T.R.

SAKARYA UNIVERSITY
INSTITUTE OF SCIENCE AND TECHNOLOGY

SOME IDENTITIES AND DIOPHANTINE EQUATIONS INCLUDING GENERALIZED FIBONACCI AND LUCAS NUMBERS

Ph.D. THESIS

Zafer ŞiAR

Department	$:$ MATHEMATICS
Field of Science	$:$ ALGEBRA AND NUMBER THEORY
Supervisor	$:$ Prof. Dr. Refik KESKİN

T.R.

SAKARYA UNIVERSITTY
INSTITUTE OF SCIENCE AND TECHNOLOGY

SOME IDENTITIES AND DIOPHANTINE EQUATIONS INCLUDING GENERALIZED FIBONACCI AND LUCAS NUMBERS

Ph.D. THESIS

Zafer ŞIAR

Department : MATHEMATICS

This thesis was adopted unanimously by the following jury on 14 / 12 /2012.

ACKNOWLEDGEMENTS

I would like sincerely to thank my supervisor Refik KESKİN, who guided me with great patience during the process of writing my thesis. Moreover, I would like to thank the Scientific and Technical Research Council of Turkey (TÜBİTAK) for financial support during my doctorate programme.

This thesis is supported by Commission for Scientific Research Projects of Sakarya University (Project Number 2011-50-02-019).

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF SYMBOLS AND ABBREVIATIONS v
SUMMARY vi
ÖZET vii
CHAPTER 1.
INTRODUCTION 1
CHAPTER 2.
SOME NEW IDENTITIES CONCERNING GENERALIZED FIBONACCI 10 AND LUCAS NUMBERS
2.1. Sums and Congruences 19
CHAPTER 3.
THE SQUARE TERMS IN FIBONACCI AND LUCAS SEQUENCES 23
3.1. Fibonacci and Lucas Numbers of The Form $c x^{2}$ 25
CHAPTER 4.
THE SQUARE TERMS IN GENERALIZED FIBONACCI AND LUCAS 37
SEQUENCES
4.1. Some Fundamental Theorems and Identities 37
4.2. Generalized Lucas Numbers of The Form $c x^{2}$ 40
4.3. The Equations $V_{n}=V_{r} V_{m} x^{2}, V_{n}=V_{m} V_{r}$, and $U_{n}=U_{m} U_{r}$ 55

CHAPTER 5.

CONCLUSIONS AND RECOMMENDATIONS 68
REFERENCES 69
CURRICULUM VITAE 73

LIST OF SYMBOLS AND ABBREVIATIONS

\mathbf{N}	$:$ The set of natural numbers	
\mathbf{Z}	$:$ The set of integers	
\mathbf{R}	$:$ The set of real numbers	
$a \mid b$	$: a$ divides b	
$a \nmid b$	$: a$ does not divide b	
(a, b)	$:$ The greatest common divisor of a and b	
$[a, b]$	$:$ The least common multiple of a and b	
$\left(\begin{array}{l}\dot{\square})\end{array}\right.$	$:$ Jacobi Symbol	
$\left\{F_{n}\right\}$	$:$ Fibonacci sequence	
$\left\{L_{n}\right\}$	$:$ Lucas sequence	
$\left\{P_{n}\right\}$	$:$ Pell sequence	
$\left\{Q_{n}\right\}$	$:$ Pell-Lucas sequence	
$\left\{U_{n}\right\}$	$:$ Generalized Fibonacci sequence	
$\left\{V_{n}\right\}$	$:$ Generalized Lucas sequence	
$\left.\sum_{2}\right\}$	$:$ Summation symbol	
$a \\| b$	$: a \mid b$ and $(a, b / a)=1$	

SOME IDENTITIES AND DIOPHANTINE EQUATIONS INCLUDING GENERALIZED FIBONACCI AND LUCAS NUMBERS

SUMMARY

Key Words: Fibonacci and Lucas Numbers, Generalized Fibonacci and Lucas Numbers, Congruences, Diophantine Equations.

In the first chapter, firstly, Fibonacci and Lucas numbers are mentioned briefly. Also the definitions of the generalized Fibonacci and Lucas sequences are given. Then, the review of the literature concerning generalized Fibonacci and Lucas sequences are given.

In the second chapter, some identities and summation formulas containing generalized Fibonacci and Lucas numbers are obtained. Some of them are well known while the remaining ones new. Using some of these identities and summation formulas, it is given some congruences concerning generalized Fibonacci and Lucas numbers such as

$$
V_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} V_{r}\left(\bmod V_{m}\right), U_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} U_{r}\left(\bmod V_{m}\right),
$$

and

$$
V_{2 m n+r} \equiv(-Q)^{m n} V_{r}\left(\bmod U_{m}\right), U_{2 m n+r} \equiv(-Q)^{m n} U_{r}\left(\bmod U_{m}\right) .
$$

Fibonacci and Lucas numbers of the form $c x^{2}$ are determined after some fundamental theorems and identities concerning Fibonacci and Lucas numbers are given in the third chapter.

In the fourth chapter, generalized Fibonacci and Lucas numbers of the form $c x^{2}$ are determined under some assumptions using congruences concerning generalized Fibonacci and Lucas numbers given in the second chapter.

GENELLEŞTIRİLMIŞ FIBONACCI VE LUCAS SAYILARINI İÇEREN BAZI ÖZDEŞLİKLER VE DİOFANT DENKLEMLERİ

ÖZET

Anahtar Kelimeler: Fibonacci ve Lucas Sayıları, Genelleştirilmiş Fibonacci ve Lucas Sayıları, Kongrüanslar, Diofant Denklemleri.

İlk bölümde, ilk olarak, Fibonacci ve Lucas sayılarından kısaca bahsedilmiştir. Ayrıca, genelleştirilmiş Fibonacci ve Lucas dizilerinin tanımları verilmiştir. Sonra genelleştirilmiş Fibonacci ve Lucas dizileriyle ilgili literatür özeti verilmiştir.

İkinci bölümde, genelleştirilmiş Fibonacci ve Lucas sayılarını içeren bazı özdeşlikler ve toplam formülleri elde edilmiştir. Bunların bazıları yenidir ve bazıları da iyi bilinir. Bu özdeşliklerin ve toplam formüllerinin bazıları kullanılarak,

$$
V_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} V_{r}\left(\bmod V_{m}\right), U_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} U_{r}\left(\bmod V_{m}\right)
$$

ve

$$
V_{2 m n+r} \equiv(-Q)^{m n} V_{r}\left(\bmod U_{m}\right), U_{2 m n+r} \equiv(-Q)^{m n} U_{r}\left(\bmod U_{m}\right)
$$

gibi genelleştirilmiş Fibonacci ve Lucas sayılarını içeren bazı kongrüanslar verilmiştir.

Üçüncü bölümde, Fibonacci ve Lucas sayılarını içeren bazı temel teoremler ve özdeşlikler verildikten sonra $c x^{2}$ formunda olan Fibonacci ve Lucas sayıları tespit edilmiştir.

Dördüncü bölümde ise bazı şartlar altında $c x^{2}$ formunda olan genelleştirilmiş Fibonacci ve Lucas saylları, ikinci bölümdeki genelleştirilmiş Fibonacci ve Lucas sayılarını içeren kongrüanslar kullanılarak tespit edilmiştir.

CHAPTER 1. INTRODUCTION

The Italian mathematician Leonardo Fibonacci is considered as "the most talented western mathematician of the Middle Ages". Fibonacci's mathematical background began during his many visits to North Africa, where he was introduced to early works of algebra, arihtmetic and geometry. He also travelled to countries located in the Mediterranean region and studied the mathematical systems that were practicing. His travels led him to the realization that Europe was lacking on the mathematical scene.

After widespread travel and extensive study of computational systems, Fibonacci wrote the Liber Abaci in 1202, in which he explained the Hindu-Arabic numerals and how they were used in computation.

Although he wrote on a variety of mathematical topics, Fibonacci is remembered particularly for the sequence of numbers

$$
1,1,2,3,5,8,13,21,34,55, \ldots
$$

which is known today as Fibonacci sequence. The elements of Fibonacci sequence are called Fibonacci numbers and nth Fibonacci number is represented by F_{n}. These numbers satisfy the relation

$$
F_{n+1}=F_{n}+F_{n-1}
$$

for $n \geq 1$ with $F_{0}=0, F_{1}=1$. Fibonacci sequence is related to closely many number sequences such as Lucas sequence. Lucas sequence,

$$
2,1,3,4,7,11,18,29,47,76, \ldots,
$$

was introduced by François Edouard Anatole Lucas, a French mathematician. The elements of Lucas sequence are called Lucas numbers. nth Lucas number is represented by L_{n} and these numbers satisfy the relation

$$
L_{n+1}=L_{n}+L_{n-1}
$$

for $n \geq 1$ with $L_{0}=2, L_{1}=1$. In fact, this two sequences are related to each other by hundreds of identities.

Many scientist, especially mathematicians, deal with Fibonacci and Lucas sequences. Because Fibonacci and Lucas numbers are seen in many areas such as in nature, some of the historic buildings, some music instruments, and physics. For example, in nature, pinecones and sunflowers display Fibonacci numbers in a unique and remarkable way. The seeds of sunflowers occur in spirals, one set of spirals going clockwise and one set going counterclockwise. The most common number of this spirals are 34 in one direction and 55 in the other. Consecutive Fibonacci numbers also appear as the number of spirals formed by the scales of pinecones. Moreover, the number of petals in many flowers such as iris, trillium, bluet, wild rose, hepetica, blood root, and cosmos, is often a Fibonacci number. In music, an octave is an interval between two pitches, each of which is represented by the same musical note. On the piano's keyboard, an octave consist of 5 black keys and 8 white keys, totaling 13 keys. In addition, the black keys are divided into a group of two and a group of three keys. Besides, there are a close relationship between Fibonacci (or Lucas) sequence and golden ratio. It is well known that as n gets larger and larger, the ratio F_{n+1} / F_{n} (or L_{n+1} / L_{n}) approaches the golden ratio $(1+\sqrt{5}) / 2$.

On the other hand, Fibonacci and Lucas numbers have many interesting properties. In many studies, it is given the summation formulas, divisibility properties, congruences and also many identities concerning sequences of these numbers. Some congruences concerning Fibonacci and Lucas numbers are given in the following:

$$
\begin{aligned}
F_{2 m n+r} & \equiv(-1)^{m n} F_{r}\left(\bmod F_{m}\right), \\
L_{2 m n+r} & \equiv(-1)^{m n} L_{r}\left(\bmod F_{m}\right), \\
L_{2 m n+r} & \equiv(-1)^{(m+1) n} L_{r}\left(\bmod L_{m}\right),
\end{aligned}
$$

and

$$
F_{2 m n+r} \equiv(-1)^{(m+1) n} F_{r}\left(\bmod L_{m}\right)
$$

for all $n, m \in \mathbf{N} \cup\{0\}$ and $r \in \mathbf{Z}$ [22]. Moreover, some studies on the divisibility properties of F_{n} and L_{n} have been made. For example, it was shown that if $m \mid n$, then $F_{m} \mid F_{n}$. Then, in 1964, L. Carlitz established the converse of this case, that is, if $F_{m} \mid F_{n}$, then $m \mid n$. Moreover, in [5], L. Carlitz showed the following two divisibility properties:
a) $L_{m} \mid F_{n}$ if and only if $2 m \mid n$, where $m \geq 2$.
b) $L_{m} \mid L_{n}$ if and only if $n=(2 k+1) m$, where $m \geq 2$ and $k \geq 0$.

These divisibility properties were also investigated in [15], [16], and [48]. Also, the proofs of these divisibility properties were done in [22] using the congruences given above.

Besides, while some summation formulas containing Fibonacci and Lucas numbers were found, the Fibonacci matrix

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

was studied by Charles H. King in 1960 for his master thesis [25], and some other matrices were used. Using these matrices, many identities concerning Fibonacci and Lucas numbers are obtained. In fact, if $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, then it can be seen that $\mathbf{A}^{n}=\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]$. Thus, from the matrix equality $\mathbf{A}^{m+n}=\mathbf{A}^{m} \mathbf{A}^{n}$, it is obtained the identities

$$
\begin{gathered}
F_{m+n+1}=F_{m+1} F_{n+1}+F_{m} F_{n}, \\
F_{m+n}=F_{m+1} F_{n}+F_{m} F_{n-1},
\end{gathered}
$$

and

$$
F_{m+n-1}=F_{m} F_{n}+F_{m-1} F_{n-1} .
$$

Then, using these identities, it is obtained the identities

$$
\begin{gathered}
F_{m+1} L_{n}+F_{m} L_{n-1}=L_{m+n}, \\
F_{m} L_{n}+F_{n} L_{m}=2 F_{m+n},
\end{gathered}
$$

and

$$
L_{m} L_{n}+5 F_{m} F_{n}=2 L_{m+n} .
$$

Other than the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ in [21], the authors used the matrix $\mathbf{S}=\left[\begin{array}{ll}1 / 2 & 5 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$ and they showed that $\mathbf{S}^{n}=\left[\begin{array}{cc}L_{n} / 2 & 5 F_{n} / 2 \\ F_{n} / 2 & L_{n} / 2\end{array}\right]$. Using this property and the fact that $\mathbf{S}^{2}=\mathbf{S}+\mathbf{I}$, the authors obtained some identities concerning Fibonacci and Lucas numbers.

Moreover, many mathematicians are interested in determining the Fibonacci and Lucas numbers which are a perfect square or twice a perfect square. Using the divisibility properties of F_{n} and L_{n} and congruences given above, Fibonacci and Lucas numbers which are a perfect square or twice a perfect square are determined. Historically, we will summarize studies in this subject in the next. Besides, determining Fibonacci and Lucas numbers of the form x^{2} and $2 x^{2}$ is facilitated in the solution of many Diophantine equations. For example, it is well known that all positive integer solutions of the equations

$$
x^{2}-5 y^{2}=\mp 4
$$

and

$$
x^{2}-x y-y^{2}=\mp 1
$$

are given by $(x, y)=\left(L_{n}, F_{n}\right)$ and $(x, y)=\left(F_{n+1}, F_{n}\right)$ with $n \geq 1$, respectively. Thus, it can be easily found all positive integer solutions of the equations

$$
\begin{gathered}
x^{4}-5 y^{2}=\mp 4, x^{2}-5 y^{4}=\mp 4,4 x^{4}-5 y^{2}=\mp 4, \\
x^{4}-x^{2} y-y^{2}=\mp 1, x^{2}-x y^{2}-y^{4}=\mp 1,
\end{gathered}
$$

since Fibonacci and Lucas numbers of the form x^{2} and $2 x^{2}$ are known. For more information about Fibonacci and Lucas numbers, one can consult [26] and [48].

The studies mentioned above have been made for generalized Fibonacci and Lucas sequences, too.

In [17], Horadam defined a sequence as follows:

$$
W_{0}=a, W_{1}=b \text { and } W_{n+1}=W_{n+1}(a, b, P, Q)=P W_{n}-Q W_{n-1}
$$

for $n \geq 1$, where $a, b, P, Q \in \mathbf{Z}$. Particular cases of the sequence $\left(W_{n}\right)$ are sequences $\left(F_{n}\right),\left(L_{n}\right),\left(U_{n}\right)$, and $\left(V_{n}\right)$ given by

$$
\begin{gathered}
W_{n}(0,1, P,-Q)=U_{n}(P, Q), \\
W_{n}(2, P, P,-Q)=V_{n}(P, Q), \\
W_{n}(0,1,1,-1)=F_{n},
\end{gathered}
$$

and

$$
W_{n}(2,1,1,-1)=L_{n},
$$

respectively. Thus, the sequence $\left(U_{n}\right)$ called generalized Fibonacci sequence satisfies the recurrence relation $U_{n+1}=U_{n+1}(P, Q)=P U_{n}+Q U_{n-1}$ for $n \geq 1$ with $U_{0}=0, U_{1}=1$ and the sequence $\left(V_{n}\right)$ called generalized Lucas sequence satisfies the recurrence relation $V_{n+1}=V_{n+1}(P, Q)=P V_{n}+Q V_{n-1}$ for $n \geq 1$ with $V_{0}=2$, $V_{1}=P$. Of course, the sequences $\left(U_{n}\right)$ and $\left(V_{n}\right)$ are generalizations of Fibonacci and Lucas sequences and the sequence $\left(W_{n}\right)$ is also a different generalization of Fibonacci and Lucas sequences. But Horadam is not the first author, who defined generalized Fibonacci and Lucas sequences. The sequences $\left(U_{n}\right)$ and $\left(V_{n}\right)$, firstly, were introduced by Lucas in [28]. For more information about generalized Fibonacci and Lucas sequences, one can consult [20], [28], [33], [37], and [41].
U_{n} and V_{n} are called nth generalized Fibonacci number and nth generalized Lucas number, respectively. Generalized Fibonacci and Lucas numbers for negative subscripts are given by

$$
\begin{equation*}
U_{-n}=\frac{-U_{n}}{(-Q)^{n}} \text { and } V_{-n}=\frac{V_{n}}{(-Q)^{n}}, \tag{1.1}
\end{equation*}
$$

respectively.

Now assume that $P^{2}+4 Q>0$. Then it is well known that

$$
\begin{equation*}
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}=\alpha^{n}+\beta^{n}, \tag{1.2}
\end{equation*}
$$

where $\alpha=\left(P+\sqrt{P^{2}+4 Q}\right) / 2$ and $\beta=\left(P-\sqrt{P^{2}+4 Q}\right) / 2$ are the roots of the characteristic equation $x^{2}-P x-Q=0$. Clearly $\alpha+\beta=P, \alpha-\beta=\sqrt{P^{2}+4 Q}$, and $\alpha \beta=-Q$. The formulas in (1.2) are known as Binet's formulas. Moreover, it is well known the relations

$$
\begin{equation*}
V_{n}=U_{n+1}+Q U_{n-1}=P U_{n}+2 Q U_{n-1} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(P^{2}+4 Q\right) U_{n}=V_{n+1}+Q V_{n-1} \tag{1.4}
\end{equation*}
$$

for every $n \in \mathbf{Z}$ between the sequences U_{n} and V_{n} and these relations can be easily proved using Binet's formulas.

Besides, generalized Fibonacci and Lucas numbers have the following divisibility properties:
c) If $U_{m} \neq 1$, then $U_{m} \mid U_{n}$ if and only if $m \mid n$.
d) If $V_{m} \neq 1$, then $V_{m} \mid U_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is even.
e) If $V_{m} \neq 1$, then $V_{m} \mid V_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is odd.

These divisibility properties have been expressed in [15], [39], [40], [41], and [42].

On the other hand, generalized Fibonacci and Lucas numbers are the solutions of some Diophantine equations. For example, all positive integer solutions of the equations $\quad x^{2}-\left(P^{2}+4\right) y^{2}=4 \quad$ and $\quad x^{2}-\left(P^{2}+4\right) y^{2}=-4 \quad$ are given by $(x, y)=\left(V_{2 n}(P, 1), U_{2 n}(P, 1)\right) \quad$ with $\quad n \geq 1$ and $(x, y)=\left(V_{2 n-1}(P, 1), U_{2 n-1}(P, 1)\right)$ with $n \geq 1$, respectively. And all positive integer solutions of the equation $x^{2}-\left(P^{2}-4\right) y^{2}=4$ are given by $(x, y)=\left(V_{n}(P,-1), U_{n}(P,-1)\right)$ with $n \geq 1$. Also all positive integer solutions of the equations $x^{2}-P x y-y^{2}=1$ and $x^{2}-P x y-y^{2}=-1$ are given by $(x, y)=\left(U_{2 n+1}(P, 1), U_{2 n}(P, 1)\right)$ with $n \geq 1$ and $(x, y)=\left(U_{2 n}(P, 1), U_{2 n-1}(P, 1)\right)$ with $n \geq 1$, respectively. Moreover, all positive integer solutions of the equation $x^{2}-P x y+y^{2}=1$ are given by $(x, y)=\left(U_{n+1}(P,-1), U_{n}(P,-1)\right)$ with $n \geq 1$. The solutions of these equations were
given in [18], [24], [30], and [51]. Besides, all positive integer solutions of the equations

$$
\begin{aligned}
& x^{4}-\left(P^{2}+4\right) y^{2}=\mp 4, x^{2}-\left(P^{2}+4\right) y^{4}=\mp 4, \\
& x^{4}-\left(P^{2}-4\right) y^{2}=4, x^{2}-\left(P^{2}-4\right) y^{4}=4, \\
& x^{4}-P x^{2} y-y^{2}=\mp 1, x^{2}-P x y^{2}-y^{4}=\mp 1,
\end{aligned}
$$

and

$$
x^{2}-P x y^{2}+y^{4}=1
$$

are easily found using generalized Fibonacci and Lucas numbers, which are perfect square. Solutions of the above equations were investigated in [9], [10], and [12].

Now, we give a summary of the literature concerning generalized Fibonacci and Lucas numbers of the form $c x^{2}$.

As it is mentioned above, many mathematicians are interested in determining the Fibonacci and Lucas numbers, which are perfect square. The problem of characterizing the square Fibonacci numbers was first introduced in the book by Ogilvy [36]. In 1963, both, Moser and Carlitz [32], and Rollet [46] proposed this problem. In 1964, the square conjecture was proved by Cohn [6] and independently by Wyler [50]. Later the problem of characterizing the square Lucas numbers was solved by Cohn [8] and by Alfred [1]. Moreover, determining the Fibonacci and Lucas numbers, which are twice a perfect square, has been the subject of curiosity, too. In 1965, Cohn solved the Diophantine equations $F_{n}=2 x^{2}$ and $L_{n}=2 x^{2}$ in [8]. Congruences were widely used in the solution of these problems.

Besides, there has been much interest in when the terms of generalized Fibonacci and Lucas sequences are perfect square or k times a square. Now we summarize here results on this problem. Firstly, in [27], Ljunggren showed that for $n \geq 2, P_{n}$ is a perfect square precisely for $P_{7}=13^{2}$, and $P_{n}=2 x^{2}$ precisely for $P_{2}=2$. In [9, 10], Cohn solved the Diophantine equations $U_{n}=x^{2}, 2 x^{2}$ and $V_{n}=x^{2}, 2 x^{2}$ with odd P and $Q= \pm 1$. Moreover, in [39], Ribenboim and McDaniel determined all indices such that for all odd relatively prime integers P and $Q, U_{n}, 2 U_{n}, V_{n}$ or $2 V_{n}$ is a
square. In [31], Mignotte and Pethö showed that if $P \geq 3$ and $Q=-1$, then the equation $U_{n}=x^{2}$ has the solutions $(P, n)=(338,4)$ or $(3,6)$ for $n \geq 3$, and that if $P \geq 4$ and $Q=-1$, then the equation $U_{n}=w x^{2}, w \in\{2,3,6\}$, has no solutions for $n \geq 4$. In [34], Nakamula and Pethö have given the solutions of the equations $U_{n}=w x^{2}$ for $Q=1$ with $w \in\{1,2,3,6\}$. In [40], Ribenboim and McDaniel showed that if P is even, $Q \equiv 3(\bmod 4)$, and $U_{n}=x^{2}$, then n is a square or twice an odd square, and all prime factors of n divide $P^{2}+4 Q$. Also, in [42], they determined all indices such that for all odd relatively prime integers P and $Q, U_{n}=k x^{2}$ under the following assumptions: For all integer $u \geq 1, k$ is such that, for each odd divisor h of k, the Jacobi symbol $\left(\frac{-V_{2^{u}}}{h}\right)$ is defined and equals to 1 . Moreover, they solved the equation $V_{n}=3 x^{2}$ for $P \equiv 1,3(\bmod 8), Q \equiv 3(\bmod 4),(P, Q)=1$ and solved the equation $U_{n}=3 x^{2}$ for all odd relatively prime integers P and Q. In [19], Kagawa and Terai showed that if $P=2 s$ with even s and $Q=1$, then $U_{n}, 2 U_{n}, V_{n}$ or $2 V_{n}=x^{2}$ implies $n \leq 3$ under some assumptions.

To solve the equations mentioned above, divisibility properties, congruences, and Jacobi symbol were widely used by Cohn, Ribenboim and McDaniel.

In the second chapter of this thesis, some identities and summation formulas containing generalized Fibonacci and Lucas numbers are obtained. In finding these identities and summation formulas, generalized Fibonacci matrix $\left[\begin{array}{cc}P & Q \\ 1 & 0\end{array}\right]$ and also the matrix $\left[\begin{array}{cc}P / 2 & \left(P^{2}+4 Q\right) / 2 \\ 1 / 2 & P / 2\end{array}\right]$ are used. Using some of these identities and summation formulas, some congruences concerning generalized Fibonacci and Lucas numbers such as

$$
V_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} V_{r}\left(\bmod V_{m}\right), U_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} U_{r}\left(\bmod V_{m}\right),
$$

and

$$
V_{2 m n+r} \equiv(-Q)^{m n} V_{r}\left(\bmod U_{m}\right), U_{2 m n+r} \equiv(-Q)^{m n} U_{r}\left(\bmod U_{m}\right),
$$

are given. The matrices $\left[\begin{array}{cc}P & Q \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{cc}P / 2 & \left(P^{2}+4 Q\right) / 2 \\ 1 / 2 & P / 2\end{array}\right]$ satisfy the characteristic equation $x^{2}-P x-Q=0$. All the 2×2 matrices \mathbf{X} satisfying the relation $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$ are also characterized in the second chapter. In the third chapter, the Diophantine equations $L_{n}=2 L_{m} x^{2}, \quad F_{n}=2 F_{m} x^{2}, \quad F_{n}=3 F_{m} x^{2}, \quad L_{n}=6 L_{m} x^{2}$, and $F_{n}=6 F_{m} x^{2}$ are solved. Finally, in the fourth chapter, generalized Fibonacci and Lucas numbers of the form $c x^{2}$ are determined under some assumptions. The Jacobi symbol, the above congruences and divisibility properties are widely used in the solutions of the problems under consideration.

CHAPTER 2. SOME NEW IDENTITIES CONCERNING GENERALIZED FIBONACCI AND LUCAS NUMBERS

In this chapter, some identities containing generalized Fibonacci and Lucas numbers are obtained. Some of them are new and some are well known. Using these identities, some congruences concerning generalized Fibonacci and Lucas numbers are given.

Many identities concerning generalized Fibonacci and Lucas numbers can be proved using Binet's formulas, induction, and matrix representations. In the literature, for example in [14] and [20], the matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
Q & P
\end{array}\right] \text { and }\left[\begin{array}{ll}
P & Q \\
1 & 0
\end{array}\right]
$$

are used in order to produce identities. Since

$$
\left[\begin{array}{ll}
P & Q \\
1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
0 & 1 \\
Q & P
\end{array}\right]
$$

are similar matrices, they give the same identities.

In this chapter, we also characterize all the 2×2 matrices \mathbf{X} satisfying the relation $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$. Then some identities are obtained using this property. In fact, the similar matrices

$$
\left[\begin{array}{ll}
P & Q \\
1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
0 & 1 \\
Q & P
\end{array}\right]
$$

are special cases of the 2×2 matrices \mathbf{X} satisfying $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$.

Theorem 2.1. If \mathbf{X} is a square matrix with $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$, then $\mathbf{X}^{n}=U_{n} \mathbf{X}+Q U_{n-1} \mathbf{I}$ for every $n \in \mathbf{Z}$.

Proof: If $n=0$, then the proof is obvious. It can be shown by induction that $\mathbf{X}^{n}=U_{n} \mathbf{X}+Q U_{n-1} \mathbf{I}$ for every $n \in \mathbf{N}$. We now show that $\mathbf{X}^{-n}=U_{-n} \mathbf{X}+Q U_{-n-1} \mathbf{I}$ for every $n \in \mathbf{N}$. Let $\mathbf{Y}=P \mathbf{I}-\mathbf{X}=-Q \mathbf{X}^{-1}$. Then

$$
\begin{aligned}
\mathbf{Y}^{2} & =(P \mathbf{I}-\mathbf{X})^{2}=P^{2} \mathbf{I}-2 P \mathbf{X}+\mathbf{X}^{2} \\
& =P^{2} \mathbf{I}-2 P \mathbf{X}+P \mathbf{X}+Q \mathbf{I}=P(P \mathbf{I}-\mathbf{X})+Q \mathbf{I}=P \mathbf{Y}+Q \mathbf{I} .
\end{aligned}
$$

Thus $\mathbf{Y}^{n}=U_{n} \mathbf{Y}+Q U_{n-1} \mathbf{I}$ for every $n \in \mathbf{N}$, which shows that

$$
\begin{aligned}
(-Q)^{n} \mathbf{X}^{-n} & =U_{n} \mathbf{Y}+Q U_{n-1} \mathbf{I}=U_{n}(P \mathbf{I}-\mathbf{X})+Q U_{n-1} \mathbf{I} \\
& =\left(P U_{n}+Q U_{n-1}\right) \mathbf{I}-U_{n} \mathbf{X}=-U_{n} \mathbf{X}+U_{n+1} \mathbf{I} .
\end{aligned}
$$

Then we get $\mathbf{X}^{-n}=\frac{-U_{n} \mathbf{X}}{(-Q)^{n}}+\frac{U_{n+1} \mathbf{I}}{(-Q)^{n}}$. This implies that $\mathbf{X}^{-n}=U_{-n} \mathbf{X}+Q U_{-n-1} \mathbf{I}$ by (1.1). This completes the proof.

Theorem 2.2. Let \mathbf{X} be an arbitrary 2×2 matrix. Then $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$ if and only if \mathbf{X} is of the form

$$
\mathbf{X}=\left[\begin{array}{cc}
a & b \\
c & P-a
\end{array}\right]
$$

for $\quad a, b, c \in \mathbf{R} \quad$ with $\quad \operatorname{det} \mathbf{X}=-Q \quad$ or $\quad \mathbf{X}=\lambda \mathbf{I}$, where $\lambda \in\{\alpha, \beta\}$, $\alpha=\left(P+\sqrt{P^{2}+4 Q}\right) / 2$ and $\beta=\left(P-\sqrt{P^{2}+4 Q}\right) / 2$.

Proof: Assume that $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$. Then the minimal polynomial of \mathbf{X} divides $x^{2}-P x-Q$. Therefore the minimal polynomial must be $x-\alpha$ or $x-\beta$ or $x^{2}-P x-Q$. In the first case $\mathbf{X}=\alpha \mathbf{I}$, in the second case $\mathbf{X}=\beta \mathbf{I}$, and in the third case, since \mathbf{X} is 2×2 matrix, its characteristic polynomial must be $x^{2}-P x-Q$, so its trace is P and its determinant is $-Q$. The argument reverses. This completes the proof.

Corollary 2.1. If $\mathbf{X}=\left[\begin{array}{cc}a & b \\ c & P-a\end{array}\right]$ is a matrix with $\operatorname{det} \mathbf{X}=-Q$, then

$$
\mathbf{X}^{n}=\left[\begin{array}{cc}
a U_{n}+Q U_{n-1} & b U_{n} \\
c U_{n} & U_{n+1}-a U_{n}
\end{array}\right] .
$$

Proof: Since $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$, the result follows from Theorem 2.1.

Corollary 2.2. $\alpha^{n}=\alpha U_{n}+Q U_{n-1}$ and $\beta^{n}=\beta U_{n}+Q U_{n-1}$ for every $n \in \mathbf{Z}$.

Proof: Take $\mathbf{X}=\left[\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right]$ with $\operatorname{det} \mathbf{X}=\alpha \beta=-Q$. Then by Corollary 2.1, it follows that

$$
\mathbf{X}^{n}=\left[\begin{array}{cc}
\alpha^{n} & 0 \\
0 & \beta^{n}
\end{array}\right]=\left[\begin{array}{cc}
\alpha U_{n}+Q U_{n-1} & 0 \\
0 & \beta U_{n}+Q U_{n-1}
\end{array}\right]
$$

This implies that $\alpha^{n}=\alpha U_{n}+Q U_{n-1}$ and $\beta^{n}=\beta U_{n}+Q U_{n-1}$.

Corollary 2.3. $U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$ and $V_{n}=\alpha^{n}+\beta^{n}$ for every $n \in \mathbf{Z}$.

Proof: The result follows from Corollary 2.2.

Corollary 2.4. Let $\mathbf{S}=\left[\begin{array}{cc}P / 2 & \left(P^{2}+4 Q\right) / 2 \\ 1 / 2 & P / 2\end{array}\right]$. Then $\mathbf{S}^{n}=\left[\begin{array}{cc}V_{n} / 2 & \left(P^{2}+4 Q\right) U_{n} / 2 \\ U_{n} / 2 & V_{n} / 2\end{array}\right]$ for every $n \in \mathbf{Z}$.

Proof: Since $\mathbf{S}^{2}=P \mathbf{S}+Q \mathbf{I}$, the proof follows from Corollary 2.1.

Corollary 2.5. Let $\mathbf{X}=\left[\begin{array}{ll}P & Q \\ 1 & 0\end{array}\right]$. Then $\mathbf{X}^{n}=\left[\begin{array}{cc}U_{n+1} & Q U_{n} \\ U_{n} & Q U_{n-1}\end{array}\right]$.

Proof: Since $\mathbf{X}^{2}=P \mathbf{X}+Q \mathbf{I}$, the proof follows from Corollary 2.1.

Lemma 2.1. Let a, b, and $P a+b$ be nonzero real numbers. If $P^{2}+4 Q$ is not a perfect square, then

$$
\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j} U_{j+r}=-(-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}(-a)^{j}(P a+b)^{n-j} U_{j-r}
$$

and

$$
\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j} V_{j+r}=(-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}(-a)^{j}(P a+b)^{n-j} V_{j-r} .
$$

Proof: Let $\mathbf{Z}[\alpha]=\{a \alpha+b \mid a, b \in \mathbf{Z}\}$. Define $\phi: \mathbf{Z}[\alpha] \rightarrow \mathbf{Z}[\alpha]$ by $\varphi(a \alpha+b)=a \beta+b=a(P-\alpha)+b=-a \alpha+P a+b$. Then it can be shown that φ is a ring homomorphism. Moreover, it can be shown that φ is injective. On the other hand, we get

$$
\begin{gathered}
-\alpha U_{n}+U_{n+1}=-\alpha U_{n}+P U_{n}+Q U_{n-1}=\varphi\left(\alpha U_{n}+Q U_{n-1}\right) \\
=\varphi\left(\alpha^{n}\right)=\beta^{n}=(-Q)^{n} \alpha^{-n} .
\end{gathered}
$$

Then it is seen that

$$
\begin{aligned}
\varphi\left((a \alpha+b)^{n} \alpha^{r}\right) & =\varphi\left((a \alpha+b)^{n}\right) \varphi\left(\alpha^{r}\right)=(-a \alpha+P a+b)^{n}(-Q)^{r} \alpha^{-r} \\
= & (-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}(-a \alpha)^{j}(P a+b)^{n-j} \alpha^{-r} \\
= & (-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}(-a)^{j}(P a+b)^{n-j} \alpha^{j-r} \\
= & (-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}(-a)^{j}(P a+b)^{n-j}\left(\alpha U_{j-r}+Q U_{j-r-1}\right) \\
= & \alpha\left((-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}(-a)^{j}(P a+b)^{n-j} U_{j-r}\right) \\
& +\left(-(-Q)^{r+1} \sum_{j=0}^{n}\binom{n}{j}(-a)^{j}(P a+b)^{n-j} U_{j-r-1}\right) .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\varphi\left((a \alpha+b)^{n} \alpha^{r}\right)= & \varphi\left(\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j} \alpha^{j+r}\right) \\
= & \varphi\left(\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j}\left(\alpha U_{j+r}+Q U_{j+r-1}\right)\right) \\
= & \alpha\left(-\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j} U_{j+r}\right) \\
& +\left(\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j}\left(P U_{j+r}+Q U_{j+r-1}\right)\right) \\
= & \alpha\left(-\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j} U_{j+r}\right)+\left(\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j} U_{j+r+1}\right) .
\end{aligned}
$$

Then the proof follows.

Theorem 2.3. Let $m, r \in \mathbf{Z}$ with $m \neq 0$ and $m \neq 1$. Then

$$
U_{m n+r}=\sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} U_{j+r} Q^{n-j}
$$

and

$$
V_{m n+r}=\sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} V_{j+r} Q^{n-j}
$$

Proof: From Corollary 2.4, it follows that

$$
\mathbf{S}^{n n+r}=\left[\begin{array}{cc}
\frac{V_{m n+r}}{2} & \frac{\left(P^{2}+4 Q\right) U_{m n+r}}{2} \\
\frac{U_{m n+r}}{2} & \frac{V_{m n+r}}{2}
\end{array}\right]
$$

On the other hand, $\mathbf{S}^{m}=U_{m} \mathbf{S}+Q U_{m-1} \mathbf{I}$ and therefore

$$
\begin{aligned}
\mathbf{S}^{n n+r} & =\left(\mathbf{S}^{m}\right)^{n} \mathbf{S}^{r}=\left(U_{m} \mathbf{S}+Q U_{m-1} \mathbf{I}\right)^{n} \mathbf{S}^{r}=\sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} Q^{n-j} \mathbf{S}^{j+r} \\
& =\left[\begin{array}{cc}
\frac{1}{2} \sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} Q^{n-j} V_{j+r} & \frac{\left(P^{2}+4 Q\right)}{2} \sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} Q^{n-j} U_{j+r} \\
\frac{1}{2} \sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} Q^{n-j} U_{j+r} & \frac{1}{2} \sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} U_{m-1}^{n-j} Q^{n-j} V_{j+r}
\end{array}\right] .
\end{aligned}
$$

So, the proof follows.

Corollary 2.6. Let $m, r \in \mathbf{Z}$ with $m \neq 0$ and $m \neq 1$. If $P^{2}+4 Q$ is not a perfect square, then

$$
U_{m n+r}=-(-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}\left(-U_{m}\right)^{j} U_{m+1}^{n-j} U_{j-r}
$$

and

$$
V_{m n+r}=(-Q)^{r} \sum_{j=0}^{n}\binom{n}{j}\left(-U_{m}\right)^{j} U_{m+1}^{n-j} V_{j-r} .
$$

Proof: The proof follows from Lemma 2.1 and Theorem 2.3 by taking $a=U_{m}$ and $b=Q U_{m-1}$.

Corollary 2.7. $V_{n}^{2}-\left(P^{2}+4 Q\right) U_{n}^{2}=4(-Q)^{n}$ for every $n \in \mathbf{Z}$.

Proof: From Corollary 2.4, it follows that

$$
\operatorname{det} \mathbf{S}^{n}=(\operatorname{det} \mathbf{S})^{n}=(-Q)^{n}
$$

and

$$
\operatorname{det} \mathbf{S}^{n}=\frac{V_{n}^{2}-\left(P^{2}+4 Q\right) U_{n}^{2}}{4}
$$

which completes the proof.

Theorem 2.4. Let $n \in \mathbf{N}$ and m be a nonzero integer. Then
$2^{n} V_{m n+r}=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} V_{m}^{n-2 j}\left(P^{2}+4 Q\right)^{j} V_{r}+\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} V_{m}^{n-2 j-1}\left(P^{2}+4 Q\right)^{j+1} U_{r}$
and
$2^{n} U_{m n+r}=\frac{1}{2^{n}} \sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} V_{m}^{n-2 j}\left(P^{2}+4 Q\right)^{j} U_{r}+\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} V_{m}^{n-2 j-1}\left(P^{2}+4 Q\right)^{j} V_{r}$.

Proof: Let $\quad \mathbf{K}=\mathbf{S}+Q \mathbf{S}^{-1}=\left[\begin{array}{cc}0 & P^{2}+4 Q \\ 1 & 0\end{array}\right]$. Then $\quad \mathbf{K}^{2 j}=\left(P^{2}+4 Q\right)^{j} \mathbf{I} \quad$ and $\mathbf{K}^{2 j+1}=\left(P^{2}+4 Q\right)^{j} \mathbf{K}$. Since

$$
\mathbf{S}^{m}=\frac{1}{2}\left(V_{m} \mathbf{I}+U_{m} \mathbf{K}\right),
$$

it follows that

$$
\mathbf{S}^{m n+r}=\left(\mathbf{S}^{m}\right)^{n} \mathbf{S}^{r}=\left(\frac{1}{2}\left(V_{m} \mathbf{I}+U_{m} \mathbf{K}\right)\right)^{n} \mathbf{S}^{r}=\frac{1}{2^{n}}\left(\sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} K^{j} V_{m}^{n-j}\right) \mathbf{S}^{r}
$$

and therefore

$$
\begin{aligned}
2^{n} \mathbf{S}^{n n+r} & =\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} V_{m}^{n-2 j} \mathbf{K}^{2 j} \mathbf{S}^{r}+\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} V_{m}^{n-2 j-1} \mathbf{K}^{2 j+1} \mathbf{S}^{r} \\
= & \sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} V_{m}^{n-2 j}\left(P^{2}+4 Q\right)^{j} \mathbf{S}^{r} \\
& +\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} V_{m}^{n-2 j-1}\left(P^{2}+4 Q\right)^{j} \mathbf{K} \mathbf{S}^{r} .
\end{aligned}
$$

Since

$$
\mathbf{K S}^{r}=\left[\begin{array}{cc}
\frac{\left(P^{2}+4 Q\right) U_{r}}{2} & \frac{\left(P^{2}+4 Q\right) V_{r}}{2} \\
\frac{V_{r}}{2} & \frac{\left(P^{2}+4 Q\right) U_{r}}{2}
\end{array}\right]
$$

and

$$
\mathbf{S}^{m n+r}=\left[\begin{array}{cc}
\frac{V_{m n+r}}{2} & \frac{\left(P^{2}+4 Q\right) U_{m n+r}}{2} \\
\frac{U_{m n+r}}{2} & \frac{V_{m n+r}}{2}
\end{array}\right]
$$

the proof is completed.

Theorem 2.5.

$$
\begin{equation*}
U_{m+n}=U_{m} U_{n+1}+Q U_{m-1} U_{n} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(-Q)^{n-1} U_{m-n}=U_{m-1} U_{n}-U_{m} U_{n-1} \tag{2.2}
\end{equation*}
$$

for every $m, n \in \mathbf{Z}$.

Proof: Let $\mathbf{X}=\left[\begin{array}{ll}P & Q \\ 1 & 0\end{array}\right]$. Then from Corollary 2.5, it follows that

$$
\mathbf{X}^{m+n}=\mathbf{X}^{m} \mathbf{X}^{n}=\left[\begin{array}{cc}
U_{m+1} & Q U_{m} \\
U_{m} & Q U_{m-1}
\end{array}\right]\left[\begin{array}{cc}
U_{n+1} & Q U_{n} \\
U_{n} & Q U_{n-1}
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{X}^{m-n} & =\mathbf{X}^{m}\left(\mathbf{X}^{n}\right)^{-1}=\left[\begin{array}{cc}
U_{m+1} & Q U_{m} \\
U_{m} & Q U_{m-1}
\end{array}\right]\left[\begin{array}{cc}
U_{n+1} & Q U_{n} \\
U_{n} & Q U_{n-1}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
U_{m+1} & Q U_{m} \\
U_{m} & Q U_{m-1}
\end{array}\right] \frac{1}{(-Q)^{n}}\left[\begin{array}{cc}
Q U_{n-1} & -Q U_{n} \\
-U_{n} & U_{n+1}
\end{array}\right] .
\end{aligned}
$$

Then the proof is completed.

Now some identities are given which will be used in the sequel. These identities can be obtained using matrices \mathbf{S}^{n} and \mathbf{X}^{n} and they are;

$$
\begin{align*}
& U_{n} V_{m+1}+Q U_{n-1} V_{m}=V_{n+m}, \tag{2.3}\\
& V_{m} V_{n}-\left(P^{2}+4 Q\right) U_{m} U_{n}=2(-Q)^{n} V_{m-n}, \tag{2.4}\\
& U_{m} V_{n}-U_{n} V_{m}=2(-Q)^{n} U_{m-n}, \tag{2.5}\\
& V_{m} V_{n}=V_{m+n}+(-Q)^{n} V_{m-n}, \tag{2.6}\\
& \left(P^{2}+4 Q\right) U_{m} U_{n}=V_{m+n}-(-Q)^{n} V_{m-n}, \tag{2.7}\\
& U_{m} V_{n}=U_{m+n}+(-Q)^{n} U_{m-n}, \tag{2.8}\\
& (-Q)^{n} V_{m-n}=U_{m+1} V_{n}-V_{n+1} U_{m}, \tag{2.9}\\
& V_{r} V_{r+2}-V_{r+1}^{2}=(-Q)^{r}\left(P^{2}+4 Q\right) . \tag{2.10}
\end{align*}
$$

Theorem 2.6. Let $m, n, r \in \mathbf{Z}$ with $r \neq 0$. Then

$$
\begin{aligned}
& U_{r} U_{m+n+r}=U_{m+r} U_{n+r}-(-Q)^{r} U_{m} U_{n}, \\
& U_{r} U_{m+n-r}=U_{m} U_{n}-(-Q)^{r} U_{m-r} U_{n-r},
\end{aligned}
$$

and

$$
U_{r} U_{m+n}=U_{m} U_{n+r}-(-Q)^{r} U_{m-r} U_{n} .
$$

Proof: Take $a=\frac{U_{r+1}}{U_{r}}$ and consider the matrix $\mathbf{A}=\left[\begin{array}{cc}a & b \\ c & P-a\end{array}\right]$ with $\operatorname{det} \mathbf{A}=-Q$.
Then by Corollary 2.1, one gets

$$
\mathbf{A}^{n}=\left[\begin{array}{cc}
a U_{n}+Q U_{n-1} & b U_{n} \\
c U_{n} & U_{n+1}-a U_{n}
\end{array}\right]=\left[\begin{array}{cc}
\frac{U_{r+1}}{U_{r}} U_{n}+Q U_{n-1} & b U_{n} \\
c U_{n} & U_{n+1}-\frac{U_{r+1}}{U_{r}} U_{n}
\end{array}\right] .
$$

Using (2.1) and (2.2), it is seen that

$$
\mathbf{A}^{n}=\left[\begin{array}{cc}
\frac{U_{n+r}}{U_{r}} & b U_{n} \\
c U_{n} & \frac{-(-Q)^{r} U_{n-r}}{U_{r}}
\end{array}\right]
$$

Since $\operatorname{det} \mathbf{A}=-Q$ and $a=\frac{U_{r+1}}{U_{r}}$, it follows that

$$
\begin{aligned}
b c & =\frac{P U_{r} U_{r+1}+Q U_{r}^{2}-U_{r+1}^{2}}{U_{r}^{2}}=\frac{U_{r}\left(P U_{r+1}+Q U_{r}\right)-U_{r+1}^{2}}{U_{r}^{2}} \\
& =\frac{U_{r} U_{r+2}-U_{r+1}^{2}}{U_{r}^{2}}=\frac{-(-Q)^{r}}{U_{r}^{2}}
\end{aligned}
$$

by (2.2). If we consider the matrix product $\mathbf{A}^{n} \mathbf{A}^{m}=\mathbf{A}^{m+n}$, then the result follows.

We can give the following corollary.

Corollary 2.8. $U_{n+r} U_{n-r}-U_{n}^{2}=-(-Q)^{n-r} U_{r}^{2}$ for all $n, r \in \mathbf{Z}$.

Proof: Since $\operatorname{det} \mathbf{A}=-Q, \operatorname{det} \mathbf{A}^{n}=(\operatorname{det} \mathbf{A})^{n}=(-Q)^{n}$. Moreover,

$$
\operatorname{det} \mathbf{A}^{n}=-(-Q)^{r} \frac{U_{n+r}}{U_{r}} \frac{U_{n-r}}{U_{r}}-b c U_{n}^{2}=-(-Q)^{r}\left(\frac{U_{n+r} U_{n-r}-U_{n}^{2}}{U_{r}^{2}}\right),
$$

implies that $U_{n+r} U_{n-r}-U_{n}^{2}=-(-Q)^{n-r} U_{r}^{2}$.

Theorem 2.7. Let $m, n, r \in \mathbf{Z}$. Then

$$
\begin{aligned}
& V_{r} V_{m+n+r}=V_{m+r} V_{n+r}+(-Q)^{r}\left(P^{2}+4 Q\right) U_{m} U_{n}, \\
& V_{r} V_{m+n-r}=\left(P^{2}+4 Q\right) U_{m} U_{n}+(-Q)^{r} V_{m-r} V_{n-r},
\end{aligned}
$$

and

$$
V_{r} U_{m+n}=U_{n} V_{m+r}+(-Q)^{r} V_{n-r} U_{m} .
$$

Proof: Take $a=\frac{V_{r+1}}{V_{r}}$ and consider the matrix $\mathbf{B}=\left[\begin{array}{cc}a & b \\ c & P-a\end{array}\right]$ with $\operatorname{det} \mathbf{B}=-Q$.
Then by Corollary 2.1, one gets

$$
\mathbf{B}^{n}=\left[\begin{array}{cc}
a U_{n}+Q U_{n-1} & b U_{n} \\
c U_{n} & U_{n+1}-a U_{n}
\end{array}\right]=\left[\begin{array}{cc}
\frac{V_{r+1}}{V_{r}} U_{n}+Q U_{n-1} & b U_{n} \\
c U_{n} & U_{n+1}-\frac{V_{r+1}}{V_{r}} U_{n}
\end{array}\right]
$$

Hence, using (2.3) and (2.9), it is seen that

$$
\mathbf{B}^{n}=\left[\begin{array}{cc}
\frac{V_{n+r}}{V_{r}} & b U_{n} \\
c U_{n} & \frac{(-Q)^{r} V_{n-r}}{V_{r}}
\end{array}\right] .
$$

Since $\operatorname{det} \mathbf{B}=-Q$ and $a=\frac{V_{r+1}}{V_{r}}$, it follows that

$$
\begin{aligned}
b c & =\frac{P V_{r} V_{r+1}+Q V_{r}^{2}-V_{r+1}^{2}}{V_{r}^{2}}=\frac{V_{r}\left(P V_{r+1}+Q V_{r}\right)-V_{r+1}^{2}}{V_{r}^{2}} \\
& =\frac{V_{r} V_{r+2}-V_{r+1}^{2}}{V_{r}^{2}}=\frac{(-Q)^{r}\left(P^{2}+4 Q\right)}{V_{r}^{2}}
\end{aligned}
$$

by (2.10). Then we get the result by considering the matrix product $\mathbf{B}^{n} \mathbf{B}^{m}=\mathbf{B}^{m+n}$.

Now, the following corollary can be given.

Corollary 2.9. $V_{n+r} V_{n-r}-\left(P^{2}+4 Q\right) U_{n}^{2}=(-Q)^{n-r} V_{r}^{2}$ for all $n, r \in \mathbf{Z}$.

Proof: Since $\operatorname{det} \mathbf{B}=-Q, \operatorname{det} \mathbf{B}^{n}=(\operatorname{det} \mathbf{B})^{n}=(-Q)^{n}$ and

$$
\operatorname{det} \mathbf{B}^{n}=(-Q)^{r} \frac{V_{n+r}}{V_{r}} \frac{V_{n-r}}{V_{r}}-b c U_{n}^{2}=(-Q)^{r}\left(\frac{V_{n+r} V_{n-r}}{V_{r}^{2}}-\frac{\left(P^{2}+4 Q\right) U_{n}^{2}}{V_{r}^{2}}\right),
$$

it follows that $V_{n+r} V_{n-r}-\left(P^{2}+4 Q\right) U_{n}^{2}=(-Q)^{n-r} V_{r}^{2}$.

2.1. Sums and Congruences

Now some sums containing generalized Fibonacci and Lucas numbers will be given. Then, some congruences concerning generalized Fibonacci and Lucas numbers will be presented. Before giving a lemma which will be used in the theorems following it, notice that

$$
\begin{equation*}
\alpha^{2 n}=\alpha^{n} V_{n}-(-Q)^{n} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{2 n}=\alpha^{n} U_{n} \sqrt{P^{2}+4 Q}+(-Q)^{n} \tag{2.12}
\end{equation*}
$$

by (1.2). Now we can give the lemma.

Lemma 2.1.1.

$$
\begin{equation*}
\mathbf{S}^{2 n}=V_{n} \mathbf{S}^{n}-(-Q)^{n} \mathbf{I} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{S}^{2 n}=U_{n} \mathbf{K} \mathbf{S}^{n}+(-Q)^{n} \mathbf{I} \tag{2.14}
\end{equation*}
$$

for every $n \in \mathbf{N}$, where \mathbf{K} is as in Theorem 2.4.

Proof: Let $\mathbf{Z}[\alpha]=\{a \alpha+b \mid a, b \in \mathbf{Z}\}, \quad \mathbf{Z}[\mathbf{S}]=\{a \mathbf{S}+b \mathbf{I} \mid a, b \in \mathbf{Z}\} \quad$ and define a function $\quad \phi: \mathbf{Z}[\alpha] \rightarrow \mathbf{Z}[\mathbf{S}]$, by $\varphi(a \alpha+b)=a \mathbf{S}+b \mathbf{I}$. Then φ is a ring homomorphism. Moreover, it is clear that $\varphi(\alpha)=\mathbf{S}$ and therefore $\varphi\left(\alpha^{n}\right)=(\varphi(\alpha))^{n}=\mathbf{S}^{n}$. Thus from (2.11), one gets

$$
\mathbf{S}^{2 n}=(\varphi(\alpha))^{2 n}=\varphi\left(\alpha^{2 n}\right)=\varphi\left(\alpha^{n} V_{n}-(-Q)^{n}\right)=V_{n} \mathbf{S}^{n}-(-Q)^{n} \mathbf{I} .
$$

That is, $\mathbf{S}^{2 n}=V_{n} \mathbf{S}^{n}-(-Q)^{n} \mathbf{I}$. Also from (2.12), it follows that
$\mathbf{S}^{2 n}=(\varphi(\alpha))^{2 n}=\varphi\left(\alpha^{2 n}\right)=\varphi\left(U_{n} \sqrt{P^{2}+4 Q} \alpha^{n}+(-Q)^{n}\right)=U_{n} \varphi\left(\sqrt{P^{2}+4 Q}\right) \mathbf{S}^{n}+(-Q)^{n} \mathbf{I}$.
Then $\mathbf{S}^{2 n}=U_{n} \mathbf{K} \mathbf{S}^{n}+(-Q)^{n} \mathbf{I}$ since

$$
\varphi\left(\sqrt{P^{2}+4 Q}\right)=\varphi(2 \alpha-P)=2 \mathbf{S}-P \mathbf{I}=\left[\begin{array}{cc}
0 & P^{2}+4 Q \\
1 & 0
\end{array}\right]=\mathbf{K}
$$

Theorem 2.1.1. Let $m, r \in \mathbf{Z}$. Then

$$
U_{2 m n+r}=\left(-(-Q)^{m}\right)^{n} \sum_{j=0}^{n}\binom{n}{j} V_{m}^{j} U_{m j+r}\left(-(-Q)^{m}\right)^{-j}
$$

and

$$
V_{2 m n+r}=\left(-(-Q)^{m}\right)^{n} \sum_{j=0}^{n}\binom{n}{j} V_{m}^{j} V_{m j+r}\left(-(-Q)^{m}\right)^{-j}
$$

for every $n \in \mathbf{N}$.

Proof: It is known that

$$
\begin{equation*}
\mathbf{S}^{2 m}=V_{m} \mathbf{S}^{m}-(-Q)^{m} \mathbf{I} \tag{2.15}
\end{equation*}
$$

by (2.13). Taking the nth power of (2.15), one gets

$$
\mathbf{S}^{2 m n}=\left(V_{m} \mathbf{S}^{m}-(-Q)^{m} \mathbf{I}\right)^{n}=\sum_{j=0}^{n}\binom{n}{j} V_{m}^{j}\left(-(-Q)^{m}\right)^{n-j} \mathbf{S}^{m j} .
$$

Multiplication of both sides of this equation by \mathbf{S}^{r} gives

$$
\mathbf{S}^{2 m n+r}=\left(-(-Q)^{m}\right)^{n} \sum_{j=0}^{n}\binom{n}{j} V_{m}^{j}\left(-(-Q)^{m}\right)^{-j} \mathbf{S}^{m j+r} .
$$

Thus it follows that

$$
U_{2 m n+r}=\left(-(-Q)^{m}\right)^{n} \sum_{j=0}^{n}\binom{n}{j} V_{m}^{j} U_{m j+r}\left(-(-Q)^{m}\right)^{-j}
$$

and

$$
V_{2 m n+r}=\left(-(-Q)^{m}\right)^{n} \sum_{j=0}^{n}\binom{n}{j} V_{m}^{j} V_{m j+r}\left(-(-Q)^{m}\right)^{-j}
$$

by Corollary 2.4.

Corollary 2.1.1. If P and Q are integers, then

$$
\begin{equation*}
U_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} U_{r}\left(\bmod V_{m}\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2 m n+r} \equiv\left(-(-Q)^{m}\right)^{n} V_{r}\left(\bmod _{m}\right) \tag{2.17}
\end{equation*}
$$

for all $n, m \in \mathbf{N} \cup\{0\}$ and $r \in \mathbf{Z}$ such that $m n+r \geq 0$ if $Q \neq \pm 1$.

Theorem 2.1.2. Let $m, r \in \mathbf{Z}$ and m be a nonzero integer. Then

$$
\begin{aligned}
U_{2 m n+r}= & (-Q)^{m n} \sum_{j=0}^{\left.\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} U_{2 m j+r} D^{j} Q^{-2 m j} \\
& +(-Q)^{m n} \sum_{j=0}^{\left.\frac{n-1}{2} \right\rvert\,}\binom{n}{2 j+1} U_{m}^{2 j+1} V_{2 m j+m+r} D^{j}(-Q)^{m(-2 j-1)}
\end{aligned}
$$

and

$$
\begin{aligned}
V_{2 m n+r}= & (-Q)^{m n} \sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} V_{2 m j+r} D^{j} Q^{-2 m j} \\
& +(-Q)^{m n} \sum_{j=0}^{\left.\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} U_{2 m j+m+r} D^{j+1}(-Q)^{m(-2 j-1)}
\end{aligned}
$$

for every $n \in \mathbf{N}$, where $D=P^{2}+4 Q$.

Proof: It is known that

$$
\mathbf{S}^{2 m}=U_{m} \mathbf{K} \mathbf{S}^{m}+(-Q)^{m} \mathbf{I}
$$

by (2.14). Then,

$$
\mathbf{S}^{2 m n+r}=\left(U_{m} \mathbf{K} \mathbf{S}^{m}+(-Q)^{m} \mathbf{I}\right)^{n} \mathbf{S}^{r}=\sum_{j=0}^{n}\binom{n}{j} U_{m}^{j} \mathbf{K}^{j}\left((-Q)^{m}\right)^{n-j} \mathbf{S}^{m j+r} .
$$

On the other hand, it can be seen that $\mathbf{K}^{2 j}=D^{j} \mathbf{I}$ and $\mathbf{K}^{2 j+1}=D^{j} \mathbf{K}$. Therefore,

$$
\begin{aligned}
\mathbf{S}^{2 m n+r}= & (-Q)^{m n} \sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 j} U_{m}^{2 j} \mathbf{K}^{2 j} Q^{-2 m j} \mathbf{S}^{2 m j+r} \\
& +(-Q)^{m n} \sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} \mathbf{K}^{2 j+1}(-Q)^{m(-2 j-1)} \mathbf{S}^{2 m j+m+r} \\
= & (-Q)^{m n} \sum_{j=0}^{\left\lfloor\frac{n}{2}\right.}\binom{n}{2 j} U_{m}^{2 j} D^{j} Q^{-2 m j} \mathbf{S}^{2 m j+r} \\
& +(-Q)^{m n} \sum_{j=0}^{\left.\frac{n-1}{2}\right\rfloor}\binom{n}{2 j+1} U_{m}^{2 j+1} D^{j}(-Q)^{m(-2 j-1)} \mathbf{K} \mathbf{S}^{2 m j+m+r},
\end{aligned}
$$

and the proof follows from Corollary 2.4.

Corollary 2.1.2. If P and Q are integers, then

$$
\begin{equation*}
U_{2 m n+r} \equiv(-Q)^{m n} U_{r}\left(\bmod U_{m}\right) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2 m n+r} \equiv(-Q)^{m n} V_{r}\left(\bmod U_{m}\right) \tag{2.19}
\end{equation*}
$$

for all $n, m \in \mathbf{N} \cup\{0\}$ and $r \in \mathbf{Z}$ such that $m n+r \geq 0$ if $Q \neq \pm 1$.

CHAPTER 3. THE SQUARE TERMS IN FIBONACCI AND LUCAS SEQUENCES

We have cited literature review about Fibonacci and Lucas numbers of the form x^{2} or $2 x^{2}$ in the first chapter. Many authors have investigated Fibonacci and Lucas numbers of the form $c x^{2}$ with $c \neq 1,2$. For example, in [43], Robbins considered Fibonacci numbers of the form $p x^{2}$ and solved the equation $F_{n}=p x^{2}$ for all p such that $p \equiv 3(\bmod 4)$ or $p<10000$. On the other hand, in [44], Robbins considered Fibonacci numbers of the form $c x^{2}$ and obtained all solutions of $F_{n}=c x^{2}$ for composite values of $c \leq 1000$. The same author solved $L_{n}=p x^{2}$, where p is an odd prime and $p<1000$, in [45]. Moreover, in [52], Zhou dealt with Lucas numbers of the form $p x^{2}$, where p is a prime number and gave solutions for $1000<p<60000$.

In this chapter, firstly, some fundamental theorems and identities concerning Fibonacci and Lucas numbers are given. Then, we solve the Diophantine equations $L_{n}=2 L_{m} x^{2}, F_{n}=2 F_{m} x^{2}, F_{n}=3 F_{m} x^{2}, L_{n}=6 L_{m} x^{2}$, and $F_{n}=6 F_{m} x^{2}$.

The proof of the following theorem can be found in [7].

Theorem 3.1. Let $n \geq 1$. If $F_{n}=x^{2}$, then $n=1,2,12$. If $F_{n}=2 x^{2}$, then $n=3,6$. If $L_{n}=x^{2}$, then $n=1,3$ and if $L_{n}=2 x^{2}$, then $n=6$.

The proofs of the following two theorems are given in [22].

Theorem 3.2. Let $n \in \mathbf{N} \cup\{0\}$ and $k, m \in \mathbf{Z}$. Then

$$
\begin{equation*}
F_{2 m n+k} \equiv(-1)^{m n} F_{k}\left(\bmod F_{m}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{2 m n+k} \equiv(-1)^{m n} L_{k}\left(\bmod F_{m}\right) . \tag{3.2}
\end{equation*}
$$

Theorem 3.3. Let $n \in \mathbf{N} \cup\{0\}$ and $k, m \in \mathbf{Z}$. Then

$$
\begin{equation*}
L_{2 m n+k} \equiv(-1)^{(m+1) n} L_{k}\left(\bmod L_{m}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2 m n+k} \equiv(-1)^{(m+1) n} F_{k}\left(\bmod L_{m}\right) . \tag{3.4}
\end{equation*}
$$

The two theorems given above can be obtained from Corollary 2.1.1 and Corollary 2.1.2. From the identity (3.2), it can be easily seen that $8 \backslash L_{n}$ for every $n \in \mathbf{N}$.

The proofs of the following three lemmas can be done by induction.

Lemma 3.1. $L_{2^{k}} \equiv 3(\bmod 4)$ for all $k \geq 1$.

Lemma 3.2. If $r \geq 3$, then $L_{2^{r}} \equiv 2(\bmod 3)$.

Lemma 3.3. If $r \geq 2$, then $L_{2^{r}} \equiv 7(\bmod 8)$.

The following corollary can be obtained from Lemma 3.1.

Corollary 3.1. If $k \geq 1$, then there is no integer x such that $x^{2} \equiv-1\left(\bmod _{2^{k}}\right)$.

The proofs of the following theorems can be found in [5], [22], and [48].

Theorem 3.4. Let $m, n \in \mathbf{N}$ and $m \geq 2$. Then $L_{m} \mid L_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is an odd integer.

Theorem 3.5. Let $m, n \in \mathbf{N}$ and $m \geq 3$. Then $F_{m} \mid F_{n}$ if and only if $m \mid n$.

Theorem 3.6. Let $m, n \in \mathbf{N}$ and $m \geq 2$. Then $L_{m} \mid F_{n}$ if and only if $m \mid n$ and $\frac{n}{m}$ is an even integer.

The following identities are well known and easy to show.

$$
\begin{align*}
& L_{2 n}=L_{n}^{2}-2(-1)^{n}, \tag{3.5}\\
& L_{3 n}=L_{n}\left(L_{n}^{2}-3(-1)^{n}\right), \tag{3.6}\\
& F_{2 n}=F_{n} L_{n} \tag{3.7}\\
& F_{3 n}=F_{n}\left(5 F_{n}^{2}+3(-1)^{n}\right), \tag{3.8}\\
& L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}, \tag{3.9}\\
& 2\left|F_{n} \Leftrightarrow 2\right| L_{n} \Leftrightarrow 3 \mid n, \tag{3.10}\\
& \left(F_{n}, L_{n}\right)=1 \text { or }\left(F_{n}, L_{n}\right)=2 . \tag{3.11}
\end{align*}
$$

Let $\left(\frac{a}{p}\right)$ represent Legendre symbol. Then we have

$$
\begin{equation*}
\left(\frac{2}{p}\right)=1 \text { if and only if } p \equiv \mp 1(\bmod 8) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{-2}{p}\right)=1 \text { if and only if } p \equiv 1,3(\bmod 8) \tag{3.13}
\end{equation*}
$$

The proofs of (3.12) and (3.13) can be found in [4] and [35].

3.1. Fibonacci and Lucas Numbers of The Form $c x^{2}$

In this subsection, we consider the equations $L_{n}=2 L_{m} x^{2}, F_{n}=2 F_{m} x^{2}, L_{n}=6 L_{m} x^{2}$, $F_{n}=3 F_{m} x^{2}$, and $F_{n}=6 F_{m} x^{2}$.

In [38], Ribenboim introduced square-classes of Fibonacci numbers. There it is stated that F_{m}, F_{n} are in the same square-class if there exist non-zero integers x, y
such that $F_{m} x^{2}=F_{n} y^{2}$; or equivalently, when $F_{m} F_{n}$ is a square. In a similar way, he introduced square-classes of Lucas numbers. A square-class is called trivial if it consists of only one number. Ribenboim showed that the square-class of L_{m} is trivial when $m \neq 0,1,3$, and 6 . Also he showed that the square-class of F_{m} is trivial when $m \neq 1,2,3,6,12$. Now, the following two theorems, which can be obtained from Proposition 1 and Proposition 2 in [38], can be given.

Throughout this subsection, we will assume that n is a positive integer.

Theorem 3.1.1. Let $m>3$ be an integer and $F_{n}=F_{m} x^{2}$ for some $x \in \mathbf{Z}$. Then $n=m$.

Theorem 3.1.2. Let $m \geq 2$ be an integer and $L_{n}=L_{m} x^{2}$ for some $x \in \mathbf{Z}$. Then $n=m$.

Although the proofs of the following two theorems can be obtained from Theorem 6 and Theorem 12 in [11], proofs will be given using a different approach.

Theorem 3.1.3. There is no integer x such that $L_{n}=2 L_{m} x^{2}$ for $m>1$.

Proof: Assume that $L_{n}=2 L_{m} x^{2}$. Then $L_{m} \mid L_{n}$ and therefore $n=m k$ for some natural number k by Theorem 3.4. Firstly, assume that m is an odd integer. Since $2 \mid L_{n}$, one gets $3 \mid n$ by (3.10). Thus it is seen that $3 \backslash m$. For, if $3 \mid m$, then $L_{3} \mid L_{m}$, i.e., $4 \mid L_{m}$ by Theorem 3.4. This implies that $8 \mid L_{n}$, which is impossible. Since $3 \backslash m$, it follows that $3 \mid k$. That is, $k=3 t$ for some odd positive integer t. Thus $n=m k=3 m t$ and $m t$ is an odd integer. Therefore, since $3 \mid n$, it follows that $L_{3} \mid L_{n}$, i.e., $4 \mid 2 L_{m} x^{2}$ by Theorem 3.4. Since $3 \| m, L_{m}$ is an odd integer. Therefore $2 \mid x^{2}$, i.e., x is an even integer. This implies that $8 \mid L_{n}$, which is impossible.

Now, assume that m is an even integer. If x is an even integer, then it is seen that $8 \mid L_{n}$, which is impossible. Therefore x is an odd integer. Assume that $3 \mid m$. Then L_{m} is an even integer. Therefore $L_{3} \mid L_{n}$ by Theorem 3.4. It follows that $n=3 b$ for some odd integer b. That is, n is an odd integer. But this is impossible. Because m is an even integer, n is also an even integer. Assume that $3 \backslash m$. Then since $n=m k$ and $3 \mid n$, it follows that $3 \mid k$, i.e., $k=3 t$ for some odd integer t. Hence, $t=4 q \mp 1$ for some nonnegative integer q. Thus $n=m k=3 m(4 q \mp 1)=2.6 m q \mp 3 m$. Then

$$
L_{n}=L_{2.6 m q \mp 3 m} \equiv L_{\mp 3 m}\left(\operatorname{modF}_{6}\right)
$$

and therefore

$$
2 L_{m} x^{2} \equiv L_{3 m}(\bmod 8)
$$

by (3.2). Since $x^{2} \equiv 1(\bmod 8)$ and m is an even integer, one obtains

$$
2 L_{m} \equiv L_{m}\left(L_{m}^{2}-3\right)(\bmod 8)
$$

by (3.6). Moreover, since $3 \backslash m, L_{m}$ is odd integer. So

$$
2 \equiv L_{m}^{2}-3(\bmod 8)
$$

Whence

$$
2 \equiv-2(\bmod 8),
$$

which is not possible. This completes the proof.

In [7], for $m=1,2$, it is shown that the equation $F_{n}=2 F_{m} x^{2}=2 x^{2}$ has solutions only for $n=3,6$. More generally, the following theorem can be given.

Theorem 3.1.4. If $F_{n}=2 F_{m} x^{2}$ and $m \geq 3$, then $m=3, x^{2}=36$, and $n=12$ or $m=6, x^{2}=9$, and $n=12$.

Proof: If $m=3$, then $F_{n}=2 F_{3} x^{2}=(2 x)^{2}$. Thus it can be seen that $n=12, x^{2}=36$ by Theorem 3.1. Assume that $m>3$ and $F_{n}=2 F_{m} x^{2}$. Then $F_{m} \mid F_{n}$ and therefore $n=m k$ for some natural number k by Theorem 3.5.

Firstly, assume that k is an even integer. Then $k=2 t$ for some integer t. Therefore $n=m k=2 m t$. Thus

$$
F_{n}=F_{2 m t}=F_{m t} L_{m t}=2 F_{m} x^{2}
$$

by (3.7). This shows that $\left(F_{m t} / F_{m}\right) L_{m t}=2 x^{2}$. It can be easily seen that if $\left(F_{m t} / F_{m}, L_{m t}\right)=d$, then $d=1$ or $d=2$ by (3.11). Assume that $d=1$. Then

$$
\begin{equation*}
\frac{F_{m t}}{F_{m}}=u^{2}, L_{m t}=2 v^{2} \tag{3.14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{m t}}{F_{m}}=2 u^{2}, L_{m t}=v^{2} \tag{3.15}
\end{equation*}
$$

for some integers u and v. Assume that (3.14) is satisfied. Then $m t=m$, i.e., $t=1$ by Theorem 3.1.1. Therefore $L_{m}=2 v^{2}$ and this implies that $m=6$ by Theorem 3.1. Hence $x^{2}=9$ and $n=12$. Now assume that (3.15) is satisfied. Then $L_{m t}=v^{2}$ and therefore $m t=1$ or 3 by Theorem 3.1. But this is not possible since $m>3$. Assume that $d=2$. Then

$$
\begin{equation*}
\frac{F_{m t}}{F_{m}}=2 u^{2}, L_{m t}=v^{2} \tag{3.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{m t}}{F_{m}}=u^{2}, L_{m t}=2 v^{2} \tag{3.17}
\end{equation*}
$$

for some integers u and v. Assume that (3.16) is satisfied. Then $m t=1$ or 3 by Theorem 3.1. But this is impossible since $m>3$. It can be seen that the identity (3.17) is impossible by Theorem 3.1.1.

Now, assume that k is an odd integer. Let m be an even integer. Then $m=2 r$ for some natural number r and therefore $n=m k=2 k r$. Thus one has

$$
F_{n}=F_{2 k r}=F_{k r} L_{k r}=2 F_{r} L_{r} x^{2}
$$

by (3.7). This shows that $\left(F_{k r} / F_{r}\right)\left(L_{k r} / L_{r}\right)=2 x^{2}$. It can be easily seen that if $\left(F_{k r} / F_{r}, L_{k r} / L_{r}\right)=d$, then $d=1$ or $d=2$ by (3.11). Assume that $d=1$. Then

$$
\begin{equation*}
\frac{F_{k r}}{F_{r}}=u^{2}, \frac{L_{k r}}{L_{r}}=2 v^{2} \tag{3.18}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{k r}}{F_{r}}=2 u^{2}, \frac{L_{k r}}{L_{r}}=v^{2} \tag{3.19}
\end{equation*}
$$

for some integers u and v. The identity (3.18) is impossible by Theorem 3.1.3. Assume that (3.19) is satisfied. Then $L_{k r}=L_{r} \nu^{2}$ and therefore $k r=r$, i.e., $k=1$ by Theorem 3.1.2. Hence the equality $2 u^{2}=\frac{F_{k r}}{F_{r}}=\frac{F_{r}}{F_{r}}=1$ is obtained, which is not possible. Assume that $d=2$. Then

$$
\begin{equation*}
\frac{F_{k r}}{F_{r}}=2 u^{2}, L_{k r}=v^{2} \tag{3.20}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{k r}}{F_{r}}=u^{2}, \frac{L_{k r}}{L_{r}}=2 v^{2} \tag{3.21}
\end{equation*}
$$

for some integers u and v. A similar argument shows that (3.20) and (3.21) are impossible. Now, let m be an odd integer. Firstly, suppose that $3 \backslash k$. Since k is an odd integer, $k=6 q \mp 1$ for some nonnegative integer q. Therefore $n=m k=m(6 q \mp 1)=2.3 m q \mp m$. Hence it follows that

$$
F_{n}=F_{2.3 m q \mp m} \equiv F_{\mp m}\left(\bmod _{3}\right),
$$

i.e.,

$$
F_{n} \equiv F_{m}(\bmod 4)
$$

by (3.4). Since F_{n} is an even integer, F_{m} is also an even integer. Thus $3 \mid m$ by (3.10) and therefore $m=3 a$ for some integer a. On the other hand, since F_{m} is an even integer, $4 \mid F_{n}$ and thus $6 \mid n$ by Theorem 3.5. Since $n=m k=3 a k$, one gets $6 \mid 3 a k$, i.e., $2 \mid a k$. Moreover, since k is an odd integer, it is seen that $2 \mid a$. This implies that $2 \mid m$, which is impossible since m is an odd integer. Assume that $3 \mid k$. Then $k=3 s$ for some odd integer s. Therefore $n=m k=3 m s$. Since $m s$ is an odd integer, one obtains

$$
F_{n}=F_{3 m s}=F_{m s}\left(5 F_{m s}^{2}-3\right)=2 F_{m} x^{2}
$$

by (3.8). This shows that $\left(F_{m s} / F_{m}\right)\left(5 F_{m s}^{2}-3\right)=2 x^{2}$. It can be easily seen that if $d=\left(F_{m s} / F_{m}, 5 F_{m s}^{2}-3\right)$, then $d=1$ or $d=3$. Assume that $d=3$. Then $3 \mid F_{m s}$, and
thus $4 \mid m s$ by Theorem 3.5. But this is not possible while $m s$ is an odd integer. So $d=1$. Then it follows that

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=u^{2}, 5 F_{m s}^{2}-3=2 v^{2} \tag{3.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=2 u^{2}, 5 F_{m s}^{2}-3=v^{2} \tag{3.23}
\end{equation*}
$$

for some integers u and v. Assume that (3.22) is satisfied. Then $m s=m$, i.e., $s=1$ by Theorem 3.1.1. Therefore $5 F_{m}^{2}-3=2 v^{2}$ and this shows that $2 v^{2}=5 F_{m}^{2}-3=L_{m}^{2}+1=L_{2 m}-1$ by (3.5) and (3.9). This implies that $L_{2 m}=2 v^{2}+1$. Since $L_{2 m}=2 v^{2}+1$, we get $3 \backslash \mathrm{~m}$. Thus $m=6 q \mp 1=3.2^{r+1} b \mp 1$, where $q=2^{r} b$ for some odd integer b with $r \geq 0$. This shows that

$$
L_{2 m}=L_{2.2^{r+1} 3 b \mp 2} \equiv-L_{\not+2}\left(\bmod L_{2^{r+1}}\right)
$$

and therefore

$$
2 v^{2}+1 \equiv-3\left(\bmod _{2^{r+1}}\right),
$$

i.e.,

$$
2 v^{2} \equiv-4\left(\bmod _{2^{r+1}}\right)
$$

by (3.3). On the other hand,

$$
v^{2} \equiv-2\left(\bmod L_{2^{r+1}}\right)
$$

since $L_{2^{r+1}}$ is an odd integer. This shows that $\left(\frac{-2}{p}\right)=1$ for every prime divisor of $L_{2^{r+1}}$. Then it follows that

$$
p \equiv 1,3(\bmod 8)
$$

by (3.13) and therefore

$$
L_{2^{r+1}} \equiv 1,3(\bmod 8) .
$$

This shows that $r=0$ by Lemma 3.3. Consequently, q is an odd integer. Therefore it can be easily seen that $m=12 c+5$ or $m=12 c+7$ for some integer c. Thus one arrives

$$
L_{m} \equiv 3(\bmod 8)
$$

or

$$
L_{m} \equiv 5(\bmod 8)
$$

by (3.2). On the other hand,

$$
2 v^{2}=L_{m}^{2}+1
$$

implies that

$$
2 v^{2} \equiv 1\left(\bmod L_{m}\right),
$$

and so

$$
(2 v)^{2} \equiv 2\left(\bmod L_{m}\right) .
$$

Therefore $\left(\frac{2}{p}\right)=1$ for every prime divisor of L_{m}. Then it follows that

$$
p \equiv \mp 1(\bmod 8)
$$

by (3.12) and hence

$$
L_{m} \equiv \mp 1(\bmod 8) .
$$

But this contradicts the fact that $L_{m} \equiv 3,5(\bmod 8)$. Assume that (3.23) is satisfied. Then $v^{2}=5 F_{m s}^{2}-3=L_{m s}^{2}+1$ by (3.9). This implies that $L_{m s}=0$, which is not possible. This completes the proof.

Theorem 3.1.5. If $L_{n}=6 L_{m} x^{2}$ and $m \geq 1$, then $m=2, x^{2}=1$, and $n=6$.

Proof: Assume that $L_{n}=6 L_{m} x^{2}$ for some integer x. Then $3 \mid L_{n}$ and therefore $n=2 k_{0}$ for some odd integer k_{0} by Theorem 3.4. Moreover, since $2 \mid L_{n}$, one gets $3 \mid n$ by (3.10). This shows that $3 \mid k_{0}$ and therefore $k_{0}=3 t$ for some odd integer t. Thus $n=6 t=6(2 u+1)=12 u+6$. Hence,

$$
L_{n}=L_{12 u+6} \equiv L_{6}(\bmod 8),
$$

or

$$
L_{n} \equiv 2(\bmod 8)
$$

by (3.2). Since $8 \backslash L_{n}$, it can be seen that x is an odd integer. So

$$
x^{2} \equiv 1(\bmod 8),
$$

which implies that

$$
6 L_{m} x^{2} \equiv 6 L_{m}(\bmod 8)
$$

This shows that

$$
6 L_{m} \equiv 2(\bmod 8),
$$

which implies that $m \neq 1$. Now assume that $m>2$. Since $L_{m} \mid L_{n}$, there exists an odd integer k such that $n=m k$ by Theorem 3.4. On the other hand, since $2 \mid n$, it is seen that $2 \mid m$. Therefore $m=2 r$ for some odd integer r. If $r=6 q+3$, then $m=2 r=12 q+6$ and therefore

$$
L_{m} \equiv L_{6}(\bmod 8)
$$

by (3.2). That is,

$$
L_{m} \equiv 2(\bmod 8)
$$

which is not possible since

$$
6 L_{m} \equiv 2(\bmod 8)
$$

Therefore $3 \backslash r$. Since $n=m k, m=2 r$, and $3 \mid r$, it follows that $3 \mid k$ and thus $k=3 s$ for some odd integer s. Then

$$
L_{n}=L_{m k}=L_{3 m s}=L_{m s}\left(L_{m s}^{2}-3\right)=6 L_{m} x^{2}
$$

by (3.6). It can be seen that $\left(L_{m s}, L_{m s}^{2}-3\right)=3$. Thus $\left(L_{m s}, \frac{L_{m s}^{2}-3}{3}\right)=1$. Then

$$
\frac{L_{m s}}{L_{m}}\left(\frac{L_{m s}^{2}-3}{3}\right)=2 x^{2}
$$

which shows that

$$
\begin{equation*}
\frac{L_{m s}}{L_{m}}=2 u^{2} \text { and } \frac{L_{m s}^{2}-3}{3}=v^{2} \tag{3.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{L_{m s}}{L_{m}}=u^{2} \text { and } \frac{L_{m s}^{2}-3}{3}=2 v^{2} \tag{3.25}
\end{equation*}
$$

for some integers u and v. Assume that (3.24) is satisfied. Then $3\left(\frac{L_{m s}}{3}\right)^{2}-1=v^{2}$ and therefore

$$
v^{2} \equiv-1(\bmod 3),
$$

which is a contradiction. Now assume that (3.25) is satisfied. Then $L_{m s}=L_{m} u^{2}$, which implies that $m s=m$ by Theorem 3.1.2. That is, $s=1$. Thus $L_{m}^{2}-3=6 v^{2}$. Since $L_{m}^{2}=L_{2 m}+2$ by (3.5), it is seen that $L_{2 m}-1=6 v^{2}$. Moreover, since $m=2 r$, it follows that $L_{4 r}-1=6 v^{2}$. On the other hand, since $4 r$ can be written as $4 r=4(4 u \mp 1)=16 u \mp 4=2.2^{b} \cdot a \mp 4$ for some odd integer a with $b \geq 3$, it follows that

$$
L_{4 r}=L_{2.2^{b} a \mp 4} \equiv-L_{\mp 4}\left(\bmod L_{2^{b}}\right)
$$

by (3.3) and therefore

$$
1+6 v^{2} \equiv-7\left(\bmod L_{2^{b}}\right)
$$

Then

$$
6 v^{2} \equiv-8\left(\bmod _{2^{b}}\right),
$$

or

$$
3 v^{2} \equiv-4\left(\bmod L_{2^{b}}\right),
$$

or

$$
(3 v)^{2} \equiv-12\left(\bmod _{2^{b}}\right),
$$

which shows that $\left(\frac{-12}{p}\right)=1$ for every prime divisor of $L_{2^{b}}$. Then it follows that

$$
p \equiv 1(\bmod 3)
$$

and therefore

$$
L_{2^{b}} \equiv 1(\bmod 3)
$$

But this contradicts Lemma 3.2. Therefore $m=2$. This completes the proof.

In [22], it is shown that $L_{n}=3 L_{m} x^{2}$ has no solutions if $m>1$. Now a similar result is given for Fibonacci numbers.

Theorem 3.1.6. Let $m \geq 3$ be an integer and $F_{n}=3 F_{m} x^{2}$. Then $m=4, x^{2}=16$, and $n=12$.

Proof: Assume that $m \geq 3$ and $F_{n}=3 F_{m} x^{2}$ for some integer x. Then $F_{m} \mid F_{n}$ and therefore $n=m k$ for some integer k by Theorem 3.5.

Firstly, assume that k is an even integer. Then $k=2 s$ for some $s \in \mathbf{N}$. Therefore $n=m k=2 m s$. Thus

$$
F_{n}=F_{2 m s}=F_{m s} L_{m s}=3 F_{m} x^{2}
$$

by (3.7). This shows that

$$
\left(F_{m s} / F_{m}\right) L_{m s}=3 x^{2}
$$

It can be easily seen that if $\left(F_{m s} / F_{m}, L_{m s}\right)=d$, then $d=1$ or $d=2$ by (3.11). Let $d=1$. Then

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=u^{2}, L_{m s}=3 v^{2} \tag{3.26}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=3 u^{2}, L_{m s}=v^{2} \tag{3.27}
\end{equation*}
$$

for some integers u and v. Let (3.26) be satisfied. Then $L_{m s}=3 v^{2}=L_{2} x^{2}$ and therefore $m s=2$ by Theorem 3.1.2. But this is not possible since $m \geq 3$. Let (3.27) be satisfied. Then $m s=3$ by Theorem 3.1. Thus $m=3$ and $s=1$. Then $3 u^{2}=\left(F_{3} / F_{3}\right)=1$, which is not possible. Let $d=2$. Then

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=2 u^{2}, L_{m s}=6 v^{2} \tag{3.28}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{m s}}{F_{m}}=6 u^{2}, L_{m s}=2 v^{2} \tag{3.29}
\end{equation*}
$$

for some integers u and v. The identity (3.28) is not possible by Theorem 3.1.3. Let (3.29) be satisfied. Then $m s=6$ by Theorem 3.1. If $m=6$ and $s=1$, then this is impossible since $F_{m}=F_{m s}=6 F_{m} u^{2}$. If $m=3$ and $s=2$, then $6 u^{2}=F_{6} / F_{3}=4$, which is impossible.

Now suppose that k is an odd integer. Since $3 \mid F_{n}$, we get $4 \mid n$ by Theorem 3.5. Moreover, since $n=m k$ and k is odd, one gets $4 \mid m$. Let x be an even integer.

Then $4 \mid F_{n}$. Thus $L_{3} \mid F_{n}$ and $3 \mid n$ by Theorem 3.6. Therefore, $12 \mid n$ since $4 \mid n$ and $3 \mid n$, i.e., $n=12 t$ for some $t \in \mathbf{N}$. On the other hand, $m=4 r$ for some $r \in \mathbf{N}$ since $4 \mid m$. Therefore $12 t=n=m k=4 r k$. It follows that $3 t=r k$. Thus

$$
F_{n}=F_{12 t}=F_{6 t} L_{6 t}=3 F_{2 r} L_{2 r} x^{2}
$$

by (3.7). Since $(6 t / 2 r)=k$ and k is odd, one can write

$$
\frac{F_{6 t}}{F_{2 r}} \cdot \frac{L_{6 t}}{L_{2 r}}=3 x^{2}
$$

Assume that $3 \mid r$. Then, it can be seen that $\left(\frac{F_{6 t}}{F_{2 r}}, \frac{L_{6 t}}{L_{2 r}}\right)=1$ by (3.11). Therefore

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=u^{2}, \frac{L_{6 t}}{L_{2 r}}=3 v^{2} \tag{3.30}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=3 u^{2}, \frac{L_{6 t}}{L_{2 r}}=v^{2} \tag{3.31}
\end{equation*}
$$

for some integers u and v. A similar argument shows that (3.30) and (3.31) are impossible. Now assume that $3 \backslash r$. Then since $3 t=r k$, it follows that $3 \mid k$. Thus $k=3 s$ for some $s \in \mathbf{N}$. Then $3 t=r k=3 r s$ and therefore $t=r s$. Also since $3 \backslash r$, it can be seen that $\left(\frac{F_{6 t}}{F_{2 r}}, \frac{L_{6 t}}{L_{2 r}}\right)=2$ by (3.11). Therefore

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=2 u^{2}, \frac{L_{6 t}}{L_{2 r}}=6 v^{2} \tag{3.32}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{6 t}}{F_{2 r}}=6 u^{2}, \frac{L_{6 t}}{L_{2 r}}=2 v^{2} \tag{3.33}
\end{equation*}
$$

for some integers u and v. Assume that (3.32) is satisfied. Then $2 r=2$ by Theorem 3.1.5. This shows that $r=1$ and $t=s$. Thus $L_{6 t}=6 L_{2} v^{2}=L_{6} v^{2}$, which implies that $6 t=6$, i.e., $t=1$ by Theorem 3.1.2. Therefore $k=3 s=3 t=3$ and $m=4 r=4$. Therefore $n=12$ and $x^{2}=16$. Now assume that (3.33) is satisfied. Then it follows that

$$
L_{6 t}=2 L_{2 r} v^{2}
$$

which is impossible by Theorem 3.1.3. Now, let x be an odd integer. Then

$$
F_{n} \equiv 3 F_{m}(\bmod 8) .
$$

Since $4 \mid m$, it follows that $m=12 q$ or $m=12 q \mp 4$ for some integer q. If $m=12 q \mp 4$, then

$$
F_{m} \equiv F_{12 q \mp 4} \equiv F_{\mp 4} \equiv \mp 3(\bmod 8)
$$

by (3.1). Therefore

$$
F_{n} \equiv \mp 1(\bmod 8),
$$

which is impossible since $4 \mid n$. Because if $4 \mid n$, then $n=12 r \mp 4$ or $n=12 r$ for some integer r, and therefore $F_{n} \equiv \mp 3,0(\bmod 8)$ by (3.1). If $m=12 q$, then $n=m k=12 q k$. This shows that $6 q k / 6 q$ is an odd integer. Then, from the equality

$$
F_{n}=F_{12 q k}=F_{6 q k} L_{6 q k}=3 F_{m} x^{2}=3 F_{6 q} L_{6 q} x^{2},
$$

it follows that

$$
\frac{F_{6 q k}}{F_{6 q}} \cdot \frac{L_{6 q k}}{L_{6 q}}=3 x^{2} .
$$

Since $\left(\frac{F_{6 q k}}{F_{6 q}}, \frac{L_{6 q k}}{L_{6 q}}\right)=1$, one has

$$
\begin{equation*}
\frac{F_{6 q k}}{F_{6 q}}=u^{2}, \frac{L_{6 q k}}{L_{6 q}}=3 v^{2} \tag{3.34}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{F_{6 q k}}{F_{6 q}}=3 u^{2}, \frac{L_{6 q k}}{L_{6 q}}=v^{2} \tag{3.35}
\end{equation*}
$$

for some integers u and v. Similarly, it can be seen that the identities (3.34) and (3.35) are impossible. This completes the proof.

Finally, we can give the following theorem without proof since the proof is similar to that of Theorem 3.1.6.

Theorem 3.1.7. There is no integer x such that $F_{n}=6 F_{m} x^{2}$.

CHAPTER 4. THE SQUARE TERMS IN GENERALIZED FIBONACCI AND LUCAS SEQUENCES

In this chapter, we solve the generalization of the equations $L_{n}=2 L_{m} x^{2}, L_{n}=3 L_{m} x^{2}$ and $L_{n}=6 L_{m} x^{2}$. Also, using congruences related to generalized Fibonacci and Lucas numbers given in the second chapter, some equations including generalized Fibonacci and Lucas numbers are solved under some assumptions.

4.1. Some Fundamental Theorems and Identities

In this subsection, some theorems, lemmas, and some identities about generalized Fibonacci and Lucas numbers which will be used later are given.

Since the proof of the following lemma can be proved by induction, the proof is omitted.

Lemma 4.1.1. Let $Q \equiv 1(\bmod 3)$. If $3 \backslash P$, then

$$
V_{2^{r}} \equiv \begin{cases}2(\bmod 3) & \text { if } r \geq 3, \\ 1(\bmod 3) & \text { if } r=2, \\ 0(\bmod 3) & \text { if } r=1,\end{cases}
$$

and if $3 \mid P$, then $V_{2^{r}} \equiv 2(\bmod 3)$ for all $r \geq 1$.

The following two theorems can be given from Corollary 2.1.1 and Corollary 2.1.2.

Theorem 4.1.1. Let $Q=1, n \in \mathbf{N} \cup\{0\}, m, r \in \mathbf{Z}$, and m be nonzero integer. Then

$$
\begin{equation*}
U_{2 m n+r} \equiv(-1)^{m n} U_{r}\left(\bmod U_{m}\right) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2 m n+r} \equiv(-1)^{m n} V_{r}\left(\bmod U_{m}\right) \tag{4.2}
\end{equation*}
$$

Theorem 4.1.2. Let $Q=1, n \in \mathbf{N} \cup\{0\}$, and $m, r \in \mathbf{Z}$. Then

$$
\begin{equation*}
U_{2 m n+r} \equiv(-1)^{(m+1) n} U_{r}\left(\bmod V_{m}\right) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2 m n+r} \equiv(-1)^{(m+1) n} V_{r}\left(\bmod V_{m}\right) \tag{4.4}
\end{equation*}
$$

When P and Q are odd, using (2.18) and (2.19), one gets $8 \mid U_{6}$ and therefore

$$
\begin{equation*}
U_{12 q+r} \equiv U_{r}(\bmod 8) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{12 q+r} \equiv V_{r}(\bmod 8) \tag{4.6}
\end{equation*}
$$

for nonnegative integers q and r. It can be seen from (4.6) that if P and Q are odd and $Q \not \equiv 5(\bmod 8)$, then

$$
\begin{equation*}
8 \nmid V_{n}, \tag{4.7}
\end{equation*}
$$

and if P and Q are odd and $Q \not \equiv 1,5(\bmod 8)$, then

$$
\begin{equation*}
4 \backslash V_{n} \tag{4.8}
\end{equation*}
$$

for every natural number n.

The proof of the following lemma is given in [42]. Moreover, the lemma can be proved by using Corollary 2.1.1 and Corollary 2.1.2.

Lemma 4.1.2. Let $n \geq 1$. Then
(a) $3 \left\lvert\, V_{n} \Leftrightarrow \begin{cases}n \equiv 1(\bmod 2) & \text { if } 3 \mid P, \\ n \equiv 2(\bmod 4) \text { and } Q \equiv 1(\bmod 3) & \text { if } 3 \backslash P,\end{cases}\right.$
(b) $3 \left\lvert\, U_{n} \Leftrightarrow \begin{cases}n \equiv 0(\bmod 2) & \text { if } 3 \mid P, \\ 4 \mid n \text { and } Q \equiv 1(\bmod 3) \text { or } 3 \mid n \text { and } Q \equiv 2(\bmod 3) & \text { if } 3 \mid P .\end{cases}\right.$

The following lemma can be found in [42].

Lemma 4.1.3. Let P, Q, and m be odd positive integers and $r \geq 1$.
(a) If $3 \nmid m$, then $V_{2^{r} r_{m}} \equiv\left\{\begin{array}{lr}3(\bmod 8), & \text { if } r=1 \text { and } Q \equiv 1(\bmod 4), \\ 7(\bmod 8), & \text { otherwise, }\end{array}\right.$
(b) If $3 \mid m$, then $V_{2^{r} m} \equiv 2(\bmod 8)$.

By the above lemma, when P and Q are odd, it is seen that

$$
\begin{equation*}
\left(\frac{-1}{V_{2^{r}}}\right)=-1 \tag{4.9}
\end{equation*}
$$

for $r \geq 1$.

The following lemma can be proved by induction.

Lemma 4.1.4. If n is a positive even integer, then $V_{n} \equiv 2 Q^{\frac{n}{2}}\left(\bmod P^{2}\right)$ and if n is a positive odd integer, then $V_{n} \equiv n P Q^{\frac{n-1}{2}}\left(\bmod P^{2}\right)$.

Now, the following identities concerning generalized Fibonacci and Lucas numbers can be given.

$$
\begin{align*}
& U_{2 n}=U_{n} V_{n}, \tag{4.10}\\
& V_{2 n}=V_{n}^{2}-2(-Q)^{n}, \tag{4.11}\\
& U_{3 n}=U_{n}\left(\left(P^{2}+4 Q\right) U_{n}^{2}+3(-Q)^{n}\right)=U_{n}\left(V_{n}^{2}-(-Q)^{n}\right), \tag{4.12}\\
& V_{3 n}=V_{n}\left(V_{n}^{2}-3(-Q)^{n}\right), \tag{4.13}\\
& \text { If } P \text { is odd and } n \geq 1 \text {, then } 2\left|V_{n} \Leftrightarrow 2\right| U_{n} \Leftrightarrow 3 \mid n \text {, } \tag{4.14}\\
& V_{n}^{2}-\left(P^{2}+4 Q\right) U_{n}^{2}=4(-Q)^{n}, \tag{4.15}\\
& \text { If }(P, Q)=1 \text { and } n \geq 1 \text {, then }\left(U_{n}, Q\right)=\left(V_{n}, Q\right)=1 . \tag{4.16}
\end{align*}
$$

Let $m=2^{a} k, n=2^{b} l, k$ and l odd, $a, b \geq 0$, and $d=(m, n)$. Then

$$
\begin{align*}
& \left(U_{n}, U_{m}\right)=U_{d}, \tag{4.17}\\
& \left(U_{m}, V_{n}\right)= \begin{cases}V_{d} & \text { if } a>b \\
1 \text { or } 2 & \text { if } a \leq b\end{cases} \tag{4.18}
\end{align*}
$$

$$
\begin{align*}
& \left(V_{m}, V_{n}\right)=\left\{\begin{array}{lr}
V_{d} & \text { if } a=b, \\
2 & \text { if } a \neq b \text { and } P \text { is even, }, \\
1 \text { or } 2 & \text { if } a \neq b \text { and } P \text { is odd. }
\end{array}\right. \tag{4.19}\\
& \text { If } U_{m} \neq 1 \text {, then } U_{m}\left|U_{n} \Leftrightarrow m\right| n, \tag{4.20}\\
& \text { If } V_{m} \neq 1 \text {, then } V_{m}\left|V_{n} \Leftrightarrow m\right| n \text { and } \frac{n}{m} \text { is odd, } \tag{4.21}\\
& \text { If } V_{m} \neq 1 \text {, then } V_{m}\left|U_{n} \Leftrightarrow m\right| n \text { and } \frac{n}{m} \text { is even, } \tag{4.22}\\
& \text { If } P \text { is odd, } Q=1,2 \mid m, \text { and } 3 \mid m \text {, then }\left(\frac{V_{3}}{V_{m}}\right)=\left(\frac{-2}{P}\right), \tag{4.23}\\
& \text { If } P \text { and } Q \text { are odd, then } \\
& \left(\frac{U_{3}}{V_{2^{r}}}\right)=1 \Leftrightarrow r>1, \text { or } r=1 \text { and } Q \equiv 3(\bmod 4), \tag{4.24}\\
& \text { If } r \geq 3 \text { and } Q=1, \text { then } V_{2^{r}} \equiv 2\left(\bmod V_{2}\right) . \tag{4.25}
\end{align*}
$$

Moreover,

$$
\text { if } P>1 \text {, then } V_{m} \neq 1 \text { for all } m \in \mathbf{N}
$$

and also when P is even, it can be easily seen that

$$
\begin{gathered}
U_{n} \text { is odd } \Leftrightarrow n \text { is odd, } \\
U_{n} \text { is even } \Leftrightarrow n \text { is even, } \\
V_{n} \text { is even for all } n \in \mathbf{N} .
\end{gathered}
$$

Identities between (4.10)-(4.16) and (4.17)-(4.22) can be found in [41], [42], [47] and [29], [40], [42], respectively. Identities (4.23) and (4.24) are given in [2], [9] and [42], respectively. The proofs of the others are easy and will be omitted.

From now on, we will assume that n is a positive integer.

4.2. Generalized Lucas Numbers of The Form $c x^{2}$

In this subsection, it is assumed that $Q=1$ and $P>1$. Firstly, when $k \mid P$ and P is odd, indices n such that $V_{n}=k x^{2}$ are determined. Then, when P is odd, it is shown
that there is no solutions of the equation $V_{n}=3 x^{2}$ for $n>2$. Moreover, it is proved that the equation $V_{n}=6 x^{2}$ has no solutions when P is odd. Finally, the equations $V_{n}=3 V_{m} x^{2}$ and $V_{n}=6 V_{m} x^{2}$ are considered. It is shown that the equation $V_{n}=3 V_{m} x^{2}$ has solutions when $n=3, m=1$, and P is odd. Also, it is shown that the equation $V_{n}=6 V_{m} x^{2}$ has solutions only when $n=6$. Also the equations $V_{n}=3 x^{2}$ and $V_{n}=3 V_{m} x^{2}$ are considered under some assumptions when P is even.

In [11], Cohn solved the equations $V_{n}=V_{m} x^{2}$ and $V_{n}=2 V_{m} x^{2}$ when P is odd. Now, the following two theorems which can be obtained from Theorem 11 and Theorem 12 in [11] are given.

Theorem 4.2.1. Let P be an odd integer, $m \geq 1$ be an integer, and $V_{n}=V_{m} x^{2}$ for some integer x. Then $n=m$.

Theorem 4.2.2. If P is odd, then there is no integer x such that $V_{n}=2 V_{m} x^{2}$ for $m \geq 1$.

In the following theorem, it is shown that the equation $V_{n}=2 V_{m} x^{2}$ has no solutions when P is even.

Theorem 4.2.3. If P is even, then there is no integer x such that $V_{n}=2 V_{m} x^{2}$ for $m \geq 1$.

Proof: Assume that P is even and $V_{n}=2 V_{m} x^{2}$. Then V_{m} is even, which implies that $4 \mid V_{n}$. Therefore, it is seen that n is odd by Lemma 4.1.4. Moreover, since $V_{m} \mid V_{n}$, there exists an odd integer t such that $n=m t$ by (4.21). Thus, m is odd and therefore $V_{n} \equiv n P\left(\bmod P^{2}\right)$ and $V_{m} \equiv m P\left(\bmod P^{2}\right)$ by Lemma 4.1.4. It follows that $n P \equiv 2 m P x^{2}\left(\bmod P^{2}\right)$, i.e., $n \equiv 2 m x^{2}(\bmod P)$. This is a contradiction since n is odd. This completes the proof.

The proof of the following lemma can be seen from identity (4.23).

Lemma 4.2.1. If P is odd and $r \geq 1$, then $\left(\frac{P^{2}+3}{V_{2^{r}}}\right)=1$.

Theorem 4.2.4. Let k be square-free positive divisor of P and P be an odd integer. If the equation $V_{n}=k x^{2}$ has a solution for some integer x, then $n=1$ or $n=3$.

Proof: Assume that $k \mid P$ and $V_{n}=k x^{2}$. Then, it is seen that n is odd by Lemma 4.1.4. Let $n>3$. Then $n=4 q+1$ or $n=4 q+3$ for some $q>0$. Also, $P=k M$ for some positive integer M since $k \mid P$. For the remaining part of the proof, two cases can be considered.

Case 1: Assume that $n=4 q+1$. For some odd integer $z, n=4 q+1=2\left(2^{r} z\right)+1$, where $r \geq 1$. Thus one gets

$$
V_{n} \equiv-P\left(\bmod V_{2^{\prime}}\right),
$$

i.e.,

$$
k x^{2} \equiv-P\left(\bmod V_{2^{r}}\right)
$$

by (4.4). This shows that $J=\left(\frac{-k P}{V_{2^{r}}}\right)=1$. Since $P=k M$, it follows that $J=\left(\frac{-k P}{V_{2^{r}}}\right)=\left(\frac{-k^{2} M}{V_{2^{r}}}\right)=\left(\frac{-M}{V_{2^{r}}}\right)$. Since $V_{2^{r}} \equiv 2(\bmod P)$ by Lemma 4.1.4, it is seen that $V_{2^{r}} \equiv 2(\bmod M)$ and thus $\left(M, V_{2^{r}}\right)=1$. Also $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ by (4.9). Assume that $M \equiv 1,3(\bmod 8)$. Hence

$$
J=\left(\frac{-M}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)=(-1)\left(\frac{V_{2^{r}}}{M}\right)(-1)^{\left(\frac{V_{2^{r}}-1}{2}\right)\left(\frac{M-1}{2}\right)}
$$

This contradicts the fact that $J=1$. Assume that $M \equiv 5,7(\bmod 8)$. Since $n=4 q+1=4(q+1)-3=2\left(2^{r} z\right)-3$ for some odd integer z with $r \geq 1$, it follows that

$$
V_{n} \equiv V_{3}\left(\bmod V_{2^{r}}\right),
$$

i.e.,

$$
k x^{2} \equiv V_{3}\left(\bmod V_{2^{r}}\right)
$$

by (4.4). This shows that

$$
1=J=\left(\frac{k V_{3}}{V_{2^{r}}}\right)=\left(\frac{k^{2} M\left(P^{2}+3\right)}{V_{2^{r}}}\right)=\left(\frac{M\left(P^{2}+3\right)}{V_{2^{r}}}\right) .
$$

Since $M \equiv 5,7(\bmod 8), \quad V_{2^{r}} \equiv 3,7(\bmod 8)$ by Lemma 4.1.3, and $V_{2^{r}} \equiv 2(\bmod M)$ by Lemma 4.1.4, it follows that

$$
\begin{aligned}
\left(\frac{M}{V_{2^{r}}}\right) & =\left(\frac{V_{2^{r}}}{M}\right)(-1)^{\left(\frac{V_{2^{r}}-1}{2}\right)\left(\frac{M-1}{2}\right)} \\
& =\left(\frac{2}{M}\right)(-1)^{\left(\frac{M-1}{2}\right)}=(-1)^{(-1)^{\left(\frac{M^{2}-1}{8}\right)}}=-1 .
\end{aligned}
$$

Thus, using Lemma 4.2.1, one obtains

$$
J=\left(\frac{k V_{3}}{V_{2^{r}}}\right)=\left(\frac{k^{2} M\left(P^{2}+3\right)}{V_{2^{r}}}\right)=\left(\frac{M\left(P^{2}+3\right)}{V_{2^{r}}}\right)=\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3}{V_{2^{r}}}\right)=-1,
$$

which is a contradiction.

Case 2: Assume that $n=4 q+3$. For some odd integer z, one can write $n=2\left(2^{r} z\right)+3$, where $r \geq 1$. Thus

$$
V_{n} \equiv-V_{3}\left(\bmod V_{2^{r}}\right),
$$

i.e.,

$$
k x^{2} \equiv-V_{3}\left(\bmod V_{2^{r}}\right)
$$

by (4.4). This shows that

$$
1=J=\left(\frac{-k V_{3}}{V_{2^{r}}}\right)=\left(\frac{-k^{2} M\left(P^{2}+3\right)}{V_{2^{r}}}\right)=\left(\frac{-M\left(P^{2}+3\right)}{V_{2^{r}}}\right) .
$$

Assume that $M \equiv 1,3(\bmod 8)$. Then, it can be shown that

$$
\left(\frac{M}{V_{2^{r}}}\right)=1 .
$$

Thus, the identity (4.9) and Lemma 4.2.1 imply that

$$
J=\left(\frac{k V_{3}}{V_{2^{r}}}\right)=\left(\frac{-M\left(P^{2}+3\right)}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{M}{V_{2^{r}}}\right)\left(\frac{P^{2}+3}{V_{2^{r}}}\right)=-1,
$$

which is a contradiction. Assume that $M \equiv 5,7(\bmod 8)$. Since $n=4 q+3=4(q+1)-1=2\left(2^{r} z\right)-1$ for some odd integer z with $r \geq 1$, one gets

$$
V_{n} \equiv P\left(\bmod V_{2^{r}}\right),
$$

i.e.,

$$
k x^{2} \equiv P\left(\bmod _{2^{r}}\right)
$$

by (4.4). This shows that $1=J=\left(\frac{k P}{V_{2^{r}}}\right)=\left(\frac{k^{2} M}{V_{2^{r}}}\right)=\left(\frac{M}{V_{2^{r}}}\right)$. On the other hand, since $M \equiv 5,7(\bmod 8)$, it is seen that

$$
\left(\frac{M}{V_{2^{r}}}\right)=(-1)^{\left(\frac{M^{2}-1}{8}\right)}(-1)^{\left(\frac{M-1}{2}\right)}=-1,
$$

which contradicts the fact that $J=1$. This completes the proof.

In [42], Ribenboim and McDaniel have solved the equation $U_{n}=3 x^{2}$ for all relatively prime odd integers P and Q. Also, for $P \equiv 1,3(\bmod 8), Q \equiv 3(\bmod 4)$ and $(P, Q)=1$, the solutions of the equation $V_{n}=3 x^{2}$ is given by Ribenboim and McDaniel in [42]. In [39], the same authors have shown that $V_{n} \neq 3 x^{2}$ and $V_{n} \neq 6 x^{2}$ for all odd relatively prime values of P and Q with $Q \equiv 3(\bmod 4)$ and $n \equiv \pm 3(\bmod 8)$. Besides, in [3], Antoniadis has solved the equation $V_{n}=3 x^{2}$ for $3 \backslash P$ with P odd and $Q=1$. Now the proof of the following theorem is given in a different way for the sake of completeness.

Theorem 4.2.5. If P is odd, then the equation $V_{n}=3 x^{2}$ has the solutions for $n=1$ or $n=2$ and, if P is even and $3 \backslash P$, then there is no integer x such that $V_{n}=3 x^{2}$.

Proof: Assume that $3 \mid P$. Since $3 \mid V_{n}$, it follows that $n \equiv 2(\bmod 4)$ by Lemma 4.1.2. If P is even, then $3 x^{2}=V_{n} \equiv 2(\bmod 4)$ by Lemma 4.1.4 since n is even. But this is not possible. Now, assume that P is odd. If $n=2$, then $V_{n}=V_{2}=P^{2}+2=3 x^{2}$ or $P^{2}-3 x^{2}=-2$. Since $\left(u_{1}, v_{1}\right)=(1,1)$ is the fundamental solution of the equation $u^{2}-3 v^{2}=-2$, all positive integer solutions of the equation $u^{2}-3 v^{2}=-2$ are given by

$$
(u, v)=\left(5 U_{m}(4,-1)-U_{m-1}(4,-1), 3 U_{m}(4,-1)-U_{m-1}(4,-1)\right)
$$

with $m \geq 0$. Therefore, when $n=2$, the equation $V_{n}=3 x^{2}$ has a solution for $P=5 U_{m}(4,-1)-U_{m-1}(4,-1)$. If $n=6$, then $3 x^{2}=V_{6}=V_{3}^{2}+2$ by (4.11). Since P is odd, V_{3} is even by (4.14) and therefore

$$
3 x^{2}=V_{3}^{2}+2 \equiv 2(\bmod 4),
$$

which is not possible. Then it is clear that $n=16 c \pm 2$ or $n=16 c \pm 6$ for some positive integer c. Let $n=16 c \pm 6$. Thus

$$
V_{n} \equiv V_{6}\left(\bmod V_{4}\right),
$$

i.e.,

$$
\begin{equation*}
3 x^{2} \equiv V_{6}\left(\bmod V_{4}\right) \tag{4.26}
\end{equation*}
$$

by (4.4). Moreover, it can be easily shown that $V_{6} \equiv-V_{2}\left(\bmod V_{4}\right)$. Hence $3 x^{2} \equiv-V_{2}\left(\bmod V_{4}\right)$ from (4.26). Then $J=\left(\frac{-3 V_{2}}{V_{4}}\right)=1$. On the other hand, since $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ for $r \geq 1$ by $(4.9), V_{4} \equiv 1(\bmod 3)$ by Lemma 4.1.1, and $V_{4} \equiv-2\left(\bmod _{2}\right)$ by (4.11), it is seen that

$$
\left(\frac{-1}{V_{4}}\right)=(-1)^{\frac{V_{4}-1}{2}}=-1,
$$

$$
\left(\frac{3}{V_{4}}\right)=\left(\frac{V_{4}}{3}\right)(-1)^{\frac{V_{4}-1}{2}}=-1,
$$

and

$$
\left(\frac{V_{2}}{V_{4}}\right)=\left(\frac{V_{4}}{V_{2}}\right)(-1)^{\left(\frac{V_{4}-1}{2}\right)\left(\frac{V_{2}-1}{2}\right)}=\left(\frac{-2}{V_{2}}\right)(-1)=\left(\frac{-1}{V_{2}}\right)\left(\frac{2}{V_{2}}\right)(-1)=-1 .
$$

These imply that

$$
J=\left(\frac{-3 V_{2}}{V_{4}}\right)=\left(\frac{-1}{V_{4}}\right)\left(\frac{3}{V_{4}}\right)\left(\frac{V_{2}}{V_{4}}\right)=(-1)(-1)(-1)=-1,
$$

which contradicts the fact that $J=1$. Now let $n=16 c \pm 2$. Since n can be written as $n=2\left(2^{r} z\right) \pm 2$ for some odd z with $r \geq 3$, it is seen that

$$
V_{n} \equiv-V_{2}\left(\bmod V_{2^{r}}\right),
$$

i.e.,

$$
3 x^{2} \equiv-V_{2}\left(\bmod V_{2^{r}}\right)
$$

by (4.4), which shows that $J=\left(\frac{-3 V_{2}}{V_{2^{r}}}\right)=1$. On the other hand, $V_{2^{r}} \equiv 2\left(\bmod V_{2}\right)$ for $r \geq 3$ by (4.25) and $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ by (4.9). Thus

$$
\left(\frac{V_{2}}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{V_{2}}\right)(-1)^{\left(\frac{V_{2^{r}}-1}{2}\right)\left(\frac{V_{2}-1}{2}\right)}=\left(\frac{2}{V_{2}}\right)(-1)=1 .
$$

Moreover, $V_{2^{r}} \equiv 2(\bmod 3)$ by Lemma 4.1.1. Then

$$
\left(\frac{3}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{3}\right)(-1)^{\left(\frac{V_{2^{r}}-1}{2}\right)\left(\frac{3-1}{2}\right)}=\left(\frac{2}{3}\right)(-1)=1
$$

and hence

$$
J=\left(\frac{-3 V_{2}}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)\left(\frac{V_{2}}{V_{2^{r}}}\right)=-1,
$$

which is a contradiction.

Now assume that $3 \mid P$. Then $n=1$ or $n=3$ by Theorem 4.2.4. If $n=1$, then $V_{1}=P=3 x^{2}$. It is obvious that this is a solution. If $n=3$, then $V_{3}=P\left(P^{2}+3\right)=3 x^{2}$. Also, since $3 \mid P$, it is seen that $\left(P,\left(P^{2}+3\right) / 3\right)=1$. Therefore $P=a^{2}$ and $P^{2}+3=3 b^{2}$ for some positive integers a and b. Since $3 \mid P, P=3 c$ for some positive integer c. Hence one obtains the Pell equation $b^{2}-3 c^{2}=1$. It is well known that this equation has the solution $(b, c)=\left(\left(V_{m}(4,-1)\right) / 2, U_{m}(4,-1)\right)$ for $m \geq 1$. It follows that $P=a^{2}=3 c=3 U_{m}$, i.e., $U_{m}=3 x^{2}$. It is seen that the equation $U_{m}(4,-1)=3 x^{2}$ has no solutions by Theorem 2 given in [34]. Therefore, the case for when $n=3$ is not possible. This completes the proof.

Theorem 4.2.6. If P is odd, then there is no integer x such that $V_{n}=6 x^{2}$.

Proof: Assume that $3 \backslash P$. If x is even, it follows that $8 \mid V_{n}$, which is impossible by (4.7). Therefore x is odd. Since $3 \mid V_{n}$ and $2 \mid V_{n}$, it is seen that $n / 2$ is odd by Lemma 4.1.2 and $3 \mid n$ by (4.14), respectively. Then it follows that $n=12 q+6$ for some positive integer q. Thus

$$
V_{n} \equiv V_{6}(\bmod 8)
$$

by (4.6). That is,

$$
6 x^{2} \equiv 2(\bmod 8)
$$

which is impossible since x is odd.

Assume that $3 \mid P$. Since $3 \mid V_{n}, n$ is odd by Lemma 4.1.2. Also since $3 \mid n$, it follows that $n \equiv \pm 3(\bmod 12)$. Thus

$$
V_{n} \equiv V_{ \pm 3} \equiv \pm 4 P \equiv 4(\bmod 8)
$$

by (4.6). That is,

$$
6 x^{2} \equiv 4(\bmod 8)
$$

which is impossible since x is odd. This completes the proof.

Theorem 4.2.7. If P is odd, $m \geq 1$ and $V_{n}=3 V_{m} x^{2}$, then $m=1$ and $n=3$.

Proof: Assume that $3 \mid P$. Since $V_{m} \mid V_{n}$ and $3 \mid V_{n}$, it follows that $n=m t$ for some odd positive integer t by (4.21) and $n / 2$ is odd by Lemma 4.1.2, respectively. Therefore m is even and $m / 2$ is odd. Then $m=12 q \pm 2$ or $m=12 q+6$ for some positive integer q. Thus

$$
V_{m} \equiv V_{2}, V_{6} \equiv 2,3(\bmod 8)
$$

by (4.6). Similarly, it is seen that $V_{n} \equiv 2,3(\bmod 8)$. Also, since $3 x^{2} \equiv 0,3,4(\bmod 8)$, it follows that $V_{n}=3 V_{m} x^{2} \equiv 0,1,4,6(\bmod 8)$, which contradicts the fact that $V_{n} \equiv 2,3(\bmod 8)$.

Now assume that $3 \mid P$. Since $3 \mid V_{n}$, it is seen that n is odd by Lemma 4.1.2. Therefore m is also odd. Now, two different cases can be considered.

Case 1: Assume that $3 \mid t$. Then $t=3 s$ for some odd integer s. Thus $n=m t=3 m s$. By (4.13), one gets $V_{n}=V_{3 m s}=V_{m s}\left(V_{m s}^{2}+3\right)=3 V_{m} x^{2}$. Since $m s$ is odd and $3 \mid P$, it follows that $\left(V_{m s} / V_{m}\right)\left(\left(V_{m s}^{2}+3\right) / 3\right)=x^{2}$. It can be seen that $\left(V_{m s} / V_{m},\left(V_{m s}^{2}+3\right) / 3\right)=1$. Therefore $V_{m s}=V_{m} a^{2}$ and $V_{m s}^{2}+3=3 b^{2}$ for some positive integers a and b. Then $m s=m$, i.e., $s=1$ by Theorem 4.2.1. Thus $V_{m}^{2}+3=3 b^{2}$. Using (4.11), one obtains $V_{2 m}=3 b^{2}-1$. Assume that $m>1$. Then $2 m=2(4 q \pm 1)=2\left(2^{r} z\right) \pm 2$ for some odd integer z with $r \geq 2$. Hence

$$
V_{2 m} \equiv-V_{2} \equiv-\left(P^{2}+2\right)\left(\bmod V_{2^{r}}\right)
$$

by (4.4). That is,

$$
3 b^{2} \equiv-\left(P^{2}+2-1\right) \equiv-U_{3}\left(\bmod V_{2^{r}}\right)
$$

which shows that $J=\left(\frac{-3 U_{3}}{V_{2^{r}}}\right)=1$. On the other hand, $\left(\frac{-1}{V_{2^{r}}}\right)=-1$ by (4.9).
Moreover, since $3 \mid P$, it follows that $V_{2^{r}} \equiv 2(\bmod 3)$ by Lemma 4.1.1 and therefore

$$
\left(\frac{3}{V_{2^{r}}}\right)=\left(\frac{V_{2^{r}}}{3}\right)(-1)^{\frac{V_{2^{r}-1}}{2}}=\left(\frac{2}{3}\right)(-1)=1 .
$$

Using (4.24), one gets

$$
J=\left(\frac{-3 U_{3}}{V_{2^{r}}}\right)=\left(\frac{-1}{V_{2^{r}}}\right)\left(\frac{3}{V_{2^{r}}}\right)\left(\frac{U_{3}}{V_{2^{r}}}\right)=-1,
$$

which is a contradiction. Thus $m=1$, i.e., $n=3$. Then the equation $V_{n}=3 V_{m} x^{2}$ yields $P^{2}+3=3 x^{2}$. Moreover $P=3 c$ for some positive integer c since $3 \mid P$. Hence the Pell equation $x^{2}-3 c^{2}=1$ is obtained. It can be seen that this equation has the solutions $(x, c)=\left(\left(V_{k}(4,-1)\right) / 2, U_{k}(4,-1)\right)$ with $k \geq 1$. Therefore $m=1$ and $n=3$ is a solution.

Case 2: Assume that $3 \nmid t$. It is obvious that $t>1$ and so $t=6 q \pm 1$ for some positive integer q. Then $n=m t=2(3 m q) \pm m$. Hence

$$
V_{n} \equiv \pm V_{m}\left(\bmod V_{3 m}\right),
$$

i.e.,

$$
3 V_{m} x^{2} \equiv \pm V_{m}\left(\bmod V_{3 m}\right)
$$

by (4.4). It follows that

$$
3 V_{m} x^{2} \equiv \pm V_{m}\left(\bmod V_{m}\left(V_{m}^{2}+3\right)\right)
$$

by (4.13), which implies that

$$
3 x^{2} \equiv \pm 1\left(\bmod V_{m}^{2}+3\right) .
$$

Since $3 \mid P$ and m is odd, it is seen that $3 \mid V_{m}$ by Lemma 4.1.2. Therefore

$$
3 x^{2} \equiv \pm 1(\bmod 3),
$$

which is not possible. This completes the proof.

Theorem 4.2.8. If P is even, $3 \backslash P$, and $m \geq 1$, then there is no integer x such that $V_{n}=3 V_{m} x^{2}$.

Proof: Assume that P is even, $3 \backslash P$, and $V_{n}=3 V_{m} x^{2}$. Since $V_{m} \mid V_{n}$ and $3 \mid V_{n}$, there exist two odd positive integers t and z such that $n=m t$ and $n=2 z$ by (4.21) and Lemma 4.1.2, respectively. Therefore $m=2 r$ for some odd positive integer r. It is obvious that $t>1$. Then $t=4 q \pm 1$ for some positive integer q. Thus, since $n=m t=4 m q \pm m$, one gets

$$
V_{n} \equiv \pm V_{m}\left(\bmod V_{2 m}\right),
$$

by (4.4), i.e.,

$$
3 V_{m} x^{2} \equiv \pm V_{m}\left(\bmod V_{2 m}\right)
$$

It is seen that $\left(V_{m}, V_{2 m}\right)=2$ by (4.19). Hence

$$
3 x^{2} \equiv \pm 1\left(\bmod V_{2 m} / 2\right)
$$

Since $2 m / 4=4 r / 4=r$ is odd, it is seen that $V_{4} \mid V_{2 m}$ by (4.21) and hence

$$
3 x^{2} \equiv \pm 1\left(\bmod _{4} / 2\right)
$$

which shows that $J=\left(\frac{ \pm 3}{V_{4} / 2}\right)=1$. On the other hand, since $V_{4}=P^{4}+4 P^{2}+2$ and P is even, it is seen that $V_{4} \equiv 2(\bmod 8)$ and therefore $\left(\frac{-1}{V_{4} / 2}\right)=(-1)^{\left(\frac{V_{4}-2}{4}\right)}=1$.

Moreover, using Lemma 4.1.1, it is seen that $V_{4} / 2 \equiv 2(\bmod 3)$. Thus,

$$
\left(\frac{3}{V_{4} / 2}\right)=\left(\frac{V_{4} / 2}{3}\right)(-1)^{\frac{V_{4}-2}{4}}=\left(\frac{2}{3}\right)=-1
$$

or $J=-1$, which is a contradiction. This completes the proof.

Theorem 4.2.9. If P is even, $3 \mid P, 2 \| P$, and $m \geq 1$, then there is no integer x such that $V_{n}=3 V_{m} x^{2}$.

Proof: Assume that P is even, $3 \mid P, 2 \| P$, and $V_{n}=3 V_{m} x^{2}$. Since $V_{m} \mid V_{n}$ and $3 \mid V_{n}$, there exists an odd positive integer t such that $n=m t$ by (4.21) and n is odd by Lemma 4.1.2, respectively. Therefore m is also odd. It is obvious that $t>1$. Assume that $3 \mid t$. Then $t=3 s$ for some odd positive integer s. Since $n=m t=3 m s$, one gets

$$
3 V_{m} x^{2}=V_{n}=V_{3 m s}=V_{m s}\left(V_{m s}^{2}+3\right)
$$

by (4.13). Since $3 \mid P$ and $m s$ is odd, it follows that $3 \mid V_{m s}$ by Lemma 4.1.2. Thus

$$
\left(V_{m s} / V_{m}\right)\left(\left(V_{m s}^{2}+3\right) / 3\right)=x^{2}
$$

It can be easily seen that $\left(V_{m s} / V_{m},\left(V_{m s}^{2}+3\right) / 3\right)=1$, which shows that

$$
V_{m s}=V_{m} u^{2} \text { and } V_{m s}^{2}+3=3 v^{2}
$$

for some positive integers u and v. So $3 v^{2}=V_{m s}^{2}+3=V_{2 m s}+1$ by (4.11). Thus

$$
3 v^{2} \equiv 1\left(\bmod V_{2 m s}\right)
$$

Since $V_{2} \mid V_{2 m s}$, i.e., $\left(P^{2}+2\right) \mid V_{2 m s}$ by (4.21), it follows that

$$
3 v^{2} \equiv 1\left(\bmod P^{2}+2\right),
$$

which shows that

$$
J=\left(\frac{3}{\left(P^{2}+2\right) / 2}\right)=1 .
$$

On the other hand, since $3 \mid P$, it is seen that $\left(P^{2}+2\right) / 2 \equiv 1(\bmod 3)$. Therefore

$$
J=\left(\frac{3}{\left(P^{2}+2\right) / 2}\right)=\left(\frac{\left(P^{2}+2\right) / 2}{3}\right)(-1)^{\frac{p^{2}}{4}}=(-1)^{\frac{p^{2}}{4}} .
$$

Since $2 \| P$, it follows that $J=-1$, which is a contradiction. Now assume that $3 \| t$. Then $t=6 q \pm 1$ for some positive integer q since $t>1$. Thus $n=m t=2(3 m q) \pm m$, which leads to

$$
V_{n} \equiv \pm V_{m}\left(\bmod V_{3 m}\right),
$$

or

$$
3 V_{m} x^{2} \equiv \pm V_{m}\left(\bmod V_{3 m}\right)
$$

by (4.4). It follows that

$$
3 V_{m} x^{2} \equiv \pm V_{m}\left(\bmod V_{m}\left(V_{m}^{2}+3\right)\right)
$$

by (4.13), i.e.,

$$
3 x^{2} \equiv \pm 1\left(\bmod V_{m}^{2}+3\right)
$$

Since $3 \mid P$ and m is odd, it is seen that $3 \mid V_{m}$ by Lemma 4.1.2. Therefore

$$
3 x^{2} \equiv \pm 1(\bmod 3)
$$

which is not possible. This completes the proof.

The following lemma, which can be proved by induction, will be used in the sequel.

Lemma 4.2.2. If P is odd and $k \geq 2$, then $V_{2^{k}} \equiv-1\left(\bmod V_{4}+1\right)$.

Theorem 4.2.10. If $V_{n}=6 V_{m} x^{2}$ and $m \geq 1$, then $m=2$ and $n=6$.

Proof: Firstly, assume that P is odd. Let $3 \backslash P$. Then, since $3 \mid V_{n}$ and $2 \mid V_{n}$, it follows that $n=2 z$ for some odd integer z by Lemma 4.1.2 and $3 \mid n$ by (4.14), respectively. This shows that $3 \mid z$ and therefore $z=3 a$ for some odd positive integer a. Thus $n=2 z=6 a=12 q+6$ for some positive integer q. Hence

$$
V_{n} \equiv V_{6} \equiv 2(\bmod 8)
$$

by (4.6). Clearly, x is odd. Therefore $6 V_{m} \equiv 6 V_{m} x^{2}=V_{n} \equiv 2(\bmod 8)$. Besides, since $V_{m} \mid V_{n}$, there exists an odd positive integer t such that $n=m t$ by (4.21). Since $n=2 z$ with odd z, it follows that $m=2 r$ for some odd positive integer r. Assume that $3 \mid r$. Then $V_{m} \equiv 2(\bmod 8)$ by Lemma 4.1.3 and therefore $6 V_{m} \equiv 4(\bmod 8)$, which contradicts the fact that $6 V_{m} \equiv 2(\bmod 8)$. Assume that $3 \mid r$. Then, since $3 \mid n$ and $n=m t$, it is seen that $3 \mid t$, i.e., $t=3 s$ for some odd positive integer s. Thus $n=m t=3 m s$. Therefore

$$
V_{n}=V_{3 m s}=V_{m s}\left(V_{m s}^{2}-3\right)=6 V_{m} x^{2}
$$

by (4.13). Since $3 \backslash P$ and $m s=2 r s \equiv 2(\bmod 4)$, it follows that $3 \mid V_{m s}$ by Lemma 4.1.2. Thus

$$
\left(V_{m s} / V_{m}\right)\left(\left(V_{m s}^{2}-3\right) / 3\right)=2 x^{2} .
$$

It can be easily seen that $\left(V_{m s} / V_{m},\left(V_{m s}^{2}-3\right) / 3\right)=1$, which shows that

$$
\begin{equation*}
V_{m s}=2 V_{m} u^{2} \text { and } V_{m s}^{2}-3=3 v^{2} \tag{4.27}
\end{equation*}
$$

or

$$
\begin{equation*}
V_{m s}=V_{m} u^{2} \text { and } V_{m s}^{2}-3=6 v^{2} \tag{4.28}
\end{equation*}
$$

for some integers u and v. Identity (4.27) is not possible by Theorem 4.2.2. Assume that (4.28) is satisfied. By Theorem 4.2.1, it follows that $s=1$. Therefore $V_{m}^{2}-3=6 v^{2}$. Using (4.11), we get $V_{2 m}=V_{4 r}=6 v^{2}+1$. Assume that $r>1$. Then $2 m=4 r=4(4 q \pm 1)=2\left(2^{k} z\right) \pm 4$ for some odd integer z with $k \geq 3$. Hence

$$
V_{2 m} \equiv-V_{4}\left(\bmod _{2^{k}}\right)
$$

by (4.4), that is,

$$
6 v^{2} \equiv-\left(V_{4}+1\right)\left(\bmod V_{2^{k}}\right) .
$$

Since V_{4} and $V_{2^{k}}$ are odd by (4.14), it follows that

$$
3 v^{2} \equiv-\left(V_{4}+1\right) / 2\left(\bmod V_{2^{k}}\right),
$$

which implies that

$$
J=\left(\frac{-3\left(V_{4}+1\right) / 2}{V_{2^{k}}}\right)=1
$$

On the other hand, since $\left(\frac{-1}{V_{2^{k}}}\right)=-1$ by (4.9) and $\left(\frac{V_{2^{k}}}{3}\right)=\left(\frac{2}{3}\right)=-1$ by Lemma 4.1.1, it is seen that

$$
\left(\frac{3}{V_{2^{k}}}\right)=(-1)^{\frac{V_{2^{k}}-1}{2}}\left(\frac{V_{2^{k}}}{3}\right)=(-1)(-1)=1 .
$$

Besides, it is clear that $V_{4} \equiv 7(\bmod 16)$ and therefore $\left(V_{4}+1\right) / 8$ is odd. Thus

$$
\left(\frac{V_{2^{k}}}{\left(V_{4}+1\right) / 8}\right)=\left(\frac{-1}{\left(V_{4}+1\right) / 8}\right)
$$

by Lemma 4.2.2, and so

$$
\begin{aligned}
J & =\left(\frac{-3\left(V_{4}+1\right) / 2}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{3}{V_{2^{k}}}\right)\left(\frac{4}{V_{2^{k}}}\right)\left(\frac{\left(V_{4}+1\right) / 8}{V_{2^{k}}}\right) \\
& =(-1)\left(\frac{\left(V_{4}+1\right) / 8}{V_{2^{k}}}\right) .
\end{aligned}
$$

Let $y=\left(V_{4}+1\right) / 8$. Then,

$$
\begin{aligned}
J & \left.=(-1)\left(\frac{\left(V_{4}+1\right) / 8}{V_{2^{k}}}\right)=(-1)\left(\frac{y}{V_{2^{k}}}\right)=(-1)(-1)^{\left(\frac{y-1}{2}\right)\left(\frac{V_{2^{k}}-1}{2}\right.}\right)\left(\frac{V_{2^{k}}}{y}\right) \\
& \left.=(-1)(-1)^{\left(\frac{y-1}{2}\right)\left(\frac{V_{2^{k}}-1}{2}\right.}\right)\left(\frac{-1}{y}\right)=(-1)(-1)^{\frac{y-1}{2}}(-1)^{\frac{y-1}{2}}=-1,
\end{aligned}
$$

which is a contradiction. Therefore $r=1$, which implies that $m=2$ and $n=6$. Since $V_{2}=P^{2}+2$ and $V_{6}=P^{6}+6 P^{4}+9 P^{2}+2$, the equation $P^{4}+4 P^{2}+1=6 x^{2}$ follows from $V_{n}=6 V_{m} x^{2}$. Completing the square gives $\left(P^{2}+2\right)^{2}-3=6 x^{2}$. Then it follows
that $3 \mid\left(P^{2}+2\right)$ and therefore $P^{2}+2=3 c$ for some positive integer c, which leads to the equation $3 c^{2}-2 x^{2}=1$. By Lemma 1 in [49], if $k \sqrt{A}+t \sqrt{B}$ is a solution of the equation $A X^{2}-B Y^{2}=1$ and $r+s \sqrt{A B}$ is a solution of the equation $X^{2}-A B Y^{2}=1$, then the product $(k r+B t s) \sqrt{A}+(t r+A k s) \sqrt{B}$ is a solution of the equation $A X^{2}-B Y^{2}=1$. Thus, since $\sqrt{3}+\sqrt{2}$ is a solution of the equation $3 c^{2}-2 x^{2}=1$ and $5+2 \sqrt{6}$ is a solution of the equation $c^{2}-6 x^{2}=1$, the equation $3 c^{2}-2 x^{2}=1$ has infinitely many solutions. Therefore $m=2$ and $n=6$ is a solution.

Let $3 \mid P$. Then, since $3 \mid V_{n}$ and $2 \mid V_{n}$, it follows that n is odd by Lemma 4.1.2 and $3 \mid n$ by (4.14), respectively. Therefore $n=12 q \pm 3$ for some positive integer q. Thus,

$$
V_{n} \equiv V_{ \pm 3} \equiv \pm 4 P \equiv 4(\bmod 8)
$$

by (4.6), that is,

$$
6 V_{m} x^{2} \equiv 4(\bmod 8)
$$

Also, since x is odd, it follows that $6 V_{m} \equiv 4(\bmod 8)$. Thus V_{m} is even and therefore $3 \mid m$ by (4.14). Moreover, since n is odd and $V_{m} \mid V_{n}$, it is seen that m is odd by (4.21). Then $V_{3} \mid V_{m}$ by (4.21). Besides, since P is odd, it can be seen that $4 \mid V_{3}$ and therefore $4 \mid V_{m}$. This shows that $8 \mid V_{n}$, which is not possible by (4.7).

Finally, assume that P is even. If n is odd, then m is also odd. Hence $V_{n} \equiv n P\left(\bmod P^{2}\right)$ and $V_{m} \equiv m P\left(\bmod P^{2}\right)$ by Lemma 4.1.4, which implies that

$$
n P \equiv 6 m P x^{2}\left(\bmod P^{2}\right),
$$

or

$$
n \equiv 6 m x^{2}(\bmod P)
$$

which is not possible since P is even and n is odd. If n is even, then m is also even. Hence $V_{n} \equiv 2(\bmod 4)$ and $V_{m} \equiv 2(\bmod 4)$ by Lemma 4.1.4, which shows that

$$
6 V_{m} x^{2} \equiv 0(\bmod 4)
$$

or

$$
V_{n} \equiv 0(\bmod 4),
$$

which contradicts the fact that $V_{n} \equiv 2(\bmod 4)$. This completes the proof.

4.3. The Equations $V_{n}=V_{r} V_{m} x^{2}, V_{n}=V_{m} V_{r}$, and $U_{n}=U_{m} U_{r}$

In this subsection, we assume that m and r are natural numbers. It is shown that when r is even and $V_{m} \neq 1$, there is no integer x such that $V_{n}=V_{r} V_{m} x^{2}$. Also when $Q \equiv 1(\bmod 8), V_{m} \neq 1, V_{r} \neq 1$ and x is even integer, the solution of the equation $V_{n}=V_{m} V_{r} x^{2}$ is found. In addition to this, when $P \equiv 1,5(\bmod 8)$ and $Q \equiv 3,7(\bmod 8)$, the equation $V_{n}=V_{m} V_{r} x^{2}$ is considered. Moreover, it is shown that when $P>1$ and $Q= \pm 1$, there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$ for $m>1$ and $r>1$. Finally, it is shown that there is no generalized Fibonacci number U_{n} such that $U_{n}=U_{m} U_{r}$ for $Q= \pm 1$ and $1<r<m$.

Throughout this subsection, it is assumed that P and Q are relatively prime positive integers.

In [22], the authors showed that there is no integer x such that $L_{n}=L_{m} L_{r} x^{2}$ when m and r are natural numbers with even r. Now, the same problem is solved for generalized Lucas numbers.

Theorem 4.3.1. Let $Q \equiv 1,5(\bmod 8), V_{m} \neq 1$, and r be odd. Then there is no integer x such that $V_{n}=V_{m} V_{2 r} x^{2}$.

Proof: Assume that $V_{n}=V_{2 r} V_{m} x^{2}, Q \equiv 1,5(\bmod 8)$ and r is odd. Firstly, assume that P is odd. Since $V_{m} \mid V_{n}$ and $V_{2 r} \mid V_{n}$, it follows that $n=m t$ and $n=2 r s$ for some odd integers t and s by (4.21). Thus $2 \mid n$ and $n / 2$ is odd. Since $n=m t$ and t is odd, it is seen that $2 \mid m$ and $m / 2$ is odd. Then we can write $m=12 q+c$ with $c \in\{2,6,10\}$ and $q \geq 0$. Thus

$$
V_{m} \equiv V_{12 q+c} \equiv V_{2}, V_{6}, V_{10}(\bmod 8)
$$

by (4.6). Since $V_{2} \equiv 3(\bmod 8), V_{6} \equiv 2(\bmod 8)$ and $V_{10} \equiv 3(\bmod 8)$ by Lemma 4.1.3, it follows that

$$
V_{m} \equiv 2,3(\bmod 8) .
$$

Similarly, it is seen that $V_{n} \equiv 2,3(\bmod 8)$ and $V_{2 r} \equiv 2,3(\bmod 8)$. Assume that $V_{2 r} \equiv 3(\bmod 8)$. Then $V_{n}=V_{2 r} V_{m} x^{2} \equiv 3 V_{m} x^{2}(\bmod 8)$. Moreover, $3 x^{2} \equiv 0,3,4(\bmod 8)$ and $V_{m} \equiv 2,3(\bmod 8)$, which shows that $3 V_{m} x^{2} \equiv 0,1,4,6(\bmod 8)$. But this contradicts the fact that $V_{n} \equiv 2,3(\bmod 8)$. Now assume that $V_{2 r} \equiv 2(\bmod 8)$. Then $V_{n}=V_{2 r} V_{m} x^{2} \equiv 2 V_{m} x^{2}(\bmod 8)$. Since $2 x^{2} \equiv 0,2(\bmod 8)$ and $V_{m} \equiv 2,3(\bmod 8)$, it is seen that $V_{n} \equiv 0,4,6(\bmod 8)$, which contradicts the fact that $V_{n} \equiv 2,3(\bmod 8)$.

Finally, assume that P is even. Then since n is even and Q is odd, it is seen that $V_{n} \equiv 2(\bmod 4)$ by Lemma 4.1.4. Similarly, $V_{m} \equiv 2(\bmod 4)$ and $V_{2 r} \equiv 2(\bmod 4)$. This shows that $V_{n} \equiv 0(\bmod 4)$, which contradicts the fact that $V_{n} \equiv 2(\bmod 4)$. This completes the proof.

Theorem 4.3.2. Let $Q \equiv 3,7(\bmod 8), V_{m} \neq 1$, and r be odd. Then there is no integer x such that $V_{n}=V_{m} V_{2 r} x^{2}$.

Proof: Assume that $V_{n}=V_{2 r} V_{m} x^{2}, Q \equiv 3,7(\bmod 8)$, and r is odd. Firstly, assume that P is odd. Since $V_{m} \mid V_{n}$ and $V_{2 r} \mid V_{n}$, it follows that $n=m t$ and $n=2 r s$ for some odd integers t and s by (4.21). Thus $2 \mid n$ and $n / 2$ is odd. Since $n=m t$ and t is odd, it is seen that $2 \mid m$ and $m / 2$ is odd. Then $m=12 q+c$ with $c \in\{2,6,10\}$ and $q \geq 0$. Thus

$$
V_{m} \equiv V_{12 q+c} \equiv V_{2}, V_{6}, V_{10}(\bmod 8)
$$

by (4.6). Since $V_{2} \equiv 7(\bmod 8), V_{6} \equiv 2(\bmod 8)$, and $V_{10} \equiv 7(\bmod 8)$ by Lemma 4.1.3, it follows that

$$
V_{m} \equiv 2,7(\bmod 8) .
$$

Similarly, it is seen that $V_{n} \equiv 2,7(\bmod 8)$ and $V_{2 r} \equiv 2,7(\bmod 8)$. Assume that $V_{2 r} \equiv 7(\bmod 8)$. Then it follows that $V_{n}=V_{2 r} V_{m} x^{2} \equiv 7 V_{m} x^{2}(\bmod 8)$. Moreover, $7 x^{2} \equiv 0,4,7(\bmod 8)$ and $V_{m} \equiv 2,7(\bmod 8)$, which shows that $7 V_{m} x^{2} \equiv 0,1,4,6(\bmod 8)$. But this contradicts the fact that $V_{n} \equiv 2,7(\bmod 8)$. Now assume that $V_{2 r} \equiv 2(\bmod 8)$. Then $V_{n}=V_{2 r} V_{m} x^{2} \equiv 2 V_{m} x^{2}(\bmod 8)$. Since $2 x^{2} \equiv 0,2(\bmod 8)$ and $V_{m} \equiv 2,7(\bmod 8)$, it is seen that $V_{n} \equiv 0,4,6(\bmod 8)$, which contradicts the fact that $V_{n} \equiv 2,7(\bmod 8)$.

Secondly, assume that P is even. Then since n is even and Q is odd, it is seen that $V_{n} \equiv 2(\bmod 4)$ by Lemma 4.1.4. Similarly, it is seen that $V_{m} \equiv 2(\bmod 4)$ and $V_{2 r} \equiv 2(\bmod 4)$. This shows that $V_{n} \equiv 0(\bmod 4)$, which contradicts the fact that $V_{n} \equiv 2(\bmod 4)$. This completes the proof.

Theorem 4.3.3. Let $V_{m} \neq 1, k \geq 2$, and Q, r be odd. Then there is no integer x such that $V_{n}=V_{2^{k} r} V_{m} x^{2}$.

Proof: Assume that $V_{n}=V_{2^{k} r} V_{m} x^{2}$ and r is odd. Firstly, assume that P is odd. Since $V_{m} \mid V_{n}$ and $V_{2^{k} r} \mid V_{n}$, there exist two odd integers t and s such that $n=m t$ and $n=2^{k} r s$ by (4.21). Thus $m=2^{k} c$ for some odd positive integer c. Then $V_{n} \equiv 2,7(\bmod 8), \quad V_{m} \equiv 2,7(\bmod 8)$ and $V_{2^{k} r} \equiv 2,7(\bmod 8)$ by Lemma 4.1.3. Assume that $V_{2^{k} r} \equiv 2(\bmod 8)$. Then it follows that

$$
V_{n}=V_{2^{k} r} V_{m} x^{2} \equiv 2 V_{m} x^{2}(\bmod 8) .
$$

Moreover, since $2 x^{2} \equiv 0,2(\bmod 8)$ and $V_{m} \equiv 2,7(\bmod 8)$, it is seen that $2 V_{m} x^{2} \equiv 0,4,6(\bmod 8)$, which contradicts the fact that $V_{n} \equiv 2,7(\bmod 8)$. Now assume that $\quad V_{2^{k} r} \equiv 7(\bmod 8)$. Then $\quad V_{n}=V_{2^{k} r} V_{m} x^{2} \equiv 7 V_{m} x^{2}(\bmod 8)$. Moreover, $7 x^{2} \equiv 0,4,7(\bmod 8)$ and $V_{m} \equiv 2,7(\bmod 8)$. This shows that $7 V_{m} x^{2} \equiv 0,1,4,6(\bmod 8)$, which contradicts the fact that $V_{n} \equiv 2,7(\bmod 8)$.

Secondly, assume that P is even. Then, since n is even and Q is odd, it is seen that $V_{n} \equiv 2(\bmod 4)$ by Lemma 4.1.4. Similarly, it is seen that $V_{m} \equiv 2(\bmod 4)$ and $V_{2 r} \equiv 2(\bmod 4)$. This shows that $V_{n} \equiv 0(\bmod 4)$, which contradicts the fact that $V_{n} \equiv 2(\bmod 4)$. This completes the proof.

Thus, the following theorem can be stated easily.

Theorem 4.3.4. Let r be even, Q be odd, and $V_{m} \neq 1$. Then there is no integer x such that $V_{n}=V_{m} V_{r} x^{2}$.

Proof: The proof follows from Theorem 4.3.1, Theorem 4.3.2, and Theorem 4.3.3.

The lemma given below is from number theory and it is used in the proof of the theorem following it.

Lemma 4.3.1. Let $a, b, c, x \in \mathbf{Z}, \operatorname{gcd}(a, b)=1$ and $a b=c x^{2}$. Then $a=r u^{2}$ and $b=s v^{2}$ with $r s=c$ for some positive integers u and v.

In [22], the authors showed that for $m>1$ and $r>1$, there is no even integer x such that $L_{n}=L_{m} L_{r} x^{2}$. Besides, if $Q \equiv 3,7(\bmod 8)$ and x is even, then it can be seen that the equation $V_{n}=V_{m} V_{r} x^{2}$ has no solutions by (4.8). Now, the same problem is considered for $P \geq 1$ and $Q \equiv 1(\bmod 8)$.

Theorem 4.3.5. Let x be an even integer and $Q \equiv 1(\bmod 8)$. If $V_{n}=V_{m} V_{r} x^{2}$ with $V_{m} \neq 1, V_{r} \neq 1$, then $m=r=1, n=3$, and $P=3$.

Proof: Assume that $V_{n}=V_{m} V_{r} x^{2}, Q \equiv 1(\bmod 8)$, and x is even. If one of m and r is even, the proof follows from Theorem 4.3.4. Assume that m and r are odd. Firstly, assume that P is odd. Since x is even, it follows that $4 \mid V_{n}$ and therefore $3 \mid n$ by (4.14). If $3 \mid m$ or $3 \mid r$, then V_{m} or V_{r} is even by (4.14). Thus we get $8 \mid V_{n}$, which is
impossible by (4.7). Therefore we have $3 \backslash m$ and $3 \mid r$. Since $V_{m} \mid V_{n}$ and $V_{r} \mid V_{n}$, there exist two odd positive integers t and s such that $n=m t$ and $n=r s$ by (4.21). Then n is odd. As a result, $n=m t, n=r s, 3|n, 3| m$, and $3 \mid r$. Therefore $t=3 a$ and $s=3 b$ for some odd positive integers a and b, which shows that $n=3 m a=3 r b$, i.e., $m a=r b$. Thus, since n is odd, it follows that

$$
V_{m} V_{r} x^{2}=V_{n}=V_{3 m a}=V_{m a}\left(V_{m a}^{2}+3 Q^{m a}\right)
$$

by (4.13), which shows that

$$
\begin{equation*}
\frac{V_{m a}}{V_{m}}\left(V_{m a}^{2}+3 Q^{m a}\right)=V_{r} x^{2} . \tag{4.29}
\end{equation*}
$$

Then, using (4.16), it can be seen that $\left(\frac{V_{m a}}{V_{m}}, V_{m a}^{2}+3 Q^{m a}\right)=1$ or 3 . In both cases, by Lemma 4.3.1, we have

$$
\begin{equation*}
\frac{V_{m a}}{V_{m}}=w u_{1}^{2} \text { and } V_{m a}^{2}+3 Q^{m a}=y u_{2}^{2} \tag{4.30}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{V_{m a}}{3 V_{m}}=w u_{1}^{2} \text { and } \frac{V_{m a}^{2}+3 Q^{m a}}{3}=y u_{2}^{2} \tag{4.31}
\end{equation*}
$$

with $w y=V_{r}$ for some positive integers w, y, u_{1}, and u_{2}. Using the fact that $m a=r b$ in (4.30) and (4.31), one gets $V_{r b}^{2}+3 Q^{r b}=y u_{2}^{2}$ and $V_{r b}^{2}+3 Q^{r b}=3 y u_{2}^{2}$, respectively. Thus it follows that $y \mid V_{r b}^{2}+3 Q^{r b}$. Since $y \mid V_{r}$ and $V_{r} \mid V_{r b}$, it is seen that $y \mid 3 Q^{r b}$. Since $y \mid V_{r}$, one obtains $y \mid 3$ by (4.16), which shows that $y=1$ or $y=3$. As a result, it follows that $V_{r b}^{2}+3 Q^{r b}=v^{2}$ or $V_{r b}^{2}+3 Q^{r b}=3 v^{2}$ for some integer v. Assume that $V_{r b}^{2}+3 Q^{r b}=v^{2}$. Using (4.11), one gets $V_{2 r b}=v^{2}-Q^{r b}$. Assume that $r b>1$. Then $2 r b=2(4 q \pm 1)=2\left(2^{k} z\right) \pm 2$ for some odd positive integer z with $k \geq 2$. Hence,

$$
V_{2 r b} \equiv-Q^{r b-1} V_{2}\left(\bmod V_{2^{k}}\right)
$$

or

$$
V_{2 r b} \equiv-Q^{r b+1} V_{-2}\left(\bmod V_{2^{k}}\right)
$$

by (2.17). In both cases, it is seen that

$$
v^{2}-Q^{r b} \equiv-Q^{r b-1} V_{2}\left(\bmod _{2^{k}}\right)
$$

by (1.1), that is,

$$
v^{2} \equiv-Q^{r b-1}\left(V_{2}-Q\right) \equiv-Q^{r b-1} U_{3}\left(\bmod V_{2^{k}}\right),
$$

which shows that $J=\left(\frac{-Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=1$. On the other hand, $\left(\frac{U_{3}}{V_{2^{k}}}\right)=1$ by (4.24). Moreover, $V_{2^{k}} \equiv 7(\bmod 8) \quad$ by Lemma 4.1.3 and therefore $\left(\frac{-1}{V_{2^{k}}}\right)=-1$. Also since $r b-1$ is even, it is seen that $\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)=1$. Thus

$$
J=\left(\frac{-Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)\left(\frac{U_{3}}{V_{2^{k}}}\right)=-1,
$$

which contradicts the fact that $J=1$. Assume that $V_{r b}^{2}+3 Q^{r b}=3 v^{2}$. Then $3 \mid V_{r b}$. This shows that $3 \mid P$ by Lemma 4.1.2 since $r b$ is odd. Using (4.11), one obtains $V_{2 r b}=3 v^{2}-Q^{r b}$. Assume that $r b>1$. Then it is clear that $2 r b=2(4 q \pm 1)=2\left(2^{k} z\right) \pm 2$ for some odd positive integer z with $k \geq 2$. Hence,

$$
V_{2 r b} \equiv-Q^{r b-1} V_{2}\left(\bmod V_{2^{k}}\right)
$$

or

$$
V_{2 r b} \equiv-Q^{r b+1} V_{-2}\left(\bmod V_{2^{k}}\right)
$$

by (2.17). In both cases, it is seen that

$$
3 v^{2}-Q^{r b} \equiv-Q^{r b-1} V_{2}\left(\bmod V_{2^{k}}\right)
$$

by (1.1). That is,

$$
3 v^{2} \equiv-Q^{r b-1}\left(V_{2}-Q\right) \equiv-Q^{r b-1} U_{3}\left(\bmod _{2^{k}}\right)
$$

which shows that $J=\left(\frac{-3 Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=1$. Besides, it is obvious that $\left(\frac{U_{3}}{V_{2^{k}}}\right)=1$ by
(4.24) and $\left(\frac{-1}{V_{2^{k}}}\right)=-1$ by (4.9). Since $r b$ is odd, one gets $\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)=1$. Also since
$3 \mid P$ and $k \geq 2$, it can be easily seen that $V_{2^{k}} \equiv 2 Q^{\frac{2^{k}}{2}}(\bmod 3)$ by Lemma 4.1.4. Therefore

$$
\left(\frac{3}{V_{2^{k}}}\right)=\left(\frac{V_{2^{k}}}{3}\right)(-1)^{\left(\frac{3-1}{2}\right)\left(\frac{V_{2^{k}-1}}{2}\right)}=-\left(\frac{2 Q^{\frac{2^{k}}{2}}}{3}\right)=-\left(\frac{2}{3}\right)\left(\frac{Q^{\frac{2^{k}}{2}}}{3}\right)=1 .
$$

Consequently,

$$
J=\left(\frac{-3 Q^{r b-1} U_{3}}{V_{2^{k}}}\right)=\left(\frac{-1}{V_{2^{k}}}\right)\left(\frac{3}{V_{2^{k}}}\right)\left(\frac{Q^{r b-1}}{V_{2^{k}}}\right)\left(\frac{U_{3}}{V_{2^{k}}}\right)=-1
$$

which contradicts the fact that $J=1$. Therefore $r b=1$, i.e., $r=b=1$. This shows that $m=r=1$ and $n=3$. Hence, $V_{3}=V_{1} V_{1} x^{2}=(P x)^{2}$, i.e., $P\left(P^{2}+3 Q\right)=P^{2} x^{2}$, which implies that $P \mid\left(P^{2}+3 Q\right)$ and therefore $P \mid 3 Q$. Since $(P, Q)=1$, it follows that $P \mid 3$. This shows that $P=3$ since $P=V_{1}=V_{m} \neq 1$ by the assumption.

Secondly, assume that P is even. Since x is even, it is seen that $4 \mid V_{n}$ and therefore n is odd by Lemma 4.1.4. This shows that m and r are also odd. On the other hand $V_{n} \equiv n P Q^{\frac{n-1}{2}}\left(\bmod P^{2}\right), V_{m} \equiv m P Q^{\frac{m-1}{2}}\left(\bmod P^{2}\right)$, and $V_{r} \equiv r P Q^{\frac{r-1}{2}}\left(\bmod P^{2}\right)$ by Lemma 4.1.4, which imply that

$$
n P Q^{\frac{n-1}{2}} \equiv m r P^{2} Q^{\left(\frac{m+r-2}{2}\right)} x^{2}\left(\bmod P^{2}\right),
$$

or

$$
n Q^{\frac{n-1}{2}} \equiv m r P Q^{\left(\frac{m+r-2}{2}\right)} x^{2}(\bmod P)
$$

which is impossible since n and Q are odd integers. This completes the proof.

Theorem 4.3.6. Let $P \equiv 1,5(\bmod 8)$ and $Q \equiv 3,7(\bmod 8)$. Then there is no integer x such that $V_{n}=V_{m} V_{r} x^{2}$.

Proof: Assume that $V_{n}=V_{m} V_{r} x^{2}$ and $P \not \equiv 1,5(\bmod 8)$. When m or r is even, the proof follows from Theorem 4.3.4. Therefore, assume that m and r are odd. Then n is also odd.

Firstly, assume that P is odd. If $3 \mid m$ and $3 \mid r$, then V_{m} and V_{r} are even by (4.14). Thus it follows that $4 \mid V_{n}$. This is impossible by (4.8). Therefore $3 \backslash m$ or $3 \backslash r$. Since $4 \nmid V_{n}, x$ is an odd integer. Assume that $3 \backslash m$ and $3 \backslash r$. Thus $3 \nmid n$. Since n, m, and r are odd, it is seen that $V_{n} \equiv P, 5 P(\bmod 8), V_{m} \equiv P, 5 P(\bmod 8)$, and $V_{r} \equiv P, 5 P(\bmod 8) \quad$ by (4.6). Thus one gets $V_{n}=V_{m} V_{r} x^{2} \equiv 1,5(\bmod 8)$. Then $P \equiv 1,5(\bmod 8)$ or $5 P \equiv 1,5(\bmod 8)$, which is impossible since $P \not \equiv 1,5(\bmod 8)$. Assume that $3 \mid m$ and $3 \mid r$. Then $3 \mid n$. If $Q \equiv 7(\bmod 8)$, then it follows that $V_{n} \equiv 6 P(\bmod 8), V_{m} \equiv 6 P(\bmod 8), V_{r} \equiv P(\bmod 8)$ by (4.6) and if $Q \equiv 3(\bmod 8)$, then $V_{n} \equiv 2 P(\bmod 8), V_{m} \equiv 2 P(\bmod 8), V_{r} \equiv P, 5 P(\bmod 8)$ by (4.6). In both cases, from the equation $V_{n}=V_{m} V_{r} x^{2}$, we get that $P \equiv 1(\bmod 4)$, which is impossible since $P \equiv 1,5(\bmod 8)$.

Secondly, assume that P is even. Since n, m, and r are odd, it follows that $V_{n} \equiv n P Q^{\frac{n-1}{2}}\left(\bmod P^{2}\right), V_{m} \equiv m P Q^{\frac{m-1}{2}}\left(\bmod P^{2}\right)$, and $V_{r} \equiv r P Q^{\frac{r-1}{2}}\left(\bmod P^{2}\right)$ by Lemma 4.1.4. This shows that

$$
n P Q^{\frac{n-1}{2}} \equiv m r P^{2} Q^{\left(\frac{m+r-2}{2}\right)} x^{2}\left(\bmod P^{2}\right),
$$

or

$$
n Q^{\frac{n-1}{2}} \equiv m r P Q^{\left(\frac{m+r-2}{2}\right)} x^{2}(\bmod P),
$$

which is impossible since n and Q are odd. This completes the proof.

The following theorem is proved by Keskin and Demirtürk in [22] when $(P, Q)=(1,1)$.

Theorem 4.3.7. Let $P>1$ and $Q=1$. Then there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$.

Proof: Assume that $V_{n}=V_{m} V_{r}, P>1$, and $Q=1$. If one of m and r is even, then the proof follows from Theorem 4.3.4. Therefore, assume that m and r are odd.

Firstly, assume that P is odd. Since $V_{m} \mid V_{n}$ and $V_{r} \mid V_{n}$, there exist two odd integers t and s such that $n=m t$ and $n=r s$ by (4.21). It is obvious that $t>1$ and $s>1$. Hence $t=4 q \pm 1$ for some $q \geq 1$ and so, $n=m t=4 m q \pm m=2(2 m q) \pm m$. Then it follows that

$$
\begin{equation*}
V_{m} V_{r}=V_{n} \equiv \pm V_{m}\left(\bmod V_{2 m}\right) \tag{4.32}
\end{equation*}
$$

by (4.4). Similarly, it is seen that

$$
\begin{equation*}
V_{m} V_{r} \equiv \pm V_{r}\left(\bmod V_{2 r}\right) . \tag{4.33}
\end{equation*}
$$

If $3 \mid m$ and $3 \mid r$, then, since m and r are odd, it follows that $V_{3} \mid V_{m}$ and $V_{3} \mid V_{r}$ by (4.21). Since P is odd, it can be easily seen that $4 \mid V_{3}$ or $8 \mid V_{n}$, which is impossible by (4.7). Therefore $3 \nmid m$ or $3 \backslash r$. Assume that $3 \nmid m$ and $3 \nmid r$. Then $\left(V_{m}, V_{2 m}\right)=\left(V_{r}, V_{2 r}\right)=1$ by (4.14) and (4.19). Using (4.32) and (4.33), one gets

$$
\begin{equation*}
V_{r} \equiv \pm 1\left(\bmod V_{2 m}\right) \tag{4.34}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m} \equiv \pm 1\left(\bmod V_{2 r}\right), \tag{4.35}
\end{equation*}
$$

respectively. Thus

$$
V_{2 m} \leq V_{r} \pm 1 \leq V_{r}+1 \text { and } V_{2 r} \leq V_{m} \pm 1 \leq V_{m}+1
$$

by (4.34) and (4.35), respectively. As a result it is obtained that

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+V_{r}+2 \tag{4.36}
\end{equation*}
$$

Using (4.11) in (4.36), one gets $V_{m}^{2}+V_{r}^{2}+2 \leq V_{m}+V_{r}$, which is impossible. Assume that $3 \mid m$ and $3 \mid r$. Then $\left(V_{m}, V_{2 m}\right)=2$ and $\left(V_{r}, V_{2 r}\right)=1$ by (4.14) and (4.19). Hence one has

$$
\begin{equation*}
V_{r} \equiv \pm 1\left(\bmod V_{2 m} / 2\right), \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m} \equiv \pm 1\left(\bmod V_{2 r}\right) \tag{4.38}
\end{equation*}
$$

by (4.32) and (4.33), respectively. Moreover, by (4.37) and (4.38), it can be seen that

$$
\begin{equation*}
V_{2 m} \leq 2 V_{r}+2 \tag{4.39}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2 r} \leq V_{m}+1 \tag{4.40}
\end{equation*}
$$

Then,

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+2 V_{r}+3 \tag{4.41}
\end{equation*}
$$

by (4.39) and (4.40). Using (4.11) in (4.41), one obtains $V_{m}^{2}-V_{m}+V_{r}^{2}-2 V_{r} \leq-1$, which shows that $V_{m}\left(V_{m}-1\right)+V_{r}\left(V_{r}-2\right) \leq-1$. But this is not possible since $V_{m} \geq 2$ and $V_{r} \geq 2$.

Secondly, assume that P is even. Since n, m, and r are odd, it follows that $V_{n} \equiv n P\left(\bmod P^{2}\right), \quad V_{m} \equiv m P\left(\bmod P^{2}\right)$, and $V_{r} \equiv r P\left(\bmod P^{2}\right) \quad$ by Lemma 4.1.4. This shows that $n P \equiv m r P^{2}\left(\bmod P^{2}\right)$ or $n \equiv \operatorname{mr} P(\bmod P)$, which is impossible since n is odd. This completes the proof.

Now, we consider the above theorem for $Q=-1$.

Theorem 4.3.8. Let $P>1$ and $Q=-1$. Then there is no generalized Lucas number V_{n} such that $V_{n}=V_{m} V_{r}$.

Proof: Assume that $V_{n}=V_{m} V_{r}$ and $Q=-1$. If one of m and r is even, then the proof follows from Theorem 4.3.4. Therefore, assume that m and r are odd.

Firstly, assume that P is odd. Then, since $V_{m} \mid V_{n}$ and $V_{r} \mid V_{n}$, there exist two odd integers t and s such that $n=m t$ and $n=r s$ by (4.21). It is obvious that $t>1$ and $s>1$. Hence $t=4 q \pm 1$ for some $q \geq 1$, and hence $n=m t=4 m q \pm m=2(2 m q) \pm m$. Then it follows that

$$
\begin{equation*}
V_{m} V_{r}=V_{n} \equiv \pm V_{m}\left(\bmod V_{2 m}\right) \tag{4.42}
\end{equation*}
$$

by (1.1) and (2.17). Similarly, it is seen that

$$
\begin{equation*}
V_{m} V_{r} \equiv \pm V_{r}\left(\bmod V_{2 r}\right) . \tag{4.43}
\end{equation*}
$$

If $3 \mid m$ and $3 \mid r$, then V_{m} and V_{r} are even by (4.14). This shows that $4 \mid V_{n}$, which is impossible by (4.8). Therefore $3 \backslash m$ or $3 \backslash r$. Assume that $3 \backslash m$ and $3 \backslash r$. Then $\left(V_{m}, V_{2 m}\right)=\left(V_{r}, V_{2 r}\right)=1$ by (4.14) and (4.19). Hence,

$$
\begin{equation*}
V_{r} \equiv \pm 1\left(\bmod V_{2 m}\right) \tag{4.44}
\end{equation*}
$$

by (4.42) and

$$
\begin{equation*}
V_{m} \equiv \pm 1\left(\bmod V_{2 r}\right) \tag{4.45}
\end{equation*}
$$

by (4.43). Thus one obtains

$$
V_{2 m} \leq V_{r} \pm 1 \leq V_{r}+1
$$

and

$$
V_{2 r} \leq V_{m} \pm 1 \leq V_{m}+1
$$

by (4.44) and (4.45), respectively. Then it follows that

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+V_{r}+2 . \tag{4.46}
\end{equation*}
$$

Using (4.11) in (4.46), one gets $V_{m}\left(V_{m}-1\right)+V_{r}\left(V_{r}-1\right) \leq 6$, which is impossible since $V_{m} \geq P \geq 3$ and $V_{r} \geq P \geq 3$. Assume that $3 \mid m$ and $3 \mid r$. Then $\left(V_{m}, V_{2 m}\right)=2$ and $\left(V_{r}, V_{2 r}\right)=1$ by (4.14) and (4.19). Hence

$$
\begin{equation*}
V_{r} \equiv \pm 1\left(\bmod V_{2 m} / 2\right), \tag{4.47}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{m} \equiv \pm 1\left(\bmod V_{2 r}\right) \tag{4.48}
\end{equation*}
$$

by (4.42) and (4.43), respectively. It can be seen that

$$
\begin{equation*}
V_{2 m} \leq 2 V_{r}+2 \tag{4.49}
\end{equation*}
$$

and

$$
V_{2 r} \leq V_{m}+1
$$

by (4.47) and (4.48). Thus

$$
\begin{equation*}
V_{2 m}+V_{2 r} \leq V_{m}+2 V_{r}+3 \tag{4.51}
\end{equation*}
$$

by (4.49) and (4.50). Using (4.11) in (4.51), one obtains $V_{m}^{2}-V_{m}+V_{r}^{2}-2 V_{r} \leq 7$. This shows that $V_{m}\left(V_{m}-1\right)+V_{r}\left(V_{r}-2\right) \leq 7$, which is impossible since $V_{m} \geq P \geq 3$ and $V_{r} \geq P \geq 3$.

Secondly, assume that P is even. Since n, m, and r are odd, $V_{n} \equiv \pm n P\left(\bmod P^{2}\right)$, $V_{m} \equiv \pm m P\left(\bmod P^{2}\right)$, and $V_{r} \equiv \pm r P\left(\bmod P^{2}\right)$ by Lemma 4.1.4. This shows that $n P \equiv \pm m r P^{2}\left(\bmod P^{2}\right)$. This implies that $n \equiv \pm m r P(\bmod P)$, which is impossible since n is odd. This completes the proof.

The following lemma is given without proof since it is easy.

Lemma 4.3.2. If $Q= \pm 1$ and $0<r<n$, then $V_{n}>2 U_{r}$.

In [13], Farrokhi showed that the equation $F_{n}=F_{m} F_{r}$ has no solutions for $m>2$ and $r>2$. Now a similar result for generalized Fibonacci numbers when $P>1$ and $Q= \pm 1$ is given.

Theorem 4.3.9. Let $P>1, Q= \pm 1$ and $m>r>1$. Then there is no generalized Fibonacci number U_{n} such that $U_{n}=U_{m} U_{r}$.

Proof: Assume that $U_{n}=U_{m} U_{r}, Q= \pm 1$ and $m>r>1$. Then since $U_{m} \mid U_{n}$ and $U_{r} \mid U_{n}$, there exist two positive integers t and s such that $n=m t$ and $n=r s$ by (4.20).

Firstly, assume that t is even, i.e., $t=2 a$ for some positive integer a. Then $n=m t=2 m a$. Thus it follows that $U_{m} U_{r}=U_{n}=U_{2 m a}=U_{m a} V_{m a}$ by (4.10). This shows that $\left(U_{m a} / U_{m}\right) V_{m a}=U_{r}$ by (4.20). Therefore $V_{m a} \mid U_{r}$. By (4.22), one obtains $r=2 m a c=n c$ for some natural number c. This shows that $n \mid r$. Since $r \mid n$, it follows that $n=r$. Therefore $U_{m}=1$, which is impossible since $m>1$ and $P>1$.

Secondly, assume that t is odd. It is obvious that $t>1$. Then one can write $t=4 q \pm 1$ with $q \geq 1$. Therefore $n=m t=2(2 m q) \pm m$. Thus it follows that

$$
U_{n}=U_{2(2 m q) \pm m} \equiv U_{ \pm m}\left(\bmod U_{2 m}\right),
$$

by (2.18). Using (1.1), one gets

$$
\begin{equation*}
U_{m} U_{r} \equiv \pm U_{m}\left(\bmod U_{2 m}\right) . \tag{4.52}
\end{equation*}
$$

Since $U_{2 m}=U_{m} V_{m}$ by (4.10), it follows that

$$
U_{r} \equiv \pm 1\left(\bmod V_{m}\right) .
$$

Hence $V_{m} \leq U_{r} \pm 1 \leq U_{r}+1$. Moreover, since $m>r>1$, it follows that $V_{m}>2 U_{r}$ by Lemma 4.3.2. Thus it is seen that $U_{r}+1 \geq V_{m}>2 U_{r}$, which is impossible. This completes the proof.

It is well known that the greatest common divisor of U_{m} and U_{n} is again a generalized Fibonacci number by (4.17). But, the least common multiple of U_{m} and U_{n} may not be a generalized Fibonacci number. This follows from the following theorem. Since the proof of the theorem is similar to that of Theorem 4.3.9, we omit it.

Theorem 4.3.10. Let $Q= \pm 1, \quad 1<m<n$, and $P>1$. Then $\left[U_{m}, U_{n}\right]$, the least common multiple of U_{m} and U_{n}, is a generalized Fibonacci number if and only if $U_{m} \mid U_{n}$.

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

The second chapter of this thesis is accepted for publication in "Hacettepe Journal of Mathematics and Statistics" [47]. The third chapter is published in "Journal of Integer Sequences" [23].

Moreover, in this thesis, firstly, we focused on the equations $F_{n}=w F_{m} x^{2}$ and $L_{n}=w L_{m} x^{2}$ with $w \in\{1,2,3,6\}$. Then, we have considered corresponding equations for generalized Fibonacci and Lucas numbers, in particular for some even integer P. But, finding solutions of the equation $V_{n}=w x^{2}, w \in\{1,2,3,6\}$, is still an open problem when P is even. If the solutions of the equation $V_{n}=w x^{2}$ were known when P is even, then the equation $U_{n}=w U_{m} x^{2}$ could be solved when P is even. Apart from these, we solved the equation $V_{n}=k x^{2}$ when P is odd and $k \mid P$. Similarly, the solutions of the equation $U_{n}=k x^{2}$ can be investigated when $k \mid P$.

REFERENCES

[1] ALFRED, B. U., On square Lucas numbers, Fibonacci Quart., 2, 1, 11-12, 1964.
[2] ANTONIADIS, J. A., Generalized Fibonacci numbers and some Diophantine equations, Fibonacci Quart., 23, 3, 199-213, 1985.
[3] ANTONIADIS, J. A., Fibonacci and Lucas numbers of the form $3 z^{2} \pm 1$, Fibonacci Quart., 23, 4, 300-307, 1985.
[4] BURTON, D. M., Elementary Number Theory, McGraw -Hill Comp. Inc., 1998.
[5] CARLITZ, L., A note on Fibonacci numbers, Fibonacci Quart., 1, 1, 1528, 1964.
[6] COHN, J. H. E., On square Fibonacci numbers, etc., J. London Math. Soc., 39, 1, 537-540, 1964.
[7] COHN, J. H. E., Square Fibonacci numbers, etc., Fibonacci Quart., 2, 2, 109-113, 1964.
[8] COHN, J. H. E., Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc., 7, 1, 24-28, 1965.
[9] COHN, J. H. E., Eight Diophantine equation, Proc. London Math. Soc., 16, 1, 153-166, 1966.
[10] COHN, J. H. E., Five Diophantine equation, Math. Scand., 21, 1, 61-70, 1967.
[11] COHN, J. H. E., Squares in some recurrent sequences, Pacific J. Math., 41, 3, 631-646, 1972.
[12] COHN, J. H. E., Twelve Diophantine equations, Arch. Math., 65, 130-133, 1995.
[13] FARROKHI D. G., M., Some remarks on the equation $F_{n}=k F_{m}$ in Fibonacci numbers, Journal of Integer Sequences, 10, article no: 07.5.7, 1-9, 2007.
[14] HE, T.-X., SHIUE, P. J. S., On Sequences of Numbers and Polynomials Defined By Linear Recurrence Relations of Order 2, International Journal of Mathematics and Mathematical Sciences, Volume 2009, 21 page, 2009.
[15] HILTON, P., PEDERSEN, J., SOMER, L., On Lucasian Numbers, Fibonacci Quart., 35, 1, 43-47, 1997.
[16] HILTON, P., PEDERSEN, J., On Generalised Fibonaccian and Lucasian Numbers, The Mathematical Gazette, 90 (518), 215-222, 2006.
[17] HORADAM, A. F., Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3, 3, 161-176, 1965.
[18] JONES, J. P., Representation of Solutions of Pell equations Using Lucas Sequences, Acta Academia Pead. Agr., Sectio Mathematicae, 30, 75-86, 2003.
[19] KAGAWA, T., TERAI, N., Squares in Lucas sequences and some Diophantine equations, Manuscripta Math., 96, 2, 195-202, 1998.
[20] KALMAN, D., MENA, R., The Fibonacci Numbers-Exposed, Mathematics Magazine, 76, 3, 167-181, 2003.
[21] KESKİN, R., DEMİRTÜRK, B., Some New Fibonacci and Lucas Identities by Matrix Methods, International Journal of Mathematical Education in Science and Technology, 41,3,379-387, 2009.
[22] KESKİN, R., DEMİRTÜRK, B., Fibonacci and Lucas congruences and their applications, Acta Math. Sin. (Engl. Ser.), 27, 4, 725-736, 2011.
[23] KESKİN, R., YOSMA, Z., On Fibonacci and Lucas numbers of the form $c x^{2}$, Journal of Integer Sequences, 14, article no: 11.9.3, 1-12, 2011.
[24] KESKİN, R., Solutions of Some Quadratic Diophantine Equations, Computers and Mathematics With Applications, 60, 8, 2225-2230, 2010.
[25] KING, C. H., Some Properties of the Fibonacci Numbers, Master's Thesis, San Jose State College, June 1960.
[26] KOSHY, T., Fibonacci and Lucas Numbers With Applications, John Wiley and Sons, Proc., New York-Toronto, 2001.
[27] LJUNGGREN, W., Zur theorie der gleichung $x^{2}+1=D y^{4}$, Det Norske Vid. Akad. Avh. I, 5, 333-341, 1942.
[28] LUCAS, E., Theorie des Fonctions Numeriques Simplement Periodiques, American Journal of Mathematics, 1, 2, 184-196, 1878.
[29] MCDANIEL, W. L., The g.c.d. in Lucas sequences and Lehmer number sequences, Fibonacci Quart., 29, 1, 24-30, 1991.
[30] MCDANIEL, W. L., Diophantine Representation of Lucas sequences, Fibonacci Quart., 33, 1, 59-63, 1995.
[31] MIGNOTTE, M., PETHO, A., Sur les carres dans certanies suites de Lucas, Journal de Theorie des nombers de Bordeaux, 5, 2, 333-341, 1993.
[32] MOSER, L., CARLITZ, L., Advanced problem H-2, Fibonacci Quart. 1,1,46, 1963.
[33] MUSKAT, J. B., Generalized Fibonacci and Lucas sequences and rootfinding methods, Mathematics of Computation, 61, 203, 365-372, 1993.
[34] NAKAMULA, K., PETHO, A., Squares in binary recurrence sequences, Number Theory: Diophantine, computational and algebraic aspects; proceedings of the international conference, de Gruyter, 409-421, 1998.
[35] NIVEN, I., ZUCKERMAN, H. S., MONTGOMERY, H. L., An Introduction to The Theory of Numbers, John Wiley \& Sons, Inc., Canada, 1991.
[36] OGILVY, S. C., Tommorow's math, unsolved problems for the amateur, Oxford University, 1962.
[37] RABINOWITZ, S., Algorithmic Manipulation of Fibonacci Identities, Applications of Fibonacci Numbers, 6, 389-408, 1996.
[38] RIBENBOIM, P., Square classes of Fibonacci and Lucas numbers, Portugal. Math. 46, 2, 159-175, 1989.
[39] RIBENBOIM, P., MCDANIEL, W. L., The square terms in Lucas sequences, Journal of Number Theory, 58, 1, 104-123, 1996.
[40] RIBENBOIM, P., MCDANIEL, W. L., Squares in Lucas sequences having an even first parameter, Colloquium Mathematicum, 78, 1/2, 2934, 1998.
[41] RIBENBOIM, P., My numbers, My Friends, Springer-Verlag New York, Inc., 2000.
[42] RIBENBOIM, P., MCDANIEL, W. L., On Lucas sequence terms of the form $k x^{2}$, Number Theory: proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), de Gruyter, Berlin, 293-303, 2001.
[43] ROBBINS, N., On Fibonacci numbers of the form $p x^{2}$, where p is prime,

Fibonacci Quart., 21, 4, 266-271, 1983.
[44] ROBBINS, N., Fibonacci numbers of the form $c x^{2}$, where $1 \leq c \leq 1000$, Fibonacci Quart., 28, 4, 306-315, 1990.
[45] ROBBINS, N., Lucas numbers of the form $p x^{2}$, where p is prime, Internat. J. Math. Math. Sci., 14, 4, 697-703, 1991.
[46] ROLLET, A. P., Advanced problem 5080, Amer. Math. Monthly, 70, 216, 1963.
[47] ȘİAR, Z., KESKİN, R., Some new identities concerning generalized Fibonacci and Lucas numbers, Hacettepe Journal of Mathematics and Statistics (accepted).
[48] VAJDA, S., Fibonacci and Lucas Numbers and The Golden Section, Ellis Horwood Limited Publ., England, 1989.
[49] WALKER, D. T., On the Diophantine Equation $m X^{2}-n Y^{2}= \pm 1$, The American Mathematical Monthly, 74, 504-513, 1967.
[50] WYLER, O., In the Fibonacci series $F_{1}=1, F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ the first, second and twelfth terms are squares, Amer. Math. Monthly, 71, 221222, 1964.
[51] ZHIWEI, S., Singlefold Diophantine Representation of the Sequence $u_{0}=0, u_{1}=1$ and $u_{n+2}=m u_{n+1}+u_{n}$, Pure and Applied Logic, Beijing Univ. Press, Beijing, 97-101, 1992.
[52] ZHOU, C., A general conclusion on Lucas numbers of the form $p x^{2}$, where p is prime, Fibonacci Quart., 37, 1, 39-45, 1999.

CURRICULUM VITAE

Zafer Şiar, was born in Elazığ, in 14.03.1984. He completed primary, secondary and high school in Istanbul. In 2001, he graduated from Sultanbeyli Trade Vocational School. In 2001, he entered Sakarya University, Department of Mathematics, and graduated in 2005. Between 2005-2008 years, at Sakarya University, he completed his master's degree in mathematics. Moreover, he worked as a mathematics teacher during 2006-2009 years in Sınav Dershanesi. In 2008, at Sakarya University, he began doctor of philosophy in mathematics. Zafer Şiar started working as a research assistant at Bilecik Seyh Edebali University in 2012 and still works there.

