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OZET

Anahtar Kelimeler: 2-Norm, n-Norm, Dizi Uzay1, Orlicz Fonksiyonu, Hemen Hemen
Yakinsaklik, Genellestirilmis Fark Matrisi, Riesz Ortalama, Agirlikli Istatistiksel
Yakinsaklik.

Bu tez calismasi bes boliimden olusmaktadir. Birinci boliimde, bazi temel tanim ve
teoremler verildi. ikinci boliimde, 2-norm ve n-norm kavramlari ile ilgili baz1 temel
tanim ve teoremler verildi. ikinci boliimiin bir kismi, {iciincii boliim ve dordiincii
boliimler bu tezin orijinal kismini olusturmaktadir.

Ucgiincii boliimde 2-normlu uzaylarla ilgili kisimlar bulunurken {igiincii bdliimde n-
normlu uzaylarla ilgili galismalar yer almaktadir. Ugiincii boliimde, iki alt baslik yer

almaktadir. Bu boliimiin ilk kisminda, yeni bir genellestirilmis B(’,‘Y) fark matrisi

tanimlanarak 2-normlu uzayda bazi B("; ) -fark istatistiksel yakinsak dizi uzaylar

tanitildi ve bazi topolojik 6zellikleri incelendi. Ayni boliimiin ikinci kisminda ise,
Riesz ortalama ile tiiretilen bazi yeni dizi uzaylar1 tanitildi. Ayrica, agirlikli hemen

hemen istatistiksel yakinsaklik ve [R, p, |-istatistiksel yakinsaklik kavramlari
tanitilarak bu kavramlar arasindaki iliski incelendi.

Dordiincii boliimiin ilk kisminda, Lacunary dizisi ve Riesz ortalamasi tanimlari
birlestirilerek n-normlu uzayda agirlikli hemen hemen lacunary istatistiksel
yakinsaklik olarak adlandirilan yeni bir kavram tanitildi. Bu yeni kavramla hemen
hemen lacunary istatistiksel yakinsaklik ve agirlikli hemen hemen istatiksel
yakinsaklik arasindaki iligki incelendi. Dordiincii boliimiin ikinci kisminda, bir
sonsuz matris, Orlicz fonksiyonu ve genellestirilmis B-fark matrisi kullanilarak bazi
dizi uzaylar1 tanitildi. Son kisminda ise reel lineer n-normlu uzayinda Orlicz
fonksiyonu yardimiyla, lacunary dizisi iceren bazi dizi uzaylar tanitilarak bu dizi
uzaylarinin bazi topolojik 6zellikleri incelendi.

Son boliimde ise elde edilen temel sonuglar 6zetlendi.

Vi



SOME SEQUENCE SPACES DEFINED IN n-NORMED SPACES

SUMMARY

Key Words: 2-Norm, n-Norm, Sequence Space, Orlicz Function, Almost
Convergence, Generalized Difference Matrix, Riesz Mean, Weighted Almost
Lacunary Statistical Convergence.

This thesis contains five chapters. In the first chapter, some basic definitions and
theorems are given. In the second chapter, some fundamental definitions and
theorems related to the concepts of 2-normed space and n-normed space, are given.
A part of the second chapter, the third and fourth chapters are original parts of this
study. The third chapter is related to the concept of 2-normed space while the studies
related with n-normed space are located in the fourth chapter.

The third chapter consists of two parts. In the first part of this chapter, a new
generalized difference B(’,‘]) matrix is defined and some B(‘;) -difference statistically

convergent sequence spaces in 2-normed space are introduced. In the second part of
it, some new sequence spaces derived by Riesz mean are introduced. Further, new
concepts of statistical convergence which will be called weighted almost statistical

convergence, [R, p, ]-statistical convergence in 2-normed space, are defined and
some relations between them are investigated.

There are three parts in the fourth chapter. In the first part of it, we obtain a new
concept of statistical convergence which is called weighted almost lacunary
statistical convergence in n-normed space by combining both of the definitions of
lacunary sequence and Riesz mean. We examine some connections between this
notion with the concept of almost lacunary statistical convergence and weighted
almost statistical convergence, where the base space is a real n-normed space. In the
second part of this chapter, some new sequence spaces associated with multiplier
sequence by using an infinite matrix, an Orlicz function and generalized B -
difference operator on a real n-normed space are introduced. In the last part of it,
some sequence spaces, involving lacunary sequence, in a real linear n-normed space
are introduced.

In the last section of this thesis, the main results, which were obtained, are
summarized.

vii



CHAPTER 1. INTRODUCTION

In this section, review of the literature, some basic definitions and theorems, which

are necessary throughout this thesis, are given.

1.1. Definitions and Preliminaries

Definition 1.1.1. [1] A vector (linear) space (X,+,.) over a field F (R or C)is a

non-empty set X whose elements are called vectors, and in which two operations

addition and scalar multiplication, are defined,

+: XxX—>X SFxX > X
(x,y)—>x+y ()L,x)—)i.x

such that for all A, ue F and x,y,ze X with the following familiar algebraic

properties:

. X+y=y+x

ii. (x+y)+z=x+(y+z)

iii. There exists € € X such that x+6 =x

iv. There exists —x € X such that x+(—x)=6
v. lx=x

vi. A(x+y)=Ax+Ay

vii. (A+p)x=Ax+ ux

viii. A.(px)=(A.u).x

Definition 1.1.2.[2] Let F=R or F =C



w= o= ()b N> Fok o (k) = ()

denotes the space of all sequences, then w together with co-ordinatewise addition
and scalar multiplication defined by ((x,).(¥,)) = (x, +¥,) and (4,(x,)) > (4x,)

respectively, is a linear space over F'.

Example 1.1.3. [3] The space of p -summable sequences /” (1 <p< oo)

k=1

A :{x:(xk)ew:imr} <oo,1£p<oo} (1.1.1)

is a vector space with the algebraic operations defined as usual in connection with

sequences, that is,
(&.800 )+ (mom00) = (& +10, 8, +1,,..) and a(&,6,,...) = (aé, aé,,...).

In fact, x:(ﬁj)el" and y:(nj)elp implies x+yel”, as follows readily from

the Minkowski inequality; also ax e/”.

Example 1.1.4. [3] The space of all continuous real valued functions on [a,b] which
is called C [a,b] is a vector space. Each point of this space is a continuous real

valued function on [a,b]. The set of all these functions forms a real vector space with

the algebraic operations defined in the usual way:
(x+)(£)=x(t)+ y(t) and (ax)(t)=ax(t), (a<R).

In fact, x+y and ax are continuous real-valued functions defined on [a,b] if x and

y are such functions and ¢ € R.



Definition 1.1.5. [4] A subset Y of a linear space X is said to be a linear subspace if

x,+x, €Y whenever x,,x, €Y and axeY whenevera € F and xeY .

Note that a linear subspace is itself a linear space.

Example 1.1.6. [2] ¢, = {x =(x,) e w:llcimxk :0},
c={x=(xk)ew:]1(imxk =1, EIIGR},

I = {x: (x,) € w:sup|x,| <oo},
keN

The sequence spaces c,,c,/, are all linear with the co-ordinatewise operations as

defined in w. Moreover, the spaces ¢, ¢, are linear subspaces of w.

Another special subspace of any vector space X is ¥ ={0} .

Fact 1.1.7. [3] Let p>1 and define ¢ by l+l=1. p and ¢ are then called
Y2

conjugate exponents. The Holder’s inequality for sums is given as follows:

1 1
Dy < (leklpjp [Zlyk Iqjq : (1.1.2)
k=1 k=1 k=1

This inequality was given by O. Holder in 1889. If p=2, then ¢=2 and (1.1.2)

yields the Cauchy-Schwarz inequality for sums

Sl Sl Sl
k=1 k=1 k=1



Fact 1.1.8. [3] Let p>1, then the following inequality is called Minkowski

inequality for sums:

S =

1 1
) ; ) ; )
(Soenl (St} oSt}

Definition 1.1.9. [3] A linear combination of vectors Xx;,...,x, of a vector space X is

expression of the form
ax +o,x, +..+a,x,
where the coefficients o, q,,...,,, are any scalars.

For any nonempty subset M — X the set of all linear combinations of vectors of M

is called the span of M , written span M .

Obviously, this is a subspace Y of X, and it is said that Y is spanned or generated

by M .

Definition 1.1.10. [3] Linear independence and dependence of a given set M of

vectors X,,...,x, (r>1) ina vector space X are defined by means of the equation
ox +o,x,+..+ax =0, (1.1.3)

where «,,...,a, are scalars. Clearly, equation (1.1.3) holds for o, =, =...=, =0.

If this is the only 7 -tuple of scalars for which (1.1.3) holds, the set A/ is said to be
linearly independent. M is said to be linearly dependent if A is not linearly

independent, that is, if (1.1.3) also holds for some 7 -tuple of scalars, not all zero.

Remark 1.1.11. [3] An arbitrary subset M of X is said to be linearly independent if
every nonempty finite subset of M is linearly independent. M is said to be linearly

dependent if any finite subset of A is linearly dependent.



Result 1.1.12. [3] A motivation for this terminology results from the fact that if

M ={x,,..,x,} is linearly dependent, at least one vector of M can be written as a
linear combination of others; for instance, if (1.1.3) holds with an «, #0, then M 1is

linearly dependent and we may solve (1.1.3) for x, to get

X =px +..+B_x (,Bj= L, j=1,2,...,r—1].

Definition 1.1.13. [3] A vector space X is said to be finite dimensional if there is a
positive integer n such that X contains a linearly independent set of n vectors

whereas any set of n+1 or more vectors of X is linearly dependent. n is called the

dimension of X , written n=dim X . By definition, X = {O} is finite dimensional

and dim X =0.If X is not finite dimensional, it is said to be infinite dimensional.

In analysis, infinite dimensional vector spaces are of greater interest than finite

dimensional ones. For instance, C[a,b] and [? are infinite dimensional, whereas R”"

and C" are n-dimensional.

Definition 1.1.14. [3] If dim X =n, a linearly independent 7 -tuple of vectors of X
is called a basis for X (or a basis in X ). If {el,.. e } is a basis for X, every

€,

x € X has a unique representation as a linear combination of the basis vectors:
x=aqe +..+ae,.
Example 1.1.15. [3] For instance, a basis for R"” is

e =(1,0,..,0), e, =(0,1,0,...,0), ..., ¢, =(0,0,...,0,1).

n

More generally, if X is any vector space, not necessarily finite dimensional, and B

is a linearly independent subset of X which spans X , then B is called a basis (or



Hamel basis) for X . Hence if B is a basis for X , then every nonzero x € X has a
unique representation as a linear combination of (finitely many) elements of B with

nonzero scalars as coefficients.

Remark 1.1.16. [3] Every vector space X # {0} has a basis.

Theorem 1.1.17. [3] Let X be an n-dimensional vector space. Then any proper

subspace Y of X has dimension less than n.

Definition 1.1.18. [1] A metric space is a pair (X ,d ) , where X i1s a non-empty set

and d is a metric on X (or distance function on X ), that is, a function such that

d: XxX — R satisfying the following conditions for all x, y and z in X

i d(x,y)ZO,
ii. d(x,y)=0 ifand only if x=y,
iii. d(x,y)=d(y,x),

iv. d(x,y)<d(x,z)+d(z,).

Example 1.1.19. [3] The set of all real numbers R, is a metric space, taken with the

usual metric defined by
d,(x,y)=]x-y|.

Example 1.1.20. [3] The metric space R", called the Euclidean space R”, is

obtained by taking the set of all ordered n-tuples of real numbers,

writtenx =(¢&,,....,), ¥ =(,,....77,), etc., and the Euclidean metric defined by

d, (an/): Z(é _77i)2 .

n
i=1



Definition 1.1.21. [3] The norm on a real or complex vector space X is a real-

valued function such that |||| : X = R, satisfying the following conditions:

i.||x||20, for xe X and ||x||=0 ifand only if x =6,

ii.|ex||=|a||x|, for « €eR and xe X,

iii. ||x+y||£ ||x||+||y ,for x, ye X.

The normed space is denoted by (X ,

).

A norm on X defines a metric d on X which is given by

d(x.y)=lx=y], (xyex)

and is called the metric induced by the norm.

Every metric on a vector space can not be obtained from a norm. A counter example

is the space of all bounded or unbounded sequences of complex numbers w. Its

metric d defined by

| ‘65,-_77‘,"
d(x,y)=Y—-LL UL
(X J/) ;2, 1+‘§j_77j‘

where x = (f j) and y= (17 j) can not be derived from a norm. A metric d induced

by a norm on a normed space X satisfies the followings

i.d(x+a,y+a):d(x,y)

ii.d(ax,ay)=|ald(x,y)

forall x, y,ae X and every scalar « .



Example 1.1.22. [3] Euclidean space R” is a normed space with norm defined by

0| =

-{ et |-

We note in particular that in R’ ||x|| = |x| =& +& + & . The norm generalizes the

elementary notion of the length |x| of a vector.

Example 1.1.23. [3] The space [’[a,b] of p-th integrable functions on [a,b],

(1 <p< oo) , 1s a normed space with the norm given by

1
, P
[dt] .

Definition 1.1.24. [3] A sequence (x") in a normed space X is convergent if X

b={Jl)

contains an x such that

lim

n—0

xn—x||=0.

Definition 1.1.25. [3] A sequence (xn) in a normed space X is Cauchy if for every

& >0 there is an n e N such that

||xm -x,|[<¢&,forall m,n>N.

If every Cauchy sequence in a normed space X is convergentto a xe€ X, then X

is said to be complete normed space, that is; Banach space.

Example 1.1.26. [3] The space /” is a Banach space with the usual norm given by



1

=[S )

Example 1.1.27. [3] The space C[a,b] is a Banach space with the norm given by

x| = max‘x ‘
tela,b]

Theorem 1.1.28. [3] A subspace Y of a Banach space X is complete if and only if
the set Y is closed in X .

Definition 1.1.29. [3] If (x,) is a sequence in a normed space X , we can associate

with (x, ) the sequence (s,) of partial sums
S, =X +X,+..+Xx,

where n=1,2,.... If (s,) i —s||— 0, then the

series Zxk is said to converge or to be convergent, s is called the sum of the
k=1

series.

Definition 1.1.30. [3] If a normed space X contains a sequence (e,) with the

property that for every x € X there is a unique sequence of scalars (e, ) such that

(g +..+a,e,)| >0 as n—>o0.

n-n

Then (e, ) is called a Schauder basis (or basis) for X . The series Zakek which has

k=1

the sum x is then called the expansion of x with respect to (en ) , and we write
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0
=Y ae, .
k=1

Example 1.1.31. [3] /” has a Schauder basis, namely (e, ), where e, = (5

ni

) , that 1s,

th

e, 1s the sequence whose n" -term is 1 and all other terms are zero; thus

¢, =(1,0,0,0,...)

e, =(0,1,0,0,...)

Definition 1.1.32. [3].A norm ||| on a vector space X is said to be equivalent to a

norm ||||0 on X if there are positive numbers @ and b such that for all xe X we

have

|, <[+l <], -

Equivalent norms on X define the same topology for X .

In a normed space we can add vectors and multiply vectors by scalars, just as in
elementary vector algebra. Furthermore, the norm on such a space generalizes the
elementary concept of the length of a vector. However, what is still missing in a

general normed space, and what we would like to have if possible, is an analogue of

the familiar dot product

ab=op +ao,p, +o.p,

and resulting formulas, notably
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|(1| =+a.a

and the condition for orthogonality (perpendicularity)
ab=0

which are important tools in many applications. Hence the question arises whether
the dot product and orthogonality can be generalized to arbitrary vector spaces. In
fact, this can be done and leads to inner product spaces and complete inner product
spaces, called Hilbert spaces. Inner product spaces are special normed spaces.
Historically they are older than general normed spaces. Their theory is richer and
retains many features of Euclidean space, a central concept being orthogonality. In
fact, inner product spaces are probably the most natural generalization of Euclidean

space. The whole theory was initiated by the work of D. Hilbert [5] in 1912.

Definition 1.1.33. [3] An inner product space on X is a mapping of X' xX into the
scalar field K of X ; that is, with every pair of vectors x and ) there is associated a
scalar which is written and is called the inner product of x and y, such that for all

vectors x, ), Z and scalars & we have

i.(x,x)ZO, <x,x>=0 if and only if x =0,

i. <x,y> = <y,x> 5
iii. (ax, y) = a(x, p),

. <x+y,z> :<x,z>+<y,z>.

An inner product on X defines a norm on X given by

x| = (x.x) (1.1.4)

and a metric on X given by
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d(x.y)=lx=r={x=2.x-y).

Hence inner product spaces are normed spaces, and Hilbert spaces are Banach

spaces. In (if), the bar denotes complex conjugation. Consequently, if X is a real

vector space, we simply have
(x,y)=(y,x)  (symmetry).

Definition 1.1.34. [1] A norm on an inner product space satisfies the parallelogram

equality:
e oA + e = oA =2l + 2]

If a norm does not satify the parallelogram law, it can not be obtained from an inner

product by the use of (1.1.4). Not all normed spaces are inner product spaces.

Example 1.1.35. [3] The space /* is a Hilbert space with inner product defined by
(ey)=2¢m,
j=1

where x=(¢&,....¢,,...) and y=(7,...,n,,...) in /> and the bar denotes complex

conjugation. The norm is defined by

J=1

I, =) —[i\;rf

Example 1.1.36. [3] The space [” with p #2 is not an inner product space, hence is

not a Hilbert space.
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Definition 1.1.37. [3] An element x of an inner product space X is said to be

orthogonal to an element y € X if

<x,y>=0.

It is also said that x and y are orthogonal, and it is written x L y. Similarly, for
subsets 4, B X itiswritten x L A if x La forallaeA,and AL B if a Lb for
all ae 4 and all be B.

Definition 1.1.38. [6] On a normed space (X ,

. ), the functional g:X*> >R

defined by the formula

g(x,y) = @(A (x,y) + A (x,y)) ,

where

),

A, (x, y) =lim¢™ (||x + Zy” — ||x

t—>20

satisfies the following properties:

i.g(x,x):”x”2 forall xe X,
ii.g(ax,ﬁy)zaﬂg(x,y) forall x,ye X, a,feR,
iii.g(x,x+y)=||x||2+g(x,y) forall x,yeX,

iv. |g(x,y)| < ||x||||y|| forall x,ye X.

If, in addition, the functional g(x, y) is linear in y e X, it is called a semi-inner

product on X .

Example 1.1.39. [6] The functional
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g(xy) =" Xl sen(x )y x=(x), y=(n)el” (1.1.5)
k
defines a semi-inner product on the space /”, for 1< p <o, where ||||p is the usual

norm on [” .

Definition 1.1.40. [6] Using a semi-inner product g, one may define the notion of

orthogonality on X . In particular, it can be defined

xJ_gy<:>g(x,y)=O. (1.1.6)

Note that since g is in general not commutative, x L, y does not imply that

y L, x . Further, one can also define the g -orthogonal projection of y on x by

g(xy)

— 2
[

X *

and call y—y_ the g-orthogonal complement of » on x. Notice here that

xJ_g y_yx'

Definition 1.1.41. [4] A paranorm g:X — R, X being a linear space, satisfies
2(0)=0, g(x)=g(-x), g(x+y)<g(x)+g(y) and scalar multiplication is
continuous, i.e. 4, >4, g(x"—x)—>0 as r —oo imply that g(4.x"—Ax) >0 as
r —oo where A, are scalars and (x"), x € X, where @ is the zero vector in the

linear space X. A paranorm g for which g(x)=0 implies x=¢ is called a total

paranorm on X, and the pair (X, g) is called a total paranormed space.

Definition 1.1.42. [7] Let X and Y be two subsets of w. By (X,Y), we denote the

class of all matrices of 4 such that 4 (x)= Zw

A, converges for each meN,

the set of all natural numbers, and the sequence Ax = (4,,(x)),_, €Y forall xe X.
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Theorem 1.1.43. [1] Let 4=(a,,) be an infinite matrix of complex numbers. Then

A 1s said to be regular if and only if it satisfies the following well-known Silverman-

Toeplitz conditions:

i. supi|amk| <o

mo =l

ii. lima,, =0, foreach k e N,

m-—>o0

0
iii. lim Zamk =1.
k=1

m-—»o0

Definition 1.1.44. [8] Let 4 be a non-negative regular summability matrix. Then a

sequence x=(x,) is said to be A-statistically convergent to a number ¢ if

m—>o0 m—o
keK

5,(K)=lim ki:ameK (k)=0 or equivalently lim Y a,, =0 for every &>0 where

K= {k eN:|x, — &= 5} and g, (k) is the characteristic function of K. We denote

this limit by st, —limx=¢ .

Definition 1.1.45. [9] Let A :(ﬂk) be a sequence of nonzero scalars. Then for a

sequence space E the multiplier sequence space E(A), which associated with

multiplier sequence A, is defined as £, = {(x,)ew:(4x,)eE}.

Lemma 1.1.46. [10] Let p =( pk) be a positive sequence of real numbers with
infp, =h, sup, p, =H, and D:max{1,2H‘1}. Then for all a,,b, €C for all

k e N, we have

|ak +b, !

Pk +|bk

kaD(|ak p")and |/1kamax{|ﬂ ,/1|H} for LeC.

Definition 1.1.47. [11] A sequence space E is said to be solid (or normal) if

(x,)e E implies (e, x, )€ E for all sequences of scalars (e, ) with || <1 for all
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keN.

Lemma 1.1.48. [12] Every closed linear subspace F of an arbitrary linear normed

space E, different from E, is a nowhere dense setin E.

Definition 1.1.49. [11] An Orlicz function is a function M :[0,00)— [0,00) which is
continuous, non-decreasing and convex with M(0)=0, M(x)>0 for x>0 and
M (x)—)oo as x—oo. It is well known if M 1is a convex function then

M (ax)<a M(x) with 0<a<1.

Definition 1.1.50. [13] By a lacunary sequence 6 = (k,,) where k, =0, we will mean
an increasing sequence of non-negative integers with k. —k_, — o0 as r —>o0. The

intervals determined by @ will be denoted by 7, =(k,_,,k,]. We write h =k —k, .

r=1>"r

The ratio kk’ will be denoted by ¢, .

r—1

Definition 1.1.51. [14] If K is a subset of natural numbers N, and the set

K,={jeK:j<n} and |K,| will denote the cardinality of K,. Natural density of

K is given by §(K):=lim, l|Kn , if it exists.
n
Definition 1.1.52. [15] The sequence x=(xj) is statistically convergent to &

provided that for every & >0 the set K :=K(€) = {j eN: ‘xj —§| > 5} has natural

density zero.

Definition 1.1.53. [16] Let (p,) be a sequence of non-negative real numbers and

P =p +p,+..+p, for neN. Then Riesz transformation of x=(x,) is defined

as:
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1 n
Li=— DX, (1.1.7)
P k=1

n

If the sequence (z,) has a finite limit & then the sequence x is said to be (R, p,)-
convergent to &. Let us note that if P — oo as n — oo then Riesz transformation is

a regular summability method, that is it transforms every convergent sequence to

convergent sequence and preserves the limit.

If p, =1 forall keN in(1.1.7), then Riesz mean reduces to Cesaro mean C, of

order one.

In general, statistical convergence of weighted mean is studied as a regular matrix
transformations. In [17] and [18], the concept of statistical convergence is
generalized by using Riesz summability method and it is called weighted statistical

convergence.

Theorem 1.1.54. [19] A sequence x is almost convergent to a number & if and only

if z,, (x) > & as k — oo, uniformly in m, where

+..+Xx

X, +Xx p m+k—1 , k N’ m=>0. (1.1.8)

m+l

tkm (x) =
We write f-limx=¢ if x is almost convergent to ¢&.

Theorem 1.1.55. [20] A sequence x=(xj) is strongly almost convergent to a

number ¢ if and only if f,(jx—&e) >0 as k—oo, uniformly in m, where

x—S&e=(x,=¢) forall j and e=(1,1,1,...).

If x is strongly almost convergent to &, we write [ f ] -limx =& . It is easy to see that

[f]< f =L, and each inclusion is proper.
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The notion of difference sequence space was introduced by Kizmaz [21]. It was

further generalized by Et and Colak [22].

Definition 1.1.56. [22] Z(A*)={x=(x,)ew:(Ax,)e Z} for Z= I, ¢ and ¢,

where g is a non-negative integer, A“x, = A"'x, —AN“"'x,,,, A’x, =x, forall keN.

Dutta [23] introduced the following difference sequence spaces using a new

difference operator.

Definition 1.1.57. [23] Z(A,)={x=(x,)ew:A, xeZ} for Z= [,, ¢ and
where A, x=(A, x,)=(x,—x,_,) forall k, neN.
Dutta [24] introduced the sequence spaces E( o ,Afj] ) p), a( o ,Af;), p),

lw( ,A(“q),p), m( ,A(“q),p) and m0< ,A&),p) where 7, ueN and

NGyx = (A x) = (A lx —A”_lxkf,]) and A‘in)xkzxk for all k£, neN which is

(m) ™"k ()

Y Y Y

equivalent to the following binomial representation:

Definition 1.1.58. [25] The generalized difference matrix B=(b,, ), which is a

generalization of Apy— difference operator, is defined for all k£, m €N by

r, (k=m)
b, (r,s)=1s, (k = m—l)
0, 0<k<m-1)or(k>m)

Definition 1.1.59. [26] The generalized B* -difference operator is equivalent to the

following binomial representation:



19

Basarir and Kayikg1 [26] defined the matrix B* = (b/, ) which reduced the difference

matrix A{) incase r=1, s=—1.



CHAPTER 2. THE CONCEPTS OF 2-NORMED SPACE AND n-
NORMED SPACE

In this section, some fundamental definitions and theorems related to the concepts of

2-normed space and n-normed space, are given.
2.1. The Concept of 2-Norm and Relation with The Concept of 2-Metric

As well known, in the present mathematics, one of the most important notions is the
notion of metrics, which is fundamental in geometry, analysis and others. We
certainly admit the importance of the notion of metrics. However, we must recognize
that the notion of metrics has a limitation. To pass the limitation, we need a new
notion. One of the treatments is to consider a 2 -metric space introduced by S. Géhler
[27] which is based on the researches of K. Menger [28]. The notion of a metric is to
be regarded as a generalization of the notion of the distance between two points. On
the other hand, the notion of 2 -metric spaces is obtained by a generalization of the
notion of area. The area in the Euclidean plane is uniquely determined by given three

points in the plane [29].

Definition 2.1.1. [27] Let X # . We consider a mapping which is defined on the

set of all triples of points (x,y,z) of X into the reals such that

prXxXxX >R U{0} satisfies

i. There are three points x, y, z such that p(x,y,z)#0,
ii. p(x,y,z)=0 ifand only if at least two points of three points are equal,
ii. p(x,y,z)=p(x,2,y)=p(y.z,x)=... (p(x,y,2) is symmetric for x, y, z),

. p(x,y,z)Sp(x,y,w)+p(x,w,z)+p(w,y,z).
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Then p is called a 2 -metric on X and (X, p) is called a 2 -metric space.

Example 2.1.2. [30] Every Euclidean space of finite dimension d >2 has a 2-
metric defined by

. X, X 1
pleyz)=21 2y v 1
Nz oz, 1

! J
where x,, y,, z, are the coordinates of Xx, y, z, respectively.

Definition 2.1.3. [30] For each positive real & we define the ¢-nbd (neighborhood)

for two points @ and b in X as the set U, (a,b) of all points x in X such that
p(x,y,z)<e.Let V be the set of all intersections NU, (a,,b,) of finitely many &, -

nbds of arbitrary points «,, b, in X . {V'} forms a basis for the 2 -metric topology of

X . This topology is called the natural topology or the topology generated by the 2 -

metric p in X .

The totality of all set Ws (a)szgi (a,bi) with arbitrary n and arbitrary pairs

2 ={(b.&),(b,6,),...(b,.&,)} forms a complete system of neighborhoods of the

point a.

Definition 2.1.4. [30] A 2-norm on a vector space X of d dimension, where

d > 2, is a function

: X x X — R which satisfies the following conditions for all

e

x, y, ze X and forany o e R.

1.

X,y | =0 ifand only if x and y are linearly dependent,
1. x,y|= v, x|,
1ii. ||ax,y|= |a| x|,
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<

iV.||x+ v,z

|+

X, z||[+ |y, 2z

The pair (X , ) is then called a 2 -normed space. For any 2 -normed space X , we

put p(x,y,z)=|y—x,z—x|. Then the 2-normed space X becomes a 2-metric

space.

Example 2.1.5. [31] Let (X ,<.,.>) be an inner product space, equipped with the

standard 2 -norm

Q.1.1)

Note that geometrically | represents the area of the parallelogram spanned by x

X,y
and y . The determinant is known as the Gramian of x and ). Euclidean 2-norm on

R* is given by

|E = abs[

where the subscript E is for Euclidean. The standard 2-norm is exactly same as the

X X

B2

X,y

J:xz(xlaxz)ayz(ylayz)ERZ) (2.1.2)

Euclidean 2-norm if X =R?.

For X =RR*, from the equation (2.1.1) we obtain a better inequality | g S ||x|| s || y|| s

X,y
which is a special case of Hadamard’s inequality ([32]) where ||x|| = (x, x) and the

inner product (,) defined in Example 1.1.35.

Example 2.1.6. [33] Consider the space Z for /_, ¢ and ¢, . Let us define:
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X,y , (2.1.3)

|, = sup sup|x,y, —x,,
ieN jeN

isa2-normon Z .

oo

where x =(x,,x,,..) and ¥ =(3,,7,....)€ Z. Then

Definition 2.1.7 [34] Let {y,z} be a linearly independent set on a 2-normed space

(x.

). A sequence (x,) in X is called a Cauchy with respect to the set {y,z} if

Y

=0.

‘ =0 and lim

‘xl.—xj,z

lim, , Hxi XY i, j—> ‘

.y

Definition 2.1.8. [35] A sequence x = (xj) in 2-normed space (X ,

) is called a

if lim, ;

Cauchy sequence with respect to the =0, for every nonzero

ey

-

zelX.

There are two definitions of Cauchy sequences in 2-normed spaces. Definition 2.1.8

is clearly stronger than the Definition 2.1.7.

Definition 2.1.9. [34] A sequence x = (x j) in a linear 2-normed space X is called a

convergent sequence, if there is an & in X such that lim”xj —&,z||=0 for every

Jj—o

nonzero z in X .

Similar to the Definition 2.1.7 we have another definition of convergent sequences in
2-normed space, clearly weaker than the Definition 2.1.9. We will give the related

details after the definitions of convergent and Cauchy sequences in n-normed spaces.

A linear 2-normed space in which every Cauchy sequence is convergent is called a 2-

Banach space.

Example 2.1.10. [34] Let P, denote the set of all real polynomials of degree <n on
the interval [0,1]. Define vector addition and scalar multiplication in the usual

manner. Hence P is a linear space over the reals. Let {xi}l_zjo be 2n+1 arbitrary but
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distinct fixed points in [0,1]. Let f, g P.. Define |

f.g

|: 0 if fand g are linearly

dependent, and define |

f.g

2n
|:Z| f(x)e(x )| if f and g are linearly independent.
i=0

Then (f; ,

) is a 2-Banach space.

.y

On the other hand, there is a linear 2-normed space of dimension 3 which is not a 2-
Banach space (such an example is given by A. White in [34]). But every 2-normed

space of dimension 2 is a 2-Banach space when the underlying field is complete.

Definition 2.1.11. [36] A sequence x = (xj) is said to be statistically convergent to

& if for every € >0 the set K::{jeN:ij—f,z

‘2 g} has natural density zero for

each nonzero z in X, in other words x = (x j) statistically convergent to £ in 2-

normed space (X s

e ) if Iiml.‘{jeN:‘|xl.—§,z 25}‘:O,for each nonzero z in X.
el ‘

For £ =0, we say this is statistically null.
2.2. The Concepts of 2-Inner Product and n-Inner Product

Along with the 2-norm, we have the standard 2-inner product <.,.

.>:X><X><X—>IR

given by the formula

_[\5Y
<x,y|z>.— .

1
Observe here that z>5 [31].

x,z|:<x,x

Definition 2.2.1. [31] Let X be a real vector space of dimension d >2. The real-

valued function <.,.

> which satisfies the following properties on X is called a 2 -

inner product on X , and the pair (X , <.,.

>) is called a 2 -inner product space.
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z>20; <x,x
2),
x),

z>=a<x,y

i. <x,x z> =0 ifand only if x and z are linearly dependent,

z)={r.x

z>:<z,z

iv. <ax, y

ii. <x,y

jii. <x, x

z>,for acR,

z>.

V. <x1 +X,,y Z> =<x1,y Z>+<x2ay

The concept of 2-normed spaces was first introduced by Gihler [30], while that of 2-
inner product spaces was developed by Diminnie, Gdhler and White [37, 38]. Their

generalization for n > 2 may be found in Misiak’s works [39, 40].

Definition 2.2.2. [39] Let n>2 be an integer and X be a real vector space of

dimension d > n. A real-valued function <.,.

.,...,.> on X" satisfying the following

five properties:

i.(z,2,|2),.02,)20; (z,7]2,5...,2,)=0 if and only if z,z,,...,z, are linearly

dependent,

ii.(z.2,|2)002,) = (24,24 |2130n2,, ), for every permutation (i,i,....i,) of

(1,2,...,n) ,

m.<x,y zz,...,zn> = <y,x 22,...,zn>,

v. <ax, y

zz,...,zn>:a<x,y zz,...,zn>, for a eR,

\ <x+x',y zz,...,zn>:<x,y zz,...,zn>+<x',y 22,...,zn>

is called an n-inner product on X , and the pair (X ,<.,.

,,>) is called an n-inner

product space.
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2.3. The Concepts of n-Norm and n-Normed Spaces

On an n-inner product space (X ,<.,.

= \/<Zl’Zl’

four properties given in Definition 2.3.1 [41].

.,...,.>), the following function

ZygeurZ > defines an n-norm, which enjoys the following

>“n

||Zl,22,...,zn

Definition 2.3.1. [33] Let n>2 be an integer and X be a real vector space of

dimension d >n (d may be infinite). A real-valued function on X"

cgeeege

satisfying the following four properties

i.||x;, x,,....,x,||=0 if and only if x,,x,,...,x, are linearly dependent,

ii.|x,,x,,...,x,| is invariant under permutation,

,forany d eR,

llz.||ax1,x2,...,xn =|a|||x1,x2,...,xn

<

iv.||x+x‘,x2,...,xn

Xy Xy5es X, ||+||x',x2,...,xn

b

is called an n-norm on X , and the pair (X ,

) is called an n-normed space.

egeseye

For recent results on n-normed spaces and n-inner product spaces, see, for example

[33], [39-52].

Example 2.3.2. [45] Any real inner product space (X ,(.,.)) can be equipped with

::,,det(<xl.,x_].>), which can be interpreted as the

volume of the n-dimensional parallelepiped spanned by x,,...,x, € X . On R", this n-

the standard n-norm |x,,...,x,

norm can be simplified as [%5es %, where

= ‘det(xi,xj)

0o
Xi =(xi19'--axi,,)€R 5 1:1,...,1’1.

Example 2.3.3. [44] Any inner product space (X,(.,.)) can be equipped with the

standard n-inner product
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() (ms) o (o)

Observe here that the induced n-norm

X2y Z, || = <x,x|zz,...,zn> represents the

volume of the n-dimensional parallelepiped spanned by x,z,,...,z, .

Definition 2.3.4. [33] A sequence (x,) in an n-normed space (X,

) 1s said to

cgeeeye

be convergent to some x € X in the n-norm if for each & >0 there exists a positive

integer n,=n,(&) such that ||x,—x,y,,...»,|<é& for all k>n, and for every

nonzero y,,...,y, € X .

Similar to the 2-normed spaces, we have a new definition of Cauchy sequence for n-

normed space as follows.

Definition 2.3.5. Let 4:={q,,...,a,} be a linearly independent set on an n-normed

space (X , ) Then we say that a sequence (xk) in X is said to be a Cauchy

cgesegs

with respect to the set 4 if lim ka =X @y 5ees H =0, for {iz,...,in} c {1,...,n} )

k,J—o0

cgeeeye

Definition 2.3.6. [33] A sequence (xk) in an n-normed space (X , ) is said to

be a Cauchy with respect to the n-norm if lim ||x, —x,,»,,...,,||=0, for every
k,—>x

nonzero y,,...,y, € X .

Definition 2.3.6 is clearly stronger than Definition 2.3.5. But in some cases, like
finite dimensional case and the standard case the two definitions are equivalent.

What is not clear is in the infinite dimensional case. But from the results in [42, 43]

we understand that the two definitions are still equivalent in /” and L” spaces. We
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will show this for /7, it can be done similarly for L. Now we need some lemmas

which were given in [42].

Lemma 2.3.7. (Lemma 2.2, [42])

1
xl,...,xn”p S(n!)l_; ||xI ||p ...||xn||p holds for every x,,...,x, €/”.

Lemma 2.3.8. (Proposition 2.3, [42]) Let {al, »a } be a linearly independent set on

[” . Then the following function

M= ¥

defines a norm on /”.

Lemma 2.3.9. (Proposition 2.5, [42]) Let {al, »a } be a linearly independent set on
[” . Then the norm ||x||p is equivalent to the usual norm ”x”,, on [”. Precisely, for

every x €/” we have

d

(2n=1)]Ja, +

a|> -»a

1

P p P
al a7 ',
p n P V4

{iy ooy }{1,cn

NG { >

By the following theorem, we will show that the Definition 2.3.6 and the Definition

2.3.5 are equivalent for /7.

Theorem 2.3.10. (x, ) is a Cauchy sequence in /” according to Definition 2.3.6 if
and only if there exists a linearly independent set 4={a,,...,a,} such that (x,) is

Cauchy sequence in /” with respect to the set 4.
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Proof. Assume that (xk) is a Cauchy sequence in /” according to Definition 2.3.6.

Then kl}gr;”xk = X5 Vyrees V)

,=0, for every y,,...,y, €l”. Hence, there exists a

linearly independent set 4={a,,....a,} on [”, lim ka =X, A, yer @ H =0, for any
z lip

k,l—o0

{iz,...,in} c {1,...,n} . Thus, we obtain the Definition 2.3.5.
Now, suppose that (x,) is a Cauchy sequence in /* according to Definition 2.3.5.

Then for {i,,...,i,} = {1,...,n} we have lim ka = X5y yenr Hp =0 . Hence, we obtain

k,l—o0

lim |x, —x,

k>

1

* i p|?

= k}irio{, Z }ka—xl,a,.z,...,ainu
iy,

By Lemma 239, we then conclude that lim |, —x], =0. Hence, for every

Visees ¥, €17, we have by Lemma 2.3.7

=0.

P

L
lim ||x —X || <(n!) » lim ||x —x|| || ||
i 1YoVl ( ) i e =Xl Yall,

Yn

Thus, we obtain

lim ||xk =X}y Vorees Y,
k,l—>o

,=0 for every y,,...,», €[”. This completes the proof.

We obtain the following corollary by the inspire of the theorem above.

Corollary 2.3.11. Let 4:={a,,...,a,} and B:={b,...,b,} be linearly independent

n >%n

sets on /7. (xk) is a Cauchy sequence with respect to the set 4 if and only if (xk) is

a Cauchy sequence with respect to the set B.
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Proof. Let(x, ) be a Cauchy sequence in /” with respect to the set 4. Then from

Theorem 2.3.10, (xk) is a Cauchy sequence in /” according to Definition 2.3.6.

Thus, we have from Theorem 2.3.10 that there exists a linearly independent set, i.e.,

say, B={b,,...,b,} such that (x,) is a Cauchy sequence in /” with respect to the set

B . For the converse, change the position of 4 and B. Hence, we have the result.

Remark 2.3.12. By replacing the phrases “(x, ) is Cauchy” with “(x,) converges to

2

x” and “x, —x,” with “x, —x”, we see that the analogues of Definition 2.3.5,

Definition 2.3.6, Theorem 2.3.10 and Corollary 2.3.11 hold for convergent

sequences.

Gunawan et. al. [46] interested in computing the “volume” of the n-dimensional

parallelepiped spanned by a linearly independent set of n vectors in a normed space.
In the space [”, which is given by (1.1.1), they used the known semi-inner product
g given by (1.1.5) and obtained, in general, n! ways of doing it, depending on the
order of the vectors. Given a finite sequence of linearly independent vectors

XX, (n=2) in X, they constructed a left g -orthogonal sequence x,,...,x, such

that x, :=x, and, for i =2,...,n,

X o=x—(x), . 2.3.1)

i-1

*
1

where S, =span{xl*,x;,...,xi_ } Then x; L, x; for i,j=1,..,n with i< . They

defined the “volume” of the n-dimensional parallelepiped spanned by

X, X,,...,X, € X to be

*

V(xp,ex, )= n 2.3.2)

i

Due to the limitation of g, however, V(xl,... X ) may not be invariant under

>"n



31

permutations of (x,,...,x, ). This is important to indicate the difference between the

usual norm and n-norm. They also show that all resulting “volumes” satisfy one

common inequality which can be seen in the following theorem.

Theorem 2.3.13. (Theorem 1, [44]) Let {x,,...,x,} be a linearly independent set of
vectors in /”. For any permutation (i,...,i,) of (1,..,n), define V(xil,...,x,.”) as in

(2.3.2) by using the semi-inner product g in (1.1.5), with x, := x, and so forth as in

(2.3.1). Then we have

1
V(xi] oo X, ) <(n)r ||x,,...,xn||p.

The following example illustrates the situation in /'. Let x,=(1,0,0,..) and

X, :(1,1,0,...). Put xl* =x, and

= (11,0...)~1.(1,0,0....) =(0,1,0,...

V(xl,xz):

x 1 =1.1=1.
1 1

X

But if we put x; = x, and

X5, X
x; :xl_(xl)xz :xl_% 2
2

1

:(1,0,0,...)-22—2.(1,1,0,...)

11
=(1,0,0,..) - =,=,0,..
( ) (2 3 j

(1-tan)
2 2



then we have
/()= i, =212

Meanwhile,

_1 X Kk

|X1,X2||1 _2;; x2j XZk‘
1[‘1 o [0 1‘
=— +
201 11 |1 1
1
=—(1+1)=1.
L)

Hence, we see that

V(xA ,xi2)§2|

b

xl,x2||1 for each permutation (i,,i,) of (1,2).



CHAPTER 3. SOME SEQUENCE SPACES IN 2-NORMED
SPACE

3.1. Some Generalized Difference Statistically Convergent Sequence Spaces in 2-

Normed Space

In this section, a new generalized difference matrix B/

( is defined and some B, -
7) 7

(n)
difference statistically convergent sequence spaces in a real linear 2-normed space

are introduced. Also some topological properties of these spaces are investigated.

o elbd)s (k) et eo(lod)s Lo (ld)s m

denote the spaces of all, convergent, null, statistically convergent, statistically null,

By w(

) and mo(

bounded, bounded statistically convergent and bounded statistically null X valued

) is a real 2-normed space. By 6=(0,0,...) we mean

sequence spaces, where (X ,

e

the zero element of X.

In this section, we define the generalized difference matrix Bl and we introduce
5')7 C()<B(;,l7)apa ))

which are defined on a real linear 2-normed space. We investigate some topological

A)s e(BeplA)s m(B0. P,

difference sequence spaces E(B(‘;),p,

. ), Z’o(B(‘,‘]),p, . ), m(B(’,‘]),p, .

) (B4,

m, (B(’;),p, - ), c(B(’;),p, - ), L, (B(‘,‘]),p, o

Y

properties of the spaces co (B(‘;), J22

), and

. .y .y

m, (B(’}‘?), j2 ) including linearity, existence of paranorm and solidity. Further, we

Y

.y Y

show that the sequence spaces m(B(’;), P, ) are complete

) and m, (B(’;),p,
paranormed spaces where the base space is a 2-Banach space. Moreover, we give

some inclusion relations.
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stat

By the notation x, —¢&, we mean that x, is statistically convergent to &, throughout
this thesis. Let m,n be non-negative integers and p = (pk) be a sequence of strictly

positive real numbers. Then we define new sequence spaces as follows:

Y

o) fr e -

Py Stat
—0,
for every nonzero z € X and for some £ € X

Bl X,z

Y

Eo(Ba),p,n-,-m{”x")”( )

pk stat
—0,
for every nonzero z € X

Bl X,z

ey

(B

.o

){x(xk)ew( )Sklill)(‘

Pk
) <on,
for every nonzero z € X

Pk

Y

By —¢»2

c(Bc;)»p,n-,-ll){x(xk)ew( )<l

— 0’
for every nonzero z € X and for some & € X

. P j—
CO(B(;’;)’pa .ye ){X(xk)GW( v ):ll—l;ll‘B(/:])Xk,Z k O’}:
for every nonzero z € X
1Y ne_
W(B(/:?)’P, . ): x=(xk)ew( " )}Lm.o;; Bix, &,z Y =0, ’
for every nonzero z € X and for some £ € X
m(B(’,‘?),p, . )ZZ’(B(’,’?),p, .- )ﬁlm (B(‘;),p, - )
and

),

o (Bl 2ol 1) = o (B 2ol 1) L (B 2]
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where B/ x = (B(i‘])x)k = rB(‘j]Txk +sB(‘,‘7;1xk7,7 and B&)xk =x, for all kN, which is

equivalent to the binomial representation as follows:

yi _ - ,U u=v _v
B(n)xk = z U A

v=0 v

In this representation, we obtain the matrix B(’l’) defined in [26] for ©>1 and in [25]

for u=1.

i. If we take =0 and p, =1 for all k€N, then the sequence spaces above are

) colld)s L(kA)s ey collhd)s w(ld)s m(

), respectively.

ey .y o9 .y 0y .9 .y

reduced to E(

) and

mo

.y

ii. f we take r=1, s=-1, then the sequence spaces E(B(‘;),p,”.,.”),

)
)

.o .y .y .y

ey

)’ L. (B@)’P’

). (B p

) m(Bo 2ol A)s (B0

). (82

) , respectively, which are studied in [24].

Z‘o (B(’;),p,

are reduced to E(Af’ ) D>

n

). co(f)s 2l ). w(al, il

.o

ey .y

) and m, (A(’;),p,

m(A(“n),p,

iii. By taking p, =1 for all k€N, then these sequence spaces are denoted by
o eo(Blld). 2o (B bd). (B ). (B dA) (5 0d).

m (B(/;)””) and m, (B("m), ),respectively.

c(Bg),

.y

Y

iv. If we take =1, s=-1, p, =1 for all k€N, then these sequence spaces are

) o8yl d) (8 bd)- eagbd)- elat )

and m, (AL, p, , respectively.
) ( () )

denoted by E(A(ﬁi) -

) m(at.

W(A(;),
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Theorem 3.1.1. Let p= (pk) be a sequence of strictly positive real numbers. Then

the sequence spaces Z (B(’j7 )2 P> ) are linear spaces where Z =c,c,, [ ,W,m,m,.

.9

Proof. We prove the theorem only for the space E(B(’j]) s Dolles- ) The others can be

proved similarly. Let x=(x,), y=(y,) e E(B(’,‘?) , D5 ) . Then there exist &,& € X

.y

such that for every nonzero ze X

Py stat

%50 and HB(;)yk—gZ,z

Py stat

—0.

HB(’:])xk =&,z
Let a, f be scalars. Then we have for every nonzero ze X

D

HB&) ((ax, +By,)—(ad,+ BS,)). 2

P

(-l <)
<l

<D max(|a

B(’j])xk -§,,z

o)

B(:,)yk — ¢,z

/4]

;

" +D max(|ﬁ

Py stat

h
-0,

h

b 9

Bl x. =&,z

A

B(,l])yk —52

as k—oo where h=inf, p,, H=sup, p, and D:max(1,2H‘l). Hence the

sequence space E(B(’; )» D>

) is a linear space.

ey

Theorem 3.1.2. For any two sequences p=(p,) and ¢=(¢,) of positive real

numbers and for any two 2-norms and on X we have

|| Eh(P

.9

ey

Z(B(‘I’l),p, 1)mZ(B(’;),p, 2);&@, where Z =c,c,,m, m,.
Proof. The proof follows from the fact that the zero element belongs to each of the

sequence spaces involved in the intersection.
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Theorem 3.1.3. Let (X,

) be a 2-Banach space. Then the spaces

cgege

m(B(’:l) , Dslls- ), m, (B{;; )2 Do ) are paranormed sequence spaces, paranormed by
P
g(x)= sup B} x.z|",
keN,0#zeX

where H'=max{l,H} and H=sup, p,, h=inf, p,.

Proof. We will prove the theorem for the sequence space m, (B(’; A ) It can be

proved for the space m(B(’,‘] )» D>

) similarly.

.y

Clearly g(— x) = g(x) and g(@) = (0. From the following inequality, we have

Pr.
— u H
g(x+y)= sup B, (X +3).2
keN,f#zeX
Pie Pic
H' H'
< sup Bf x.z|" + sup ||B( ¥,z
keN, 82z X keN, f#ze X

This implies that g(x+y) < g(x)+g(y) .

To prove the continuity of scalar multiplication, assume that (x") be any sequence of

the points in m, (B(’;] )2 Ds |- ) such that g(x” —x)—)O and (ﬂ,n) be any sequence of

scalars such that 4 — A. Since the inequality g(x")S g(x)+ g(x”—x) holds by

subadditivity of g, then (g(x” )) is bounded. Thus we have

Pk
n "
Bl Ax =A%,z

g(/inx” —lx) = sup

keN, 8+#zeX
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1 P
= (max {M” - 1z _Z|H})H keNs,lg#pst B(:])Xk’z ’
, L Pr
Y\
+(max{|ﬂ , /1| })H kENél‘;#pZEX B(‘;) (x,’f —x),z .
1
:(max{ A, -4, A, —/1|H})” g(x")
1
+(max{|/1h , /1|H})” g(x" —x)

which tends to zero as n—>oo. Hence, g is a paranorm on the sequence space

)

mo (B(;) 5p>

Y

Y

To prove that m, (B(’j7 )» P ) is complete, assume that (xi ) is a Cauchy sequence in

m, (B{;; w2 ) Then for a given ¢ (0<e&<1), there exists a positive integer N,

Y

such that g(xi —x/ )< &, forall i, j > N,. This implies that

Pk

o
B(’j]) <g

sup

I _ pH ]
X, B(U)xk ,Z
keN, 8#ze X

2

for all 7, j > N,. It follows that for every nonzero z € X,

for each k>1 and for all 7, j > N,. Hence (B(‘:])

Bl x, —B)xl.z|<e

b

x,’() is a Cauchy sequence in X for

all keN. Since X is a 2-Banach space, (B(’:])

x,i) is convergent in X forall keN,

SO we write (B(‘:])x,’; ) - (B(’;)xk) as i —>oo. Now we have for all 7, j > N,
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Pk

B, (x,’( —x,{),z T<e

sup
keN, 0#zeX

Pr

) ) ) 7
= lim sup B(’;) (x,’{—x;j),z <g
Jjo®© | keN, f#zeX
Pk
B i H' <
= sup o (% =%, ),z &
keN, 8#zeX

.o

for all i>N,. It follows that (xi —x) em, (B(’j7 W ) . Since

(xi)emO(B(’j?),p, .,.) and mO(B(’;),p, .,.) is a linear space, so we have

ey

x=x —(xi —x) em, (B(*;) , D> ) . This completes the proof.

.y

.9

Theorem 3.14. i If Z cZ,, then ZI(B(‘j]),p, )c Zz(B(‘f]),p, ) and the

inclusion is strict, where Z, and Z, are equal to ¢, ¢,/

0 *

ii. If y < u,,then Z (B(’j;), Dol )c Z (B(””Z), Dyl ) and the inclusion is strict, where

Z=c,c,,l

0 *

Proof. The parts of proof Z, (B(‘:]),p,

)C ZZ(B(;])vpa

) and Z(B(‘:;),p,

I=

) are easy. To show the inclusions are strict, choose Z =¢,, Z,=c,

Y

.9

.y

Z(B(#,]z)apa

ey

.o

x=(x,)= (k2 , kz) and consider the 2-norm

as given in (2.1.2), let p, =1 for all

E

keN, n=1, u=2, r=1, s=-1, then xec(B(zl),

) but x &c, (B(zl),

).Ifwe

ey .y

choose Z=c, x=(xk)=(k2,k2) and p, =1 for all keN, p=1, u=2 r=1,

s =-—1, then xec(B(Zl), ) but xezc(B]

1

e .- ) These complete the proofs of parts

(1) and (ii) of the theorem, respectively.

Theorem 3.1.5. i. c(B(,,

)= e(8.

. . ) and the inclusion is strict.
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.o

ii.

iii. E(B(,;),

)C Z‘(B(’T’]),

) and the inclusion is strict.

e9e

) and / (B(‘?’]),

. .- ) overlap but neither one contains the other.

Y .y

Proof. i. It is clear that C(B(:;)’ )c E(B”

() ) To show that the inclusion is

strict, choose the sequence x = (x, ) such that,

B x {(0’\/;)’ k= (3.1.1)

where ne N - {0}, and consider the 2-norm as given in (2.1.2). Then we obtain

>elg

B

(n

ey Y .y

)xkez( ), but B(’,’I)xke_fc( ) That s, xke(_:(B(‘,’l),p, ), but

X, & c(B(’,‘?),p,

ey

ii. It is easy to see that E(]

e9e .oy

)c E(B(’;), ) To show that the inclusion is strict, let

us take x=(xk)=(k,k) and consider the 2-norm as given in (2.1.2), n=1,

>l

).

) but xez(

u=1,r=1, s=-1, then er‘(B(ll),

e9e Y

iii. Since the sequence x =46 belongs to each of the sequence spaces, the

overlapping part of the proof is obvious. For the other part of the proof, consider the

as given in (2.1.2). Then x €

)

) . That is,

sequence defined by (3.1.1) and the 2-norm ||,

ey

-

E(B(’,‘] o ), but xg/, (B(’j7 ) Conversely if we choose (B"

(n

y y )= (1.6.1.6...

where k = (k,k) for all k=0,1, then Bl x, € lw([

).

)but B \x, ¢ E(

eye .y

Y Y

xel, (B(’;), ) but x ¢ E(B”

(n)?

Theorem 3.1.6. The space Z(B(’fy),p,

) is not solid in general, where Z =c, co,

.9

m, m.
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Proof. To show that the space is not solid in general, consider the following

examples.

Example 3.1.7. Let =3, u=1, r=1, s=-1 and consider the 2-norm

as

given by (2.1.3). Let p, =5 for all keN. Consider the sequence (x,), where

xk=(x,i) is defined by (x,i)=(k,k,k,...) for each fixed keN. Then

xkeZ(B ) for Z=c, m. Then xkeZ( p|| ||) for Z=c, m. Let
a, =(—1)k, then (a,x,)e Z(B(13),p, e ) for Z=c, m. Thus Z(B(13),p, e ) for
Z=c , m is not solid in general.

Example 3.1.8. Let =3, u=1, r=1, s=-1 and consider the 2-norm |,  as

given by (2.1.3). p, =1 for all odd k£ and p, =2 for all even k. Consider the

sequence (x, ), where x, = (x,i) is defined by (x,’{) =(3,3,...) for each fixed keN.

)

Then x, € Z(B(13), e ) for Z=co, mo. Let a, = (—1)" , then (e, x, )& Z(B(13),p,

e9e

ol ) for Z = Z’o, mo is not solid in general.

for Z=co, mo. Thus Z(B(13),

Theorem 3.1.9. The spaces m, (B{;),p, .

)

Proof. From the Theorem 3.1.3, it follows that m, (B”

. ) are nowhere dense

,.) and m(B(’;),p, .

subsets of [ | B
o |\ (n)

()

-] and m|B*
(n)

1)

ol ) Since the inclusion relations

are closed subspaces of [, (B(‘;)

),

, .,.) and m(B(’:]),p, .

m, (B(’;)

)Cl (B”) Pl

) are strict, the

m(B(/;)ap) *9 )Cl (B#) p: s

spaces m, (B(’; )

) are nowhere dense subsets of

L (B”

(n)> P> .,.) by Lemma 1.1.48.
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Theorem 3.1.10. Let p= (pk) be a sequence of non-negative bounded real numbers

such that inf, p, > 0. Then W(B(”m),p, )ﬁ lm(Bfm)»Pa )

)i,y p

eye .y e9e

.9

Proof. Let (x, ) e W(B(’;) , D y- ) Then for a given & >0, we have

RACANS

1< I | J Pk
—Z B{:])xk —L,Z 2— Z ‘B(;])xk LaZ
= J k=1
P
B(‘;])xka,z >g
P
>e—Rk<j ‘B(‘,‘?)xk Lzl =¢&¢l.

ey

If we take the limit for j— oo, it follows that (xk)ec(B(‘;), p,

) from the

inequality above. Since (x, )€/, (B(’j7 )+ Ds ), we have the result.

ey

3.2. Some Sequence Spaces Derived by Riesz Mean in a Real 2-Normed Space

In this part of this chapter, we introduce some new sequence spaces derived by Riesz
mean and the notions of almost and strongly almost convergence in a real 2-normed
space. Some topological properties of these spaces are investigated. Further, new

concepts of statistical convergence which will be called weighted almost statistical
convergence, almost statistical convergence and [R, p, ]-statistical convergence in a

real 2-normed space, are defined. Also, some relations between these concepts are

investigated.

Let 4 and B be any sequence spaces. We use the notation 4,, < B,,, to mean if
the sequence x converges to the limit & in A, then the sequence x converges to the

same limitin B.

Now, we introduce some new sequence spaces derived by weighted mean and

notions of almost and strongly almost convergence in a real 2-normed space as
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follows:

[é,pns -,']: XEW( ’)}llm ,1 Zpk :0’ s
uniformly in m, for some & and for every nonzero z € X

)P S0 ]

uniformly in m, for some & and for every nonzero z e X

XGW(

) hm Zpk e (”x )

uniformly in m, for some & and for every nonzero z e X

where 7,, (x) is defined as in (1.1.8).

If we take m=0 then the sequence spaces [ﬁ, Dol

A (Rl

0.

reduce to the sequence spaces [C,l, ol s (C,l, . ), G, 1,|l.,.||, respectively as
follows:
_ xew(.,.):]jm Zpkko z||=0,
for some & and for every nonzero ze X
1 n

(C,l, .’.): xew( "'):,l,i_r,gfn;pk”tko(x z||=0, ’

for some & and for every nonzero z e X
e S e <o

for some & and for every nonzero z € X
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Let Z be any sequence space. If xeZ and x; > & as j— oo, then x is said to be

Z -convergent to &.

Now, we define a new type of statistical convergence and investigate some inclusion

relations.

Definition 3.2.1. A sequence x is said to be weighted almost statistically convergent

to & if for every £>0

lim%n‘{k <P p |t (x—&e).2]2 g}‘ =0, uniformly in m,

n—>0

for every nonzero ze X. By (S 2 ), we denote the set of all weighted almost

ey

statistically convergent sequences in a 2-normed space.

In the definition above, if we take p, =1 for all £ € N then we obtain the definition

of almost statistical convergence. That is, x is called almost statistically convergent

to & if for every £>0

1iml{k£n:

n—wo 1

tin (x—C€), 2

|23}‘=0,

uniformly in m, for every nonzero ze X. We denote the set of all almost

).

ey

statistically convergent sequences in a 2-normed space by (S ,

Theorem 3.2.2. If the sequence x is (E, D,

) -convergent to & then the sequence

.9

x is weighted almost statistically convergent to &.

Proof. Let the sequence x be (f?, D, )-convergent to & and

ey
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Knm(g): {k < Pn :pk

).

L (X—E€), 2| >

Then for a given &> 0, we have

I MES SR EE D MY HE

keK (.s)

25}‘

>g—‘ k< D i (x—E€).2

for each m >0 and for every nonzero z € X. Hence we obtain that the sequence x is

weighted almost statistically convergent to & by taking the limit as n — 0.

Now, we give a new definition which will be used in the next theorem.

Definition 3.2.3. A sequence x is said to be [f?, D, ] -statistically convergent to & if

for every £ >0

lim— | k<n: ||a> §e),z >

n—wo 1N

I
=

e

n pktkm (x_ge) .

. ) 1
uniformly in m, for every nonzero z € X, where ,, (x—&e)=—
P k=1
=

By (S[ R, ) we denote the set of all [f?, D, ] -statistically convergent sequences in 2-

normed space.

Theorem 3.2.4. Let P, >0 as n—oo and p, [, (x—&e), 2| <

each m >0 and for every nonzero z € X. Then the following statements are true:

i. (S

A (R,

reg

R
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i (Spol

)reg (S[f?,p,z] )reg )
Proof. i. Let x be convergentto & in (Siv”"'”) and let us take
K, (&)= {k <P, p|t, (x—&e),2]| > g} .

Since p, [t,, (x—&e),z||<M forall keN, for each m>0, for every nonzero z € X

and P, — o0 as n —> oo, then for a given ¢ >0 we have

1 n
Fn; Dy Htkm (x GZ

for each m>=0 and for every nonzero ze X. Since ¢ is arbitrary, we have

xe (ﬁ,pn,“.,.“) by taking the limit as n — .

ii. Let x be convergent to £ in (SE,H.,.H), then lim, —)oo%|Knm(g)|=0 where

K, (s)= {k <P :p, Htkm (x—ﬁe),z” > 6‘}. Then for each m=>0 and for every

nonzero z € X we have

Ha)nm (x — 56),2” = H% Zn:pktkm (x — ée), z
n k=1
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n n

% Z + Z Pilion (x—fe),z

k=1 k=1
kEKnm(g) keK

nm(e)

1 n 1 n
s— Z pk tkm(‘x_ége)ﬂz‘-i__ Z pkHtkm(‘x_ge)ﬁz‘
P I P I
ek m(e) keK i e)
n
< E‘Knm(‘g) + F&'

n

which leads us by taking the limit as n—oo, uniformly in m that we get x

oy

]. Hence, we can say that the sequence x is [ﬁ, pn]-

converges to &£ in [1?, D,

statistically convergent to &. This completes the proof.

Now, we introduce a new sequence space as follows.

q . .
¥ =0, uniformly in m,

ey

1 n
‘In)— x:}ziﬁfn;pk s (x =€) 2

(Rﬁ p n’
for some £ and for every nonzero z € X

where (g, ) 1s a bounded sequence of strictly positive real numbers with 4 =1nf g,

q)-

) which is

ey .y

and H =sup,q, . If (q,) 1s constant, then (ﬁ,pn, ,qn) reduces to (f?,pn,

.9

If we take g, =1 for all £ €N, then we get the sequence space (E, D,

defined in the beginning of this part.

Theorem 3.2.5. Let P, — o as n—o0 and (g,) be a bounded sequence of strictly

positive real numbers with 2 =1nf,q,, H =sup,q, <o and H'=max (1,H). Then

ey

(f(’, D,» ,qn) is a linear topological space paranormed (need not be total) by

1

g(x)= sup {%Z Pt (X),Zlq"}ﬂ :
n k=1

n>l, m>1
O#zeX
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and (ﬁ,pn,

,q) is a seminormed sequence space by

1
Iq]q

Proof. It is easy to see that (f?, D,

.9

1 n
b= s [ 3 m o).
n=l, m=1 n k=1

O#zeX

Y

,qn) is a linear space with coordinatewise
addition and scalar multiplication. We will prove that g(x) is a paranorm on

(R p,,

o ,q”). We omit the proof the case g, =g >1 for all ke N which ||x|| isa
seminorm. Clearly g(€)=0, g(x)=g(—x) and g is subadditive. To prove the
continuity of scalar multiplication, assume that (x") be any sequence of the points in

(R p,,

ey

,qﬂ) such that g(x"—x)—>0 as r—>o and (4,) be any sequence of

scalars such that 4. — A as r —oo. Since the inequality

g(x") <g(x)+g(x" —x)

holds by subadditivity of g, g(x") is bounded. Thus, by using Minkowski’s

inequality for ¢, 21 we have

1

g(Ax"—Ax)= sup (L i“pk L, (/Lx’ —/Ix),z ‘qk )M
N

4, -4 });4 g(x")

/1|H )ﬁ g(x" —x)

h

b

< (max {M,_ -4

h
s

+ max(|/1

which tends to zero as r —oo. Moreover, the result holds for 0 <g, <1 by using

4,).

Lemma 1.1.46. This proves the fact that g is a paranorm on (R, Do

ey
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Theorem 3.2.6. If the following conditions hold, then

(Erdba), (5,10,

ey

i. 0<g<land 0<|r, (x—&e),z||<1.

ii. 1<g<oo and ISHtkm(x—ée),z <.

Y

Proof. Let a sequence x be (INQ, D, ,q) -convergent to the limit &. Since

for case (1) and (i1), then we have

Pl (v=Ge), 2" = by (x—e) 2

1 n
P Zpk kam (x—Ce).z
k=1

n

> %Zn:pk Htkm (x—§e),z
n k=1

2 Y piln(x-de).z
n k=1

ek m( )

1
>&—

K, ()

n

for each m >0 and for every nonzero z € X. We get the result if we take the limit as

n—>oo. Thatis, lim, % K,,(£)|=0 where

n

K, (£)={k<P :p|t, (x—&e),z 25}.

ey

Hence x converges to & in (S Py ) This completes the proof.

Theorem 3.2.7. Let p, Htkm (x—Ce),z

<M for all keN, for each m>0, for every

nonzero ze X and P, —oo as n—>o0. If the following conditions hold, then

(5,

)<

.y .9

a).,
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i. 0<g<land 1<|, (x—&e),z

<00,

ii. 1<g<oo and OSHz‘km(x—fe),z <l1.

Y

Proof. Assume that x converges to & in (S B ) and P, - as n—>o0. Then for

£>0, we have 6(K,, (¢))=0 where

Knm(g)Z{kSPn D (x—Ee), 2 28}.

<M for all keN, for each m>0 and for every nonzero

Since p, [t,,, (x—&e),z

ze X, then we have

for each m>0 and for every nonzero z € X', where

1 3 JELINE
T, =— Z PkHtkm(x—ege)»Zq and 7', = — Z pkutkm(x—fe),zq.
E, k=1 Rz k=1
keK, (¢) kek,. (¢)

For k¢ K, (&), we have

for each m>0 and for every nonzero ze X . If ke K (5), then

nm
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for each m>0 and for every nonzero z e X . If we take the limit as n — o0, since

o(K,,())=0 then x convergesto & in (f\’, D,»

,q) . This completes the proof.

ey



CHAPTER 4. SOME SEQUENCE SPACES IN n-NORMED SPACE

In this section, some sequence spaces are introduced and some topological properties

related with these spaces are given.

4.1. On Some Spaces of Almost Lacunary Convergent Sequences Derived by
Riesz Mean and Weighted Almost Lacunary Statistical Convergence in a Real

n-Normed Space

In this subsection, we introduce some new spaces of almost convergent sequences
derived by Riesz mean and lacunary sequence in a real n-normed space. By
combining both of the definitions of lacunary sequence and Riesz mean, we obtain a
new concept of statistical convergence which will be called weighted almost
lacunary statistical convergence in a real n-normed space. We examine some
connections between this notion with the concept of almost lacunary statistical
convergence and weighted almost statistical convergence, where the base space is a

real n-normed space.

Let (X,

) be an n-normed space and (w,

) (L.

sequences and all bounded sequences in n-normed space, respectively.

) be the set of all

cgeeege cgecege

cgeceysl

We need some new notations, which will be used throughout this chapter, by

combining both of the definitions of lacunary sequence and Riesz mean:

Let @=(k.) be a lacunary sequence, (p,) be a sequence of positive real numbers

b
such that H, = de, Dy Pk = Zke(o,kr]pk > P’m = Zke(o,kﬁ,l]pk > Qr = P_r’ PO =0

k1

and the intervals determined by € and (p,) are denoted by / '= (P/m v ] It is easy
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to see that H, =F, —F,_ . If we take p, =1 forall keN, then H , K, K, O,

q. and [, respectively.

)‘

and / 'reduceto h , k , k,_,,

If &=(k.) is a lacunary sequence and F, —oo as r—oo, then 0'=(F ) is a

lacunary sequence, thatis, £, =0, 0<F, <£ and H, =F, —F —o as r —>o.

Throughout the paper, we take P — o as r —> .

We define the following sets as follows:

)): lim g, (x—Ee), z,,....2,
k—x

xel ( | = 0, uniformly in m,
for every nonzero z,,...,z, ; € X and for some &

and

[F]{xelw(.

for every nonzero z,,...,z, ; € X and for some &

) limz, (||x -&e,z,,...,2,

k—©

) =0, uniformly in m,}

where ¢, (x) is defined as in (1.1.8). We write F—limx=¢ if x is almost

convergent to & in n-normed space and [F ]—1imx=cf if x is strongly almost

convergent to £ in n-normed space. Taking advantages of (iii) and (iv) conditions of

|}) hold.

2-norm, it is easy to see that the inclusions [F ] ckFcl, (

cgeeey

Now, we define some new sequence spaces in a real n-normed space as follows:

Zpk fe 5215 2y

r kel,

x:lim||— =0, uniformly in m,

[R, D, 6’:| =q o
n
for every nonzero z,,...,z, , € X and for some &
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(R,pr,tg)n = ok ll—{g_ﬂgpk Htkm 4’:6),21,...,2"4 ‘ =0, uniformly in m, ’

for every nonzero z,,...,z, , € X and for some &

) =0, uniformly in m,

x:lim— Zpk . (||x Se,z,,...

0 = oo H, il
n

for every nonzero z,,...,z, , € X and for some &

The following results are obtained for some special cases:

i. If we take m=0, then the sequence spaces [fe,p,,e]n, (ﬁ,p,,,ﬁ)n,

s Hyo

reduce to the sequence spaces [C,,0] , (C,,0) , _, respectively as follows:

1°

x:lim|{|— =0,

[Cl ? 0];1 = o

for every nonzero z,,...,z, , € X and for some &

Zpk kO §e 5215002y

r kel,

.1
(C.0), = xilimoe 3 pyfo (x—¢e).zz, | =0
19 n r Kel, ’

for every nonzero z,,...,z, ; € X and for some &

HOO H Z Pilio (”x ge,z,,... )= 0, uniformly in m,
kel,

for every nonzero z,,...,z, , € X and for some &

|C1’0n

ii. If we take p, =1 for all kN, then the sequence spaces above reduce to the

following spaces:

=0, uniformly in m,

zpk §e 5215 Ly

r kel,

X: hm

[w,], =

for every nonzero z,,...,z, , € X and for some &
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X: hm Zpk Htkm —&e),zy,enz, ‘:0, uniformly in m,
(Wg )n = ; kel, 9

for every nonzero z,,...,z, , € X and for some &

) =0, uniformly in m,

x:lim— Zpk . (||x Se,z,,...

w,| =" h &

for every nonzero z,,...,z, , € X and for some &

iii. Let us choose 8= (k,)=2" for »>0, then these sequence spaces given above

reduce to the following spaces:

=0, uniformly in m,

[ﬁ pﬂ:l IEE ’h_r)l; ‘zpk fom seees 2y

for every nonzero z,,...,z, , € X and for some &

‘ =0, uniformly in m,

b

1
([3 P) = X:EEF;MH%(x—ée),zl,...,zn_l
), k=1

for every nonzero z,,...,z, , € X and for some &

x:lim— Zpk i ||x e, z,,...,2, | |= 0, uniformly in m,

— I—)ooP

for every nonzero z,,...,z, ; € X and for some &

R, p,

ey

iv. If we select @=(k,)=2" for >0 and the base space as (X , ) then these

sequence spaces above reduce to the sequence spaces which can be seen in

Subsection 3.2.

v. If we choose p, =1 forall keN and 8= (k,)=2" for » >0, then these sequence

spaces above reduce to the sequence spaces [Cl], (Cl),
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Now, we give the following theorem to demonstrate some inclusion relations among

[#p.0]. (R.0),

the sequence spaces [C,,0], (C,,0),

the spaces F' and [F ]

Theorem 4.1.1. The following statements are true:

L.[F]c

c (E,p,,,ﬁ)n c [:f{,pr,ﬁ]n c [Cl,H]n ,
ii. [FlcFc (ﬁ,p,,e)n c [Ié,prﬁ]n <[c.6] ,

iii. [Flc |G, <(C.0) <[C.0] .

Proof. We give the proof only for (i). The proofs of (ii) and (iii) can be done,

similarly. So we omit them. Let xe[F] and [F|-limx=¢ Then

i (||x -&,2050002,

ZyyeZ,  €X . Since H —o0 as r—oo, then its weighted lacunary mean also

)—)O as k—>oo, uniformly in m, for every nonzero

converges to £ as » — oo, uniformly in m . This proves that x € R,

, and [F]-

limx =

,0| -limx =¢&. Also since
n

SHL”; pkHtkm 56) ZpseesZy
)

1
< E;; Pitin (||x -$e,z,,...,2,

1
FZ pktkm( ge) 1’ o nl

r kel,

then it follows that [F]c|R,

, 49n C(ﬁ,p,,ﬁ)n c[ﬁ,pr,ﬁ]n and [F]-

limx =R,

limx=(R, p,,6) -limx=

s ,P.,0| -limx=¢&.  Since  uniform
n

convergence of for every nonzero z,,...,z, , €X

1
?z Pl ( é:e) Zisees 2,y

r kel,

with respect to m as r-—>oo implies convergence for m=0 it follows that
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[f?,pr,@} c[cl,e]n and [ﬁ,prﬁ] -limx = [Cl,H]n -limx = ¢&. This completes the

proof.

Theorem 4.1.2. Let =(k, ) be a lacunary sequence and liminf Q >1. Then

(R.p,) €(R.p,.6) with (R,p,) -limx=(R,p,,0) -limx=¢.

Proof. Suppose that liminf, Q. >1, then there exists a 6 >0 such that Q >1+¢6

for sufficiently large values of », which implies that I;’ > % If xe (ﬁ, pr) with
+ n
kl‘

(R, p, )n -lim x = &, then for sufficiently large values of », we have

pk‘ ge Zl’ o nl

k=1 k

1 k.
_Z Py Htkm (x_ge)azla'--azn_l
P k=1
_ LS
7

k.
- pk\\tm<x_ge),zl,...,zn_lJ
=k, +1

|

km §€ Zl’ ’anH

||tkm —ée),zy,e02,,

for each m=>0 and for every nonzero z,..,z,,€X. Then, it follows that
xe(R,p,.0) with (R,p,.,0) -limx=¢, by taking the limit as r—>co. This

completes the proof.

Theorem 4.1.3. Let d=(k,) be a lacunary sequence with limsup, O <oo. Then

(]NQ, pr,H)n C (ﬁ,pr )n with (}NZ, pr,é’)n -limx = (ﬁ, p, )n limx=¢&.

Proof. Let x e (1~2, pr,ﬁ) with (Ié,pr,ﬁ) -limx=¢£. Then for &> 0, there exists g,

such that for every g > g,
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Zpk Hlkm l’ '7Zn—1

q kel

<e, @.1.1)

for each m>0 and for every nonzero z,..,z, , €X, that is, we can find some

positive constant A/ such that

L, <M forall q. 4.1.2)

lim sup, Q. <o implies that there exist some positive number K such that

0. <K forall r>1. (4.1.3)

Therefore for k. _, <7<k , we have by (4.1.1), (4.1.2) and (4.1.3)

1 r
F,k:] D tkm()c—.fe),zl,...,z,k1
1 &
SP_Z P ||tkm( é’e) Zysees 2y
k. k=l
1
- Z pk”tkm( —ée),zy,enZ, z pk”z‘km —&€),Z)serZ || F
Pk_l kel

+..+ Z Py ||tk,,, (x—fe)azle-"’zn—l
kel,

+ Z D ||tkm ()c—fe),zl,...,z,k1
kelqo

|

PL(LH + LH, +.t L H, + L, (H, ..+ LH,)
kr—l
M £
SP—(H1+H2+...+Hq0)+P—(Hq0+l+...+H,)
k. ko
M
-——(R -B,+B, ~B +.+R -B_ )+—(R -B +.+B -PR_)
PkH -1 IDkH qo+1 90 - -1
P P -P
:M k‘[O +g k" k’l()
Pkr—l l)kr—l
P
<Mk,
P
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for each m=>0 and for every nonzero z,...,z, , € X . Since £, —> o0 as r —>00, we

get x e (]NQ, pr) with (}NZ, pr) -lim x = &. This completes the proof.

Corollary 4.1.4. Let I<liminf Q. <limsup, Q. <oo. Then (ﬁ, pr,ﬁ) = ( R, pr)

n ’n

and (R, p,.0) -limx=(R,p,) -limx=¢.
Proof. It follows from Theorem 4.1.2 and Theorem 4.1.3.

In the following theorem, we give the relations between the sequence spaces (wg )n

and (f?, pr)

n

Theorem 4.1.5. i If p, <1 for all keN, then (wg)ng<R,p,) and

n

(), -limx=(R, p,) -limx=¢&.

n

ii. If p, >1 forall keN and {%J is upper-bounded, then (ﬁ, p,) g(wa)n and

”

(R,pr )n -limx = (wg),1 limx=¢.

Proof. i. If p, <1 forall keN,then H, <h forall reN. So, there existan M|, a

H
constant, such that 0<M < h—’ <l for all reN. Let xe(w,) with

14

(w,) -limx=¢, then for an arbitrary & >0 we have

5

1 1
E;pk Hlkm (x—cfe),zl,...,zn_1 ‘SM L

for each m >0 and for every nonzero z,...,z, , € X . Therefore, we get the result by

taking the limit as » — .
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ii. Let p,>1 for all keN, then H >h for all »eN. Suppose that {%j is

upper-bounded, then there exists an A, constant such that 1< ]Z’ <M, <o forall

7

reN. Let xe (ﬁ, p,,) and ([3, pr) -limx=¢&. So the result is obtained by taking

the limit as » —>oo for each m>0 and for every nonzero z,...,z, , € X, from the

following inequality:

_Zutkm Loeees Zpe 1‘ Zpk Ht seeesZy )

r kel, r kel,

Now, we define a new concept of statistical convergence in n-normed space, which

will be called weighted almost lacunary statistical convergence:

Definition 4.1.6. The weighted almost lacunary density of K < N is denoted by

1

8. (K)=lim, F|Kr (g)| if the limit exists. We say that the sequence x = (xj)

(i)

r—>0
r

is said to be weighted almost lacunary statistically convergent to & if for every
>0, the set Kr(g)z{ke]r‘:pk Ht,m —e),z,,.... 2, ,H_ } has weighted

lacunary density zero, i.e.,

lim— z. 1|>g}‘=o (4.1.4)

hm— {k el '":p, ||t fe)

uniformly in m, for every nonzero z,...,z, , € X . In this case, we write (S(R’ 9),n)-
limx=¢&. By (S(}~e 0),n) we denote the set of all weighted almost lacunary

statistically convergent sequences in n-normed space.

i. If we take p, =1 for all k€N in (4.1.4) then we obtain the definition of almost

lacunary statistical convergence in n-normed space, that is, x is called almost
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lacunary statistically convergent to ¢ if for every &£>0, the set

Kg(g):{kelrs

e (x=E€), 2,502, || > g} has lacunary density zero, i.e.

lim— {kel,:

row f
.

e (x =€), 202,42 2| =0 (4.1.5)

uniformly in m, for every nonzero z,..,z, , €X. In this case, we write
(Sa,n)—lim ;x;=¢&. By (S,,n) we denote the set of all weighted almost lacunary

statistically convergent sequences in n-normed space.

ii. Let us choose @=(k,) for r >0 then the definition of weighted almost lacunary

statistical convergence which is given in (4.1.4) is reduced to the definition of
weighted almost statistically convergence, that is, x 1is called weighted almost

statistically convergent to £ if for every £ > 0, the set

K, (¢)= {k <P:p, Htkm (x—&e),z,0z,, ‘ > g}
has weighted density zero, i.e.,
liii‘% (k< Pl (x=Ee). 20z, .| 2 ]| = 0 (4.1.6)

uniformly in m, for every nonzero z,...,z _, € X . In this case, we write (S 1%’")'

limx=¢. By (S R,n) we denote the set of all weighted almost lacunary statistically

convergent sequences in n-normed space.

iii. Letus choose &= (k.) for >0 and p, =1 forall k €N, then the definition of

weighted almost lacunary statistical convergence which is given in (4.1.4) reduces to

the definition of almost statistically convergence.
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Theorem 4.1.7. If the sequence x is (ﬁ, prﬁ) -convergent to & then the sequence

x 1is weighted almost lacunary statistically convergent to &.

Proof. Let the sequence x be (ﬁ, pr,t9) -convergent to & and

K, (e)={kel ' p]

‘25}.

tkm (x - ge)’ ZlseennZy

Then for a given & >0, we have

[{L z Pr Htkm (x_ée)’zl"“’zn—l ‘ 2 HL ]; Py Htkm (x_ée)azl,'--azn_l
r kel, r

r keK,, (¢)

2

> ‘9}%‘1{% (¢)

ls

for each m >0 and for every nonzero z € X. Hence we obtain that the sequence x is

weighted almost statistically convergent to £ by taking the limit as » —o0.

Theorem 4.1.8. Let p, |1, (x—&e).z,,...2,,

‘SM for all keN, for each m>0
and for every nonzero z,,...,z, , € X . Then (S(Rﬂ),n)c(ﬁ,prﬁ)n with (S(Rﬁ),n)-

9 “n-1

limx=(R, pr,H)n dimx=£&.

Proof. Let x be convergent to & in (S(]~e 6),n) and let us take

K, (g)= {k el ' p ||tkm (x—&e), 2z, |Z g} .

Since p, [, (x—&e),z,,....z,,| <M for all keN, for each m>0, for every

nonzero z,,...,z, , €X and H, — o as r — o0, then for a given & >0 we have
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_Z Dt

- kel

km é:e Zl >* Zn—l

for each m=>0 and for every nonzero z,...,z, , € X . Since ¢ is arbitrary, we have

X€E (Ié,pr, 9) by taking the limit as » — 0.
Theorem 4.1.9. The following statements are true:

i. If p, <1 forall k€N, then (Sg,n)c(S(R’H),n).

ii. Let p,>1 forall keN and ([Z’

7

] be upper-bounded, then (S(R’ H),n) =(S,,n).

Proof. i. If p, <1 forall keN,then H <h forall reN. So, there exist M, and

H
M, constants such that 0 <M, < h’ <M,<1 for all reN. Let xe(S,,n) with

”

(S,,n)-limx = ¢, then for an arbitrary & >0 we have

HLF‘{keI,':pk”t x=&e),Znnz,a |2 6

~r e <k<p e ge) s 2]
sMilhir‘{Pk” <k <k<B <k, (x—ge). 2z, |2 2]
:Mllhl{k <k <k, [t (x = Ee), 2z, | 2 6]
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b

> g

1 1
:Mh_r‘{k el :||tkm (x—<&e),zpenz,

for each m>0 and for every nonzero z,,...,z, , € X . Hence, we obtain the result by

taking the limit as » — .

ii. Let (IZ’) be upper-bounded, then there exist M, and M, constants such that

ISMISH’£M2<OO for all »eN. Suppose that p, >1 for all k€N, then

h

i

H. >h forall reN.Let xe (ﬁ, pr) and (ﬁ,p,,) -limx =¢&, then for an arbitrary

& >0 we have

hlr‘{kelrz b (X = 8€),215002, | 2 £

:hl,‘{k” <k <k, (X =€), 21y 2|2 g}‘

gMzH% (k<P <k<k <P :p|t(x—&e)zpmz, |2 g}‘
:MzHir (B <k<B i pft, (x—Ee).zpmnz, |2 g}‘

=M2Hi (el p i (x—Ce). 207, 2 6]

~

for each m >0 and for every nonzero z,,...,z, , € X . Hence, the result is obtained by

taking the limit as » — 0.

Theorem 4.1.10. For any lacunary sequence @&, if liminf O >1 then

(Si) < (S}5.m) and (Sgon)-limx=(S,, o -im ¢

Proof. Suppose that liminf, Q. >1, then there exists a 6 >0 such that Q >1+¢6
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for sufficiently large values of », which implies that il > o
Pk’_ 1+6

If xe(Sﬁ,n) with

(S R,n) -limx=¢&, then for every £ >0 and for sufficiently large values of », we

have

=)

> pLHP"I <k<PBE :p, ”tkm (x—&e),z,mnz

kV

Lk <, il (- 66) v

k"

2]

n-1

S

=" (L‘{Pkl <k<BE :p, Htkm (x—&e), 25z, ‘2 E}U

4.

=)

[u—

+o0\ H

”

> L[LH]{ el '":p, ||tkm (x—fe),zl,...,zn_,

for each m=>0 and for every nonzero z,,...,z, , € X . Hence, we get the result by

taking the limit as » — .

Theorem 4.1.11. Let 8 =(k,) be a lacunary sequence with limsup, Q. <o, then

(S(M),n)c(Sk,n) and (Sﬁ,n)-limx=(S i

apon | im =&

Proof. If limsup, O <oo, then there is a K >0 such that QO <K for all reN.

Suppose that x (S(j~e )’ n) with (S ,n)-limx =¢ and let

(R0)

N, ={{kel " :p|l, (x—&e).z5z,||2 EH : 4.1.7)

By (4.1.7), given & >0, there is a r, € N such that Z’ <¢ forall r >r,. Now, let

M = max{N, 1<r< 7'0} and let r be any integer satisfying k. _, <r<k_, then we

can write
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2]

< PLHBCI <k<BE :p, Htkm (x—¢e),z,,....z

kr—

Lkl (=200,

”

n-1

‘25}‘

:L(N1+N2+...+Nr +N
]) 0

7+l
ke

+...+N,)

< M.I’O n LE(H
R, R,
(7-~.)

Bl

+...+H,)

7+l

My
5

r—|

M,

+&

M,

< +ekK

+&0. <
k. k.

which completes the proof by taking the limit as » — .

Corollary 4.1.12. Let 1<liminf. Q. <limsup, Q. <co. Then (S(M),n) ~(S;.n) and

(Sgem)timx=( g o )-limx =

Proof. It follows from Theorem 4.1.10 and Theorem 4.1.11.

4.2. Generalized Difference Sequence Spaces Associated with Multiplier

Sequence on a Real n-Normed Space

In this section, some new sequence spaces associated with multiplier sequence by
using an infinite matrix, an Orlicz function and generalized B -difference operator on

a real n-normed space are introduced. Some topological properties of these spaces
are examined. A new concept which will be called (BY{)”-statistical A4 -convergence
in an n-normed space, is defined and some inclusion connections between the

) and the set of all (By)" -statistical A -convergent

sequence space W(A,Bf\’, )2

egeeege

sequences are established.
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Let 4= (amk) be an infinite matrix of non-negative real numbers, let p = (pk) be a

bounded sequence of positive real numbers for all keN and A=(A,) be a

sequence of nonzero scalars. Further, let A/ be an Orlicz function and (X ,

)be

cgeeege

an n-normed space. We denote the space of all X -valued sequence spaces by

w(

sequence spaces:

) and x=(x,)ew(

N T ) by x= (xk) for brevity. We define the following

u
Bix,

AR 4

n—1
[

\- x=(xk):’£iil;gam{M[

for every nonzero z,,...,z, , € X

-
4

for every nonzero z,,...,z, ;, € X and for some &

Pk
<0,
b

W, (4. By M, p,

Hy
BAxk ég z z
L R e

) x:(xk):limki:amk {M[

—_ m—>0

w(A4,By .M, p,

egeeege

U
Bix, —
PR ERREY)

n—1

\- x:(xk):supiam{M[

mo =]

W, (4.BY.M,p,

egeeeysl

for every nonzero z,,...,z, , € X

U
where Bj'x, :Z('uj r*s'x, A, , and wu,keN. If we consider some special
v

v=0

cases of the spaces above, the followings are obtained:

i. If we take 1=0, then the spaces above reduce to

W(A,A,M,p, ey ), WO(A,A,M,p, ey ), W, (A,A,M,p, yense ), respectively.

ii. If we take r=1, s=-1 then the spaces above reduce to the spaces

)

W (A, & M, p ), Wy M ), W, (4,84, M p,

egeeege cgeeege egeeege
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).

iii. If M (x)= x then the above spaces are denoted by W(A,Bf, D,

egecege

Wo(4.BL . p.Jwer]). W, (A.BL, D

. ) , respectively.

egeeege

iv. If p,=1 for all keN and A=(A,)=(1,1,1,.) then the spaces above are

).

denoted by W(4,B“M.|....), W,(4.B".M)|...]), W, (4.8 M,

egecege egeeege egeeege

respectively.

v. If M(x)=x and p,=1 for all k€N, then the spaces above are denoted by

W(A,B,’\‘, ), WO(A,B,’(, ), Ww(A,Bf, ),respectively.

egeeege egeeege egecege

vi. If we take 4=C,, i.e., the Cesaro matrix, then the spaces above reduce to the

spaces W(BY M, p.|....|), W,(BL .M. p.|....]), W, (BL. M. p.|....]).

cgeeege egeeege egeeege

vii. If we take 4= (amk) is de la Valée Poussin mean, i.e.,

1

, kel =[m—24,+1,m]

a, =14, 4.2.1)
0,

otherwise,

where A is a non-decreasing sequence of positive numbers tending to o and

),

cgeeege

Apy <A, +1, A, =1, then the spaces above are denoted by W, (i,B/’\’,M,p,

m+l —
o))

w(A.By .M, p.

). W, (4.B4 .M. p,

g eeene

viii. By a lacunary sequence 6=(k,), m=0,1,. where k,=0, we mean an

increasing sequence of non-negative integers with 4, =(k, —k, ,)—>o0 as m—>oo.

n

The intervals determined by @ are denoted by 7, = (k km]. Let

m—1°
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k _ <k<k
4.2.2)

1
a k = hm ’
0, otherwise.

m

Then we obtain the spaces W(@,B,(‘,M,p, eyenee ), WO(G,Bf,M,p, ey ) and
/8 (9,3,‘\‘,M,p, ryeeee ),respectively.
ix. If we take 4=(a,, ) is Norlund mean, i.e.,
Pok o< p<m
a, =1 P, 4.2.3)
0, k>m

where ( pk) is a sequence of positive real numbers and P, = p, +p, +...+p, , then

)

the spaces above are denoted by W(]\_/,Bf ,M, p,

), Wy(N.B; .M, p,

AR A egesege

and W, (]V,BX,M,p, . ), respectively.

x. Let the matrix 4= (amk) be Riesz mean, i.e.,

pk, O0<k<m
a, =4 P, 4.2.4)
0, k>m

where ( pk) is a sequence of positive real numbers and P, = p, +p, +...+p, , then

egeceys cgeeege

we obtain the sequence spaces W(R,Bf,M,p, ), W, (R,Bi‘,M,p, ) and

w,(R.By. M, p,

iyerep ), respectively.
xi. If we take 4=17, where [ is an identity matrix and p, =1 for all then the

. ), cO(Bf\‘,M, )and

spaces above reduce to the sequence spaces c(Bl‘\’,M, vyees ryeese
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[, (Bf ,M, ), respectively.

egeesge

xii. If we take 4=1, where [ is an identity matrix, M(x)=x and p, =1 for all

).

k€N then we denote the spaces above by the sequence spaces c(Bf ,

co(,‘\’ )

egeeege

) and / (B,(‘, ryeens

9 |le9eeese

) and

Theorem  4.2.1. W, (4,B/.M,p.|....]), W(4.B}.M,p,

cgesege cgeeeye

W, (4,8},

o ) are linear spaces.

Proof. We consider only W(A,BK,M ,D» ) . Others can be treated similarly. Let

cgeeege

x,yeW(

R ) and o, f be scalars, suppose that x > & and y —>&,.

I

)7
s A

Then there exists |« | p,+| B | p, > 0 such that,

> -1

S, [ (MB “(ax, + By ) —(ag + BE,)
H |a| o, +|B|

k=1

. |a|p1 ”Bf\lxk ¢
< M 5 Z seees 2y
Z“{ [|a|p1+|ﬂ|p2u p bt
Ik

i |: |a’|p1 M(”folxk_é ZireZ,

alp+Ble, | A

18| o,
Ial P +|Bl p,

By, — 52
P

Zyseees 2y

IN

|

|,B|p2 M( By, =&, P J .
| o +1 8] s p T
® By — Py
SDzamk{M(L&a 190092 :|
k=1 £

u Pk
By, —¢, - z ‘

IR ERRIT | 5
P>

+ Di a,,. l:M
k=1
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which leads wus by taking limit as m—>o that we  get

)-

(ax+By)eW (4,B}.M,p,

cgecegs

Theorem 4.2.2. For any two sequences p=(pk) and qZ(qk) of positive real

numbers and for any two n-norms ||.,...,.|| , [l---.-|, On X, the following holds:

1’ 2

Z(4,By,M, p,

)NZ(4,B! Mg,

,)#D, where Z=W, W, and W,.

PRREPY

PRREPY

Proof. Since the zero element belongs to each of the above classes of sequences, thus

the intersection is non-empty.

Theorem 4.2.3. Let 4A=(a,,) be a non-negative matrix and p =(p,) be a bounded
sequence of positive real numbers. Then for any fixed m e N the sequence space

/8 (A,Bf ,M,p, ) is a paranormed space with respect to the paranorm defined

egecege

by

|-

LA ok
g, (x)=inf P ;%{M[ H <o,

for every nonzeroz,,...,z, , € X and for some p >0

By x,
R A

P

n-1

Proof. That g (6)=0 and g, (—x)=g, (x) are easy to prove. So, we omit them. Let

us take x=(x,) and y=(y,) in W, (4, B4, M, p,|....]). Let

egeeege

P
N Bix,
A(x) = p>0:zamk M=,z 2,, <©r,
=1 P
o B Pk
A(y): p>0:zamk|:M(A—y’cv 1229 “p-1 J] <0 5
k=1 P




for every nonzero z,,...,z, , € X. Let p, € A(x) and p, € A(y), then we have
1

el ]

by using Minkowski’s inequality for p=(p,)>1. Thus,

By (xk +J’k)
(,01 +/O2)

s ZyseensZy

g, (x+y) =inf{(p1 +p2)p7m :p € A(x), p, eA(y)}

P M
Sinf{le 1P € A(x)}+inf{p2h’ 1P, eA(y)}

=g,(0+g,).

72

We also get g, (x+y)<g, (x)+g,(y) for 0<p, <1, by Lemma 1.1.46. Hence, we

complete the proof of this condition of paranorm. Finally, we show that the scalar

multiplication is continuous. Whenever ¢ =0 and x is fixed imply g (ax)—0.

Also, whenever x -6 and « is any number imply g, (ax)—0. By using the

definition of the paranorm, for every nonzero z,,...,z, , € X we have

1
Py E
7m © B#
g, (ax)=inf<p# : Zamk M M,zp. 2 Z, < o0
k=1 P
Then
1
Pr \H
B,U
g, (ax)=inf < ( Zamklz ( 2a%e Loeees Zy | H <o},
o
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1
h h H)\H
, a| }) )

b

where (7=£. Since |a|P" Smax{a a|H} therefore |a|%k S(max{|a
a

Then the required proof follows from the following inequality:

1

af'})”

Pm 0
Anfyo :{Zam{M(
k=1

1

of"})" 2, (x).

h
s

g, (ax)< (max {|a

I}

i
Bix,

A

n—1

h
s

:(maxﬂa

Theorem 4.2.4. Let M, M|, M, be Orlicz functions. Then the followings hold.

i. Let 0<h<p, <1. Then Z(A4,B\,M,p,|,....|) = Z(4,By,M,|,...,|) where
Z=W.,w,.
ii. Let 1<p, <H<oo. Then Z(A4,B\,M,|,....|)cZ(4,B\,M,p,|,...,|) where

Z=W,W,.

iii. W,(A4,BY,M,, p.|.....

cseeegn

)mWO(AJBX)Mzapa

)QWO(AaB#JMl +M25p9

A

).

cgesege

Proof. i. We give the proof for the sequence space W,(A4,By,M, p,

) only. The

TEEErY

other can be proved by a similar argument. Let (x,)eW,(A4,By,M, p,

PRERRY

) and

0<h<p, <1, then

u 4
Bix, 2 Bix,
A Z s

z

-l s Z seesZ, |

e gl

Hence, we have the result by taking the limit as m — 0. This completes the proof.

ii. Let 1<p, <H <o and (x,) e W (4,B),M,

). Then for each 0 <& <1

EXEREY
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there exists a positive integer M|, such that

® u
Zamk|:M( BAx J:|<8<1>
k=1

for all m> M. This implies that

oo w{fF ] <o

3 Zyseees 2y
Hence we have the result.

s Zyseeey Zy g

7 "
Bix, Bix,

AR

n

)

iii. Let x=(x,)eW,(4,B{M,p.|...

)W, (4.8 M, p

) ) Then by the

following inequality the result follows:

Bix &

- A J:l
P

]_pk

J:lpk

If we take the limit as m — oo then we get (x,) e W,(4,B\,M,+M,, p,|.,...,.

Za {(Ml +M2)(

i
Bxk

3215 Zy

e

¥
Bxk

3 Zyseees 2y

+DZ am{ (

completes the proof.

is strict for g>1. In general Z(4,B],

s PN

j=0,1,2,..., u—1 and the inclusions are strict, where Z=W, W, and W .



75

Proof. We give the proof for W,(4,BY",M, p,

.,...»{|) only. The others can be

proved by a similar argument. Let x = (xk) be any element in the space

VV()(AaB//\lilaMapa

) then there exists p = |r|p, +|s|p, >0 such that

g e ege

=
B\ x,
Lk z,.z

Yo,

lim iamk |:M( n—1

m—>0 k=1

Since M is non-decreasing and convex, it follows that

I

3215w Zyy

BYx
Ak z

o | m| | B
;’”k[ Llrlpﬁlslpz 1
=iam{M[

< B 'x
A k
< DZamk M( T,zl,...,zn_l
1

z

L]

u-1 u-1
|rBA X, +sBY x,

‘ | oy +s] o,

i

Q0

> B! A
by

A k—1

+D E a,| M| |————.z,....2, .
= P>

The result holds by taking the limit as m — 0.

In the following example we show that the inclusion given in the theorem above is

strict.

Example 4.2.6. Let M(x)=x, p,=1 forall keN, A=(A,)=(1,1,.), A=C,
N7

i.e., the Cesaro matrix, »=1,s5s=-1 where B)x, = Z r“vs'x,_ A, for all
v=0

r,s e R—{0}. Consider the sequence x=(x,)=(k*"). Then x=(x,) belongs to

W,(B",M, p, ).

) but does not belong to W,(B**,M, p,

g e ege egeeege
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Theorem 4.2.7. Let A=(a,,) be a non-negative regular matrix and p=(p,) be

such that 0<h < p, <H <oo.Then [ (B),M, ).

) S W, (4,B,,M, p,

egeeege cgesege

Proof. Let /, (B,(‘,M, ryeene ) Then there exists 7; >0 such that

g

for all k€N and for every nonzero z,,...,z, , € X. Since 4=(a,,) is a non-negative

U
By x,

A

n-1

regular matrix, we have the following inequality by the case (i) of Silverman-

Toeplitz conditions.

Bix,
T/

o,

n—1

supiamk [M [

m k=l

Py -
H < max{%h,]}f]}sungmk <.

m k=l

Hence 1, (BY, M. |.....|) < W, (4, BL, M, p,||.....]).

Now, we introduce and study a new concept of (B})"-statistical A -convergence in

an n-normed space as follows:

Definition 4.2.8. Let (X slesneese ) be an n-normed space and let 4=(a,,) be a non-

negative regular matrix. A real sequence x = (x,) is said to be (B})"-statistically A -

convergent to a number &, if § K)=1im» a, 7, (k)=0 or equivalently
k=1

A(B;\’)n( m—yo0 4=

lim Zamk =0 for each ¢>0 and for every nonzero z,..,z,,€X where
kek

m—>0
€

K={keN:|Bix, —L.z...z,,

‘ > ¢} and y, is the characteristic function of K.
In this case we write (B})'stat-A-lmx=¢&. S (A(B/’\‘)”) denotes the set of all

(By)" -statistically A -convergent sequences.
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If we consider some special cases of the matrix, then we have the following:

i. If A=C,, the Cesaro matrix, then the definition reduces to (B})"-statistical

convergence.

ii. If A= (amk) is de la Vallee Poussin mean which is given by (4.2.1) then the

definition reduces to (BY)" -statistical A -convergence.

iii. If we take 4=(a,,) as in (4.2.2), then the definition reduces to (By )" -statistical

lacunary convergence.

iv. If we take 4=(a,,) as in (4.2.3), then the definition reduces to (B})"-Norlund

statistical convergence.

v. If we take 4=(a,,) as in (4.2.4), then the definition reduces to (B})"-Riesz

statistical convergence.

Theorem 4.2.9. Let p=(p,) be a sequence of non-negative bounded real numbers

such that inf, p, >0. Then W (4, B, p, )= S(A4BLY").

egeeege

Proof. Assume that x=(xk)eW(A,Bf , D ) So we have for every nonzero

egesege

ZyyesZ, €X

o0
. )7 _
hmz a,, HBAxk L,z,..,z,,

m—>o0 k=1

" =o0.

Let £¢>0 and K = {k eN: HB,‘\’xk L,z 2, ‘ > g}. We obtain the following:

P

o0

Hy _
Zamk HBAxk L,z,...z,,
k=1
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D

— By
—ZamkHBAxk L,z,..,z, |

kekK
Pr
Y
+ Zamk HBAxk -L,z,...,z,
keK
o oh H
Zrmn{g ,E }Zamk.

keK

If we take the limit as m — oo, then we get x € § (A(Bf\‘ )" ) . This completes the

proof.

Theorem 4.2.10. Let p =(p,) be a sequence of non-negative bounded real numbers

).

egeeege

such that inf, p, > 0. Then S(A(B})") < W (4,B}. p,

Proof. Suppose that x=(x,)el_ (Bf\’,

)m S (A(Bf )" ) Then there exists an

cgeeegs

integer 7 such that HBKx,{—.g,zl,...,zw1

<T for all k>0 and for every nonzero

Z,..n2, ;, €X and lim Zamk =0, where
keK

m-—»o0

K ={ keN: HBXX,( -2 2, 4|2 5} .
Then we can write
- p
u k
Zamk HBAxk —§ 325y 2,
k=1
P
_ u
= Zamk HBAxk a2z,
keK
Pk
y7i
+ Zamk BAxk _élﬂzla"-azn,l
keK
h h
< max{g ,gH} Zamk +max{T ,TH}Zamk .
keK keK

Since 4=(a,,) is a non-negative regular matrix, then we have
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1=1lim Zamk

m—>0

:limZamk+’£i£?OZamk.

Mo ek kek

Hence,

lim z a,, =

keK

Thus

P

)7
hmZamk HB X, —C,2,.002,

<ég' hmZa +T’ hmZamk<g

m—»>0 171*)00

where max{eh,eH} =¢' and max{Th,TH} =T'.Hence x, € W(A,B“ , )
4.3. Some Topological Properties of Sequence Spaces Involving Lacunary

Sequence in a Real n-Normed Space

Now, we define some new sequence spaces involving lacunary sequence in n-normed
spaces. Let € be a lacunary sequence and M be any Orlicz function. Then we

denote by / (p,@,M , ) the sequence space involving lacunary sequence defined

egeeege

by as the set of all x e w( vyeees

. ) such that

ZygeesZy g

\:MS

1 X o
L,_rkgz,rM( Zk’ ﬂ =%l @a

for some p > 0 and for every nonzero z,,...,z, , € X

_ xk
soll) T

I(p,0,

If M(x)=x then we get the sequence space / ( .0, ) as follows

geeege
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0

1
E x:(xk):2£h—2||xk,zl,...,
> . kel,

I(p,6.].

r=1

pr
z, |} < oo,

for every nonzero z,,...,z, , € X

If p,=p forall r, M(x)=x, then the sequence space which is given by (4.3.1)

reduces to

p
o
/ (9 ): xk ZL Z”xk’zl’ ;11”} <,
o Osfoseees “\h & .

r

for every nonzero z,,...,z, , € X

egeeege 9 f[e9eeese

)Where M(x)=x and p,=p=1 forall r.

).

) by

In the special case where 6 = (2’) , we have ces [ .M

We denote l(p,@,M,

=1(p.0,

Theorem 4.3.1. Let 1< p <o and (X | - ) be an n-Banach space. For any Orlicz

function M and a bounded sequence p=(p,) of strictly positive real numbers

) is a linear paranormed space by

1
P, \H'
< 00,
2

for every nonzero z,,...,z, , € X, for some p >0

I(p.6. M,

egeeege

n -1

g (x)=inf{P" Z{ ZM(

r=1 rke[

where H'=max(1,H).

Proof. It is easy to see that for any Orlicz function M and p=(p,) of strictly

) is a linear space, so we omit it. The conditions

positive real numbers / (p, o,M,

(1)-(iii) of definition paranorm are clearly hold. We prove the scalar multiplication is

continuous. Let 4 be any number and by using the definition of the paranorm,
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Ax
k
Zla s

&1
g,.(Ax)=1inf p" [Z{;ZM[7, -4

r=1 ” ke[r

1
P, \H'
-1 j} < OO,

for every nonzero z,,...,z, , € X, for some p>0

Then

¢ (Ax) = inf (|ﬂ|a)f;:{i{hl M(_

where G:ﬁ. Since || Smax(l, H') therefore |l|% S(max(l,

1 p, P \H
<! by
H' . Zk
gr(ﬂ,x)s(max( )) infio {E {h keIrM( ,Zp---,Zn_]H]:l ] <o

N g .

- (max(1,

which converges to zero as g .(x) converges to zero in / ( p,0,

yunnye ) Now

) Then there exists p >0 such that

suppose 4. — 0 and x isin l(p,@,M,

cgeeege

1

I

5215w 2y

g,(x)=inf o (Z{ ZM(

r kel

for every nonzero z,,...,z, , € X

n-1

Now
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as A — 0, for every nonzero z,,...,z, , € X and for some p>0.

egeeege

Let (x’) be any Cauchy sequence in l( p,O.M,

), and let s and x, be fixed

£ . e
such that M (sx,)>1. Then for each —— >0 there exists a positive integer N such
X,

that g (x'—x’)<—, for all i, j>N. Since g.(x'—x’) is positive so we can
85X,

substitute p for g (x' —x’). From the definition of the paranorm we get

0 1 ]
— > M| |————
Z=l: [ hr kel, ( -

~

forall 7, j>= N and for every nonzero z,,...,z, , € X . Thus

-

forall i, j>N.Since 1< p <oo, we have

o i
Z iZ:M M,zl,...,zn_1
h g.(x'=x7)

r=1 ” ke]r

i
X — X%

— = Z,..,Z
g (' —xh)

22

i ke]r

J—)O, asr — .

i J
X, —X
k k z

T EEre——— AN _
g (=)

jgl

Since z M (

kel,
M(

] is bounded then it follows that

Ly
T S S
g(xi_xj)’ 12002 “n—1

”




for sufficiently large values of r. Since M (%) >1, we obtain that

|

Since M is non-decreasing and convex function, then we have

i
X — X%

s Z e 2, _
g (=) T

i J
X — Xk

Ty Zy e Z, || S
g (& —x))

Hence

. . SX . .
L— 0 L~
ka xk,zl,...,znfl‘ﬁ 5 g.(x'=x7)

SX &

0 £
* 5
2 sx, 2
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forall 7, j> N. Since X is an n-Banach space, then (xi) is convergent in X for all

i > N . Using the continuity of functions M and

egeeege

j — o we have,

i
X =Xk

/) b

VA

|1
— > M
;l:hr ke[r [

and taking the limit as

for every nonzero z,,...,z, , € X . Taking the infimum of such p' s we get for every

nonzero z,,...,z, ; €X andforall i= N,



The sequence space l(p,H,M , ) is a linear space and (xi)el( ,0,

cgeeege

then we have xzxi—(xi—x)el(p, ,

- ) This completes the proof.

Theorem 4.3.2. l(p, o,M,, )m l(p, o,M,,

)

) i(p.6,.M, +M,,

egeeege egeeege egeeege

Proof. Let x € l(p,H,Ml, )ml(p,é?,Mz, ) then,

egeeege

o]~

for some p, >0 and for every nonzero z,,...,z, , € X , and

-

cgeeege

I [

r=1 rke[

9 Zy5eeesZ
2

RS A

kel

)

84

for some p, >0 and for every nonzero z,,..,z,, €X . Let p as; p=max(p,p,).

Since

Zysees Zyy

{LZWJM{%,

rkelr
azedly
r kel

iz

I
iz
|| R 2

1’ ’nl l’ ’nl

)

52150052,

I



then we get,

| 1
Z{h_ Z(Ml +M2)[ %,Zl,..., z,

r=1 r ke]r

K
r=1 h

IN

M
1
~ | —_
>
X
=
N\
E
N
N
L
N——
=
~

egecege

Hence xel(p,@,M1 +M,,

).

85



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

In mathematics one of the most important notions is the notion of norm, which is

fundamental in geometry, in analysis and others. The notion of a norm is to be

)

we know how to measure lengths. How do we measure areas or volumes? This is not

regarded as a generalization of the notion of the distance. In a normed space (X ,

always easy. If we have an inner product we can measure volumes of n-dimensional

parallelepipeds by the determinant

(xl,.x1> <x1,.xn>
<xxl> (xx)

which is known as Gramian of linearly independent vectors x,,...,x, in (X ,<.,.>) , Or

we need orthogonality. However, we need inner product or at least semi-inner
product to define orthogonality. If we have a semi-inner product we can also measure
the volume of n-dimensional parallelepipeds. Using a semi inner product g, one may

define the notion of orthogonality on X . In general, given a vector ye X and a
subspace S =span {xl,...,xn} of X', we can define the g-orthogonal projection of y
on §. Next, given a finite sequence of linearly independent vectors x,,...,x, in X,

we can construct a left g-orthogonal sequence x;,...,x, as in [6]. Having done so, we

may define the volume of the n-dimensional parallelepiped spanned by x,,...,x, in

x;|| ([46]). The volume formula (defined in a semi-inner

X tobe V(x,....x,) :zliﬂ
i=1

product space) is not invariant with respect to permutation. Thus there is a limitation
with such a formula. But if we don’t have any inner product or semi-inner product

we can not compute the volume. We must recognize that the notion of norm has a
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limitation. To pass the limitation, we need a new notion. One of the treatments is to
consider the 2-normed space introduced by S. Gahler [30]. By this way we can
compute the area of parallelogram spanned by two vectors. It was generalized to n-
normed space by Misiak [39] to compute the volume of the n-dimensional

parallelepiped spanned by linearly independent n vectors.

Now, consider the 2-normed space (X ,

). We know how to measure the areas.

oy

One question arises: How can we measure the lengths? At first, this question was

*

asked by S. Gahler. He defined |x

|+

x,b

| where {a,b} is linearly

X,a

*

is

independent set and dim(X)>1. By this way, for X =R” the derived norm

equivalent to the usual norm [||. x, »x (1)< |x, —x| —0 if and only if

X, —x||—>0. (RZ,

) has the same topology as (Rz, D Later, Gunawan [32]

Y

derived a norm for the same purpose in a 2-normed space (X , ) of dimension > 2

.9

choosing an arbitrary linearly independent set {al,az} in X and with respect to

;::<

Actually, for 2-normed space [”, we choose, for convenience a, =(1,0, 0,...) and

1
x,a2||p)” for IS p<oo.

P
x,a” +

{a,,a,}, he defined a norm ||||p on X by |x

a, =(0,1,0...), and define ||||p with respect to {a,,a,} as above, then we have; the

derived norm ””,, is equivalent to the usual norm ””,, on [?. Precisely, we have

1

||x||p < ||x ; < 2; ||x||p for all x e/”. Indeed, it was not a goal, however, it was a result

of how to measure distance.

It is correct if we know they are equivalent then the proofs in n-normed space or in 2-
normed space can be done easily. But a few years ago, this was not known by
mathematicians. This shows the importance of the equivalence and helps to
understand the structure of the n-normed space. If we want to study n-normed space,
we should stop to discuss why they are equivalent, and let’s to study something else.

That could be interesting, because we don’t have only one vector, we have pairs in 2-
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normed space and n vectors in n-normed space, something to explore it. For

example, for C[a,b] we still don’t know whether we can take arbitrary linearly

independent set like /¥ and L”. But for C[a,b] the equivalence is obtained for only
some specific vectors. So, the equivalence is true for only specific choice. We don’t

know the equivalence for arbitrary vectors. This is an open problem also to explore.

In this section, the results obtained from the previous sections of thesis will be also
summarized. A part of the second section, the third and fourth sections of this thesis

equipped with original works.

In the first part of third section, we define the generalized difference matrix B* and

()
).

) which

Y ey .9

o). & (Bl w8
). e(BLp.] ). co(BLpl- ). LB pill-]). W (B p.
are defined on a real linear 2-normed space. We investigate some topological
). @(BLp|-]). m(BLpl-]).

) including linearity, existence of paranorm and solidity. Further, we

introduce difference sequence spaces E(B”, J2

Y .y ey Y ey

mO (B:apa

properties of the spaces E(B:,p, .. .

ey

ny (B:spa

Y

) and mO(B”,p,

n

show that the sequence spaces m(B,;‘ , Ds ) are complete

.9 .9

paranormed spaces where the base space is a 2-Banach space. Moreover, we give

some inclusion relations ([53]).

In the second part of Chapter 3, we introduce some new sequence spaces derived by
Riesz mean and the notions of almost and strongly almost convergence in a real 2-
normed space. Some topological properties of these spaces are investigated. Further,
new concepts of statistical convergence which will be called weighted almost

statistical convergence and [R, p, ]-statistical convergence in a real 2-normed space,

are defined. Also, some relations between these concepts are investigated ([54]).

There are three parts in the fourth chapter. In the first part of it, we obtain a new
concept of statistical convergence which will be called weighted almost lacunary

statistical convergence in a real n-normed space by combining both of the definitions
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of lacunary sequence and Riesz mean. We examine some connections between this
notion with the concept of almost lacunary statistical convergence and weighted
almost statistical convergence, where the base space is a real n-normed space ([55]).
In the second part of this chapter, some new sequence spaces associated with
multiplier sequence by using an infinite matrix, an Orlicz function and generalized
B -difference operator on a real n-normed space are introduced ([56]). In the last part
of it, some sequence spaces, involving lacunary sequence, in a real linear n-normed
space are introduced ([57]). In the last section of this thesis, the main results, which

were obtained, are summarized.
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