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SOME IDENTITIES AND DIOPHANTINE EQUATIONS
INCLUDING GENERALIZED FIBONACCI AND LUCAS
NUMBERS

SUMMARY

Key Words: Fibonacci and Lucas Numbers, Generaligdgbnacci and Lucas
Numbers, Congruences, Diophantine Equations.

In the first chapter, firstly, Fibonacci and Lucasmbers are mentioned briefly. Also
the definitions of the generalized Fibonacci anddsisequences are given. Then, the
review of the literature concerning generalizedoRdicci and Lucas sequences are
given.

In the second chapter, some identities and summat@mulas containing
generalized Fibonacci and Lucas numbers are olstaiSeme of them are well
known while the remaining ones new. Using somtnes$e identities and summation
formulas, it is given some congruences concerngmerplized Fibonacci and Lucas
numbers such as

V2mn+r (_(_Q)m)nvr (rmdvm)’ U2m1+r

-(-Q)™"U, (moaV,,),
and
Vs (-Q)™ V. (modU ), U,

2mn+r

(-Q)™U, (modu ).

Fibonacci and Lucas numbers of the forox*® are determined after some
fundamental theorems and identities concerning ridboi and Lucas numbers are
given in the third chapter.

In the fourth chapter, generalized Fibonacci andasunumbers of the forrox® are
determined under some assumptions using congruecmeserning generalized
Fibonacci and Lucas numbers given in the seconpteha

Vi



GENELLE STiRiLM iS FIBONACCi VE LUCAS SAYILARINI
ICEREN BAZI ©ZDE SLIiKLER VE D iOFANT DENKLEMLER i

OZET

Anahtar Kelimeler: Fibonacci ve Lucas Sayilari, €etirilmi s Fibonacci ve Lucas
Sayilari, Kongruanslar, Diofant Denklemleri.

Ilk bélumde, ilk olarak, Fibonacci ve Lucas sayrdan kisaca bahsedilgtir.
Ayrica, genellgtirilmis Fibonacci ve Lucas dizilerinin tanimlari verikti. Sonra
genellatirilmi s Fibonacci ve Lucas dizileriyle ilgili literattir 84 verilmistir.

Ikinci bélimde, genelkgiriimi s Fibonacci ve Lucas sayilarini iceren bazi §likler
ve toplam formdilleri elde edilngtir. Bunlarin bazilan yenidir ve bazilari da iyi
bilinir. Bu 6zdsliklerin ve toplam formullerinin bazilari kullanrak,
Vormer = (=(-Q)M)"V, (modV,.), U, = (=(-Q)")"U, (modV,,)
ve
V2m1+r = (_Q)mnvr (rmdUm)’ U2m1+r = (_Q)anr (rmdUm)

gibi genellgtiriimis Fibonacci ve Lucas sayilarini iceren bazi kongslaan
verilmistir.

Ucuincti bolimde, Fibonacci ve Lucas sayilarini itebazi temel teoremler ve

ozdslikler verildikten sonracx® formunda olan Fibonacci ve Lucas sayilari tespit
edilmistir.

Dordiinct boélimde ise bazartlar altinda cx® formunda olan genelérilmis
Fibonacci ve Lucas sayilari, ikinci bolumdeki géegiriimis Fibonacci ve Lucas
sayllarini iceren kongruanslar kullanilarak tespitmistir.
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CHAPTER 1. INTRODUCTION

The Italian mathematician Leonardo Fibonacci isstiered as “the most talented
western mathematician of the Middle Ages”. Fibomacmathematical background
began during his many visits to North Africa, whdre was introduced to early
works of algebra, arihtmetic and geometry. He &lawvelled to countries located in
the Mediterranean region and studied the mathealaystems that were practicing.
His travels led him to the realization that Eurapas lacking on the mathematical

scene.

After widespread travel and extensive study of cotatonal systems, Fibonacci
wrote theLiber Abaci in 1202, in which he explained the Hindu-Arabiemarals and

how they were used in computation.

Although he wrote on a variety of mathematical ¢gpiFibonacci is remembered
particularly for the sequence of numbers

112,3,58,13,21,34,55.,...,
which is known today as Fibonacci sequence. Theais of Fibonacci sequence
are called Fibonacci numbers anth Fibonacci number is representedBy. These
numbers satisfy the relation

Foa =F +F

for n21 with F, =0, F, =1. Fibonacci sequence is related to closely manybsim
sequences such as Lucas sequence. Lucas sequence,

2,1,3,4,7,11,18,29,47,76,
was introduced by Francois Edouard Anatole LucaBremch mathematician. The
elements of Lucas sequence are called Lucas numipghs Lucas number is

represented by, and these numbers satisfy the relation

Ln+1 = Ln + Ln-l



for n21 with L, =2, L, =1. In fact, this two sequences are related to edutr by

hundreds of identities.

Many scientist, especially mathematicians, deah\wibonacci and Lucas sequences.
Because Fibonacci and Lucas numbers are seen ig araas such as in nature,
some of the historic buildings, some music instrateeand physics. For example, in
nature, pinecones and sunflowers display Fibonacechbers in a unique and
remarkable way. The seeds of sunflowers occur iralsp one set of spirals going
clockwise and one set going counterclockwise. Thstncommon number of this
spirals are 34 in one direction ab8 in the other. Consecutive Fibonacci numbers
also appear as the number of spirals formed bythés of pinecones. Moreover,
the number of petals in many flowers such asftiriium, bluet, wild rose, hepetica,
blood root, and cosmos, is often a Fibonacci numbemusic, an octave is an
interval between two pitches, each of which is egpnted by the same musical note.
On the piano’s keyboard, an octave consistboblack keys and8 white keys,
totaling 13 keys. In addition, the black keys aradid into a group of two and a
group of three keys. Besides, there are a closdiorthip between Fibonacci (or

Lucas) sequence and golden ratio. It is well kndnat asn gets larger and larger,

the ratioF,,, / F, (or L,,,/L,) approaches the golden ra('[b+ \/3) /2.

On the other hand, Fibonacci and Lucas numbers tmearey interesting properties.
In many studies, it is given the summation formulasvisibility properties,
congruences and also many identities concerningesegs of these numbers. Some
congruences concerning Fibonacci and Lucas nunabbergiven in the following:

Forer =(-1)" F. (modF,,),

2mn+r

Loner = (=)™ L, (modF, ),

2mn+r

L

(=)™ L, (modL,),

2mn+r

and

Fonner = (1) F, (modL,,)

2mn+r



for all n,mONDO{0} and r OZ[22]. Moreover, some studies on the divisibility
properties ofF, and L, have been made. For example, it was shown thiat]fi
thenF_ |F,. Then, in 1964, L. Carlitz established the coseef this case, that is, if
F.|F,, then m|n. Moreover, in [5], L. Carlitz showed the followgntwo
divisibility properties:

a) L, |F, ifand only if2m|n, wherem= 2.

b) L, |L, ifand only ifn=(2k +1)m, wherem> 2andk = Q

These divisibility properties were also investigate [15], [16], and [48]. Also, the
proofs of these divisibility properties were dong22] using the congruences given
above.
Besides, while some summation formulas containigriacci and Lucas numbers
11
1 o}

was studied by Charles H. King in 1960 for his raashesis [25], and some other

were found, the Fibonacci matrix

matrices were used. Using these matrices, manyiti@snconcerning Fibonacci and

11
Lucas numbers are obtained. In fact,Af=[1 0}, then it can be seen that

F, F
A" =[ Mo ] Thus, from the matrix equalith™" = ATA", it is obtained the

Fn I:n-l
identities
Frne = FraFoa ¥ Ry
Fon = FoF T FLFops
and
Fong = F.F +F _F_.

Then, using these identities, it is obtained trenidies
F..L, tF.L.. =L

m+1

FL+FL =2F

m+n?

m+n?

and



L L +5F F =2, .

11 1/2 5/2
Other than the matri{1 O} in [21], the authors used the mat&:{ }

1/2 1/2

L /2 5F /2

and they showed th&®" :{F 12 L /2] Using this property and the fact that

S? = S+ |, the authors obtained some identities concerniibgpriacci and Lucas

numbers.

Moreover, many mathematicians are interested ierdehing the Fibonacci and
Lucas numbers which are a perfect square or twigeeréect square. Using the
divisibility properties of F, and L, and congruences given above, Fibonacci and
Lucas numbers which are a perfect square or twigerect square are determined.
Historically, we will summarize studies in this gt in the next. Besides,

determining Fibonacci and Lucas numbers of thenfaf and 2x* is facilitated in
the solution of many Diophantine equations. Fomaxe, it is well known that all

positive integer solutions of the equations
x> =5y® = ¥4
and
X =xy-y*=71

are given by(x,y)=(L,,F,) and (x,y) = (F..;,F,) with n>1, respectively. Thus, it
can be easily found all positive integer solutiohthe equations

x* =5y? =34, x* -5y* =74, 4x* - 5y® =F4,

x'=x’y-y*=71, xX*-xy’-y* =71,

since Fibonacci and Lucas numbers of the formand 2x* are known. For more

information about Fibonacci and Lucas numbers,aameconsult [26] and [48].

The studies mentioned above have been made forajeee Fibonacci and Lucas

sequences, too.

In [17], Horadam defined a sequence as follows:
W, =a,W, =b andW,,, =W, ,(a,b,P,Q)=PW, —-QW__,

n+l n



for n=1, wherea,b,P,QOZ . Particular cases of the sequef\¢¢) are sequences
(F.). (L), (U,), and(V,) given by
W,(0,1,P-Q)=U, P Q),
W, (2,P,P,-Q)=V, (P .Q),
W,(0,1,1-1)=F,,
and
W.(2,1,1- )= L,
respectively. Thus, the sequen((EJn) called generalized Fibonacci sequence
satisfies the recurrence relatidn, ,, =U ,,(P,Q)=PU_ +QU _ for n=1 with
U, =0, U, =1 and the sequencg/,) called generalized Lucas sequence satisfies
the recurrence relationv,,, =V, ,,(P,Q) =PV, +QV,_, for n>1 with V, =2,
V, = P. Of course, the sequenc@d,) and (V,) are generalizations of Fibonacci
and Lucas sequences and the sequdli¢g is also a different generalization of

Fibonacci and Lucas sequences. But Horadam isheofitst author, who defined

generalized Fibonacci and Lucas sequences. Thesees(U, ) and (V,), firstly,

were introduced by Lucas in [28]. For more inforimatabout generalized Fibonacci

and Lucas sequences, one can consult [20], [28], [37], and [41].

U, andV, are callednth generalized Fibonacci number anth generalized Lucas

number, respectively. Generalized Fibonacci andakuaumbers for negative

subscripts are given by

— andV_ =-—1" (1.2)

respectively.

Now assume thaP? +4Q >.0Then it is well known that

U =2 "B andv =a"+ ", (1.2)
a-p




where a=(P+1/P2+4Q)/2 and ﬁ:(P—«/P2+4Q)/2 are the roots of the

characteristic equatiorx’ -=Px—-Q =0Clearly a+8=P, a-3= m
and af = -Q. The formulas in (1.2) are known as Binet’s forasulMoreover, it is
well known the relations
V,=U_,,+QU _, =PU_ +2QU (1.3)
and
(P*+4QU, =V, +QV (1.4)
for everynJZ between the sequences andV, and these relations can be easily

proved using Binet’'s formulas.

Besides, generalized Fibonacci and Lucas numbers tiee following divisibility
properties:

c)Ifu, #£1,thenU  |U, ifandonlyifm|n.

d) If V, #1, thenV_ [U, if and only ifm|n and- is even.
m

e) If V, #1, thenV,_ |V, if and only ifm|n and is odd.
m

These divisibility properties have been expresadd5], [39], [40], [41], and [42].

On the other hand, generalized Fibonacci and Lacesbers are the solutions of
some Diophantine equations. For example, all pasiinteger solutions of the

equations x*—-(P*+4)y’=4 and x*-(P*+4)y>’=-4 are given by
xy)=V,,(P.1)U,, (P,1)) with n=21 and (X, y)=(V,,,(P.HU,_,(P,1)) with
n>1, respectively. And all positive integer solutionsf the equation
x* —(P? -4)y* =4 are given by(x,y) = (V,(P,-1)U, (P,- 1)) with n>1. Also all
positive integer solutions of the equatiors—Pxy—-y*=1 and x> -Pxy-y*=-1
are given by (xy)=U,,.,(P,)U, P,1) with n=1 and
(xy)=U,,(P.)U,_,(P,1)) with n=1, respectively. Moreover, all positive integer
solutions  of the  equation x°-Pxy+y?=1 are  given by

xy)=U,,(P,-1)U,(P,-1)) with n=1. The solutions of these equations were



given in [18], [24], [30], and [51]. Besides, albgitive integer solutions of the

equations
X' —(P?+4)y? =54, x* - (P*+4)y* =74,
x* = (P?=4)y* =4, x* = (P* -4)y* =4,
x' =Px’y-y? =731, x* =Pxy’ - y* =71,
and

X2 _ ny2 + y4 — 1
are easily found using generalized Fibonacci anchkunumbers, which are perfect

square. Solutions of the above equations were figaged in [9], [10], and [12].

Now, we give a summary of the literature concernggmeralized Fibonacci and

Lucas numbers of the formx?.

As it is mentioned above, many mathematicians aterasted in determining the
Fibonacci and Lucas numbers, which are perfect requahe problem of
characterizing the square Fibonacci numbers was ifitroduced in the book by
Ogilvy [36]. In 1963, both, Moser and Carlitz [324nd Rollet [46] proposed this
problem. In 1964, the square conjecture was prioye@ohn [6] and independently
by Wyler [50]. Later the problem of characterizitige square Lucas numbers was
solved by Cohn [8] and by Alfred [1]. Moreover, eehining the Fibonacci and

Lucas numbers, which are twice a perfect square blean the subject of curiosity,

too. In 1965, Cohn solved the Diophantine equatiBns 2x* and L, =2x” in [8].

Congruences were widely used in the solution adehmoblems.

Besides, there has been much interest in wherethestof generalized Fibonacci and
Lucas sequences are perfect squaré& dimes a square. Now we summarize here
results on this problem. Firstly, in [27], Ljunggrehowed that fom>2, P, is a
perfect square precisely f®? =13* and P, =2x* precisely forP, =2. In [9, 10],
Cohn solved the Diophantine equatidiis = x*, 2x* andV, = x*, 2x* with odd P

and Q =* 1. Moreover, in [39], Ribenboim and McDaniel detersdnall indices

such that for all odd relatively prime integelsandQ, U, 2U_,V, or 2V, is a



square. In [31], Mignotte and Pethdé showed thaPi# 3 and Q=-1, then the
equationU, = x* has the solutiongP,n)= (338,4)r (3,6) for n> 3, and that if
P>4 and Q=-1, then the equatioty, =wx?, w{2,3,§, has no solutions for
n=>4. In [34], Nakamula and Pethd have given the saohstiof the equations
U, =wx? for Q =1 with wi{1,2,3,§. In [40], Ribenboim and McDaniel showed
that if P is even,Q=3(mod 4) andU_ =x* ,thenn is a square or twice an odd
square, and all prime factors ofdivide P? +4Q. Also, in [42], they determined alll
indices such that for all odd relatively prime imges P andQ, U, = kx* under the

following assumptions: For all integer> , k is such that, for each odd divisbr

V... .
of k, the Jacobi symbtﬁ h2 j is defined and equals to 1. Moreover, they solved

the equationv, =3x* for P=1,3(mod8), Q=3(mod4), (P,Q)=1 and solved the
equationU, =3x* for all odd relatively prime integer® and Q. In [19], Kagawa
and Terai showed that iP =2s with evens and Q =1,thenU_,2U_,V, or

2V = x? implies n< 3under some assumptions.

To solve the equations mentioned above, divisibiitoperties, congruences, and

Jacobi symbol were widely used by Cohn, RibenbaichcDaniel.

In the second chapter of this thesis, some idestiand summation formulas

containing generalized Fibonacci and Lucas numas¥sobtained. In finding these

P
identities and summation formulas, generalized Raooi matrixL (g} and also

P/2 (P*+4Q)/

the matrix
[1/ 2 P/2

2 . . "
} are used. Using some of these identities and

summation formulas, some congruences concerningrgkezed Fibonacci and Lucas

numbers such as

V2mn+r (_(_Q)m)nvr (rmdvm)' U2rm+r

(-(-Q)M"U, (modv,,),

and



V2n'ﬂ+f (_Q)rmvf (rmdUm)’ UZn'n+r = (_Q)rmUr (mOdUm) ’

P/2 (P°+4Q)/

P
are given. The matrices Q and
1 0 1/2 P/2

2 . .
} satisfy the characteristic

equation x> —Px-Q =0 All the 2x2 matrices X satisfying the relation
X?=PX +QIl are also characterized in the second chapteherihird chapter, the
Diophantine equations., =2L_x*, F =2F x*, F, =3F x*, L, =6L_x°, and

F. =6F x> are solved. Finally, in the fourth chapter, gelieed Fibonacci and

Lucas numbers of the forrx® are determined under some assumptions. The Jacobi
symbol, the above congruences and divisibility prtips are widely used in the

solutions of the problems under consideration.



CHAPTER 2. SOME NEW IDENTITIES CONCERNING
GENERALIZED FIBONACCI AND LUCAS
NUMBERS

In this chapter, some identities containing gemegdl Fibonacci and Lucas numbers
are obtained. Some of them are new and some ar&weein. Using these identities,

some congruences concerning generalized Fibonaddiacas numbers are given.

Many identities concerning generalized Fibonacd haucas numbers can be proved
using Binet's formulas, induction, and matrix reggetations. In the literature, for

example in [14] and [20], the matrices

[0 1] P Q]
and Q
Q P 11 0
are used in order to produce identities. Since
P Q] [0 1]
Q and
11 0] Q P

are similar matrices, they give the same identities

In this chapter, we also characterize all %2 matricesX satisfying the relation

X? =PX +Ql. Then some identities are obtained using this gnyp In fact, the

ML

are special cases of tl#x 2 matricesX satisfyingX?=PX +QI .

similar matrices

Theorem 2.1. If X is a square matrix with X*>=PX+Ql, then

X"=U X+QU, | foreverynOZ.
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Proof: If n=0, then the proof is obvious. It can be shown byuaiohn that
X"=U X+QU, I foreverynON. We now show thaK ™ =U_X +QU_ | for
everynON. LetY =Pl =X =-QX™. Then

Y? = (Pl =X)? = P? =2PX + X?
= P2l =2PX +PX +Ql = P(PI = X) +QI = PY +Ql.
ThusY"=U_Y +QU I for everynON, which shows that
(—Q)"X™M=U,Y+QU Il =U (Pl -=X)+QU I
=(PU, +QU, )l -U X =-U X +U .

-U X Ul . .
4~ This implies thatX ™ =U_X +QU_,,| by
(-Q)" (-Q) l

(1.1). This completes the proof.

Then we getX™ =

Theorem 2.2.Let X be an arbitrary2x 2 matrix. ThenX? = PX + QI if and only if

X is of the form

for ab,cOR with detx=-Q or X=Al, where A0{a,p}

a=(P+1/P2 +4Q)/2 anolﬂz(P—JP2 +4Q)/2.

Proof: Assume thatX? =PX +Ql. Then the minimal polynomial oKX divides

x> —Px—Q. Therefore the minimal polynomial must be-a or x-pf or

x* —Px-Q. In the first caseX =al , in the second cas¥ = A , and in the third
case, sinceX is 2x2 matrix, its characteristic polynomial must & - Px-Q, so

its trace isP and its determinant is Q. The argument reverses. This completes the

proof.

a b
Corollary 2.1. If X = L } is a matrix withdetX = -Q, then

wno[aUa+QUL U,
- cU U, -au, |

n



12

Proof: Since X? = PX + QI , the result follows from Theorem 2.1.

Corollary 2.2. a" =aU_ +QU _, and " = pU, +QU  foreverynOZ.

a 0
Proof: Take X = {O ,8} with detX = agf =-Q. Then by Corollary 2.1, it follows

X" = a’ 0 _|:aUn+QUn—1 0 }
B 0 ﬁn ) 0 :3Un+QUn—l'

This implies thate" =aqU , +QU, _, and 8" = pU_ +QU .

that

Corollary 2.3. U, = a-p andV, =ag"+ " foreverynOZ.

Proof: The result follows from Corollary 2.2.

2 2
Corollary 2.4. Let S= P2 (PT+4Q)12| L on=| Vn2 (PT+4QU. /2|
12 PR u,/2 V.2

everynJZ.

Proof: SinceS* = PS+QI ,the proof follows from Corollary 2.1.

P U U
Corollary 2.5. Let X = Q .ThenX"=| ™ U, .
10 U, QU

Proof: Since X? = PX +QlI , the proof follows from Corollary 2.1.

Lemma 2.1.Let a, b, and Pa+b be nonzero real numbers.Rf +4Q is not a

perfect square, then

i{?}a"b“"'u e = =(-Q)" i{?}(—a)i (Pa+b)"™ U,



13

and

i(r.'jajb“"'vj = (-Q)' Z( j( a)!(Pa+b)"V,,

i=o\

Proof: Let Z[a]={ag+blab0Z}. Define @:Z[a]- Z[a] by
g(aa+b)=ap+b=a(P-a)+b=-aag+Pa+b. Then it can be shown that is a
ring homomorphism. Moreover, it can be shown thais injective. On the other
hand, we get
-aU +U_,,=-a0U_ +PU_+QU, _, =¢(aU, +QU )
=g@")=p"=(-Q"a™".
Then it is seen that

d((aa+b)"a") =¢((aa +b)")g(a") = (-aa +Pa+b)"(-Q)'a™"
n

=(-Q Z (-aa)' (Pa+b)a

= (-Q'Y.

j=0

(-a)! (Pa+b)" g’

=}

r

(-a)' (Pa+b)™'(aU |, +QU )

j
n
j
n
Q)
=\
=( )fi( j( 2)l (Pa+b)™ U, j

Zn:( j( a)! (Pa+b)™ ‘UJ r_lj

=0

1l
o

Moreover, we have

p((aa+b)'a’) = ¢(i ”] alb™ aj

1}
o
[S—

- %(TJ v J
(g
|

B o]
o\ | i=o\J
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Then the proof follows.

Theorem 2.3.Let m,r OZ with mZ0 andm# 1.Then

mn+r i( j rLU;—iUJHQn_j

=0

and

'M3

1l
o

V =

mn+r

n
[ jU UiV, Q"
j

Proof: From Corollary 2.4, it follows that

Vrm+r (P2 + 4Q)U mn+r
mn+r 2 2
> U mn+r an+r
2 2

On the other hands™ =U S+ QU | and therefore

m-1

n n o
S™ =(S")"S' = (U,S+QU )" :Z(JU Qs

m-1
j=0

1&(N n n-j (P2+4Q) C n n-j
EZ( j r]nU m—:{ ]Vj+r z r:"lU m—:ll. 'U j+r
i=o\J =0
n(n , n :
3 Tpwieru,, (j VTV,
25\ 2

So, the proof follows.

Corollary 2.6. Let m,r OZ with m# 0 andm# 1.If P? +4Q is not a perfect

square, then

Up = ~(-Q) z[ ]—u YU

and

L= z( j( U U

Proof: The proof follows from Lemma 2.1 and Theorem 2y3tdéking a=U,, and

b= QU m-1
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Corollary 2.7. V> - (P> +4QU ? =4(-Q)" for everynOZ.

Proof: From Corollary 2.4, it follows that
detS" =detS)" = (-Q)"
and

V) —(P*+4Q)U,
4 1

detS" =

which completes the proof.

Theorem 2.4.Let nON andm be a nonzero integer. Then

2Ny — %( n ju 2j\/ -2 (Pz +4Q)jv _JnilJ( n ju 2j+1Vn—2j—1(P2 +4Q)j+lU
mn+r j:O 2J m m r j:O 2J +1 m m r

and
g 2

n1
2"y =i2(nJUZjV”_”(P2+4Q)"U JZJ( n ]U21+1V“_21_1(P2+4Q)fv.
mn+r on = 2] m Ym r < 2] +1 m m r

0 P2+4Q

Proof: Let K =S+QS™= L

] Then K2 =(P?+4Q)'I and
K 2* = (P? +4Q)'K. Since
a1
S"=Z(V, | +U, K),
2
it follows that

mn+r nc — 1 " :i (N IVE\YAE!
S™ = (S") S‘_(Z(\/m |+um|<)j S T(z(jjumK A js

j=0

and therefore
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=z

2™ =3 n.) DVITHKAS + i (2_n+ Juéi*w*j‘k Iy
j=0 J

g
{

,_7
NS
——

I
N

=]
o

U
n L )
=Z( .ju,i'vr: P2+ 4Q)'S
o\ 2]

n-1
2

[,

n : . _
+ ; (2] +JU§‘”V£_2“1(P2+ 4Q)'KS'.
Since
(P?+4QU, (P*+4Q)V,
KS" = i (P? +31Q)Ur
2 2
and
Viger  (P? +4QU 1y,
g = Um—znﬂ @ ,
2 2
the proof is completed.
Theorem 2.5.
U.,.,=UuuU.+QU__U, (2.2)
and
(-Q"U,, =U,U, -V U (2.2)

foreverym,nOZ.

P
Proof: Let X = L (Og} Then from Corollary 2.5, it follows that

U U U U
Xm+n=xmxn:|: m+1 Q m:|{ n+1 Q n:|

U m QU m-1 U n QU n-1

and
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-1
Xm—n :Xm(xn)—j_: Um+1 QUm Un+1 QUn
Um QUm—l Un QUn—l

_ Um+1 QUm 1 QUn—l _QUn
B Um QUm—l (_Q)n _Un U '

Then the proof is completed.

n+l

Now some identities are given which will be usedhe sequel. These identities can

be obtained using matric& and X" and they are;

U Vi + QU Vi =V, (2.3
V.V, -(P?+4Q)U U, =2(-Q)"V, ., (2.4)
U.V,-UV, =2(-Q)"U,,, (2.5)
ViVy = Vi +(-Q) "V &
(P*+4QU, U, =V, = (-Q)"V,ros, (2.7)
UV, =u.. +(-Q"U,_, (2.8)
-Q)"V,., =U, .V, -V, U, (2.9)
V.V, =V2 =(-Q)" (P? +4Q ) (2.10)

Theorem 2.6.Let m,n,r OZ with r 0. Then
UU e U U —(-Q)"U U,
U U, =UU, - (-Q'U, U,
and

UV, =UU., -(-Q'U, U,

a b
Proof: Take a=% and consider the matriA =L P a} with detA = -Q.

r

Then by Corollary 2.1, one gets

Ur+1
An_|:aUn+QUn_1 bUn :|_ _Ur Un +QUn—l bUn

cU, U, —aJu, cU U, ——"u

n
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Using (2.1) and (2.2), it is seen that

An r ;
W, QU
U

SincedetA =-Q anda= % , it follows that

PUU ,+QU?-U?, U (PU ,+QU,)-UZ,
u? - U2

- UrUr+2 r+1 - _( Q)
u? u?

bc =

by (2.2). If we consider the matrix produafA™ = A™" then the result follows.
We can give the following corollary.

Corollary 2.8. U , U, -UZ?=-(-Q)""U? foralln,rOZ.

Proof: SincedetA = -Q ,detA" = (detA)" = (-Q)". Moreover,

) U u.,uU_ -U
detA” — (= ~n+r b U2 — n+r~ n-r ,
(—Q)' 0, u —(-Q)’ (—Urz )

implies thatu , U, -U2=—-(-Q)""U? .

Theorem 2.7.Let m,n,r OZ. Then

VViiner = Vi Vir +(-Q)" (P +4QU U,

r o m+n+r m+r T n+r

Ver+n r _(P2 +4Q)Um +( Q) -r n r

and

VU, =UV.. +(-Q)'V_U,.

r n-m+r

a b
Proof: Take a:% and consider the matriB :{ P } with detB = -Q.
c P-a

r

Then by Corollary 2.1, one gets
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Vr+1
8" = au, +QuU bU v U+ QU bU,
cU, U,,-au, U U Vg
n n+l Vr n
Hence, using (2.3) and (2.9), it is seen that
b,
Bn r ; .
W Ve
VI’
. _ Vi, .
SincedetB =-Q anda= VAL it follows that
PVV., +QV?-V2 V (PV,+QV,)-V?3
bc = 5 = >
VI’ Vr
— VrVr+2 _Vril — (_Q)r (P2 + 4Q)
vz V2

r

by (2.10). Then we get the result by considerirggrttatrix producB"B™ = B™" .

Now, the following corollary can be given.

Corollary 2.9. V —(P*+4QU? =(-Q)""V? foralln,rOZ.

n+r nr

Proof: SincedetB = -Q , detB" = (detB)" = (—-Q)" and

Vaer Vaer V..V P +4Q)U?
detB“—(Q) V bUZ_(Q)(mrnr ( -:/ZQ) nj’

I’ r

it follows thatV_, V., —(P*+4QU 2 = (-Q)""V?.

n+r = n-r
2.1. Sums and Congruences

Now some sums containing generalized Fibonaccilareds numbers will be given.
Then, some congruences concerning generalized &ilooand Lucas numbers will
be presented. Before giving a lemma which will beduin the theorems following it,

notice that

a®™ =a"v,-(-Q)" (2.11)
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and

a® =a"U_/P?+4Q +(-Q)" (2.12)

by (1.2). Now we can give the lemma.

Lemma 2.1.1.

S =V.S"-(-Q)"I (2.13)
and

S*" =U KS" +(-Q)"I (2.14)

for everynON, whereK is as in Theorem 2.4.

Proof: Let Z[a]|={ag+bl|ab0Z}, Z[S|={aS+bl|a,b0Z} and define a
function @:Z[a] - Z[S|, by ¢(aa+b)=aS+bl. Then ¢ is a ring
homomorphism. Moreover, it is clear thatp(a)=S and therefore
g(a") =(¢(a))" =S". Thus from (2.11), one gets

S =(g(@)” =g(a™) =¢(a"V, - (-Q)") =V,S" - (-Q)"I .
That is,S*" =V.S" - (-Q)"I . Also from (2.12), it follows that

" = (p(@))*" = p(a™) = plU,JP? +4Qa" +(-Q)")=U, g /P* + 2Q" + (-@"I.

ThenS™ =U _KS" +(-Q)"I since

¢(\/P2 +4Q)=¢(2a—P) =2S- Pl {(1’ P? ;‘ﬂ -K .

Theorem 2.1.1Let m,rOZ. Then

Ui = (—(—Q)m)"jz;(?)vn;um,-ﬂ Q"
and

Virmi = (—(—Q)m)“jz;(?)v,gvm,-ﬂ ("

for everynON.

Proof: It is known that



S =V S"-(-Q)"
by (2.13). Taking thenth power of (2.15), one gets

s = v, 8" - (-Q") = va (-Qm)Is™.
Multiplication of both sides of this equation I8} gives
st = (—(—Q)m)“jz;(?)vni ((-Qm) s,
Thus it follows that
U g = (—(—Q)m)“jz;(?)vniumw (~(-Q")"
and
Vi = (—(—Q)m)”jz;[?)vnivmm (-

by Corollary 2.4.

Corollary 2.1.1.If P andQ are integers, then

U = (=(-Q)™"U, (modv,)

and
Vo = (=(-Q)™"V. (moaV,,)

for all n,mON 0{0} andr OZ such thatmn+r >0 if Q# +1.

Theorem 2.1.2Let m,r 0Z andm be a nonzero integer. Then

i

Usmer = (_Q)mn (ijurijuzmjﬂDjQ_zmj

j=0

+ (_Q)rm z (er:_ :JU rij+]\/2n1'+m+r Dj (_Q)m(_zj_l)

j=0

and
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(2.15)

(2.16)

(2.17)



sy
Vomner = (_Q)ng(zjjU r?]JVijH D'Q™"

j=0

7
+(-Q)™ z (Zjn+ 1jUr$1j+1U2n1+m+rDjﬂ(—Q)m(_Zj_l)

j=0

for everynON, whereD = P> +4Q .

Proof: It is known that
$"=U,KS"+(-Q)"I
by (2.14). Then,

SZmn+r — (UmKSm + (_Q)ml )nSr - i[nju rLK i ((_Q)m)n—j Smj+r.
j=0

j

On the other hand, it can be seen #at = D'l andK ?'** = D'K. Therefore,

Seay .
SZrm+r — (_Q)WZ(ZJJU ri] K ZJQ—ZFT] SZ”]-H‘

j=0

n-1

=z . .
+ (—Q) mn z (Zjn-'- JJU rf]]+1K 2J+1(_Q)m(_2J_1) SZm+m+r

j=0

n

= (_Q)WZ(ZJ-JU rij D JQ—Zn”i Szn”i+r

n-1
2oy o
+ (_Q)rm Z (21 jU r$1I+1D] (_Q)m(—ZJ—l) K82m1+m+r '

+1

j=0

and the proof follows from Corollary 2.4.

Corollary 2.1.2.1f P andQ are integers, then

Ui =(-Q)™U, (modu )

2mn+r

and

Ve =(=Q)™V, (modU )

2mn+r

for all n,mON {0} andr OZ such thatmn+r >0 if Q # £1.
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(2.18)

(2.19)



CHAPTER 3. THE SQUARE TERMS IN FIBONACCI AND
LUCAS SEQUENCES

We have cited literature review about Fibonacci ndas numbers of the fore®

or 2x° in the first chapter. Many authors have investigaFibonacci and Lucas
numbers of the forncx? with ¢ #1,2. For example, in [43], Robbins considered
Fibonacci numbers of the formx® and solved the equatidf, = px’ for all p such
that p=3(mod 4) or p<10000 On the other hand, in [44], Robbins considered

Fibonacci numbers of the fornsx* and obtained all solutions of, =cx® for

composite values of <1000. The same author solved = px* where p is an odd
prime andp < 1000Qin [45]. Moreover, in [52], Zhou dealt with Lucasimbers of

the form px*, where p is a prime number and gave solutions¥600< p < 60000

In this chapter, firstly, some fundamental theorearsd identities concerning

Fibonacci and Lucas numbers are given. Then, weedble Diophantine equations

L, =2L x* F,=2F x*, F, =3F x*, L, =6L_x*, andF, =6F x°.
The proof of the following theorem can be foundh

Theorem 3.1.Let n>1. If F, =x%, thenn =1, 212 If F, =2x*, thenn =346 If

L, =x*, thenn =13and if L, =2x°, thenn =6

The proofs of the following two theorems are givep22].

Theorem 3.2.Let nON {0} andk,mOZ . Then
Famaei = (-1 F, (modF, ) (3.1)

and
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I‘2n1"|+k = (_ 1)fm I-k (ITDdFm) : (32)

Theorem 3.3.Let nON [J{0} andk,mOZ . Then
Lon = (=1L, (modl,,) (3.3)
and

Fon = (0)™"F, (modL, ). (3.4)

The two theorems given above can be obtained fromol@ry 2.1.1 and Corollary

2.1.2. From the identity (3.2), it can be easilgrséhat8/ L, for everynON.

The proofs of the following three lemmas can beedioyinduction.

Lemma 3.1. sz =3(mod4) forall k>1.
Lemma 3.2.1f r 23, then L2r = 2(mod 3).
Lemma 3.3.If r 22, thenL  =7(mod8).

The following corollary can be obtained from Lemfa.

Corollary 3.1. If k=1, then there is no integer such thatx® = —1(modL2k) :

The proofs of the following theorems can be foum¢bi, [22], and [48].

Theorem 3.4.Let m,nON and m= 2 ThenL_|L, if and only if m|n andﬂ is
m

an odd integer.

Theorem 3.5.Let m,nON andmz= 3 ThenF, |F, ifand onlyifm h.
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Theorem 3.6.Let m,nON andm=2. ThenL_|F, if and only if m|n andﬂ is
m

an even integer.

The following identities are well known and easystmw.
Lo = Ly —2(-1)",
Ly, = Ly(Ly=3¢-1)" )
F.,=FL,.
F,,=F (BF>+3(-1)" ,)
12 -5F7 =4(-1)",
2|F, = 2[L, = 3|n,
(F.L, )=t (F,L,)=2

Let (Ej represent Legendre symbol. Then we have
p

(EJ =1 if and only if p = T1(mod8)
P

and

P

The proofs of (3.12) and (3.13) can be found ingddl [35].

3.1. Fibonacci and Lucas Numbers of The Fornex?

('_Zj =1ifand only if p = 1,3(mod8).

(3.5)

(3.7)
(3.8)
(3.9)
(3.10)
(3.11)

(3.12)

(3.13)

In this subsection, we consider the equatibps=2L, x> F, =2F x°, L, =6L, X,

F =3F x*, andF, =6F x°.

In [38], Ribenboim introduced square-classes ofoR#xci numbers. There it is

stated thatF_,F, are in the same square-class if there existzeon-integersx, y
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such thatF_x* = F y*; or equivalently, wherF_F, is a square. In a similar way, he

introduced square-classes of Lucas numbers. A sgiass is called trivial if it

consists of only one number. Ribenboim showedttr@square-class df , is trivial
whenm# 01,3, and 6. Also he showed that the square-clas$gfis trivial when

m# 1,2,3,6,12. Now, the following two theorems, which can be aid from

Propositionl and Propositior2 in [38], can be given.

Throughout this subsection, we will assume thas a positive integer.

Theorem 3.1.1.Let m >3 be an integer and=, = F, x* for some xOZ. Then

n=m.

Theorem 3.1.2.Let m=> 2 be an integer and, =L x* for some xOZ. Then

n=m.

Although the proofs of the following two theorenende obtained from Theorem 6

and Theorem 12 in [11], proofs will be given usandifferent approach.

Theorem 3.1.3There is no integex such thatl, =2L x* for m >1.

Proof: Assume thatL, =2L _x* .Then L |L, and thereforen=mk for some
natural numbelk by Theorem 3.4. Firstly, assume thatis an odd integer. Since
2|L,, one gets3|n by (3.10). Thus it is seen thaj m. For, if 3|m, thenL;|L,, ,

i.e., 4|]L,, by Theorem 3.4. This implies th& L,, which is impossible. Since

3/ m, it follows that 3|k . That is,k =3t for some odd positive integér Thus
n=mk =3mt andmt is an odd integer. Therefore, sincen 3|t follows thatL, |L, ,
i.e., 4|2L x> by Theorem 3.4. Sinc8| m, L is an odd integer. Therefor2|x*

i.e., X is an even integer. This implies tH&itL, , which is impossible.



27

Now, assume thain is an even integer. Ik is an even integer, then it is seen that

8| L, , which is impossible. Therefore is an odd integer. Assume thatm. Then
L, is an even integer. Therefotg | L, by Theorem 3.4. It follows that =3b for

some odd integeb . That is,n is an odd integer. But this is impossible. Becanse

is an even integem is also an even integer. Assume tBgtm. Then sincen = mk
and 3jn, it follows that 3k ,i.e., k =3 for some odd integer. Hence,t =4qF 1
for some nonnegative integgr. Thusn=mk =3m(4qx1)=2.6mgFx3m.Then

=L

F3m

L, =L (modF,)

2 6maF3m
and therefore

2L, x* =L, (mod8)
by (3.2). Sincex* =1(mod 8)yandm is an even integer, one obtains

2L =L_(L2 -3)(mod8)
by (3.6). Moreover, sinc&| m, L, is odd integer. So
2=12 —3(mod8).

Whence
2=-2(mod8),

which is not possible. This completes the proof.

In [7], for m=1,2, it is shown that the equatidf, = 2F_x* = 2x* has solutions only

for n=3,6. More generally, the following theorem can be given

Theorem 3.1.4.1f F, =2F x> and m> 3,then m =3, x*=36, and n =12 or

m=6, x> =9, andn= 12.

Proof: If m=3, then F, =2F,x* =(2x § . Thus it can be seen that= 127 =36

by Theorem 3.1. Assume that >ahd F, =2F _x*.Then F_|F, and therefore

n=mk for some natural numbésr by Theorem 3.5.
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Firstly, assume thak is an even integer. Then=2t for some integet. Therefore

n=mk =2mt. Thus
F, =F, =F,L, =2F. X

m

by (3.7). This shows that(F,/F, )L, =2x* It can be easily seen that if
(F,/F..L,)=d, thend =1lord =2 by (3.11). Assume that =Then

l'::—mt: u?, L, =2v? (3.14)
or

Fmt — 2 — 2

F_ =2u°, Lmt =V (315)

m

for some integersi andv. Assume that (3.14) is satisfied. Them=m, i.e.,t =1
by Theorem 3.1.1. Therefore, =2v* and this implies thatm =&y Theorem 3.1.
Hence x* =9 and n= 12.Now assume that (3.15) is satisfied. Thiep =v* and

thereforemt =1or 3 by Theorem 3.1. But this is not possible sint>3. Assume
thatd =2.Then

lFZ—”“ =2u%, L, =V (3.16)
or

Fu oo L =002 (3.17)

F - y et T .

for some integeras and v. Assume that (3.16) is satisfied. Themt od 3 by
Theorem 3.1. But this is impossible sinoe  >Bcan be seen that the identity

(3.17) is impossible by Theorem 3.1.1.

Now, assume thak is an odd integer. Letn be an even integer. Than=2r for

some natural numbar and thereforen = mk =2kr Thus one has

F,=F, =F.L, =2F.L X
by (3.7). This shows tha{F,/F, )(L,/L,)=2x% It can be easily seen that if
(F,/F.,L,/L)=d, thend =1lord =2by (3.11). Assume that =Then

P _ u?, Le —op (3.18)
F L

r r
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or

L =22, e =2 (3.19)

for some integerau and v. The identity (3.18) is impossible by Theorem 3.1.

Assume that (3.19) is satisfied. Thép =L v* and thereforekr =r, i.e., k =1 by

Theorem 3.1.2. Hence the equalipy® :h:i =1 is obtained, which is not
possible. Assume that =2Zhen
I:kr — 2 — ;2
L =2u° L, =V (3.20)
Fr
or
P _ u?, Le —op2 (3.21)
F L,

for some integeras and v. A similar argument shows that (3.20) and (3.2B a

impossible. Now, leim be an odd integer. Firstly, suppose tBdtk . Sincek is an
odd integer, k=6gF 1 for some nonnegative integerg. Therefore
n=mk =m(6qx1)=2.3ngF m Hence it follows that

F.=F, =F_,(modL,;),

.3mgEm

F, = F,(mod4)
by (3.4). SinceF, is an even integerf, is also an even integer. Thm by
(3.10) and thereforen =3a for some integera. On the other hand, sindg, is an
even integer,4|F, and thus6|n by Theorem 3.5. Since=mk =3ak @gne gets
6|3ak, i.e., 2|ak. Moreover, sincek is an odd integer, it is seen thata2[This
implies that 2m ,which is impossible sincen is an odd integer. Assume thatk3| .

Then k =3s for some odd integes. Thereforen =mk =3ms .Since ms is an odd

integer, one obtains
F =F,.=F.5F.-3)=2F x°
by (3.8). This shows thafF,/F,)5F2 -3)=2x It can be easily seen that if

d =(Fm/Fm,5F,§S—3), thend =1or d =3. Assume thad =3Then 3|F, , and



30

thus 4|ms by Theorem 3.5. But this is not possible while is an odd integer. So

d =1. Then it follows that

% =u®,5F2 -3=2V° (3.22)
or
'I::—ms =2u?, 5F2 —3=V? (3.23)

m

for some integersl andv. Assume that (3.22) is satisfied. Thew=m, i.e., s=1
by Theorem 3.1.1. Therefore 5F2-3=2v* and this shows that
2v* =5F?-3=L% +1=L, -1 by (3.5) and (3.9). This implies that, =2v*+ 1.
SinceL,,, =2v*+ 1,we get3|m. Thusm=6q31=3.2"bF 1,whereq=2"b for

some odd integelb with r = 0. This shows that
L,,=L = —L;Z(moszrﬂ)

2.0 3o
and therefore

2v? +1= -3(modL,,),

2v° = —4(modL ;)

by (3.3). On the other hand,

V2 = _Z(rnOszrﬂ)
since L2r+l is an odd integer. This shows t{aﬁj =1 for every prime divisor of
Y

L Then it follows that

2
p =1,3(mod8)

by (3.13) and therefore
sz+1 =1,3(mod8).

This shows that =My Lemma 3.3. Consequently, is an odd integer. Therefore

it can be easily seen that =12c+ d m=12c+ 7 for some integerc. Thus one

arrives

L _=3(mod8)
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or
L,, =5(mod8)
by (3.2). On the other hand,
2V =12 +1
implies that
2vZ =1(modL,,),
and so

(2v)* = 2(modL,,).

Therefore(zj =1 for every prime divisor oL . Then it follows that
p

p =F1(mod8)
by (3.12) and hence

L., =F1(mod8).
But this contradicts the fact thdt, =3,5(mod 8Assume that (3.23) is satisfied.
Then v* =5F2 -3=L12_+1 by (3.9). This implies thatL . =0which is not

possible. This completes the proof.

Theorem 3.1.5If L, =6L,x* andm=1, thenm =2 x* =1, andn =6

Proof: Assume thatL, =6L_x* for some integerx. Then 3|L, and therefore
n =2k, for some odd integek, by Theorem 3.4. Moreover, sincg L, , one gets
3|n by (3.10). This shows tha]k, and thereforek, =3t for some odd integet.
Thusn =6t =6(2u+1) =12u+ 6. Hence,
Ly = Liawe = Ls(mod8),

or

L, =2(mod8)
by (3.2). Since8|] L,, it can be seen that is an odd integer. So

x* =1(mod8),

which implies that
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6L, x* =6L_ (mod8).
This shows that
6L, =2(mod8),
which implies thatm#1. Now assume thatn  >ZXincel, |L,, there exists an odd
integerk such thatn=mk by Theorem 3.4. On the other hand, sii@e, it is seen
that 2|m. Therefore m=2r for some odd integer. If r =6q+3, then

m=2r =12q+6 and therefore

L,, = Ly;(mod8)
by (3.2). That is,

L., =2(mod8),
which is not possible since

6L, =2(mod8).

Therefore 3| r. Sincen=mk, m=2r , and 3/ r, it follows that 3|k and thus
k =3s for some odd integes. Then
I—n = erk = I—3ms = Lms(L?ns _3) = 6|-mX2

2 —
by (3.6). It can be seen thét__, L2 —3) ;"Bhus(Lms, Lmss 3) =1. Then

which shows that

2 _
Lo _ 2u® and Los =3 _ v? (3.24)
L 3
or
2 _
Lo _ u®and L’“Ss 3. 2V°. (3.25)

2
for some integerss and v. Assume that (3.24) is satisfied. Théﬁl'?"sj -1=V?

and therefore
vZ =-1(mod3),
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which is a contradiction. Now assume that (3.25pasisfied. ThenL, =L u?

m 1

which implies thatms=m by Theorem 3.1.2. That iss=1. Thus L, - 3=6v".
Since L2 =L, + 2by (3.5), it is seen that, —1=6v*. Moreover, sincen=2r , it
follows that L, —1=6v’. On the other hand, sincdr can be written as
4r =4(4uFl) =16ux 4=2.2.aF4 for some odd integea with b> 3, it follows
that

L, =L _L¢4(mOd|—2b)

2.2ba14 -

by (3.3) and therefore
1+6v° = —7(modL ).

Then

6v® = —8(modL ;) ,
or

V= =4(modL ),
or

(3v)? = -12(modL ),

which shows thaE_—lzj =1 for every prime divisor oi_zb. Then it follows that
Y

p=1(mod3)
and therefore

L2|D =1(mod3).

But this contradicts Lemma 3.2. Therefare= 2. This completes the proof.

In [22], it is shown that, =3L,x* has no solutions ifn  >INow a similar result is

given for Fibonacci numbers.

Theorem 3.1.6.Let m=> 3 be an integer ané, =3F, x*. Thenm =4 x*=16, and

n=12.
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Proof: Assume thatm>=3 and F, =3F x> for some integerx. Then F_|F, and

thereforen = mk for some integek by Theorem 3.5.

Firstly, assume thak is an even integer. Thek=2s for somesON. Therefore

n=mk =2ms. Thus

by (3.7). This shows that
(F . /F. )L, =3x°.
It can be easily seen that (F /F,, L.)=d, thend =1or d =2 by (3.11). Let

d =1. Then

FF_n: =, L, =3V (3.26)
or

||::_ =3u? L =V? (3.27)

for some integersu and v. Let (3.26) be satisfied. Theh, =3v*=L,x* and
thereforems =2by Theorem 3.1.2. But this is not possible simeg . L& (3.27)
be satisfied. Thenms =3by Theorem 3.1. Thusm =3and s =1 Then
3u? = (F,/F,) =1, which is not possible. Lal  =2Then

';—ms =2u?, L, =6V’ (3.28)
or

F 2 2

F—ms =6u?, L =2v (3.29)

for some integersi andv. The identity (3.28) is not possible by Theoreh.3. Let
(3.29) be satisfied. Thems =86y Theorem 3.1. Iim =6and s =1, then this is

impossible sinceF, =F,_ =6F u® .If m=3 and s =2, then 6u®=F,/F, =4,

m

which is impossible.

Now suppose thak is an odd integer. Sinc8|F,, we get4|n by Theorem 3.5.

Moreover, sincen=mnmk and k is odd, one get}jm. Let x be an even integer.
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Then 4|F, . ThusL, |F, and 3|n by Theorem 3.6. Therefor&2|n since4|n and
3|n,i.e.,n=12 for sometON. On the other handn=4r for somer ON since

4|m. Thereforel2t = n=mk =4rk . It follows that3t = rk . Thus
I:n = I:12t = F6t L6t :3F2r I—2r X2
by (3.7). Sincg(6t/2r) =k andk is odd, one can write

Fa La g0
I:2r L2r
. Fee Le
Assume thaB3|r . Then, it can be seen tr(aI{:— L—J 1 by (3.11). Therefore
Fo o2, Lo — gy (3.30)
I:2r I-2r
or
i:guz,i: 2 (3.31)
2r L2r

for some integeras and v. A similar argument shows that (3.30) and (3.3®) a

impossible. Now assume th&) r. Then since3t =rk it follows that 3|k . Thus

k =3s for somesON. Then3t =rk =3rs and therefore =rs. Also since3/r, it

can be seen th{t&,ﬁj =2 by (3.11). Therefore
2r 2r

Fo o2 Let —g2 (3.32)
F r L r
or
Fo _ 6u’, Lo _ o2 (3.33)
F L,

for some integersi andv. Assume that (3.32) is satisfied. Then=2 by Theorem
3.1.5. This shows that=1 andt=s. Thus L, =6L,v* = L,v*, which implies that
6t =6, i.e., t =1 by Theorem 3.1.2. Therefork =3s=3t =8&nd m=4r =4

Thereforen =12and x*> = 16.Now assume that (3.33) is satisfied. Then it foio
that

L, =2L,,V?,

which is impossible by Theorem 3.1.3. Now, Jebe an odd integer. Then
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F. =3F, (mod8).
Since 4|m, it follows that m=12q or m=12qF 4 for some integerq. If
m =129 ¥4, then
F

m I:12q¢4 = F¢4 = $3(Wd8)

by (3.1). Therefore
Fn

F1(mod8),

which is impossible sincet|n. Because if 4] thenn =12rx4 or n =12r for

some integerr, and thereforeF, =3,0(mod 8)by (3.1). If m=12q, then

n=mk =12gk . This shows tha6gk/6g is an odd integer. Then, from the equality
F. = Froge = Fogeloge = 3FnX® = 3FgqLeg X,

it follows that

—

qk. 60k :3)(2'
F6q L6q
F L
Since( Bak quj =1, one has
Feq qu
Foae u?, S g2 (3.34)
F6q 6q
or
Do g2, ok =2 (3.35)
F6q L6q

for some integeras and v. Similarly, it can be seen that the identities343.and

(3.35) are impossible. This completes the proof.

Finally, we can give the following theorem withqubof since the proof is similar to
that of Theorem 3.1.6.

Theorem 3.1.7 There is no integek such thatF, =6F_x° .



CHAPTER 4. THE SQUARE TERMS IN GENERALIZED
FIBONACCI AND LUCAS SEQUENCES

In this chapter, we solve the generalization ofafeationsL, =2L x*, L, =3L, X

and L, =6L_x*. Also, using congruences related to generalizdzbriécci and

Lucas numbers given in the second chapter, somatieqa including generalized
Fibonacci and Lucas numbers are solved under sesugrgtions.

4.1. Some Fundamental Theorems and Identities

In this subsection, some theorems, lemmas, and sdemdities about generalized

Fibonacci and Lucas numbers which will be used late given.

Since the proof of the following lemma can be pbvsy induction, the proof is
omitted.

Lemma 4.1.1.Let Q=1(mod3). If 3] P, then

2(mod3) ifr =3,
V2r =<1(mod3) ifr =2,
O(mod3) if r =1,

and if 3| P, thenV2r =2(mod 3)for all r >21.

The following two theorems can be given from Camnll2.1.1 and Corollary 2.1.2.

Theorem 4.1.1Let Q =1, nON {0}, m,rdZ, andm be nonzero integer. Then
U2mn+r = (_1)rmUr (rmdum) (41)

and
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Vormer =(=1)"V. (modu ). (4.2)

2mn+r

Theorem 4.1.2Let Q =1, nON {0}, andm,r0Z. Then
U 2mn+r = (_ 1)(m+l)nUr (ITDde) (43)

and

v, (-)™"V, (moaV, ) . (4.4)

mn+r

When P andQ are odd, using (2.18) and (2.19), one did, and therefore

Uopqe =U, (mod8) (4.5)
and

Visqer =V, (mod8) (4.6)
for nonnegative integerg andr . It can be seen from (4.6) thatkf and Q are odd

and Q # 5(mod 8), then

8]V, (4.7)
and if P andQ are odd and # 15(mod 8)then
41V, (4.8)

for every natural numbaen.

The proof of the following lemma is given in [42Yloreover, the lemma can be

proved by using Corollary 2.1.1 and Corollary 2.1.2

Lemma4.1.2Let n=1. Then

a) 3|V n =1(mod?2) if 3| P,
@ 3V, = 11 2 2(modd)and Q = (mod3) i3 P,
b) 31U n=0(mod2) if3| P,
(b) " 4 nand Q =1(mod3) or 3|nand Q =2(mod3) if3] P.

The following lemma can be found in [42].

Lemma 4.1.3.Let P, Q, andm be odd positive integers am¢> 1.
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3(mod8), if r =1andQ =1(mod4),
7(mod8), otherwise,
(b) If 3|m, thenV2rm =2(mod 8).

(@ If 3| m, thenV2rm E{

By the above lemma, whela andQ are odd, it is seen that

-1 _
[ﬂ‘ ' e

The following lemma can be proved by induction.

for r >1.

n

Lemma 4.1.4.If n is a positive even integer, théf) = 2Q2(modP?) and ifn is a

n-1

positive odd integer, thevt, =nPQ 2 (modP?).

Now, the following identities concerning generatiz€bonacci and Lucas numbers

can be given.

Uy =UY, (4.10)

V,, =Vy = 2(-Q)", (4.11)

Us =U,((P*+4Q)U7 +3(-Q)") =U,(V, - (-Q)"), (4.12)

Vy, =V, (VP -3(-Q ) ), (4.13)
IfP is odd andn =1, then2|V, « 2U, = 3h (4.14)

V= (P*+4Q)U; =4(-Q)", (4.15)
ItP,Q)=1andn=1, thenU,,Q)=(V,,Q) =1 (4.16)

Let m=2%k, n=2°, k andl odd,a,b> 0,andd =mn).Then
U,.U,)=U,, 4.17)

Vv, ifa>Db,
U,.V,)= . (4.18)
lor2 if a<h,
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V, if a=Db,
V..V, )=42 if a# b andPiseven, (4.19)
lor2 if a# bandPisodd.
IfU, #1thend |U, = m h, 40)
IfV, # 1thenV, |V, = m|n and isodd, (4.21)
m
IfV,# 1thenV_|U, = m|n and " is even, (4.22)
m
. V, -2
If Pisodd,Q =1 2|mand3] m,the v = 5/ (4.23)
IfP andQ are odd, then
U3 — — —
v =1l<r>1 orr=1and Q=3(mod4), (4.24)
2l‘
If r=3 andQ = 1, then V2r = 2(modV, ). (4.25)

Moreover,
if P>1,thenV, # 1forall mON
and also wherP is even, it can be easily seen that
U, isodd < nis odd,
U, iseven= nis even,
V, isevenforall nON .

Identities between (4.10)-(4.16) and (4.17)-(4.&2) be found in [41], [42], [47] and
[29], [40], [42], respectively. Identities (4.23hé (4.24) are given in [2], [9] and

[42], respectively. The proofs of the others argyesnd will be omitted.

From now on, we will assume thatis a positive integer.

4.2. Generalized Lucas Numbers of The Fornex?

In this subsection, it is assumed tiqat=  arld P >1. Firstly, whenk|P andP is

odd, indicesn such thatv, = kx* are determined. Then, whéh is odd, it is shown
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that there is no solutions of the equat\gn=3x> for n >2. Moreover, it is proved
that the equatiory, =6x* has no solutions wheR is odd. Finally, the equations
V. =3V, x> and V, =6V, x> are considered. It is shown that the equation
V. =3V, x* has solutions whem =3, m=1, and P is odd. Also, it is shown that
the equationV, =6V, x*> has solutions only whem =6Also the equations

V. =3x* andV, =3V, x* are considered under some assumptions wWhes even.

In [11], Cohn solved the equatiohs =V, x*andV, =2V, x* when P is odd. Now,

the following two theorems which can be obtainemhfrTheoremll and Theorem

12 in [11] are given.

Theorem 4.2.1.Let P be an odd integenn> e an integer, an¥, =V, x> for

some integex. Thenn=m.

Theorem 4.2.2.1f P is odd, then there is no integer such thatv, =2V, x* for

m=1.

In the following theorem, it is shown that the efipa V., =2V_x* has no solutions

when P is even.

Theorem 4.2.3.If P is even, then there is no integersuch thatv, =2v_x* for

m=1.

Proof: Assume thatP is even and/, =2V_ x> ThenV, is even, which implies that
4|V,. Therefore, it is seen that is odd by Lemma 4.1.4. Moreover, sineg|V,
there exists an odd integdr such thatn=mt by (4.21). Thus,m is odd and
thereforeV, =nP(modP? )and V, = mP(modP? ) by Lemma 4.1.4. It follows that
nP = 2mPx*(modP?), i.e., n=2mx*(modP ). This is a contradiction since is odd.

This completes the proof.
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The proof of the following lemma can be seen frdenitity (4.23).

. P?+3
Lemma 4.2.1.If P is odd andr =1, then v =1.

2I‘

Theorem 4.2.4.Let k be square-free positive divisor 8f and P be an odd integer.

If the equationV, = kx* has a solution for some integer thenn =1 or n =3.

Proof: Assume thatk|P andV, =kx* . Then, it is seen that is odd by Lemma
4.1.4. Letn >3.Thenn=4qg+ 1or n=4q+ 3 for someq >0.Also, P=kM for
some positive integeM sincek | P . For the remaining part of the proof, two cases

can be considered.

Case 1:Assume thatn =4q+ 1For some odd integee, n=4q+1=2(2 z)+1,
wherer > 1.Thus one gets

V = —P(modVZ, ),

ke = -P(modV, )

by (4.4). This shows thatJ:[:/—kPJ =1. Since P=kM , it follows that

2I’

Vv Vv

2f 2f

- — K2 -
J =[ kp} :[ kM } :[VM J SinceV2r =2(modP ) by Lemma 4.1.4, it is seen

2r

that V2r =2(modM ) and thus(M ,Vzr )=1Also {Q—lJ =-1 by (4.9). Assume that

M =1,3(mod8). Hence

Rt
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M2-1

M-1 X -
8

= (—1)(&](—1)(2j = (—1)(—1)[

M-1

NS

This contradicts the fact thatl =1. Assume that M =5,7(mod8). Since
n=4q+1=4(q+1)-3=2(22z) -3 for some odd integee with r =1, it follows
that

V, =Vy(modV ),

ke =V, (modV )

by (4.4). This shows that

1=3=| K| KM (P?+3) | _[ M(P?+3)
v, v, v, ]

Since M =5,7(mod 8), V2r =3,7(mod8) by Lemma 4.1.3, an&'2r =2(modM by

Lemma 4.1.4, it follows that

e
(2 Y- B A I

Thus, using Lemma 4.2.1, one obtains

3o |2 K°M(P?+3) | _[M(P*+3)|_[ M | P?+3 _—
v, v, v, R ’

which is a contradiction.

Case 2: Assume thatn=4q+ 3.For some odd integerz, one can write
n=2(2 z)+3, wherer = 1.Thus

V, = —Vs(modV2r )

? = _VS(rdeZr )

by (4.4). This shows that
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1= 3= TR |2 ~k*M (P?+3) | _| —~M(P*+3)
v, v, v, '

Assume thaM =1,3(mod8). Then, it can be shown that

)

Thus, the identity (4.9) and Lemma 4.2.1 imply that

J= KV, _ -M(P?+3) _ -1 M P?+3 _—
v, v, Vo Ve LoV ’

which is a contradiction. Assume that M =5,7(mod8).  Since

n=4q+3=4(q+1)-1=2(2 z) -1 for some odd integez with r =1, one gets

V, =P(modV,, ),
ie.,
kx* = P(modV )
2
by (4.4). This shows thdt=J = [\5—'31 = [kv—M] = [Vﬂ} On the other hand, since
of 2o of

M =5,7(mod8), it is seen that

{ﬂ} oo

\Y,

2I’

which contradicts the fact that =1. This completes the proof.

In [42], Ribenboim and McDaniel have solved the apn U, =3x* for all
relatively prime odd integer® and Q. Also, for P =1,3(mod 8), Q =3(mod4) and
(P,Q) =1, the solutions of the equatioW, =3x* is given by Ribenboim and
McDaniel in [42]. In [39], the same authors havewh thatV, # 3x* andV, # 6x°
for all odd relatively prime values ofP and Q with Q=3(mod4) and
n=+3(mod8). Besides, in [3], Antoniadis has solved the equat =3x> for
3] P with P odd andQ =1.Now the proof of the following theorem is givenan

different way for the sake of completeness.
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Theorem 4.2.5.1f P is odd, then the equatiovj, =3x* has the solutions fon =1

or n =2 and, if P is even and3/ P, then there is no integer such thatv, =3x* .

Proof: Assume that3]| P. Since 3|V, , it follows that n=2(mod 4) by Lemma
4.1.2. If P is even, therBx* =V. =2(mod 4)y Lemma 4.1.4 since is even. But
this is not possible. Now, assume tha® is odd. If n =2, then
V, =V, =P?*+2=3x* or P*-3x*=-2. Since (u,V,) =(1,1) is the fundamental
solution of the equatiom? —3v? = — 2all positive integer solutions of the equation
u®-3v? = -2 are given by

V) = (8,@-1)-U,,(4-1)3,4-1)-U,,4-1)
with m=>0. Therefore, whenn =2the equationV, =3x> has a solution for
P=8U,_(4-1)-U,,(4,-1). If n=6, then3x* =V, =V, + 2by (4.11). SinceP is
odd, V, is even by (4.14) and therefore

3x* =V +2=2(mod4),

which is not possible. Then it is clear that=16c+ 02 n=16c+ 6 for some

positive integerc. Let n =16¢c+ 6. Thus
V, =Vs(modV,),

3x* =V, (modV, ) (4.26)
by (4.4). Moreover, it can be easily shown thdf=-V,(modV, Hlence

3x* = -V, (modV,) from (4.26). ThenJ :( \:;sz =1. On the other hand, since

4

{Q—lJ =-1 for r 21 by (4.9),V, =1(mod3) by Lemma 4.1.1, an¥f, = -2(modV,)

2r

by (4.11), it is seen that



S
Ol o

These imply that
=3V, (-1 3|V, NN = —

which contradicts the fact that =1. Now let n =16¢c+ 2. Sincen can be written as

and

n=2(2 z)+2 for some oddz with r =3, itis seen that

Y/

n

=- 2(rnOdV2r )l

3x* = -V, (modV., )

_3\/2

by (4.4), which shows thal :[ J =1. On the other hand/2r =2(modV, for

2r

r =3 by (4.25) an{\;—lJ =-1 by (4.9). Thus

2I’

BT g

Moreover,v2r =2(mod 3)by Lemma 4.1.1. Then

vV -1

25 s

2I’

and hence

which is a contradiction.
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Now assume that3|P. Then n=1 or n =3 by Theorem 4.2.4. Ifn =1then
V, = P =3x% It is obvious that this is a solution.if =8&enV, = P(P*+3) =3x°.
Also, since 3|P, it is seen that(P,(P2+3)/3):1. Therefore P=a> and
P?>+3=3b” for some positive integera and b. Since 3P, P=3c for some
positive integerc. Hence one obtains the Pell equathwn-3c? #1s well known
that this equation has the solutigh,c)=((V (4,-1))/2,U,(4,-1)) for m=1. It

follows that P=a* =3c=3U,,, i.e, U,k =3x*. It is seen that the equation

m !

U,.(4,-1) =3x* has no solutions by Theoregh given in [34]. Therefore, the case

for whenn =3 is not possible. This completes the proof.

Theorem 4.2.6If P is odd, then there is no integersuch tha/, =6x* .

Proof: Assume that3] P. If x is even, it follows thaB|V, which is impossible by
(4.7). Thereforex is odd. Since3|V, and2|V, ,itis seen thah /2s odd by Lemma
4.1.2 and3|n by (4.14), respectively. Then it follows that=12q+ fér some
positive integerg. Thus

V. =V,(mod8)
by (4.6). That is,

6x* = 2(mod8),

which is impossible sinc& is odd.

Assume that 3 Since3|V, ,n is odd by Lemma 4.1.2. Also sincen3|it follows
that n=+3(mod 12). Thus
V. =V,; =+4P = 4(mod8)
by (4.6). That is,
6x* = 4(mod8),

which is impossible sinc& is odd. This completes the proof.

Theorem 4.2.7If P is odd,m> landV, =3V, x* ,thenm =landn =3.
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Proof: Assume that3] P. SinceV_ |V, and 3|V, ,it follows thatn=mt for some

odd positive integert by (4.21) andn/2 is odd by Lemma 4.1.2, respectively.

Thereforem is even andm /2is odd. Thenm =12q+ 2or m =12q+ 6 for some
positive integerg. Thus

V. =V,,V, =2,3(mod8)
by (4.6). Similarly, it is seen that, =2,3(mod 8Also, since3x* =0,3,4(mod 8) it
follows that V, =3V x*=0,1,4,6(nod8), which contradicts the fact that

V, =2,3(mod8).

Now assume that B Since 3|V, , it is seen thatn is odd by Lemma 4.1.2.

Thereforem is also odd. Now, two different cases can be cmrsd.

Case 1:Assume that 3| Thent =3s for some odd integes. Thusn=mt =3ms.
By (4.13), one get¥/, =V, =V (V2 +3)=3V_x* Sincems is odd and 3P ,it
follows that (V, ./V, )((VZ +3)/3)= x* . It can be seen thaV, /V,,(VZ+3)/3) =1.
ThereforeV,, =V, a° and V. +3=3b" for some positive integera and b. Then
ms=m, i.e., s =1 by Theorem 4.2.1. Thug’+3=3b’ Using (4.11), one obtains
V,, =3b*—1. Assume thatm >1Then 2m=2(4q+1)=2(2'2)+ 2 for some odd
integerz with r > 2. Hence

Vom = -V, =—~(P* +2)(modV )

m

by (4.4). That is,
W*=—(P*+2-1)= —U3(rnodV2r ),

which shows thatJ:[ \;{JS’] =1. On the other hand(\;—lJ:—l by (4.9).

2I‘

2I‘

Moreover, since 3 it follows thatV2r =2(mod 3)by Lemma 4.1.1 and therefore

3 |_ Vzr _ Vzrz_l—g 1) =
[V—J—(gj( 1) —[sj( 1) =1.

2I‘

Using (4.24), one gets
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A A

which is a contradiction. Thusm =1, i.e., n=3. Then the equatioV, =3V_x°
yields P? + 3=3x>. MoreoverP =3c for some positive integar since 3| P . Hence
the Pell equatiorx” —3c®> =1s obtained. It can be seen that this equationtthas
solutions (x,¢) :((Vk (4,-1) 12U, (45 1) with k 2 1. Thereforem =landn =3

is a solution.

Case 2:Assume thaB3] t. It is obvious that >Jand sot =6qz* 1for some positive
integerqg. Thenn=mt =2(3ng) £ m. Hence
V. =V _(modV,,),

3V, x> =+V,_(modV,,)
by (4.4). It follows that
3V, x* =V _(modV, (V.2 +3))
by (4.13), which implies that
3x* = +1(modV? +3).
Since3|P andm is odd, it is seen tha|V,, by Lemma 4.1.2. Therefore
3x* =+1(mod3),

which is not possible. This completes the proof.

Theorem 4.2.8.f P is even,3] P, andm= 1,then there is no integer such that

V, =3V, X

Proof: Assume thatP is even,3| P, andV, =3V, x* .SinceV,, |V, and3|V, ,there

exist two odd positive integentsand z such thatn=mt andn =2z by (4.21) and
Lemma 4.1.2, respectively. Therefone=2r for some odd positive integer It is

obvious thatt >1.Then t=4qz+ 1 for some positive integery. Thus, since

n=m =4mg+m, one gets
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V, =£V,_(modV,,,),
by (4.4), i.e.,
x> =2V _(modV,, ).
It is seen thatV,,V,,, ) =2y (4.19). Hence
3x* = £1(modV,,/2).
Since2m/4 =4r/4=r is odd, it is seen thaf, |V,,, by (4.21) and hence

3x* = +1(modV,/2),

) +3
which shows that] =
V,/2

4

j =1. On the other hand, sindg = P*+4P?+ &hd P

oo

Moreover, using Lemma 4.1.1, it is seen g2 = 2(mod3). Thus,

(VjZJ [Vlzj( B =(§j=—1

or J =-1, which is a contradiction. This completes the proof

is even, it is seen thaw,=2(mod8) and therefore(v
4

Theorem 4.2.91f P is even, 3P ,2||P,andm> 1then there is no integer such

thatV, =3V, x*.

Proof: Assume thatP is even, 3P, 2||P, andV, =3V_x* .SinceV, |V, and
3|V,, there exists an odd positive integesuch thatn=mt by (4.21) andn is odd

by Lemma 4.1.2, respectively. Therefone is also odd. It is obvious that >1.

Assume that 3| Thent =3s for some odd positive integar Sincen=mt =3ms,
one gets
V. xX*=V, =V, =V _(V2+3)
by (4.13). Since3| P andms is odd, it follows tha3|V,, by Lemma 4.1.2. Thus
V.V )(VE +3)/3)= X
It can be easily seen the&t_/V,_, (V.2 +3)/3)  sdhich shows that
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V. =V u? andV2 +3 =3/
for some positive integens andv. So3v* =V2 +3=V, _+ 1by (4.11). Thus
v’ =1(modV,, ).
sinceV, |V, ,i-e., (P? + 2)|V,,. by (4.21), it follows that

3v? =1(modP? +2),

S
(P? +2)12

On the other hand, sinc® P, it is seen tha{P? +2)/2=1(mod 3)Therefore

(3 N\ _(®22) %
J_((P2+2)/2]_( 3 J( De=e

which shows that

Since 2||P , it follows thatJ = — 1which is a contradiction. Now assume ti3t .
Thent =6q* 1for some positive integeq sincet >1. Thusn=mt =2(3ng) £ m,
which leads to
V, =V, (modV,,),

or

3V, x* =1V, (modV,,)
by (4.4). It follows that

3V, x*=+V_(modV, (V2 +3))

by (4.13), i.e.,

3x* =+1(modV? +3).
Since 3| P andm is odd, it is seen tha&|V,, by Lemma 4.1.2. Therefore

3x* =+1(mod3),

which is not possible. This completes the proof.
The following lemma, which can be proved by indotiwill be used in the sequel.

Lemma 4.2.2.If P is odd andk 2 21henV2k = -1(modV, + 1).
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Theorem 4.2.10)f V, =6V, x> andm=>1, thenm=2 andn =6.

Proof: Firstly, assume thaP is odd. Let3] P. Then, since3|V, and 2|V, ,it
follows that n=2z for some odd integer by Lemma 4.1.2 and@|n by (4.14),
respectively. This shows th&{ z and therefore =3a for some odd positive integer
a. Thusn =2z =6a =12q+ 6for some positive integey. Hence
V., =V, =2(mod8)
by (4.6). Clearly,x is odd. ThereforesV, =6V, x* =V, =2(mod 8)Besides, since
V_|V,, there exists an odd positive integersuch thatn=mt by (4.21). Since
n =2z with odd z, it follows thatm=2r for some odd positive integer Assume
that 3Jr. ThenV_ =2(mod 8)by Lemma 4.1.3 and therefo®_ =4(mod  &hich
contradicts the fact thaVv,, =2(mod 8Assume that3/r. Then, since3|n and
n=mt, it is seen that 3| ,i.e., t=3s for some odd positive integes. Thus
n=mt =3ms. Therefore
V.=V, =V, _(V2-3)=6V_x°

by (4.13). Since3| P and ms=2rs=2(mod 4), it follows that 3|V, by Lemma
4.1.2. Thus

V. IV I(VZ —3)/3)=2x°.
It can be easily seen th@t,_/V,_,(V2 -3)/3)  =dhich shows that

V. =2V u® andVZ - 3=3v° (4.27)
or

V. =V u? andV.> - 3=6v° (4.28)
for some integersi andv. Identity (4.27) is not possible by Theorem 4.2A8sume
that (4.28) is satisfied. By Theorem 4.2.1, it dals that s =1. Therefore
VZ-3=6v°. Using (4.11), we geV,, =V, =6v’+ 1Assume thatr >1.Then
2m=4r = 4(49+1) = 2(2“2) + 4 for some odd integer with k > 3. Hence

v, = —V4(modV2k)

by (4.4), that is,
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6v> = —(V, +1)(modV, ).
SinceV, andvzk are odd by (4.14), it follows that
VP =—(V, +1)/2(modV, ),

which implies that

J :[MJ =1.
Vk

2

- Y,
On the other hand, sinc[ev—l]:—l by (4.9) and[?k]:(gj:—l by Lemma

ok

3 |_ Vz%_l Vzk _ _
g =(-1) (?]—(‘1)(—1)—1-

Besides, it is clear that, = 7(mod16) and therefordV, +1)/8 is odd. Thus

Vo -1
2 =
v, +1)/8) | (v, +1)/8
by Lemma 4.2.2, and so

g m3vrn2) (-1 3 ) 4 [ (v, +1)8
vV, Vo Vo (Ve |V

_ | M. *1)/8
- o[ 0]

2

4.1.1, itis seen that

Let y=(V,+1)/8. Then,

I\ ) N B I U[} Vi
J=( 1)(\,—}—( 1){\,—J—( 1)(-1) o

oK 2
v, -1
K

yy ¢
( 22 -1 n
=(-1)(-1) M =(-1)(-1) 2 (-1) 2 =-1,
which is a contradiction. Therefore= 1, which implies thaim=2 andn =6.Since
V, =P?+2 and V, = P®+6P*+9P*+2, the equationP*+4P*+1=6x" follows

from V, =6V_x*. Completing the square giveg®>+2)°-3=6x> Then it follows
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that 3|(P* + 2) and thereforeP? + 2=3c for some positive integer, which leads
to the equatiorBc® -2x? =1By Lemmal in [49], if kv/A+tJ/B is a solution of
the equation AX2-BY?=1 and r+sJ/AB is a solution of the equation
X2~ ABY? =1, then the productkr + Bts)v/A + (tr + Aks)}v/B is a solution of the
equation AX?-BY2 =1.Thus, since~/3++/2 is a solution of the equation
3c?-2x? =1 and 5+2y/6 is a solution of the equatioc® -6x> =1he equation

3c? - 2x? =1 has infinitely many solutions. Therefore=2 andn =6is a solution.

Let 3|P. Then, since3|V, and 2|V, ,it follows thatn is odd by Lemma 4.1.2 and
3|n by (4.14), respectively. Therefore=12q+ f8r some positive integeq.
Thus,

V, =V,,; =+4P = 4(mod8)
by (4.6), that is,

6V, x° = 4(mod8).

Also, sincex is odd, it follows that6V., =4(mod 8)ThusV,, is even and therefore
3|m by (4.14). Moreover, since is odd andVv,, |V, ,it is seen thaim is odd by
(4.21). ThenV; |V, by (4.21). Besides, since is odd, it can be seen tha{V, and

therefore4|V,, .This shows tha8|V, which is not possible by (4.7).

Finally, assume thatP is even. If n is odd, thenm is also odd. Hence
V. =nP(modP?) andV,, = mP(modP? ) by Lemma 4.1.4, which implies that
nP = 6mPx*(modP?),

or

n = 6mx*(modP),
which is not possible sinc® is even andn is odd. If n is even, thenm is also
even. Hencéd/, =2(mod 4andV,, =2(mod 4)by Lemma 4.1.4, which shows that

6V, x* =0(mod4),
or

V., =0(mod4),
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which contradicts the fact th&t =2(mod  4Jhis completes the proof.

4.3. The EquationsV, =VV_x*,V. =V V. ,andU_=U U,

m-Ur?

In this subsection, we assume tmtand r are natural numbers. It is shown that

whenr is even and/, #1, there is no integex such thatv, =V,V_x*. Also when
Q=1(mod8), V,#1, V. #1 and X is even integer, the solution of the equation
V. =V, V.x* is found. In addition to this, wheR #£1,5(mod8) and Q = 3,7(mod8),
the equatiorV, =V, V.x* is considered Moreover, it is shown that wheR >1 and
Q= =1, there is no generalized Lucas numbgrsuch thatv, =V, V, for m>1 and
r >1. Finally, it is shown that there is no generaliz8@donacci numbeltJ , such

thatU, =U U, for Q=1 andl<r<m

Throughout this subsection, it is assumed fhaand Q are relatively prime positive

integers.

In [22], the authors showed that there is no integsuch thatL, = L L, x* whenm

and r are natural numbers with evan. Now, the same problem is solved for

generalized Lucas numbers

Theorem 4.3.1.Let Q =15(mod8), V., #1, andr be odd. Then there is no integer
x such thatv, =V_V,, x°.
Proof: Assume tha¥/, =V, V, x*, Q =15(mod8) andr is odd. Firstly, assume that
P is odd. Since/, |V, andV,, |V, ,it follows thatn=mt andn =2rs for some odd
integerst and s by (4.21). Thus2|n and n/2 is odd. Sincen=mt andt is odd, it
is seen tha|m and M2 is odd. Then we can writm =12q+c with c0{ 2,610
andqg=0. Thus

V., =Vo0.c =V,, V4, V,0(Mod8)

m 12g+c
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by (4.6). SinceV, =3(mod8), V, =2(mod8) andV,, =3(mod 8) by Lemma 4.1.3, it
follows that

V. =2,3(mod8).
Similarly, it is seen thatV, =2,3(mod 8)and V,, =2,3(mod8). Assume that

V,, =3(mod8). Then V, =V, V, x*=3V_x*(mod8). Moreover, 3x* =0,3,4(mod 8)
andV_ =2,3(mod 8), which shows tha8Vv, x* =0,1,4,6(nod8). But this contradicts
the fact that V,=2,3(mod 8). Now assume thatV, =2(mod8). Then

V. =V, V_x* =2V _x*(mod8). Since2x* =0,2(mod 8)andV_ = 2,3(mod 8),it is seen

2r'm

thatV, =0,4,6(nmod 8), which contradicts the fact th&t =2,3(mod  8).

Finally, assume thaP is even. Then sinca is even andQ is odd, it is seen that
V. =2(mod4) by Lemma 4.1.4. Similarlyy,, =2(mod 4andV,, =2(mod4). This
shows thatV, =0(mod 4),which contradicts the fact tha¥, =2(mod 4)This

completes the proof.

Theorem 4.3.2.Let Q=3,7(mod 8), V., #1, andr be odd. Then there is no integer

x such thav, =V_V, x*.

Proof: Assume thatv, =V, V. x*, Q=3,7(mod8), and r is odd. Firstly, assume

2r¥m

that P is odd. SinceV, |V, andV,, |V, , it follows that n=mt and n=2rs for
some odd integers and s by (4.21). Thus2|n and /2 is odd. Sincen=mt andt
is odd, it is seen tha2|m and m/2 is odd. Thenm =12q+c with c[{2,6,10 and
g=0. Thus

V. =V 0. =V,, V4, V,(Mod8)

2q+c
by (4.6). SinceV, = 7(mod8), V, =2(mod8), andV,, =7(mod 8)by Lemma 4.1.3, it
follows that

V. =2,7(mod8).
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Similarly, it is seen thatV,=2,7(mod 8)and V, =2,7(mod8). Assume that
V,, =7(mod8). Then it follows that V, =V, V, x* =7V x*(mod8). Moreover,
7x* =0,4,7(nod8) andV, =2,7(mod 8), which shows tha?V, x* =0,1,4,6(mod8).
But this contradicts the fact that =2,7(mod  8)low assume tha¥,, =2(mod8).
ThenV, =V, V. x* = 2V_x*(mod8). Since 2x* =0,2(mod 8)andV,, =2,7(mod 8), it

2r'm

is seen tha¥/, =0,4,6fmod 8)which contradicts the fact th&t =2,7(mod  8).

Secondly, assume th&t is even. Then sinca is even andQ is odd, it is seen that
V,=2(mod4) by Lemma 4.1.4. Similarly, it is seen that, =2(mod  4)nd
V,, =2(mod4). This shows thatV, =0(mod 4),which contradicts the fact that

V. =2(mod4). This completes the proof.

Theorem 4.3.3LetV,_ #1, k=2, andQ, r be odd. Then there is no integersuch

thatV, =V, V_x*.
2%r

Proof: Assume thav/, :VZkerXZ andr is odd. Firstly, assume th& is odd. Since
V.|V, and Vi, |V, ,there exist two odd integers and s such thatn=mt and

n=2s by (4.21). Thusm=2“c for some odd positive integec. Then
V, =2,7(mod8), V., =2,7(mod8) and Vzkr =2,7(mod 8) by Lemma 4.1.3. Assume

thatV2kr = 2(mod 8). Then it follows that

V, =V, Vx* =2V, x*(mod8).
Moreover, since 2x*=0,2(mod 8) and V_ =2,7(mod 8), it is seen that
2V_x* =0,4,6(mod8), which contradicts the fact thet =2,7(mod  8low assume
that VvV, =7(mod8). Then V, =V, V,x*=7V,x*(mod8).  Moreover,

7x* =0,4,7(nod8) and V,, =2,7(mod 8). This shows that?Vv, x* =0,1,4,6(nod8),

which contradicts the fact th&f, =2,7(mod  8).
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Secondly, assume th& is even. Then, sinca is even and is odd, it is seen that
V. =2(mod4) by Lemma 4.1.4. Similarly, it is seen that, =2(mod 4nd
V,, =2(mod4). This shows thatV, =0(mod 4),which contradicts the fact that

V, =2(mod4). This completes the proof.

Thus, the following theorem can be stated easily.

Theorem 4.3.4.Let r be even,Q be odd, and/, #1. Then there is no integer

such thawv, =V, V. x°.

Proof: The proof follows from Theorem 4.3.1, Theorem 2,.and Theorem 4.3.3.

The lemma given below is from number theory ant iised in the proof of the

theorem following it.

Lemma 4.3.1.Let a,b,c,x0Z, gcd(@,b)=1 and ab=cx*>. Then a=ru® and

b=sv® with rs=c for some positive integens andyv.

In [22], the authors showed that for>1 andr >1, there is no even integer such
that L, = L L, x°. Besides, ifQ =3,7(mod8) and x is even, then it can be seen that
the equationV, =V V. x> has no solutions by (4.8). Now, the same problem i

considered foiP =1 andQ =1(mod8).

Theorem 4.3.5.Let x be an even integer an@ =1(mod8). If V. =V V. x* with

V,#1,V, #1,thenm=r =1, n=3, andP =3.

Proof: Assume thav/, =V_V.x*, Q =1(mod8), and x is even. If one ofm andr is

even, the proof follows from Theorem 4.3.4. Assuhed m andr are odd. Firstly,

assume thaP is odd. Sincex is even, it follows tha#|V, and therefore3|n by

(4.14). If 3|m or 3|r, thenV,, orV, is even by (4.14). Thus we g8{V, , which is
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impossible by (4.7). Therefore we had m and 3} r. SinceV_ |V, andV, |V, ,

there exist two odd positive integetrsand s such thatn=mt andn=rs by (4.21).

Thenn is odd. As aresultn=mt, n=rs, 3|n, 3] m, and 3] r. Thereforet =3a

and s=3p for some odd positive integer@ and b, which shows that

n=3ma =3rb, i.e., ma=rh. Thus, sincen is odd, it follows that
VmVrXZ :Vn :V3ma :Vma(\/rr%a +Kgma)
by (4.13), which shows that

(V7 + Q™) =V, X (4.29)

Then, using (4.16), it can be seen tﬁ%l“i,vja +3Q”‘aj =1 or 3. In both cases, by

Lemma 4.3.1, we have

\\//_ma =wu; andV.2 +3Q™ = yul (4.30)
or

Vire Vi +3Q™

Vi wu? andT = yu? (4.31)

m

with wy =V. for some positive integens, y,u,, andu,. Using the fact thama=rb
in (4.30) and (4.31), one gews +3Q™ = yu? andV?2 +3Q™ =3yu’, respectively.
Thus it follows thaty |[V2 +3Q™. Since y|V. andV. |V, ,it is seen thaty |3Q™ .
Since y|V,, one obtainsy |3 by (4.16), which shows thay =1 or y=3. As a
result, it follows thav.2 +3Q™ =v? or V.2 +3Q™ =3v’ for some integer. Assume
that V2 +3Q™ =v®. Using (4.11), one get¥,, =v>-Q™. Assume thatrb >1.
Then 2rb=2(4q+1)=2(22)+ 2 for some odd positive integez with k= 2.
Hence,

Vo, = Q" V,(modV )
or

V,, = —Q'b”\/_z(modvzk)

by (2.17). In both cases, it is seen that
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v ~Q = -Q",(modV,)
by (1.1), that is,
V2 = _Qrb—l (V2 _ Q) = _Qrb_lU3(m0d\/2k) '

; — _Qrb_lus — U | _
which shows thatJ = BEVARE =1. On the other hand,v— =1 by (4.24).

oK oK

Moreover, V2k =7(mod 8) by Lemma 4.1.3 and therefo{e\;—lj= -1. Also since

PIS

k

rb-1
rb—1 is even, it is seen thEt?/—J =1. Thus

2

R A
V2k V2k V2k V2k
which contradicts the fact thal =1. Assume thatv +3Q™ =3v>. Then 3|V, .
This shows that3|P by Lemma 4.1.2 sinceb is odd. Using (4.11), one obtains
V,, =3v*-Q™. Assume that rb>1. Then it is clear that
2rb=2(4g+1) = 2(2“2) + 2 for some odd positive integer with k = 2. Hence,
Vo = -Q 7V, (modV )
or
Vo = -QV,,(modV )
by (2.17). In both cases, it is seen that
v -Q" =-QV,(modV ;)
by (1.1). That is,
32 =-Q"(V, -Q) = -Q" U, (modV,, ),

_ rb-
which shows thatJ :[3QV—1U3} =1. Besides, it is obvious th{[\%] =1 by

oK oK

piS ok

— rb-1
(4.24) and(v—lJ =-1 by (4.9). Sincerb is odd, one getE% J =1. Also since
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oK

3|P and k=2, it can be easily seen thmzk =2Q 2 (mod3) by Lemma 4.1.4.

Therefore

(i} ] (V?kj(‘l)@lj[vzzl] NEQN 1) Q:
) )

which contradicts the fact that =1. Thereforerb =1, i.e., r =b =1. This shows

Consequently,

that m=r =1 and n=3. Hence, V, =VV,x* =(Px)?, i.e., P(P*+3Q)=P?x*,
which implies thatP | (P? +3Q )and thereforeP |3Q. Since (P,Q) =1, it follows

that P |3. This shows thaP =3 sinceP =V, =V, #1 by the assumption.

Secondly, assume th#&t is even. Since is even, it is seen that|V, and therefore

n is odd by Lemma 4.1.4. This shows tmatand r are also odd. On the other hand

n-1 m-1 r-1

V. =nPQ 2 (modP?), V. =mPQ 2 (modP?), andV. = rPQ 2 (modP?) by Lemma
4.1.4, which imply that

n-1 (mg—zsz(mdpz) |
or

n-1 (m+r—2

2 sz(modP),

which is impossible sinca andQ are odd integers. This completes the proof.

Theorem 4.3.6.Let P #1,5(mod8) and Q = 3,7(mod8). Then there is no integer

such thatv, =V, V. x°.

Proof: Assume thatv, =V, V.x* and P £1,5(mod8). When m or r is even, the

proof follows from Theorem 4.3.4. Therefore, assuha m andr are odd. Them
is also odd.
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Firstly, assume thaP is odd. If 3|m and 3|r, thenV,_ andV. are even by (4.14).
Thus it follows that4|V, .This is impossible by (4.8). Thereforl@{ m or 3jr.
Since 4]V,, X is an odd integer. Assume thaj m and 3} r. Thus 3] n. Since
n,m, andr are odd, it is seen that, =P,5P(mod 8), =P,5P(mod8), and
V. =P,5P(mod8) by (4.6). Thus one getsV, =V V x*=1,5mod8). Then
P=1,5mod8) or 5P =1,5(mod8), which is impossible sinceP #1,5(mod8).
Assume that3|m and 3/r. Then 3|n. If Q=7(mod8), then it follows that
V, =6P(mod8), V,, =6P(mod8), V, =P(mod8) by (4.6) and ifQ = 3(mod8), then
V, =2P(mod8),V., = 2P(mod8), V, = P,5P(mod8) by (4.6). In both cases, from the
equation V. =V V.x*, we get that P=1(mod4), which is impossible since

P #1,5(mods8).

Secondly, assume tha® is even. Sincen,m, and r are odd, it follows that

n-1 m-1 r-1

V. =nPQ 2 (modP?), V., =mPQ 2 (modP?), andV, =rPQ 2 (modP?) by Lemma
4.1.4. This shows that

n-1 [m+r—2

nPQ 2 =nrP?Q' ?2 sz(modPZ),

or

n-1 [m+r—2

nQ 2 =mrPQ" 2 )xz(modP),

which is impossible sinca and Q are odd. This completes the proof.

The following theorem is proved by Keskin and Deirk in [22] when

(P.Q)=(1.1).

Theorem 4.3.7Let P>1 andQ =1. Then there is no generalized Lucas numier
such thatv, =V.V, .

Proof: Assume that, =V, V,, P>1, andQ =1. If one of m andr is even, then

m-r?

the proof follows from Theorem 4.3.4. Thereforeswame thatm and r are odd.
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Firstly, assume thaP is odd. Since/_ |V, andV, |V, ,there exist two odd integers
t and s such thatn=mt and n=rs by (4.21). It is obvious that >1 and s >1.
Hencet =4q+1 for someq=1 and so,n=mt=4mgq+tm=2(2mq)+m. Then it
follows that
V.V, =V, =V _(modV,,) (4.32)
by (4.4). Similarly, it is seen that
V.V, =1V, (modV,,). (3)3
If 3|m and 3|r, then, sincem andr are odd, it follows tha¥, |V, andV,|V. by
(4.21). SinceP is odd, it can be easily seen thg{V, or 8|V, , which is impossible
by (4.7). Therefore 3|m or 3|r. Assume that 3|m and 3|r. Then
V. Vo) = (V,,V,, ) =1 by (4.14) and (4.19). Using (4.32) and (4.33), gets
V, =+1(modV,,,) .34)
and
V. =+1(modV,,), 4.35)
respectively. Thus

V,, <V 1<V +1andV, <V, +1<V, +1

2m =

by (4.34) and (4.35), respectively. As a resuli btained that
V. +V,, SV +V. +2. (4.36)

Using (4.11) in (4.36), one ge¥s +V.>+2<V,_+V., which is impossible. Assume

that 3m and 3} r. Then(V,,,V,,, ) =2and (V,,V,,) =1 by (4.14) and (4.19). Hence

one has
V. =+1(modV,,/2), #3
and
V. =+1(modV,,) .38)
by (4.32) and (4.33), respectively. Moreover, b33 and (4.38), it can be seen that
V, <V +2 (4.39)
and
V, <V +1. (4.40)

Then,
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Vom +V,, SV, + 2V, +3 (4.41)
by (4.39) and (4.40). Using (4.11) in (4.41), orgainsV? -V_+V> -2V, < -1,
which shows thav (V,, —1)+V, (V, —2) < — 1But this is not possible sind¢, = 2

andV, = 2.

Secondly, assume tha® is even. Sincen, m, and r are odd, it follows that
V. =nP(modP?), V., =mP(modP?), and V, =rP(modP? ) by Lemma 4.1.4. This
shows thatnP = mrP?(modP? )or n=mrP(modP), which is impossible sinca is

odd. This completes the proof.

Now, we consider the above theorem @E -1.

Theorem 4.3.8.Let P>1 and Q =-1. Then there is no generalized Lucas number

V, such thav, =V, V, .

Proof: Assume thatv, =V,V, and Q =-1. If one of m and r is even, then the

proof follows from Theorem 4.3.4. Therefore, assuha m andr are odd.

Firstly, assume thaP is odd. Then, sinc®_ |V, andV, |V, , there exist two odd
integerst and s such thathn=mt andn=rs by (4.21). It is obvious that>1 and
s>1. Hencet =4qg+1 for someq =1, and hencen=mt =4mg+ m=2(2mq) + m.
Then it follows that
V.V =V, =xV_(modV,,) (4.42)
by (1.1) and (2.17). Similarly, it is seen that
V.V, =1V (modV,,). (4.43)
If 3|m and 3|r, thenV,, andV. are even by (4.14). This shows thHy/, which is
impossible by (4.8). Therefor8| m or 3} r. Assume that3]m and 3] r. Then
V... V,,) = (V. ,V,, ) =1 by (4.14) and (4.19). Hence,
V. =+x1(modV,,,) @4
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by (4.42) and
V., =+1(modV,,) 384
by (4.43). Thus one obtains
V, <V #1<V. +1
and
V, <V_+1<V_+1
by (4.44) and (4.45), respectively. Then it follothat
V, +V, SV +V +2. (4.46)
Using (4.11) in (4.46), one ge¥4 (V.. —1)+V,(V, -1)<  which is impossible since
V,2P=23 andV, 2P=>3. Assume that3|m and 3/r. Then (V,,V,, ) =2 and

V..V,,) =1 by (4.14) and (4.19). Hence

V. = +1(modV,, /2), (4.47)
and
V. =+1(modV,,) (4)48
by (4.42) and (4.43), respectively. It can be gbanh
V, <V +2 48)
and
V, <V_+1 (4.50)
by (4.47) and (4.48). Thus
V, +V, <V +2V +3 (4.51)

by (4.49) and (4.50). Using (4.11) in (4.51), omg¢ainsV?-V_+V?-2V. <7. This
shows thatV,(V,-1)+V,(V, -2)< 7,which is impossible sinc&/, ,=2P> 2nd

V. 2P>3.

Secondly, assume tha&® is even. Sincen,m, and r are odd,V, = +nP(modP?),
V_ =+mP(modP?), and V, =+rP(modP? ) by Lemma 4.1.4. This shows that

nP = +mrP?(modP?). This implies thatn = +mrP(modP), which is impossible since

n is odd. This completes the proof.
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The following lemma is given without proof sincasteasy.

Lemma 4.3.2If Q=+1and0<r <n, thenV, >2U, .

In [13], Farrokhi showed that the equatibp= F_F, has no solutions fom>2 and

r >2. Now a similar result for generalized Fibonacci mems whenP >1 and

Q=1 is given.

Theorem 4.3.9.Let P >1, Q=+1 and m>r >1. Then there is no generalized

Fibonacci numbeb , such thay, =U U, .

Proof: Assume thatu,=U U, ,Q=%1 and m>r >1. Then sinceU, |U,6 and

U, |U,, there exist two positive integetsand s such thathn=mt and n=rs by

(4.20).

Firstly, assume that is even, i.e.,t =2a for some positive integea. Then
n=mt=2ma. Thus it follows thatU U, =U =U, =U_V_ by (4.10). This
shows thatU /U )V,, =U, by (4.20). Therefor&/ , |U, By (4.22), one obtains
r =2mac=nc for some natural numbet. This shows thain|r. Sincer |n, it

follows thatn=r. ThereforeU,, =1,which is impossible sincen>1 and P >1.

Secondly, assume thatis odd. It is obvious that>1. Then one can write =4q+1

with g=1. Thereforen =mt = 2(2mq) £ m. Thus it follows that

Un = U2(2mq)tm = Utm(rnc’dU Zm)l
by (2.18). Using (1.1), one gets
UuU, =+U _(modu,, ). (4.52)

SinceU,,, =U_V,_ by (4.10), it follows that

U, =+1(modV,,).
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HenceV, <U, £1<U, + 1.Moreover, sincem>r >1, it follows thatV 6 >2U, by
Lemma 4.3.2. Thus it is seen that +1=V_ >2U  which is impossible. This

completes the proof.

It is well known that the greatest common divisdr W, and U, is again a
generalized Fibonacci number by (4.17). But, tlesieommon multiple o), and
U, may not be a generalized Fibonacci number. THisvis from the following

theorem. Since the proof of the theorem is simdahat of Theorem 4.3.9, we omit

it.

Theorem 4.3.10.Let Q==1, 1<m<n, and P>1. Then [U,,U,], the least
common multiple ofU,, andU, ,is a generalized Fibonacci number if and only if

U,lU..



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

The second chapter of this thesis is acceptedubligation in “Hacettepe Journal of
Mathematics and Statistics” [47]. The third chapierpublished in “Journal of

Integer Sequences” [23].

Moreover, in this thesis, firstly, we focused ore tBquationsF, =wF_x* and

L, =wL x* with WD{12,3,6}. Then, we have considered corresponding equations
for generalized Fibonacci and Lucas numbers, itiquéar for some even integd? .

But, finding solutions of the equatiol, =Wx2,WD{l2,3,6}, is still an open
problem whenP is even. If the solutions of the equatidh) = wx* were known
when P is even, then the equatidsh, = wU _x* could be solved whe® is even.
Apart from these, we solved the equativp=kx*> when P is odd andk|P.

Similarly, the solutions of the equatidh, = kx* can be investigated whea| P .
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