,..., 0r km n
r

r

k I t x e z z
h

x e-®¥
Î - ³ =                                                   (4.1.5) 

 

uniformly in ,m  for every nonzero 
1 1,..., nz z X- Î . In this case, we write 

( ), lim j jS n xq x- = . By ( ),S nq  we denote the set of all weighted almost lacunary 

statistically convergent sequences in n-normed space. 

 

.ii Let us choose ( )rkq =  for 0r >  then the definition of weighted almost lacunary 

statistical convergence which is given in (4.1.4) is reduced to the definition of 

weighted almost statistically convergence, that is, x  is called weighted almost 

statistically convergent to x  if for every 0e > , the set 

 

( ) ( ){ }1 1: , ,...,
rP r k km nK k P p t x e z ze x e-= £ - ³   

 

has weighted density zero, i.e., 

 

( ){ }1 1

1
lim : , ,..., 0r km n
r

r

k P t x e z z
P

x e-®¥
£ - ³ =                                                   (4.1.6) 

 

uniformly in ,m  for every nonzero 
1 1,..., nz z X- Î . In this case, we write ( ),

R
S n),

R
S n,

R
-

lim x x= . By ( ),
R

S n),
R

S n,
R

 we denote the set of all weighted almost lacunary statistically 

convergent sequences in n-normed space. 

 

.iii  Let us choose ( )rkq =  for 0r >  and 1kp =  for all kÎ , then the definition of  

weighted almost lacunary statistical convergence which is given in (4.1.4) reduces to  

the definition of almost statistically convergence. 
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Theorem 4.1.7. If the sequence x  is ( ), ,r
n

R p q ),r
n

R p,, q -convergent to x  then the sequence 

x  is weighted almost lacunary statistically convergent to x .  

 

Proof. Let the sequence x  be ( ), ,r
n

R p q ),r
n

R p, q -convergent to x  and  

 

{( ) ' :rm rK k Ie = Î ( ) }1 1, ,...,k km np t x e z zx e-- ³ .  

 

Then for a given 0>e , we have  

 

( )
( )

( )

( )

1 1 1 1

1 1
, ,..., , ,...,

1
,

r
r

k km n k km n
k I

k Ir r
k K

rm

rm

r

p t x e z z p t x e z z
H H

K
H

e

x x

e e

- -Î
Î

Î

- ³ -

³

åå
 

 

for each 0³m  and for every nonzero .XzÎ  Hence we obtain that the sequence x  is 

weighted almost statistically convergent to x  by taking the limit as r ®¥ .  

 

Theorem 4.1.8. Let ( ) 1 1, ,...,k km np t x e z z Mx -- £  for all NÎk , for each 0³m  

and for every nonzero 1 1,..., nz z X- Î . Then ( )( ) ( ),
, , ,rR n

S n R p
q

qÌ),R
n) ,,R q ) ),r

n
R p, q  with ( )( ),

,
R

S n
q ),

,
R

n) ,R q
-

lim x = ( ), ,r
n

R p q ),r
n

R p,, q -lim x x= . 

 

Proof. Let x  be convergent to x  in ( )( ),
,

R
S n

q ),
,

R
n) ,R q

 and let us take  

 

( ) ( ){ }1 1= ' : , ,...,rm r k km nK k I p t x e z ze x e-Î - ³ . 

 

Since ( ) 1 1, ,...,k km np t x e z z Mx -- £  for all NÎk , for each 0³m , for every 

nonzero 
1 1,..., nz z X- Î  and 

rH ®¥  as r ®¥ , then for a given 0>e  we have  
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( )
( )

( )

( )

( )

1 1 1 1

1 1

1 1
, ,..., = , ,...,

1
, ,...,

r
r

r

k km n k km n
k I

k Ir r
k K

rm

k km n
k I

r
k K

rm

p t x e z z p t x e z z
H H

p t x e z z
H

e

e

x x

x

- -Î
Î

Î

-Î
Ï

- -

+ -

åå

å
 

( )

( )

1

1
,

r

rm

r r

rm

r

h
M K

H H

M K
H

e

e

e

e

£ +

£ +
 

 

for each 0³m  and for every nonzero 
1 1,..., nz z X- Î . Since e  is arbitrary, we have 

( ), ,r
n

x R p qÎ ),r
n

R p, q )  by taking the limit as r ®¥ . 

 

Theorem 4.1.9. The following statements are true: 

 

.i If 1£kp  for all NÎk , then ( ) ( )( ),
, ,

R
S n S nq q

Ì ),
,)R
n) ,)q ) . 

.ii Let 1³kp  for all NÎk  and r

r

H

h

æ ö
ç ÷
è ø

 be upper-bounded, then ( )( ) ( )
,

, ,
R

S n S nqq
Ì),

,
R

n) ,,R q ) . 

 

Proof. .i If 1kp £  for all kÎ , then 
r rH h£  for all rÎ . So, there exist 1M  and 

2M constants such that 1 20 1r

r

H
M M

h
< £ £ £  for all rÎ . Let ( ),x S nqÎ  with 

( ), -lim S n xq x= , then for an arbitrary 0e >  we have 

 

( ){ }

( ){ }
1

1 1

1 1

1
' : , ,...,

1
: , ,...,

r r

r k km n

r

k k k km n

r

k I p t x e z z
H

P k P p t x e z z
H

x e

x e
-

-

-

Î - ³

= < £ - ³

 

( ){ }
1 1 1 1

1

1 1
: , ,...,

r rk r k r km n

r

P k k P k t x e z z
M h

x e
- - -£ £ < £ £ - ³  

( ){ }1 1 1

1

1 1
: , ,...,r r km n

r

k k k t x e z z
M h

x e- -= < £ - ³  
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( ){ }1 1

1

1 1
: , ,..., ,r km n

r

k I t x e z z
M h

x e-= Î - ³  

 

for each 0m³  and for every nonzero 
1 1,..., nz z X- Î . Hence, we obtain the result by 

taking the limit as r ®¥ . 

 

.ii Let r

r

H

h

æ ö
ç ÷
è ø

 be upper-bounded, then there exist 
1M  and 

2M  constants such that 

1 21 r

r

H
M M

h
£ £ £ < ¥  for all rÎ . Suppose that 1kp ³  for all kÎ , then 

r rH h³  for all rÎ . Let ( ), r
n

x R pÎ )r
n

R p,  and ( ), -lim r
n

R p x x=)r ) li)
n

R p ), -lim)r , then for an arbitrary 

0e >  we have 

 

( ){ }

( ){ }

1 1

1 1 1

1
: , ,...,

1
: , ,...,

r km n

r

r r km n

r

k I t x e z z
h

k k k t x e z z
h

x e

x e

-

- -

Î - ³

= < £ - ³

 

( ){ }

( ){ }

1

1

2 1 1 1

2 1 1

1
: , ,...,

1
: , ,...,

r r

r r

r k r k k km n

r

k k k km n

r

M k P k k P p t x e z z
H

M P k P p t x e z z
H

x e

x e

-

-

- -

-

£ £ < £ £ - ³

= < £ - ³

 

( ){ }2 1 1

1
' : , ,...,r k km n

r

M k I p t x e z z
H

x e-= Î - ³  

 

for each 0m³  and for every nonzero 
1 1,..., nz z X- Î . Hence, the result is obtained by 

taking the limit as r ®¥ .  

 

Theorem 4.1.10. For any lacunary sequence q , if liminf 1r rQ >  then 

( ) ( )( ),
, ,

R R
S n S n

q
Ì), )R

n),, )R ),
,)R
n) ,)q )  and ( ),

R
S n),

R
S n,

R
-lim x = ( )( ),

,
R

S n
q ),

,
R

n) ,R q
-lim x x= . 

 

Proof. Suppose that liminf 1r rQ > , then there exists a 0d >  such that 1rQ d³ +  
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for sufficiently large values of r , which implies that 
1

r

r

k

H

P

d
d

³
+

. If ( ),
R

x S nÎ ),
R

n,
R

 with 

( ),
R

S n),
R

S n,
R

-lim x x= , then for every 0e >  and for sufficiently large values of r , we 

have 

 

{ ( ) }

{ ( ) }
1

1 1

1 1

1
: , ,...,

1
: , ,...,

r

r

r r

r

k k km n

k

k k k km n

k

k P p t x e z z
P

P k P p t x e z z
P

x e

x e
-

-

-

£ - ³

³ < £ - ³
 

{ ( ) }
1 1 1

1
: , ,...,

r r

r

r
k k k km n

k r

H
P k P p t x e z z

P H
x e

- -

æ ö
= < £ - ³ç ÷

è ø
 

{ ( ) }1 1

1
' : , ,...,

1
r k km n

r

k I p t x e z z
H

d
x e

d -

æ ö
³ Î - ³ç ÷+ è ø

, 

 

for each 0m³  and for every nonzero 
1 1,..., nz z X- Î . Hence, we get the result by 

taking the limit as r ®¥ . 

 

Theorem 4.1.11. Let ( )rkq =  be a lacunary sequence with limsupr rQ <¥ , then 

( )( ) ( )
,

, ,
RR

S n S n
q

Ì ),
R

n,),
,

R
n) ,,R q )  and ( ),

R
S n),

R
S n,

R
-lim x = ( )( ),

,
R

S n
q ),

,
R

n) ,R q
-lim x x= . 

 

Proof. If limsupr rQ <¥ , then there is a 0K >  such that 
rQ K£  for all rÎ . 

Suppose that ( )( ),
,

R
x S n

q
Î ),

,
R

n) ,R q ) with ( )( ),
, -lim 

R
S n x

q
x=),

,
R ) ,,R q )  and let 

 

{ ( ) }1 1: ' : , ,...,r r k km nN k I p t x e z zx e-= Î - ³ .                                                   (4.1.7) 

 

By (4.1.7), given 0e > , there is a 
0r Î  such that r

r

N

H
e<  for all 

0r r> . Now, let 

{ }0: max :1rM N r r= £ £  and let r  be any integer satisfying 
1r rk r k- < £ , then we 

can write 
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{ ( ) }

{ ( ) }
1

1

1 1

1 1

1
: , ,...,

1
: , ,...,

r r

r

r k km n

r

k k k km n

k

k P p t x e z z
P

P k P p t x e z z
P

x e

x e
-

-

-

-

£ - ³

£ < £ - ³
 

( )
0 0

1

1 2 1

1
... ...

r

r r r

k

N N N N N
P

-

+= + + + + + +  

( )
0

1 1

0
1

. 1
...

r r

r r

k k

M r
H H

P P
e

- -

+£ + + +  

( )
0

1 1

1 1

0

0 0

.

. .

r r

r r

r r

k k

k k

r

k k

P PM r

P P

M r M r
Q K

P P

e

e e

- -

- -

-
= +

£ + £ +

 

 

which completes the proof by taking the limit as r ®¥ . 

 

Corollary 4.1.12. Let 1 liminf limsupr r r rQ Q< £ <¥ . Then ( )( ) ( )
,

, ,
RR

S n S n
q

= ),
R

n,),
,

R
n) ,,R q )  and 

( ),
R

S n),
R

S n,
R

-lim x = ( )( ),
,

R
S n

q ),
,

R
n) ,R q

-lim x x= . 

 

Proof. It follows from Theorem 4.1.10 and Theorem 4.1.11. 

 

4.2. Generalized Difference Sequence Spaces Associated with Multiplier 

Sequence on a Real n-Normed Space 

 

In this section, some new sequence spaces associated with multiplier sequence by 

using an infinite matrix, an Orlicz function and generalized B -difference operator on 

a real n-normed space are introduced. Some topological properties of these spaces 

are examined. A new concept which will be called ( )nBm
L -statistical A -convergence 

in an n-normed space, is defined and some inclusion connections between the 

sequence space ( ).,...,.,,, pBAW m
L  and the set of all ( )nBm

L -statistical A -convergent 

sequences are established. 
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Let ( )mkaA =  be an infinite matrix of non-negative real numbers, let ( )kpp =  be a 

bounded sequence of positive real numbers for all NÎk  and ( )kL = L  be a 

sequence of nonzero scalars. Further, let M  be an Orlicz function and ( ), .,...,.X  be 

an n-normed space. We denote the space of all X -valued sequence spaces by 

( ).,...,.w  and ( ) ( )= .,...,.kx x wÎ  by ( )kxx =  for brevity. We define the following 

sequence spaces: 

 

( ) ( ) 1 1

0 1

1 1

: lim , ,..., 0,
, , , , .,...,.

for every nonzero ,...,

kp

k
k mk n

m
k

n

B x
x x a M z z

W A B M p

z z X

m

m r

¥
L

-®¥
L =

-

ì üé ùæ ö
ï ï= =ï ïê úç ÷= í ýê úè øë û
ï ï

Îï ïî þ

å , 

 

( ) ( ) 1 1

1

1 1

: lim , ,..., 0
, , , , .,...,.

for every nonzero ,...,  and for some 

kp

k
k mk n

m
k

n

B x
x x a M z z

W A B M p

z z X

m

m
x

r

x

¥
L

-®¥
L =

-

ì üé ùæ ö-ï ï= =ï ïê úç ÷= í ýê úè øë û
ï ï

Îï ïî þ

å , 

 

( ) ( ) 1 1

1

1 1

: sup , ,..., ,
, , , , .,...,.

for every nonzero ,...,

kp

k
k mk n

m k

n

B x
x x a M z z

W A B M p

z z X

m

m r

¥
L

-
¥ L =

-

ì üé ùæ ö
ï ï= < ¥ï ïê úç ÷= í ýê úè øë û
ï ï

Îï ïî þ

å , 

 

where 
0

v v

k k v k v

v

B x r s x
v

m
m mm -
L - -

=

æ ö
= Lç ÷

è ø
å  and m , kÎ . If we consider some special 

cases of the spaces above, the followings are obtained:  

  

.i If we take 0=m , then the spaces above reduce to  

( ).,...,.,,,, pMAW L , ( ).,...,.,,,,0 pMAW L , ( ).,...,.,,,, pMAW L¥ , respectively. 

 

.ii If we take 1=r , 1= -s  then the spaces above reduce to the spaces 

( ).,...,.,,,, pMAW m
LD , ( ).,...,.,,,,0 pMAW m

LD , ( ).,...,.,,,, pMAW m
L¥ D .  

 



68 

 

 

.iii If ( ) xxM =  then the above spaces are denoted by ( ).,...,.,,, pBAW m
L ,  

( ).,...,.,,,0 pBAW m
L , ( ), , , .,...,.W A B pm

¥ L , respectively. 

 

.iv If 1=kp  for all NÎk  and )(1,1,1,...=)(= kLL  then the spaces above are 

denoted by ( ).,...,.,,, MBAW m
, ( ).,...,.,,,0 MBAW m

, ( ).,...,.,,, MBAW m
¥ , 

respectively.  

 

.v If ( ) xxM =  and 1=kp  for all NÎk , then the spaces above are denoted by 

( ).,...,.,, m
LBAW , ( ).,...,.,,0

m
LBAW , ( ).,...,.,, m

L¥ BAW , respectively. 

 

.vi If we take 1= CA , i.e., the Cesaro matrix, then the spaces above reduce to the 

spaces ( ).,...,.,,, pMBW m
L , ( ).,...,.,,,0 pMBW m

L , ( ).,...,.,,, pMBW m
L¥ . 

 

.vii If we take ( )mkaA =  is de la Valée Poussin mean, i.e., 

 

[ ]1
, 1,

0, otherwise,

m m

mmk

k I m m
a

l
l
ì Î = - +ï

= í
ï
î

                                                                   (4.2.1) 

 

where ml  is a non-decreasing sequence of positive numbers tending to ¥  and 

1+ml 1,+£ ml  1=1l , then the spaces above are denoted by ( )0 , , , , .,...,.W B M pml L , 

( ), , , , .,...,.W B M pml L , ( ), , , , .,...,.W B M pml¥ L . 

 

.viii By a lacunary sequence ( )mk=q , 0,1,..=m  where 0=0k , we mean an 

increasing sequence of non-negative integers with ( ) ¥®- -1= mmm kkh  as ¥®m . 

The intervals determined by q  are denoted by ( ]mmm kkI ,= 1- . Let 
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1

1
,

0, otherwise.

m m

mmk

k k k
ha

-
ì < £ï

= í
ï
î

                                                                                   (4.2.2) 

 

Then we obtain the spaces ( ).,...,.,,,, pMBW mq L , ( ).,...,.,,,,0 pMBW mq L  and 

( ), , , , .,...,.W B M pmq¥ L , respectively. 

 

.ix If we take ( )mkaA =  is Nörlund mean, i.e., 

 

, 0

0,

m k

mmk

p
k m

Pa

k m

-ì < £ï
= í
ï >î

                                                                                   (4.2.3) 

 

where ( )kp  is a sequence of positive real numbers and 
1 2 ...m mP p p p= + + + , then 

the spaces above are denoted by ( ), , , , .,...,.W N B M pm
L , ( )0 , , , , .,...,.W N B M pm

L  

and ( ), , , , .,...,.W N B M pm
¥ L , respectively. 

 

.x Let the matrix ( )mkaA =  be Riesz mean, i.e., 

 

, 0

0,

k

mmk

p
k m

Pa

k m

ì < £ï
= í
ï >î

                                                                                   (4.2.4) 

 

where ( )kp  is a sequence of positive real numbers and 
1 2 ...m mP p p p= + + + , then 

we obtain the sequence spaces ( ), , , , .,...,.W R B M pm
L , ( )0 , , , , .,...,.W R B M pm

L  and 

( ), , , , .,...,.W R B M pm
¥ L , respectively. 

 

.xi If we take IA = , where I  is an identity matrix and 1=kp  for all  then the 

spaces above reduce to the sequence spaces ( ).,...,.,, MBc m
L , ( ).,...,.,,0 MBc m

L  and 
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( ).,...,.,, MBl m
L¥ , respectively. 

 

.xii If we take IA = , where I  is an identity matrix, xxM =)(  and 1=kp  for all 

NÎk  then we denote the spaces above by the sequence spaces ( ).,...,.,mLBc , 

( ).,...,.,0

m
LBc  and ( ), .,...,.l Bm

¥ L . 

 

Theorem 4.2.1. ( )0 , , , , .,...,.W A B M pm
L , ( ), , , , .,...,.W A B M pm

L  and 

( ), , , , .,...,.W A B M pm
¥ L  are linear spaces.  

 

Proof. We consider only ( ), , , , .,...,.W A B M pm
L . Others can be treated similarly. Let 

( ), , , , , .,...,.x y W A B M pm
LÎ  and ,a b  be scalars, suppose that 

1x x®  and 
2y x® . 

Then there exists 0>|||| 21 rbra +  such that, 

 

( )1 2

1 1

=1 1 2

( )
, ,...,

p
k

k k

mk n

k

B x y
a M z z

m a b ax bx
a r b r

¥
L

-

é ùæ ö+ - +
ê úç ÷ç ÷+ê úè øë û

å  

1 1
1 1

=1 1 2 1

, ,...,k
mk n

k

B x
a M z z

ma r x
a r b r r

¥
L

-

é æ -
£ ê çç +ê èë
å  

2 2
1 1

1 2 2

, ,...,

p
k

k
n

B y
z z

mb r x
a r b r r

L
-

ùö-
+ ú÷÷+ úøû

 

1 1
1 1

=1 1 2 1

2 2
1 1

1 2 2

, ,...,

, ,...,

k
mk n

k

p
k

k
n

B x
a M z z

B y
M z z

m

m

a r x
a r b r r

b r x
a r b r r

¥
L

-

L
-

é æ ö-
£ ê ç ÷ç ÷+ê è øë

ùæ ö-
+ úç ÷ç ÷+ úè øû

å
    

1
1 1

=1 1

, ,...,

p
k

k
mk n

k

B x
D a M z z

m x
r

¥
L

-

é ùæ ö-
£ ê úç ÷ç ÷ê úè øë û
å  

2
1 1

=1 2

, ,...,

p
k

k
mk n

k

B y
D a M z z

m x
r

¥
L

-

é ùæ ö-
+ ê úç ÷ç ÷ê úè øë û
å , 
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which leads us by taking limit as ¥®m  that we get 

( )( ) , , , , .,...,. .x y W A B M pma b L+ Î   

 

Theorem 4.2.2. For any two sequences ( )kpp =  and ( )kqq =  of positive real 

numbers and for any two n-norms ,.,...,.
1

 
2

.,...,.  on ,X  the following holds: 

 

Ø),..,,,,,(),..,,,,,(
21
¹Ç LL KK qMBAZpMBAZ mm

, where ,=WZ  
0W  and .¥W   

  

Proof. Since the zero element belongs to each of the above classes of sequences, thus 

the intersection is non-empty.  

 

Theorem 4.2.3. Let )(= mkaA  be a non-negative matrix and )(= kpp  be a bounded 

sequence of positive real numbers. Then for any fixed NÎm  the sequence space 

( ).,...,.,,,, pMBAW m
L¥  is a paranormed space with respect to the paranorm defined 

by 

 

1

1 1

=1

1 1

: , ,..., < ,
( ) = inf

for every nonzero ,...,  and for some 0 

p Hp k
m

kH
mk n

m k

n

B x
a M z z

g x

z z X

m

r
r

r

¥
L

-

-

ì ü
æ öé ùï ïæ öç ÷ï ï¥ê úç ÷í ýç ÷ê úè øë ûè øï ï

ï ïÎ >î þ

å . 

 

Proof. That 0=)(qmg  and )(=)( xgxg mm -  are easy to prove. So, we omit them. Let 

us take )(= kxx  and )(= kyy  in ( ).,...,.,,,, pMBAW m
L¥ . Let       

       

1 1

=1

( ) = > 0 : , ,..., <

p
k

k
mk n

k

B x
A x a M z z

m

r
r

¥
L

-

ì üé ùæ öï ï
¥ê úç ÷í ý

ê úè øï ïë ûî þ
å ,             

 

1 1

=1

( ) = > 0 : , ,..., <

p
k

k
mk n

k

B y
A y a M z z

m

r
r

¥
L

-

ì üé ùæ öï ï
¥ê úç ÷í ý

ê úè øï ïë ûî þ
å ,        
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for every nonzero .,..., 11 Xzz n Î-  Let )(1 xAÎr  and ),(2 yAÎr  then we have  

 

( )
( )

1

1 1

=1 1 2

, ,..., <

p Hk

k k

mk n

k

B x y
a M z z

m

r r

¥
L

-

æ öé ùæ ö+ç ÷ ¥ê úç ÷ç ÷ç ÷+ê úè øë ûè ø
å              

 

by using Minkowski’s inequality for 1>)(= kpp . Thus,      

       

( ) ( ) ( )

( ) ( )

1 2 1 2

1 1 2 2

( ) = inf : ,

inf : inf :

= ( ) ( ) .

p
m

H
m

p p
m m

H H

m m

g x y A x A y

A x A y

g x g y

r r r r

r r r r

ì ü
+ + Î Îí ý

î þ

ì ü ì üï ï ï ï
£ Î + Îí ý í ý

ï ï ï ïî þ î þ
+

              

 

We also get )()()( ygxgyxg mmm +£+  for 1,<0 £kp  by Lemma 1.1.46. Hence, we 

complete the proof of this condition of paranorm. Finally, we show that the scalar 

multiplication is continuous. Whenever 0®a  and x  is fixed imply 0.)( ®xgm a  

Also, whenever q®x  and a  is any number imply 0)( ®xgm a . By using the 

definition of the paranorm, for every nonzero Xzz n Î-11,...,  we have 
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where 
r

s
a

= . Since { }Hh
k

p aaa ,max£  therefore { }( )
1

max ,
p
k h H H

Ha a a£ . 

Then the required proof follows from the following inequality: 
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max ,
h H H

mg xa a= . 

 

Theorem 4.2.4. Let 
1 2, ,M M M  be Orlicz functions. Then the followings hold. 

 

i.  Let 1.<0 ££ kph  Then ),,,,,(),,,,,,( ××Í×× LL KK MBAZpMBAZ mm
 where 

0,= WWZ . 

ii.  Let .<<1 ¥£ Hpk  Then ),,,,,,(),,,,,( ××Í×× LL KK pMBAZMBAZ mm
 where 

0,= WWZ . 

0 1 0 2 0 1 2iii. ( , , , , ., ,. ) ( , , , , ., ,. ) ( , , , , ., ,. ).W A B M p W A B M p W A B M M pm m m
L L LÇ Í +0 1 0 2 0 1 20 1 00 1 0 2 0 12 0 12 0 12 0 1 ., ,. )., , ,p2 0 1 2, ,, ,2 0 1 22 0 12 0 1 2,. )m m mm m mm m mm m mm m mm m mm m m) ( ) ()) ( ) () ( ) (( ) ()0 1 0 2 0 12 0 10 1 00 1 0 2 0 12 0 12 0 12 0 10 1 0 2 0 12 0 12 0 10 1 00 1 0 2 0 12 0 12 0 12 0 1,. )0 1 0 2 0 10 1 0 2 0 12 0 12 0 10 1 00 1 0 2 0 12 0 12 0 12 0 1( , , , , ., ,. ) ( , ,, , , , ., ,. , ,, , , , ., ,. , ,. )2 0 12 0 12 0 12 0 1( ) (( ) (( ) (( ))( , , , , ., ,. ) ( ,( ) (( ). )0 1 0 2 0 12 0 10 1 0 2 0 12 0 10 1 0 2 0 12 0 12 0 12 0 12 0 1  

 

Proof. i.  We give the proof for the sequence space ),..,,,,,(0 KpMBAW m
L  only. The 

other can be proved by a similar argument. Let ),,,,,,()( 0 ××Î L KpMBAWxk

m
 and 

1,<0 ££ kph  then 
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ê ú ê úè ø è øë û ë û
å å . 

Hence, we have the result by taking the limit as ¥®m . This completes the proof. 

 

ii.  Let ¥£ <<1 Hpk  and ),,,,,()( 0 ××Î L KMBAWxk

m
. Then for each 1<<0 e  
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there exists a positive integer 
0M  such that  
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for all 
0>m M . This implies that  
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Hence we have the result. 

 

iii.  Let ( ) ( ) ( )0 1 0 2= , , , , .,...,. , , , , .,...,.kx x W A B M p W A B M pm m
L LÎ Ç . Then by the 

following inequality the result follows:  
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If we take the limit as ¥®m  then we get 0 1 2( ) ( , , , , ., ,. )kx W A B M M pm
LÎ + . ). ), ,. ). ) . This 

completes the proof. 

 

Theorem 4.2.5. ),..,,,,,( 1
KpMBAZ -

L
m Ì ),..,,,,,( KpMBAZ m

L  and the inclusion 

is strict for 1³m . In general ),..,,,,,(
1

KpMBAZ j

L Ì ),..,,,,,( KpMBAZ m
L  for 

= 0,1, 2,..., 1j m -  and the inclusions are strict, where 
0= ,Z W W  and ¥W .  
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Proof. We give the proof for ),..,,,,,( 1

0 KpMBAW -
L
m

 only. The others can be  

proved by a similar argument. Let ( )kxx =  be any element in the space  

),..,,,,,( 1

0 KpMBAW -
L
m

 then there exists 0>= 21 rrr sr +  such that  

 

1

1 1

=1

, ,..., = 0lim

p
k

k
mk n

m k

B x
a M z z

m

r

-¥
L

-
®¥

é ùæ ö
ê úç ÷
ê úè øë û

å . 

 

Since M  is non-decreasing and convex, it follows that  
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The result holds by taking the limit as ¥®m .  

 

In the following example we show that the inclusion given in the theorem above is 

strict. 

 

Example 4.2.6. Let ,=)( xxM  1=kp  for all ,NÎk  (1,1,...)=)(= kLL , 1= CA , 

i.e., the Cesaro matrix, 1=1,= -sr  where vkvk

vv

v

k xsr
v

xB --
-

L L÷÷
ø

ö
çç
è

æ
å m
m

m m

0=

=  for all 

{0}., -ÎRsr  Consider the sequence 1= ( ) = ( )kx x k m- . Then )(= kxx  belongs to 

),..,,,,(0 KpMBW m
 but does not belong to 

2

0 ( , , , ., ,. )W B M pm- )),. .  
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Theorem 4.2.7. Let )(= mkaA  be a non-negative regular matrix and )(= kpp  be 

such that ¥££ <<0 Hph k . Then ( , , .,...,. ) ( , , , , .,...,. )l B M W A B M pm m
¥ L ¥ LÍ . 

 

Proof. Let ( ).,...,.,, MBl m
L¥ . Then there exists 0>0T  such that  

 

1 1 0, ,...,k
n

B x
M z z T

m

r
L

-

é ùæ ö
£ê úç ÷

ê úè øë û
  

 

for all NÎk  and for every nonzero .,..., 11 Xzz n Î-  Since )(= mkaA  is a non-negative 

regular matrix, we have the following inequality by the case (i) of Silverman-

Toeplitz conditions.  
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ê úè øë û
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Hence ( ) ( ).,...,.,,,,.,...,.,, pMBAWMBl mm
L¥L¥ Í .  

 

Now, we introduce and study a new concept of ( )nBm
L -statistical A -convergence in 

an n-normed space as follows: 

 

Definition 4.2.8. Let ( ), .,...,.X  be an n-normed space and let )(= mkaA  be a non-

negative regular matrix. A real sequence )(= kxx  is said to be ( )nBm
L -statistically A -

convergent to a number x , if 
( )

( ) ( )
1

lim 0n mk K
mA B

k

K a k
m

d c
L

¥

®¥
=

= =å  or equivalently 

lim 0mk
m

k K

a
®¥

Î

=å  for each 0>e  and for every nonzero Xzz n Î-11,...,  where 

},...,,:{= 11 em
�N -L -Î nk zzLxBkK  and Kc  is the characteristic function of K .  

In this case we write ( ) stat- -lim =nB A xm xL . ( )( )nS A Bm
L  denotes the set of all 

( )nBm
L -statistically A -convergent sequences. 
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If we consider some special cases of the matrix, then we have the following: 

 

.i If 1= CA , the Cesaro matrix, then the definition reduces to ( )nBm
L -statistical 

convergence. 

 

.ii If ( )mkaA =  is de la Vallee Poussin mean which is given by (4.2.1) then the  

definition reduces to ( )nBm
L -statistical l -convergence. 

 

.iii If we take )(= mkaA  as in (4.2.2), then the definition reduces to ( )nBm
L -statistical 

lacunary convergence.  

 

.iv If we take )(= mkaA  as in (4.2.3), then the definition reduces to ( )nBm
L -Nörlund 

statistical convergence.  

 

.v If we take )(= mkaA  as in (4.2.4), then the definition reduces to ( )nBm
L -Riesz 

statistical convergence.  

 

Theorem 4.2.9. Let )(= kpp  be a sequence of non-negative bounded real numbers 

such that 0>inf kk p . Then ( ) ( ), , , .,...,. ( )nW A B p S A Bm m
L LÌ . 

 

Proof. Assume that ( ).,...,.,,,)(= pBAWxx k

m
LÎ . So we have for every nonzero 

Xzz n Î-11,...,  

1 1

=1

, ,..., = 0lim
p
k

mk k n
m k

a B x L z zm
¥

L -
®¥

-å .         

 

Let 0>e  and { }em
�N 11 ,...,,:= -L -Î nk zzLxBkK . We obtain the following: 
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a B x L z zm
L -

Î

= -å  

1 1, ,...,
kp

mk k n
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Ï
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ae e
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³ å . 

 

If we take the limit as ¥®m , then we get ( )( )nx S A Bm
LÎ . This completes the  

proof. 

 

Theorem 4.2.10. Let )(= kpp  be a sequence of non-negative bounded real numbers 

such that 0>inf kk p . Then ÌL ))(( nBAS m ( ), , , .,...,.W A B pm
L .  

 

Proof. Suppose that ( ) ( )= ( ) , .,...,. ( )n

kx x l B S A Bm m
¥ L LÎ Ç . Then there exists an 

integer T  such that 1 1, ,...,k nB x z z Tm zL -- £  for all 0>k  and for every nonzero 

1 1,..., nz z X- Î  and lim 0mk
m
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a
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Î

=å , where  
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Since )(= mkaA  is a non-negative regular matrix, then we have 
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where { }max ,h He e e ¢=  and { }max ,h HT T T ¢= . Hence ( ), , , .,...,.kx W A B pm
LÎ .  

 

4.3. Some Topological Properties of Sequence Spaces Involving Lacunary 

Sequence in a Real n-Normed Space 

 

Now, we define some new sequence spaces involving lacunary sequence in n-normed 

spaces. Let q  be a lacunary sequence and M  be any Orlicz function. Then we 

denote by ( ).,...,.,,, Mpl q  the sequence space involving lacunary sequence defined 

by as the set of all ( ).,...,.x wÎ  such that 
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If xxM =)(  then we get the sequence space ( ), , .,...,.l p q  as follows 
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If ppr =  for all r , xxM =)( , then the sequence space which is given by (4.3.1) 

reduces to 
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We denote ( ).,...,.,,, Mpl q  by ( ).,...,.,ql  where xxM =)(  and 1== ppr  for all r . 

In the special case where ( )= 2rq , we have ( )ces , , .,...,. = , , , .,...,.p M l p Mqé ùë û . 

 

Theorem 4.3.1. Let ¥£ <1 rp  and ( ).,...,.,X  be an n-Banach space. For any Orlicz 

function M  and a bounded sequence )(= rpp  of strictly positive real numbers 

( ).,...,.,,, Mpl q  is a linear paranormed space by  
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where ( )= max 1,H H¢ . 

 

Proof. It is easy to see that for any Orlicz function M  and )(= rpp  of strictly 

positive real numbers ( ).,...,.,,, Mpl q  is a linear space, so we omit it. The conditions 

(i)-(iii) of definition paranorm are clearly hold. We prove the scalar multiplication is 

continuous. Let l  be any number and by using the definition of the paranorm, 
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which converges to zero as )(xgr  converges to zero in ( ), , , .,...,.l p Mq . Now 

suppose 0®rl  and x  is in ( )..,...,.,,, Mpl q  Then there exists 0>r  such that 
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Now  
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as 0,®l  for every nonzero Xzz n Î-11,...,  and for some > 0r . 

Let ( )ix  be any Cauchy sequence in ( ), , , .,...,.l p Mq , and let s  and 0x  be fixed 

such that ( )0 1M sx ³ . Then for each 0>
0sx

e
 there exists a positive integer N  such 

that 
0

( ) <i j

rg x x
sx

e
- , for all ,i j N³ . Since )( ji

r xxg -  is positive so we can 

substitute r  for ( )i j

rg x x- . From the definition of the paranorm we get 
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for all ,i j N³  and for every nonzero Xzz n Î-11,..., . Thus  
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for all ,i j N³ . Since ,<1 ¥£ rp  we have 
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for sufficiently large values of .r  Since 1
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M , we obtain that 
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for all ,i j N³ . Since X  is an n-Banach space, then ( )ix  is convergent in X  for all 

Ni ³ . Using the continuity of functions M  and .,...,.  and taking the limit as 

¥®j  we have, 
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for every nonzero 
1 1,..., nz z X- Î . Taking the infimum of such 'r  s we get for every 

nonzero Xzz n Î-11,...,  and for all Ni ³ , 
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The sequence space ( ).,...,.,,, Mpl q  is a linear space and ( ) ( ).,...,.,,, Mplxi qÎ  

then we have ( ) ( )= , , , .,...,.i ix x x x l p Mq- - Î . This completes the proof. 

 

Theorem 4.3.2. ( ) ( ) ( ).,...,.,,,.,...,.,,,.,...,.,,, 2121 MMplMplMpl +ÌÇ qqq .  

 

Proof. Let ( ) ( ).,...,.,,,.,...,.,,, 21 MplMplx qq ÇÎ  then, 
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for some 0>1r  and for every nonzero Xzz n Î-11,..., , and  
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for some 0>2r  and for every nonzero Xzz n Î-11,..., . Let r  as; ( )21,max= rrr . 

Since  
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then we get,  
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Hence ( )1 2, , , .,...,.x l p M MqÎ + . 

 



 

 

 

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 

 

 

In mathematics one of the most important notions is the notion of norm, which is 

fundamental in geometry, in analysis and others. The notion of a norm is to be 

regarded as a generalization of the notion of the distance. In a normed space ( ), .X  

we know how to measure lengths. How do we measure areas or volumes? This is not 

always easy. If we have an inner product we can measure volumes of n-dimensional 

parallelepipeds by the determinant  

 

1 1 1

1

, ,

, ,

n

n n n

x x x x

x x x x

1 1 11 1 1,1 1 11 1 1 nx x1 1 11 1 11 1 1,1 1 11 1 11 1 1

n n nn n n,,x x,,n n nn n n,,,

 

 

which is known as Gramian of linearly independent vectors 
1,..., nx x  in ( ), .,.X , or 

we need orthogonality. However, we need inner product or at least semi-inner 

product to define orthogonality. If we have a semi-inner product we can also measure 

the volume of n-dimensional parallelepipeds. Using a semi inner product g, one may 

define the notion of orthogonality on X . In general, given a vector y XÎ  and a 

subspace { }1span ,..., nS x x=  of X , we can define the g-orthogonal projection of y  

on S . Next, given a finite sequence of linearly independent vectors 
1,..., nx x  in X , 

we can construct a left g-orthogonal sequence * *

1 ,..., nx x  as in [6]. Having done so, we 

may define the volume of the n-dimensional parallelepiped spanned by 
1,..., nx x  in 

X  to be ( ) *

1

1

,..., :
n

n i

i

V x x x
=

=Õ  ([46]). The volume formula (defined in a semi-inner 

product space) is not invariant with respect to permutation. Thus there is a limitation 

with such a formula. But if we don’t have any inner product or semi-inner product 

we can not compute the volume. We must recognize that the notion of norm has a 
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limitation. To pass the limitation, we need a new notion. One of the treatments is to 

consider the 2-normed space introduced by S. Gähler [30]. By this way we can 

compute the area of parallelogram spanned by two vectors. It was generalized to n-

normed space by Misiak [39] to compute the volume of the n-dimensional 

parallelepiped spanned by linearly independent n vectors.  

 

Now, consider the 2-normed space ( ), .,.X . We know how to measure the areas. 

One question arises: How can we measure the lengths? At first, this question was 

asked by S. Gähler. He defined 
*

: , ,x x a x b= +  where { },a b  is linearly 

independent set and ( )dim 1X > . By this way, for 
2X = 2
 the derived norm 

*
.  is 

equivalent to the usual norm . . ( ) *
0n nx x n x x® ®¥ Û - ®  if and only if 

0nx x- ® . ( )2 , .,. )2 , .,., ., .  has the same topology as ( )2 , . )2 , ., ., . . Later, Gunawan [32] 

derived a norm for the same purpose in a 2-normed space ( ), .,.X  of dimension 2³  

choosing an arbitrary linearly independent set { }1 2,a a  in X  and with respect to 

{ }1 2,a a , he defined a norm 
*

.
p

 on X  by ( )
1

*

1 2: , ,
p p p

p
x x a x a= +  for 1 p£ <¥ . 

Actually, for 2-normed space pl , we choose, for convenience ( )1 1,0,0,...a =  and 

( )2 0,1,0...a = , and define 
*

.
p

 with respect to { }1 2,a a  as above, then we have; the 

derived norm 
*

.
p

 is equivalent to the usual norm .
p

 on pl . Precisely, we have 

1
*

2 p

p p p
x x x£ £  for all px lÎ . Indeed, it was not a goal, however, it was a result 

of how to measure distance. 

 

It is correct if we know they are equivalent then the proofs in n-normed space or in 2-

normed space can be done easily. But a few years ago, this was not known by 

mathematicians. This shows the importance of the equivalence and helps to 

understand the structure of the n-normed space. If we want to study n-normed space, 

we should stop to discuss why they are equivalent, and let’s to study something else. 

That could be interesting, because we don’t have only one vector, we have pairs in 2-



88 

 

 

normed space and n vectors in n-normed space, something to explore it. For 

example, for C[a,b] we still don’t know whether we can take arbitrary linearly 

independent set like pl  and 
pL . But for C[a,b] the equivalence is obtained for only 

some specific vectors. So, the equivalence is true for only specific choice. We don’t 

know the equivalence for arbitrary vectors. This is an open problem also to explore.  

 

In this section, the results obtained from the previous sections of thesis will be also 

summarized. A part of the second section, the third and fourth sections of this thesis 

equipped with original works. 

 

In the first part of third section, we define the generalized difference matrix ( )Bm
h  and 

introduce difference sequence spaces ( ), , .,.c B pm
h , ( )0 , , .,.c B pm

h , ( ), , .,.m B pm
h , 

( )0 , , .,.m B pm
h , ( ), , .,.c B pm

h , ( )0 , , .,.c B pm
h , ( ), , .,.l B pm

h¥ , ( ), , .,.W B pm
h  which 

are defined on a real linear 2-normed space. We investigate some topological 

properties of the spaces  ( ), , .,.c B pm
h , ( )0 , , .,.c B pm

h , ( ), , .,.m B pm
h , 

( )0 , , .,.m B pm
h  including linearity, existence of paranorm and solidity. Further, we 

show that the sequence spaces ( ), , .,.m B pm
h  and ( )0 , , .,.m B pm

h  are complete 

paranormed spaces where the base space is a 2-Banach space. Moreover, we give 

some inclusion relations ([53]). 

 

In the second part of Chapter 3, we introduce some new sequence spaces derived by 

Riesz mean and the notions of almost and strongly almost convergence in a real 2-

normed space. Some topological properties of these spaces are investigated. Further, 

new concepts of statistical convergence which will be called weighted almost 

statistical convergence  and [ , ]nR p, ]np,, -statistical convergence in a real 2-normed space, 

are defined. Also, some relations between these concepts are investigated ([54]). 

 

There are three parts in the fourth chapter. In the first part of it, we obtain a new 

concept of statistical convergence which will be called weighted almost lacunary 

statistical convergence in a real n-normed space by combining both of the definitions 
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of lacunary sequence and Riesz mean. We examine some connections between this 

notion with the concept of almost lacunary statistical convergence and weighted 

almost statistical convergence, where the base space is a real n-normed space ([55]). 

In the second part of this chapter, some new sequence spaces associated with 

multiplier sequence by using an infinite matrix, an Orlicz function and generalized 

B -difference operator on a real n-normed space are introduced ([56]). In the last part 

of it, some sequence spaces, involving lacunary sequence, in a real linear n-normed 

space are introduced ([57]). In the last section of this thesis, the main results, which 

were obtained, are summarized. 
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