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SOME IDENTITIES AND DIOPHANTINE EQUATIONS 

INCLUDING GENERALIZED FIBONACCI AND LUCAS 

NUMBERS 

 

 

SUMMARY 

 
 
Key Words: Fibonacci and Lucas Numbers, Generalized Fibonacci and Lucas 
Numbers, Congruences, Diophantine Equations. 
 
In the first chapter, firstly, Fibonacci and Lucas numbers are mentioned briefly. Also 
the definitions of the generalized Fibonacci and Lucas sequences are given. Then, the 
review of the literature concerning generalized Fibonacci and Lucas sequences are 
given. 
  
In the second chapter, some identities and summation formulas containing 
generalized Fibonacci and Lucas numbers are obtained. Some of them are well 
known while the  remaining ones new. Using some of these identities and summation 
formulas, it is given some congruences concerning generalized Fibonacci and Lucas 
numbers such as  

( ) ( ) ( )2 2( ) , ( ) ( )
m mn n

mn r r m mn r r mV Q V modV U Q U modV+ +≡ − − ≡ − − , 

and 

( ) ( ) ( ) ( )2 2,
mn mn

mn r r m mn r r mV Q V modU U Q U modU+ +≡ − ≡ − . 

 
Fibonacci and Lucas numbers of the form 2cx  are determined after some 
fundamental theorems and identities concerning Fibonacci and Lucas numbers are 
given in the third chapter. 
 
In the fourth chapter, generalized Fibonacci and Lucas numbers of the form 2cx  are 
determined under some assumptions using congruences concerning generalized 
Fibonacci and Lucas numbers given in the second chapter. 
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GENELLE ŞTİRİLM İŞ FİBONACCİ VE LUCAS SAYILARINI 

İÇEREN BAZI ÖZDE ŞLİKLER VE D İOFANT DENKLEMLER İ 

 

 

ÖZET 

 
 
Anahtar Kelimeler: Fibonacci ve Lucas Sayıları, Genelleştirilmi ş Fibonacci ve Lucas 
Sayıları, Kongrüanslar, Diofant Denklemleri. 
 
İlk bölümde, ilk olarak, Fibonacci ve Lucas sayılarından kısaca bahsedilmiştir. 
Ayrıca, genelleştirilmi ş Fibonacci ve Lucas dizilerinin tanımları verilmiştir. Sonra 
genelleştirilmi ş Fibonacci ve Lucas dizileriyle ilgili literatür özeti verilmiştir.  
 
İkinci bölümde, genelleştirilmi ş Fibonacci ve Lucas sayılarını içeren bazı özdeşlikler 
ve toplam formülleri elde edilmiştir. Bunların bazıları yenidir ve bazıları da iyi 
bilinir. Bu özdeşliklerin ve toplam formüllerinin bazıları kullanılarak,  

( ) ( )2 2( ) ( ), ( ) ( )
m mn n

mn r r m mn r r mV Q V modV U Q U modV+ +≡ − − ≡ − −  

ve 

( ) ( ) ( ) ( )2 2,
mn mn

mn r r m mn r r mV Q V modU U Q U modU+ +≡ − ≡ −  

gibi genelleştirilmi ş Fibonacci ve Lucas sayılarını içeren bazı kongrüanslar 
verilmiştir. 
  
Üçüncü bölümde, Fibonacci ve Lucas sayılarını içeren bazı temel teoremler ve 
özdeşlikler verildikten sonra 2cx  formunda olan Fibonacci ve Lucas sayıları tespit 
edilmiştir. 
 
Dördüncü bölümde ise bazı şartlar altında 2cx  formunda olan genelleştirilmi ş 
Fibonacci ve Lucas sayıları, ikinci bölümdeki genelleştirilmi ş Fibonacci ve Lucas 
sayılarını içeren kongrüanslar kullanılarak tespit edilmiştir. 
 
 



 

 
 
CHAPTER 1. INTRODUCTION  

 

 

The Italian mathematician Leonardo Fibonacci is considered as “the most talented 

western mathematician of the Middle Ages”. Fibonacci’s mathematical background 

began during his many visits to North Africa, where he was introduced to early 

works of algebra, arihtmetic and geometry. He also travelled to countries located in 

the Mediterranean region and studied the mathematical systems that were practicing. 

His travels led him to the realization that Europe was lacking on the mathematical 

scene. 

 

After widespread travel and extensive study of computational systems, Fibonacci 

wrote the Liber Abaci in 1202, in which he explained the Hindu-Arabic numerals and 

how they were used in computation.  

 

Although he wrote on a variety of mathematical topics, Fibonacci is remembered 

particularly for the sequence of numbers 

...,55,34,21,13,8,5,3,2,,11,  

which is known today as Fibonacci sequence. The elements of Fibonacci sequence 

are called Fibonacci numbers and n th Fibonacci number is represented by nF . These 

numbers satisfy the relation  

11 −−−−++++ ++++==== nnn FFF  

for 1≥≥≥≥n  with 1,0 10 ======== FF . Fibonacci sequence is related to closely many number 

sequences such as Lucas sequence. Lucas sequence, 

2,1,3,4,7,11,18,29,47,76,..., 

was introduced by François Edouard Anatole Lucas, a French mathematician. The 

elements of Lucas sequence are called Lucas numbers. n th Lucas number is 

represented by nL  and these numbers satisfy the relation  

11 −−−−++++ ++++==== nnn LLL  
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for 1≥≥≥≥n  with 1,2 10 ======== LL . In fact, this two sequences are related to each other by 

hundreds of identities.  

 

Many scientist, especially mathematicians, deal with Fibonacci and Lucas sequences. 

Because Fibonacci and Lucas numbers are seen in many areas such as in nature, 

some of the historic buildings, some music instruments, and physics. For example, in 

nature, pinecones and sunflowers display Fibonacci numbers in a unique and 

remarkable way. The seeds of sunflowers occur in spirals, one set of spirals going 

clockwise and one set going counterclockwise. The most common number of this 

spirals are 34  in one direction and 55 in the other. Consecutive Fibonacci numbers 

also appear as the number of spirals formed by the scales of pinecones. Moreover, 

the number of petals in many flowers such as iris, trillium, bluet, wild rose, hepetica, 

blood root, and cosmos, is often a Fibonacci number. In music, an octave is an 

interval between two pitches, each of which is represented by the same musical note. 

On the piano’s keyboard, an octave consist of 5 black keys and 8  white keys, 

totaling 13 keys. In addition, the black keys are divided into a group of two and a 

group of three keys. Besides, there are a close relationship between Fibonacci (or 

Lucas) sequence and golden ratio. It is well known that as n  gets larger and larger, 

the ratio nn FF /1++++  (or nn LL /1++++ ) approaches the golden ratio ( )1 5 / 2+ . 

 

On the other hand, Fibonacci and Lucas numbers have many interesting properties. 

In many studies, it is given the summation formulas, divisibility properties, 

congruences and also many identities concerning sequences of these numbers. Some 

congruences concerning Fibonacci and Lucas numbers are given in the following: 

( ) ( )2 1
mn

mn r r mF F modF+ ≡ − , 

( ) ( )2 1
mn

mn r r mL L modF+ ≡ − , 

( )( ) ( )1

2 1
m n

mn r r mL L modL
+

+ ≡ − , 

and 

( )( ) ( )1

2 1
m n

mn r r mF F modL
+

+ ≡ −  
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for all { },n m∈ ∪N 0  and r ∈Ζ [22]. Moreover, some studies on the divisibility 

properties of nF  and nL  have been made. For example, it was shown that if nm | , 

then nm FF | . Then, in 1964, L. Carlitz established the converse of this case, that is, if 

nm FF | , then nm | . Moreover, in [5], L. Carlitz showed the following two 

divisibility properties: 

a) nm FL |  if and only if nm |2 , where 2≥≥≥≥m . 

b) nm LL |  if and only if (2 1)n k m= + , where 2≥≥≥≥m  and 0≥≥≥≥k . 

These divisibility properties were also investigated in [15], [16], and [48]. Also, the 

proofs of these divisibility properties were done in [22] using the congruences given 

above. 

  

Besides, while some summation formulas containing Fibonacci and Lucas numbers 

were found, the Fibonacci matrix 










01

11
, 

was studied by Charles H. King in 1960 for his master thesis [25], and some other 

matrices were used. Using these matrices, many identities concerning Fibonacci and 

Lucas numbers are obtained. In fact, if 






====
01

11
A , then it can be seen that 








====
−−−−

++++

1

1

nn

nnn

FF

FF
A . Thus, from the matrix equality nmnm AAA ====++++ , it is obtained the 

identities 

1 1 1=m n m n m nF F F F F+ + + + + , 

1 1=m n m n m nF F F F F+ + −+ , 

and 

1 1 1=m n m n m nF F F F F+ − − −+ . 

Then, using these identities, it is obtained the identities 

1 1 =m n m n m nF L F L L+ − ++ , 

= 2m n n m m nF L F L F ++ , 

and 
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5 = 2m n m n m nL L F F L ++ . 

Other than the matrix 








01

11
 in [21], the authors used the matrix 

1/ 2 5 / 2

1/ 2 1/ 2

 
 
 

S =  

and they showed that 
/ 2 5 / 2

=
/ 2 / 2

n nn

n n

L F

F L

 
 
 

S . Using this property and the fact that 

2 = +S S I , the authors obtained some identities concerning Fibonacci and Lucas 

numbers. 

 

Moreover, many mathematicians are interested in determining the Fibonacci and 

Lucas numbers which are a perfect square or twice a perfect square. Using the 

divisibility properties of nF  and nL  and congruences given above, Fibonacci and 

Lucas numbers which are a perfect square or twice a perfect square are determined. 

Historically, we will summarize studies in this subject in the next. Besides, 

determining  Fibonacci and Lucas numbers of the form 2x  and 22x  is facilitated in 

the solution of many Diophantine equations. For example, it is well known that all 

positive integer solutions of the equations  

4=5 22
∓yx −−−−  

and 

1=22
∓yxyx −−−−−−−−  

are given by ( , ) ( , )n nx y L F=  and 1( , ) ( , )n nx y F F+=  with 1n ≥ , respectively. Thus, it 

can be easily found all positive integer solutions of the equations  

4=5 24
∓yx −−−− , 4=5 42

∓yx −−−− , 4 24 5 = 4x y− ∓ , 

1=224
∓yyxx −−−−−−−− , 1=422

∓yxyx −−−−−−−− , 

since Fibonacci and Lucas numbers of the form 2x  and 22x  are known. For more 

information about Fibonacci and Lucas numbers, one can consult [26] and [48]. 

 

The studies mentioned above have been made for generalized Fibonacci and Lucas 

sequences, too.  

 

In [17], Horadam defined a sequence as follows: 

bWaW == 10 ,  and 1 1 1( , , , )n n n nW W a b P Q PW QW+ + −= = −  
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for 1≥n , where Ζ∈QPba ,,, . Particular cases of the sequence ( )nW  are sequences 

( )nF , ( )nL , ( )nU , and ( )nV  given by 

(0,1, , ) ( , )n nW P Q U P Q− = , 

(2, , , ) ( , )n nW P P Q V P Q− = , 

(0,1,1, 1)n nW F− = , 

and 

(2,1,1, 1)n nW L− = , 

respectively. Thus, the sequence ( )nU  called generalized Fibonacci sequence 

satisfies the recurrence relation 111 ),(= −++ += nnnn QUPUQPUU  for 1≥n  with 

0=0U , 1 = 1U  and the sequence ( )nV  called generalized Lucas sequence satisfies 

the recurrence relation 111 ),(= −++ += nnnn QVPVQPVV  for 1≥n  with 2=0V , 

PV =1 . Of course, the sequences ( )nU  and ( )nV  are generalizations of  Fibonacci 

and Lucas sequences and the sequence ( )nW  is also a different generalization of 

Fibonacci and Lucas sequences. But Horadam is not the first author, who defined 

generalized Fibonacci and Lucas sequences. The sequences ( )nU  and ( )nV , firstly, 

were introduced by Lucas in [28]. For more information about generalized Fibonacci 

and Lucas sequences, one can consult [20], [28], [33], [37], and [41].  

 

nU  and nV  are called n th generalized Fibonacci number and n th generalized Lucas 

number, respectively. Generalized Fibonacci and Lucas numbers for negative 

subscripts are given by 

                             ( )n
n

n
Q

U
U

−
−

− =  and ( )n
n

n
Q

V
V

−− = ,                                  (1.1) 

respectively. 

 

Now assume that 0>42 QP + . Then it is well known that 

                              
βα
βα

−
− nn

nU =  and nn
nV βα += ,                                 (1.2) 
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where ( ) 2/4= 2 QPP ++α  and ( )2= 4 / 2P P Qβ − +  are the roots of the 

characteristic equation 0=2 QPxx −−−−−−−− . Clearly ,= Pβα +  ,4= 2 QP +− βα  

and Q−=αβ . The formulas in (1.2) are known as Binet’s formulas. Moreover, it is 

well known the relations 

                              111 2== −−+ ++ nnnnn QUPUQUUV                              (1.3) 

and 

                                    11
2 =)4( −+ ++ nnn QVVUQP                                     (1.4) 

for every n ∈ Z  between the sequences nU  and nV  and these relations can be easily 

proved using Binet’s formulas. 

 

Besides, generalized Fibonacci and Lucas numbers have the following divisibility 

properties: 

c) If 1≠≠≠≠mU , then nm UU |  if and only if nm | . 

d) If 1mV ≠ , then nm UV |  if and only if nm |  and 
m

n
 is even. 

e) If 1mV ≠ , then nm VV |  if and only if nm |  and 
m

n
 is odd. 

These divisibility properties have been expressed in [15], [39], [40], [41], and [42].  

 

On the other hand, generalized Fibonacci and Lucas numbers are the solutions of 

some Diophantine equations. For example, all positive integer solutions of the 

equations 2 2 2( 4) = 4x P y− +  and 2 2 2( 4) = 4x P y− + −  are given by 

2 2( , ) ( ( ,1), ( ,1))n nx y V P U P=  with 1n ≥  and 2 1 2 1( , ) ( ( ,1), ( ,1))n nx y V P U P− −=  with 

1n ≥ , respectively. And all positive integer solutions of the equation 

4=4)( 222 yPx −−  are given by ( , ) ( ( , 1), ( , 1))n nx y V P U P= − −  with 1n ≥ . Also all 

positive integer solutions of the equations 2 2 = 1x Pxy y− −  and 2 2 = 1x Pxy y− − −  

are given by 2 1 2( , ) ( ( ,1), ( ,1))n nx y U P U P+=  with 1n ≥  and 

2 2 1( , ) ( ( ,1), ( ,1))n nx y U P U P−=  with 1n ≥ , respectively. Moreover, all positive integer 

solutions of the equation 2 2 = 1x Pxy y− +  are given by 

1( , ) ( ( , 1), ( , 1))n nx y U P U P+= − −  with 1n ≥ .  The solutions of these equations were 
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given in [18], [24], [30], and [51]. Besides, all positive integer solutions of the 

equations  

4 2 2( 4) = 4x P y− + ∓ , 2 2 4( 4) = 4x P y− + ∓ , 

4=4)( 224 yPx −−−−−−−− , 4=4)( 422 yPx −−−−−−−− , 

1=224
∓yyPxx −−−−−−−− , 1=422

∓yPxyx −−−−−−−− , 

and 

2 2 4 = 1x Pxy y− +  

are easily found using generalized Fibonacci and Lucas numbers, which are  perfect 

square. Solutions of the above equations were investigated in [9], [10], and [12]. 

 

Now, we give a summary of the literature concerning generalized Fibonacci and 

Lucas numbers of the form 2cx . 

 

As it is mentioned above, many mathematicians are interested in determining the 

Fibonacci and Lucas numbers, which are perfect square. The problem of 

characterizing the square Fibonacci numbers was first introduced in the book by 

Ogilvy [36]. In 1963, both, Moser and Carlitz [32], and Rollet [46] proposed this 

problem. In 1964, the square conjecture was proved by Cohn [6] and independently 

by Wyler [50]. Later the problem of characterizing the square Lucas numbers was 

solved by Cohn [8] and by Alfred [1]. Moreover, determining the Fibonacci and 

Lucas numbers, which are twice a perfect square, has been the subject of curiosity, 

too. In 1965, Cohn solved the Diophantine equations 22= xFn  and 22= xLn  in [8]. 

Congruences were widely used in the solution of these problems. 

 

Besides, there has been much interest in when the terms of generalized Fibonacci and 

Lucas sequences are perfect square or k  times a square. Now we summarize here 

results on this problem. Firstly, in [27], Ljunggren showed that for 2,≥n  nP  is a 

perfect square precisely for ,13= 2
7P  and 22= xPn  precisely for 2.=2P  In [9, 10], 

Cohn solved the Diophantine equations 22 2,= xxU n  and 22 2,= xxVn  with odd P  

and 1.= ±Q  Moreover, in [39], Ribenboim and McDaniel determined all indices 

such that for all odd relatively prime integers P  and ,Q  nnn VUU ,2,  or nV2  is a 
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square. In [31], Mignotte and Pethö showed that if 3≥P  and 1,= −Q  then the 

equation 2= xU n  has the solutions (338,4)=),( nP  or (3,6)  for 3,≥n  and that if 

4≥P  and 1,= −Q  then the equation 2= wxU n , { },2,3,6∈w  has no solutions for 

4.≥n  In [34], Nakamula and Pethö have given the solutions of the equations 

2= wxU n  for 1=Q  with { }.1,2,3,6∈w  In [40], Ribenboim and McDaniel showed 

that if P  is even, 4)3(modQ ≡ , and ,2xU n =  then n  is a square or twice an odd 

square, and all prime factors of n  divide .42 QP +  Also, in [42], they determined all 

indices such that for all odd relatively prime integers P  and Q , 2kxU n =  under the 

following assumptions: For all integer 1≥u , k  is such that, for each odd divisor h  

of k , the Jacobi symbol 






 −
h

V u2  is defined and equals to 1.  Moreover, they solved 

the equation 23= xVn  for 8),1,3(modP ≡  4),3(modQ ≡  1=),( QP  and solved the 

equation 23= xU n  for all odd relatively prime integers P  and Q . In [19], Kagawa 

and Terai showed that if sP 2=  with even s  and 1,=Q  then nnn VUU ,2,  or 

22 xVn =  implies 3≤n  under some assumptions. 

 

To solve the equations mentioned above, divisibility properties, congruences, and 

Jacobi symbol were widely used by Cohn, Ribenboim and McDaniel.  

 

In the second chapter of this thesis, some identities and summation formulas 

containing generalized Fibonacci and Lucas numbers are obtained. In finding these 

identities and summation formulas, generalized Fibonacci matrix 
1 0

P Q 
 
 

 and also 

the matrix 
2/ 2 ( 4 ) / 2

1/ 2 / 2

P P Q

P

 +
 
 

 are used. Using some of these identities and 

summation formulas, some congruences concerning generalized Fibonacci and Lucas 

numbers such as  

( ) ( ) ( )2 2( ) , ( ) ( )
m mn n

mn r r m mn r r mV Q V modV U Q U modV+ +≡ − − ≡ − − , 

and 
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( ) ( ) ( ) ( )2 2,
mn mn

mn r r m mn r r mV Q V modU U Q U modU+ +≡ − ≡ − , 

are given. The matrices 
1 0

P Q 
 
 

 and 
2/ 2 ( 4 ) / 2

1/ 2 / 2

P P Q

P

 +
 
 

 satisfy the characteristic 

equation 0=2 QPxx −−−−−−−− . All the 22×  matrices X  satisfying the relation 

IXX QP ++++=2  are also characterized in the second chapter. In the third chapter, the 

Diophantine equations ,2= 2xLL mn  ,2= 2xFF mn  ,3= 2xFF mn  ,6= 2xLL mn  and 

26= xFF mn  are solved. Finally, in the fourth chapter, generalized Fibonacci and 

Lucas numbers of the form 2cx  are determined under some assumptions. The Jacobi 

symbol, the above congruences and divisibility properties are widely used in the 

solutions of the problems under consideration.  

 



 

 
 
CHAPTER 2. SOME NEW IDENTITIES CONCERNING   

GENERALIZED FIBONACCI AND LUCAS 
NUMBERS 

 

 

In this chapter, some identities containing generalized Fibonacci and Lucas numbers 

are obtained. Some of them are new and some are well known. Using these identities, 

some congruences concerning generalized Fibonacci and Lucas numbers are given. 

 

Many identities concerning generalized Fibonacci and Lucas numbers can be proved 

using Binet’s formulas, induction, and matrix representations. In the literature, for 

example in [14] and [20], the matrices 










PQ

10
 and 









01

QP
 

are used in order to produce identities. Since 










01

QP
 and 









PQ

10
 

are similar matrices, they give the same identities. 

 

In this chapter, we also characterize all the 22×  matrices X  satisfying the relation 

IXX QP +=2 . Then some identities are obtained using this property. In fact, the 

similar matrices 










01

QP
 and 









PQ

10
 

are special cases of the 22×  matrices X  satisfying .=2 IXX QP ++++  

 

Theorem 2.1. If X  is a square matrix with IXX QP ++++=2 , then 

IXX 1= −−−−++++ nn
n QUU  for every Z∈∈∈∈n .  
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Proof: If 0=n , then the proof is obvious. It can be shown by induction that 

IXX 1= −−−−++++ nn
n QUU  for every N∈∈∈∈n . We now show that IXX 1= −−−−−−−−−−−−

−−−− ++++ nn
n QUU  for 

every N∈∈∈∈n . Let .== 1−−−−−−−−−−−− XXIY QP  Then 

.=)(=2=

2=)(=
2

2222

IYIXIIXXI

XXIXIY

QPQPPQPPP

PPP

++++++++−−−−++++++++−−−−
++++−−−−−−−−

 

Thus IYY 1= −−−−++++ nn
n QUU  for every N∈∈∈∈n , which shows that 

.=)(=

)(==)(

11

11

IXXI

IXIIYX

++++−−−−

−−−−−−−−
−−−−

++++−−−−−−−−++++
++++−−−−++++−−−−

nnnnn

nnnn
nn

UUUQUPU

QUPUQUUQ
 

Then we get 
n

n
n

nn

Q

U

Q

U

)()(
= 1

−−−−
++++

−−−−
−−−− ++++−−−− IX

X . This implies that IXX 1= −−−−−−−−−−−−
−−−− ++++ nn

n QUU  by 

(1.1). This completes the proof.  

 

Theorem 2.2. Let X  be an arbitrary 22×  matrix. Then IXX QP ++++=2  if and only if 

X  is of the form  










− aPc

ba
=X  

for R∈∈∈∈cba ,,  with Q−−−−=detX  or IX λ= , where { },,βαλ ∈  

( ) 2/4= 2 QPP ++α  and ( ) 2./4= 2 QPP +−β  

 

Proof: Assume that IXX QP ++++=2 . Then the minimal polynomial of X  divides 

.2 QPxx −−  Therefore the minimal polynomial must be α−x  or β−x  or 

.2 QPxx −−  In the first case IX α= , in the second case IX β= , and in the third 

case, since X  is 22×  matrix, its characteristic polynomial must be QPxx −−2 , so 

its trace is P  and its determinant is Q− . The argument reverses. This completes the 

proof.  

 

Corollary 2.1. If 








− aPc

ba
=X  is a matrix with Q−−−−=detX , then  

.=
1

1









−
+

+

−

nnn

nnnn

aUUcU

bUQUaU
X  
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Proof: Since IXX QP ++++=2 , the result follows from Theorem 2.1.  

 

Corollary 2.2. 1= −+ nn
n QUUαα  and 1= −+ nn

n QUUββ  for every Z∈∈∈∈n .  

 

Proof: Take 








β
α
0

0
=X  with Q−−−−==det αβX . Then by Corollary 2.1, it follows 

that 

.
0

0
=

0

0
=

1

1









+
+










−

−

nn

nn

n

n
n

QUU

QUU

β
α

β
α

X  

This implies that 1= −+ nn
n QUUαα  and .= 1−+ nn

n QUUββ   

 

Corollary 2.3. 
βα
βα

−
− nn

nU =  and nn
nV βα +=  for every Z∈∈∈∈n .  

 

Proof: The result follows from Corollary 2.2. 

 

Corollary 2.4. Let .
/21/2

)/24(/2
=

2








 +
P

QPP
S  Then 







 +
/2/2

/2)4(/2
=

2

nn

nnn

VU

UQPV
S  for 

every Z∈∈∈∈n .  

 

Proof: Since ,=2 ISS QP ++++  the proof follows from Corollary 2.1.  

 

Corollary 2.5. Let 








01
=

QP
X . Then .=

1

1









−

+

nn

nnn

QUU

QUU
X   

 

Proof: Since IXX QP ++++=2 , the proof follows from Corollary 2.1.  

 

Lemma 2.1. Let ,a  ,b  and bPa +  be nonzero real numbers. If QP 42 +  is not a 

perfect square, then  
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and 
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Proof: Let [ ] { }= | ,a b a bα α + ∈Ζ Ζ . Define [ ] [ ]:φ α α→Ζ Ζ  by 

.=)(==)( bPaabPababa ++−+−++ ααβαϕ  Then it can be shown that ϕ  is a 

ring homomorphism. Moreover, it can be shown that ϕ  is injective. On the other 

hand, we get 
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Then it is seen that 

.)()()(

)()()(=

)()()()(=
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Then the proof follows.                                                                                                                                                                         

 

Theorem 2.3. Let Ζ∈∈∈∈rm,  with 0≠m  and 1.≠m  Then  

∑
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+
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Proof: From Corollary 2.4, it follows that 
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On the other hand, ISS 1= −+ mm
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So, the proof follows.  

 

Corollary 2.6. Let Ζ∈∈∈∈rm,  with 0≠m  and 1.≠m  If QP 42 +  is not a perfect 

square, then  

∑
=

−
−
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j
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Proof: The proof follows from Lemma 2.1 and Theorem 2.3 by taking mUa =  and 

1= −mQUb . 
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Corollary 2.7. n
nn QUQPV )4(=)4( 222 −+−  for every Ζ∈∈∈∈n .  

 

Proof: From Corollary 2.4, it follows that 

nnn Q)(=)det(=det −−−−SS  

and 

4

)4(
=det

222
nnn UQPV ++++−−−−

S , 

which completes the proof.  

 

Theorem 2.4. Let N∈∈∈∈n  and m  be a nonzero integer. Then  

∑∑







 −

=

+−−+









=

−
+ +









+
++







 2

1

0

121212
2

0

222 )4(
12

)4(
2

=2

n

j
r

jjn
m

j
m

n

j
r

jjn
m

j
mrmn

n UQPVU
j

n
VQPVU

j

n
V  

and 

.)4(
12

)4(
22

1
=2

2

1

0

21212
2

0

222 ∑∑







 −

=

−−+









=

−
+ +









+
++








n

j
r

jjn
m

j
m

n

j
r

jjn
m

j
mnrmn

n VQPVU
j

n
UQPVU

j

n
U

 

Proof: Let 
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2
1 QP

QSSK . Then IK jj QP )4(= 22 ++++  and 

.)4(= 212 KK jj QP ++++++++  Since 
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2

1
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m UV ++++  

it follows that 
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rmn

VU

UQPV

S  

the proof is completed.  

 

Theorem 2.5.  

                                       nmnmnm UQUUUU 11= −++ +                                   (2.1) 

and  

                                    11
1 =)( −−−

− −− nmnmnm
n UUUUUQ                             (2.2) 

for every Ζ∈∈∈∈nm, . 

 

Proof: Let .
01
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 QP
X  Then from Corollary 2.5, it follows that 
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Then the proof is completed.  

 

Now some identities are given which will be used in the sequel. These identities can 

be obtained using matrices nS  and nX  and they are; 

                            mnmnmn VVQUVU +−+ + =11 ,                                              (2.3) 

                                        nm
n

nmnm VQUUQPVV −−+− )2(=)4( 2 ,                          (2.4) 

                            nm
n

mnnm UQVUVU −−− )2(= ,                                         (2.5) 

                            nm
n

nmnm VQVVV −+ −+ )(= ,                                               (2.6) 

                           nm
n

nmnm VQVUUQP −+ −−+ )(=)4( 2 ,                              (2.7) 

                                        nm
n

nmnm UQUVU −+ −+ )(= ,                                            (2.8) 

                           mnnmnm
n UVVUVQ 11=)( ++− −− ,                                        (2.9) 

                            )4()(= 22
12 QPQVVV r

rrr +−− ++ .                                  (2.10) 

 

Theorem 2.6. Let Ζ∈∈∈∈rnm ,,  with 0.≠r  Then  

,)(= nm
r

rnrmrnmr UUQUUUU −−++++  

,)(= rnrm
r

nmrnmr UUQUUUU −−−+ −−  

and 

.)(= nrm
r

rnmnmr UUQUUUU −++ −−  

 

Proof: Take 
r

r

U

U
a 1= +  and consider the matrix 









− aPc

ba
=A  with .=det Q−−−−A  

Then by Corollary 2.1, one gets 

.==
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1
1

1

1
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+
+

−
+
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−

n
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r
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U
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bUQUU
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bUQUaU
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Using (2.1) and (2.2), it is seen that 

.
)(

=



















−− −

+

r

rn
r

n

n
r

rn

n

U

UQ
cU

bU
U

U

A  

Since Q−−−−=detA  and 
r

r

U

U
a 1= + , it follows that 

22

2
12

2

2
11

2

2
1

2
1

)(
==

)(
==

r

r

r

rrr

r

rrrr

r

rrrr

U

Q

U

UUU

U

UQUPUU

U

UQUUPU
bc

−−−

−+−+

++

++++

 

by (2.2). If we consider the matrix product ,= nmmn ++++AAA  then the result follows.  

 

We can give the following corollary. 

 

Corollary 2.8. 22 )(= r
rn

nrnrn UQUUU −
−+ −−−  for all Ζ∈∈∈∈rn, .  

 

Proof: Since ,=det Q−−−−A  .)(=)det(=det nnn Q−−−−AA  Moreover, 








 −−−−−−−−−−−−−−−−−−−−−−−− −−−−++++−−−−++++
2

2
2 )(=)(=det

r

nrnrnr
n

r

rn

r

rnrn

U

UUU
QbcU

U

U

U

U
QA , 

implies that .)(= 22
r

rn
nrnrn UQUUU −

−+ −−−   

 

Theorem 2.7. Let Ζ∈∈∈∈rnm ,, . Then  

,)4()(= 2
nm

r
rnrmrnmr UUQPQVVVV +−+++++  

,)()4(= 2
rnrm

r
nmrnmr VVQUUQPVV −−−+ −++  

and 

.)(= mrn
r

rmnnmr UVQVUUV −++ −+  

 

Proof: Take 
r

r

V

V
a 1= +  and consider the matrix 









− aPc

ba
=B  with .=det Q−−−−B  

Then by Corollary 2.1, one gets 
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Hence, using (2.3) and (2.9), it is seen that 
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n
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VQ
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bU
V

V

B  

Since Q−−−−=detB  and 
r

r

V

V
a 1= + , it follows that 
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2
1
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)4()(
==

)(
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r
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VQVPVV

V

VQVVPV
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by (2.10). Then we get the result by considering the matrix product nmmn ++++BBB = .  

 

Now, the following corollary can be given. 

 

Corollary 2.9. 222 )(=)4( r
rn

nrnrn VQUQPVV −
−+ −+−  for all Ζ∈∈∈∈rn, .  

 

Proof: Since ,=det Q−−−−B  nnn Q)(=)det(=det −−−−BB  and 








 +
−−−− −+−+

2

22

2
2 )4(

)(=)(=det
r

n

r

rnrnr
n

r

rn

r

rnrn

V

UQP

V

VV
QbcU

V

V

V

V
QB , 

it follows that .)(=)4( 222
r

rn
nrnrn VQUQPVV −

−+ −+−   

 

2.1.  Sums and Congruences 

 

Now some sums containing generalized Fibonacci and Lucas numbers will be given. 

Then, some congruences concerning generalized Fibonacci and Lucas numbers will 

be presented. Before giving a lemma which will be used in the theorems following it, 

notice that 

                                       n
n

nn QV )(=2 −−αα                                            (2.11) 
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and 

                                       n
n

nn QQPU )(4= 22 −++αα                          (2.12) 

by (1.2). Now we can give the lemma. 

 

Lemma 2.1.1.  

                                       ISS nn
n

n QV )(=2 −−                                          (2.13) 

and 

                                      IKSS nn
n

n QU )(=2 −−−−++++                                       (2.14) 

for every N∈∈∈∈n , where K  is as in Theorem 2.4. 

 

Proof: Let [ ] { }= | ,a b a bα α + ∈Ζ Ζ , [ ] { }= | ,a b a b+ ∈Ζ S S I Ζ  and define a 

function [ ] [ ]:φ α →Ζ Ζ S , by .=)( IS baba ++++++++αϕ  Then ϕ  is a ring 

homomorphism. Moreover, it is clear that S=)(αϕ  and therefore 

.=))((=)( nnn Sαϕαϕ  Thus from (2.11), one gets 

ISS nn
n

n
n

nnnn QVQV )(=))((=)(=))((= 222 −−−−−−−−−−−−−−−−αϕαϕαϕ . 

That is, ISS nn
n

n QV )(=2 −−−−−−−− . Also from (2.12), it follows that 

( ) ( ) .)(4=)(4=)(=))((= 22222 ISS nn
n

nn
n

nnn QQPUQQPU −++−++ ϕαϕαϕαϕ
 Then IKSS nn

n
n QU )(=2 −−−−++++  since 

( ) KIS =
01

40
=2=)(2=4

2
2








 +
−−+

QP
PPQP αϕϕ . 

 

Theorem 2.1.1. Let Ζ∈∈∈∈rm, . Then  
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and 

∑
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2 ))(())((=  

for every N∈∈∈∈n . 

 

Proof: It is known that 
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                                       ISS mm
m

m QV )(=2 −−−−−−−−                                        (2.15) 

by (2.13). Taking the n th power of (2.15), one gets 

( ) .))((=)(=
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Multiplication of both sides of this equation by rS  gives 
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Thus it follows that  
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by Corollary 2.4.  

 

Corollary 2.1.1. If P  and Q  are integers, then 

                              ( ) ( )mr
nm

rmn modVUQU )(2 −−≡+                                 (2.16) 

and 

                              ( ) ( )2 ( )
m n

mn r r mV Q V modV+ ≡ − −                                   (2.17) 

for all { }0∪∈ Nmn,  and Ζ∈∈∈∈r  such that 0≥+ rmn  if 1Q ≠ ± . 

 

Theorem 2.1.2. Let Ζ∈∈∈∈rm,  and m  be a nonzero integer. Then  
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for every N∈∈∈∈n , where .4= 2 QPD +                                                                                      

 

Proof: It is known that 

IKSS mm
m

m QU )(=2 −−−−++++  

by (2.14). Then, 
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On the other hand, it can be seen that IK jj D=2  and .=12 KK jj D++++  Therefore, 
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and the proof follows from Corollary 2.4.  

 

Corollary 2.1.2. If P  and Q  are integers, then  

                            ( ) ( )mr
mn

rmn modUUQU −≡+2                                        (2.18) 

and 

                                         (((( )))) (((( ))))mr
mn

rmn modUVQV −−−−≡≡≡≡++++2                                          (2.19) 

for all { }0∪∈ Nmn,  and Ζ∈∈∈∈r  such that 0≥+ rmn  if 1±±±±≠≠≠≠Q . 



 

 
 
CHAPTER 3. THE SQUARE TERMS IN FIBONACCI AND 

LUCAS SEQUENCES  
 

 

We have cited literature review about Fibonacci and Lucas numbers of the form 2x  

or 22x  in the first chapter. Many authors have investigated Fibonacci and Lucas 

numbers of the form 2cx  with 1,2≠c . For example, in [43], Robbins considered 

Fibonacci numbers of the form 2px  and solved the equation 2= pxFn  for all p  such 

that 4)3(modp ≡  or 10000<p . On the other hand, in [44], Robbins considered 

Fibonacci numbers of the form 2cx  and obtained all solutions of 2= cxFn  for 

composite values of 1000≤c . The same author solved ,= 2pxLn  where p  is an odd 

prime and 1000<p , in [45]. Moreover, in [52], Zhou dealt with Lucas numbers of 

the form 2px , where p  is a prime number and gave solutions for 60000<<1000 p . 

 

In this chapter, firstly, some fundamental theorems and identities concerning 

Fibonacci and Lucas numbers are given. Then, we solve the Diophantine equations 

,2= 2xLL mn  ,2= 2xFF mn  ,3= 2xFF mn  ,6= 2xLL mn  and 26= xFF mn . 

 

The proof of the following theorem can be found in [7]. 

 

Theorem 3.1. Let 1n ≥ . If 2= xFn , then 122,1,=n . If 22= xFn , then 6,3=n . If 

2= xLn , then 31,=n  and if 22= xLn , then 6=n .  

 

The proofs of the following two theorems are given in [22]. 

 

Theorem 3.2. Let {0}∪∈Νn  and Z∈∈∈∈mk, . Then  

                                           ( ) ( )mk
mn

kmn modFFF 12 −≡+                                (3.1) 

and 
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                                          ( ) ( )mk
mn

kmn modFLL 12 −≡+ .                              (3.2) 

 

Theorem 3.3. Let {0}∪∈Νn  and Z∈∈∈∈mk, . Then 

                                          ( )( ) ( )mk
nm

kmn modLLL 1
2 1 +

+ −≡                             (3.3) 

and 

                                    ( )( ) ( )mk
nm

kmn modLFF 1
2 1 +

+ −≡ .                           (3.4) 

 

The two theorems given above can be obtained from Corollary 2.1.1 and Corollary 

2.1.2. From the identity (3.2), it can be easily seen that nL|8 /  for every N∈∈∈∈n . 

 

The proofs of the following three lemmas can be done by induction. 

 

Lemma 3.1. 4)3(
2

modL k ≡  for all 1k ≥ .  

 

Lemma 3.2. If 3,≥r  then 3)2(
2

modL r ≡ .  

 

Lemma 3.3. If 2,≥r  then ( )87
2

modL r ≡ . 

 

The following corollary can be obtained from Lemma 3.1. 

 

Corollary 3.1. If 1≥k , then there is no integer x  such that )1(
2

2
kmodLx −≡ .  

 

The proofs of the following theorems can be found in [5], [22], and [48]. 

 

Theorem 3.4. Let Ν∈∈∈∈nm,  and 2≥m . Then nm LL |  if and only if nm |  and 
m

n
 is 

an odd integer.  

 

Theorem 3.5. Let Ν∈∈∈∈nm,  and 3≥m . Then nm FF |  if and only if .|nm   
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Theorem 3.6. Let Ν∈∈∈∈nm,  and 2.≥m  Then nm FL |  if and only if nm |  and 
m

n
 is 

an even integer.  

 

The following identities are well known and easy to show. 

                               n
nn LL 1)2(= 2

2 −− ,                                                      (3.5) 

                                  )1)3((= 2
3

n
nnn LLL −− ,                                               (3.6) 

                                   nnn LFF =2 ,                                                               (3.7) 

                                               )1)3((5= 2
3

n
nnn FFF −+ ,                                           (3.8) 

                                               n
nn FL 1)4(=5 22 −− ,                                                   (3.9) 

                                               nLF nn |3|2|2 ⇔⇔ ,                                           (3.10) 

                                              1=),( nn LF  or 2=),( nn LF .                                    (3.11) 

 

Let 








p

a
 represent Legendre symbol. Then we have  

            1=
2









p
 if and only if ( )81 modp ∓≡                                   (3.12) 

and 

                     1=
2







 −
p

 if and only if ( )83 1, modp ≡ .                             (3.13) 

 

The proofs of (3.12) and (3.13) can be found in [4] and [35]. 

 

3.1. Fibonacci and Lucas Numbers of The Form 2cx  

 

In this subsection, we consider the equations ,2= 2xLL mn  ,2= 2xFF mn  ,6= 2xLL mn  

,3= 2xFF mn  and .6= 2xFF mn  

 

In [38], Ribenboim introduced square-classes of Fibonacci numbers. There it is 

stated that nm FF  ,  are in the same square-class if there exist non-zero integers yx  ,  
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such that 22 = yFxF nm ; or equivalently, when nmFF  is a square. In a similar way, he 

introduced square-classes of Lucas numbers. A square-class is called trivial if it 

consists of only one number. Ribenboim showed that the square-class of mL  is trivial 

when  3, 1, 0,≠m and 6.  Also he showed that the square-class of mF  is trivial when 

12. 6, 3, 2, 1,≠m  Now, the following two theorems, which can be obtained from 

Proposition 1 and Proposition 2  in [38], can be given. 

 

Throughout this subsection, we will assume that n  is a positive integer. 

 

Theorem 3.1.1. Let 3>m  be an integer and 2= xFF mn  for some Z∈∈∈∈x . Then 

mn = .  

 

Theorem 3.1.2. Let 2≥m  be an integer and 2= xLL mn  for some Z∈∈∈∈x . Then 

mn = .  

 

Although the proofs of the following two theorems can be obtained from Theorem 6 

and Theorem 12 in [11], proofs will be given using a different approach. 

 

Theorem 3.1.3. There is no integer x  such that 22= xLL mn  for 1.>m   

 

Proof: Assume that .2= 2xLL mn  Then nm LL |  and therefore mkn =  for some 

natural number k  by Theorem 3.4. Firstly, assume that m  is an odd integer. Since 

,|2 nL  one gets n|3  by (3.10). Thus it is seen that m|3 / . For, if m|3 , then ,|3 mLL  

i.e., mL|4  by Theorem 3.4. This implies that nL|8 , which is impossible. Since 

m|3 / , it follows that k|3 . That is, tk 3=  for some odd positive integer t . Thus 

mtmkn 3==  and mt  is an odd integer. Therefore, since ,|3n  it follows that ,|3 nLL  

i.e., 22|4 xLm  by Theorem 3.4. Since m|3 / , mL  is an odd integer. Therefore ,|2 2x  

i.e., x  is an even integer. This implies that nL|8 , which is impossible. 
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Now, assume that m  is an even integer. If x  is an even integer, then it is seen that 

nL|8 , which is impossible. Therefore x  is an odd integer. Assume that .|3 m  Then 

mL  is an even integer. Therefore nLL |3  by Theorem 3.4. It follows that bn 3=  for 

some odd integer b . That is, n  is an odd integer. But this is impossible. Because m  

is an even integer, n  is also an even integer. Assume that m|3 / . Then since mkn =  

and ,|3n  it follows that ,|3k  i.e., tk 3=  for some odd integer t . Hence, 14= ∓qt  

for some nonnegative integer q . Thus .32.6=1)(43== mmqqmmkn ∓∓  Then  

 )(= 6332.6 modFLLL mmmqn ∓∓
≡  

and therefore 

 8)(2 3
2 modLxL mm ≡  

by (3.2). Since 8)1(2 modx ≡  and m  is an even integer, one obtains  

 8)3)((2 2 modLLL mmm −≡  

by (3.6). Moreover, since m|3 / , mL  is odd integer. So  

 8).3(2 2 modLm −≡  

Whence 

 8),2(2 mod−≡  

which is not possible. This completes the proof.  

 

In [7], for 21,=m , it is shown that the equation 2 2= 2 = 2n mF F x x  has solutions only 

for 3,6.=n  More generally, the following theorem can be given. 

 

Theorem 3.1.4. If 22= xFF mn  and 3,≥m  then 3,=m  36,=2x  and 12=n  or 

6,=m  9,=2x  and 12.=n   

 

Proof: If 3,=m  then .)(2=2= 22
3 xxFFn  Thus it can be seen that 12,=n  36=2x  

by Theorem 3.1. Assume that 3>m  and .2= 2xFF mn  Then nm FF |  and therefore 

mkn =  for some natural number k  by Theorem 3.5. 
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Firstly, assume that k  is an even integer. Then tk 2=  for some integer .t  Therefore 

.2== mtmkn  Thus  

 2
2 2=== xFLFFF mmtmtmtn  

by (3.7). This shows that ( ) .2=/ 2xLFF mtmmt  It can be easily seen that if 

( ) ,=,/ dLFF mtmmt  then 1=d  or 2=d  by (3.11). Assume that 1.=d  Then 

                                         22 2=,= vLu
F

F
mt

m

mt                                          (3.14) 

or 

                                        22 =,2= vLu
F

F
mt

m

mt                                           (3.15) 

for some integers u  and v . Assume that (3.14) is satisfied. Then ,= mmt  i.e., 1=t  

by Theorem 3.1.1. Therefore 22= vLm  and this implies that 6=m  by Theorem 3.1. 

Hence 9=2x  and 12.=n  Now assume that (3.15) is satisfied. Then 2= vLmt  and 

therefore 1=mt  or 3  by Theorem 3.1. But this is not possible since 3.>m  Assume 

that 2.=d  Then 

                                       22 =,2= vLu
F

F
mt

m

mt                                            (3.16) 

or 

                                      22 2=,= vLu
F

F
mt

m

mt                                             (3.17) 

for some integers u  and v . Assume that (3.16) is satisfied. Then 1=mt  or 3  by 

Theorem 3.1. But this is impossible since 3.>m  It can be seen that the identity 

(3.17) is impossible by Theorem 3.1.1. 

 

Now, assume that k  is an odd integer. Let m  be an even integer. Then rm 2=  for 

some natural number r  and therefore .2== krmkn  Thus one has 

2
2 2=== xLFLFFF rrkrkrkrn  

by (3.7). This shows that ( ) .2=)/(/ 2xLLFF rkrrkr  It can be easily seen that if 

( ) ,=/,/ dLLFF rkrrkr  then 1=d  or 2=d  by (3.11). Assume that 1.=d  Then 

                                      22 2=,= v
L

L
u

F

F

r

kr

r

kr                                             (3.18) 
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or 

                                      22 =,2= v
L

L
u

F

F

r

kr

r

kr                                              (3.19) 

for some integers u  and v . The identity (3.18) is impossible by Theorem 3.1.3. 

Assume that (3.19) is satisfied. Then 2= vLL rkr  and therefore ,= rkr  i.e., 1=k  by 

Theorem 3.1.2. Hence the equality 1===2 2

r

r

r

kr

F

F

F

F
u  is obtained, which is not 

possible. Assume that 2.=d  Then 

                                        22 =,2= vLu
F

F
kr

r

kr                                            (3.20) 

or 

                                        22 2=,= v
L

L
u

F

F

r

kr

r

kr                                           (3.21) 

for some integers u  and v . A similar argument shows that (3.20) and (3.21) are 

impossible. Now, let m  be an odd integer. Firstly, suppose that k|3 / . Since k  is an 

odd integer, 16= ∓qk  for some nonnegative integer .q  Therefore 

.2.3=1)(6== mmqqmmkn ∓∓  Hence it follows that  

),(= 32.3 modLFFF mmmqn ∓∓
≡  

i.e., 

4)(modFF mn ≡  

by (3.4). Since nF  is an even integer, mF  is also an even integer. Thus m|3  by 

(3.10) and therefore am 3=  for some integer a . On the other hand, since mF  is an 

even integer, nF|4  and thus n|6  by Theorem 3.5. Since ,3== akmkn  one gets 

,3|6 ak  i.e., .|2 ak  Moreover, since k  is an odd integer, it is seen that .|2a  This 

implies that ,|2m  which is impossible since m  is an odd integer. Assume that .|3k  

Then sk 3=  for some odd integer s . Therefore .3== msmkn  Since ms  is an odd 

integer, one obtains  

22
3 2=3)(5== xFFFFF mmsmsmsn −  

by (3.8). This shows that ( )( ) .2=35/ 22 xFFF msmms −  It can be easily seen that if 

( )2= / ,5 3ms m msd F F F − , then 1=d  or 3=d . Assume that 3.=d  Then ,|3 msF  and  
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thus ms|4  by Theorem 3.5. But this is not possible while ms  is an odd integer. So 

1.=d  Then it follows that 

                                    222 2=35,= vFu
F

F
ms

m

ms −                                        (3.22) 

or 

                                    222 =35,2= vFu
F

F
ms

m

ms −                                       (3.23) 

for some integers u  and v . Assume that (3.22) is satisfied. Then ,= mms  i.e., 1=s  

by Theorem 3.1.1. Therefore 22 2=35 vFm −  and this shows that 

1=1=35=2 2
222 −+− mmm LLFv  by (3.5) and (3.9). This implies that 1.2= 2

2 +vL m  

Since 1,2= 2
2 +vL m  we get m|3 / . Thus 1,3.2=16= 1

∓∓ bqm r +  where bq r2=  for 

some odd integer b  with 0.≥r  This shows that  

)(= 1222312.22 ++ −≡ rbrm modLLLL
∓

∓

 

and therefore 

),3(12 12

2
+−≡+ rmodLv  

i.e., 

)4(2 12

2
+−≡ rmodLv  

by (3.3). On the other hand,  

)2( 12

2
++++−−−−≡≡≡≡ rmodLv  

since 12 +rL  is an odd integer. This shows that 1=
2







 −
p

 for every prime divisor of 

12 +rL . Then it follows that 

8)1,3(modp ≡  

by (3.13) and therefore           

8).1,3(12
modL r ≡+  

This shows that 0=r  by Lemma 3.3. Consequently, q  is an odd integer. Therefore 

it can be easily seen that 512= +cm  or 712= +cm  for some integer .c  Thus one 

arrives            

8)3(modLm ≡  
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or            

8)5(modLm ≡  

by (3.2). On the other hand, 

1=2 22 +mLv  

implies that 

),1(2 2
mmodLv ≡  

and so  

).2()(2 2
mmodLv ≡  

Therefore 1=
2









p
 for every prime divisor of mL . Then it follows that 

8)1(modp ∓≡  

by (3.12) and hence  

8).1(modLm ∓≡  

But this contradicts the fact that 8).3,5(modLm ≡  Assume that (3.23) is satisfied. 

Then 1=35= 222 +− msms LFv  by (3.9). This implies that 0,=msL  which is not 

possible. This completes the proof.  

 

Theorem 3.1.5. If 26= xLL mn  and 1≥m , then 2=m , 1,=2x  and 6=n .  

 

Proof: Assume that 26= xLL mn  for some integer x . Then nL|3  and therefore 

02= kn  for some odd integer 0k  by Theorem 3.4. Moreover, since nL|2 , one gets 

n|3  by (3.10). This shows that 0|3 k  and therefore tk 3=0  for some odd integer t . 

Thus 612=1)6(2=6= ++ uutn . Hence,  

8)(= 6612 modLLL un ≡+ , 

or 

2( 8)nL mod≡  

by (3.2). Since nL|8 / , it can be seen that x  is an odd integer. So 

8),1(2 modx ≡  

which implies that  
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8).(66 2 modLxL mm ≡  

This shows that      

8),2(6 modLm ≡  

which implies that 1.≠m  Now assume that 2.>m  Since nm LL | , there exists an odd 

integer k  such that mkn =  by Theorem 3.4. On the other hand, since ,|2 n  it is seen 

that m|2 . Therefore rm 2=  for some odd integer r . If 3,6= +qr  then 

612=2= +qrm  and therefore                                                                                                                                                            

8)(6 modLLm ≡  

by (3.2). That is, 

8),2(modLm ≡  

which is not possible since  

8).2(6 modLm ≡  

Therefore r|3 / . Since mkn = , rm 2= , and r|3 / , it follows that k|3  and thus 

sk 3=  for some odd integer s . Then  

22
3 6=3)(=== xLLLLLL mmsmsmsmkn −  

by (3.6). It can be seen that 3=3),( 2 −msms LL . Thus 
2 3

, =1
3

ms
ms

L
L
 −
 
 

. Then 

2
23

= 2
3

ms ms

m

L L
x

L

 −
 
 

, 

which shows that  

                                                 2
2

2 =
3

3
and2= v

L
u

L

L ms

m

ms −
                                 (3.24)             

or  

                                     .2=
3

3
and= 2

2
2 v

L
u

L

L ms

m

ms −
                                (3.25) 

for some integers u  and .v  Assume that (3.24) is satisfied. Then 
2

23 1 =
3
msL

v
  − 
 

 

and therefore  

3),1(2 modv −≡  
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which is a contradiction. Now assume that (3.25) is satisfied. Then 2= uLL mms , 

which implies that mms =  by Theorem 3.1.2. That is, 1=s . Thus 22 6=3 vLm − . 

Since 2= 2
2 +mm LL  by (3.5), it is seen that 2

2 6=1 vL m − . Moreover, since rm 2= , it 

follows that 2
4 6=1 vL r − . On the other hand, since r4  can be written as 

4.2.2=416=1)4(4=4 ∓∓∓ auur b  for some odd integer a  with 3≥b , it follows 

that  

)(=
2442.24 babr modLLLL

∓
∓

−≡  

by (3.3) and therefore             

).7(61
2

2
bmodLv −≡+  

Then              

)8(6
2

2
bmodLv −−−−≡≡≡≡ , 

or         

)4(3
2

2
bmodLv −−−−≡≡≡≡ , 

or          

)12()(3
2

2
bmodLv −−−−≡≡≡≡ , 

which shows that 1=
12







 −
p

 for every prime divisor of bL
2

. Then it follows that            

3)1(modp ≡  

and therefore           

3).1(
2

modL b ≡  

But this contradicts Lemma 3.2. Therefore 2m = . This completes the proof.  

 

In [22], it is shown that 23= xLL mn  has no solutions if 1>m . Now a similar result is 

given for Fibonacci numbers. 

 

Theorem 3.1.6. Let 3≥m  be an integer and 23= xFF mn . Then 4=m , 16,=2x  and 

12=n .  
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Proof: Assume that 3≥m  and 23= xFF mn  for some integer x . Then nm FF |  and 

therefore mkn =  for some integer k  by Theorem 3.5. 

 

Firstly, assume that k  is an even integer. Then sk 2=  for some N∈∈∈∈s . Therefore 

msmkn 2== . Thus  

2
2 3=== xFLFFF mmsmsmsn  

by (3.7). This shows that 

.3=)/( 2xLFF msmms  

It can be easily seen that if dLFF msmms =),/( , then 1=d  or 2=d  by (3.11). Let 

1=d . Then 

                                              22 3=,= vLu
F

F
ms

m

ms                                     (3.26) 

or 

                                              22 =,3= vLu
F

F
ms

m

ms                                     (3.27) 

for some integers u  and v . Let (3.26) be satisfied. Then 2
2

2 =3= xLvLms  and 

therefore 2=ms  by Theorem 3.1.2. But this is not possible since 3≥m . Let (3.27) 

be satisfied. Then 3=ms  by Theorem 3.1. Thus 3=m  and 1=s . Then 

( ) 1=/=3 33
2 FFu , which is not possible. Let 2=d . Then 

                                              22 6=,2= vLu
F

F
ms

m

ms                                   (3.28) 

or 

                                              22 2=,6= vLu
F

F
ms

m

ms                                   (3.29) 

for some integers u  and v . The identity (3.28) is not possible by Theorem 3.1.3. Let 

(3.29) be satisfied. Then 6=ms  by Theorem 3.1. If 6=m  and 1,=s  then this is 

impossible since .6= 2uFFF mmsm =  If 3=m  and 2,=s  then 4,=/=6 36
2 FFu  

which is impossible.  

 

Now suppose that k  is an odd integer. Since nF|3 , we get n|4  by Theorem 3.5. 

Moreover, since mkn =  and k  is odd, one gets m|4 . Let x  be an even integer. 
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Then nF|4 . Thus nFL |3  and n|3  by Theorem 3.6. Therefore, n|12  since n|4  and 

n|3 , i.e., tn 12=  for some N∈∈∈∈t . On the other hand, rm 4=  for some N∈∈∈∈r  since 

m|4 . Therefore rkmknt 4===12 . It follows that rkt =3 . Thus  

2
226612 3=== xLFLFFF rrtttn  

by (3.7). Since krt =)/2(6  and k  is odd, one can write 

.3=. 2

2

6

2

6 x
L

L

F

F

r

t

r

t  

Assume that r|3 . Then, it can be seen that 1=,
2

6

2

6









r

t

r

t

L

L

F

F
 by (3.11). Therefore 

                                                  2

2

62

2

6 3=,= v
L

L
u

F

F

r

t

r

t                                 (3.30) 

or 

                                                  2

2

62

2

6 =,3= v
L

L
u

F

F

r

t

r

t                                 (3.31) 

for some integers u  and v . A similar argument shows that (3.30) and (3.31) are 

impossible. Now assume that r|3 / . Then since ,=3 rkt  it follows that k|3 . Thus 

sk 3=  for some N∈∈∈∈s . Then rsrkt 3==3  and therefore rst = . Also since r|3 / , it 

can be seen that 2=,
2

6

2

6









r

t

r

t

L

L

F

F
 by (3.11). Therefore 

                                                 2

2

62

2

6 6=,2= v
L

L
u

F

F

r

t

r

t                                (3.32) 

or 

                                                 2

2

62

2

6 2=,6= v
L

L
u

F

F

r

t

r

t                                (3.33) 

for some integers u  and v . Assume that (3.32) is satisfied. Then 2=2r  by Theorem 

3.1.5. This shows that 1=r  and .= st  Thus 2
6

2
26 =6= vLvLL t , which implies that 

6=6t , i.e., 1=t  by Theorem 3.1.2. Therefore 3=3=3= tsk  and 4=4= rm . 

Therefore 12=n  and 16.=2x  Now assume that (3.33) is satisfied. Then it follows 

that 

,2= 2
26 vLL rt  

which is impossible by Theorem 3.1.3. Now, let x  be an odd integer. Then 
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8).(3 modFF mn ≡  

Since m|4 , it follows that qm 12=  or 412= ∓qm  for some integer q . If 

412= ∓qm , then 

8)3(4412 modFFF qm ∓
∓∓

≡≡≡  

by (3.1). Therefore 

8),1(modFn ∓≡  

which is impossible since n|4 . Because if ,|4n  then 412= ∓rn  or rn 12=  for 

some integer r , and therefore 8)3,0(modFn ∓≡  by (3.1). If qm 12= , then 

qkmkn 12== . This shows that qqk/66  is an odd integer. Then, from the equality 

,3=3=== 2
66

2
6612 xLFxFLFFF qqmqkqkqkn  

it follows that 

.3=. 2

6

6

6

6 x
L

L

F

F

q

qk

q

qk  

Since 1=,
6

6

6

6















q

qk

q

qk

L

L

F

F
, one has 

                                                2

6

62

6

6 3=,= v
L

L
u

F

F

q

qk

q

qk                                 (3.34) 

or 

                                                2

6

62

6

6 =,3= v
L

L
u

F

F

q

qk

q

qk                                 (3.35) 

for some integers u  and v . Similarly, it can be seen that the identities (3.34) and 

(3.35) are impossible. This completes the proof.   

 

Finally, we can give the following theorem without proof since the proof is similar to 

that of Theorem 3.1.6. 

 

Theorem 3.1.7. There is no integer x  such that .6= 2xFF mn  

 



 

 
 
CHAPTER 4.  THE SQUARE TERMS IN GENERALIZED 

FIBONACCI AND LUCAS SEQUENCES 

 

 

In this chapter, we solve the generalization of the equations 22= xLL mn , 2= 3n mL L x  

and 26= xLL mn . Also, using congruences related to generalized Fibonacci and 

Lucas numbers given in the second chapter, some equations including generalized 

Fibonacci and Lucas numbers are solved under some assumptions.  

 

4.1. Some Fundamental Theorems and Identities 

 

In this subsection, some theorems, lemmas, and some identities about generalized 

Fibonacci and Lucas numbers which will be used later are given. 

 

Since the proof of the following lemma can be proved by induction, the proof is 

omitted. 

 

Lemma 4.1.1. Let 1(mod3)Q ≡ . If P|3 / , then  







 ≥
≡

1,=if3)0(

2,=if3)1(

3,if3)2(

2

rmod

rmod

rmod

V r  

and if P|3 , then 3)2(
2

modV r ≡  for all 1r ≥ .  

 

The following two theorems can be given from Corollary 2.1.1 and Corollary 2.1.2. 

 

Theorem 4.1.1. Let 1=Q , { },0∪∈Νn  Z∈∈∈∈rm, , and m  be nonzero integer. Then  

                                    ( ) ( )mr
mn

rmn modUUU 12 −≡+                                     (4.1) 

and 
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                                    ( ) ( )2 1
mn

mn r r mV V modU+ ≡ − .                                    (4.2) 

 

Theorem 4.1.2. Let 1=Q , { },0∪∈Νn  and Z∈∈∈∈rm, . Then  

                                    ( ) ( )mr
nm

rmn modVUU 1)(
2 1 +

+ −≡                                  (4.3) 

and 

                                                ( ) ( )( 1)

2 1
m n

mn r r mV V modV
+

+ ≡ − .                                (4.4) 

 

When P  and Q  are odd, using (2.18) and (2.19), one gets 6|8 U  and therefore  

                                           ( )812 modUU rrq ≡+                                            (4.5) 

and 

                                           ( )812 modVV rrq ≡+                                           (4.6) 

for nonnegative integers q  and r . It can be seen from (4.6) that if P  and Q  are odd 

and )8(mod5≡/Q , then  

                                                      nV|8 / ,                                                    (4.7)                              

and if P  and Q  are odd and )8(mod5,1≡/Q , then 

                                                 nV|4 /                                                      (4.8) 

for every natural number n . 

 

The proof of the following lemma is given in [42]. Moreover, the lemma can be 

proved by using Corollary 2.1.1 and Corollary 2.1.2. 

 

Lemma 4.1.2. Let 1≥n . Then 

)(a  




/≡≡
≡

⇔
,|3if)3(mod14)2(

,|3if2)1(
|3

PQandmodn

Pmodn
Vn  

)(b  




/≡≡
≡

⇔
.|3if)3(mod2|3)3(mod1|4

,|3if2)0(
|3

PQandnorQandn

Pmodn
U n  

  

The following lemma can be found in [42]. 

 

Lemma 4.1.3. Let P , Q , and m  be odd positive integers and 1.≥r   
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)(a  If ,|3 m/  then 


 ≡

≡
otherwise,8),7(

,4)1(and1=if8),3(
2 mod

modQrmod
V

mr  

)(b  If ,|3 m  then 8).2(
2

modV
mr ≡  

  

By the above lemma, when P  and Q  are odd, it is seen that  

                                                   1=
1

2

−












 −

rV
                                               (4.9) 

for 1.≥r  

 

The following lemma can be proved by induction. 

 

Lemma 4.1.4. If n  is a positive even integer, then )(2 22 modPQV
n

n ≡  and if n  is a 

positive odd integer, then )( 22

1

modPnPQV
n

n

−

≡ .  

 

Now, the following identities concerning generalized Fibonacci and Lucas numbers 

can be given.  

                 ,=2 nnn VUU                                                                               (4.10) 

                 ,)2(= 2
2

n
nn QVV −−                                                                   (4.11) 

                             ),)((=))3()4((= 222
3

n
nn

n
nnn QVUQUQPUU −−−++            (4.12) 

                 ),)3((= 2
3

n
nnn QVVV −−                                                             (4.13) 

                 If P  is odd and 1n ≥ , then 2 | 2 | 3 | ,n nV U n⇔ ⇔                  (4.14) 

                 n
nn QUQPV )4(=)4( 222 −+− ,                                                  (4.15) 

                             If ( , ) 1P Q =  and 1n ≥ , then 1),(),( == QVQU nn .                  (4.16) 

 

Let ,2= km a  ,2= ln b  k  and l  odd, 0,, ≥ba  and ).,(= nmd  Then  

              ( ) ,=, dmn UUU                                                                              (4.17) 

              ( )




≤ ,if2or1

,>if 
=,

ba

baV
VU d

nm                                                           (4.18) 



 40 

              ( )








≠
≠

odd.isandif2or1

even,isandif2

,=if 

=,

Pba

Pba

baV

VV
d

nm                                  (4.19) 

               ,||then1,If nmUUU nmm ⇔≠                                                 (4.20) 

               If 1≠≠≠≠mV , then oddis and||
m

n
nmVV nm ⇔⇔⇔⇔ ,                          (4.21) 

               If 1≠≠≠≠mV , then even,isand||
m

n
nmUV nm ⇔                         (4.22) 

               ,
2

=then,|3and,|2,1odd,isIf 3 






 −








/=

PV

V
mmQP

m

             (4.23) 

                If P  and Q  are odd, then 

               3

2

= 1 > 1,
r

U
r

V

 
  ⇔
 
 

 or =1r  and 3( 4)Q mod≡ ,                      (4.24) 

               3If ≥≥≥≥r  and 1====Q , then .)2( 22
modVV r ≡≡≡≡                                 (4.25) 

 

Moreover,  

if 1>>>>P , then 1≠≠≠≠mV  for all N∈∈∈∈m  

and also when P  is even, it can be easily seen that  

odd,isoddis nUn ⇔⇔⇔⇔  

even,isevenis nUn ⇔⇔⇔⇔  

N∈∈∈∈nVn allforevenis . 

Identities between (4.10)-(4.16) and (4.17)-(4.22) can be found in [41], [42], [47] and 

[29], [40], [42], respectively. Identities (4.23) and (4.24) are given in [2], [9] and 

[42], respectively. The proofs of the others are easy and will be omitted. 

 

From now on, we will assume that n  is a positive integer. 

 

4.2.  Generalized Lucas Numbers of The Form 2cx  

 

In this subsection, it is assumed that 1=Q  and 1>>>>P . Firstly, when Pk |  and P  is 

odd, indices n  such that 2= kxVn  are determined. Then, when P  is odd, it is shown 
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that there is no solutions of the equation 23= xVn  for 2.>n  Moreover, it is proved 

that the equation 26= xVn  has no solutions when P  is odd. Finally, the equations 

23= xVV mn  and 26= xVV mn  are considered. It is shown that the equation 

23= xVV mn  has solutions when 3,=n  1=m , and P  is odd. Also, it is shown that 

the equation 26= xVV mn  has solutions only when 6.=n  Also the equations 

23= xVn  and 23= xVV mn  are considered under some assumptions when P  is even. 

 

In [11], Cohn solved the equations 2= xVV mn and 22= xVV mn  when P  is odd. Now, 

the following two theorems which can be obtained from Theorem 11 and Theorem 

12 in [11] are given. 

 

Theorem 4.2.1. Let P  be an odd integer, 1≥m  be an integer, and 2= xVV mn  for 

some integer .x  Then .= mn   

 

Theorem 4.2.2. If P  is odd, then there is no integer x  such that 22= xVV mn  for 

1.≥m   

 

In the following theorem, it is shown that the equation 22= xVV mn  has no solutions 

when P  is even. 

 

Theorem 4.2.3. If P  is even, then there is no integer x  such that 22= xVV mn  for 

1.≥m   

 

Proof: Assume that P  is even and .2= 2xVV mn  Then mV  is even, which implies that 

.|4 nV  Therefore, it is seen that n  is odd by Lemma 4.1.4. Moreover, since ,| nm VV  

there exists an odd integer t  such that mtn =  by (4.21). Thus, m  is odd and 

therefore )( 2modPnPVn ≡  and )( 2modPmPVm ≡  by Lemma 4.1.4. It follows that 

),(2 22 modPmPxnP ≡  i.e., ).(2 2 modPmxn ≡  This is a contradiction since n  is odd. 

This completes the proof.  
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The proof of the following lemma can be seen from identity (4.23). 

 

Lemma 4.2.1. If P  is odd and 1,≥r  then 1.=
3

2

2













 +

rV

P
  

 

Theorem 4.2.4. Let k  be square-free positive divisor of P  and P  be an odd integer. 

If the equation 2= kxVn  has a solution for some integer ,x  then 1=n  or 3.=n   

 

Proof: Assume that Pk |  and .= 2kxVn  Then, it is seen that n  is odd by Lemma 

4.1.4. Let 3.>n  Then 14= +qn  or 34= +qn  for some 0.>q  Also, kMP =  for 

some positive integer M  since Pk | . For the remaining part of the proof, two cases 

can be considered. 

 

Case 1: Assume that 1.4= +qn  For some odd integer z , 1)2(2=14= ++ zqn r , 

where 1.≥r  Thus one gets  

2
( ),rnV P modV≡ −  

i.e.,  

2

2
( )rkx P modV≡ −  

by (4.4). This shows that 1.==
2












 −

rV

kP
J  Since ,= kMP  it follows that 

.===
22

2

2












 −












 −












 −

rrr V

M

V

Mk

V

kP
J  Since )2(

2
modPV r ≡  by Lemma 4.1.4, it is seen 

that )2(
2

modMV r ≡  and thus 1.=),(
2rVM  Also 1=

1

2

−












 −

rV
 by (4.9). Assume that 

8).1,3(modM ≡  Hence  








 −














 −

−













−



























 −












 − 2

1

2

1
2

2

222

1)(1)(=
1

==

MrV

r

rrr M

V

V

M

VV

M
J  
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      1=1)(1)1)((=1)(
2

1)(= 2

1
8

12

2

1

−−−−−






−







 −












 −







 − MMM

M
. 

This contradicts the fact that 1.=J  Assume that  8).5,7(modM ≡  Since 

3)2(2=31)4(=14 −−++= zqqn r  for some odd integer z  with 1,≥r  it follows 

that  

),(
23 rn modVVV ≡  

i.e.,  

)(
23

2
rmodVVkx ≡  

by (4.4). This shows that  

.
3)(

=
3)(

===1
2

2

2

22

2

3













 +












 +














rrr V

PM

V

PMk

V

kV
J  

Since 8),5,7(modM ≡  8)3,7(
2

modV r ≡  by Lemma 4.1.3, and )2(
2

modMV r ≡  by 

Lemma 4.1.4, it follows that  

1.=1)(1)(=1)(
2

=

1)(=

2

1
8

12

2

1

2

1

2

1
2

2

2

−−−−








−



































 −












 −







 −








 −














 −

MMM

MrV

r

r

M

M

V

V

M

 

Thus, using Lemma 4.2.1, one obtains  

1,=
3

=
3)(

=
3)(

==
2

2

22

2

2

22

2

3 −












 +


























 +












 +














rrrrr V

P

V

M

V

PM

V

PMk

V

kV
J  

which is a contradiction. 

 

Case 2: Assume that 3.4= +qn  For some odd integer z , one can write 

3)2(2= +zn r , where 1.≥r  Thus  

),(
23 rn modVVV −≡  

i.e.,  

)(
23

2
rmodVVkx −≡  

by (4.4). This shows that  
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.
3)(

=
3)(

===1
2

2

2

22

2

3













 +−












 +−












 −

rrr V

PM

V

PMk

V

kV
J  

 Assume that 8).1,3(modM ≡  Then, it can be shown that 

2

= 1
r

M

V

 
 
 
 

. 

Thus, the identity (4.9) and Lemma 4.2.1 imply that  

1,=
31

=
3)(

==
2

2

222

2

2

3 −












 +


























 −












 +−














rrrrr V

P

V

M

VV

PM

V

kV
J  

which is a contradiction. Assume that 8).5,7(modM ≡  Since 

1)2(2=11)4(=34 −−++= zqqn r  for some odd integer z  with 1,≥r  one gets  

),(
2rn modVPV ≡  

i.e.,  

)(
2

2
rmodVPkx ≡  

by (4.4). This shows that .====1
22

2

2










































rrr V

M

V

Mk

V

kP
J  On the other hand, since 

8),5,7(modM ≡  it is seen that  

1,=1)(1)(= 2
1

8
12

2

−−−












 






 −












 − MM

rV

M
 

which contradicts the fact that 1.=J  This completes the proof.  

 

In [42], Ribenboim and McDaniel have solved the equation 23= xU n  for all 

relatively prime odd integers P  and Q . Also, for 8),1,3(modP ≡  4)3(modQ ≡  and 

1,=),( QP  the solutions of the equation 23= xVn  is given by Ribenboim and 

McDaniel in [42]. In [39], the same authors have shown that 23xVn ≠  and 26xVn ≠  

for all odd relatively prime values of P  and Q  with 4)3(modQ ≡  and 

8).3(modn ±≡  Besides, in [3], Antoniadis has solved the equation 23= xVn  for 

P|3 /  with P  odd and 1.=Q  Now the proof of the following theorem is given in a 

different way for the sake of completeness. 
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Theorem 4.2.5. If P  is odd, then the equation 23= xVn  has the solutions for 1=n  

or 2=n  and, if P  is even and P|3 / , then there is no integer x  such that .3= 2xVn   

 

Proof: Assume that P|3 / . Since ,|3 nV  it follows that 4)2(modn ≡  by Lemma 

4.1.2. If P  is even, then 4)2(=3 2 modVx n ≡  by Lemma 4.1.4 since n  is even. But 

this is not possible. Now, assume that P  is odd. If 2,=n  then 

22
2 3=2== xPVVn ++++  or 2.=3 22 −− xP  Since (1,1)=),( 11 vu  is the fundamental 

solution of the equation 2,=3 22 −− vu  all positive integer solutions of the equation 

2=3 22 −− vu  are given by  

( )1)(4,1)(4,31),(4,1)(4,5=),( 11 −−−−−− −− mmmm UUUUvu  

with 0.≥m  Therefore, when 2,=n  the equation 23= xVn  has a solution for 

1).(4,1)(4,5= 1 −−− −mm UUP  If 6,=n  then 2==3 2
36

2 +VVx  by (4.11). Since P  is 

odd, 3V  is even by (4.14) and therefore  

4),2(2=3 2
3

2 modVx ≡+  

which is not possible. Then it is clear that 216= ±cn  or 616= ±cn  for some 

positive integer .c  Let 6.16= ±cn  Thus  

),( 46 modVVVn ≡  

i.e.,  

                                                 )(3 46
2 modVVx ≡                                       (4.26) 

by (4.4). Moreover, it can be easily shown that ).( 426 modVVV −≡  Hence 

)(3 42
2 modVVx −≡  from (4.26). Then 1.=

3
=

4

2







 −
V

V
J  On the other hand, since 

1=
1

2

−












 −

rV
 for 1≥r  by (4.9), 3)1(4 modV ≡  by Lemma 4.1.1, and )2( 24 modVV −≡  

by (4.11), it is seen that  

1,=1)(=
1 2

14

4

−−






 − −V

V
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1,=1)(
3

=
3 2

14
4

4

−−















−V

V

V
 

and  

1.=1)(
21

=1)(
2

=1)(=
222

2

12
2

14

2

4

4

2 −−














 −−






 −−














 









 −










 −

VVVV

V

V

V
VV

 

These imply that  

1=1)1)(1)((=
31

=
3

=
4

2

444

2 −−−−






















 −







 −
V

V

VVV

V
J , 

which contradicts the fact that 1.=J  Now let 2.16= ±cn  Since n  can be written as 

2)2(2= ±zn r  for some odd z  with 3,≥r  it is seen that  

),(
22 rn modVVV −≡  

i.e.,  

)(3
22

2
rmodVVx −≡  

by (4.4), which shows that 1.=
3

=
2

2













 −

rV

V
J  On the other hand, )2( 22

modVV r ≡  for 

3≥r  by (4.25) and 1=
1

2

−












 −

rV
 by (4.9). Thus  

1.=1)(
2

=1)(=
2

2

12
2

1
2

2

2

2

2 −







−



























 








 −















 −

VV

V

V

V
VrV

r

r

 

Moreover, 3)2(
2

modV r ≡  by Lemma 4.1.1. Then  

1=1)(
3

2
=1)(

3
=

3 2

13

2

1
2

2

2

−






−


























 






 −














 −rV

r

r

V

V
  

and hence 

1,=
31

=
3

=
2

2

222

2 −








































 −












 −

rrrr V

V

VVV

V
J  

which is a contradiction. 
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Now assume that .|3 P  Then 1=n  or 3=n  by Theorem 4.2.4. If 1,=n  then 

.3== 2
1 xPV  It is obvious that this is a solution. If 3,=n  then .3=3)(= 22

3 xPPV +  

Also, since P|3 , it is seen that ( ) 1=3)/3(, 2 +PP . Therefore 2= aP  and 

22 3=3 bP +  for some positive integers a  and .b  Since ,|3P  cP 3=  for some 

positive integer .c  Hence one obtains the Pell equation 1.=3 22 cb −  It is well known 

that this equation has the solution ( )( )1)(4,/2,1)(4,=),( −− mm UVcb  for 1m ≥ . It 

follows that ,3=3== 2
mUcaP  i.e., .3= 2xUm  It is seen that the equation 

23=1)(4, xUm −  has no solutions by Theorem 2  given in [34]. Therefore, the case 

for when 3=n  is not possible. This completes the proof.   

 

Theorem 4.2.6. If P  is odd, then there is no integer x  such that .6= 2xVn   

 

Proof: Assume that P|3 / . If x  is even, it follows that ,|8 nV  which is impossible by 

(4.7). Therefore x  is odd. Since nV|3  and ,|2 nV  it is seen that /2n  is odd by Lemma 

4.1.2 and n|3  by (4.14), respectively. Then it follows that 612= +qn  for some 

positive integer .q  Thus  

8)(6 modVVn ≡  

by (4.6). That is,  

8),2(6 2 modx ≡  

which is impossible since x  is odd. 

 

Assume that .|3P  Since ,|3 nV  n  is odd by Lemma 4.1.2. Also since ,|3n  it follows 

that 12).3(modn ±≡  Thus  

8)4(43 modPVVn ≡±≡≡ ±  

by (4.6). That is,  

8),4(6 2 modx ≡  

which is impossible since x  is odd. This completes the proof. 

  

Theorem 4.2.7. If P  is odd, 1≥m  and ,3= 2xVV mn  then 1=m  and 3.=n   
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Proof: Assume that P|3 / . Since nm VV |  and ,|3 nV  it follows that mtn =  for some 

odd positive integer t  by (4.21) and /2n  is odd by Lemma 4.1.2, respectively. 

Therefore m  is even and /2m  is odd. Then 212= ±qm  or 612= +qm  for some 

positive integer .q  Thus 

8)2,3(, 62 modVVVm ≡≡  

by (4.6). Similarly, it is seen that 8).2,3(modVn ≡  Also, since 8)0,3,4(3 2 modx ≡≡≡≡ , it 

follows that 8),0,1,4,6(3= 2 modxVV mn ≡  which contradicts the fact that 

8).2,3(modVn ≡  

 

Now assume that .|3P  Since ,|3 nV  it is seen that n  is odd by Lemma 4.1.2. 

Therefore m  is also odd. Now, two different cases can be considered. 

 

Case 1: Assume that .|3t  Then st 3=  for some odd integer .s  Thus .3== msmtn  

By (4.13), one gets .3=3)(== 22
3 xVVVVV mmsmsmsn +  Since ms  is odd and ,|3P  it 

follows that .=3)/3))((/( 22 xVVV msmms +  It can be seen that 1.=3)/3)(,/( 2 +msmms VVV  

Therefore 2= aVV mms  and 22 3=3 bVms +  for some positive integers a  and .b  Then 

,= mms  i.e., 1=s  by Theorem 4.2.1. Thus .3=3 22 bVm +  Using (4.11), one obtains 

1.3= 2
2 −bV m  Assume that 1.>m  Then 2)2(2=1)2(4=2 ±± zqm r  for some odd 

integer z  with 2.≥r  Hence  

)2)((
2

2
22 rm modVPVV +−≡−≡  

by (4.4). That is,  

)(1)2(3
23

22
rmodVUPb −−−−≡≡≡≡−−−−++++−−−−≡≡≡≡ , 

which shows that 1.=
3

=
2

3













 −

rV

U
J  On the other hand, 1=

1

2

−












 −

rV
 by (4.9). 

Moreover, since ,|3P  it follows that 3)2(
2

modV r ≡  by Lemma 4.1.1 and therefore  

1.=1)(
3

2
=1)(

3
=

3 2

1
2

2

2

−






−



























−rV

r

r

V

V
 

Using (4.24), one gets  
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1,=
31

=
3

=
2

3

222

3 −








































 −












 −

rrrr V

U

VVV

U
J  

which is a contradiction. Thus 1,=m  i.e., 3.=n  Then the equation 23= xVV mn  

yields 22 3=3 xP + . Moreover cP 3=  for some positive integer c  since P|3 . Hence 

the Pell equation 1=3 22 cx −−−−  is obtained. It can be seen that this equation has the 

solutions ( )( )( , ) = (4, 1) / 2, (4, 1)k kx c V U− −  with 1≥≥≥≥k . Therefore 1=m  and 3=n  

is a solution. 

 

Case 2: Assume that t|3 / . It is obvious that 1>t  and so 16= ±qt  for some positive 

integer .q  Then .)2(3== mmqmtn ±  Hence  

),( 3mmn modVVV ±≡  

i.e.,  

)(3 3
2

mmm modVVxV ±≡  

by (4.4). It follows that  

3))((3 22 +±≡ mmmm VmodVVxV  

by (4.13), which implies that 

3)1(3 22 +±≡ mmodVx . 

Since P|3  and m  is odd, it is seen that mV|3  by Lemma 4.1.2. Therefore 

3),1(3 2 modx ±≡  

which is not possible. This completes the proof.   

 

Theorem 4.2.8. If P  is even, P|3 / , and 1,≥m  then there is no integer x  such that 

.3= 2xVV mn   

 

Proof: Assume that P  is even, P|3 / , and .3= 2xVV mn  Since nm VV |  and ,|3 nV  there 

exist two odd positive integers t  and z  such that mtn =  and zn 2=  by (4.21) and 

Lemma 4.1.2, respectively. Therefore rm 2=  for some odd positive integer .r  It is 

obvious that 1.>t  Then 14= ±qt  for some positive integer .q  Thus, since 

,4== mmqmtn ±  one gets  
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),( 2mmn modVVV ±≡  

by (4.4), i.e.,  

).(3 2
2

mmm modVVxV ±≡  

It is seen that 2=),( 2mm VV  by (4.19). Hence  

/2).1(3 2
2

mmodVx ±≡  

Since rrm =/44=/42  is odd, it is seen that mVV 24 |  by (4.21) and hence  

/2)1(3 4
2 modVx ±±±±≡≡≡≡ , 

which shows that 1.=
/2

3
=

4







 ±
V

J  On the other hand, since 24= 24
4 ++ PPV  and P  

is even, it is seen that 8)2(4 modV ≡  and therefore 1.=1)(=
/2

1 4

24

4











 −

−






 −
V

V
 

Moreover, using Lemma 4.1.1, it is seen that 3).2(/24 modV ≡  Thus,  

1=
3

2
=1)(

3

/2
=

/2

3 4

24
4

4

−






−















−V

V

V
 

or 1,= −J  which is a contradiction. This completes the proof.  

 

Theorem 4.2.9. If P  is even, ,|3P  P||2 , and 1,≥m  then there is no integer x  such 

that .3= 2xVV mn   

 

Proof: Assume that P  is even, ,|3P  P||2 , and .3= 2xVV mn  Since nm VV |  and 

,|3 nV  there exists an odd positive integer t  such that mtn =  by (4.21) and n  is odd 

by Lemma 4.1.2, respectively. Therefore m  is also odd. It is obvious that 1.>t  

Assume that .|3t  Then st 3=  for some odd positive integer .s  Since ,3== msmtn  

one gets  

3)(===3 2
3

2 +msmsmsnm VVVVxV  

by (4.13). Since P|3  and ms  is odd, it follows that msV|3  by Lemma 4.1.2. Thus 

.=3)/3))((/( 22 xVVV msmms +  

It can be easily seen that 1=3)/3)(,/( 2 ++++msmms VVV , which shows that  
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2=ms mV V u  and 2 23 = 3msV v+  

for some positive integers u  and .v  So 1=3=3 2
22 ++ msms VVv  by (4.11). Thus  

).1(3 2
2

msmodVv ≡  

Since ,| 22 msVV  i.e., msVP 2
2 |)2( +  by (4.21), it follows that  

2)1(3 22 ++++≡≡≡≡ modPv , 

which shows that  

1.=
2)/2(

3
=

2 








+P
J  

On the other hand, since ,|3 P  it is seen that 3).1(2)/2( 2 modP ≡+  Therefore  

.1)(=1)(
3

2)/2(
=

2)/2(

3
= 4

2

4

2
2

2

PPP

P
J −−







 +









+
 

Since P||2 , it follows that 1,= −J  which is a contradiction. Now assume that t|3 / . 

Then 16= ±qt  for some positive integer q  since 1>t . Thus mmqmtn ±±±±)2(3== , 

which leads to  

),( 3mmn modVVV ±≡  

or 

)(3 3
2

mmm modVVxV ±≡  

by (4.4). It follows that  

3))((3 22 +±≡ mmmm VmodVVxV  

by (4.13), i.e.,  

3)1(3 22 +±≡ mmodVx . 

Since P|3  and m  is odd, it is seen that mV|3  by Lemma 4.1.2. Therefore 

3),1(3 2 modx ±≡  

which is not possible. This completes the proof.  

 

The following lemma, which can be proved by induction, will be used in the sequel. 

 

Lemma 4.2.2. If P  is odd and 2,≥k  then 1).1( 42
+−≡ modVV k   

 



 52 

Theorem 4.2.10. If 26= xVV mn  and 1,≥m  then 2=m  and 6.=n   

 

Proof: Firstly, assume that P  is odd. Let P|3 / . Then, since nV|3  and ,|2 nV  it 

follows that zn 2=  for some odd integer z  by Lemma 4.1.2 and n|3  by (4.14), 

respectively. This shows that z|3  and therefore az 3=  for some odd positive integer 

.a  Thus 612=6=2= +qazn  for some positive integer .q  Hence  

8)2(6 modVVn ≡≡  

by (4.6). Clearly, x  is odd. Therefore 8).2(=66 2 modVxVV nmm ≡≡  Besides, since 

,| nm VV  there exists an odd positive integer t  such that mtn =  by (4.21). Since 

zn 2=  with odd ,z  it follows that rm 2=  for some odd positive integer .r  Assume 

that .|3 r  Then 8)2(modVm ≡  by Lemma 4.1.3 and therefore 8),4(6 modVm ≡  which 

contradicts the fact that 8).2(6 modVm ≡  Assume that r|3 / . Then, since n|3  and 

,= mtn  it is seen that ,|3t  i.e., st 3=  for some odd positive integer s . Thus 

msmtn 3== . Therefore  

22
3 6=3)(== xVVVVV mmsmsmsn −  

by (4.13). Since P|3 /  and 4),2(2= modrsms ≡  it follows that msV|3  by Lemma 

4.1.2. Thus  

.2=3)/3))((/( 22 xVVV msmms −  

It can be easily seen that 1=3)/3)(,/( 2 −−−−msmms VVV , which shows that  

                                        222 3=3and2= vVuVV msmms −                          (4.27) 

or  

                                        222 6=3and= vVuVV msmms −                            (4.28) 

for some integers u  and .v  Identity (4.27) is not possible by Theorem 4.2.2. Assume 

that (4.28) is satisfied. By Theorem 4.2.1, it follows that 1.=s  Therefore 

.6=3 22 vVm −  Using (4.11), we get 1.6== 2
42 +vVV rm  Assume that 1.>r  Then 

4)2(2=1)4(4=4=2 ±± zqrm k  for some odd integer z  with 3.≥k  Hence 

)(
242 km modVVV −≡  

by (4.4), that is,  
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).1)((6
24

2
kmodVVv +−≡  

Since 4V  and kV
2

 are odd by (4.14), it follows that  

)1)/2((3
24

2
kmodVVv ++++−−−−≡≡≡≡ , 

which implies that  

1.=
1)/23(

=
2

4













 +−

kV

V
J  

On the other hand, since 1=
1

2

−












 −

kV
 by (4.9) and 1=

3

2
=

3
2 −




















 kV
 by Lemma 

4.1.1, it is seen that  

1.=1)1)((=
3

1)(=
3 22

1
2

2

−−













−














−

k
kV

k

V

V
 

Besides, it is clear that 16)7(4 modV ≡  and therefore 1)/8( 4 +V  is odd. Thus  










+
−















+ 1)/8(

1
=

1)/8( 44

2

VV

V k
 

by Lemma 4.2.2, and so  

.
1)/8(

1)(=

1)/8(431
=

1)/23(
=

2

4

2

4

2222

4













 +−













 +








































 −












 +−

k

kkkkk

V

V

V

V

VVVV

V
J

 

Let 1)/8.(= 4 +Vy  Then,  

1,=1)(1)1)((=
1

1)1)((=

1)1)((=1)(=
1)/8(

1)(=

2

1

2

1
2

1
2

2

1

2
2

1
2

2

1

22

4

−−−−






 −−−














−−














−













 +−

−−














 −







 −















 −







 −

yy
kV

y

k

kV
y

kk

y

y

V

V

y

V

V
J

 

which is a contradiction. Therefore 1=r , which implies that 2=m  and 6.=n  Since 

2= 2
2 +PV  and 2,96= 246

6 +++ PPPV  the equation 224 6=14 xPP ++  follows 

from .6= 2xVV mn  Completing the square gives .6=32)( 222 xP −+  Then it follows 
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that )2(|3 2 ++++P  and therefore cP 3=22 +  for some positive integer c , which leads 

to the equation 1.=23 22 xc −  By Lemma 1 in [49], if BtAk +  is a solution of 

the equation 1=22 BYAX −  and ABsr +  is a solution of the equation 

1,=22 ABYX −  then the product BAkstrABtskr )()( +++  is a solution of the 

equation 1.=22 BYAX −  Thus, since 23 +  is a solution of the equation 

1=23 22 xc −  and 625+  is a solution of the equation 1,=6 22 xc −  the equation 

1=23 22 xc −  has infinitely many solutions. Therefore 2=m  and 6=n  is a solution. 

 

Let .|3 P  Then, since nV|3  and ,|2 nV  it follows that n  is odd by Lemma 4.1.2 and 

n|3  by (4.14), respectively. Therefore 312= ±qn  for some positive integer .q  

Thus, 

8)4(43 modPVVn ≡±≡≡ ±  

by (4.6), that is,  

8).4(6 2 modxVm ≡  

Also, since x  is odd, it follows that 8).4(6 modVm ≡  Thus mV  is even and therefore 

m|3  by (4.14). Moreover, since n  is odd and ,| nm VV  it is seen that m  is odd by 

(4.21). Then mVV |3  by (4.21). Besides, since P  is odd, it can be seen that 3|4 V  and 

therefore .|4 mV  This shows that ,|8 nV  which is not possible by (4.7). 

 

Finally, assume that P  is even. If n  is odd, then m  is also odd. Hence 

)( 2modPnPVn ≡  and )( 2modPmPVm ≡  by Lemma 4.1.4, which implies that  

),(6 22 modPmPxnP ≡  

or  

),(6 2 modPmxn ≡  

which is not possible since P  is even and n  is odd. If n  is even, then m  is also 

even. Hence 4)2(modVn ≡  and 4)2(modVm ≡  by Lemma 4.1.4, which shows that  

4),0(6 2 modxVm ≡  

or  

4),0(modVn ≡  
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which contradicts the fact that 4).2(modVn ≡  This completes the proof. 

 

4.3. The Equations 2= xVVV mrn , rmn VVV = , and rmn UUU =  

 

In this subsection, we assume that m  and r  are natural numbers. It is shown that 

when r  is even and 1mV ≠ , there is no integer x  such that .= 2xVVV mrn  Also when 

8)1(modQ ≡ , 1mV ≠ , 1rV ≠  and x  is even integer,  the solution of the equation 

2= xVVV rmn  is found. In addition to this, when 8)1,5(modP ≡/  and 8)3,7(modQ ≡ , 

the equation 2= xVVV rmn  is considered. Moreover, it is shown that when 1>P  and 

1,= ±Q  there is no generalized Lucas number nV  such that rmn VVV =  for 1>m  and 

1.>r  Finally, it is shown that there is no generalized Fibonacci number nU  such 

that rmn UUU =  for 1= ±Q  and .<<1 mr  

 

Throughout this subsection, it is assumed that P  and Q  are relatively prime positive 

integers. 

 

In [22], the authors showed that there is no integer x  such that 2= xLLL rmn  when m  

and r  are natural numbers with even r . Now, the same problem is solved for 

generalized Lucas numbers. 

 

Theorem 4.3.1. Let 8),5(,1 modQ ≡  1mV ≠ , and r  be odd. Then there is no integer 

x  such that 2
2= xVVV rmn .  

 

Proof: Assume that ,= 2
2 xVVV mrn  8)5(,1 modQ ≡  and r  is odd. Firstly, assume that 

P  is odd. Since nm VV |  and ,|2 nr VV  it follows that mtn =  and rsn 2=  for some odd 

integers t  and s  by (4.21). Thus n|2  and /2n  is odd. Since mtn =  and t  is odd, it 

is seen that m|2  and /2m  is odd. Then we can write cqm +12=  with { }10 6, 2,∈c  

and 0.≥q  Thus  

8)(,, 106212 modVVVVV cqm ≡≡ +  
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by (4.6). Since 8)3(2 modV ≡ , 8)2(6 modV ≡  and 8)3(10 modV ≡  by Lemma 4.1.3, it 

follows that  

8).2,3(modVm ≡  

Similarly, it is seen that 8)2,3(modVn ≡  and 8)2,3(2 modV r ≡ . Assume that 

8).3(2 modV r ≡  Then 8).(3= 22
2 modxVxVVV mmrn ≡  Moreover, 8)0,3,4(3 2 modx ≡  

and 8)2,3(modVm ≡≡≡≡ , which shows that 8).0,1,4,6(3 2 modxVm ≡  But this contradicts 

the fact that 8).2,3(modVn ≡  Now assume that 8).2(2 modV r ≡  Then 

8).(2= 22
2 modxVxVVV mmrn ≡  Since 8)0,2(2 2 modx ≡  and 8),2,3(modVm ≡  it is seen 

that 8),0,4,6(modVn ≡  which contradicts the fact that 8).2,3(modVn ≡  

 

Finally, assume that P  is even. Then since n  is even and Q  is odd, it is seen that 

4)2(modVn ≡  by Lemma 4.1.4. Similarly, 4)2(modVm ≡  and 4).2(2 modV r ≡  This 

shows that 4),0(modVn ≡  which contradicts the fact that 4).2(modVn ≡  This 

completes the proof. 

  

Theorem 4.3.2. Let 3,7( 8),Q mod≡  1mV ≠ , and r  be odd. Then there is no integer 

x  such that 2
2= xVVV rmn .  

 

Proof: Assume that ,= 2
2 xVVV mrn  8)3,7(modQ ≡ , and r  is odd. Firstly, assume 

that P  is odd. Since nm VV |  and ,|2 nr VV  it follows that mtn =  and rsn 2=  for 

some odd integers t  and s  by (4.21). Thus n|2  and /2n  is odd. Since mtn =  and t  

is odd, it is seen that m|2  and /2m  is odd. Then cqm +12=  with { }2,6,10∈c  and 

0.≥q  Thus  

8)(,, 106212 modVVVVV cqm ≡≡ +  

by (4.6). Since 8)7(2 modV ≡ , 8)2(6 modV ≡ , and 8)7(10 modV ≡  by Lemma 4.1.3, it 

follows that  

8).2,7(modVm ≡  



 57 

Similarly, it is seen that 8)2,7(modVn ≡  and 8).2,7(2 modV r ≡  Assume that 

8).7(2 modV r ≡  Then it follows that 8).(7= 22
2 modxVxVVV mmrn ≡  Moreover, 

8)0,4,7(7 2 modx ≡  and 8)2,7(modVm ≡≡≡≡ , which shows that 8).0,1,4,6(7 2 modxVm ≡  

But this contradicts the fact that 8).2,7(modVn ≡  Now assume that 8).2(2 modV r ≡  

Then 8).(2= 22
2 modxVxVVV mmrn ≡  Since 8)0,2(2 2 modx ≡  and 8),2,7(modVm ≡  it 

is seen that 8),0,4,6(modVn ≡  which contradicts the fact that 8).2,7(modVn ≡  

 

Secondly, assume that P  is even. Then since n  is even and Q  is odd, it is seen that 

4)2(modVn ≡  by Lemma 4.1.4. Similarly, it is seen that 4)2(modVm ≡  and 

4).2(2 modV r ≡  This shows that 4),0(modVn ≡  which contradicts the fact that 

4).2(modVn ≡  This completes the proof. 

  

Theorem 4.3.3. Let 1mV ≠ , 2≥k , and Q , r  be odd. Then there is no integer x  such 

that 2

2
= xVVV mrkn .  

 

Proof: Assume that 2

2
= xVVV mrkn  and r  is odd. Firstly, assume that P  is odd. Since 

nm VV |  and ,|
2 nrk VV  there exist two odd integers t  and s  such that mtn =  and 

rsn k2=  by (4.21). Thus cm k2=  for some odd positive integer .c  Then 

8),2,7(modVn ≡  8)2,7(modVm ≡  and 8)2,7(
2

modV
rk ≡  by Lemma 4.1.3. Assume 

that 8)2(
2

modV
rk ≡ . Then it follows that 

8)(2= 22

2
modxVxVVV mmrkn ≡ . 

Moreover, since 8)0,2(2 2 modx ≡  and 8),2,7(modVm ≡  it is seen that 

8)0,4,6(2 2 modxVm ≡≡≡≡ , which contradicts the fact that 8).2,7(modVn ≡  Now assume 

that 8).7(
2

modV
rk ≡  Then 8).(7= 22

2
modxVxVVV mmrkn ≡  Moreover, 

8)0,4,7(7 2 modx ≡  and 8).2,7(modVm ≡  This shows that 8),0,1,4,6(7 2 modxVm ≡  

which contradicts the fact that 8).2,7(modVn ≡  
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Secondly, assume that P  is even. Then, since n  is even and Q  is odd, it is seen that 

4)2(modVn ≡  by Lemma 4.1.4. Similarly, it is seen that 4)2(modVm ≡  and 

4).2(2 modV r ≡  This shows that 4),0(modVn ≡  which contradicts the fact that 

4).2(modVn ≡  This completes the proof.  

 

Thus, the following theorem can be stated easily. 

 

Theorem 4.3.4. Let r  be even, Q  be odd, and 1mV ≠ . Then there is no integer x  

such that .= 2xVVV rmn   

 

Proof: The proof follows from Theorem 4.3.1, Theorem 4.3.2, and Theorem 4.3.3. 

 

The lemma given below is from number theory and it is used in the proof of the 

theorem following it. 

 

Lemma 4.3.1. Let Ζ∈∈∈∈xcba ,,, , 1=),(gcd ba  and .= 2cxab  Then 2= rua  and 

2= svb  with crs =  for some positive integers u  and .v   

 

In [22], the authors showed that for 1>m  and 1,>r  there is no even integer x  such 

that .= 2xLLL rmn  Besides, if 8)3,7(modQ ≡  and x  is even, then it can be seen that 

the equation 2= xVVV rmn  has no solutions by (4.8). Now, the same problem is 

considered for 1≥P  and 8).1(modQ ≡  

 

Theorem 4.3.5. Let x  be an even integer and 8).1(modQ ≡  If 2=n m rV V V x  with 

1mV ≠ , 1rV ≠ , then 1,== rm  3,=n  and 3.=P   

 

Proof: Assume that ,= 2xVVV rmn  8),1(modQ ≡  and x  is even. If one of m  and r  is 

even, the proof follows from Theorem 4.3.4. Assume that m  and r  are odd. Firstly, 

assume that P  is odd. Since x  is even, it follows that nV|4  and therefore n|3  by 

(4.14). If m|3  or ,|3 r  then mV  or rV  is even by (4.14). Thus we get nV|8 , which is 
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impossible by (4.7). Therefore we have m|3/  and r|3 / . Since nm VV |  and ,| nr VV  

there exist two odd positive integers t  and s  such that mtn =  and rsn =  by (4.21). 

Then n  is odd. As a result, ,= mtn  ,= rsn  ,|3 n  m|3/ , and r|3 / . Therefore at 3=  

and bs 3=  for some odd positive integers a  and b , which shows that 

,3=3= rbman  i.e., .= rbma  Thus, since n  is odd, it follows that  

)3(=== 2
3

2 ma
mamamanrm QVVVVxVV +  

by (4.13), which shows that  

                                
.=)3( 22 xVQV

V

V
r

ma
ma

m

ma +                                           (4.29) 

Then, using (4.16), it can be seen that 1=3, 2









+ ma

ma
m

ma QV
V

V
 or 3. In both cases, by 

Lemma 4.3.1, we have  

                                   2
2

22
1 =3and= yuQVwu

V

V ma
ma

m

ma +
                                     

(4.30) 

or  

                                   2
2

2
2
1 =

3

3
and=

3
yu

QV
wu

V

V ma
ma

m

ma +

                                    
(4.31) 

with rVwy =  for some positive integers ,,, 1uyw  and .2u  Using the fact that rbma =  

in (4.30) and (4.31), one gets 2
2

2 =3 yuQV rb
rb ++++  and ,3=3 2

2
2 yuQV rb

rb +  respectively. 

Thus it follows that .3| 2 rb
rb QVy +  Since rVy |  and ,| rbr VV  it is seen that .3| rbQy  

Since ,| rVy  one obtains 3|y  by (4.16), which shows that 1=y  or 3.=y  As a 

result, it follows that 22 =3 vQV rb
rb +  or 22 3=3 vQV rb

rb +  for some integer v . Assume 

that .=3 22 vQV rb
rb +  Using (4.11), one gets .= 2

2
rb

rb QvV −  Assume that 1.>rb  

Then 2)2(2=1)2(4=2 ±± zqrb k  for some odd positive integer z  with 2.≥k  

Hence,  

)(
22

1
2 k

rb
rb modVVQV −−≡  

or  

)(
22

1
2 k

rb
rb modVVQV −

+−≡  

by (2.17). In both cases, it is seen that  
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)(
22

12
k

rbrb modVVQQv −−≡−  

by (1.1), that is, 

)(mod)(
23

1
2

12
kVUQQVQv rbrb −− −≡−−≡ , 

which shows that 1.==
2

3
1













 − −

k

rb

V

UQ
J  On the other hand, 1=

2

3















kV

U
 by (4.24). 

Moreover, 8)7(
2

modV k ≡  by Lemma 4.1.3 and therefore 1.=
1

2

−












 −

kV
 Also since 

1−rb  is even, it is seen that 1.=
2

1













 −

k

rb

V

Q
 Thus  

1,=
1

==
2

3

2

1

22

3
1

−








































 −












 − −−

kk

rb

kk

rb

V

U

V

Q

VV

UQ
J  

which contradicts the fact that 1.=J  Assume that .3=3 22 vQV rb
rb +  Then .|3 rbV  

This shows that P|3  by Lemma 4.1.2 since rb  is odd. Using (4.11), one obtains 

.3= 2
2

rb
rb QvV −  Assume that 1.>rb  Then it is clear that 

2)2(2=1)2(4=2 ±± zqrb k  for some odd positive integer z  with 2.≥k  Hence, 

)(
22

1
2 k

rb
rb modVVQV −−≡  

or 

)(
22

1
2 k

rb
rb modVVQV −

+−≡  

by (2.17). In both cases, it is seen that  

)(3
22

12
k

rbrb modVVQQv −−≡−  

by (1.1). That is,  

)()(3
23

1
2

12
k

rbrb modVUQQVQv −−−−−−−− −−−−≡≡≡≡−−−−−−−−≡≡≡≡ , 

which shows that 1.=
3

=
2

3
1













 − −

k

rb

V

UQ
J  Besides, it is obvious that 1=

2

3















kV

U
 by 

(4.24) and 1=
1

2

−












 −

kV
 by (4.9). Since rb  is odd, one gets 1.=

2

1













 −

k

rb

V

Q
 Also since 
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P|3  and 2,≥k  it can be easily seen that 3)(2 2

2

2
modQV

k

k ≡  by Lemma 4.1.4. 

Therefore  

1.=
33

2
=

3

2
=1)(

3
=

3 2

2

2

2

2
12

2

13

2

2 






















−
















−−


























 














−







 −
kkkV

k

k

QQV

V
 

Consequently,  

1=
31

=
3

=
2

3

2

1

222

3
1

−






















































 −












 − −−

kk

rb

kkk

rb

V

U

V

Q

VVV

UQ
J , 

which contradicts the fact that 1.=J  Therefore 1,=rb  i.e., 1.== br  This shows 

that 1== rm  and 3.=n  Hence, ,)(== 22
113 PxxVVV  i.e., 222 =)3( xPQPP ++++ , 

which implies that )3(| 2 QPP ++++  and therefore .3| QP  Since 1,=),( QP  it follows 

that 3.|P  This shows that 3=P  since 1= 1 ≠≠≠≠==== mVVP  by the assumption. 

 

Secondly, assume that P  is even. Since x  is even, it is seen that nV|4  and therefore 

n  is odd by Lemma 4.1.4. This shows that m  and r  are also odd. On the other hand 

)( 22

1

modPnPQV
n

n

−

≡ , )( 22

1

modPmPQV
m

m

−

≡ , and )( 22

1

modPrPQV
r

r

−

≡  by Lemma 

4.1.4, which imply that  

21
2 2 222 ( )

m rn

nPQ mrP Q x modP
+ − −

 
 ≡ , 

or  

),(22

2

2

1

modPxmrPQnQ
rmn








 −+−

≡  

which is impossible since n  and Q  are odd integers. This completes the proof. 

  

Theorem 4.3.6. Let 8)1,5(modP ≡/  and 8)3,7(modQ ≡ . Then there is no integer x  

such that .= 2xVVV rmn   

 

Proof: Assume that 2= xVVV rmn  and 8).1,5(modP ≡/  When m  or r  is even, the 

proof follows from Theorem 4.3.4. Therefore, assume that m  and r  are odd. Then n  

is also odd. 
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Firstly, assume that P  is odd. If m|3  and ,|3 r  then mV  and rV  are even by (4.14). 

Thus it follows that .|4 nV  This is impossible by (4.8). Therefore m|3 /  or r|3 / . 

Since nV|4 / , x  is an odd integer. Assume that m|3 /  and r|3 / . Thus n|3 / . Since 

mn, , and r  are odd, it is seen that 8)(,5 modPPVn ≡ , 8)(,5 modPPVm ≡ , and 

8)(,5 modPPVr ≡  by (4.6). Thus one gets 8).1,5(= 2 modxVVV rmn ≡  Then 

8)1,5(modP ≡  or 8),1,5(5 modP ≡  which is impossible since 8).1,5(modP ≡/  

Assume that m|3  and r|3 / . Then .|3 n  If 8),7(modQ ≡  then it follows that 

8)(6 modPVn ≡ , 8),(6 modPVm ≡  8)(modPVr ≡  by (4.6) and if 8),3(modQ ≡  then 

8),(2 8),(2 modPVmodPV mn ≡≡  8)(,5 modPPVr ≡  by (4.6). In both cases, from the 

equation 2= xVVV rmn , we get that 4),1(modP ≡  which is impossible since 

8).1,5(modP ≡/  

 

Secondly, assume that P  is even. Since mn, , and r  are odd, it follows that 

)( ),( 22

1
22

1

modPmPQVmodPnPQV
m

m

n

n

−−

≡≡ , and )( 22

1

modPrPQV
r

r

−

≡  by Lemma 

4.1.4. This shows that  

),( 222

2
22

1

modPxQmrPnPQ
rmn








 −+−

≡  

or 

),(22

2

2

1

modPxmrPQnQ
rmn








 −+−

≡  

which is impossible since n  and Q  are odd. This completes the proof.  

 

The following theorem is proved by Keskin and Demirtürk in [22] when 

(1,1).=),( QP  

 

Theorem 4.3.7. Let 1>P  and 1=Q . Then there is no generalized Lucas number nV  

such that .= rmn VVV   

 

Proof: Assume that rmn VVV = , 1,>P  and 1=Q . If one of m  and r  is even, then 

the proof follows from Theorem 4.3.4. Therefore, assume that m  and r  are odd. 
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Firstly, assume that P  is odd. Since nm VV |  and ,| nr VV  there exist two odd integers 

t  and s  such that mtn =  and rsn =  by (4.21). It is obvious that 1>t  and 1.>s  

Hence 14= ±qt  for some 1≥≥≥≥q  and  so, .)2(2=4== mmqmmqmtn ±±  Then it 

follows that  

                                              )(= 2mmnrm modVVVVV ±≡                                       (4.32) 

by (4.4). Similarly, it is seen that  

                                             ).( 2rrrm modVVVV ±≡                                                (4.33) 

If m|3  and ,|3 r  then, since m  and r  are odd, it follows that mVV |3  and rVV |3  by 

(4.21). Since P  is odd, it can be easily seen that 3|4 V  or nV|8 , which is impossible 

by (4.7). Therefore m|3 /  or r|3 / . Assume that m|3 /  and r|3 / . Then 

1=),(=),( 22 rrmm VVVV  by (4.14) and (4.19). Using (4.32) and (4.33), one gets 

                                                 )1( 2mr modVV ±≡                                                  (4.34) 

and  

                                                )1( 2rm modVV ±≡ ,                                                 (4.35) 

respectively. Thus 

112 ++++≤≤≤≤±±±±≤≤≤≤ rrm VVV  and 112 ++++≤≤≤≤±±±±≤≤≤≤ mmr VVV  

by (4.34) and (4.35), respectively. As a result it is obtained that  

                                               2.22 ++≤+ rmrm VVVV                                            (4.36) 

Using (4.11) in (4.36), one gets ,222
rmrm VVVV +≤++  which is impossible. Assume 

that m|3  and r|3 / . Then 2=),( 2mm VV  and 1=),( 2rr VV  by (4.14) and (4.19). Hence 

one has  

                                                /2),1( 2mr modVV ±≡                                                (4.37) 

and 

                                                 )1( 2rm modVV ±≡                                                  (4.38) 

by (4.32) and (4.33), respectively. Moreover, by (4.37) and (4.38), it can be seen that  

                                                    222 +≤ rm VV                                                      (4.39) 

and  

                                                     1.2 +≤ mr VV                                                       (4.40) 

Then,  
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                                                 3222 ++≤+ rmrm VVVV                                         (4.41) 

by (4.39) and (4.40). Using (4.11) in (4.41), one obtains 1222 −−−−≤≤≤≤−−−−++++−−−− rrmm VVVV , 

which shows that 12)(1)( −−−−≤≤≤≤−−−−++++−−−− rrmm VVVV . But this is not possible since 2≥mV  

and 2.≥rV  

 

Secondly, assume that P  is even. Since mn, , and r  are odd, it follows that 

),( 2modPnPVn ≡  )( 2modPmPVm ≡ , and )( 2modPrPVr ≡  by Lemma 4.1.4. This 

shows that )( 22 modPmrPnP ≡≡≡≡  or ),(modPmrPn ≡  which is impossible since n  is 

odd.  This completes the proof.  

 

Now, we consider the above theorem for 1= −Q .  

 

Theorem 4.3.8. Let 1>P  and 1= −Q . Then there is no generalized Lucas number 

nV  such that .= rmn VVV   

 

Proof: Assume that rmn VVV =  and 1= −Q . If one of m  and r  is even, then the 

proof follows from Theorem 4.3.4. Therefore, assume that m  and r  are odd. 

 

Firstly, assume that P  is odd. Then, since nm VV |  and ,| nr VV  there exist two odd 

integers t  and s  such that mtn =  and rsn =  by (4.21). It is obvious that 1>t  and 

1.>s  Hence 14= ±qt  for some 1≥≥≥≥q , and hence .)2(2=4== mmqmmqmtn ±±  

Then it follows that  

                                           )(= 2mmnrm modVVVVV ±≡                                          (4.42) 

by (1.1) and (2.17). Similarly, it is seen that  

                                               ).( 2rrrm modVVVV ±≡                                               (4.43) 

If m|3  and ,|3 r  then mV  and rV  are even by (4.14). This shows that ,|4 nV  which is 

impossible by (4.8). Therefore m|3/  or r|3 / . Assume that m|3/  and r|3 / . Then 

1=),(=),( 22 rrmm VVVV  by (4.14) and (4.19). Hence,  

                                                   )1( 2mr modVV ±≡                                                (4.44) 
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by (4.42) and  

                                                   )1( 2rm modVV ±≡                                                (4.45) 

by (4.43). Thus one obtains  

112 +≤±≤ rrm VVV  

and  

112 +≤±≤ mmr VVV  

by (4.44) and (4.45), respectively. Then it follows that  

                                                  2.22 ++≤+ rmrm VVVV                                         (4.46) 

Using (4.11) in (4.46), one gets 6,1)(1)( ≤−+− rrmm VVVV  which is impossible since 

3≥≥ PVm  and 3.≥≥ PVr  Assume that m|3  and r|3 / . Then 2=),( 2mm VV  and 

1=),( 2rr VV  by (4.14) and (4.19). Hence  

                                                    /2),1( 2mr modVV ±≡                                            (4.47) 

and  

                                                    )1( 2rm modVV ±≡                                               (4.48) 

by (4.42) and (4.43), respectively. It can be seen that  

                                                        222 +≤ rm VV                                                  (4.49) 

and  

                                                        12 +≤ mr VV                                                     (4.50) 

by (4.47) and (4.48). Thus 

                                                  3222 ++≤+ rmrm VVVV                                        (4.51) 

by (4.49) and (4.50). Using (4.11) in (4.51), one obtains 7.222 ≤−+− rrmm VVVV  This 

shows that 7,2)(1)( ≤−+− rrmm VVVV  which is impossible since 3≥≥ PVm  and 

3.≥≥ PVr  

 

Secondly, assume that P  is even. Since  ,,mn and r  are odd, ),( 2modPnPVn ±≡  

)( 2modPmPVm ±≡ , and )( 2modPrPVr ±≡  by Lemma 4.1.4. This shows that 

).( 22 modPmrPnP ±≡  This implies that ),(modPmrPn ±≡  which is impossible since 

n  is odd. This completes the proof.  

 



 66 

The following lemma is given without proof since it is easy. 

 

Lemma 4.3.2. If 1= ±Q  and ,<<0 nr  then rn UV 2> .  

 

In [13], Farrokhi showed that the equation rmn FFF =  has no solutions for 2>m  and 

2.>r  Now a similar result for generalized Fibonacci numbers when 1>P  and 

1= ±±±±Q  is given. 

 

Theorem 4.3.9. Let 1,>P  1= ±Q  and 1.>> rm  Then there is no generalized 

Fibonacci number nU  such that .= rmn UUU   

 

Proof: Assume that ,= rmn UUU  1= ±Q  and 1.>> rm  Then since nm UU |  and 

,| nr UU  there exist two positive integers t  and s  such that mtn =  and rsn =  by 

(4.20). 

 

Firstly, assume that t  is even, i.e., at 2=  for some positive integer .a  Then 

.2== mamtn  Thus it follows that mamamanrm VUUUUU === 2  by (4.10). This 

shows that rmamma UVUU =)/(  by (4.20). Therefore .| rma UV  By (4.22), one obtains 

ncmacr =2=  for some natural number .c  This shows that .|rn  Since ,|nr  it 

follows that .= rn  Therefore 1,=mU  which is impossible since 1>m  and 1.>P  

 

Secondly, assume that t  is odd. It is obvious that 1.>t  Then one can write 14= ±qt  

with 1.≥q  Therefore .)2(2== mmqmtn ±  Thus it follows that  

),(= 2)2(2 mmmmqn modUUUU ±± ≡  

by (2.18). Using (1.1), one gets  

                                                  )( 2mmrm modUUUU ±≡ .                                      (4.52) 

Since mmm VUU =2  by (4.10), it follows that  

).1( mr modVU ±≡  
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Hence 1.1 +≤±≤ rrm UUV  Moreover, since 1,>> rm  it follows that rm UV 2>  by 

Lemma 4.3.2. Thus it is seen that ,2>1 rmr UVU ≥+  which is impossible. This 

completes the proof.  

 

It is well known that the greatest common divisor of mU  and nU  is again a 

generalized Fibonacci number by (4.17). But, the least common multiple of mU  and 

nU  may not be a generalized Fibonacci number. This follows from the following 

theorem. Since the proof of  the theorem is similar to that of Theorem 4.3.9, we omit 

it. 

 

Theorem 4.3.10. Let 1,= ±Q  ,<<1 nm  and 1.>P  Then [ ],m nU U , the least 

common multiple of mU  and ,nU  is a generalized Fibonacci number if and only if 

.| nm UU  



 

 
 
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 
 

 

The second chapter of this thesis is accepted for publication in “Hacettepe Journal of 

Mathematics and Statistics” [47]. The third chapter is published in “Journal of 

Integer Sequences” [23].  

 

Moreover, in this thesis, firstly, we focused on the equations 2= xwFF mn  and 

2= xwLL mn  with { }6,3,2,1∈w . Then, we have considered corresponding equations 

for generalized Fibonacci and Lucas numbers, in particular for some even integer P . 

But, finding solutions of the equation 2= wxVn , { }6,3,2,1∈w , is still an open 

problem when P  is even. If the solutions of the equation 2= wxVn  were known 

when P  is even, then the equation 2= xwUU mn  could be solved when P  is even. 

Apart from these, we solved the equation 2= kxVn  when P  is odd and |k P . 

Similarly, the solutions of the equation 2= kxU n  can be investigated when |k P .  
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