T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BAZI LANTANİT ATOMLARININ ATOMİK YAPI HESAPLAMALARI

DOKTORA TEZİ

Betül KARAÇOBAN

Enstitü Anabilim Dalı : FİZİK

Tez Danışmanı : Doç. Dr. Leyla ÖZDEMİR

Mart 2011

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

BAZI LANTANİT ATOMLARININ ATOMİK YAPI HESAPLAMALARI

DOKTORA TEZİ

Betül KARAÇOBAN

Enstitü Anabilim Dalı : FİZİK

Bu tez 04/03/2011 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Doç. Dr. Kadir ESMER Jüri Başkanı

Prof. Dr. Halim ÖZDEMİR Üye

Doç. Dr. Leyla ÖZDEMİR Üye

rdoğan TARCAN Üye

Yrd. Doç. Dr. Yusuf ATALAY Üye

Doç. E

ÖNSÖZ

Bu çalışmada, bazı lantanit atomları (La, Ce, Yb ve Lu) ve iyonları için relativistik ve karşılıklı etkileşme etkilerini içeren çok konfigürasyonlu Hartree-Fock (Multiconfiguration Hartree-Fock–MCHF) ve relativistik Hartree-Fock (Relativistic Hartree-Fock–HFR) yöntemleri kullanılarak, seviye enerjileri, Landé *g*-çarpanları, iyonlaşma potansiyelleri ve elektrik dipol geçişlerine ait hesaplamalar yapıldı. Ayrıca bazı atomlar için elektron ilgileri, yarı ömürleri ve aşırı ince yapı sabitleri hesaplandı.

Bu tez çalışmam boyunca yardımlarını esirgemeyen ve öncülük eden değerli hocam Doç. Dr. Leyla ÖZDEMİR'e, çalışmam süresince destek olan değerli arkadaşım Arş. Gör. Güldem ÜRER'e ve çalışmaya katkıda bulunan herkese teşekkür ederim.

Ayrıca bu güne kadar maddi ve manevi her konuda destek veren anneme, babama, ablama ve kardeşlerime çok teşekkür ederim.

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
KISALTMALAR LİSTESİ	vii
ŞEKİLLER LİSTESİ	ix
TABLOLAR LİSTESİ	Х
ÖZET	xiv
SUMMARY	XV

BÖLÜM 1.

GİRİS	1
Сп ц,	-

BÖLÜM 2.

ΗΕSΔΡΙ ΔΜΔ VÖNTEMI ERİ	10
	10
2.1. Bazı Genel Kavramlar	10
2.1.1. Çok elektronlu atomlar için relativistik olmayan Hamiltonyen	10
2.1.2. Merkezi alan yaklaşıklığı ve çarpım dalga fonksiyonları	11
2.1.3. Değişim yöntemi ve matris özdeğer problemi	14
2.2. Hartree-Fock Yaklaşıklığı	17
2.2.1. Çeşitli Hartree-Fock yaklaşıklıkları	22
2.2.2. Hartree-Fock denklemleri	23
2.2.2.1. Enerji ifadesi	23
2.2.2.2. Hartree-Fock denklemlerinin türetilmesi	26
2.2.3. Çok elektronlu atomlarda karşılıklı etkileşme kavramı	31
2.3. Çok Konfigürasyonlu Hartree-Fock Yöntemi	32
2.3.1. Relativistik etkiler	37
2.3.1.1. Breit-Pauli Hamiltonyeni ve dalga fonksiyonu	37

2.3.1.2. İnce yapı seviyeleri	40
2.3.2. Enerji seviyeleri arasındaki geçişler	42
2.3.2.1. Geçişler ve geçiş özellikleri	42
2.3.2.2. İşımalı geçişler için kesin ve yaklaşık seçim kuralları	45
2.3.3. Enerji seviyelerinin Landé g-çarpanları	47
2.3.4. Aşırı ince yapı etkileşimi	50
2.3.5. MCHF ile atomik yapı hesaplama adımları	55
2.4. Relativistik Hartree-Fock Yöntemi	60
2.4.1. Bir-elektron ve toplam bağlanma enerjileri	64
2.4.2. Radyal denklemlerin sayısal çözümleri	66
2.4.3. Homojen denklem (yerel-potansiyel) yöntemleri	68
2.4.4. Relativistik düzeltmeler	72
2.4.5. Karşılıklı etkileşme düzeltmeleri	74
2.4.6. Işımalı geçişler	78
2.4.6.1. Elektrik dipol geçişleri	78
2.4.6.2. Manyetik dipol ve elektrik kuadrupol geçişleri	81
2.4.7. HFR ile atomik yapı hesaplama adımları	82

BÖLÜM 3.

HESAPLAMA SONUÇLARI	87
3.1. La I (Z = 57) için Hesaplama Sonuçları	87
3.1.1. La I'in bazı seviyelerinin enerjileri ve Landé g-çarpanları	89
3.1.2. La l'in bazı uyarılmış seviyelerinin geçiş enerjileri ve yarı	
ömürleri	95
3.1.3. La l'in elektrik dipol geçişleri için dalga boyları, ağırlıklı	
salınıcı şiddetleri ve geçiş olasılıkları	98
3.1.4. ¹³⁹ La I'in bazı düşük hal seviyelerinin aşırı ince yapısı	103
3.1.5. La I ve La II'nin geçiş enerjileri	107
3.2. La II (Z = 57) için Hesaplama Sonuçları	110
3.2.1. La II'nin bazı seviyelerinin enerjileri ve Landé g-çarpanları	110
3.2.2. La II'nin elektrik dipol geçişleri için dalga boyları, ağırlıklı	
salınıcı şiddetleri ve geçiş olasılıkları	118
3.3. La III (Z = 57) için Hesaplama Sonuçları	123

3.3.1. La III'ün bazı seviyelerinin enerjileri ve Landé g-çarpanları	••
3.3.2. La III'ün elektrik dipol geçişleri için dalga boyları, ağırlık	:lı
salınıcı şiddetleri ve geçiş olasılıkları	
3.4. Ce I ve Ce II (Z = 58) için Hesaplama Sonuçları	
3.4.1. Ce I ve Ce II'nin geçiş enerjileri	•••
3.5. Ce III (Z = 58) için Hesaplama Sonuçları	••
3.5.1. Ce III'ün bazı seviyelerinin enerjileri ve Landé g-çarpanlar	l
3.5.2. Ce III'ün elektrik dipol geçişleri için dalga boyları, ağırlık	dı
salınıcı şiddetleri ve geçiş olasılıkları	•••
3.6. Yb I (Z = 70) için Hesaplama Sonuçları	
3.6.1. Yb I'in bazı seviyelerinin enerjileri ve Landé g-çarpanları	•••
3.6.2. Yb I'in bazı uyarılmış seviyelerinin yarı ömürleri	
3.6.3. Yb I'in elektrik dipol geçişleri için dalga boyları, ağırlık	:11
salınıcı şiddetleri ve geçiş olasılıkları	•••
3.6.4. Yb I, Yb II ve Yb III'ün geçiş enerjileri	••
3.7. Yb II (Z = 70) için Hesaplama Sonuçları	
3.7.1. Yb II'nin bazı seviyelerinin enerjileri ve Landé g-çarpanlar	1
3.7.2. Yb II'nin elektrik dipol geçişleri için dalga boyları, ağırlık	:11
salınıcı şiddetleri ve geçiş olasılıkları	•••
3.8. Yb III (Z = 70) için Hesaplama Sonuçları	••
3.8.1. Yb III'ün bazı seviyelerinin enerjileri ve Landé g -çarpanları	
3.8.2. Yb III'ün elektrik dipol geçişleri için dalga boyları, ağırlık	:11
salınıcı şiddetleri ve geçiş olasılıkları	•••
3.9. Lu I (Z = 71) için Hesaplama Sonuçları	••
3.9.1. Lu I'in bazı seviyelerinin enerjileri ve Landé g-çarpanları	••
3.9.2. Lu I'in bazı uyarılmış seviyelerinin yarı ömürleri	•••
3.9.3. Lu I'in elektrik dipol geçişleri için dalga boyları, ağırlık	lı
salınıcı şiddetleri ve geçiş olasılıkları	•••
3.9.4. ³⁹ Lu I'in bazı düşük hal seviyelerinin aşırı ince yapısı	•••
3.9.5. Lu I, Lu II ve Lu III'ün geçiş enerjileri	
3.10. Lu II (Z = 71) için Hesaplama Sonuçları	
3.10.1. Lu II'nin bazı seviyelerinin enerjileri ve Landé g-çarpanla	r1

3.10.2. Lu II'nin elektrik dipol geçişleri için dalga boyları, ağırlıklı	
salınıcı şiddetleri ve geçiş olasılıkları	220
3.11. Lu III (Z = 71) için Hesaplama Sonuçları	225
3.11.1. Lu III'ün bazı seviyelerinin enerjileri ve Landé g-çarpanları	226
3.11.2. Lu III'ün elektrik dipol geçişleri için dalga boyları, ağırlıklı	
salınıcı şiddetleri ve geçiş olasılıkları	229
BÖLÜM 4. SONUÇ VE ÖNERİLER	234
KAYNAKLAR	238
EKLER	272
Ek A. La I-III, Ce III, Lu I-III ve Yb I-III'e ait Ek Tablolar	272
ÖZGEÇMİŞ	378

KISALTMALAR LİSTESİ

CI	: Konfigürasyon Etkileşimi
СР	: Öz-Kutuplanma (Core-Polarization)
CSFs	: Konfigürasyon Hal Fonksiyonları (Configuration State Functions)
D1	: Bir-Cisim Darwin (One-Body Darwin)
D2	: İki-Cisim Darwin (Two-Body Darwin)
DHF	: Dirac Hartree-Fock
DREAM	: Mons Üniversitesi Nadir Toprak Veri Tabanı (Database on Rare
	Earths at Mons University)
EHF	: Genişletilmiş Hartree-Fock (Extended Hartree-Fock)
FS	: İnce Yapı (Fine Structure)
Н	: Hartree
HFR	: Relativistik Hartree-Fock (Relativistic Hartree-Fock)
HFS	: Hartree-Fock-Slater
HS	: Hartee-Slater
HX	: Hartree+İstatistiksel-Takas
MC	: Kütle Düzeltmesi (Mass Correction)
MCDF	: Çok Konfigürasyonlu Dirac-Fock (Multiconfiguration Dirac-Fock)
MCHF	: Çok Konfigürasyonlu Hartree-Fock (Multiconfiguration Hartree-
	Fock)
MC-SCF	: Çok Konfigürasyonlu-Öz-Uyum Alan (Multiconfiguration Self-
	Consistent Field)
NHF	: Ortogonal Olmayan Hartree-Fock (Nonorthogonal Hartree-Fock)
NIST	: National Institute of Standards and Technology's Web Site
NR	: Relativistik Olmayan (Non-Relativistic)
00	: Yörünge-Yörünge (Orbit-Orbit)
QED	: Kuantum Elektrodinamik (Quantum Electrodynamic)

RS	: Relativistik Kayma (Relativistic Shift)
SCF	: Öz-Uyum Alan (Self-Consistent Field)
SDHF	: Tekli-Determinant Hartree-Fock (Single-Determinant Hartree-Fock)
SO	: Çekirdek Spin-Yörünge (Spin-Orbit)
SOO	: Spin-Diğer Yörünge (Spin-Other Orbit)
SPHF	: Spin-Kutuplanmış Hartree-Fock (Spin-Polarized Hartree-Fock)
SS	: Spin-Spin
SSC	: Spin-Spin Temas (Spin-Spin Contact)
SUHF	: Spin-Kısıtlamasız Hartree-Fock (Spin-Unrestricted Hartree-Fock)
TF	: Thomas-Fermi
TFD	: Thomas-Fermi-Dirac
UHF	: Kısıtlanmamış Hartree-Fock (Unrestricted Hartree-Fock)

ŞEKİLLER LİSTESİ

Şekil 2.1.	MCHF ile atomik yapı hesabı	57
Şekil 2.2.	Radyal fonksiyonların ve enerji seviyelerin hesabı	58
Şekil 2.3.	Landé g-çarpanları, aşırı ince yapı sabitleri ve spektrumların	
	hesabı	59
Şekil 2.4.	HFR ile atomik yapı hesabı	84
Şekil 2.5.	Radyal fonksiyonların hesabı	85
Şekil 2.6.	Enerji seviyelerin ve spektrumların hesabı	86

TABLOLAR LİSTESİ

Tablo 1.1.	Lantanitlerin ilk dört iyonlaşma dereceleri için taban hal	
	konfigürasyonları (Öz: $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$	3
Tablo 1.2.	Lantanit elementlerinin kararlı izotopları ve bollukları	4
Tablo 1.3.	Çalışılan lantanit atomlarının enerji seviyeleri, ışıma	
	parametreleri, aşırı ince yapı ve izotop kaymaları ile ilgili	
	yapılan çalışmalar	8
Tablo 3.1.	La I'e ait hesaplamalar için alınan konfigürasyon setleri	89
Tablo 3.2.	La l'in E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	91
Tablo 3.3.	La l'in ΔE geçiş enerjileri (cm ⁻¹) ve üst seviyeleri için τ yarı	
	ömürler (ns)	96
Tablo 3.4.	La l'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	log(gf) logaritmik ağırlıklı salınıcı şiddetleri ve A _{ki} geçiş	
	olasılıkları (sn ⁻¹)	100
Tablo 3.5.	¹³⁹ La I'in A ve B aşırı ince yapı (HFS) sabitleri (MHz)	104
Tablo 3.6.	La ⁻ ve La ⁺ 'nın İP iyonlaşma potansiyeli (eV), UE uyarılma	
	enerjileri (eV) ve La'nın Eİ elektron ilgisi (eV)	109
Tablo 3.7.	La II'ye ait hesaplamalar için alınan konfigürasyon setleri	111
Tablo 3.8.	La II'nin E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	113
Tablo 3.9.	La II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A _{ki} geçiş	
	olasılıkları (sn ⁻¹)	120
Tablo 3.10.	La III'e ait hesaplamalar için alınan konfigürasyon setleri	123
Tablo 3.11.	La III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	126
Tablo 3.12.	La III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	gf ağırlıklı salınıcı şiddetleri ve gA _{ki} ağırlıklı geçiş olasılıkları	
	(sn ⁻¹)	130

Tablo 3.13.	Ce I ve Ce II'nin İP iyonlaşma potansiyeli (cm ⁻¹) ve UE	
	uyarılma enerjileri (cm ⁻¹)	136
Tablo 3.14.	Ce III'e ait hesaplamalar için alınan konfigürasyon setleri	137
Tablo 3.15.	Ce III'ün E (cm ⁻¹) seviye enerjileri ve Landé g-çarpanları	140
Tablo 3.16.	Ce III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı	
	geçiş olasılıkları (sn ⁻¹)	143
Tablo 3.17.	Yb I'e ait hesaplamalar için alınan konfigürasyon setleri	148
Tablo 3.18.	Yb I'in E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	151
Tablo 3.19.	Yb I'in bazı uyarılmış seviyelerinin τ yarı ömürleri (ns)	156
Tablo 3.20.	Yb I'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf	
	ağırlıklı salınıcı şiddetleri ve A _{ki} geçiş olasılıkları (sn ⁻¹)	160
Tablo 3.21.	Yb I, Yb II ve Yb III'ün İP iyonlaşma potansiyeli ve UE	
	uyarılma enerjileri hesaplamaları için alınan konfigürasyon	
	setleri	164
Tablo 3.22.	Yb'nin Eİ elektron ilgisi hesaplamaları için alınan	
	konfigürasyon setleri	164
Tablo 3.23.	Yb I için geçiş enerjileri	166
Tablo 3.24.	Yb II'nin iyonlaşma potansiyeli (cm ⁻¹) ve uyarılma enerjileri	
	(cm ⁻¹)	167
Tablo 3.25.	Yb III'ün iyonlaşma potansiyeli (cm-1) ve uyarılma enerjileri	
	(cm ⁻¹)	168
Tablo 3.26.	Yb II'ye ait hesaplamalar için alınan konfigürasyon setleri	170
Tablo 3.27.	Yb II'nin E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	172
Tablo 3.28.	Yb II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları	
	(sn ⁻¹)	178
Tablo 3.29.	Yb III'e ait hesaplamalar için alınan konfigürasyon setleri	181
Tablo 3.30.	Yb III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	183
Tablo 3.31.	Yb III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı	
	geçiş olasılıkları (sn ⁻¹)	187
Tablo 3.32.	Lu I'e ait hesaplamalar için alınan konfigürasyon setleri	192

Tablo 3.33.	Lu I'in E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	194
Tablo 3.34.	Lu I'in bazı uyarılmış seviyelerinin τ yarı ömürleri (ns)	200
Tablo 3.35.	Lu I'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş	
	olasılıkları (sn ¹)	204
Tablo 3.36.	¹⁷⁵ Lu I'in A ve B aşırı ince yapı (HFS) sabitleri (MHz)	209
Tablo 3.37.	Lu I, Lu II ve Lu III'ün İP iyonlaşma potansiyeli ve UE	
	uyarılma enerjileri hesaplamaları için alınan konfigürasyon	
	setleri	211
Tablo 3.38.	Lu I için geçiş enerjileri (cm ⁻¹)	213
Tablo 3.39.	Lu II ve Lu III'ün İP iyonlaşma potansiyeli (cm-1) ve UE	
	uyarılma enerjileri (cm ⁻¹)	214
Tablo 3.40.	Lu II'ye ait hesaplamalar için alınan konfigürasyon setleri	216
Tablo 3.41.	Lu II'nin E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	218
Tablo 3.42.	Lu II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı	
	geçiş olasılıkları (sn ⁻¹)	222
Tablo 3.43.	Lu III'e ait hesaplamalar için alınan konfigürasyon setleri	226
Tablo 3.44.	Lu III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	228
Tablo 3.45.	Lu III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları	
	(sn ⁻¹)	231
Tablo A.1.	La I'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş	
	olasılıkları (sn ⁻¹) (Tablo 3.4'ün geniş hali)	273
Tablo A.2.	La II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş	
	olasılıkları (sn ⁻¹) (Tablo 3.9'un geniş hali)	282
Tablo A.3.	La III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	
	(Tablo 3.11'in geniş hali)	295
Tablo A.4.	La III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	gf ağırlıklı salınıcı şiddetleri ve gA _{ki} ağırlıklı geçiş olasılıkları	
	(sn ⁻¹) (Tablo 3.12'nin geniş hali)	298

Tablo A.5.	Ce III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	
	(Tablo 3.15'in geniş hali)	309
Tablo A.6.	Ce III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı	
	geçiş olasılıkları (sn ⁻¹) (Tablo 3.16'nın geniş hali)	312
Tablo A.7.	Yb I'in E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları (Tablo	
	3.18'in geniş hali)	320
Tablo A.8.	Yb II'nin E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	
	(Tablo 3.27'nin geniş hali)	323
Tablo A.9.	Yb II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları	
	(sn ⁻¹) (Tablo 3.28'in geniş hali)	326
Tablo A.10.	Yb III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	
	(Tablo 3.30'un geniş hali)	340
Tablo A.11.	Yb III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı	
	geçiş olasılıkları (sn ⁻¹) (Tablo 3.31'in geniş hali)	342
Tablo A.12.	Lu I'in E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları (Tablo	
	3.33'ün geniş hali)	353
Tablo A.13.	Lu II'nin E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	
	(Tablo 3.41'in geniş hali)	357
Tablo A.14.	Lu II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	$log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı	
	geçiş olasılıkları (sn ⁻¹) (Tablo 3.42'nin geniş hali)	360
Tablo A.15.	Lu III'ün E seviye enerjileri (cm ⁻¹) ve Landé g-çarpanları	
	(Tablo 3.44'ün geniş hali)	366
Tablo A.16.	Lu III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å),	
	gf ağırlıklı salınıcı şiddetleri ve gA _{ki} ağırlıklı geçiş olasılıkları	
	(sn ⁻¹) (Tablo 3.45'in geniş hali)	369

ÖZET

Anahtar kelimeler: MCHF yöntemi, HFR yöntemi, Enerji seviyeleri, Landé gçarpanları, Geçiş enerjileri, Dalga boyları, Salınıcı şiddetleri, Geçiş olasılıkları, Yarı ömürler, Aşırı ince yapı sabitleri

Bu çalışmada, konfigürasyon etkileşme yöntemlerinden çok konfigürasyonlu Hartree-Fock (Multiconfiguration Hartree-Fock–MCHF) ve relativistik Hartree-Fock (Relativistic Hartree-Fock–HFR) yaklaşıklıkları kullanılarak lantanit atomlarından La (Z = 57), Ce (Z = 58), Yb (Z = 70) ve Lu (Z = 71) ve bunların bazı iyonlarının bazı uyarılmış seviyelerinin enerjileri, Landé *g*-çarpanları, geçiş enerjileri, dalga boyları, salınıcı şiddetleri, geçiş olasılıkları, yarı ömürleri ve aşırı ince yapı sabitleri hesaplanmaktadır.

İlk bölümde; La, Ce, Yb ve Lu ve bunların bazı iyonları ile ilgili yapılmış mevcut çalışmalar, ikinci bölümde; Hartree-Fock yaklaşıklığı, çok konfigürasyonlu Hartree-Fock ve relativistik Hartree-Fock yöntemleri hakkında özet bilgiler verilmektedir. Dalga fonksiyonları ve bazı relativistik düzeltmeler MCHF atomik yapı paketi ve Cowan'ın program paketi kullanılarak hesaplanmaktadır. Elde edilen sonuçlar diğer deneysel ve teorik çalışmalar ile karşılaştırmalı olarak üçüncü bölümde sunulmaktadır.

ATOMIC STRUCTURE CALCULATIONS OF SOME LANTHANIDE ATOMS

SUMMARY

Key Words: MCHF method, HFR method, Energy levels, Landé *g*-factors, Transition energies, Wavelengths, Oscillator strengths, Transition probabilities, Lifetimes, Hyperfine structure constants

In this study, energy levels, Landé *g*-factors, transition energies, wavelengths, oscillator strengths, transition probabilities, lifetimes and hyperfine structure constants for lanthanide atoms, La (Z = 57), Ce (Z = 58), Yb (Z = 70) and Lu (Z = 71), and some their ions have been calculated using multiconfiguration Hartree-Fock (MCHF) and relativistic Hartree-Fock (HFR) approximations which are configuration interaction methods.

In the first chapter previous works on La, Ce, Yb and Lu atoms and some of their ions have been given. Second chapter deals with Hartree-Fock approximation, the multiconfiguration Hartree-Fock and relativistic Hartree-Fock methods. Wave functions and some relativistic corrections have been calculated using the MCHF atomic structure package and Cowan's program package. In the third chapter results obtained have been compared with other experimental and theoretical works.

BÖLÜM 1. GİRİŞ

Bu çalışmada lantanitler olarak adlandırılan ve atom numarası Z = 57-71 aralığında bulunan bazı atomlar ve iyonları için atomik yapı hesaplamaları yapıldı. Bu atomlar için çeşitli çalışmalarda nadir toprak (rare-earth) elementleri tanımlaması kullanılmıştır. Nadir toprak ifadesi 4f (lantanit) ve 5f (aktinit) elementlerinin iki grubunu da içermektedir. Bu atomlar için nadir toprak elementleri tanımlaması yapılmasına rağmen, bu atomların yer kabuğundaki bollukları diğer bilinen atomlarınki kadardır.

Lantanitler genelde katı halde üç kez iyonlaşmışlardır. Bundan dolayı değerlik alt tabakalarının doluluklarının 4f¹'den 4f¹⁴'e gittiği görülür. Lantanitler, küçük kuantum kusurundan büyük kuantum kusuruna (veya büyük yarıçaplı hidrojen benzeri yörüngeden küçük yarıçaplı hidrojen benzeri olmayan yörüngeye) ilk 4f yörüngelerinin girişken olduğu nötral atomlardır. Bu girişkenlik özellikle lantanda (Z=57) ortaya çıkar. 4f^N konfigürasyonlarından ortaya çıkan çok sayıdaki seviyeler lantanit spektrumlarının analizini aşırı derece zorlaştırır. Lantanitlerin spektrumları son derece zor olmasına rağmen, serinin sağ kısmındaki elementler sol kısmındaki elementlerden bir dereceye kadar daha basittirler. Lantanit elementlerinin en önemli özellikleri, 5s elektronlarınınkine göre daha küçük olan 4f yörüngelerine sahip olmalarıdır. 4f elektronlarının bağlanma enerjileri 5d, 6s ve 6p elektronlarıyla kıyaslanabilir derecede küçüktür. 4f elektronları, yüksek *n* kuantum sayılı dış değerlik elektronları ve diğer etkiler tarafından perdelenirler.

Lantanitlerin ve iyonlarının ışıma özellikleri geçmişte çok az incelenmiştir. Bunun nedeni bu atomların ve iyonlarının hesaplamalarını çok zor hale getiren, dolu olmayan 4f alt tabakasının karmaşık elektronik yapılarıyla karakterize edilmesi ve çoğu iyonları için laboratuar analizlerinin eksik, hatta kayıp (gözden kaçan) olmasıyla açıklanabilir. Lantanitler için dalga boyları, ışımalı geçiş oranları ve

bununla ilgili güvenilir spektroskopik verilerin (salınıcı şiddeti, dallanma kesirleri, ışımalı yarı ömür nicelikleri, aşırı ince yapı ve izotop kayması gibi) kesin bilgisine ihtiyaç giderek artmaktadır. Son yıllarda yapılan yere veya uzaya dayalı çalışmalardan, geniş miktarda yüksek çözünürlüklü spektrumlar veya yüksek sinyalgürültü uydu spektrumları elde edilmektedir. Güneşinkileri de içeren bu spektrumlar nadir toprak çizgilerini içerdikleri için astrofizikte çok önemlidir. Nadir toprak elementlerinin spektrumlarının ayrıntılı incelenmesi, farklı türdeki yıldızların kimyasal bileşenleri hakkında yararlı bilgiler sağlar. Özellikle, nötral, bir ve iki kez iyonlaşmış lantanitler, acayip (tuhaf) yıldızların kimyasının belirlenmesine yardımcı olur. Genelde, bazı manyetik yıldızlardaki lantanitlerin bollukları, güneş sistemindeki değerlerinden oldukça fazladır. Bu bolluğun anlaşılması çok miktarda yüksek nitelikli atomik verileri gerektirir. Birçok manyetik yıldızda, etkin sıcaklıkta atomların çoğu iki kez iyonlaşmıştır. Son zamanlara kadar, yıldızlardaki bolluk değerleri çoğunlukla, iki kez iyonlaşmış nadir toprak elementlerinin geçiş olasılıklarının mevcut olmaması, atomik verilerin eksikliği ve yayınlama çizgilerinin elde edilebilir spektrum dizilimlerinin dışında olmasından dolayı baskın olmayan iyonlasma safhasından (nötral veya bir kez iyonlasmış atomlar) elde edilirdi. Bu yüzden, özellikle morötesi bölgesinde yayınlanan iki kez iyonlaşmış lantanit elementlerine ilgi yeniden artmıştır.

Ayrıca astrofizik dışında, lantanit iyonları görünür bölgede zengin yayınlama spektrumuna sahip oldukları için de ilgi çekmektedir. Nadir toprak element tuzları, bircok ticari metal-halojenür yüksek-yoğunluklu bosaltım lambalarında kullanılmaktadır. Lambaların dizaynı ve sistem kontrolleri için kullanılan modellerde doğru atomik verilere ihtiyaç vardır. Lantanit iyonlarının spektrumlarına artan ilgi, kısmen iki ve üç değerlikli tuzların kristal spektrumlarıyla olan bağlantısından kaynaklanmaktadır. Bağımsız iyonların kristal seviyelerinin benzerliği, kristaller içindeki iyonun seviyelerindeki değişikliklerden sorumlu olan kristal kuvvetlerin daha iyi anlaşılmasına yardım eder. Bunlar da çözümü güç olan soğurma ve floresans spektrumlarını gösterir. Dolayısıyla lantanit iyonları, tuzların kristal yapısının duyarlı bir araştırması için kullanılabilir.

Çoğu lantanit elementlerinin iyonları, morötesi ve görünür bölgede soğurma (absorbsiyon) yapar. Birçok inorganik ve organik soğurma yapan maddenin incelenmesinden belirgin biçimde farklı olarak, bunların spektrumları dar, iyi tanımlanmış ve karakteristik soğurma piklerinden oluşur. Lantanit serisi elementlerinin soğurulmalarından sorumlu olan 4f elektronlarının geçişleridir. Bu yörüngeler, daha yüksek baş kuantum sayılarındaki yörüngelerdeki elektronlar tarafından perdelenir. Bunun sonucu olarak bantlar dar olur.

Nötral bir lantanit atomunun iyonlaşması, 4f elektronlarından birinin koparılmasıyla değil, nispeten zayıf bağlı 6s elektronlarından birinin koparılmasıyla olur. Lantanitlerin ilk dört iyonlaşma dereceleri için taban hal konfigürasyonları Tablo 1.1'de verilmektedir.

Tablo 1.1. Lantanitlerin ilk dört iyonlaşma dereceleri için taban hal konfigürasyonları (Öz: 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s²5p⁶)

Element	Z	Ι	II	III	IV
La	57	$5d6s^2$	$5d^2$	5d	5p ⁶
Ce	58	$4f5d6s^2$	$4f5d^2$	$4f^2$	4f
Pr	59	$4f^36s^2$	$4f^36s$	$4f^3$	$4f^2$
Nd	60	$4f^46s^2$	$4f^46s$	$4f^4$	$4f^3$
Pm	61	$4f^56s^2$	$4f^56s$	$4f^5$	$4f^4$
Sm	62	$4f^66s^2$	$4f^{6}6s$	$4f^6$	$4f^5$
Eu	63	$4f^76s^2$	$4f^76s$	$4f^7$	$4f^6$
Gd	64	$4f^75d6s^2$	4f ⁷ 5d6s	$4f^75d$	$4f^7$
Tb	65	$4f^96s^2$	4f ⁹ 6s	$4f^9$	$4f^8$
Dy	66	$4f^{10}6s^2$	$4f^{10}6s$	$4f^{10}$	$4f^9$
Но	67	$4f^{11}6s^2$	$4f^{11}6s$	$4f^{11}$	$4f^{10}$
Er	68	$4f^{12}6s^2$	$4f^{12}6s$	$4f^{12}$	$4f^{11}$
Tm	69	$4f^{13}6s^2$	$4f^{13}6s$	$4f^{13}$	$4f^{12}$
Yb	70	$4f^{14}6s^2$	$4f^{14}6s$	$4f^{14}$	$4f^{13}$
Lu	71	$4f^{14}5d6s^2$	$4f^{14}6s^2$	$4f^{14}6s$	$4f^{14}$

Astrofizikte, çizgi profillerinin detaylı bilgisi yıldızlardaki bolluklarından elde edilmesini gerektirir. Bu çizgi profilleri, aşırı ince yapıya ve izotop kayma etkilerine bağlıdır. Lantanitlerin kararlı izotopları ve bollukları Tablo 1.2'de verilmektedir.

Z	Element	İzotopları	Bolluğu(%)	Z	Element	İzotopları	Bolluğu(%)
57	La	138	0,1	64	Gd	158	24,8
		139	99,9			160	21,9
58	Ce	140	88,5	65	Tb	159	100
		142	11,1	66	Dy	160	2,3
59	Pr	141	100			161	18,9
60	Nd	142	27,1			162	25,5
		143	12,2			163	24,9
		144	23,8			164	28,2
		145	8,3	67	Но	165	100
		146	17,2	68	Er	164	1,6
		148	5,8			166	33,6
		150	5,6			167	23,0
62	Sm	147	15,0			168	26,8
		148	11,3			170	14,9
		149	13,8	69	Tm	169	100
		150	7,4	70	Yb	168	0,13
		152	26,7			170	3,04
		154	22,7			171	14,28
63	Eu	151	47,8			172	21,83
		153	52,2			173	16,13
64	Gd	154	2,2			174	31,83
		155	14,8	71		176	12,7 6
		156	20,5		Lu	175	97,4
		157	15,7			176	2,6

Tablo 1.2. Lantanit elementlerinin kararlı izotopları ve bollukları

Yukarıda bahsedildiği gibi lantanitlerde f^N alt tabakalarına ait çok sayıdaki kuantum hallerinden dolayı ve ayrıca kısmen dolu alt tabakalardan oluşan bir konfigürasyonun seviyelerinin sayısı çok büyük olabilir. Bu nedenden dolayı, nadir toprak atomlarının spektrumları son derece karışıktır. Bir spektrum onlarca, yüzlerce hatta binlerce gözlenebilen çizgi içerebilir. Saf lantanit spektrum analizlerinin başlangıcı, 1927 ile 1930'ların ortalarında yapıldı. İleri deneysel teçhizatların gelişimi, verilerin oluşturulması ve analizleri için bilgisayarların kullanımı ve Racah Cebirini içeren yeterli teorik çalışmalara kadar (1960'lara kadar) bu konu ile çalışma yapılamadı. Nadir toprak elementlerine (lantanitler ve aktinitler) ait spektrum yorumu 60'larda ve 70'lerin başlarında ilerleme gösterdi ve Martin ve çalışma arkadaşları tarafından La–Lu aralığına ait ilk spektrumlar yayınlandı [1]. Teori ve gözlemler arasındaki karşılaştırmalar Wybourne ve Goldschmidt tarafından verildi [2, 3].

Meggers nadir toprak elementlerinin atomik spektrumlarını inceledi [4, 5]. Daha sonra, Corliss ve Scribner ile içinde lantanitlerin de bulunduğu 70 elementin güçlü çizgilerinin dalga boylarını sundular [6]. Judd ve Lingren 4fⁿ tipindeki

konfigürasyonlu taban hal seviyelerinin g değerleri için Landé formülüne düzeltmeler yaptılar [7]. Lantanit atomlarının düşük hal enerji seviyeleri ve ara çiftlenimleri Conway ve Wybourne tarafından verildi [8]. Moore nadir toprak elementlerinin birinci ve ikinci spektrum analizlerinin bir özetini sundu ve bu spektrumların astrofizikteki önemlerini vurguladı [9]. Grevesse ve Blanquet nadir toprak elementlerinin güneşteki bolluklarını deneysel olarak belirlediler [10]. Nugent

elementlerinin birinci ve ikinci spektrum analizlerinin bir özetini sundu ve bu spektrumların astrofizikteki önemlerini vurguladı [9]. Grevesse ve Blanquet nadir toprak elementlerinin günesteki bolluklarını deneysel olarak belirlediler [10]. Nugent ve Vander Sluis, lantanitlerin $f^q d^1 s^2$ ve $f^{q+1} s^2$ konfigürasyonları arasındaki enerji farklarının teorik incelemesini [11] ve q'nun bir fonksiyonu olarak f^qps², f^qds² ve f^{q+1}s² konfigürasyonlarının en düşük seviyeleri arasındaki farkların doğrusallığını gösterdiler [12]. Nötral, bir, iki ve üç kez iyonlaşmış lantanitlerin elektronik konfigürasyonlarının enerjileri Brewer tarafından tanımlandı [13, 14]. Nötral, bir ve iki kez iyonlaşmış lantanit atomlarının iki spektroskopik sistemi arasındaki enerji farkları Martin tarafından çalışıldı [15]. Yine Martin ve çalışma arkadaşları tarafından lantanit atomları ve iyonlarının taban hal enerjileri ve ilk dört iyonlaşma potansiyelleri derlendi [16]. Desclaux, lantanitlerin de içinde bulunduğu nötral atomların LS taban hal konfigürasyonun ortalama enerjisini relativistik Dirac-Fock yöntemiyle hesapladı [17]. Wyart ve çalışma arkadaşları lantanitlerin 4f^N(5d+6s) konfigürasyonlarını yorumladılar [18, 19]. Daha sonra, Wyart lantanit atomların spektrumlarının analizlerini sundu [20]. Nötral, bir, iki ve üç kez iyonlaşmış nadir toprak elementlerinin iyonlaşma potansiyelleri Reader ve Sugar [21-23] ve Hertel [24] tarafından rapor edildi. Worden ve çalışma arkadaşları lazer spektroskopisiyle lantanitlerin ilk iyonlaşma potansiyellerini çalıştılar [25]. Zheng ve Xin zayıf bağlı elektron potansiyel modeliyle 4fⁿ elektronlarının ardışık iyonlaşma potansiyellerini hesapladılar [26]. Daha sonraki yıllarda Liu ve Dolg ilk dört iyonlaşma potansiyel hesaplamalarını sundular [27].

Lantanit atomlarıyla ilgili bazı seviyelerin yorumlanması ve geniş teorik bilgi Cowan tarafından verildi [28]. Outred, içinde lantanitlerinde bulunduğu bir çok elementin 10000–40000 Å bölgesindeki spektrum çizgilerini tablolaştırdı [29]. Cheng ve Childs nadir toprak atomlarının 4f^N6s² konfigürasyonlarının en düşük hallerinin uyarılma enerjilerini, Landé *g*-çarpanlarını ve aşırı ince yapı sabitlerini hesaplamak için çok konfigürasyonlu Dirac-Fock (MCDF) yöntemini kullandılar [30]. Nötral ve bir kez iyonlaşmış lantanitlerin yarı ömürleri ve salınıcı şiddetleri Richter [31] ve

Penkin ve çalışma arkadaşları [32] tarafından sunuldu. Komarovskii nötral ve bir kez iyonlaşmış lantanitlerin salınıcı şiddetlerini ve geçiş olasılıklarını sundu [33]. Daha sonra, Blagoev ile ışımalı yarı ömürlerini derledi ve analiz etti [34]. Lantanitlerin de içinde bulunduğu bazı atomların rezonans geçişleri için geçiş olasılıkları ve yarı ömürlerle ilgili yorumlar Doidge tarafından sunuldu [35–37]. Tatewaki ve çalışma arkadaşları lantanitlerin 6s ve 4f iyonlaşma hallerini Hartree-Fock yöntemiyle hesapladılar [38]. Daha sonra, Sekiya ve çalışma grubu konfigürasyon etkileşme (CI) yöntemiyle lantanitlerin 6s ve 4f iyonlaşma hallerini [39] ve 4fⁿ⁺¹5d⁰6s² ve 4fⁿ5d¹6s² ($0 \le n \le 13$) konfigürasyonları arasındaki enerji farkını hesapladılar [40]. Morton lantanitlerin de içinde bulunduğu ağır atomlar için rezonans soğurma çizgilerinin atomik verilerini derledi [41]. Ayrıca, Kurucz lantanitlerin izotoplarını ve aşırı ince yapı verilerini sundu [42].

2000 yılından sonra, Quinet ve çalışma grubu lantanit iyonlarının geçiş olasılıkları hesaplamalarını ve ışımalı yarı ömür ölçümlerini gösterdiler [43]. Lantanit elementlerinin yıldızlardaki spektrumlarının ve laboratuvar analizlerinin derlemesi Wahlgren tarafından sunuldu [44]. Cao ve Dolg lantanit elementlerinin birinci, ikinci, üçüncü ve dördüncü iyonlaşma potansiyellerinin teorik tahminlerini sundular [45]. Taban hal konfigürasyonlarının toplam atomik enerjilerinin sistematik bir çalışması Rodrigues ve çalışma arkadaşları tarafından yapıldı [46]. Biémont ve Quinet lantanit atomlarının ve iyonlarının spektroskopik özellikleri ile ilgili, 1981-2001 yılları arasında yapılan spektrum analizleri, geçiş olasılıkları, ışımalı yarı ömürleri, aşırı ince yapı ve izotop kayması çalışmalarını sundular [47] ve iki kez iyonlaşmış lantanitlerin deneysel olarak belirlenmiş enerji seviyelerinin Landé gçarpanlarını relativistik Hartree-Fock yöntemiyle hesapladılar [48]. Nadir toprak elementleri ve iyonları için salınıcı şiddetlerinin belirlenmesindeki gelişmeler ve zorluklar Biémont tarafından tartışıldı [49]. Daha sonra, Biémont ve Quinet nötral, bir veya çok kez iyonlaşmış lantanit atomlarının dalga boyları, salınıcı şiddetleri, geçiş olasılıkları ve ışımalı yarı ömürleri için DREAM (Database on Rare Earths at Mons University-Mons Üniversitesi Nadir Toprak Veri tabanı) veri tabanını oluşturdular [50]. Gálvez ve çalışma arkadaşları lantanitlerin taban hal enerjileri ve iyonlaşma potansiyellerini hesapladılar [51]. Sansonetti ve Martin lantanit elementlerini de içeren nötral ve bir kez iyonlaşmış atomların enerji seviyeleri, dalga boyları ve geçiş olasılıklarının derlemesini yaptılar [52]. Indelicato ve çalışma arkadaşları bir kez iyonlaşmış lantanitlerin taban enerjilerini ve Landé *g*-çarpanlarını çok konfigürasyonlu Dirac-Fock yöntemiyle hesapladılar [53].

Negatif iyonların deneysel çalışmaları astrofizikte son zamanlarda ilgi çeken bir alan oldu. Farklı gruplar bazı lantanit atomlarının elektron ilgilerini hesapladılar [54–56]. Daha sonra Bratsch lantanitlerin elektron ilgilerini sundu [57]. Hotop ve Lineberger lantanitlerin de içinde bulunduğu atomların elektron ilgilerini tablolaştırdılar [58, 59]. Negatif iyonların yapısı ve spektrumları Bates tarafından verildi [60]. Nadeau ve çalışma grubu lantanitlerin elektron ilgilerini deneysel olarak çalıştılar [61].

Lantanit atomları ve iyonlarının enerji seviyeleri, iyonlaşma potansiyelleri, dalga boyları, salınıcı şiddetleri ve geçiş olasılıklarına ait mevcut çalışmalardan derlemeler NIST ve DREAM web sitelerinde bulunabilir [62–64].

Bu çalışmada seçilen lantanit atomlarının atomik özelliklerinin incelenmesi için çok elektronlu atomlar için kullanılan konfigürasyon etkileşimi ve relativistik etkileri içeren hesaplama yöntemlerinden faydalanıldı. Bu nedenle, konfigürasyon etkileşme yöntemlerinden olan ve elektronların karşılıklı etkileşmesini ve relativistik etkileri dikkate alan çok konfigürasyonlu Hartree-Fock (Multiconfiguration Hartree-Fock– MCHF) [403] ve relativistik Hartree-Fock (Relativistic Hartree-Fock–HFR) [28] yaklaşıklıkları kullanılarak lantanit atomlarından lantan (La), seryum (Ce), iterbiyum (Yb) ve lutesyum (Lu) ve bunların bazı iyonlarının bazı uyarılmış seviyelerinin enerjileri, Landé *g*-çarpanları, geçiş enerjileri (iyonlaşma potansiyelleri, uyarılma enerjileri ve elektron ilgileri), dalga boyları, salınıcı şiddetleri, geçiş olasılıkları, seviye yarı ömürleri ve aşırı ince yapı sabitleri hesaplandı. Tablo 1.3'te bu seçilen atom ve iyonlarına ait enerji seviyeleri, ışıma parametreleri (dalga boyu, salınıcı şiddeti, geçiş olasılığı, yarı ömür v.s.), aşırı ince yapı ve izotop kaymaları ile ilgili yapılan mevcut çalışmalar kaynak numaraları ile verilmektedir [1–402].

Z	Element	Enerji seviyeleri	Işıma parametreleri	Aşırı ince yapı ve izotop kaymaları
Genel		[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [38] [39] [40] [45] [46] [47] [48] [49] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64]	[2] [9] [10] [20] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [41] [43] [44] [47] [49] [50] [52] [62] [63] [64]	[28] [30] [42] [44] [47]
57	La I	[10] [13] [16] [17] [22] [24] [27] [38] [39] [40] [46] [51] [52] [62] [63] [65] [70] [72] [73] [74] [78] [79] [81] [103] [104] [107] [121]	[34] [35] [41] [52] [62] [66] [67] [68] [69] [70] [71] [75] [76] [77] [80] [102] [104] [105]	[70] [71] [72] [73] [74] [75] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [106]
	La II	[21] [45] [52] [62] [63] [79] [107] [108] [109] [110] [111] [112]	[6] [10] [34] [52] [62] [68] [108] [109] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122]	[123] [124] [125] [126] [127] [128]
	La III	[23] [45] [48] [49] [63] [64] [79] [129] [130] [131] [132] [133]	[29] [64] [68] [119] [129] [130] [131] [132] [133] [134] [135]	
58	Ce I	[1] [10] [17] [22] [38] [39] [40] [45] [51] [52] [56] [62] [63] [136] [138] [139] [145] [146] [152]	[34] [35] [52] [62] [136] [137] [140] [141] [142] [143] [144] [146] [147] [148] [149] [150] [151] [152] [235]	[153] [154] [155] [156] [157] [158]
	Ce II	[21] [45] [52] [62] [63] [64] [159] [161] [164]	[10] [34] [52] [62] [64] [69] [116] [136] [144] [147] [148] [152] [159] [162] [163] [164] [165]	[166]
	Ce III	[23] [45] [48] [63] [64] [168] [169] [170] [174]	[64] [148] [167] [168] [169] [171] [172] [173] [174] [175]	
70	Yb I	[10] [16] [17] [22] [45] [46] [38] [39] [40] [51] [52] [61] [62] [63] [65] [180] [181] [183] [184] [185] [186] [191] [192] [193] [194] [195] [196] [197] [198] [199] [202] [204] [205] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [223] [226] [227] [282] [283] [285] [286] [287] [288] [289] [290] [291] [292] [293] [295] [358]	[4] [6] [34] [35] [36] [37] [52] [62] [116] [176] [177] [178] [179] [182] [187] [188] [189] [190] [200] [201] [203] [206] [221] [222] [223] [224] [225] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [238] [239] [240] [241] [242] [243] [244] [245] [246] [247] [248] [249] [250] [251] [252] [253] [254] [255] [256] [257] [281] [293] [294] [243]	[158] [258] [259] [260] [261] [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] [275] [276] [277] [278] [279] [280] [281] [282] [283] [284]

Tablo 1.3. Çalışılan lantanit atomlarının enerji seviyeleri, ışıma parametreleri, aşırı ince yapı ve izotop kaymaları ile ilgili yapılan çalışmalar

Tablo 1.3. Devam

Z	Element	Enerji seviyeleri Işıma parametreleri		Aşırı ince yapı ve izoton kaymaları
	Yb II	[16] [21] [24] [25] [26] [27] [45] [52] [62] [63] [64] [185] [201] [216] [218] [295] [297] [298] [299] [301] [302] [304] [305] [307] [308] [312] [322] [335] [337] [358]	[4] [34] [52] [62] [64] [109] [116] [185] [230] [296] [298] [300] [303] [305] [306] [308] [309] [310] [311] [313] [314] [315] [316] [317] [318] [319] [320] [321] [322] [323] [324] [325] [326] [327] [328] [329] [330] [331] [335] [336] [337]	[218] [332] [333] [334] [335]
	Yb III	[15] [23] [45] [46] [48] [63] [64] [295] [300] [338] [339] [340] [342] [345]	[4] [64] [230] [296] [300] [338] [341] [342] [343] [344] [345] [346]	
71	Lu I	[10] [16] [17] [22] [24] [25] [26] [38] [39] [40] [45] [46] [51] [52] [57] [62] [63] [64] [202] [216] [349] [351] [352] [354] [355] [358] [359] [360] [361] [362] [363] [364] [365] [366] [377] [389] [390] [391] [392] [394]	[4] [34] [35] [52] [62] [64] [176] [347] [348] [349] [350] [352] [353] [355] [356] [357] [359] [360] [367] [368] [369] [370] [376] [377] [392] [393]	[355] [371] [372] [373] [374] [375] [376] [377] [378] [379] [380] [381] [382] [383] [384] [385] [386] [387] [388]
	Lu II	[1] [16] [21] [26] [53] [45] [46] [52] [62] [63] [64] [216] [358] [394]	[4] [6] [34] [52] [62] [64] [69] [116] [172] [347] [348] [367] [370] [395] [396] [397] [398]	[397]
	Lu III	[15] [16] [23] [45] [46] [48] [63] [64] [216] [306] [307] [323] [394] [401] [402]	[49] [64] [135] [299] [300] [306] [347] [348] [367] [370] [399] [401] [402]	[399] [400] [401]

BÖLÜM 2. HESAPLAMA YÖNTEMLERİ

2.1. Bazı Genel Kavramlar

2.1.1. Çok elektronlu atomlar için relativistik olmayan Hamiltonyen

Kuantum mekaniğinde *N*-elektronlu bir atomun kararlı hali $\psi(q_1,...,q_N)$ dalga fonksiyonu ile tanımlanır. Burada $q_i = (r_i,\sigma_i)$, *i*. elektronun uzay ve spin koordinatlarını gösterir. Dalga fonksiyonunun uzay değişkenlerine göre sürekli olduğu ve

$$H\psi(q_1,...,q_N) = E\psi(q_1,...,q_N)$$
(2.1)

dalga denkleminin bir çözümü olduğu kabul edilir. Burada H atomik sistemin Hamiltonyen işlemcisidir. Dalga denklemi bir özdeğer problemidir ve çözümleri yalnızca belirli E değerleri için vardır. Tüm özdeğerler takımı işlemcinin özdeğer spekturumu olarak bilinir.

H işlemcisi belirli kuantum mekaniksel yapı kadar atomik sisteme de bağlıdır. Relativistik olmayan hesaplamalar için başlama noktası, Hamiltonyeni atomik birimlerde ($\hbar = c = e = 1$),

$$H = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right) + \sum_{i>j}^{N} \frac{1}{r_{ij}}$$
(2.2)

şeklinde verilen Schrödinger denklemidir. Burada Z atomun çekirdek yükü, r_i , *i* elektronunun çekirdekten uzaklığı ve r_{ij} , *i* ve *j* elektronları arasındaki uzaklıktır.

Bu Hamiltonyen, relativistik etkilerin ihmal edilebilmesi ve atomik çekirdeğin sonsuz kütleli bir nokta yük gibi davranabilmesi kabullenimleri altında geçerlidir.

2.1.2. Merkezi alan yaklaşıklığı ve çarpım dalga fonksiyonları

Schrödinger denklemi yalnızca bir elektronlu sistemler için tam olarak çözülebilir. Çok elektronlu sistemler için özfonksiyonların gerçek şekilleri bilinmemektedir. Bu nedenle çok elektronlu atomların veya iyonların incelenmesi için bazı genel yöntemler ile yaklaşık dalga fonksiyonları elde edilir. Hartree-Fock yaklaşıklığı da bu yöntemlerden biridir. Bu yöntem merkezi alan yaklaşıklığına ve değişim yöntemine dayanır.

Atomdaki N elektron birbirleri ile Coulomb itmesiyle etkileşirler ve değişik elektronların pozisyonları arasındaki karşılıklı etkileşme, eğer sonuçların önemli ölçüde doğrulukta elde edilmesi istenirse alınan baz fonksiyonlara yansıtılmalıdır. Yine de atomun merkezi alan modeli ile başlanır. Yani her bir *i* elektronu çekirdeğin elektrostatik alanındaki diğerlerinden ve diğer N-1 elektronlardan bağımsız olarak hareket eder (*i*. elektron pozisyonu ile karşılıklı etkileşmeyi ihmal ederek).

Merkezi alan yaklaşıklığında tam Hamiltonyen, H_0 ayrıştırılabilir Hamiltonyenle yer değiştirir:

$$H \approx H_0 = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} + V(r_i) \right)$$
(2.3)

Burada, $V(r_i)$ merkezi potansiyeli, elektronlar arası Coulomb itme etkilerini yaklaşık olarak kapsar.

Yaklaşık Hamiltonyen H_0 , tam Hamiltonyen gibi L^2 , L_z , S^2 ve S_z toplam açısal momentum işlemcileri ile sıra değiştirir ve daima H_0 'ın özfonksiyonları, bu işlemcilerin özfonksiyonları olarak seçilebilir.

$$H_0\psi_0(q_1,...,q_N) = E_0\psi_0(q_1,...,q_N)$$
(2.4)

olduğundan ve H_0 ayrıştırılabildiği için özdeğer ve özfonksiyonlar sırasıyla

$$E_0 = \sum_{i=1}^{N} E_i$$
 (2.5)

ve

$$\psi_0(q_1,...,q_N) = \prod_{i=1}^N \phi(\alpha_i;q_i)$$
(2.6)

olarak yazılır. Schrödinger denklemi de böylece

$$\left[-\frac{1}{2}\nabla^2 + U(r)\right]\phi(\alpha;q) = E\phi(\alpha;q)$$
(2.7)

olur. Burada U(r) potansiyeli

$$U(r) = -\left(\frac{Z}{r}\right) + V(r) \tag{2.8}$$

şeklinde verilir. $\phi(\alpha;q)$ ile gösterilen bireysel spin-yörüngemsileri, bir-elektron denklemlerinin çözümleridir. U(r) potansiyeli için *E* bir-elektron enerjisi, Coulomb halinin tersine *n* ve *l*'ye bağlıdır.

 H_0 Hamiltonyeni elektron koordinatlarının yer değişiminden bağımsız olduğu için (2.6) çarpım fonksiyonundaki koordinatların yer değişimi ile bir özfonksiyon elde edilir. Yer değiştirmiş çarpım fonksiyonları birleştirilerek antisimetrik bir fonksiyon oluşturulur:

$$\Phi(q_1,...,q_N) = A \prod_{i=1}^N \phi(\alpha_i;q_i)$$
(2.9)

Bu fonksiyon

$$\Phi(q_{1},...,q_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi(\alpha_{1};q_{1}) & \phi(\alpha_{1};q_{2}) & \dots & \phi(\alpha_{1};q_{N}) \\ \phi(\alpha_{2};q_{1}) & \phi(\alpha_{2};q_{2}) & \dots & \phi(\alpha_{2};q_{N}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi(\alpha_{N};q_{1}) & \phi(\alpha_{N};q_{2}) & \dots & \phi(\alpha_{N};q_{N}) \end{vmatrix}$$
(2.10)

ile verilen bir Slater determinantıdır. Bu gösterimde, toplam dalga fonksiyonu $\Phi(q_1,...,q_N)$ 'nin, eğer iki elektronun $\alpha = nlm_lm_s$ dört kuantum sayısı aynı ise, özdeş olarak yok olduğu görülür. Böylece atomun izinli halleri için iki elektron dört kuantum sayısının aynı değerine sahip olmaz. Bu, Pauli tarafından ileri sürülen dışarlama ilkesidir. Determinant $q_i = q_j$ ise, yani aynı spinli iki elektron aynı uzay koordinatlarına sahip ise sıfır olur. Slater determinantındaki her bir spin-yörüngemsinin paritesi $(-1)^l$, Slater determinantının paritesi ise

$$\pi = (-1)^{l_1} (-1)^{l_2} \dots (-1)^{l_N} = (-1)^{\sum_{i}^{l_i}}$$
(2.11)

dir. Parite, açısal momentum kuantum sayılarının toplamının tek veya çift oluşuna göre tek veya çifttir.

Merkezi alan yaklaşıklığında, yaklaşık enerji seviyeleri ve tamamen relativistik olmayan Hamiltonyenin yaklaşık özfonksiyonları elde edilir. Genelde, Slater determinantları şeklindeki bu yaklaşık özfonksiyonlar, toplam açısal momentum işlemcilerinin gerçek özfonksiyonları değildirler. Aynı elektron konfigürasyonuna ait determinantların lineer birleşimi ile açısal momentum işlemcilerinin özfonksiyonları oluşturulur. Bu şekilde elde edilen fonksiyonlar, Slater determinantlarından daha iyi bir şekilde relativistik olmayan Hamiltonyenin gerçek özfonksiyonlarına yaklaşır. Bu özfonksiyonlar 'konfigürasyon hal fonksiyonları (CSFs)' olarak adlandırılır. Konfigürasyon hal fonksiyonları, $\Phi(\gamma LM_LSM_s)$ veya $|\gamma LM_LSM_s\rangle$ ile gösterilir.

Çoğu durumlarda, CSF'ler tam Hamiltonyenin gerçek ψ özfonksiyonlarına sürpriz bir şekilde iyi bir yaklaşıklıktır. Daha iyi yaklaşıklıklar CSF'lerin lineer birleşimi olarak elde edilir:

$$\Psi(\gamma LS) = \sum_{i=1}^{M} c_i \Phi(\gamma_i LS)$$
(2.12)

Gerçek özfonksiyon genellikle açılımdaki baskın CSF ile benzer şekilde kodlanır. Elde edilen yaklaşık özfonksiyonlar için bu çok konfigürasyon yaklaşıklığındaki zorluk, uygun bir U(r) merkezi alan potansiyelinin seçiminde yatar. Bu problem büyük ölçüde, spin-yörüngemsileri belirlemek yerine değişim (varyasyon) yöntemi uygulandığında ortadan kalkar.

2.1.3. Değişim yöntemi ve matris özdeğer problemi

Schrödinger denkleminin çözümü için değişim yöntemleri, özdeğer probleminin yeniden formülleştirilmesine bağlıdır. Bağ halleri için Schrödinger denkleminin çözümü, sınır şartlarını sağlayan ψ 'deki $\delta \psi$ değişimlerine göre birinci mertebeye kadar kararlı olan

$$\mathcal{E}(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \tag{2.13}$$

şeklindeki enerji fonksiyonunu veren ψ fonksiyonlarını bulmaya eşdeğerdir. Sınır şartlarına ek olarak, değişim, beklenen değerin integrallenebilir, sürekli ve diferansiyellenebilir özelliklerine sahip olması gerekir. \mathcal{E} 'nun $\delta \mathcal{E}$ değişimini dikkate alan iki problemin özdeş olduğu

$$\mathcal{E}(\psi + \delta\psi) - \mathcal{E}(\psi) = \delta\mathcal{E} + O((\delta\psi)^2)$$
(2.14)

şeklinde verilir. Sadece $\delta \psi$ 'nin birinci mertebeden terimlerinden oluşan (2.13)'ü kullanarak ve $\langle \psi | \psi \rangle$ ile çarpımını alarak

$$\delta \mathcal{E} \langle \psi | \psi \rangle = \langle \delta \psi | H - \mathcal{E} (\psi) | \psi \rangle + \langle \psi | H - \mathcal{E} (\psi) | \delta \psi \rangle$$

= 2\langle \delta \psi | H - \mathcal{E} (\psi) | \psi \rangle (2.15)

elde edilir. Eşitlik, *H*'nın bağ halleri için Hermityen olması gerçeğinden ortaya çıkar. $\mathcal{E}(\psi)$ kararlı ise $\delta \mathcal{E}$ değişimi sıfır olur ve

$$\langle \delta \psi | H - \mathcal{E}(\psi) | \psi \rangle = 0$$
 (2.16)

elde edilir. Bu da

$$(H - \mathcal{E}(\psi))|\psi\rangle = 0 \tag{2.17}$$

eşitliğini verir. Tersine, ψ , H'nın bir özfonksiyonu ise, $\delta \mathcal{E} = 0$ ve $\mathcal{E}(\psi)$ normalleşme zorunluluğu altında kararlıdır.

(2.13) enerji fonksiyonu, normalleşmemiş ψ fonksiyonları cinsinden tanımlanır. Çoğu durumlarda,

$$\left\langle \psi \left| \psi \right\rangle = \left\langle \psi + \delta \psi \left| \psi + \delta \psi \right\rangle = 1 \right.$$
(2.18)

şeklindeki değişimleri, normalleşmiş fonksiyonlar uzayına kısıtlamak uygundur: Bu değişim probleminin çözümü, ψ normalleşme zorunluluğu altında en iyiyi bulma (optimizasyon) problemi için bir çözüm ise, sınır şartlarını sağlayan ψ 'deki tüm $\delta\psi$ değişimlerine göre birinci mertebeden kararlı olan

$$F(\psi) = \mathcal{E}(\psi) + \lambda \langle \psi | \psi \rangle \tag{2.19}$$

gibi bir fonksiyonu sağlayacak şekilde bir λ 'Lagrange çarpanı' mevcuttur. Bu değişim problemi asla tam olarak çözülemez ve yaklaşık çözümleri bulmak gereklidir.

Basit fakat çok önemli değişim fonksiyonu (2.12) açılımı ile verilir. Burada $\Phi(\gamma_i LS)$ konfigürasyon hal fonksiyonlarının bilindiği kabul edilir ve yalnızca c_i katsayılarının belirlenmesi gerekir. Çoğunlukla, CSF'ler ortonormaldir. Normalleşme şartından dolayı

$$\left\langle \Psi \left| \Psi \right\rangle = \sum_{i=1}^{M} c_i^2 = 1$$
(2.20)

olur. Bu ifade (2.19)'da yerine yazılırsa ve katsayılardaki değişimlere göre kararlı olacak şekilde fonksiyon aranırsa

$$\mathbf{H}\mathbf{c} = -\lambda \mathbf{c} \tag{2.21}$$

elde edilir. Burada H,

$$H_{ij} = \left\langle \Phi(\gamma_i LS) \middle| H \middle| \Phi(\gamma_j LS) \right\rangle$$
(2.22)

elemanlı Hamiltonyen matrisidir ve $\mathbf{c} = (c_1, ..., c_M)^t$ açılım katsayılarının sütun vektörüdür. Yalnızca $-\lambda$, **H**'nın bir özdeğeri olduğunda normalleşmiş bir çözüm vardır. Böylece kısıtlı değişim problemi bir matris özdeğer problemini verir. Hamiltonyen matrisi Hermityen olduğundan, özdeğer denklemi

$$-\lambda_1 \le \dots \le -\lambda_k \le \dots \le -\lambda_M \tag{2.23}$$

şeklinde gerçek özdeğerlere karşılık gelen M tane

$$\mathbf{c}_{k} = \left(c_{1k}, \dots, c_{Mk}\right)^{t}, \ \mathbf{c}_{k}^{t} \mathbf{c}_{l} = \delta_{kl}$$
(2.24)

ortonormal çözümlere sahiptir. Bu *M* çözümlerinin dışında, açılıma bağlı bir veya birkaç tane gerçek dalga fonksiyonlarına iyi yaklaşıklıklar vardır. Farklı çözümler için $\mathcal{E}(\Psi)$ değişim enerjileri, $-\lambda$ matris özdeğerlerini elde etmeye eşdeğerdir. Bu nedenle normalleşme kısıtlaması ile elde edilen Lagrange çarpanı çoğunlukla *E* ile gösterilir:

$$\mathcal{E}(\Psi) = E \tag{2.25}$$

Yaklaşık dalga fonksiyonlarını elde etmek için yukarıda bahsedilen yöntem 'konfigürasyon etkileşme yöntemi' olarak adlandırılır.

2.2. Hartree-Fock Yaklaşıklığı

Merkezi alan yaklaşıklığına göre her bir elektron aynı (-Z/r)+V(r) potansiyelinde hareket ettiği için V(r)'nin seçimi önemlidir. Hartree, her bir elektronun kendi potansiyeline sahip olduğunu ileri sürmüştür. Bir *nl* elektronu için potansiyel, sistemdeki diğer elektronların küresel olarak ortalama yük dağılımından (veya elektron bulutundan) belirlenir. Bu kabullenimden Hartree, Hartree denklemleri olarak bilinen denklemleri türetti. Bunlar bir elektronun bir diğerine bağlı yük dağılımı şeklinde katlı radyal denklemlerdir. Hartree bu denklemlerin 'öz uyumlu alan' denilen tekrarlamalı bir yöntem ile çözülebileceğini önermiştir. Hartree dalga denkleminin çözümü, radyal fonksiyonların çarpımı olan küresel simetrik bir dalga fonksiyonu verir. Fock, bu denklemlerin Pauli dışarlama ilkesini sağlamadığına dikkat çekmiştir. Basit sistemleri ele alarak, bir tek determinant ve değişim prensibini uygulayarak, 'değiş tokuş terimleri' denilen antisimetriklikten ortaya çıkan bazı ek terimler hariç Hartree denklemlerine benzer denklemler türetmiştir.

Kuantum mekaniksel modeller, özellikle değişim yöntemi iki elektronlu sistemler için deneyle uyumlu sonuçlar vermektedir. Bir ve iki elektronlu sistemlerin detaylı bir incelemesi Bethe ve Salpeter [404] tarafından yapılmıştır. Değişim yöntemini büyük sistemlere genelleştirmek oldukça zordur ve ek yaklaşık yöntemler gereklidir. *N* elektronlu bir sistem (atom veya iyon) için Schrödinger denklemlerindeki bağımsız değişkenlerin sayısı 3*N*'dir.

HF yaklaşıklığı, çok elektronlu sistemler için yaklaşık toplam dalga fonksiyonlarını elde eden bir yöntemdir. Bu yöntem, atom, molekül ve katıhal sistemlerini içeren kuantum mekaniğinin pek çok alanına başarılı bir şekilde uygulanmaktadır. Bu yöntem 2.1.2'de bahsedilen merkezi alan yaklaşıklığını ve 2.1.3'te kısaca açıklanan değişim prensibini esas alır.

Hartree-Fock yöntemi yaklaşık toplam dalga fonksiyonunu elde etmek amacı ile özetle üç kısımdan oluşur. Birinci olarak, dalga fonksiyonu için bir fonksiyon seçilir ve daha sonra, belirlenecek olan baz (temel) fonksiyonları cinsinden tanımlanır. Sonra bu fonksiyonlar cinsinden toplam enerji için bir ifade türetilir. Son olarak, değişim prensibi uygulanır ve türetilen denklemlerin çözümleri toplam enerjiyi kararlı yapan fonksiyonlardır.

HF yaklaşıklığının değişik şekilleri literatürde mevcuttur. Bunlar arasındaki fark fonksiyon şeklinin tanımlanmasındadır. Ancak, Hartree-Fock yaklaşımlarının olabilmesi için basit değişim yaklaşıklıklarından daha çok, temel Hartree-Fock kabullenimleri olarak adlandırılan kesin kriterleri sağlamalıdır. Ψ , bu bahsedilen Hartree-Fock yaklaşıklıklarından herhangi biri ile elde edilmiş ise aşağıdaki özellikleri sağlamalıdır:

1. Antisimetriklik

Bir elektronun yörünge hareketinin yanı sıra spin hareketi de dikkate alındığında dalga fonksiyonu dört kuantum sayısına bağlı olacaktır. Spinin enerji üzerine etkisi 'spin-yörünge etkileşimi' olarak adlandırılır. Bu etki ihmal edildiğinde sistemin Hamiltonyeni uzay ve spin kısımlarının çarpımı olarak yazılabilir. Artık Hamiltonyen herhangi iki elektronun koordinatlarının yer değiştirmesine göre simetriktir. Yani bir elektron diğeriyle yer değiştirdiğinde (dört koordinat) Hamiltonyen değişmez. Böylece çözümler simetrik, antisimetrik veya simetrik ve antisimetrik fonksiyonların lineer kombinasyonlarıdır. Ancak, yalnızca gözlenen haller, elektronların tüm çiftlerinin yer değişimlerine göre antisimetriktirler.

 p_{ij} , çok elektronlu dalga fonksiyonuna uygulandığında *i* elektronunun dört koordinatını *j* elektronunun koordinatları ile yer değiştiren bir işlemci ise çok elektronlu bir sistemin Schrödinger denkleminin fiziksel öneme sahip çözümleri, tüm $i, j \leq N, i \neq j$ için

$$p_{ij}\psi = -\psi \tag{2.26}$$

şeklindedir. Bunlar 'antisimetriklik şartları' olarak adlandırılır. HF yaklaşıklığından elde edilen ψ , antisimetriklik şartlarını sağlamalıdır.

2. Spin-yörüngemsilerin çarpımı

Bir yaklaşık toplam dalga fonksiyonu, *H* Hamiltonyeni, çözümü olan bir Hamiltonyenle yer değiştirdiğinde elde edilebilir. Hamiltonyen için

$$H \cong \hat{H} = \sum_{i=1}^{N} \left\{ -\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} + V(r_i) \right\}$$
(2.27)

kabul edilir. Burada, diğer elektronlarla etkileşime etkisi V tek-parçacık potansiyeli ile yer değiştirilir. Böylece özdeğer denklemi

$$\hat{H}\Phi = \hat{E}\Phi \tag{2.28}$$

ve Φ 'de,

$$\Phi = \phi(1)\phi(2)...\phi(i)...\phi(N)$$
(2.29)

olur. Burada $\phi(i)$, *i*. elektronun dalga fonksiyonudur:

$$\phi(r,\theta,\varphi,\sigma) = \left(\frac{1}{r}\right) P(r) Y_{lm_l}(\theta,\varphi) \chi_{m_s}$$
(2.30)

Burada, Y_{lm_i} bir küresel harmonik ve χ_{m_s} bir spin fonksiyonudur. *N* tane $\{n_j l_j m_{l_j} m_{s_j}\}$ kuantum sayılarının bir kümesi ve $\phi_j(i)$, *i*. elektronun uzay ve spin koordinatları cinsinden kuantum sayılarının *j*. setine ait bir yörünge olsun: $r_i, \theta_i, \varphi_i, \sigma_i$. Buradan

$$\Phi = \phi_1(1)\phi_2(2)...\phi_N(N)$$
(2.31)

teker teker bireysel elektron fonksiyonlarına ayrıştırılabilir fakat antisimetriklik şartını sağlamaz. Ancak, \hat{H} koordinatların yer değiştirmesine göre simetrik olduğu için, koordinatların herhangi bir permütasyonu aynı enerjili bir çözümü de sağlamalıdır. Sonuç olarak \mathcal{A} antisimetrikleştirme işlemcisi bir antisimetrik fonksiyonu elde etmek için uygulanabilir:

$$\Phi = \mathcal{A} \left\{ \phi_{1}(1)\phi_{2}(2)...\phi_{N}(N) \right\}$$

$$= \left(\frac{1}{N!}\right)^{\frac{1}{2}} \sum_{\wp} (-1)^{p} \wp \left\{ \phi_{1}(1)\phi_{2}(2)...\phi_{N}(N) \right\}$$
(2.32)

Burada, \wp elektronların koordinatlarını kendi aralarında değiştiren bir işlemci, *p* permütasyonun paritesi ve toplam tüm mümkün *N*! permütasyonlar üzerindendir. (2.32) genellikle Slater determinantı denilen (2.10) şeklindeki bir determinantla ifade edilir.

Bu şekilde antisimetriklik şartının yanı sıra Pauli ilkesi de sağlanır. Yaklaşık çok elektronlu dalga fonksiyonlarını belirlemek için bu yaklaşıklıklarda ortaya çıkan zorluk uygun bir elektron potansiyelin seçiminden kaynaklanır. Hartree-Fock yöntemi, basit bir şekilde bu problemden kurtulur: Ψ , (2.30) şeklindeki *N* spin-yörüngemsilerin çarpımının toplamından oluşmalıdır.
Ayrıca aşağıdaki iki şart, Hartree-Fock yaklaşıklıklarının bazıları için gerekli olmamakla birlikte, atomik hesaplamalarda genellikle alınır.

3. Ortogonallik

Bir *l* için radyal fonksiyonların tümü aynı radyal denklemin özfonksiyonları olduğu sürece bunlar ortogonal olacaktır. Ancak HF şartları bu kısıtlama yerine genellikle, spin-yörüngemsilerin bir ortonormal set oluşturması gerekir:

$$\int \phi_{n l m_l m_s}(1) \phi_{n' l' m_l \cdot m_{s'}}(1) d\tau_1 = \delta_{n n'} \delta_{l l'} \delta_{m_l m_{l'}} \delta_{m_s m_{s'}}$$
(2.33)

Burada $d\tau_1$, bir elektronun uzay koordinatları üzerinden integral almayı ve spin koordinatları üzerinden toplamı gösterir.

4. Açısal momentum işlemcileri

 Ψ , L^2 , L_z , S^2 ve S_z toplam açısal momentum işlemcilerinin bir özfonksiyonu olmalıdır:

$$\boldsymbol{L}^{2}\Psi = L(L+1)\Psi, \ \boldsymbol{S}^{2}\Psi = S(S+1)\Psi$$
(2.34)

$$\boldsymbol{L}_{z}\boldsymbol{\Psi} = \boldsymbol{M}_{L}\boldsymbol{\Psi}, \ \boldsymbol{S}_{z}\boldsymbol{\Psi} = \boldsymbol{M}_{S}\boldsymbol{\Psi}$$
(2.35)

(3) kabullenimi enerji ifadesinin türetilmesinde oldukça faydalıdır ve (4) halin daha doğru belirlenmesine izin verir. (4) şartını sağlayan fonksiyonlar açısal momentum hallerinin çiftlenimleri yoluyla da elde edilebilir. J, toplam açısal momentum işlemcisi bir açısal momentum işlemcisinin tüm genel komutasyon (sıra değiştirme) bağıntılarını sağlar. Yaygın Dirac gösteriminde, $|JM\rangle$, J^2 ve J_z 'nin bir öz fonksiyonudur:

$$J^{2} | JM \rangle = J (J+1) | JM \rangle$$
(2.36)

$$\boldsymbol{J}_{z} \left| \boldsymbol{J}\boldsymbol{M} \right\rangle = \boldsymbol{M} \left| \boldsymbol{J}\boldsymbol{M} \right\rangle \tag{2.37}$$

2.2.1. Çeşitli Hartree-Fock yaklaşıklıkları

Yörüngeler $(n_1l_1)^{q_1}(n_2l_2)^{q_2}...(n_ml_m)^{q_m}$ şeklindeki tekli konfigürasyonun yörüngeleri (Ψ 'yi oluşturanlara) olduğu zaman Hartree-Fock yöntemleri değişik şekilde sınıflandırılabilir. Bu yöntemler, esas olarak radyal fonksiyonun yörünge kuantum sayılarına bağlılığına göre değişiklik gösterir. Radyal fonksiyon sadece (nl)kuantum sayılarına bağlı ise dalga fonksiyonu bir tekli Slater determinantı şeklindedir. Bu durumda yaklaşıklığa 'tekli-determinant Hartree-Fock (SDHF) yöntemi' denir.

Bir tekli determinant (3) şartını sağlamazsa bu 'ortogonal olmayan Hartree-Fock (NHF)' olarak adlandırılır. Bu yöntemin açık-tabaka için genişletilmiş hali de 'genişletilmiş Hartree-Fock (EHF)' olarak bilinir. Aslında, genişletilmiş Hartree-Fock yöntemi, ortogonal olmayan Hartree-Fock yönteminin özel bir durumudur. HF yönteminde olduğu gibi ortogonal olmayan ve genişletilmiş HF yöntemlerinin her ikisinde de toplam dalga fonksiyonu L^2 ve S^2 'nin bir öz fonksiyonudur.

Tekli determinant şeklinde ifade edilen radyal fonksiyon spin bileşenine de bağlı ise, yöntem 'spin-kutuplanmış Hartree-Fock (SPHF)' veya 'spin-kısıtlamasız Hartree-Fock (SUHF) yöntemi' adını alır. Radyal fonksiyonun n, l, m_s kuantum sayılarının yanı sıra m_l kuantum sayına da bağlı olması durumunda yöntem 'kısıtlanmamış Hartree-Fock (UHF) yöntemi' olarak adlandırılır. SUHF ve UHF'nin her ikisinde, radyal fonksiyonlar belirlendikten sonra yaklaşık izdüşüm işlemcileri L^2 ve S^2 'nin özfonksiyonlarını elde etmek için uygulanabilir.

Aslında SUHF, UHF ve EHF yöntemleri tartışmalıdır. UHF'nin felsefesi kısıtlamayı gevşek tutmakta ve verilen bir nl için yörüngenin m_l ve m_s kuantum sayıları

serbesttir. Fakat pratikte m_s bağlılığı kısıtlanmaz ve biraz bu yaklaşım SUHF'ye benzer. İzdüşüm işlemcilerine bir değişim uygulandığında, UHF de EHF'ye benzerdir.

2.2.2. Hartree-Fock denklemleri

Toplam dalga fonksiyonu için $\Psi(\gamma LS)$ Hartree-Fock yaklaşımı 2.2'deki (1), (2), (3) ve (4) şartlarını sağlayan bir $\Phi(\gamma LS)$ fonksiyonudur. Özellikle, P(nl;r), radyal fonksiyonların sayısı özdeş-elektron gruplarının sayısı ile aynı olması nedeniyle yalnızca (nl) kuantum sayılarına bağlıdır. Aynı zamanda, uygunluğu sağlamak için

$$\langle nl | n'l \rangle = \int_{0}^{\infty} P(nl;r)P(n'l;r)dr$$

= 0, $n \neq n'$ (2.38)

olduğu kabul edilir.

2.2.2.1. Enerji ifadesi

Aslında radyal fonksiyonlar üzerine, diferansiyellenebilme ve integrallenebilme hariç bir kısıtlama konulmamış olsa bile değişim şartı (2.13) şeklinde ifade edilen enerji fonksiyonunun kararlı olmasını gerektirir ve bu da radyal fonksiyonları belirler.

Enerji için ifadeler, bilinmeyen P(nl;r) fonksiyonları cinsinden türetilebilir. $\Phi(\gamma LS)$ bir tekli determinant olduğunda veya determinantlar cinsinden ifade edilebiliyorsa, Slater tarafından verilen basit kurallar kullanılabilir. Fakat kompleks sistemlerde göz önüne alınması gereken determinantların sayısı çok fazla olabilir ve bu yaklaşımı pratik olmaktan çıkarabilir. Açısal momentum işlemcileri teorisine dayanan Racah cebiri [405–408], matris elemanlarının değerlendirilmesi için güçlü bir cebirsel yaklaşım sağlamaktadır. Kompleks bir atom için, enerji ifadesi çoğunlukla halin *LS* terim değerinden bağımsız olan birçok terim içerir. Son derece yararlı olan bir kavram, $E_{ort.}$ şeklinde gösterilen Slater'in 'konfigürasyonun ortalama enerjisi' kavramıdır. Bu kavram sadece konfigürasyona bağlıdır ve tüm fonksiyonlar normalleştirildiğinde

$$E_{ort.} = \sum_{i=1}^{m} q_i \left[I(n_i l_i) + \left(\frac{q_i - 1}{2}\right) \sum_{k=0}^{2l_i} f_k(l_i, l_i) F^k(n_i l_i, n_i l_i) \right] \\ + \sum_{i=2}^{m} \left\{ \sum_{j=1}^{i-1} q_i q_j \left[F^0(n_i l_i, n_j l_j) + \sum_{k=|l_i - l_j|}^{(l_i+l_j)} g_k(l_i, l_j) G^k(n_i l_i, n_j l_j) \right\}$$
(2.39)

şeklinde verilir. Burada $I(nl) \equiv I(nl, nl)$ alınmak üzere

$$I(nl,nl) = -\frac{1}{2} \int_{0}^{\infty} P(nl;r) LP(nl;r) dr$$
(2.40)

dir ve L işlemcisi de

$$L = \frac{d^2}{dr^2} + \frac{2Z}{r} - \frac{l(l+1)}{r^2}$$
(2.41)

olarak tanımlanır.

 F^k ve G^k Slater integralleri, aşağıdaki şekilde tanımlanan daha genel R^k integralinin özel durumlarıdır:

$$R^{k}(\alpha,\beta;\alpha',\beta') = \int_{0}^{\infty} \int_{0}^{\infty} P(\alpha;r)P(\alpha';r)U^{k}(r,s)P(\beta;s)P(\beta';s)drds \qquad (2.42)$$

Burada

$$U^{k}(r,s) = \frac{s^{k}}{r^{k+1}}, \quad r \ge s$$
$$= \frac{r^{k}}{s^{k+1}}, \quad r < s$$
(2.43)

şeklindedir. Bu durumda

$$F^{k}(nl,n'l') = R^{k}(nl,n'l';nl,n'l')$$
(2.44)

ve

$$G^{k}(nl,n'l') = R^{k}(nl,n'l';n'l',nl)$$
(2.45)

dir.

Özdeş ve özdeş olmayan elektron çifti başına ortalama etkileşme

$$\sum_{k} f_k(l,l) F^k(l,l) \tag{2.46}$$

ve

$$F^{0}(l,l') + \sum_{k} g_{k}(l,l') G^{k}(l,l')$$
(2.47)

şeklinde gösterilir. (2.39)'da bu etkileşmeler böyle çiftlerin sayısı ile çarpılır.

LS terim enerjileri, $\Delta E(LS)$ ortalama enerjiden sapma olmak üzere

$$E(LS) = E_{ort} + \Delta E(LS) \tag{2.48}$$

şeklinde ifade edilebilir. $\Delta E(LS)$ bazı faydalı özelliklere sahiptir:

1. Konfigürasyon yalnızca bir terime izin verdiğinde, $\Delta E(LS) \equiv 0$ olur.

2. Elektronlar ve boşluklar için sapmalar aynıdır: $\Delta E(l^n LS) = \Delta E(l^{4l+2-n} LS)$.

3. Birkaç tane tamam olmayan grup içeren konfigürasyonlar için, ΔE bireysel tamam olmayan gruplar içerisindeki etkileşmeden ortaya çıkan sapmalar ile tamam olmayan gruplar arasındaki etkileşmelerden ortaya çıkan sapmaların toplamıdır.

2.2.2.2. Hartree-Fock denklemlerinin türetilmesi

(2.48) ifadesine göre toplam enerji ifadesi

$$E(\gamma LS) = \sum_{i} \frac{q_{i}I(n_{i}l_{i})}{\langle n_{i}l_{i}|n_{i}l_{i}\rangle} + \sum_{i\geq j;k} \frac{a_{ijk}F^{k}(n_{i}l_{i},n_{j}l_{j})}{\langle n_{i}l_{i}|n_{i}l_{i}\rangle\langle n_{j}l_{j}|n_{j}l_{j}\rangle} + \sum_{i>j;k} \frac{b_{ijk}G^{k}(n_{i}l_{i},n_{j}l_{j})}{\langle n_{i}l_{i}|n_{i}l_{i}\rangle\langle n_{j}l_{j}|n_{j}l_{j}\rangle}$$
(2.49)

şeklindedir. Değişim prensibi, bu enerjinin radyal fonksiyonların her birindeki değişimlere göre kararlı olmasını gerektirir. Bu, radyal fonksiyonlar üzerine bir kısıtlama getirmek gerektiğini vurgular. Genellikle değişim yönteminde Lagrange çarpanlarını belirtmek gereklidir. Böyle yapıldığında radyal fonksiyonların ortogonal olmasından doğan zorluk ortadan kaldırılabilir. λ_{ij} , $l_i = l_j$ şeklindeki bir radyal fonksiyon çifti arasındaki ortogonallik şartı ile ilişkili olan bir Lagrange çarpanı olarak alındığında yalnızca bir Lagrange çarpanı gerekli olduğu için $\lambda_{ji} = \lambda_{ij}$ olur. Ortogonallik şartları,

$$W(\gamma LS) = E(\gamma LS) + \sum_{i>j} \delta_{l_i l_j} \lambda_{ij} \frac{\langle n_i l_i | n_j l_j \rangle}{\langle n_i l_i | n_i l_i \rangle^{1/2} \langle n_j l_j | n_j l_j \rangle^{1/2}}$$
(2.50)

olması gereğinden dolayı değişim yöntemine konulabilir.

(2.49)'daki terimlerin çoğu P(nl;r)'den bağımsızdır. Bunların toplamı, $(nl)^{q_{nl}}$ özdeş elektron grubu koparılması durumunda bir sistemin toplam enerjisidir ve $\overline{E}(nl^{q_{nl}})$ ile

gösterilir. $\overline{E}(nl^{q_{nl}})$, P(nl;r)'ye bağlı olmadığı için P(nl;r)'deki değişimlere göre kararlıdır. Böylece

$$E(\gamma LS) - \overline{E}(nl^{q_{nl}}) = \langle nl | nl \rangle^{-1} \times \left[q_{nl}I(nl) + \sum_{k} \frac{a_{nl,nl,k}F^{k}(nl,nl)}{\langle nl | nl \rangle} + \sum_{n'l' \neq nl;k} \frac{a_{nl,n'l',k}F^{k}(nl,n'l')}{\langle n'l' | n'l' \rangle} + \sum_{n'l' \neq nl;k} \frac{b_{nl,n'l',k}G^{k}(nl,n'l')}{\langle n'l' | n'l' \rangle} \right]$$
(2.51)

dür. Ortogonallik şartları $W(\gamma LS)$ 'nin değişimine katkıda bulunmayan P(nl;r)'leri içermez. P(nl;r)'ye doğrudan bağlı fonksiyon

$$\overline{W}(nl^{q_{nl}}) = E(\gamma LS) - \overline{E}(nl^{q_{nl}}) + \sum_{n'} \lambda_{nl,n'l} \frac{\langle nl | n'l \rangle}{\langle nl | nl \rangle^{1/2} \langle n'l | n'l \rangle^{1/2}}$$
(2.52)

şeklindedir ve bu fonksiyon P(nl;r)'deki değişmelere göre kararlı olmalıdır.

Q(nl;r), P(nl;r) gibi aynı sınır ve ortogonallik şartlarını sağlayan iki kez diferansiyellenebilir ve karesi integre edilebilir bir fonksiyon olarak kabul edilirse P(nl;r) yerine $P(nl;r) + \varepsilon Q(nl;r)$ (burada $\varepsilon = 1$) alınır. F(P) fonksiyonlarının birinci dereceden δF değişimi δP 'deki lineer terimleri içerir. δP küçük katkılar cinsinden $F(P+\delta P)-F(P)$ 'nin değişimini ortaya çıkarır. $\delta P = Q$ halinde uygunluğu sağlayan bir ε parametresi

$$\delta F = \frac{d}{d\varepsilon} F \left(P + \varepsilon Q \right) \Big|_{\varepsilon=0}$$
(2.53)

şeklinde tanımlanır. Sonuç olarak;

$$\delta I(nl) = -\frac{1}{2} \frac{d}{d\varepsilon} \int_{0}^{\infty} \left[P(nl;r) + \varepsilon Q(nl;r) \right] L \left[P(nl;r) + \varepsilon Q(nl;r) \right] dr , \quad \varepsilon = 0$$
$$= -\int_{0}^{\infty} Q(nl;r) L P(nl;r) dr \qquad (2.54)$$

dir. F^k ve G^k integrallerinin (ve genel olarak R^k integrallerinin) birinci dereceden değişimini türetmek için aşağıdaki gibi fonksiyonu belirtmek uygundur:

$$Y^{k}(nl,n'l';r) = r \int_{0}^{\infty} U^{k}(r,s)P(nl;s)P(n'l';s)ds$$

=
$$\int_{0}^{r} \left(\frac{s}{k}\right)^{k} P(nl;s)P(n'l';s)ds + \int_{r}^{\infty} \left(\frac{r}{s}\right)^{k+1} P(nl;s)P(n'l';s)ds$$
(2.55)

Bu durumda F^k integrali

$$F^{k}(nl,n'l') = \int_{0}^{\infty} P^{2}(nl;r) \left(\frac{1}{r}\right) Y^{k}(n'l',n'l';r) dr$$
(2.56)

şeklindedir ve integrasyonun sırası ters çevrilebildiği için

$$F^{k}(nl,n'l') \equiv \int_{0}^{\infty} P^{2}(n'l';s) \left(\frac{1}{s}\right) Y^{k}(nl,nl;s) ds$$
(2.57)

yazılabilir. Benzer şekilde;

$$G^{k}(nl,n'l') = \int_{0}^{\infty} P(nl;r)P(n'l';r)\left(\frac{1}{r}\right)Y^{k}(nl,n'l';r)dr$$
(2.58)

dir. Buradan F^k ve G^k 'daki değişimler

$$\delta F^{k}(nl,n'l') = 2(1+\delta_{nl,n'l'})\int_{0}^{\infty} Q(nl;r)P(nl;r)\left(\frac{1}{r}\right)Y^{k}(n'l',n'l';r)dr$$
(2.59)

$$\delta G^{k}(nl,n'l') = 2 \int_{0}^{\infty} Q(nl;r) P(n'l';r) \left(\frac{1}{r}\right) Y^{k}(nl,n'l';r) dr$$
(2.60)

olarak elde edilebilir. P(nl;r)'ye bağlı bir fonksiyon F(nl) cinsinden yazılan

$$E(\gamma LS) - \overline{E}(nl^{q_{nl}}) = \langle nl | nl \rangle^{-1} \times F(nl)$$
(2.61)

ifadesinde yerine yazılırsa

$$\delta \Big[E(\gamma LS) - \overline{E}(nl^{q_{nl}}) \Big] = \langle nl | nl \rangle^{-1} \times \delta F(nl) + \delta \Big[\langle nl | nl \rangle^{-1} \Big] \times F(nl)$$
$$= \langle nl | nl \rangle^{-1} \times \Big[\delta F(nl) - 2 \Big[E(\gamma LS) - \overline{E}(nl^{q_{nl}}) \Big] \times \int_{0}^{\infty} Q(nl;r) P(nl;r) dr \Big] \quad (2.62)$$

elde edilir. Burada

$$\delta F(nl) = q_{nl} \delta I(nl) + \sum_{k} \frac{a_{nl,nl,k} \delta F^{k}(nl,nl)}{\langle nl | nl \rangle} + \sum_{n'l' \neq nl;k} \frac{a_{nl,n'l',k} \delta F^{k}(nl,n'l')}{\langle n'l' | n'l' \rangle} + \sum_{n'l' \neq nl;k} \frac{b_{nl,n'l',k} \delta G^{k}(nl,n'l')}{\langle n'l' | n'l' \rangle} + \sum_{k} a_{nl,nl;k} F^{k}(nl,nl) \delta \left[\langle nl | nl \rangle^{-1} \right]$$
(2.63)

şeklinde bulunur. Buradaki son toplam, özdeş elektronlar için F^k integrallerine ait ek normalleşme çarpanından ortaya çıkar. Sonuç olarak, ortogonallik şartlarından ortaya çıkan terimler için

$$\delta\left[\sum_{n'}\lambda_{nl,n'l}\frac{\langle nl|n'l\rangle}{\langle nl|nl\rangle^{1/2}\langle n'l|n'l\rangle^{1/2}}\right] = \sum_{n'}\lambda_{nl,n'l}\frac{\int\limits_{0}^{\infty}Q(nl;r)P(n'l;r)dr}{\langle nl|nl\rangle^{1/2}\langle n'l|n'l\rangle^{1/2}}$$
(2.64)

olur. Burada $\langle nl | n'l \rangle = 0$ alınır. (2.52) ve (2.64) denklemleri birleştirilirse

$$\delta \overline{W}(nl^{q_{nl}}) = \int_{0}^{\infty} \frac{Q(nl;r)G(nl;r)dr}{\langle nl | nl \rangle}$$
(2.65)

elde edilir. Burada

$$G(nl;r) = -q_{nl} \left(\frac{d^{2}}{dr^{2}} + \frac{2Z}{r} - \frac{l(l+1)}{r^{2}} \right) P(nl;r) + \frac{4}{r} \sum_{k} \frac{a_{nl,nl,k} Y^{k}(nl,nl;r)P(nl;r)}{\langle nl | nl \rangle} + \frac{2}{r} \sum_{n'l' \neq nl;k} \frac{a_{nl,n'l',k} Y^{k}(n'l',n'l';r)P(nl;r)}{\langle n'l' | n'l' \rangle} + \frac{2}{r} \sum_{n'l' \neq nl;k} \frac{b_{nl,n'l',k} Y^{k}(nl,n'l';r)P(n'l';r)}{\langle n'l' | n'l' \rangle} -2 \left[E(\gamma LS) - \overline{E}(nl^{q_{nl}}) + \sum_{k} \frac{a_{nl,nl,k} F^{k}(nl,nl)}{\langle nl | nl \rangle^{2}} \right] P(nl;r) + \sum_{n'} \lambda_{nl,n'l} P(n'l;r) \frac{\langle nl | nl \rangle^{1/2}}{\langle n'l | n'l \rangle^{1/2}}$$
(2.66)

dir. Tüm izinli Q(nl;r) fonksiyonları için $\delta \overline{W}(nl^{q_{nl}}) = 0$ olması gerektiğinden, denklemde $G(nl;r) \equiv 0$ olmalıdır. Ayrıca q_{nl} ile bölünürse,

$$\left\{\frac{d^2}{dr^2} + \frac{2}{r}\left[Z - Y(nl;r)\right] - \varepsilon_{nl,nl} - \frac{l(l+1)}{r^2}\right\} P(nl;r) = \frac{2}{r}X(nl;r) + \sum_{n'}\varepsilon_{nl,n'l}P(n'l;r) \quad (2.67)$$

elde edilir. Burada

$$Y(nl;r) = \sum_{n'l';k} \frac{A_{nl,n'l',k} Y^{k}(n'l',n'l';r)}{\langle n'l' | n'l' \rangle}$$
(2.68)

ve

$$X(nl;r) = \sum_{n'l' \neq nl;k} \frac{B_{nl,n'l',k} Y^{k}(nl,n'l';r) P(n'l';r)}{\langle n'l' | n'l' \rangle}$$
(2.69)

şeklindedir. Bu ifadelerde

$$A_{nl,n'l',k} = \frac{(1+\delta_{nl,n'l'})a_{nl,n'l',k}}{q_{nl}}$$
(2.70)

ve

$$B_{nl,n'l',k} = \frac{b_{nl,n'l',k}}{q_{nl}}$$
(2.71)

olmak üzere

$$\varepsilon_{nl,nl} = \frac{2}{q_{nl}} \left[\overline{E}(nl^{q_{nl}}) - E(\gamma LS) - \sum_{k} \frac{a_{nl,nl,k} F^{k}(nl,nl)}{\langle nl | nl \rangle^{2}} \right]$$
(2.72)

ve

$$\varepsilon_{nl,n'l} = \frac{\lambda_{nl,n'l}}{q_{nl}} \times \frac{\left\langle nl \left| nl \right\rangle^{1/2}}{\left\langle n'l' \left| n'l' \right\rangle^{1/2}}$$
(2.73)

ifadeleri elde edilir. (2.67)'de $\frac{2}{r} [Z - Y(nl;r)]$ potansiyel fonksiyonu ve $\frac{2}{r} X(nl;r)$ takas fonksiyonudur.

2.2.3. Çok elektronlu atomlarda karşılıklı etkileşme kavramı

Hartree-Fock yöntemi pek çok atomik özelliğin oldukça iyi tahminlerini verir. Fakat dikkatli analiz yapıldığında, sistematik farklılıklar gözlenebilir. Gözlenen veriler relativistik etkiler, sonlu kütle ve çekirdek hacmi gibi diğer etkileri içerir ve hafif (küçük) atomlar için küçüktürler. Böyle sistemler için farklılığın en büyük kaynağı, Hartree-Fock çözümünün Schrödinger denkleminin gerçek çözümüne bir yaklaşıklık olması gerçeğinden ve elektronların hareketindeki karşılıklı etkileşme fikrinin

ihmalinden ortaya çıkar. Hartree-Fock yönteminde, her bir elektronun diğer elektronlar tarafından belirlenen bir alanda bağımsız olarak hareket ettiği kabul edilir. Bu nedenle enerjideki hata Löwdin [409] tarafından 'karşılıklı etkileşme enerjisi' olarak tanımlanır.

$$E^{Kor.} = E^{Gerçek} - E^{HF}$$
(2.74)

Burada $E^{Gerçek}$, sadece gözlenen enerji değildir. Bu, bir dizi kabullenimleri esas alan Schrödinger denkleminin gerçek çözümüdür ve E^{HF} Hartree-Fock enerjisidir.

2.3. Çok Konfigürasyonlu Hartree-Fock Yöntemi

Fischer tarafından geliştirilen bu yönteme [403] göre, değişim fonksiyonu yerine çok konfigürasyonlu açılım seçilirse, radyal fonksiyonlardaki değişimlere göre kararlılık şartı Hartree-Fock denklemlerine benzer diferansiyel denklemler takımına götürür. Diferansiyel denklemler, karışım (açılım) katsayılarının değişiminden ortaya çıkan matris özdeğer denklemine eşlenir ve bu iki problem eş zamanlı olarak çözülür. Bu değişim fonksiyonunu temel alan yöntem, 'çok konfigürasyonlu Hartree-Fock yöntemi (MCHF)' olarak bilinir. Bu yaklaşıklıkta dalga fonksiyonu,

$$\Psi(\gamma LS) = \sum_{i=1}^{M} c_i \Phi(\gamma_i LS), \qquad \sum_{i=1}^{M} c_i^2 = 1$$
(2.75)

şeklinde ortonormal konfigürasyon hal fonksiyonlarının lineer birleşimi ile elde edilir. Burada $\Phi(\gamma_i LS)$, γ_i ve c_i sırasıyla *LS* çiftlenimli konfigürasyon hal fonksiyonu, konfigürasyonları ve konfigürasyonların karışım katsayılarını ifade etmektedir. Relativistik olmayan enerji ifadesi de

$$\mathcal{E}(\gamma LS) = \sum_{i=1}^{M} \sum_{j=1}^{M} c_i c_j \left\langle \Phi(\gamma_i LS) \middle| H \middle| \Phi(\gamma_j LS) \right\rangle$$

= $\sum_{i=1}^{M} \sum_{j=1}^{M} c_i c_j H_{ij} = \sum_{i=1}^{M} c_i^2 H_{ii} + 2 \sum_{i>j}^{M} c_i c_j H_{ij}$ (2.76)

olur. Burada $H_{ij} = \langle \Phi(\gamma_i LS) | H | \Phi(\gamma_j LS) \rangle$ 'dir. $H_{ij} = H_{ji}$ olduğu için *i* ve *j* üzerinden toplam köşegenlere ve etkileşim matrisi denilen $\mathbf{H} = H_{ij}$ matrisinin en alt kısmıyla sınırlandırılabilir. $\mathbf{c} = (c_1, c_2, ..., c_M)^t$ açılım katsayıları (veya karışım katsayıları) bir sütun vektörü olduğunda sistemin enerjisi

$$E = \mathbf{c}^{\mathsf{t}} \mathbf{H} \mathbf{c} \tag{2.77}$$

olur. $(P(a;r), P(b;r), ...)^{t}$ radyal fonksiyonlarının sütun vektörü **P** ile gösterildiğinde etkileşim matris elemanları radyal fonksiyonlara bağlı olduğu için enerji fonksiyonunun hem **P**'ye hem **c**'ye bağlı olacağı açıktır.

Hamiltonyenin matris elamanları

$$H_{ij} = \sum_{ab} w_{ab}^{ij} I(a,b) + \sum_{abcd;k} v_{abcd;k}^{ij} R^k(ab,cd)$$

$$(2.78)$$

şeklinde olur. Buradaki *ab* veya *abcd* üzerinden toplam, her bir konfigürasyon halindeki doldurulmuş yörüngeler üzerindendir. (2.78), (2.76)'daki enerji ifadesinde yerine yazılır ve toplamın sırası değiştirilirse

$$\mathcal{E}(\gamma LS) = \sum_{ab} w_{ab} I(a,b) + \sum_{abcd;k} v_{abcd;k} R^{k}(ab,cd)$$
(2.79)

elde edilir. Burada

$$w_{ab} = \sum_{i=1}^{M} \sum_{j=1}^{M} c_i c_j w_{ab}^{ij} \text{ ve } v_{abcd;k} = \sum_i \sum_j c_i c_j v_{abcd;k}^{ij}$$
(2.80)

şeklindedir.

Bu şekilde enerji, integrallerin ve bunların karışım katsayılarına bağlı olan enerjiye katkılarının bir listesi olarak ifade edilir. İntegraller üzerinden toplamı

minimumlaştırmak için, I(a,b) ve $R^k(ab,cd)$ integrallerinin simetrik özelliklerinin avantajını almak faydalıdır. MCHF programında I(a,b) integrali için $a \le b$ ve $R^k(ab,cd)$ integrali için de $a \le b$, $a \le c$ ve $b \le d$ kabul edilir.

Hartree-Fock denklemlerinin türetilmesindeki gibi, kararlılık prensibi tüm kısıtlamalar için Lagrange çarpanlarını içeren bir fonksiyona uygulanmalıdır:

$$F(\mathbf{P},\mathbf{c}) = \mathcal{E}(\gamma LS) + \sum_{a \le b} \delta_{l_a l_b} \lambda_{ab} \langle a | b \rangle - E \sum_{i=1}^{M} c_i^2$$
(2.81)

 c_i 'deki değişimlere göre kararlılık şartlarının türetilmesinde, $\mathcal{E}(\gamma LS)$ için en uygun şekil

$$\mathbf{Hc} = E\mathbf{c} \tag{2.82}$$

şeklinde köklü (radikal) denkleme götüren (2.76)'dır. Böylece, *E* Lagrange çarpanı, sistemin toplam enerjisidir. P(a;r) radyal fonksiyonlardaki değişimlere göre kararlılık şartı, değiştirilecek her radyal fonksiyon için bir tane olmak üzere bir denklemler sistemine götürür.

P(a;r), (2.81)'in kararlılık şartına göre değiştirilecek olan bir radyal fonksiyon olarak kabul edilirse şu durumlar elde edilir.

a) $w_{aa}I(a,a)$ 'nın değişimi

$$-w_{aa}\int_{0}^{\infty}\delta P(a;r)LP(a;r)dr$$
(2.83)

olur.

b)
$$\sum_{b;k} v_{abab;k} R^{k} (ab, ab)$$
'nin değişimi
$$2w_{aa} \int_{0}^{\infty} \delta P(a;r) \frac{1}{r} Y(a;r) P(a;r) dr$$
(2.84)

olarak ifade edilebilir. Burada $2w_{aa}$ çarpanı integral dışına alınır ve diğer tüm sabitler Y(a;r)'nin tanımıyla birleştirilir.

c) Diğer tüm integrallerin değişimi

$$2w_{aa}\int_{0}^{\infty}\delta P(a;r)\frac{l}{r}X(a;r)dr$$
(2.85)

şeklinde ifade edilebilir. Bazı katkılar I(a,b) köşegen dışı integrallerinden ortaya çıkabilir. Slater integralleri her bir konum için bir, iki veya üç kez ortaya çıkan radyal integrale sahip olabilir. Ortonormallik kısıtlamalarıyla birlikte bu değişimlerin toplamı

$$w_{aa} \int_{0}^{\infty} \delta P(a;r) Q(r) dr = 0$$
(2.86)

şeklinde ifade edilebilir. $\delta P(a;r)$ tüm küçük değişimler için sıfır olma şartı, Q(r) = 0 şartına götürür:

$$\left(\frac{d^2}{dr^2} + \frac{2}{r} \left[Z - Y(nl;r) \right] - \frac{l(l+1)}{r^2} - \varepsilon_{nl,nl} \right) P(nl;r) = \frac{2}{r} X(nl;r) + \sum_{n' \neq n} \varepsilon_{nl,n'l} P(n'l;r)$$
(2.87)

Köşegen ve köşegen dışı enerji parametreleri

$$\varepsilon_{nl,nl} = \frac{2\lambda_{nl,nl}}{w_{nl,nl}} \text{ ve } \varepsilon_{nl,n'l} = \frac{\lambda_{nl,n'l}}{w_{nl,nl}}$$
(2.88)

şeklinde Lagrange çarpanlarıyla ilişkilidir. Buna göre, köşegen ve köşegen dışı enerji parametreli matrisin simetrik olmadığına dikkat edilmelidir. Bununla birlikte

$$w_{nl,nl}\varepsilon_{nl,n'l} = w_{n'l,n'l}\varepsilon_{n'l,nl}$$
(2.89)

şeklindedir. Radyal denklemlerin bu sistemi, $w_{nl,nl}$ doluluk sayısının, tam sayı değil daha çok beklenen doluluk sayısı olması ve X(nl;r) fonksiyonunun yalnızca bir konfigürasyon hali içindeki elektronların değiş tokuşundan değil aynı zamanda konfigürasyon halleri arasındaki etkileşimlerden de ortaya çıkması durumları hariç, Hartree-Fock denklemlerine benzerdir.

Değişim radyal denklemlerinin verildiği kabul edilirse sadece köklü problemin çözülmeye ihtiyacı vardır. Bu problem bir 'konfigürasyon etkileşme (CI) problemi' olarak isimlendirilir. Herhangi bir radyal fonksiyon iyileştirilirse hesaplamaya 'çok konfigürasyonlu Hartree-Fock (MCHF) hesabı' denir. Çözüm yine tekrarlamalı süreç olan çok konfigürasyonlu-öz-uyum alan (MC-SCF) yöntemidir. Bu yöntemle tahmini radyal fonksiyonlarla Y(nl;r) ve X(nl;r) hesaplanır. Bu hesaplama sonucunda normalize edilen yeni radyal fonksiyonların tahminlerden daha iyi olması beklenir. Bu süreç, tahmin ile hesap sonucunda elde edilenler arasında 'öz-uyum' sağlanana kadar devam edilir. Hartree denklemleri için, Hartree 'alanlar' cinsinden süreci tanımladı ve öz-uyum alan (SCF) terimini türetti. Hartree-Fock denklemleri için de, bunun, her bir yörünge için radyal yükün önemli olduğu bilinir. Böylece bu süreç ana adımları ile şöyledir:

a) Başlangıç radyal fonksiyonları belirtilir.

b) Her bir radyal fonksiyon için doğrudan ve takas potansiyeli hesaplanır, köşegen enerji parametresi belirlenir ve diferansiyel denklem çözülür.

c) Son radyal fonksiyonlar elde edilir ve bu elde edilenlerle yakınsama sağlanana kadar aynı işlemler tekrarlanır.

2.3.1. Relativistik etkiler

Ağır atomlar veya yüksekçe iyonlaşmış sistemlere doğru gidildiğinde relativistik etkilerin önemi hızla artmaktadır. Relativistik etkileri dikkate almak için, Dirac denklemini çok elektronlu bir sistem için çözmek yerine, bir diğer yol Schrödinger denklemine en düşük mertebeden relativistik katkıları almaktır. Bu düzeltmeler α (ince yapı sabiti)'nın kuvvetlerine göre bir açılımla relativistik çok elektronlu denklemlerden türetilebilir. α^2 mertebesinde düzeltme için ortaya çıkan Hamiltonyen, 'Breit-Pauli Hamiltonyeni' olarak bilinir. Bu Hamiltonyen relativistik

2.3.1.1. Breit-Pauli Hamiltonyeni ve dalga fonksiyonu

Breit-Pauli Hamiltonyeni

$$H_{BP} = H_{NR} + H_{RS} + H_{FS}$$
(2.90)

şeklindedir. Burada, H_{NR} relativistik olmayan çok-elektron Hamiltonyeni, H_{RS} relativistik kayma ve H_{FS} ince yapı işlemcileridir. H_{RS} , L ve S ile sıra değiştirir. H_{MC} kütle düzeltmesi, H_{D1} ve H_{D2} sırası ile bir- ve iki-cisim Darwin terimleri, H_{OO} yörünge-yörünge terimi ve H_{SSC} spin-spin temas terimi olmak üzere H_{RS} ,

$$H_{RS} = H_{MC} + H_{D1} + H_{D2} + H_{OO} + H_{SSC}$$
(2.91)

şeklinde ifade edilir. Burada

$$H_{MC} = -\frac{\alpha^2}{8} \sum_{i=1}^{N} \left(\nabla_i^2 \right)^{\dagger} \nabla_i^2 , \qquad (2.92)$$

$$H_{D1} = -\frac{\alpha^2 Z}{8} \sum_{i=1}^{N} (\nabla_i^2) \left(\frac{1}{r_i}\right),$$
(2.93)

$$H_{D2} = \frac{\alpha^2}{4} \sum_{i (2.94)$$

$$H_{OO} = -\frac{\alpha^2}{2} \sum_{i < j}^{N} \left[\frac{\boldsymbol{p}_i \cdot \boldsymbol{p}_j}{r_{ij}} + \frac{\boldsymbol{r}_{ij} (\boldsymbol{r}_{ij} \cdot \boldsymbol{p}_i) \boldsymbol{p}_j}{r_{ij}^3} \right]$$
(2.95)

ve

$$H_{SSC} = -\frac{8\pi\alpha^2}{3} \sum_{i(2.96)$$

dir. H_{FS} işlemcisi, spin ve yörünge açısal momentumları arasındaki etkileşimi tanımlar. H_{FS} bir etkileşme terimi olduğu için L ve S ile sıra değiştirmezken, J = L + S toplam açısal momentumla sıra değiştirir. İnce yapı işlemcisinin açık ifadesi ise

$$H_{FS} = H_{SO} + H_{SOO} + H_{SS}$$
(2.97)

dir. H_{so} çekirdek spin-yörünge, H_{soo} spin-diğer yörünge ve H_{ss} spin-spin etkileşme terimleridir:

$$H_{SO} = \frac{\alpha^2 Z}{2} \sum_{i=1}^{N} \left(\frac{1}{r_i^3} \right) \boldsymbol{l}_i \cdot \boldsymbol{s}_i$$
(2.98)

$$H_{soo} = -\frac{\alpha^2}{2} \sum_{i < j}^{N} \frac{\mathbf{r}_{ij} \times \mathbf{p}_i}{r_{ij}^3} (\mathbf{s}_i + 2\mathbf{s}_j)$$
(2.99)

$$H_{SS} = \alpha^2 \sum_{i < j}^{N} \frac{1}{r_{ij}^3} \left[s_i \cdot s_j - 3 \frac{(s_i \cdot r_{ij})(s_j \cdot r_{ij})}{r_{ij}^2} \right]$$
(2.100)

Breit-Pauli Hamiltonyeni J toplam açısal momentum işlemcisi ile sıra değiştirir ve karşılık gelen dalga fonksiyonu ise J^2 ve J_z 'nin özfonksiyonları olmalıdır. Çok konfigürasyonlu yaklaşımında, Breit-Pauli dalga fonksiyonları,

$$\Psi(\gamma JM_J) = \sum_{i=1}^{M} c_i \Phi(\gamma_i L_i S_i JM_J)$$
(2.101)

şeklinde lineer birleşimler olarak verilir. Burada $\Phi(\gamma LSJM_J)$ 'ler LSJ çiftlenimli CSF'lerdir:

$$\Phi(\gamma LSJM_J) = \sum_{M_L M_S} \left\langle LM_L SM_S \, \middle| \, LSJM_J \right\rangle \Phi(\gamma LM_L SM_S)$$
(2.102)

L ve *S*, farklı *LS*'li konfigürasyon hal fonksiyonlarının iyi kuantum sayıları olmadığı için, farklı *LS* terimli CSF'lerin (2.101)'de alınması gereklidir. Bu durumda dalga fonksiyonu 'ara-çiftlenim' denilen çiftlenim modelinde verilir.

CSF'lerden oluşturulan radyal fonksiyonlar bir ön MCHF çalışmasından alınır ve yalnızca açılım katsayıları iyileştirilir. Bu da (2.82) şeklindeki matris özdeğer problemine götürür. Burada **H**,

$$H_{ij} = \left\langle \gamma_i L_i S_i J M_J \left| H_{BP} \right| \gamma_j L_j S_j J M_J \right\rangle$$
(2.103)

elemanlı matristir. Böylece Breit-Pauli Hamiltonyeninin özdeğer ve özfonksiyonlarını bulma problemi, *LSJ* çiftlenimli konfigürasyon hal fonksiyonları arasındaki matris elemanlarının bulunmasına ve her *J* değeri için matris köşegenleştirmesine indirgenir.

2.3.1.2. İnce yapı seviyeleri

(2.101)'e karşılık gelen enerji ifadesi

$$E = E_{NR} + E_{RS} + E_{FS}$$
(2.104)

olarak dikkate alınabilir. Burada E_{NR} ,

$$E_{NR} = \left\langle \gamma LSJM_{J} \left| H_{NR} \right| \gamma LSJM_{J} \right\rangle$$
(2.105)

şeklinde relativistik olmayan enerjidir, E_{RS} ve E_{FS} sırasıyla, relativistik kaymadan ve ince yapı katkılarından elde edilen relativistik enerji düzeltmeleridir.

Relativistik kayma işlemcilerinin tümü L ve S ile sıra değiştirirler ve böylece E_{RS} J'den (ve M_J 'den) bağımsızdır ve E_{NR} relativistik olmayan LS terim enerjisinin kaymasını gösterir. İnce yapı enerjisi,

$$E_{FS} = E_{SO} + E_{SOO} + E_{SS}$$
(2.106)

olarak yazılabilir. Burada E_{so} , E_{soo} ve E_{ss} sırasıyla spin-yörünge, spin-diğer yörünge ve spin-spin etkileşme işlemcilerine karşılık gelen enerjilerdir. Bu enerjilerin hepsi J kuantum sayısına bağlıdır ve E_{NR} relativistik olmayan LS terim enerjisinin bir yarılmasını (ince yapı seviyeleri) verir. Açısal momentumların toplama kurallarını kullanarak L ve S'nin verilen değerlerine karşılık gelen J'nin mümkün değerleri

$$|L-S|, |L-S|+1, \dots, L+S-1, L+S$$
 (2.107)

dir. Terimdeki seviyelerin sayısı $L \le S$ ise 2S+1 çokluğu ile; L < S ise 2L+1 çokluğu ile verilir.

Glass ve Hibbert [410] çok elektronlu bir sistemde, farklı ince yapı işlemcilerinin matris elemanlarının alınan kuantum sayılarına farklı şekilde bağlı olduğunu gösterdiler. Böylece E_{so} ve E_{soo} 'nun her ikisi bir ranklı spin ve uzay işlemcilerinin çarpımıdır:

$$E_{so} = \left\langle \gamma LSJM_{J} \left| H_{so} \right| \gamma LSJM_{J} \right\rangle \propto J \left(J+1 \right) - L \left(L+1 \right) - S \left(S+1 \right)$$
(2.108)

$$E_{soo} = \left\langle \gamma LSJM_{J} | H_{soo} | \gamma LSJM_{J} \right\rangle \propto J \left(J+1 \right) - L \left(L+1 \right) - S \left(S+1 \right)$$
(2.109)

 E_{SS} 'de iki ranklı iki tensör işlemcisinin bir skaler çarpımıdır:

$$E_{SS} = \left\langle \gamma LSJM_{J} \left| H_{SS} \right| \gamma LSJM_{J} \right\rangle \propto \frac{3}{4} C \left(C+1 \right) - L \left(L+1 \right) - S \left(S+1 \right)$$
(2.110)

Burada C = J(J+1) - L(L+1) - S(S+1)'dir. Daha açık olarak ince yapı enerji seviyeleri

$$E_{so} = \{J(J+1) - L(L+1) - S(S+1)\}\zeta_{so}(\gamma LS), \qquad (2.111)$$

$$E_{SOO} = \{J(J+1) - L(L+1) - S(S+1)\}\zeta_{SOO}(\gamma LS)$$
(2.112)

ve

$$E_{SS} = \left\{\frac{3}{4}C(C+1) - L(L+1) - S(S+1)\right\}\zeta_{SS}(\gamma LS)$$
(2.113)

şeklinde verilir. Burada $\zeta_{so}(\gamma LS)$, $\zeta_{soo}(\gamma LS)$ ve $\zeta_{ss}(\gamma LS)$, *J*'den bağımsız çarpanlardır. Eğer spin-spin terimi ihmal edilirse *J* ve *J*-1 iki komşu ince yapı seviyeleri arasındaki enerji farkının

$$\Delta E_{FS} = 2\zeta J \tag{2.114}$$

olduğu görülür. Burada $\zeta = \zeta_{so}(\gamma LS) + \zeta_{soo}(\gamma LS)$ 'dir. Buna ince yapı için 'Landé aralık kuralı' denir. ζ pozitif ise ince yapı enerjisi *J* ile artar; bu durumda ince yapının normal olduğu, ζ negatif ise tersinir olduğu söylenir.

2.3.2. Enerji seviyeleri arasındaki geçişler

2.3.2.1. Geçişler ve geçiş özellikleri

Bir atomun enerji seviyeleri genellikle sonsuz yarı ömürlü kararlı haller olarak kabul edilir. Bir elektromanyetik alan varlığında bu durum değişir. Fotonların soğurulması atomları ve iyonları daha yüksek seviyelere uyaracaktır. Aynı anda yayınlama ile bir kez ışıma yapacaktır. Einstein [411], tamamen istatistiksel argümanları kullanarak, bir uyarılmış iyonun manyetik alan yokluğunda da kendiliğinden ışıma yapacağını gösterdi.

İki hal arasındaki elektromanyetik geçiş, karşılık gelen fotonun açısal momentum ve paritesi ile belirlenir. Soğurulan veya yayınlanan foton k açısal momentumu ve $\pi = (-1)^k$ pariteye sahip ise geçişe 'elektrik çok-kutuplu (*Ek*) geçiş'; foton $\pi = (-1)^{k+1}$ pariteli ise geçişe 'manyetik çok-kutuplu (*Mk*) geçiş' denir. Her bir çokkutup, paritesi π ve rankı k olan $O_q^{\pi(k)}$ küresel tensör işlemcisi ile tanımlanır. Bu elektrik ve manyetik geçişler için,

$$E_q^{(k)} = \sum_{i=1}^{N} r^k(i) C_q^{(k)}(i)$$
(2.115)

ve

$$M_{q}^{(k)} = \alpha \sqrt{k(2k-1)} \left[\frac{1}{k+1} M A_{q}^{(k)} + \frac{1}{2} g_{s} M B_{q}^{(k)} \right]$$
(2.116)

şeklindedir. Burada $MA_q^{(k)}$ ve $MB_q^{(k)}$

$$MA_{q}^{(k)} = \sum_{i=1}^{N} r^{k-1}(i) \Big[\mathbf{C}^{(k-1)}(i) \times \mathbf{I}^{(1)}(i) \Big]_{q}^{(k)}$$
(2.117)

$$MB_{q}^{(k)} = \sum_{i=1}^{N} r^{k-1}(i) \left[\mathbf{C}^{(k-1)}(i) \times \mathbf{s}^{(1)}(i) \right]_{q}^{(k)}$$
(2.118)

olarak tanımlanır.

Bir $\gamma'J'M'$ üst seviye ve bir γJM alt seviye arasındaki geçişi tanımlamak için geçiş integrali

$$I_{q}^{\pi k}(\gamma JM, \gamma' J'M') = \left\langle \gamma JM \left| O_{q}^{\pi (k)} \right| \gamma' J'M' \right\rangle$$
(2.119)

ve bileşen şiddeti $s^{\pi k}$

$$s^{\pi k} \left(\gamma JM, \gamma' J'M' \right) = \sum_{q} \left| I_{q}^{\pi k} \left(\gamma JM, \gamma' J'M' \right) \right|^{2}$$

$$(2.120)$$

şeklinde tanımlanır. Yalnızca *M* kuantum sayılarında katlı olan seviyelere sahip sistemlerle ilgilenildiğinde gözlenebilen nicelik böylece bu kuantum sayıları üzerinden bileşen şiddetlerinin toplamı olacağından çizgi şiddeti

$$S^{\pi k}\left(\gamma J, \gamma' J'\right) = \sum_{M, M', q} \left| < \gamma J M \mid O_q^{\pi(k)} \mid \gamma' J' M' > \right|^2$$

$$(2.121)$$

dir. Wigner-Eckart teoreminden ve ortogonallik bağıntısından (M ve M''ler üzerinden toplam) çizgi şiddeti, indirgenmiş matris elemanlarının karesi olarak elde edilir:

$$S^{\pi k}\left(\gamma' J', \gamma J\right) = \left| \left\langle \gamma J \left\| \mathbf{O}^{\pi(k)} \right\| \gamma' J' \right\rangle \right|^2$$
(2.122)

Bir üst seviyeden bir alt seviyeye yayınlama için geçiş olasılığı (veya hızı)

$$A^{\pi k}\left(\gamma'J',\gamma J\right) = 2C_{k}\left[\alpha\left(E_{\gamma'J'}-E_{\gamma J}\right)\right]^{2k+1}\frac{S^{\pi k}\left(\gamma'J',\gamma J\right)}{g_{J'}}$$
(2.123)

ile verilir. Burada $g_{J'}$

$$g_{J'} = 2J' + 1 \tag{2.124}$$

şeklinde üst seviyenin istatistiksel ağırlığıdır ve

$$C_{k} = \frac{(2k+1)(k+1)}{k[(2k+1)!!]^{2}}$$
(2.125)

şeklinde tanımlıdır. Salınıcı şiddeti soğurma ya da yayınlamadaki geçişi temsil eder. Düşük haldeki bir atom foton soğurarak üst seviyeye uyarıldığında soğurma salınıcı şiddeti

$$f^{\pi k}(\gamma J, \gamma' J') = \frac{1}{\alpha} C_k \Big[\alpha (E_{\gamma' J'} - E_{\gamma J}) \Big]^{2k-1} \frac{S^{\pi k}(\gamma J, \gamma' J')}{g_J}$$
(2.126)

dir. Benzer bir ifade $\gamma'J'$ ile γJ yer değiştirmek suretiyle yayınlama şiddeti içinde uygulanır. Bu durumda sadece işaret değişikliği yeterli olacaktır. Esas olan (özel bir önemi olan), ağırlıklı salınıcı şiddeti veya *gf* değeridir. Ağırlıklı salınıcı şiddeti

$$gf^{\pi k}(\gamma J, \gamma' J') = g_J f^{\pi k}(\gamma J, \gamma' J')$$
(2.127)

ile verilir. Bu özellik iki seviye arasında çizgi şiddeti gibi (işareti hariç) tamamen simetriktir.

Bu 'tekli çizgi' özelliklerinin hiçbirinin ölçümü kolay değildir. Bu nedenle, çoğu deneyler ölçümlerin kolaylığından dolayı üst seviyenin yarı ömrünü verir. Bu durumda, tüm düşük seviyelere çok-kutuplu geçişler üzerinden toplam alınmalıdır. Böylece bir $\gamma'J'$ seviyesinin yarı ömrü

$$\tau_{\gamma'J'} = \frac{1}{\sum_{\pi k, \gamma J} A^{\pi k} \left(\gamma' J', \gamma J\right)}$$
(2.128)

olur. Aynı $\gamma'J'$ üst seviyeden başlangıç çizgilerinin şiddeti Q dallanma oranından türetilebilir. Bu, $\gamma'J'$ 'den γJ 'ye bir geçiş için

$$Q = \tau_{\gamma'J'} \sum_{\pi k} A^{\pi k} \left(\gamma' J', \gamma J \right)$$
(2.129)

olarak tanımlanır. Bu farklı çok-kutuplu geçişlere ait hızın boyutunu verir. Bu elektrik ve manyetik çok-kutuplu geçişler için

$$A^{Ek} \propto \alpha^{2k+1} \tag{2.130}$$

ve

$$A^{Mk} \propto \alpha^{2k+3} \tag{2.131}$$

şeklindedir. Genelde en büyük geçiş hızı elektrik dipol (*E*1) ışımasında olacaktır ($1/\alpha^2$ çarpım kadar). Bu nedenle, *E*1 geçişleri 'izinli', daha yüksek dereceden elektrik ve tüm manyetik geçişler 'yasaklı' olarak adlandırılır.

2.3.2.2. Işımalı geçişler için kesin ve yaklaşık seçim kuralları

Kesin seçim kuralları tüm konfigürasyon hal fonksiyonları için uygulanır. Verilen bir atomik hal fonksiyonuna ait açılımdaki tüm konfigürasyon hal fonksiyonları aynı paritelidir. Böylece ilk kuralın geçiş işlemcilerinin paritesi ile ilişkili olacağı açıktır. Parite, elektrik işlemcileri için $(-1)^k$ ile, manyetik işlemcileri için $(-1)^{k-1}$ ile belirlidir. π ve π' ile iki halin paritesi olmak üzere π'/π dikkate alınırsa

$$\mathbf{E}^{(k)}:\frac{\pi'}{\pi} = (-1)^k \tag{2.132}$$

$$\mathbf{M}^{(k)}: \frac{\pi'}{\pi} = (-1)^{k-1}$$
(2.133)

olduğu görülür. Yani, *E*1 elektrik dipol işlemcisi farklı pariteli halleri, *M*1 manyetik dipol ve *E*2 elektrik kuadrupol ise aynı pariteli halleri dikkate alır.

Verilen bir atomik hal fonksiyonuna ait bir açılımdaki tüm CSF'ler için ortak olan diğer bir özellik toplam *J* değeri içindir. Bunun için tüm çok-kutuplu işlemcileri

$$\Delta J = J - J' = 0, \pm 1, ..., \pm k, \ k \le J + J'$$
(2.134)

seçim kuralını verir. Bu kural $J \neq J' \neq 0$ kısıtlamasını içerecek şekildedir.

CSF'lerin farklı açısal momentumları geçişe katılıp katılmamalarına göre aktif veya pasif olarak sınıflandırılabilirler. Pasif momentumlar, aktifler (2.134)'teki kurala göre oluşurken değişmeyecektir. Dikkate alınacak ilk kural, uzaysal ve spin uzayını temsil eden farklı işlemcilerin ranklarına bağlıdır. $\mathbf{E}^{(k)}$ işlemcisinin spinden bağımsız olduğu ve spinlerin daima elektrik çok-kutup geçişleri için pasif olduğu açıktır. Böylece spin için seçim kuralı,

$$\mathbf{E}^{(k)}:\Delta S=0\tag{2.135}$$

olarak verilebilir. Aynı seçim kuralı $\mathbf{MA}^{(k)}$ işlemcisi için geçerlidir. Ancak, $\mathbf{MB}^{(k)}$ işlemcisi 1 ranklı bir spin işlemcisi içerir ve bu nedenle manyetik çok-kutup geçişler bir kadar farklı spinli CSF'lerle ilgili olabilir.

Uzay açısal momentumlarına ait seçim kurallarını elde etmek için, $\mathbf{E}^{(k)}$ işlemcisine karşılık gelen tensörün rankının *k* olduğuna dikkat edilir. Bu, seçim kuralını

$$\mathbf{E}^{(k)}: \Delta L = 0, \pm 1, \dots, \pm k, \ k \le L + L'$$
(2.136)

olarak tayin eder. Manyetik geçişler için biraz daha dikkatli olmak gerekir. Çünkü uzay tensörü $\mathbf{MA}^{(k)}$ 'da k ranklı $\mathbf{MB}^{(k)}$ 'da k-1 ranklıdır. Bu durumda $\mathbf{MA}^{(k)}$ ve $\mathbf{MB}^{(k)}$ 'ya ait uzay ve spin momentumları için seçim kuralları,

$$\mathbf{MA}^{(k)}: \Delta S = 0, \ \Delta L = 0, \pm 1, \dots, \pm k, \ k \le L + L'$$
(2.137)

$$\mathbf{MB}^{(k)}: \Delta S = 0, \pm 1, \ \Delta L = 0, \pm 1, \dots, \pm (k-1), \ k-1 \le L+L'$$
(2.138)

şeklinde birleştirilebilir.

2.3.3. Enerji seviyelerinin Landé g-çarpanları

Zeeman etkisi, dış manyetik alan ile atomun manyetik momenti arasındaki

$$H_m = -\boldsymbol{\mu}.\mathbf{B} \tag{2.139}$$

şeklindeki etkileşimden ortaya çıkar. Burada μ manyetik moment ve **B** manyetik alandır. Breit-Pauli yaklaşıklığında manyetik momente iki katkı vardır: Elektronların spin hareketinden ve yörünge hareketinden gelen katkılar. Bu iki katkı eklendiğinde

$$\boldsymbol{\mu} = -\boldsymbol{\mu}_{B}(\mathbf{L} + \boldsymbol{g}_{S}\mathbf{S}) \tag{2.140}$$

elde edilir. Burada μ_B Bohr manyetonu ve g_s kuantum elektrodinamik (QED) etkiler için düzeltilen elektron spininin g çarpanıdır ($g_s = 2,00232$). Dış alan, manyetik etkileşme enerjisi ince yapı ayrılmalarına göre küçük olacak kadar zayıf ise, H_m sıfırıncı dereceden fonksiyonlar olarak Breit-Pauli Hamiltonyenine ait dalga fonksiyonlarıyla birinci dereceden katkı teorisi ile iyileştirilebilir. Dış alanın yönü zyönünde seçildiğinde, etkileşim enerjisi

$$\Delta E(\gamma JM) = \left\langle \gamma JM \left| H_m \right| \gamma JM \right\rangle = \mu_B B \left\langle \gamma JM \left| L_z + g_s S_z \right| \gamma JM \right\rangle$$
(2.141)

şeklindedir. H_{BP} Breit-Pauli Hamiltonyenine ait dalga fonksiyonları *LSJ* çiftlenimli CSF'ler üzerinden açılımla elde edildiğinden enerji ifadesi CSF'ler üzerinden bir çift toplama indirgenir:

$$\Delta E(\gamma JM) = \left\langle \Psi(\gamma JM) \middle| H_m \middle| \Psi(\gamma JM) \right\rangle$$
$$= \mu_B B \sum_{j,k} c_j c_k \left\langle \Phi(\gamma_j L_j S_j JM) \middle| L_z + g_s S_z \middle| \Phi(\gamma_k L_k S_k JM) \right\rangle$$
(2.142)

CSF'ler arasındaki matris elemanları da

$$\left\langle \Phi(\gamma LSJM) \middle| L_z + g_s S_z \middle| \Phi(\gamma' L'S' JM) \right\rangle = \delta_{\gamma\gamma'} \delta_{LL'} \delta_{SS'} g_J(LS)M$$
(2.143)

olarak oluşturulabilir. Burada *g*, herhangi bir terim karışımı olmaksızın (yani saf *LS* çiftleniminde) Landé *g*-çarpanıdır:

$$g_J(LS) = 1 + (g_s - 1)\frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$
(2.144)

Bu ifade dikkate alındığında enerji yarılması

$$\Delta E(\gamma LS) = \mu_B B g_{\gamma J} M \tag{2.145}$$

olur.

Orta manyetik alanlar için, katkı ifadesi uygun değildir. Bu durumda,

$$H = H_{BP} + H_m = H_{BP} + \mu_B B(L_z + g_s S_z)$$
(2.146)

şeklindeki toplam Hamiltonyene karşılık gelen enerji ve dalga fonksiyonlarının belirlenmesi gerekir. Bu Hamiltonyen yalnızca J_z ile sıra değiştirir ve dalga fonksiyonu,

$$\Omega(\gamma M) = \sum_{\alpha} d_{\alpha} \Psi(\gamma_{\alpha} J_{\alpha} M)$$
(2.147)

şeklindeki Breit-Pauli özvektörler üzerinden yaklaşık olarak bulunur. Breit-Pauli özvektörleri arasındaki matris elemanları da

$$\mu_{B}B\langle\Psi(\gamma JM)|L_{z}+g_{s}S_{z}|\Psi(\gamma' JM)\rangle = \mu_{B}Bg_{\gamma J,\gamma' J}M$$
(2.148)

olarak yazılabilir. J'deki köşegen dışı matris elemanları için ise

$$\left\langle \Psi(\gamma JM) \left| L_{z} + g_{s} S_{z} \right| \Psi(\gamma' J - 1M) \right\rangle$$
$$= \sum_{i,j} c_{i} c_{j}' \left\langle \Phi(\gamma_{i} L_{i} S_{i} JM) \left| L_{z} + g_{s} S_{z} \right| \Phi(\gamma_{j} L_{j} S_{j} J - 1M) \right\rangle (2.149)$$

elde edilir. Manyetik kuantum sayısına bağlılık ayırt edildiğinde

$$\left\langle \Phi(\gamma LSJM) \middle| L_z + g_s S_z \middle| \Phi(\gamma' L'S' J - 1M) \right\rangle = \delta_{\gamma\gamma'} \delta_{LL'} \delta_{SS'} g_{J,J-1}(LS) \left(J^2 - M^2 \right)^{1/2}$$
(2.150)

bulunur. Burada

$$g_{J,J-1}(LS) = -(g_s - 1) \left\{ \frac{(J + L + S + 1)(J + L - S)(J + S - L)(L + S - J + 1)}{4J^2(2J - 1)(2J + 1)} \right\}^{1/2}$$
(2.151)

ifadesi saf *LS* çiftleniminde köşegen dışı Landé *g*-çarpanıdır. Breit-Pauli özvektörleri arasındaki matris elemanları artık

$$\mu_{B}B\langle\Psi(\gamma JM)|L_{z}+g_{s}S_{z}|\Psi(\gamma'J-1M)\rangle = \mu_{B}Bg_{\gamma J,\gamma'J-1}(LS)(J^{2}-M^{2})^{1/2}$$
(2.152)

olarak yazılabilir.

Matris köşegenleştirme yöntemi kuvvetli dış manyetik alanlar için tümüyle aynı olmasına rağmen, yarılma olduğundan dolayı, katkı incelemesinden daha ileri bir yol

izlenir. Öncelikle relativistik etkileri ihmal ederek ve sıfırıncı mertebeden dalga fonksiyonları olarak, relativistik olmayan Hamiltonyene ait dalga fonksiyonlarıyla birinci mertebeden katkı teorisinde manyetik etkileşmeyi iyileştirerek,

$$\Delta E(\gamma LSM_LM_S) = \mu_B B \langle \gamma LSM_LM_S | L_z + g_s S_z | \gamma LSM_LM_S \rangle = \mu_B B(M_L + g_s M_S) (2.153)$$

elde edilir. M_L ve M_s 'deki katlılık kaldırılarak, küçük katkılar olarak relativistik etkileşimler uygulanabilir. Zeeman etkisinin kuvvetli alan sınırına 'Pashen-Back etkisi' denilir.

2.3.4. Aşırı ince yapı etkileşimi

(2.2) relativistik olmayan Hamiltonyen atomun çekirdeğinin sonsuz ağırlıklı bir nokta yük olarak ele alındığı varsayımı altında geçerlidir. Çekirdek proton ve nötronlardan oluşur ve her ikisi de sonlu bir kütleye ve genişletilmiş bir yük dağılımına sahiptir. Çekirdeğin bu özellikleri bir atomik sistemin enerji seviye yapısını etkiler ve teoride geçiş enerjilerinin ve diğer atomik özelliklerin doğru olarak belirlenmesinde dikkate alınmalıdır. Çoğunlukla çekirdeğin etkileri, karşılıklı etkileşme katkısının hesabındaki belirsizlikten daha küçüktür. Ağır atomlar için genişletilmiş yük (sonlu hacim) düzeltmeler baskındır. Breit-Pauli düzeltmelerinin yeterli olduğu sistemler için, bu düzeltmeler küçüktür ve sonsuz sıfırıncı mertebe dalga fonksiyonları ile birinci mertebe katkı teorisinde incelenebilir.

Atomik enerji seviyelerinin aşırı ince yapısı, çekirdeğin elektromanyetik çok-kutup momentleri ve elektronlar arasındaki etkileşimden oluşur. Hamiltonyene katkı, *K* mertebeli çok-kutuplardan oluşan bir açılımla gösterilebilir:

$$H_{hfs} = \sum_{K \ge 1} \mathbf{T}^{(K)} \cdot \mathbf{M}^{(K)}$$
(2.154)

Burada $\mathbf{T}^{(K)}$ ve $\mathbf{M}^{(K)}$ sırasıyla, elektronik ve çekirdek uzayında *K* ranklı küresel tensör işlemcileridir. *K* = 1 terimi manyetik dipol etkileşmesini ve *K* = 2 terimi elektronik kuadrupol etkileşmesini gösterir. Daha yüksek mertebeden terimler çok daha küçüktür ve ihmal edilebilir.

N-elektronlu bir atom için $\mathbf{T}^{(1)}$ ve $\mathbf{T}^{(2)}$ elektronik tensör işlemcileri atomik birimlerde

$$\mathbf{T}^{(1)} = \frac{\alpha^2}{2} \sum_{i=1}^{N} \left[2\boldsymbol{l}^{(1)}(i) r_i^{-3} - g_s \sqrt{10} \left[\mathbf{C}^{(2)}(i) \times \boldsymbol{s}^{(1)}(i) \right]^{(1)} r_i^{-3} + g_s \frac{8\pi}{3} \delta(\boldsymbol{r}_i) \boldsymbol{s}^{(1)}(i) \right]$$
(2.155)

ve

$$\mathbf{T}^{(2)} = -\sum_{i=1}^{N} \mathbf{C}^{(2)}(i) r_{i}^{-3}$$
(2.156)

şeklindedir. $C^{(k)}$, k ranklı küresel tensördür:

$$C_q^{(k)} = \sqrt{\frac{4\pi}{2k+1}} Y_{kq}$$
(2.157)

Manyetik dipol işlemcisi çekirdeğin etrafındaki elektronlardan dolayı oluşan manyetik alanı gösterir. Bu işlemcinin ilk terimi elektronların yörünge hareketinin neden olduğu alanı gösterir ve 'yörünge terimi' olarak adlandırılır. İkinci terim elektronun spin hareketinden oluşan dipol alanı gösterir ve 'spin-dipol terimi' olarak adlandırılır. Son terim elektron spini ve çekirdek arasındaki temas etkileşimini temsil eder ve çekirdekteki spin yoğunluğu ile orantılıdır. Sadece *s* elektronları çekirdeğin etrafında sonlu olasılığa sahip oldukları için, spin yoğunluğu, spin yukarı ve spin aşağı yoğunluğundaki farktır. Elektrik kuadrupol işlemcisi çekirdeğin etrafındaki elektrik alan değişimini gösterir. Çekirdek işlemcileri

$$\mathbf{M}^{(1)} = \mu_N \sum_{i=1}^{cek} \nabla \left(r_i \mathbf{C}^{(1)}(i) \right) \cdot \left[g_I \boldsymbol{l}^{(1)}(i) + g_s \boldsymbol{s}^{(1)}(i) \right]$$
(2.158)

$$\mathbf{M}^{(2)} = \sum_{i=1}^{prot.} r_i^2 \mathbf{C}^{(2)}(i) = \sum_{i=1}^{prot.} \left(3z_i^2 - r_i^2\right)$$
(2.159)

şeklindedir. Burada g_l ve g_s nükleonların yörünge ve spin *g*-çarpanlarıdır ve $\mu_N = \mu_B / M$ çekirdek manyetonudur. Çekirdek elektrik kuadrupol işlemcisi için toplam sadece protonlar üzerinden iken çekirdek manyetik dipol işlemcisi için toplam nükleonlar (proton ve nötronlar) üzerindendir.

 μ_I klasik çekirdek manyetik dipol momenti ve Q çekirdek kuadrupol momenti çekirdek spini $M_I = I$ 'nın maksimum bileşenli $|vII\rangle$ çekirdek halinde $\mathbf{M}^{(1)}$ ve $\mathbf{M}^{(2)}$ işlemcilerinin beklenen değeri olarak tanımlanır:

$$\left\langle vII \left| M_0^{(1)} \right| vII \right\rangle = \mu_I \tag{2.160}$$

$$\left\langle \nu II \left| M_0^{(2)} \right| \nu II \right\rangle = \frac{1}{2}Q \tag{2.161}$$

Kuadrupol momenti çekirdeğin yük yoğunluğu dağılımının bir ölçüsünü sağlar. Bu nedenle yük yoğunluğu tam küresel simetriye sahipse elektrik kuadrupol momenti kaybolur. Diğer bir deyişle çekirdek yük dağılımı bozulmuşsa elektrik kuadrupol momenti büyük bir değere sahip olabilir. μ_i çekirdek momentleri deneysel olarak belirlenebilir ve bilinen nicelikler olarak düşünülebilir. Diğer taraftan Q çekirdek kuadrupol momenti çoğunlukla yarı-deneysel olarak belirlenir.

 H_{hfs} aşırı ince yapı katkıları H_0 normal elektronik Hamiltonyene eklendiğinde, toplam Hamiltonyen

$$H = H_0 + H_{hfs} (2.162)$$

olur. Bu Hamiltonyen J elektronik veya I çekirdek açısal momentum işlemcileriyle sıra değiştirmez. Onun yerine F = I + J şeklinde elektronların ve çekirdeğin toplam açısal momentumuyla

$$\begin{bmatrix} H, \mathbf{F}^2 \end{bmatrix} = \begin{bmatrix} H, F_z \end{bmatrix} = 0 \tag{2.163}$$

şeklinde sıra değiştirir. Bu aşırı ince yapı hallerini tanımlayan H'nın özfonksiyonları açısal kuantum sayıları F ve M_F ile tanımlanabileceği anlamına gelir:

$$\left|I - J\right| \le F \le I + J \tag{2.164}$$

$$M_F = -F, -F + 1, \dots, F - 1, F$$
(2.165)

Aşırı ince yapı etkileşimi çok zayıftır ve sıfırıncı mertebe fonksiyonlar için H_0 'ın özfonksiyonları ile katkı teorisinde incelenebilir. Özfonksiyonlar $|\gamma JM_J\rangle$ ve $|\nu IM_I\rangle$ şeklindeki elektronik ve çekirdek fonksiyonlarının çarpımı olarak alınabilir ve böylece

$$H_{0}|\gamma JM_{J}\rangle|\nu IM_{I}\rangle = E_{\gamma J}|\gamma JM_{J}\rangle|\nu IM_{I}\rangle$$
(2.166)

elde edilir. Çarpım fonksiyonları F^2 ve F_z 'nin özfonksiyonları değildir. Ancak, Clebsch-Gordan açılımı uygulanarak, doğru simetrili özdeş fonksiyonlar takımına dönüştürülebilir:

$$\left|\gamma \nu JIFM_{F}\right\rangle = \sum_{M_{J}M_{I}} \left\langle JIM_{J}M_{I} \left| JIFM_{F} \right\rangle \left|\gamma JM_{J} \right\rangle \left|\nu IM_{I} \right\rangle$$
(2.167)

Birinci dereceden katkı teorisine göre sadece aşırı ince etkileşiminin elektrik kuadrupol ve manyetik dipol terimleri incelenirse, enerji

$$E_{hfs}(JIF) = E_{M1}(JIF) + E_{E2}(JIF)$$
(2.168)

olur. Burada

$$E_{M1}(JIF) = \left\langle \gamma \nu JIFM_F \left| \mathbf{T}^{(1)} \cdot \mathbf{M}^{(1)} \right| \gamma \nu JIFM_F \right\rangle$$
(2.169)

ve

$$E_{E2}(JIF) = \left\langle \gamma \nu JIFM_F \left| \mathbf{T}^{(2)} \cdot \mathbf{M}^{(2)} \right| \gamma \nu JIFM_F \right\rangle$$
(2.170)

dir. F kuantum sayıları ilgili çarpanlara ayrılır ve enerjiler aşırı ince yapı etkileşim sabitleri (A ve B çarpanları) cinsinden ifade edilirse:

$$A(J,J) = \frac{\mu_I}{I} \frac{1}{\left[J(J+1)(2J+1)\right]^{1/2}} \left\langle \gamma J \| \mathbf{T}^{(1)} \| \gamma J \right\rangle$$
(2.171)

$$B(J,J) = 2Q \left[\frac{J(2J-1)}{(J+1)(2J+1)(2J+3)} \right]^{1/2} \left\langle \gamma J \| \mathbf{T}^{(2)} \| \gamma J \right\rangle$$
(2.172)

olur. Enerji düzeltmeleri de böylece

$$E_{M1}(JIF) = \frac{1}{2}A(J,J)C$$
(2.173)

ve

$$E_{E2}(JIF) = B(J,J) \frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$
(2.174)

olarak verilir. Burada C = F(F+1) - J(J+1) - I(I+1)'dir.

Bir ince yapı seviyesinin aşırı ince yapı bileşenleri, 'bir aşırı ince yapı çokluğu' olarak adlandırılır. Genellikle, manyetik dipol etkileşimi baskındır ve F ve F-1 iki komşu aşırı ince yapı seviyeleri arasındaki enerji farkı yaklaşık olarak

$$\Delta E(JIF) = E_{M1}(JIF) - E_{M1}(JIF - 1) = A(J,J)F$$
(2.175)

dir. Bu, manyetik aşırı ince yapı için Landé aralık kuralıdır. Böylece aşırı ince yapı etkileşiminin elektrik kuadrupol ve manyetik dipol terimleri ele alındığında dalga fonksiyonu açılımındaki matris elemanları,

$$E_{M1}(JIF, J'IF) = \left\langle \gamma \nu JIFM_F \left| \mathbf{T}^{(1)} \cdot \mathbf{M}^{(1)} \right| \gamma \nu J'IFM_F \right\rangle, \ J' = J \pm 1$$
(2.176)

ve

$$E_{E2}(JIF, J'IF) = \left\langle \gamma \nu JIFM_F \left| \mathbf{T}^{(2)} \cdot \mathbf{M}^{(2)} \right| \gamma \nu J'IFM_F \right\rangle, \ J' = J \pm 1, J \pm 2$$
(2.177)

şeklinde iki terimin toplamı olarak yazılabilir.

2.3.5. MCHF ile atomik yapı hesaplama adımları

Aynı *LS* terimli dalga fonksiyonu için tipik hesaplama adımları Şekil 2.1, Şekil 2.2 ve Şekil 2.3'teki gibi özetlenebilir. MCHF program paketi [412] ile hesaplama adımları için izlenen yol ise şöyledir:

 a) Konfigürasyon hal listesinin üretilmesi: Verilen bir atomun kapalı alt tabakaları okunarak bazı kurallara göre çiftlenmiş konfigürasyon hal listesi üretilir. Spesifik yer değiştirmeler bir referans sete ilaveten bir ve iki kez yer değiştirmelerden oluşur. Yörüngelerin bir aktif setinin tüm mümkün konfigürasyonları üretilebilir.

b) Relativistik olmayan Hamiltonyenin açısal integrallerinin hesaplanması: Slater integralleri ve kinetik integrallerin lineer birleşimi olarak relativistik olmayan

Hamiltonyenin matris elemanlarını ifade etmek için gerekli olan açısal integraller hesaplanır. Verilen bir konfigürasyon hal listesi için tüm matris elemanları veya seçilenler hesaplanabilir. Bir alt tabakada s, p ve d elektronlarının herhangi bir sayısı izinliyken $l \ge 3$ 'lü alt tabaka için iki elektrondan fazlası izinli değildir. Bu integral listesi kullanılarak, relativistik olmayan radyal fonksiyonlar ve açılım katsayıları hesaplanır.

c) Breit-Pauli Hamiltonyenin açısal integrallerinin hesaplanması: Radyal integrallerin lineer birleşimi olarak Breit-Pauli Hamiltonyenin matris elemanlarını ifade etmek için gerekli olan açısal integraller hesaplanır. Verilen bir konfigürasyon hal listesi için tüm matris elemanları veya seçilenler hesaplanabilir. Yörüngeler ortogonal olarak kabul edilir. Breit-Pauli *LSJ* yaklaşıklığında, dalga fonksiyonu farklı *LS* terimli konfigürasyon hal fonksiyonlarına açılır.

d) Konfigürasyon etkileşmesinin hesaplanması: Hem relativistik olmayan hem de Breit-Pauli yaklaşıklığında bir etkileşme matrisinin özdeğer ve özvektörleri hesaplanır.

e) MCHF dalga fonksiyonlarından Zeeman yarılmalarının hesaplanması: Konfigürasyon etkileşmesiyle üretilen elektronik dalga fonksiyonları kullanılarak zayıf dış manyetik alandaki manyetik alt seviyelerinin ayrılmasını belirlemek için köşegen ve köşegen-dışı Landé *g*-çarpanları hesaplanır [413]. Ayrıca, manyetik alanda bir atom için toplam etkileşim matrisi yazılır.

f) Geçiş işlemcileri için açısal integrallerin hesaplanması: Radyal integrallerin lineer birleşimi olarak E1, E2,..., M1, M2,... geçiş işlemcilerinin matris elemanlarını ifade etmek için gerekli olan açısal integralleri hesaplanır. İki konfigürasyon hali arasındaki geçiş için tüm matris elemanları hesaplanır.

g) MCHF dalga fonksiyonlarından *LS* ve *LSJ* geçişlerinin hesaplanması: Geçiş matris elemanlarıyla birlikte zıt veya aynı pariteli ilk ve son haller için verilen dalga fonksiyonlarıyla salınıcı şiddetleri ve geçiş olasılıkları *LS* ve *LSJ* çiftlenimine göre hesaplanır.
h) MCHF dalga fonksiyonlarından aşırı ince yapı sabitlerinin hesaplanması: *LS* veya *LSJ* şeklinde üretilen bir elektronik dalga fonksiyonu için aşırı ince etkileşim sabitleri $(A_J \text{ ve } B_J)$ hesaplanır.

Şekil 2.1. MCHF ile atomik yapı hesabı

Şekil 2.2. Radyal fonksiyonların ve enerji seviyelerin hesabı

Şekil 2.3. Landé g-çarpanları, aşırı ince yapı sabitleri ve spektrumların hesabı

2.4. Relativistik Hartree-Fock Yöntemi

Cowan tarafından geliştirilen bu yaklaşık yöntemde [28] Hamiltonyen atomik birimlerde

$$\boldsymbol{H} = -\sum_{i} \nabla_{i}^{2} - \sum_{i} \frac{2Z}{r_{i}} + \sum_{i>j} \frac{2}{r_{ij}} + \sum_{i} \xi_{i}(r_{i})(\boldsymbol{l}_{i}.\boldsymbol{s}_{i})$$
(2.178)

olarak alınır. Burada $r_i = |\mathbf{r}_i|$ çekirdekten *i*. elektrona olan uzaklık, $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$, *i*. ve *j*. elektronlar arasındaki uzaklık ve i > j üzerinden toplam elektronların tüm çiftleri üzerindendir. Hamiltonyenin son terimi bir elektronun spini ve kendi yörüngesi etrafındaki hareketi arasındaki manyetik etkileşim enerjinin tüm elektronlar üzerinden toplamını gösterir. Başlangıçta kütle-hız ve Darwin düzeltmeleri dikkate alınmayabilir, fakat spin-yörünge etkileşimi *l* ve *s* işlemcileri vasıtasıyla dalga fonksiyonun açısal kısmını içerir ve enerji-seviye yapıları (ilgili seviyelerin bir grubu içindeki enerji farklılıklarına) üzerine önemli bir etkiye sahiptir. ξ_i , yörünge- ve spin-açısal momentum işlemcilerinin skaler çarpımının bir orantı sayısıdır:

$$\xi(r) = \frac{\alpha^2}{2} \frac{1}{r} \left(\frac{dV}{dr} \right)$$
(2.179)

Bu yaklaşıklıkta da amaç ilgilenilen her kararlı kuantum hali için atomun Ψ^k dalga fonksiyonunu ve E^k enerjisini elde etmek için

$$\boldsymbol{H}\boldsymbol{\Psi}^{k} = \boldsymbol{E}^{k}\boldsymbol{\Psi}^{k} \tag{2.180}$$

şeklindeki Schrödinger denklemini çözmektir. Ancak, dalga fonksiyonu 4N değişkenlidir (her bir elektron için üç uzay ve bir spin koordinatı) ve kuantum mekaniksel problem oldukça karmaşıktır. N > 1 için, gerçek çözümler tam bulunmayabilir ve bir tip ya da başka bir tip yaklaşıklıklar gereklidir. Genel bir yaklaşım, birkaç ayarlanabilen parametreler içeren dalga fonksiyonlarının birkaç şeklini kabul etmek ve bu parametrelerin değerlerini, mümkün en iyi fonksiyonu verecek şekilde değiştirmektir. r_{ij} elektronlar arası uzaklık fonksiyonunda açık bir şekilde alınmış ise, problem N=3 veya 4 için bile oldukça karmaşıktır. Karşılıklı etkileşme enerjilerinin doğru katkı hesaplamaları 6'dan daha büyük N için oldukça fazla uzundur. Spektroskopik amaçlar için, her sayıda elektronlu (10, 100 hatta 150) atom için farklı on, yüz hatta binlerce seviye ile ilgilenmek gerekir. Bu nedenle çok önemli yaklaşıklıklar yaparak problemin üstesinden gelme amaçlanmaktadır.

Problemin çözümü için yaklaşık bir yol olarak, önce Slater [414] tarafından geliştirilen yöntem kullanılıp daha sonra Condon ve Shortley [415] ve çalışma arkadaşları tarafından geliştirilen teorilerle bu yöntem genişletilir. Temel yöntem, bilinen Ψ_b temel set cinsinden bilinmeyen Ψ^k dalga fonksiyonları açılımını almaktır (MCHF yaklaşıklığındaki gibi):

$$\Psi = \sum_{b} y_{b}^{k} \Psi_{b}$$
(2.181)

Temel fonksiyonlar

$$\left\langle \Psi_{b} \left| \Psi_{b'} \right\rangle = \delta_{bb'} \tag{2.182}$$

şeklinde ortonormal fonksiyonların tam bir setinin üyeleri olarak kabul edilir. Genelde set (2.181) sonsuz serileri gösterdiğinde sonsuz sayıda üyelere sahiptir. Uygulamada, sonlu sayıda terimler için seriyi kesmek gereklidir. Bu nedenle uygun tipte temel fonksiyonları almak önemlidir.

M uygun temel fonksiyonun bir setinin seçildiği kabul edilir ve y_b açılım katsayılı *M* 'nin değerlerini belirleme problemi incelendiğinde (burada $1 \le b \le M$) ve (2.181), (2.180) Schrödinger denkleminde yerine yazıldığında,

$$\sum_{b'=1}^{M} H y_{b'}^{k} \Psi_{b'} = E^{k} \sum_{b'=1}^{M} y_{b'}^{k} \Psi_{b'}$$
(2.183)

elde edilir. Bu ifade soldan Ψ_b temel fonksiyonunun herhangi biri ile çarpıldığında ve tüm 3N uzay koordinatları üzerinden (N spinlerin her birinin her iki mümkün yönelme üzerinden toplam alarak) integral alarak,

$$\sum_{b'=1}^{M} H_{bb'} y_{b'}^{k} = E^{k} \sum_{b'=1}^{M} y_{b'}^{k} \left\langle \Psi_{b} \middle| \Psi_{b'} \right\rangle = E^{k} y_{b}^{k}, \ 1 \le b \le M$$
(2.184)

bulunur. Burada $H_{bb} \equiv \langle \Psi_b | H | \Psi_{b'} \rangle$, (2.178) Hamiltonyen işlemcisinin matris elemanıdır. Çoğu mekaniksel problemdeki gibi, Hamiltonyen matrisi Hermityen olduğundan bu matris daima reel simetrik matris olarak ele alınır. (2.184) bağıntıları M tane bilinmeyenli $y_{b'}^k$ 'ndeki eş zamanlı lineer homojen denklemlerin bir setini kapsar. Bu denklemler seti $(H_{bb'} - E^k \delta_{bb'})$ matrisinin determinantı sıfır değilse sıfır olmayan çözümlere sahip olacaktır. Bir mümkün yöntem E^k 'taki M dereceli bir polinoma bu determinantı genişletmektir. E^k 'nın bu değerlerinin her biri tekrar (2.184)'te yerine konulduğunda

$$y_b^k / y_i^k, \ b \neq i \tag{2.185}$$

M - 1 oranları için M - 1 bağımsız denklemlerini verir. Daha sonra y_i^k 'nın değeri $\sum_{b=1}^{M} |y_b^k|^2 = 1$ olacak şekilde seçilir. Bu Ψ^k 'nın normalleştirilmesine denktir:

$$\left\langle \Psi^{k} \left| \Psi^{k} \right\rangle = \left\langle \sum_{b} y_{b}^{k} \Psi_{b} \left| \sum_{b'} y_{b'}^{k} \Psi_{b'} \right\rangle = \sum_{b} \left| y_{b}^{k} \right|^{2}$$
(2.186)

2 veya 3'ten fazla olmayan *M* değeri için, bu yöntem hem sayısal olarak hem de analitik olarak mümkündür. Daha büyük *M* 'ler için pratik yöntem sayısal $H = (H_{bb'})$ Hamiltonyen matrisini köşegenleştirmektir. Açılım katsayılı set

$$\mathbf{Y}^{k} = \begin{pmatrix} y_{1}^{k} \\ y_{2}^{k} \\ y_{3}^{k} \\ \vdots \end{pmatrix}$$
(2.187)

şeklinde bir sütun vektörü olarak yazılırsa, (2.184) denklemleri

$$H\mathbf{Y}^k = E^k \mathbf{Y}^k \tag{2.188}$$

şeklinde tekli matris denklemi olarak yazılabilir ve problem *H* matrisinin E^k özdeğerleri ve karşılık gelen \mathbf{Y}^k özvektörlerini bulmak olur. Köşegenleştirilen Hamiltonyen matrisinin

$$T^{-1}HT = \left(E^k \delta_{kb}\right) \tag{2.189}$$

şeklindeki köşegen elemanı E^k özdeğeridir ve T 'nin k. sütununa karşılık gelen \mathbf{Y}^k özvektörünü gösterir.

Bilindiği gibi \mathbf{Y}^{k} özvektörleri, yozlaşmış (katlı) olmayan özdeğere ait iseler kendi aralarında otomatik olarak ortogonaldirler ve bunlar özdeğerler yozlaşmış olsalar bile ortogonal seçilebilirler. Böylece H_{bb} , Hamiltonyen matris elemanlarını hesapladıktan sonra, atomun enerji seviyeleri ve özfonksiyonlarının hesabı önemli olmaktadır.

HFR yönteminde de MCHF yönteminde olduğu gibi yine merkezi alan yaklaşıklığını esas alarak atomun dalga fonksiyonu antisimetrik bireysel dalga fonksiyonlarının çarpımından oluşur. Bu yöntemde bir konfigürasyonun ortalama enerjisi 2.2.2'deki gibi belirlenir. Sonra toplam ortalama enerji tüm konfigürasyonların ortalama enerjisinden elde edilir.

Yalnızca atom alan-serbest uzayda ise, her bir hal J^2 ve J_z toplam açısal momentum işlemcilerinin bir öz halidir ve özdeğerler *M*'den bağımsızdır. Böylece her bir enerji seviyesi 2J + 1 kez katlı olduğu için ortalama enerji

$$E_{ort.} = \frac{\sum_{seviyeler} (2J+1)E^J}{\sum_{seviyeler} (2J+1)}$$
(2.190)

şeklinde yazılabilir.

2.4.1. Bir-elektron ve toplam bağlanma enerjileri

(2.178)'deki Hamiltonyen işlemcisinin ilk iki ve sonuncu terimleri

$$\sum_{i=1}^{N} f_i \equiv \sum_{i} f\left(\mathbf{r}_i\right) \tag{2.191}$$

şeklindeki bir-elektron işlemcileridir. Bu işlemciler tüm N elektronların uzaysal ve spin koordinatlarında simetriktir ve son terim tüm N(N-1)/2 koordinat çiftleri için simetrik olan,

$$\sum_{i=2}^{N} \sum_{j=1}^{i-1} g_{ij} \equiv \sum_{i>j} \sum_{j=1}^{N} g\left(\boldsymbol{r}_{i}, \boldsymbol{r}_{j}\right)$$
(2.192)

şeklindeki iki elektron işlemcisidir. Hamiltonyenin spin-yörünge terimi için köşegen matris elemanı

$$\left\langle \Psi \right| \sum_{i} \xi_{i} \left(\boldsymbol{l}_{i} \cdot \boldsymbol{s}_{i} \right) \left| \Psi \right\rangle = \sum_{i} \left\langle n_{i} l_{i} m_{l_{i}} m_{s_{i}} \left| \xi \left(\boldsymbol{l} \cdot \boldsymbol{s} \right) \right| n_{i} l_{i} m_{l_{i}} m_{s_{i}} \right\rangle$$

$$(2.193)$$

dir. *s* elektronları için spin-yörünge etkileşimi sıfır geldiğinden geriye kalan terimler için ortalama enerji

$$E_{ort.} = \sum_{i} \langle i | -\nabla^{2} | i \rangle_{ort.} + \sum_{i} \langle i | -2Z / r_{1} | i \rangle_{ort.} + \sum_{i>j} \left[\langle ij | 2 / r_{12} | ij \rangle_{ort.} - \langle ij | 2 / r_{12} | ji \rangle_{ort.} \right]$$

$$(2.194)$$

şeklinde yazılır. Böylece bir $n_i l_i$ yörüngesindeki bir elektronun konfigürasyonortalama bağlanma enerjisi

$$E^{i} = E^{i}_{k} + E^{i}_{n} + \sum_{j \neq i} E^{ij}$$
(2.195)

olur. Tüm N elektronun konfigürasyon-ortalama toplam bağlanma enerjisi

$$E_{ort.} = \sum_{i} E_{k}^{i} + \sum_{i} E_{n}^{i} + \sum_{i>j} E^{ij}$$
(2.196)

$$=\frac{1}{2}\sum_{i} \left(E_{k}^{i} + E_{n}^{i} + E^{i} \right)$$
(2.197)

şeklinde yazılabilir. Yani, *i* yörüngesindeki bir elektronun ortalama bir-elektron bağlanma enerjisi, kinetik enerji, çekirdek ile etkileşimden oluşan potansiyel enerji ve atomdaki diğer N-1 elektronla etkileşim enerjisinin toplamıdır. Atomun ortalama bağlanma enerjisi, tüm kinetik enerji ve tüm elektron-çekirdek enerjileri toplamı ve tüm elektron çiftleri üzerinden toplanan elektron-elektron Coulomb etkileşimlerinden oluşur. Elektron-elektron Coulomb etkileşimlerinden dolayı konfigürasyon-ortalama toplam bağlanma enerjisinin ($E_{ort.}$) $\sum E^i$ 'ye eşit olmadığı açıktır. (2.195)'teki terimler kısaca, kinetik enerji için

$$E_{k}^{i} = \left\langle i \right| - \nabla^{2} \left| i \right\rangle_{ort.} = \int_{0}^{\infty} P_{n,l_{i}}^{*} \left(r \right) \left[-\frac{d^{2}}{dr^{2}} + \frac{l_{i} \left(l_{i} + 1 \right)}{r^{2}} \right] P_{n,l_{i}} \left(r \right) dr , \qquad (2.198)$$

elektron-çekirdek etkileşme enerjisi için

$$E_{n}^{i} = \left\langle i \left| -2Z / r \right| i \right\rangle = \int_{0}^{\infty} (-2Z / r) \left| P_{i}(r) \right|^{2} dr$$
(2.199)

ve elektron-elektron Coulomb etkileşim enerjisi, özdeş olmayan elektronlar için

$$E^{ij} = F^{0}(ij) - \frac{1}{2} \sum_{k} \begin{pmatrix} l_{i} & k & l_{j} \\ 0 & 0 & 0 \end{pmatrix}^{2} G^{k}(ij)$$
(2.200)

ve özdeş elektronlar için

$$E^{ii} = F^{0}(ii) - \frac{(2l_{i}+1)}{(4l_{i}+1)} \sum_{k>0} \begin{pmatrix} l_{i} & k & l_{i} \\ 0 & 0 & 0 \end{pmatrix}^{2} F^{k}(ii)$$
(2.201)

dir. Burada F^k ve G^k 'lar 2.2.2 kesiminde de belirtildiği gibi Slater integralleridir.

2.4.2. Radyal denklemlerin sayısal çözümleri

HFR yönteminde $P_{nl}(r)$ 'nin analitik ifadesi için

$$P_{nl}(r) = -\left[\frac{Z(n-l-1)!}{n^{2}[(n+1)!]^{3}}\right]^{1/2} \rho^{l+1} e^{-\rho/2} L_{n+l}^{2l+1}(\rho)$$
(2.202)

alınır. Burada $\rho = 2Zr/n$ ve $L_{n+l}^{2l+1}(\rho)$ de bağlı Laguerre polinomlarıdır.

 $P_{nl}(r)$ için (2.202) analitik ifadesi relativistik hidrojen benzeri problemi tam olarak çözmek için yeterlidir. Ancak bir elektrondan daha fazla elektron içeren atomlarla ilgilenildiğinde

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + V(r)\right] P_{nl}(r) = EP_{nl}(r)$$
(2.203)

şeklindeki benzer diferansiyel denklemleri çözmek gerekir. Bu durumda V(r) potansiyel enerji fonksiyonu artık basit bir şekilde ifade edilemez. Bu nedenle analitik çözümü mümkün değildir ve sayısal çözümleri elde etmek gerekir. Bu

sayısal çözüm yöntemi daha önce 2.2 kesiminde verilen HF yönteminin takip ettiği yolu izler.

Atomun $E = -Z^2/n^2$ kuantumlanmış enerji seviyelerine götüren ve $P_{nl}(0) = 0$ ve $P_{nl}(\infty) = 0$ sınır şartlarının rolünü göstermek için basit bir Coulomb potansiyeli alınarak sayısal süreç başlatılabilir. Buna göre (2.203)'ü

$$\frac{d^2 P_{nl}(r)}{dr^2} = \left[V_{etkin}(r) - E \right] P_{nl}(r)$$
(2.204)

şeklinde yazmak uygundur. Burada etkin potansiyel enerji

$$V_{etkin}(r) = V(r) + \frac{l(l+1)}{r^2}$$
(2.205)

dir. Etkin potansiyel V(r) üç boyutlu potansiyel enerji ve kinetik enerjinin açısal momentum kısmından gelen ek bir terimden oluşur ve merkezi kuvvetlere karşı yapılan işten sonuçlanan bir radyal potansiyel enerji olarak düşünülebilir.

Kuantum mekaniksel olarak, bir elektronun klasik olarak izinli bölgesi dışına nüfus edebildiği bilinmektedir. Pratikte herhangi bir *l*'li elektron keyfi olarak küçük yarıçap içine girebilir. Bu bölgede

$$P_{nl}(\rho) = b_0 \rho^{l+1}, \ (r \to 0) \tag{2.206}$$

terimiyle başlanan bir seri açılımı, (2.204) diferansiyel denkleminin sayısal integrasyonuyla başlayarak sağlanan sayılar için r'nin birkaç değerinde P_{nl} 'nin değerlerini hesaplamak için kullanılabilir. b_0 sabiti $P_{nl}(r) > 0$, $(r \rightarrow 0)$ 'ı sağlaması için pozitif olmalıdır. (2.204)'ün integrasyonu, E enerjisinin bazı sabit değeri için P(r) 'nin belirsiz bir çözümünü vermek için standart sayısal tekniklerle daha büyük r'de hesabı sürdürür. Bu belirsiz çözümün genel şekli kolaylıkla tanımlanabilir. Klasik olarak yasaklı bölgede $(V_{etkin} > E)$, (2.204)'ten P'', P ile aynı işarete sahip olduğu sonucuna varılır. Böylece P(r)'nin grafiği sürekli artan olmalıdır ve sonsuzda $P_{nl}(\infty) = 0$ olma sınır şartını sağlamaz. E'nin değeri böylece klasik olduğu gibi mekaniksel olarak da yasaklı olur. E'nin, V_{etkin} 'nin minimum değerinden daha büyük olması gerektiği açıktır. $(V_{etkin} < E)$ olduğu bir bölge vardır ve P salınıcı şeklini verir. Bununla beraber E büyük yarıçaplı bölgede P_{nl} yatay eksene doğru asimptotik olarak azalır.

Radyal diferansiyel denklemin çözümü için sayısal süreç, sonsuzda karşılık gelen P(r) integralini sıfıra götürünceye kadar *E* değerinde düzenleme içerir. (2.204) diferansiyel denklemi lineer olduğu için P(r)'nin herhangi çokluğu sınır şartlarını sağlayan (2.204)'ün bir çözümüdür. Böylece sayısal olarak integrali

$$C^{2} \equiv \int_{0}^{\infty} |P(r)|^{2} dr$$
 (2.207)

şeklinde hesaplanabilir. Aynı zamanda P(r)/C, normalleşme şartını sağlayan (2.204)'ün bir çözümüdür.

Her bir *l* için, en düşük enerjili $P_{nl}(r)$ radyal fonksiyonu düğümlere $(r = 0, \infty)$ ve bir anti-düğüme (maksimum büyüklüğün bir noktası) sahip değildir ve her bir ardışık daha yüksek enerjili özfonksiyon bir ek düğüme ve anti-düğüme sahiptir. Genelde, düğümlerin sayısı n-l-1ve anti-düğümlerin sayısı n-l'dir.

2.4.3. Homojen denklem (yerel-potansiyel) yöntemleri

HF denklemleri için tüm genel yaklaşımlar,

$$\left[-\frac{d^2}{dr^2} + \frac{l_i(l_i+1)}{r^2} + V^i(r)\right] P_i(r) = \varepsilon_i P_i(r)$$
(2.208)

şeklindeki her bir diferansiyel denklemin çözülmesini kapsar. Burada $V^i(r)$, *i*. elektronun hareket ettiği alan için kabul edilen potansiyel-enerji fonksiyonudur. (2.208) homojen denklemdir ve homojen olmayan denklemlerde olan tüm zorluklardan bağımsızdır:

Herhangi bir atom için (2.208) diferansiyel denklemlerin her biri hidrojenik Schrödinger denklemiyle aynı şekle sahiptir ve çözüm yöntemi her bakımdan aynıdır. Tek zorluk, $V^i(r)$, $P_j(r)$ 'ye fonksiyonel olarak bağlı ise bir SCF iterasyonunun gerekmesidir. $V^i(r)$, Thomas-Fermi (TF), Thomas-Fermi-Dirac (TFD), Hartree (H), Hartree-Fock-Slater (HFS), Hartree-Slater (HS) ve Hartree+istatistiksel-takas (HX) yöntemleri gibi yaklaşık yöntemlerde farklı şekilde verilir. HFS yönteminde

$$V^{i}(r) = -\frac{2Z}{r} + V_{c}(r) - \alpha \cdot \frac{3}{2} \left(\frac{24}{\pi}\rho(r)\right)^{1/3}$$
(2.209)

kullanılan takas yaklaşıklığı *i* elektronunun öz-takas enerjisi için doğru olarak hesaplanamadığından HFS yönteminde büyük zorluklar ortaya çıkar. Açık bir çözüm V_c 'nin yerine V_H kullanarak ilk terimde öz-enerjiyi dışarıda bırakmaktır ve sadece öz olmayan takas enerji terimlerine ait yaklaşıklığı alan bir istatistiksel yol izlemektir:

$$V^{i}(r) = -\frac{2Z}{r} + V_{H}(r) + V_{x}(r)$$
(2.210)

 $V_x(r)$ yaklaşık fonksiyonu, gerçek HF terimlerinin aşağıdaki özellikleri mümkün olduğunca sağlayacak şekilde seçilmelidir:

1. V_x herhangi bir-elektron konfigürasyonu ve ns^2 iki elektron konfigürasyonu için sıfır olmalıdır.

2. Her bir alt tabaka için homojen diferansiyel denklemin ε_i özdeğeri, (2.208) denklemlerinin P_j çözümlerinden kuantum mekaniksel olarak hesaplanan E^i birelektron bağlanma enerjisine eşit olmalıdır.

3. Aynı l'li farklı n'li radyal fonksiyonlar ortogonal olmalıdır.

Uygun bir $V_x(r)$ fonksiyonunu bulmak için Slater tarafından kullanılan serbestelektron ifadesinden başlanır. Ancak değiştirilen yoğunluk yukarıdaki 1 özelliğini sağlayacak şekilde *i* elektronun öz-takas etkilerini dışarıda bırakır. Takas enerjisi yalnızca ρ 'ya değil *i*'nin paralel spinlere sahip $1/2\rho$ yoğunluğuna sahip olduğu için,

$$\frac{1}{2}\rho' = \frac{1}{2}\rho - \rho_i \tag{2.211}$$

şeklinde kabul edilir. Burada ρ_i , *i* elektronun olasılık yoğunluğudur. Ancak $w_i = 1$ ise $1/2\rho$, $1/2\rho_i$ 'den daha fazla olmaz ve böylece

$$\rho'(r) = \rho(r) - \left[\min(2, w_i)\right] \rho_i(r)$$
(2.212)

değiştirilmiş şekilde elde edilir. İstenilen fonksiyonun da

$$V_{x}(r) = -\frac{3}{2} \left(\frac{24\rho'}{\pi}\right)^{1/3} = -\frac{3}{2} \left(\frac{\rho'}{\rho}\right)^{1/3} \left(\frac{24\rho}{\pi}\right)^{1/3} \text{Ry}$$
(2.213)

şeklinde olması beklenebilir.

Deneme hesaplamaları, 3/2 katsayısının istenilen $V_x(r)$ 'nin (2) özelliğini vermesi için çok büyük olduğunu gösterdi. Daha sonraki hesaplamalardan sonra iki ek düzeltme çarpanı önerildi. HX yöntemi için V^i ,

$$V^{i}(r) = -\frac{2Z}{r} + \sum_{j=1}^{q} \left(w_{j} - \delta_{ij} \right) \int_{0}^{\infty} \frac{2}{r_{>}} P_{j}^{2}(r_{2}) dr_{2} - k_{x} f(r) \left[\frac{\rho'}{\rho' + 0.5/(n_{i} - l_{i})} \right] \left(\frac{\rho'}{\rho} \right) \left(\frac{24\rho}{\pi} \right)^{1/3}$$
(2.214)

alınır. Hesaplamalarda, $k_x = 0,65$ değeri için HF ile en iyi uyumun sağlandığını göstermiştir. Parantez içindeki çarpan büyük *r*'deki takas teriminin büyüklüğünü azaltmak için küçük bir düzeltme çarpanıdır. Geri kalan iyileştirme çarpanı f(r)

$$f(r) = \begin{cases} 1, & r \ge r_0 \\ 1+0, 7(1-r/r_0), & r < r_0 \end{cases}$$
(2.215)

şeklindedir.

HX yöntemini kullanmak oldukça basittir ve $P_i(r)$ 'in iç kısımları hariç HF ile olandan daha iyi uyum içinde sonuçlar verir. Özellikle $E_{ort.}$ 'nın değerleri oldukça iyidir. Çünkü $E_{ort.}$ 'nın HF değeri değişimdeki bir minimumu gösterir. Aynı *l*'li farklı *n*'li HX radyal fonksiyonları arasındaki üst üste gelme integralleri tam olarak sıfır değildir. Fakat genellikle 0,02-0,05 aralığından da daha büyük değildir.

HX yöntemine benzer bir diğer yaklaşıklık Lindgren ve Rosén [416, 417] tarafından önerildi. Onlar Hartree potansiyelinden başlayarak takas terimi olarak

$$V_{x}(r) = -\left(\frac{24}{\pi}\right)^{1/3} \left[\rho_{s}^{1/3} - \left(2\rho_{i}\right)^{1/3}\right] \text{Ry}$$
(2.216)

ifadesini kullandılar. Burada ρ_i , *i* yörüngesindeki bir elektronun olasılık yoğunluğudur ve $\rho_s = \rho + \rho_i$ 'dir. $w_i = 1$ olmadıkça $\rho_s = \rho$ 'dir. V_x ifadesi hem çok sadedir hem de HX'den daha basit olarak bulunur ve yarı deneysel ayarlama parametreleri içermez.

2.4.4. Relativistik düzeltmeler

HFR yönteminde bir-elektron ve toplam bağlanma enerjileri için E_r^i ve E_r relativistik düzeltmeleri alınır:

$$E_r = \sum_{i=1}^{N} E_r^i = \sum_{i=1}^{N} \left(E_m^i + E_D^i \right)$$
(2.217)

Burada kütle-hız ve Darwin katkıları

$$E_m^i = -\frac{1}{4}\alpha^2 \int_0^\infty P_i(r) \left(\varepsilon_i - V^i(r)\right)^2 P_i(r) dr \qquad (2.218)$$

ve

$$E_D^i = -\delta_{l_i0} \frac{1}{4} \alpha^2 \int_0^\infty P_i(r) \left[\frac{dV^i(r)}{dr} \right] \left[r \frac{dr^{-1} P_i(r)}{dr} \right] dr$$
(2.219)

şeklinde verilir. Burada $\alpha \cong 1/137,036$ ince yapı sabitidir ve tüm enerjiler rydbergs birimindedir. Bu ifadeler $V^i(r)$ merkezi alan potansiyel enerji fonksiyonu içerirler. HX potansiyel fonksiyonu veya benzer yerel fonksiyonlar kullanıldığında, HF'de karşılaşılan zorluklardan kaçınılmış olunur. Büyük Z'ler için katkı düzeltmeleri uygun olmayabildiğinden $P_{nl}(r)$ radyal fonksiyonlarına relativistik düzeltmeleri katmak istenebilir. Bu yaklaşıklıkta, Dirac Hartree-Fock (DHF) denklemlerine Paulitipi yaklaşıklık kullanılır. DHF denklemleri için yerel-potansiyel yaklaşımları

$$P_{\kappa}' = -\frac{\kappa}{r} P_{\kappa} + \frac{\alpha}{2} \left(\varepsilon_i - V^i + \frac{4}{\alpha^2} \right) Q_{\kappa}$$
(2.220)

ve

$$Q_{\kappa}' = \frac{\alpha}{2} \left(V^{i} - \varepsilon_{i} \right) P_{\kappa} + \frac{\kappa}{r} Q_{\kappa}$$
(2.221)

şeklindedir. Burada P_{κ} ve Q_{κ} sırasıyla büyük ve küçük bileşenli radyal fonksiyonlardır. ε_i ve V^i rydbergs biriminde ölçülür ve

$$\kappa = \begin{cases} l_i, \ j = l_i - 1/2 \\ -l_i - 1, \ j = l_i + 1/2 \end{cases}$$
(2.222)

dir. Q_{κ} için ilk denklem çözülüp ikinci denklemde yerine koyarak ve $\kappa(\kappa+1) = l_i(l_i+1)$ olduğuna dikkat ederek P_{κ} için bir denklem elde edilir. Bu diferansiyel denklem yalnızca bir terimde κ 'yı içerir; o da κ/r 'dir. Bu katsayı (2j+1) ağırlıklı ortalamayla yer değiştirilirse

$$\frac{2l_i l_i / r - (2l_i + 2)(l_i + 1) / r}{(4l_i + 2)} = -\frac{1}{r}$$
(2.223)

ve buradan da j'den bağımsız radyal dalga fonksiyonu için

$$\left\{-\frac{d^{2}}{dr^{2}}+\frac{l_{i}\left(l_{i}+1\right)}{r^{2}}+V^{i}\left(r\right)-\frac{\alpha^{2}}{4}\left[\varepsilon_{i}-V^{i}\left(r\right)\right]^{2}-\delta_{l_{i}0}\frac{\alpha^{2}}{4}\left[1+\frac{\alpha^{2}}{4}\left(\varepsilon_{i}-V^{i}\left(r\right)\right)\right]^{-1}\left(\frac{dV^{i}}{dr}\right)\left(\frac{dP_{i}/dr}{P_{i}}-\frac{1}{r}\right)\right\}P_{i}\left(r\right)=\varepsilon_{i}P_{i}\left(r\right)\left(2.224\right)$$

diferansiyel denklemi elde edilir. Bu sonucun kütle-hız ve Darwin işlemcilerinin relativistik olmayan diferansiyel denkleme eklendiğinde basitçe elde edildiği görülebilir. Yalnızca fark []⁻¹'li terimin bulunmasıdır. Bu spin-yörünge terimidir. Buradaki ek, r = 0'da r^{-3} yerine r^{-2} Darwin terimindeki tekilleri barındırdığı için önemlidir. Spin-yörünge terimini (2.224)'ten çıkararak kütle bağımsız radyal fonksiyonlar elde edilir. (2.224)'ten elde edilen etki de (2*j*+1) ağırlıklı ortalamanın ilk P_{κ} relativistik fonksiyona alınmasıdır. (2.208) ile karşılaştırma yapıldığında (2.224)'ün sol parantez içindeki çarpan yalnızca V^i 'de P_i 'yi değil onun yanında ε_i 'yi de içerdiğini gösterir. Ancak relativistik terimlerin etkileri küçüktür ve SCF iterasyonuna yakınsamada problem oluşturmaz. HX potansiyel-enerji fonksiyonu ile verilen V^i ile (2.224)'ün kullanımı 'HXR yöntemi' olarak adlandırılır. Benzer şekilde HF denklemlerine iki relativistik terimin eklenmesi (HF radyal fonksiyonları elde edilen HX fonksiyonu terimlerindeki V^i için kullanarak) de 'HFR yöntemi' olarak adlandırılır.

2.4.5. Karşılıklı etkileşme düzeltmeleri

HF yönteminde (veya herhangi bir teorik yaklaşıklıkta) elektronların değişik konumları arasındaki ilişkiler (karşılıklı etkileşmeler) yalnızca bir miktar dikkate alınır (Pauli dışarlama ilkesinin uygulaması yapıldığı kadar). Sonuçta, $E_{ort.}$ toplam bağlanma enerjinin HF değerleri deneysel olarak gözlenenle aynı olmamaktadır. HFR yönteminde ek bağlanma enerjisi (relativistik etkiler sonrası) 'karşılıklı etkileşme enerji' olarak adlandırılır $\left(E_c \equiv E_{ort.}^{deneysel} - \left(E_{ort.}^{HF} + E_r\right)\right)$.

HFR yönteminde HFS, HX ve HS için verilen hesap yöntemlerinde gazın elektron yoğunluğu yerine daha çok hacmi, elektron başına ortalama hacmi olan bir kürenin r_s (Bohr biriminde) cinsinden incelenir:

$$\rho = \frac{3}{4\pi^2 r_s^3}$$
(2.225)

Elektron gazının, tek tip pozitif temel yükle nötrleştirildiği kabul edilir. Klasik potansiyel enerji böylece sıfırdır ve HF yaklaşıklığında enerjiler yalnızca kinetik ve takas enerjilerdir.

Çekirdekten *r* kadar bir uzaklıktaki kinetik enerji yoğunluğunun, $\rho(r)$ yoğunluklu sıfır sıcaklıktaki serbest-elektron gazına orantılı olacağı kabul edilir:

$$\frac{dE_k}{d\Omega} = \frac{3}{5} \left(3\pi^2 \right)^{2/3} \rho(r)^{5/3}$$
(2.226)

Burada *E*, rydbergs, uzunluklar Bohr, $d\Omega$ hacim elemanı a_0^3 ve ρ ise elektronlar/ a_0^3 birimindedirler. Potansiyel enerji, $-e\rho(r)$ sürekli yük dağılımından klasik olarak hesaplanır. $\rho(r)$ fonksiyonunun şekli, atomun toplam kinetik enerji ve potansiyel enerji toplamını en aza indirecek şekilde ayarlanır. Serbest-elektron gaz yaklaşıklığında, takas-enerji yoğunluğu

$$\frac{dE_{takas}}{d\Omega} = -\frac{3}{2} \left(\frac{3}{\pi}\right)^{1/3} \rho(r)^{4/3}$$
(2.227)

şeklinde verilir. (2.226) ve (2.227)'den elektron başına ortalama HF enerjisi

$$\overline{E}_{ort.}^{HF} = \overline{E}_{k}^{i} + \overline{E}_{takas}^{i} = \frac{3}{5} (3\pi^{2}\rho)^{2/3} - \frac{3}{2\pi} (3\pi^{2}\rho)^{1/3}$$

$$= \frac{3}{5} (\frac{9\pi}{4r_{s}^{3}})^{2/3} - \frac{3}{2\pi} (\frac{9\pi}{4r_{s}^{3}})^{1/3}$$

$$= \frac{2,210}{r_{s}^{2}} - \frac{0,916}{r_{s}} \text{ Ry} \qquad (2.228)$$

dir. Tek tip serbest elektron gazının bir dizi relativistik olmayan enerji hesaplamaları daha güvenilir yöntemlerle yapılmaktadır. Bu sonuçların her biri ve HF enerjisi arasındaki fark tek tip serbest elektron gazındaki $\overline{e}_c(r_s)$ şeklindeki elektron başına ortalama karşılıklı etkileşme enerjisine ait bir teorik değer verir. Atomlarda elektronlar, çekirdeğin çekim kuvveti tarafından konumları belirlendiği için serbest elektron gazındaki gibi kolaylıkla hareket etmeyebilir. Bu nedenle, serbest-elektron gazındakinden daha küçük bir büyüklükte karşılıklı etkileşme enerjisi beklenir. Bu atomlarda

$$\overline{e}_{c} \equiv \frac{E_{ort.}^{deneysel} - \left(E_{ort.}^{HF} + E_{r}\right)}{N} \cong -0,08 \,\text{Ry/elektron}$$
(2.229)

şeklinde yarı deneysel gözlemle ortaya konulur.

Atomun toplam karşılıklı etkileşme enerjisini hesaplamada öz karşılıklı etkileşme enerjisi dikkat alınmamaktadır. Bunun sağlam bir yolu her bir elektron için \overline{e}_c 'nin beklenen değerini hesaplamaktır:

$$E_{c}^{i} = 4\pi \int_{0}^{\infty} \rho_{i}(r)\overline{e}_{c}(r_{s})r^{2}dr = \int_{0}^{\infty} P_{i}^{2}(r)\overline{e}_{c}(r_{s})dr \qquad (2.230)$$

ve tüm elektronlar için

$$E_{c} = \sum_{i=1}^{N} E_{c}^{i} = \sum_{j=1}^{q} w_{j} E_{c}^{j}$$
(2.231)

dir. Bu, bir elektronlu atom için kesinlikle $E_c = 0$ verir. Fakat bu iki elektronlu atom için çok küçüktür. Bu, karşılıklı etkileşme enerjisinin bir veya iki elektron etkisi olmasındandır. Daha doğrusu, serbest elektron gazındaki $\overline{e_c}$ 'ye katkı kabaca yakın-komşu elektronlarının sayısıyla orantılıdır. Bir atomda bir tane yakın komşu olduğundan karşılıklı etkileşme enerjisi büyük olasılıkla tahmin edilir.

Bu yöntemden başka, her seferinde atoma elektron ekleyerek E_c hesaplanır (en kuvvetli bağdan en az kuvvetli bağ sırasında) ve *i*. elektronun karşılıklı etkileşme enerjisi \overline{e}_c ortalama serbest elektron değerinden daha çok elektron eklemek suretiyle olduğundan e_c doğrudan hesaplanır.

Böylece elektron başına karşılıklı etkileşme enerjisi

$$e_{c} = \left[\frac{d\left(N\overline{e}_{c}\right)}{dN}\right]_{hacim} = \left[\frac{d\left(\rho\overline{e}_{c}\right)}{d\rho}\right]_{hacim} = \frac{d\left(r_{s}^{-3}\overline{e}_{c}\right)}{d\left(r_{s}^{-3}\right)} = -\frac{r_{s}^{4}}{3}\frac{d\left(r_{s}^{-3}\overline{e}_{c}\right)}{dr_{s}}$$
(2.232)

dir. Düşük-yoğunluk sınırında $\overline{e}_c \propto r_s^{-1}$ dir ve böylece

$$e_c = \frac{4}{3}\overline{e_c} \tag{2.233}$$

ve yüksek-yoğunluk sınırında $\overline{e}_{c}\cong \mathrm{sabit}$ olduğundan

$$e_c = \overline{e}_c \tag{2.234}$$

olur. (2.233), $\overline{e}_c = -(1,142r_s)^{-1}$ ve yüksek-yoğunluk sınırı arasında bir yarı deneysel formül

$$e_{c}(r_{s}) = -\left[4(r_{s}+9)^{1/2} + \frac{3}{4}1,142r_{s}\right]^{-1}$$
(2.235)

kabul edilir. Böylece $E_{ort.}$ toplam bağlanma enerjisine karşılıklı etkileşme düzeltmesi

$$E_{c} = \sum_{i=2}^{N} \int_{0}^{\infty} P_{i}^{2}(r) e_{c}^{i}(r_{s}) dr$$
(2.236)

alınır. Burada e_c^i , (2.235) ile verilir ve r_s

$$r_{s} = \left[\frac{4\pi}{3} \sum_{j=1}^{i-1} \rho_{j}(r)\right]^{-1/3} = \left[\frac{1}{3r^{2}} \sum_{j=1}^{i-1} P_{j}^{2}(r)\right]^{-1/3}$$
(2.237)

ile r'nin bir fonksiyonu olarak verilir.

2.4.6. Işımalı geçişler

HFR yönteminde de ışımalı geçiş parametrelerini hesaplama teorisi temelde 2.3.2'deki ile aynıdır. Sadece bu yöntemde 2.4. kesiminde anlatılan enerji ve dalga fonksiyonları alınarak hesaplamalar yapılır. HFR yönteminde relativistik katkılar olarak spin-yörünge etkileşmesi ile beraber kütle düzeltmesi ve Darwin düzeltmeleri alınmaktadır. Böylece bu yöntemde, ışımalı geçişler bu nedenle ve kullanılan birim nedeni ile temelde teori aynı olmasına rağmen biraz farklılık gösterir.

2.4.6.1. Elektrik dipol geçişleri

Bu yöntemde elektrik dipol momenti üç değişik şekilde incelenmektedir:

$$\left\langle \gamma JM \left| \sum_{i} \boldsymbol{r}(i) \right| \gamma' J'M' \right\rangle,$$
 (2.238)

$$2\left(E'-E\right)^{-1}\left\langle\gamma JM\left|\sum_{i}\nabla_{i}\right|\gamma'J'M'\right\rangle$$
(2.239)

ve

$$2\left(E'-E\right)^{-2}\left\langle\gamma JM\left|\sum_{i}\nabla_{i}V\right|\gamma'J'M'\right\rangle$$
(2.240)

Burada *E* ve *E'*, γJM ve $\gamma' J'M'$ hallerinin enerjileri (rydbergs olarak), *V* merkezi alan potansiyel enerjisidir ve tüm uzaklıklar (bunların gradyantı) Bohr birimindedir. (2.239) ve (2.240)'daki işlemciler sırasıyla klasik momentum ve kuvvettir. Bu üç alternatif, uzunluk, hız ve ivme şekilleri olarak adlandırılır. Gerçek dalga fonksiyonları kullanıldığında hepsi eşittir fakat yaklaşık dalga fonksiyonları kullanıldığında genellikle oldukça farklı sonuçlar verirler. İvme ve hız şekilleri yaklaşık fonksiyonların türevlerini içerir. Özellikle ivme şekli integrallenen küçük *r* değerine doğru yoğunlaştığı için kötü sonuçlar verir. Hız şekli, iyi değişim dalga fonksiyonları kullanıldığında ve |E' - E| geçiş enerjisi küçük olmadığı zaman çok iyi sonuçlar verir. Uzunluk şekli büyük *r* değerleri için doğru sonuç verir. Ancak, bu HF radyal fonksiyonlar kullanıldığında bir dezavantaj sağlar. Uzunluk şekli hesapsal olarak en basittir ve genellikle bu şekil hesaplarda kullanılır.

Elektrik dipol çizgi şiddeti

$$\boldsymbol{S} = \left| \left\langle \gamma J \left\| \boldsymbol{P}^{(1)} \right\| \gamma' J' \right\rangle \right|^2$$
(2.241)

olarak bilinir. Burada

$$\boldsymbol{P}_{q}^{(1)} \equiv \sum_{i=1}^{N} r_{q}^{(1)}(i) = \sum_{i=1}^{N} r_{i} C_{q}^{(1)}(i)$$
(2.242)

-ea₀ biriminde ölçülen atomun klasik dipol momentidir.

 $\gamma'J'M'$ uyarılmış halden γJ seviyesinin tüm *M* hallere olan geçiş olasılığı:

$$A = \frac{64\pi^4 e^2 a_0^2 \sigma^3}{3h} S \sum_{Mq} \begin{pmatrix} J & 1 & J' \\ -M & q & M' \end{pmatrix}^2 = \frac{64\pi^4 e^2 a_0^2 \sigma^3}{3h(2J'+1)} S$$
(2.243)

şeklinde yazılabilir. Bu nicelik M''den bağımsızdır. Ağırlıklı geçiş olasılığı da

$$gA = (2J'+1)A = \frac{64\pi^4 e^2 a_0^2 \sigma^3}{3h} S$$
(2.244)

dir. Burada $\sigma = (E_J - E_{J'})/hc$ 'dir ve *S* niceliği tüm mümkün *M*,*M*' geçişlerini içeren spektrum çizgisinin toplam şiddetinin bir ölçüsüdür. Spektrum çizgilerinin incelenmesi için çoğunlukla kullanılan bir diğer nicelik (özellikle sürekli spektrumdan soğrulmayla ilgilenildiğinde) salınıcı şiddetidir:

$$f_{ij} = \frac{8\pi^2 mca_0^2 \sigma}{3h(2J+1)} \mathbf{S} = \frac{(E_j - E_i)}{3(2J+1)} \mathbf{S}$$
(2.245)

Bu nicelik özel bir *i* düşük enerjili seviyeden *j* üst seviyenin tüm (2J'+1) hallerine olan soğurmanın toplam olasılığını gösterir.

Yayınlama için karşılık gelen nicelik genellikle negatif olarak alınır. Ağırlıklı salınıcı şiddeti de

$$gf = (2J+1)f_{ij} = -(2J'+1)f_{ji}$$
(2.246)

veya

$$gf = \frac{8\pi^2 mca_0^2 \sigma}{3h} S \tag{2.247}$$

şeklindedir. Ağırlıklı geçiş olasılığı ile ağırlıklı salınıcı şiddeti arasındaki bağıntı da böylece

$$gA = \frac{8\pi^2 e^2 \sigma^2}{mc} gf \tag{2.248}$$

olur.

j seviyesindeki hallerin herhangi birinde atomun doğal yarı ömrü yine

$$\tau_j = \frac{1}{\sum_i A_{ji}} \tag{2.249}$$

ile verilir.

2.4.6.2. Manyetik dipol ve elektrik kuadrupol geçişleri

Manyetik dipol geçişleri için geçiş olasılıkları elektrik dipol geçişleri için tanımlanan ifadeyle aynıdır. Sadece elektrik dipol moment işlemcisi manyetik dipol moment işlemcisiyle yer değiştirmelidir:

$$\mu^{(1)} = -\mu_0 \sum_i \left[I_i^{(1)} + g_s s_i^{(1)} \right]$$
(2.250)

$$\mu^{(1)} = -\mu_0 \left[\boldsymbol{J}^{(1)} + (g_s - 1) \boldsymbol{S}^{(1)} \right]$$
(2.251)

Manyetik dipol geçişleri için ağırlıklı geçiş olasılığı

$$gA_{M1} = (2J'+1)\sum_{M} a_{M1} = \frac{64\pi^4 e^2 a_0^2 (\alpha/2)^2 \sigma^3}{3h} \left| \left\langle \gamma J \left\| J^{(1)} + S^{(1)} \right\| \gamma' J' \right\rangle \right|^2$$
(2.252)

şeklinde yazılır. $\gamma'J'M'$ üst seviyesinden tüm γJ seviyelerine olan toplam geçiş olasılığı A_{M1} , M''den bağımsızdır.

Elektrik dipol işlemcisine benzer şekilde elektrik kuadrupol işlemcisi $-ea_0^2$ biriminde

$$\boldsymbol{P}_{q}^{(2)} = \sum_{i} r_{i}^{2} \boldsymbol{C}_{q}^{(2)}(i)$$
(2.253)

şeklinde verilir.

Elektrik kuadrupol geçişleri için ağırlıklı geçiş olasılığı

$$gA_{E2} = (2J'+1)\sum_{M} a_{E2} = \frac{64\pi^{6}e^{2}a_{0}^{4}\sigma^{5}}{15h} \left| \left\langle \gamma J \left\| \boldsymbol{P}^{(2)} \right\| \gamma' J' \right\rangle \right|^{2}$$
(2.254)

dir.

 $\gamma'J'M'$ üst seviyesinden tüm γJ seviyelerine olan toplam geçiş olasılığı elektrik ve manyetik dipol geçişlerinde olduğu gibi *M*''den bağımsızdır. Elektrik dipol, manyetik dipol ve elektrik kuadrupol geçişleri de 2.3.2.2 kesiminde bahsedilen seçim kurallarını sağlamalıdır.

2.4.7. HFR ile atomik yapı hesaplama adımları

Cowan program paketi [418] ile hesaplama adımları (Şekil 2.4–2.6) şöyle sıralanabilir:

1. Hartree-Fock veya herhangi bir yaklaşık yöntemi kullanarak özel elektron konfigürasyonlarının herhangi bir sayısının her biri için bir-elektron (bağlı veya serbest) radyal dalga fonksiyonları hesaplanır. Her konfigürasyon için çıkış dosyası konfigürasyonun ortalama enerjisini $(E_{ort.})$ ve bu konfigürasyonun enerji düzeylerini hesaplamakta gerekli olan radyal Coulomb $(F^k$ ve $G^k)$ ve spin-yörünge integrallerini içerir.

2. Konfigürasyonların her bir çiftleri arasındaki elektrik dipol (E1) ve elektrik kuadrupol (E2) radyal integralleri ve etkileşme konfigürasyonlarının her bir çifti arasındaki konfigürasyon-etkileşme Coulomb integrallerini (R^k) hesaplamak için gerekli dalga fonksiyonları kullanılır. Hesaplanan veriler atomik spektrumların hesaplanmasında kullanılır.

3. Özdeğer (enerji seviyeleri) ve özvektörleri hesaplamak için her bir matris köşegenleştirilerek *J* toplam açısal momentumun olası her değeri için enerji matrisi kurulur.

4. *M*1 (manyetik dipol), *E*2 ve *E*1 ışımalı spektrumu için dalga boyları, salınıcı şiddetleri, geçiş olasılıkları ve yarı ömürler hesaplanır. Bir süreklilik elektronu varsa fotoiyonlaşma kesitleri, kendiliğinden iyonlaşmanın geçiş olasılıkları ve dallanma oranları, toplam ömürleri ve düzlem-dalga çarpışma şiddetleri de hesaplanabilir.

5. Daha yüksek doğrulukta sonuçlar istenildiğinde, tekrarlamalı bir yöntemle deneysel enerji seviyelerine en-küçük kareler yöntemi ile bir uydurulmasını yaparak $E_{ort.}$, F^k , G^k , ξ ve R^k çeşitli radyal enerji parametreleri değiştirilir. En küçük kareler uydurma parametrelerinin sonuçları atomik enerji seviyelerinin ve spektrumlarının hesaplanmasında tekrar kullanılabilir.

a) Radyal fonksiyonların hesabı: Hesaplama bir $V_0(r)$ yaklaşık potansiyel-enerji fonksiyonunun yardımıyla başlar. Küçük yarıçap için -2Z/r ve büyük yarıçap için -2(Z-N+1)/r olarak alınır. Bu SCF iterasyonun (m=1) ilk döngüsünde tüm $n_i l_i$ yörüngeleri için $P_i^{(1)}(r)$ deneme fonksiyonlarını hesaplamakta kullanılan $V^i(r)$ başlangıç potansiyelini sağlar. m döngüsü için $V^i(r)$ potansiyel-enerji fonksiyonu m-1 döngüsünden $P_j(r)$ fonksiyonunu kullanarak istenilen yönteme göre (H, HFS, HX veya HS) hesaplanır. Yakınsamayı hızlı yapmak için, üçüncü ve daha sonraki döngülerde V^i 'yi hesaplamak için kullanılan her deneme fonksiyonu P_j , önceki döngüdeki diferansiyel denklemin integrali ve deneme giriş fonksiyonun bir lineer kombinasyonu olarak alınır.

$$P_{j}^{(m)}(giris) = c_{j}P_{j}^{(m-1)}(c_{i}k_{i}s) + (1 - c_{j})P_{j}^{(m-1)}(giris)$$
(2.255)

 $P_j(r)$ radyal fonksiyonları, F^k ve G^k , Coulomb radyal integralleri ve spin-yörünge işlemcisinin radyal kısmının integralini nümerik olarak çözmek için kullanılabilir. Bu radyal integrallerle, E_{ij} Coulomb etkileşim enerjileri, E^i bir-elektron bağlanma enerjileri ve $E_{ort.}$ konfigürasyon-ortalama toplam bağlanma enerjileri hesaplanır.

b) Enerji seviyelerin ve spektrumların hesabı: Şekil 2.6'da seviye enerjilerinin ve spektrumların hesabının özeti verilmektedir. Şeklin sol tarafı açısal katsayı matrislerinin hesabını, sağ tarafı $E_{ort.}$, F^k , G^k , ξ , R^k ve $P^{(t)}$ radyal integrallerinin verilen değerleri için atomik enerji seviyeleri ve spektrumlarının hesabını gösterir. K = 1 birinci pariteyi, K = 2 ikinci pariteyi temsil eder.

Hesaplanan enerji seviyeleri tekrarlamalı bir yöntemle deneysel enerji seviyelerine en küçük kareler yöntemi ile bir uydurmasını yapmak için çeşitli radyal enerji parametreleri değiştirilir.

Şekil 2.4. HFR ile atomik yapı hesabı

Şekil 2.5. Radyal fonksiyonların hesabı

Şekil 2.6. Enerji seviyelerin ve spektrumların hesabı

BÖLÜM 3. HESAPLAMA SONUÇLARI

Bu çalışmada, lantanit atomlarından La (Z = 57), Ce (Z = 58), Yb (Z = 70) ve Lu (Z = 71)'un nötral ve iyonlaşmış hallerine ait bazı atomik hesaplamalar yapıldı. La I–III, Ce I–III, Yb I–III ve Lu I–III için konfigürasyon etkileşme yöntemlerinden Fischer [403] tarafından geliştirilen ve relativistik düzeltmeler için Breit-Pauli Hamiltonyenini temel alan çok konfigürasyonlu Hartree-Fock (MCHF) yöntemi ve Cowan [28] tarafından geliştirilen relativistik Hartree-Fock (HFR) yöntemi kullanılarak bazı seviye enerjileri, Landé *g*-çarpanları, iyonlaşma potansiyelleri, elektron ilgileri, dalga boyları, salınıcı şiddetleri, geçiş olasılıkları, yarı ömürleri ve aşırı ince yapı hesaplamaları MCHF atomik yapı paketi [412, 413] ve Cowan'ın relativistik Hartree-Fock program paketi [418] ile elde edildi. HFR program paketi bilgisayar sistemine uyarlandı ve gerekli boyut ve sisteme göre uygun dönüşümler yapıldı.

3.1. La I (Z = 57) için Hesaplama Sonuçları

Lantanitlerin ilk üyesi olan lantan atomunun ¹³⁸La (%0,085) ve ¹³⁹La (%99,910) olan iki doğal izotopu vardır ve çeşitli teknoloji alanlarda önemlidir. Karbon esaslı aydınlatmada, optik camların yapımında, pahalı kamera merceklerinde, çakmaktaşı ve pil elektrotlarının üretilmesinde, sinema endüstrisinde stüdyo aydınlatmalarında ve projeksiyonlarda kullanılır.

Nötral lantana ait çeşitli atomik yapı özelliklerini içeren deneysel ve teorik çalışmalar Tablo 1.3'te özetlenmektedir. Bu çalışmalar enerji seviyeleri, iyonlaşma potansiyeli, elektron ilgisi, dalga boyları, salınıcı şiddetleri, geçiş olasılıkları ve yarı ömürleri gibi ışıma parametrelerini kapsamaktadır [65–81]. Ayrıca, aşırı ince yapı çalışmaları da bu tabloda görülmektedir [70–75, 82–101]. Bu çalışmalar gözlem sonuçlarının bir analizinin yanı sıra, seviye-çarpışma ve çift-rezonans tekniği, lazer-indirgenmiş

88

floresans yöntemi, atomik-demet manyetik rezonans ve lazer-rf çift-rezonans tekniği, yüksek-çözünürlüklü lazer optogalvanik, lazer-indirgenmiş rezonans floresans ve Doppler-indirgenmiş soğurma spektroskopisi sonuçlarını içermektedir. Teorik hesaplamalar çoğunlukla çok konfigürasyonlu Dirac-Fock, relativistik ve relativistik olmayan Hatree-Fock ve konfigürasyon etkileşme yöntemleri ile yapılmıştır.

Lantanitlerin ilk üyesi olan lantan atomunun nötral halinin bazı uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları, dalga boyları, ağırlıklı salınıcı şiddetleri, geçiş olasılıkları ve yarı ömürleri Fischer tarafından geliştirilen ve relativistik düzeltmeler için Breit-Pauli Hamiltoniyenini temel alan çok konfigürasyonlu Hartree-Fock (MCHF) yöntemi [412, 413] kullanılarak hesaplandı. Ayrıca bazı seviyeler için aşırı ince yapı sabitleri ve geçiş enerjileri (iyonlaşma potansiyeli, uyarılma enerjileri ve elektron ilgisi) de hesaplandı. MCHF yöntemi kullanılarak, seçilen konfigürasyonlar için elde edilen dalga fonksiyonların baskınlığını belirleyen karışım katsayıları ve relativistik olmayan enerjiler hesaplandı. Elde edilen bu dalga fonksiyonlarında Breit-Pauli relativistik düzeltmelerini dikkate almak için Breit-Pauli Hamiltonyeni ile köşegenleştirilerek karışım katsayıları yeniden belirlendi. Bu relativistik katkılarla beraber geçişlere ait dalga boyları, geçiş enerjileri, ağırlıklı salınıcı şiddetleri, geçiş olasılıkları, seviye enerjileri, iyonlaşma potansiyeli, elektron ilgisi, yarı ömürleri ve aşırı ince yapı sabitleri hesaplandı.

Hesaplamalar için La I atomunun [Xe] özü dışında A, B, C ve D olarak isimlendirilen dört konfigürasyon seti seçildi (Tablo 3.1). Bu konfigürasyon setleri değerlik elektronları arasındaki karşılıklı etkileşmeye göre seçilmiştir. Lantanitlerin düşük hal konfigürasyonları arasındaki enerji farkları ve toplam enerjileri için çok calısma vardır. Karşılıklı etkilesme ve relativistik etkiler ağır elementlerin spektrumları üzerinde önemli rol oynarlar. Bu yüzden lantan için bu etkiler hesaba alındı. Ayrıca, karmaşık yapılarından dolayı bu atomlar için karşılıklı elektron zordur. etkileşimini hesaplamak oldukça Fakat özellikle, hesaplamaları zorlaştırmasına rağmen 4f alt tabakasını içeren konfigürasyonlar ve yüksekçe uyarılmış seviyeler hesaplamalarda dikkate alındı. Bununla karşılıklı etkileşme etkilerini anlamak için yararlı bilgiler sağlanayacağı düşünüldü. Fakat bu durumda bilgisayar kısıtlamaları ortaya çıktı. Bundan dolayı, MCHF program paketinde konfigürasyon hal fonksiyonlarının maksimum sayısı, terimlerin maksimum sayısı gibi bazı parametrelerin değerleri değiştirilerek hesaplamalar yapılabildi.

Seviyeler	Konfigürasyonlar						
	Α	В	С	D			
MCHF+BP	hesaplamaları için:						
Çift parite	5dns ² , 5 d ² ns, 5 dnp ² ,	5dns ² , 5 d ² ns, 5 dnp ² ,	5dns ² , 5d ² ns, 5dnp ² ,	5d6s ² , 4f ² ns, 4f6snp			
	$6 \operatorname{snp}^2$, $4 \operatorname{f} 6 \operatorname{snp}(n =$	6snp ² , 4f ² ns, 4f6snp	6snp ² , 4f ² ns, 4f6snp	$(n = 6, 7), 4f^2nd$			
	6, 7), 4f ² 5d, 4f6p7s,	$(n = 6, 7), 4f^2nd$	$(n = 6, 7), 4f^2nd$	(n = 5, 6), 4f6p7s,			
	4f7s7p, 5d ³ , 6p ² 7s,	(n = 5, 6), 4f6p7s,	(n = 5, 6), 4f6p7s,	4f7s7p			
	6s7s ² , 6s ² 7s, 7s7p ² ,	4f7s7p, 5d ³ , 6p ² 7s,	4f7s7p, 5d ³ , 6p ² 7s,				
	5d6s7s, 5d6p7p,	6s7s ² , 6s ² 7s, 7s7p ² ,	6s7s ² , 6s ² 7s, 7s7p ² ,				
	6s6p7p, 6p7s7p	5d6s7s, 5d6p7p,	5d6s7s, 5d6p7p,				
		6s6p7p, 6p7s7p	6s6p7p, 6p7s7p				
Tek parite	5d6snp, 5d ² np, np ³ ,	5d6snp, $5d^2np$, np^3 ,	5d6s6p, 5d ² 6p, 4f6s ² ,	5d6snp, 5d ² np, np ³ ,			
_	ns^27p , 4f5dns (n =	ns ² 7p, 4fns ² , 4f5dns	4f5dns (n = 6, 7),	ns ² 7p, 4fns ² , 4f5dns			
	6, 7), 4fnd^2 (n = 5,	$(n = 6, 7), 4 fnd^2$	4f5d ² , 4f ² 6p, 4f6p ²	$(n = 6, 7), 4fnd^2 (n =$			
	6), 6s ² 6p, 6p7s ² ,	(n = 5, 6), 4f6s7s,		5, 6), 4f6s7s, 6s ² 6p,			
	5d6p7s, 5d7s7p,	6s ² 6p, 6p7s ² , 5d6p7s,		6p7s ² , 5d6p7s,			
	6s6p7s, 6s7s7p,	5d7s7p, 6s6p7s,		5d7s7p, 6s6p7s,			
	6p ² 7p, 6p7p ²	6s7s7p, 6p ² 7p, 6p7p ²		6s7s7p, 6p ² 7p, 6p7p ²			

Tablo 3.1. La I'e ait hesaplamalar için alınan konfigürasyon setleri

3.1.1. La I'in bazı seviyelerinin enerjileri ve Landé g-çarpanları

La I atomunun [Xe] özü dışında Tablo 3.1'de verilen A konfigürasyon setine ait $5d6s^2$, $5d^26s$, $5d^3$, 5d6s7s, 4f6s6p, 5d6s6p, $5d^26p$, $5d^27p$ ve 4f5d6s seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF yöntemiyle hesaplandı [103, 104] ve sonuçlar Tablo 3.2'de verilmektedir. Elde edilen sonuçlar oldukça fazladır ve tabloda sadece karşılaştırması olan seviyelerin enerjileri ve Landé *g*-çarpanları sunulmaktadır. Enerji seviyeleri taban hal olan $5d6s^2 \ ^2D_{3/2}$ seviyesine göre cm⁻¹ birim sistemine göre verilmektedir ve sadece tek pariteli seviyeler "0" (0:0dd) indisiyle belirtilmektedir. Seviyelerin Landé *g*-çarpanları ise Cowan'ın formülüne [28] göre hesaplandı.

Diğer çalışmalarla karşılaştırıldığında sonuçların bazı seviyeler hariç uyum içinde olduğu görülmektedir. Özellikle, 4f5d6s seviyesi uyumlu iken 4f6s6p seviyesi için hesap sonuçlarında uyum zayıftır. Bu durumun dolu olmayan d ve f alt tabakalarından kaynaklandığı söylenebilir. Bu alt tabakaları içeren konfigürasyonlar MCHF hesaplamalarını zorlaştırmaktadır. Fakat tüm seviyeler için Landé *g*-

çarpanları NIST [63] ve Biémont ve çalışma arkadaşları tarafından hesaplanan [80]'deki verilerle uyum içindedir.

Nötral lantan için yapılan MCHF hesaplamalarındaki uyumsuz seviyeleri düzeltmek için Cowan tarafından geliştirilen relativistik Hartree-Fock [28] yöntemiyle hesaplamalar tekrarlandı. La I atomu için HFR yöntemine göre Cowan tarafından geliştirilen kodu [418] kullanılarak yapılan hesaplamalarda, [Xe] özü dışında 5d6s², $5d^{2}6s$, $5d^{3}$, 4f6s6p, 5d6s6p, $4f6s^{2}$, $6s^{2}6p$, $6s^{2}7p$, $6s^{2}8p$, $5d^{2}6p$ ve 4f5d6skonfigürasyonları seçildi. Konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında yapılan elektrik dipol geçişleri için λ (Å) dalga boyları, gf ağırlıklı salınıcı siddetleri ve gA_{ki} (sn⁻¹) ağırlıklı geçiş olasılıkları hesaplandı. HFR hesaplamalarında değerlik elektronları arasındaki karşılıklı etkileşme etkileri dikkate alındı. HFR yaklaşıklığı Schrödinger denklemine dayalı olmasına rağmen spin-yörünge etkisi yanında kütle-hız düzeltmeleri ve Darwin katkıları gibi relativistik etkileri içerir. Bu hesaplamada, Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yaparak iyilestirildi. En küçük kareler yönteminde tüm deneysel seviyeler NIST'ten alındı. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirilmemiş değerleri 0,75 olarak seçildi. Ölçeklendirme faktörlerinin bu düşük değerleri nötral ağır elementler için Cowan [28] tarafından öne sürülmüştür.

Tablo 3.2'de bazı uyarılmış seviyelerin enerjileri ve Landé *g*-çarpanları için HFR ile elde edilen sonuçlarda verildi. Bu konfigürasyonlar değerlik elektronları arasındaki karşılıklı etkileşmeye göre seçilmiştir. Diğer çalışmalarla karşılaştırıldığında sonuçların oldukça uyumlu olduğu görülmektedir. 4f alt tabakasını içeren seviyeler için de uyumlu sonuçlar elde edildi. Tüm seviyeler için Landé *g*-çarpanları diğer verileri ile uyum içindedir. Bu sonuçlar MCHF+BP yöntemi ile 4f alt tabakasını içeren seviyelere ait sonuçlardan daha iyidir.

		91

Sevive	eler		Е		g-carbani			
Konf.	Terim	Bu ça	lışma	Diğer	Bu çal	işma	ma Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
Çift parite için:				. h			L	
$5d6s^2$	${}^{2}D_{3/2}$	0,00	0,00	$0,000^{a,b}$	0,800	0,797	0,79755 ^b	
	$^{2}D_{5/2}$	1066,009	1053,004	1053,200 ^a	1,200	1,199	1,19907 ^b	
5d ² (³ F)6s	${}^{4}F_{3/2}$	2754,743	2628,388	1053,164° 2668,200°	0,400	0,407	0,40446 ^b	
	${}^{4}F_{5/2}$	3149,587	3034,793	2668,188 ^a 3010,010 ^a	1,028	1,030	1,02940 ^b	
	${}^{4}F_{7/2}$	3711,362	3611,345	3010,002 ^b 3494,580 ^a 2404,526 ^b	1,238	1,238	1,23742 ^b	
	${}^{4}F_{9/2}$	4430,254	4332,099	4121,610 ^a	1,333	1,332	1,33278 ^b	
5d ² (³ F)6s	${}^{2}F_{5/2}$	7358,505	6992,001	7011,900 ^a 7011 909 ^b	0,857	0,929	0,89830 ^b	
	${}^{2}F_{7/2}$	8469,856	8116,978	8052,150 ^a 8052,162 ^b	1,143	1,126	1,13469 ^b	
5d ² (³ P)6s	${}^{4}P_{1/2}$	9209,886	7266,991	7231,360 ^a 7231 407 ^b	2,666	2,6449	2,65252 ^b	
	${}^{4}P_{3/2}$	9524,798	7543,006	7490,460 ^a 7490 521 ^b	1,733	1,671	1,70427 ^b	
	${}^{4}P_{5/2}$	9400,125	7701,573	7679,940 ^a 7679,939 ^b	1,600	1,444	1,50558 ^b	
5d ² (¹ D)6s	${}^{2}D_{3/2}$	9107,357	8281,012	8446,030 ^a 8446,044 ^b	0,800	0,948	0,93603 ^b	
	$^{2}D_{5/2}$	_	9092,365	9183,797 ^b	1,285	1,285	1,25449 ^b	
5d ² (³ P) 6s	${}^{2}\mathrm{P}_{1/2}$	9754,123	9074,599	9044,210 ^a 9044,214 ^b	0,666	0,690	0,690 ^b	
	${}^{2}\mathbf{P}_{3/2}$	_	9842,720	9719,439 ^b	_	1,244	1,22 ^b	
5d ² (¹ G)6s	${}^{2}G_{7/2}$	11617,376	9582,133	9960,960 ^a 9960,904 ^b	0,888	0,907	0,892 ^b	
	$^{2}G_{9/2}$	11808,227	9616,798	9919,940 ^a 9919,821 ^b	1,111	1,113	1,107 ^b	
$5d^{2}(^{1}S)6s$	${}^{2}S_{1/2}$	_	17328,397	16991,42 ^a	_	1,994	_	
$5d^3$	${}^{4}F_{3/2}$	9763,552	12500,673	12430,609 ^b	0,400	0,409	0,411 ^b	
	${}^{4}\mathrm{F}_{5/2}$	10037,775	12926,902	$12787,404^{b}$	1,028	1,030	$1,026^{b}$	
	${}^{4}F_{7/2}$	10608,642	13444,735	13238,323 ^b	1,238	1,235	1,228 ^b	
	${}^{4}F_{9/2}$	11159.695	13999.228	13747.276 ^b	1.333	1.324	_	
$5d^3$	${}^{4}P_{1/2}$	14817.644	16531.003	16617.30 ^b	2.666	2.634	_	
	${}^{4}P_{2/2}$	15028.325	16650.921	16735.14 ^b	1.733	1.696	1.698^{b}	
	${}^{4}P_{5/2}$	15358,154	17070,546	17099.38 ^b	1.600	1.591	_	
$5d^3$	${}^{2}D2_{2/2}$	17567.854	18262.097	18037.64 ^b	0.800	0.859	_	
	$^{2}D2_{5/2}$	18443.393	19018.792	18776.62 ^b	1.200	1.206	_	
$5d^3$	$^{2}H_{0/2}$	20437,303	16807.821	18315.88 ^b	0.909	1.016	0.970^{b}	
	${}^{2}H_{11/2}$	20716.276	17921.991	18310.92 ^b	1.091	1.091		
$5d^3$	${}^{2}P_{1/2}$	20417,700	20454.015	20392.60 ^b	0.666	0.709	0.709^{b}	
	${}^{2}\mathbf{P}_{2/2}$	21209.733	21149,514	21037.30 ^b	1.333	1.303	1.316 ^b	
$5d^3$	${}^{2}F_{7/2}$	24107.610	21635.086	21943.80 ^b	1,143	1,142	_	
54	${}^{2}F_{5/2}$	24182 201	21033,000	21969 32 ^b	0.857	0.867	_	
$5d^3$	${}^{2}D1_{cm}$	28668 479	25799 316	25414.63^{b}	1 200	1 194	_	
54	${}^{2}D1_{2}$	_	25958 793	_	-	0.800	_	
$5d6s(^{3}D)7s$	${}^{4}D_{12}$	38591 299	_	30019 24 ^b	0.000	_	0.000 ^b	
5405(D)/3	${}^{4}D_{2}$	38775 919	_	30169.82 ^b	1 200	_	0,000 0,91 ^b	
	${}^{4}D_{-4}$	39168 979	_	30354 28 ^b	1,200	_	1.07 ^b	
	${}^{4}D_{\pi}$	39854 970	_	31287 59 ^b	1 429	_	1 41 ^b	
$4 f 6 s (^3 F) 6 n$	${}^{4}\mathbf{F}_{2}$	143027 600	28934 631	28742 34 ^b	0,400	0 4 2 4	0.45^{b}	
-103(1.)0h	${}^{4}\mathbf{F}_{a}$	14270/ 007	28900 101	28754 06 ^b	1 028	0.016	0,43 ^b	
	⁴ E-	142194,991	20700,101	20754,90 30055 05 ^b	1,020	1 100	1 10 ^b	
	4 _E	-	30123,312		1,230	1,100	1,17	
Af6 (3D) Cr	⁴ C	_	20619 450	20578 02b	_	1,309	 0.78 ^b	
4105(Г)0р	^{4}G	_	29010,439	29370,02 30401 70 ^b	_	0,724	0,70 1.02 ^b	
	${}^{4}G$	_	20776 200	30401,70 30024 76 ^b	_	1,114	1,03 1,16 ^b	
	^{4}C	—	21096 014	30934,70	_	1,104	1,10	
	$U_{11/2}$	-	51900,014		-	1,273	-	

Tablo 3.2. La I'in E seviye energileri (cm⁻¹) ve Landé g-çarpanları

Tablo 3.2. Devam

Seviveler		Е			g-carpani			
Konf.	Terim	Bu calisma		Diğer	Bu cal	isma	Diğer	
		MCHF+BP	HFR	calısmalar	MCHF+BP	HFR	calismalar	
$4 f_{6s}(^{1}F)_{6n}$	2 Ear	-	29207 999	_	-	1 147	_	
4103(1)0p	${}^{2}\mathbf{F}_{5/2}$	_	30614 981	30305 61 ^b	_	0.882	0.84 ^b	
$4f6s(^{3}F)6n$	${}^{4}D_{1/2}$	156793 958	31088 700	31061 85 ^b	0.000	-0.002	0.00^{b}	
4103(1)0p	${}^{4}D_{1/2}$	156079.021	30965 209	30088 36 ^b	1,200	1 118	1.12^{b}	
	^{4}D	154241 005	30731 488	30008 86 ^b	1,200	1,110	1,12 1,25 ^b	
	^{4}D	152070.066	22062 485	31025 00 ^b	1,371	1,233	1,25 1,27 ^b	
$4f6_{\alpha}(^{1}\mathbf{E})6\mathbf{p}$	^{2}C	132979,000	21672 011	22210 52 ^b	1,429	1,209	1,27 1.06 ^b	
4108(17)0p	^{2}G	_	32052,011	52219,55	_	1,035	1,00	
$4f6_{\alpha}(^{1}\mathbf{E})6\mathbf{p}$	^{2}D	_	32032,828	_	_	1,144	_	
410s(F)0p	$^{2}D_{5/2}$	_	22705.000	_	_	1,233	_	
$4fc_{\alpha}(^{3}\Gamma)c_{\alpha}$	$^{2}D_{3/2}$	-	32793,090	-	-	0,837	-	
410s(F)op	г _{5/2} 2г	-	40393,779	-	-	1,075	-	
$Af(-(^{3}\Gamma))$	${}^{2}C$	-	41945,528	-	-	1,075	-	
410s(F)op	² C	—	41556,792	—	-	0,957	—	
ACC (3E)C	² D	—	42922,999	_	_	1,112	_	
4f6s(°F)6p	${}^{2}D_{3/2}$	_	42193,520	_	-	0,799	_	
	² D _{5/2}	_	43618,983	_	-	1,197		
Tek parite i	çin:			t a a co a ch	0.400		o ze h	
5d6s(°D)6p	$F_{3/2}^{\circ}$	13232,437	14262,555	13260,38°	0,400	0,425	0,52°	
	F ⁰ 5/2	14588,443	14525,394	$14804,100^{a}$	1,028	1,037	1,09°	
	4 0			14804,08			h	
	${}^{4}F_{7/2}^{0}$	15047,541	14932,806	15019,550 ^a	1,238	1,245	1,237	
				15019,51 ^b				
2	${}^{4}F^{o}_{9/2}$	16147,881	15661,423	16243,17 ^b	1,333	1,334	- ,	
5d6s(3D)6p	${}^{4}D^{0}{}_{1/2}$	14224,056	14961,592	14095,700 ^a	0,000	0,020	0,357 ^b	
				14095,69 ^b				
	${}^{4}D^{o}_{3/2}$	14813,862	14794,941	14708,960 ^a	1,200	0,998	1,01 ^b	
				14708,92 ^b				
	${}^{4}\text{D}^{0}_{5/2}$	15245,165	16021,309	15503,670 ^a	1,371	1,292	1,36 ^b	
				15503,64 ^b				
	${}^{4}D^{o}_{7/2}$	15820,596	16228,489	16099,280 ^a	1,429	1,420	1,37 ^b	
				16099,29 ^b				
5d6s(³ D)6p	${}^{2}D^{o}_{5/2}$	-	14889,109	_	0,800	0,985	-	
	${}^{2}D_{3/2}^{o}$	30643,817	15536,011	15031,650 ^a	-	1,269	-	
$4 f 6 s^2$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	15186,900	15196,83 ^b	-	0,858	0,906 ^b	
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	16063,700	16538,39 ^b	-	1,143	1,179 ^b	
6s ² 6p	${}^{2}P_{1/2}^{0}$	_	15198,469	-	-	0,662	-	
	${}^{2}P^{0}_{3/2}$	_	15200,831	16280,26 ^b ?	-	1,333	1,326 ^b	
6s ² 7p	${}^{2}P_{1/2}^{0}$	_	18044,321	_	-	0,668	_	
	${}^{2}P_{3/2}^{0}$	_	18062,580	_	-	1,334	_	
$5d6s(^{3}D)6p$	${}^{4}P_{1/2}^{0}$	17991,094	16468,693	17567,49 ^b	2,666	2,618	2,63 ^b	
	${}^{4}P_{3/2}^{0}$	18613,543	16798,701	17797,29 ^b	1,733	1,699	1,69 ^b	
	${}^{4}P^{0}_{5/2}$	18619,409	17700,587	18157.000^{a}	1,600	1,579	1,175 ^b	
	0.2			18156,97 ^b				
5d6s(³ D)6p	${}^{2}\mathrm{F}^{\mathrm{o}}{}_{5/2}$	_	17447,333	_	_	0,881	_	
· / 1	${}^{2}\mathrm{F}^{0}_{7/2}$	_	18766,068	_	_	1,142	_	
5d6s(³ D)6p	${}^{2}\mathrm{P}^{0}_{1/2}$	16992,333	18405,709	_	0,666	0,685	_	
	${}^{2}P_{2/2}^{0}$	_	19162.702	_	_	1.191	_	
$5d6s(^{1}D)6p$	${}^{2}D_{3/2}^{0}$	_	18627.531	_	_	0.972	_	
	${}^{2}D_{5/2}^{0}$	_	19391.702	_	_	1,159	_	
$5d6s(^{1}D)6p$	${}^{2}F^{0}_{7/2}$	_	19316.885	_	_	1.147	_	
edeb(2)op	${}^{2}F^{0}{}_{5/2}$	_	19683,920	_	_	0.896	_	
5d6s(¹ D)6p	${}^{2}P_{1/2}^{0}$	28990.650	20538.240	20197.380 ^a	0.666	0.646	_	
Subs(D)op	${}^{2}P_{2/2}^{0}$	29170 163	20898 295	20019.000 ^a	1 333	1 328	_	
$5d^{2}(^{3}F)6p$	${}^{4}G^{0}z^{0}$	16418 444	18002.059	17947 160 ^a	0 571	0 586	1.061 ^b	
24 (1)0p	G 5/2	10110,114	10002,007	17947 13 ^b	0,071	5,200	1,001	
	${}^{4}G^{0}$	15929 488	18352 225	18603 950 ^a	0 984	0 989	1.051 ^b	
	U 1/2	15727,700	10352,223	18603 92 ^b	0,204	5,707	1,001	
	${}^{4}G^{0}_{000}$	16976 127	18785 014	19129 340 ^a	1 171	1 172	1 173 ^b	
	9/2	10770,127	10705,014	19129,340	1,1/1	1,1/2	1,175	
	${}^{4}G^{0}$	17968 328	19284 719	20117 400 ^a	1 272	1 273	1 290 ^b	
	✓ 11/2	1,,00,020	->=01,719	20117,38 ^b	-,_,_	-,	-,_>	
Tablo 3.2. Devam

Sevive	eler		Е			g-carpan	1
Konf.	Terim	Bu ça	alışma	Diğer	Bu çal	işma	Diğer
		MCHF+BI	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d ² (³ F)6p	$^{2}D_{3/2}^{o}$	16833,954	21245,103	18172,390 ^a	0,800	0,809	0,799 ^b
	2			18172,35 ^b			0,835°
	$^{2}D_{5/2}^{o}$	18016,456	23355,647	19379,440 ^a	1,200	1,228	1,186 ^b
5 12/3E) C	2=0	17100 007	20074 422	19379,40°	1 1 4 2	1 100	1,192°
5d ² (°F)6p	${}^{2}F^{0}_{7/2}$	1/188,28/	20074,433	16538,440 ^a	1,143	1,196	_
$5d^{2}(^{3}E)6n$	$F_{5/2}^{+}$	19943,941	20542,406	10850,820° 20083 020ª	0,857	0,910	- 0.724 ^b
5u (F)op	Г 3/2	17930,330	21324,990	20083,020 20082,98 ^b	0,400	0,385	0,724
	⁴ F ^o _{5/2}	18347,598	21658,503	20338,300 ^a 20338,25 ^b	1,028	1,133	1,006 ^b
	⁴ F ^o _{7/2}	18722,185	21938,735	20763,310 ^a 20763,21 ^b	1,238	1,224	1,178
	⁴ F ^o _{9/2}	19578,111	22082,143	$21384,060^{a}$ 21384.00^{b}	1,333	1,282	1,278 ^b
5d ² (³ F)6p	${}^{2}G^{o}_{7/2}$	19427,255	22661,185	$21662,610^{a}$ 21662.51^{b}	0,888	0,915	0,995 ^b
	${}^{2}G^{o}_{9/2}$	20632,930	22827,503	22285,850 ^a 22285.77 ^b	1,111	1,096	1,13 ^b
5d ² (³ F)6p	${}^{4}D^{o}{}_{1/2}$	19509,341	20673,931	22246,640 ^a	0,000	0,038	0,04 ^b
	4			22246,64 ^b			0,025 ^c
	⁴ D ^o _{3/2}	20728,772	20601,964	22439,370 ^a	1,200	1,074	1,192 ^b
	400	20052 020	20051 007	22439,36°	1 271	1.076	1,196°
	$D_{5/2}$	20853,930	20851,907	$22804,260^{-1}$	1,3/1	1,276	$1,362^{\circ}$
	⁴ D ⁰	21/83 213	21201 746	22804,23 23303 310 ^a	1 /29	1 367	1,504 1.178 ^b
	D 7/2	21405,215	21291,740	23303,310 23303,26 ^b	1,427	1,307	1,170 1 417 ^c
5d ² (³ P)6p	${}^{2}S_{1/2}^{o}$	23052,633	23703,821	23260,900 ^a 23260,92 ^b	2,000	1,991	1,891 ^b
5d ² (³ P)6p	${}^{4}S^{o}_{3/2}$	23917,544	27259,664	24639,270 ^a 24639,26 ^b	2,000	1,988	1,781 ^b
5d ² (³ P)6p	${}^{4}D^{o}{}_{1/2}$	23843,621	24212,942	23528,380 ^a 23528.45 ^b	0,000	0,084	0,153 ^b
	${}^{4}D^{o}_{3/2}$	24110,761	24363,275	23704,760 ^a 23704,81 ^b	1,200	1,200	1,133 ^b
	⁴ D ^o _{5/2}	24536,547	24600,119	$24046,060^{a}$ $24046,10^{b}$	1,371	1,355	1,271 ^b
	${}^{4}D^{o}{}_{7/2}$	25087,221	24706,65	25083,420 ^a 25083.36 ^b	1,429	1,358	1,381 ^b 1.312 ^c
5d ² (³ P)6p	² D ^o _{3/2}	25367,405	27678,943	25950,390 ^a 24762.60 ^b ?	0,800	0,812	0,854
	${}^{2}D_{5/2}^{0}$	25972,070	27542,518	25218,250 ^a	1,200	1,198	_
5d ² (³ P)6p	${}^{4}P^{o}{}_{1/2}$	25957,876	21994,499	25616,900 ^a 25616,95 ^b	2,666	2,610	2,274 ^b
	${}^{4}P^{o}_{3/2}$	26015,609	22253,800	25643,020 ^a 25643,00 ^b	1,733	1,672	1,59 ^b
	${}^{4}P^{o}_{5/2}$	26087,066	22580,208	26338,900 ^a 26338,93 ^b	1,600	1,539	1,524 ^b
5d ² (¹ G)6p	${}^{2}G^{o}_{7/2}$	26403,496	28076,619	27132,500 ^a 27132,44 ^b	0,888	0,911	0,94 ^b
	${}^{2}G^{o}_{9/2}$	26417,628	28089,270	27619,690 ^a 27619,54 ^b	1,111	1,135	1,12 ^b
5d ² (¹ D)6p	${}^{2}D^{o}_{3/2}$	26582,888	22913,280	27968,530 ^a	0,800	0,823	_
2.1	${}^{2}D^{o}_{5/2}$	27417,240	21733,478	28506,390 ^a	1,200	1,151	_
5d ² (¹ G)6p	$^{2}H^{0}_{9/2}$	-	23443,874	-	-	0,977	_
5 d ² (3D)	$^{2}H^{\circ}_{11/2}$	27632,141	23884,630	25874,680	1,091	1,092	- 1 21 ^b
5a-(-P)6p	P [*] 3/2	27562,227	25557,026	21223,270° 27225.26 ^b	1,333	1,555	1,51° 1,321°
	${}^{2}P^{o}_{1/2}$	27894,521	24807,763	27749,050 ^a 27749 07 ^b	0,666	0,652	0,682 ^b
$4f5d(^{3}H)6e$	${}^{4}\mathrm{H}^{\mathrm{o}}_{\mathrm{d}}$	36420 346	22356 672	24088 54 ^b	0.666	0.675	0.72 ^b
	${}^{4}\text{H}^{\circ}_{9/2}$	36856.410	23126.415	24249.00 ^b	0,969	0,977	0,96 ^b
	${}^{4}\text{H}^{0}_{11/2}^{11/2}$	37454,837	24235,423	24841,42 ^b	1,132	1,138	1,15 ^b

Tablo 3.2. Devam

Sevive	eler		Е			g-carpan	
Konf.	Terim	Bu c	alisma	Diğer	Bu c	alısma	Diğer
		MCHF+B	P HFR	calismalar	MCHF+B	P HFR	calismalar
	⁴ H ⁰ 12/2	_	26031 707	_	_	1 231	_
$4f5d(^{3}F)6s$	${}^{4}F^{0}_{3/2}$	37552,517	23529,300	24173,860 ^a	0,400	0,46	0,717 ^b
	4			24173,83 ^b			L.
	${}^{4}F_{5/2}^{0}$	37854,600	23704,308	24507,890 ^a	1,028	1,019	1,158
	${}^{4}F^{0}_{7/2}$	38261.403	23980.130	24307,87 25378.460 ^a	1.238	1.186	1,185 1.228 ^b
	112	,	,	25380,27 ^b	,	,	1,227 ^c
	${}^{4}\mathrm{F}^{\mathrm{o}}_{9/2}$	39091,197	24534,587	25997,270 ^a 25997,17 ^b	1,333	1,269	1,319 ^b 1,325 ^c
$4f5d(^{1}G)6s$	${}^{2}G^{o}_{7/2}$	38575,685	25473,486	$24409,700^{a}$	0,888	0,964	_
	${}^{2}G_{9/2}^{0}$	38416,495	27968,786	23466,850 ^a 23466,84 ^b	1,111	1,133	1,11 ^b
$4f5d(^{3}H)6s$	$^{2}\mathrm{H}^{0}\mathrm{o}/2$	_	26104.980	_	_	0.978	_
	${}^{2}\text{H}^{0}_{11/2}$	40846.558	30089.795	28179.07 ^b	1.091	1.093	1.098^{b}
$5d^{2}(^{3}F)7p$	${}^{4}F^{0}{}_{2/2}$	44141.046	_	34015.76 ^b ?	0.400	_	0.60^{b}
64 (1)/P	${}^{4}F^{0}_{5/2}$	44559 502	_	34213 53 ^b ?	1 028	_	_
	${}^{4}F^{0}=2$	45207 763	_	34988 17 ^b ?	1,020	_	_
	4 F ⁰	4/16/ 236	_	35888 45 ^b ?	1 333	_	_
$4f5d(^{3}C)6a$	${}^{4}C^{0}$	50458 521	26287 614	27022 600ª	0.571	0.602	0.58b
413u(0)08	U 5/2	50458,551	20387,014	27022,600 27022,62 ^b	0,371	0,092	0,38
	${}^{4}G^{o}_{7/2}$	50951,931	27179,905	27455,340 ^a	0,984	1,032	0,976 ^b
	4			27455,31°			0,991 [°]
	⁴ G ^o _{9/2}	51521,633	28852,717	$28089,180^{a}$ $28089,17^{b}$	1,171	1,113	1,163°
	${}^{4}G^{o}{}_{11/2}$	52181,831	28961,871	28743,100 ^a 28743 24 ^b	1,272	1,264	1,27 ^b
4f5d(³ D)6s	${}^{4}D^{o}{}_{1/2}$	54635,599	29198,522	28893,470 ^a 28893 51 ^b	0,000	0,239	0,018 ^b
	${}^{4}D^{o}_{3/2}$	54936,293	29787,078	28971,820 ^a	1,200	1,234	0,884 ^b
	${}^{4}D^{o}{}_{5/2}$	55485,755	29944,472	28971,84 7 29502,170 ^a	1,371	1,359	1,263 ^b
	4			29502,18 ^b ?			
2	$^{4}D_{7/2}^{0}$	-	29555,931	-	-	1,348	-
4f5d('P)6s	${}^{2}P^{o}_{3/2}$	-	29621,348	-	-	1,144	-
	${}^{2}P^{0}{}_{1/2}$	-	31053,710	-	_	0,642	_
$4f5d(^{3}G)6s$	${}^{2}\text{G}^{o}_{7/2}$	-	34917,891	-	-	0,932	-
	${}^{2}G^{o}_{9/2}$	-	35148,110	-	-	1,108	-
$4f5d(^{1}F)6s$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	35843,504	-	-	0,981	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	35981,795	_	_	1,116	_
$4f5d(^{3}D)6s$	${}^{2}D_{3/2}^{0}$	_	36271.792	_	_	0.824	_
	$^{2}D_{5/2}^{0}$	_	36703,495	_	_	1.071	_
$4f5d(^{1}H)6s$	${}^{2}H^{0}$	_	37007 688	34245.05^{b}	_	1 094	1.06^{b}
	${}^{2}\text{H}^{0}$	_	38008 725	34239 61 ^b	_	0.914	0.9 ^b
$4f5d(^{1}P)6e$	${}^{2}P^{0}$	_	39324 933	32290 16 ^b	_	0.65	0.67^{b}
1150(1)05	${}^{2}\mathbf{P}^{0}_{2}$	_	39990 350	_	_	1 318	_
$6s^28n$	${}^{2}\mathbf{P}^{0}$	_	44978 795	44978 9 ^b	_	0.666	_
05 OP	${}^{2}\mathbf{P}^{0}_{3/2}^{1/2}$	_	44978,805	44978,6 ^b	_	1,334	_

^aAtomic Spectral Line database from R.L.Kurucz's CD-ROM 23 [102], ^bNIST Atomic Spectra Database [63], ^cBiémont ve çalışma arkadaşları [80]

La I atomunun [Xe] özü dışında A konfigürasyon setindeki çift ve tek pariteli seviyeler arasında elektrik dipol geçişleri (E1) hesaplandı [104]. 5d6s6p, 5d²6p ve 4f5d6s uyarılmış seviyeleri için ΔE (cm⁻¹) geçiş enerjileri ve τ (ns) yarı ömürleri Tablo 3.3'te verilmektedir. 5d6s6p, 5d²6p ve 4f5d6s seviyelerinin yarı ömürleri, bu seviyelerden daha düşük seviyelere olan tüm mümkün geçişler üzerinden (2.128) formülüne göre hesaplandı ve bu seviyelerden en yüksek geçiş olasılığına sahip daha düşük seviyelere olan geçişler için geçiş enerjileri de Tablo 3.3'te verilmektedir.

Bazı seviyeler hariç elde edilen geçiş enerjileri diğer çalışma sonuçlarıyla uyum içindedir. Özellikle, bazı $5d^26p-5d6s^2$, $5d6s6p-5d6s^2$, $5d6s6p-5d^26s$ ve $5d^26p-5d^26s$ geçişleri için hesap sonuçları iyi uyum içindedir fakat 4f5d6s-5d²6s geçiş enerjilerindeki uyum iyi değildir. Tablo 3.3'te aynı zamanda üst seviyelerin yarı ömür değerleri için uyumun bazı seviyeler hariç iyi olduğu görülmektedir. Ayrıca, diğer çalışma sonuçları da incelendiğinde bunlar arasında da uyumsuzlukların olduğu görülmektedir. Bunun nedeni dolu olmayan 4f alt tabakasının karmasık elektronik yapısıyla açıklanabilir. Bu alt tabaka hesaplamaları zor hale getirmektedir. Ayrıca, La I için mevcut laboratuvar analizleri hala eksik veya kayıptır. Bu zorlukların üstesinden gelmek için MCHF atomik yapı paketindeki bazı parametrelerin değerleri değiştirildi. Fakat 4f yörüngesinin girişkenliğinden dolayı, lantanın dalga fonksiyonlarının doğru hesaplamaları aşırı derece zor olmaktadır. Daha doğru yarı ömür değerleri daha büyük konfigürasyon setlerinin seçilmesiyle yapılan hesaplamalarda olabilir. Bu nedenle 4f alt tabakasını içeren konfigürasyon sayısının arttırılmasına çalışıldı. Tablo 3.3'te verilen B konfigürasyon setini kullanılarak elektrik dipol geçişleri hesaplandı ve bazı geçiş enerjileri ve yarı ömürleri Tablo 3.3'te B üst indisiyle verildi. Bu hesap sonucları incelendiğinde bazı geçis enerjilerinin A hesabına göre daha iyi olduğu görülmektedir. Fakat yarı ömürlerde A hesabı daha iyidir.

Ügt Som	.	A 14 C a		A.	P		
Ust Sev Konf	Torim	All Se Konf	Torim		Dižor	Du colismo	Diğor
Кош.	Terim	KOIII.	Terim	Du çanşma MCHF+BP	çalışmalar	Du çanşına MCHF+BP	çalışmalar
$5d6s(^{3}D)6n$	${}^{4}\mathrm{E}^{\mathrm{o}}$	$5d6s^2$	2 D	13232.36 ^A	_	301 50 ^A	_
$5d6s(^{3}D)6p$	$4 \mathbf{F}^{0}$	$5d6s^2$	$^{2}D_{3/2}$	14588 36 ^A	_	770.68 ^A	_
$5d^{2}(^{3}P)6p$	${}^{2}D_{3/2}^{o}$	$5d6s^2$	² D _{3/2}	25367,26 ^A	24762,62 ^a	13,73 ^A	13,5(1,0) ^e
5d ² (³ F)6p	${}^{4}\text{D}^{0}{}_{1/2}$	5d6s ²	$^{2}D_{3/2}$	19509.23 ^A	_	19,57 ^b 9,40 ^A	$10,1(0,9)^{c1}$
5 1 ² (³ E)(² D ⁰	5 1 c ²	² D	1 (022 0 cA	10172 2008	17,96 ^B	$9,29^{c^2}$
5d (°F)6p	D _{3/2}	5068	D _{3/2}	10833,80	18172,390 18172,35 ^b	21,65 12,45 ^B	17,7(1,4) $14,13^{c2}$ $18(3)^{d}$ $16(1)^{e}$
5d ² (³ P)6p	${}^{2}P^{o}_{3/2}$	5d6s ²	${}^{2}D_{3/2}$	27562,07 ^A	27225,27 ^a	23,53 ^A	$17,1(0,9)^{c1}$ 26,86 ^{c2}
$5d6s(^{1}D)6p$	${}^{2}\mathrm{P}^{\mathrm{o}}{}_{1/2}$	$5d6s^2$	${}^{2}D_{3/2}$	32716,75 ^B	20197.38^{a}	_	_
$5d^{2}(^{3}F)6n$	${}^{4}\mathrm{F}^{0}_{2/2}$	$5d6s^2$	${}^{2}D_{2/2}^{3/2}$	21662.57 ^B	20083.02^{a}	_	_
$5d6s(^3D)6n$	${}^{4}P^{0}$	$5d6s^2$	${}^{2}D_{2}$	22346 15 ^B	18157.00^{a}	_	_
$5d^{2}(^{3}\text{P})6n$	$4 p^{0} p^{5/2}$	$5d6s^2$	${}^{2}D^{3/2}$	20686 35 ^B	25616.00^{a}	_	_
$5d^{2}(^{3}D)6p$	${}^{4}\mathbf{p}^{0}$	$5d6a^2$	${}^{2}D_{3/2}$	20080,55 20745.08 ^B	25610, 50 25642.02^{a}	_	_
	4 T ⁰	5008	$^{2}D_{3/2}$	29745,08 12001 45 ^A	23045,02	- 704.00Å	-
5d6s(°D)6p	1F [*] 7/2	5d6s	⁻ D _{5/2}	13981,45 rd	-	/94,09**	_
$5d^{2}(^{3}F)6p$	⁻ F ^o _{3/2}	5d6s ²	${}^{2}D_{5/2}$	20585,19 ^B	19029,82ª	-	_
5d ² (² F)6p	${}^{4}F_{5/2}$	5d6s ²	${}^{2}D_{5/2}$	20994,45 ^b	$19285,10^{a}$	-	-
$5d^{2}(^{3}F)6p$	${}^{2}G^{o}_{7/2}$	$5d6s^2$	$^{2}D_{5/2}$	22061,65 ^B	20609,41 ^a	-	_
5d6s(³ D)6p	${}^{4}P^{0}_{3/2}$	$5d6s^2$	$^{2}D_{5/2}$	17547,43 ^A	-	218,88 ^A	-
$5d6s(^{3}D)6p$	${}^{4}P^{o}_{5/2}$	$5d6s^2$	$^{2}D_{5/2}$	17553,30 ^A	17103,80 ^a	$59,60^{A}$	-
$5d^{2}(^{3}P)6p$	${}^{2}D_{5/2}^{0}$	$5d6s^2$	$^{2}D_{5/2}$	24905.92 ^A	24165.05^{a}	9.55 ^A	_
$5d^{2}(^{3}F)6p$	${}^{4}D_{3/2}^{0}$	$5d6s^2$	${}^{2}D_{5/2}^{5/2}$	19662.65 ^A	_	10.31 ^A	$10.2(0.5)^{c1}$
00 (1)0p	2 3/2	0000	2 3/2	1,002,00		6.89 ^B	940^{c2}
$5d^2(^3E)6p$	$^{2}D^{0}$	$5d6a^{2}$	2 D	16050 25 ^A	19226 24ª	21.56 ^A	$17.2(1.0)^{cl}$
5u (F)op	D 5/2	5008	$D_{5/2}$	10950,55 20650 50 ^B	10320,24	21,50 12.96 ^B	17,2(1,0) $12,50^{c2}$
				20650,50	18320,230	12,80	15,59
	2-0	2	2-	1 41 00 10Å	1 - 10 18		$16(1,5)^{2}$
5d ² (³ F)6p	${}^{2}F^{o}_{7/2}$	5d6s ²	$^{2}D_{5/2}$	16122,19	15485,24ª	41,55	_
5d ² (² F)6p	${}^{2}F_{5/2}^{0}$	$5d^{2}({}^{3}F)6s$	${}^{2}F_{5/2}$	12585,36 ^A	$13960, 32^{a}$	62,28 ^A	_
$5d^{2}(^{3}F)6p$	${}^{4}G^{0}_{7/2}$	$5d^{2}(^{3}F)6s$	${}^{2}F_{5/2}$	11635,25 ^B	11592,05 ^a	-	-
5d ² (³ F)6p	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	$5d^{2}(^{3}F)6s$	${}^{2}F_{5/2}$	12832,38 ^B	14436,02 ^a	-	-
5d ² (³ F)6p	${}^{2}\text{G}^{0}_{7/2}$	$5d^{2}(^{3}F)6s$	${}^{2}F_{5/2}$	15132,60 ^B	14650,70 ^a	-	-
$5d^{2}(^{1}D)6p$	$^{2}D_{3/2}^{0}$	$5d^{2}(^{3}F)6s$	${}^{2}F_{5/2}$	22307,37 ^B	20956,63 ^a	_	_
$5d^{2}(^{1}G)6p$	${}^{2}G^{0}_{7/2}$	$5d^{2}(^{3}F)6s$	${}^{2}\mathrm{F}_{7/2}$	21033.00^{B}	19080.35 ^a	_	_
$5d^{2}(^{3}F)6n$	${}^{2}D_{5/2}^{0}$	$5d^{2}(^{3}F)6s$	${}^{2}F_{7/2}$	12635.48^{B}	11327.29 ^a	_	_
$5d^{2}(^{3}F)6n$	${}^{2}G^{0}$	$5d^{2}(^{3}F)6s$	${}^{2}\mathbf{F}_{7/2}$	15268 21 ^B	1423370^{a}	_	_
5d (1)0p $5d 6s (^{3}D)6n$	${}^{2}D^{0}$	$5d^{2}(^{3}F)6s$	${}^{2}\mathbf{F}_{-1}$	26176.68 ^B	$20454 24^{a}$	_	_
$5d6s(^{3}D)6p$	${}^{4}D^{0}$	$5d^{2}(^{3}E)6s$	4 _E	11460 25 ^A	1142750^{a}	205 18 ^A	_
Subs(D)op	$D_{1/2}$	5u (17)0s	1'3/2	11409,23	11427,50	253,10 212.52 ^B	
5 + (-3D)	400	5 1 ² (³ E)(-	4	12050 05A		212,52 220,62 ^A	
5005(D)op	$\frac{D}{4r^{0}}$ 3/2	50(F)08 $51^2(3F)6$	Γ _{3/2} 4Γ	12039,03 15102,52A	-	550,05 17.05Å	-
5d ⁻ (°F)6p	F ⁻ _{3/2}	5d ⁻ (⁻ F)6s	F _{3/2}	15183,53 ^B 17832,68 ^B	1/414,82	17,05*	-
5d ² (³ F)6p	${}^{4}G^{0}{}_{5/2}$	$5d^{2}({}^{3}F)6s$	${}^{4}F_{3/2}$	13663,62 ^A	15278,96 ^a	39,68 ^A	$51(4)^{a}$
4f5d(3F)6s	${}^{4}F^{0}_{3/2}$	$5d^{2}(^{3}F)6s$	${}^{4}F_{3/2}$	34797,58 ^A	21505,66 ^a	6,04 ^A	$12,5(1,5)^{e}$
$5d^{2}(^{3}F)6n$	${}^{4}\mathrm{F}^{0}$	$5d^2(^3F)6s$	4 Eara	18241 95 ^B	17670 10 ^a	5,81 ^B	_
$5d^{2}(^{3}E)6p$	${}^{4}D^{0}$	$5d^{2}(^{3}E)6s$	4 E	10407.67 ^B	10578 44 ^a	_	_
5d(1)0p $5d^{2}(3E)6p$	$4 \mathbf{E}^{0}$	5d(17)08 $5d^2(^3E)6a$	4 _E	15407,07 15107 02 ^A	17228 208	21 66A	
50 (г)ор	Г 5/2	30 (F)0s	F _{5/2}	13197,95	17528,29	21,00	-
45713016	400	- 1 ² (3 -) -	4	1/854,21		4 55 Å	
$4f5d(^{3}G)6s$	G° 5/2	5d ² (³ F)6s	1F5/2	4/308,68	-	4,77	-
4f5d(°F)6s	${}^{4}\text{F}{}^{0}{}_{5/2}$	5d ² (³ F)6s	${}^{4}F_{5/2}$	34704,82 ^A	21497,88ª	6,24 ^A	$21,9(1,0)^{c1}$
						6,20 ^в	$16,27^{c_2}$
							$14,5(1,5)^{e}$
5d ² (³ F)6p	${}^{4}\text{G}^{o}_{7/2}$	5d ² (³ F)6s	${}^{4}F_{5/2}$	12779,83 ^A	15593,94 ^a	44,89 ^A	-
$5d6s(^{3}D)6p$	${}^{4}P^{0}{}_{5/2}$	$5d^{2}(^{3}F)6s$	${}^{4}F_{5/2}$	18128.53 ^B	15146.99 ^a	_	_
$5d^{2}(^{3}F)6n^{2}$	${}^{4}\mathrm{F}^{0}_{7/2}$	$5d^{2}(^{3}F)6s$	${}^{4}F_{5/2}$	18215.32 ^B	17753.30 ^a	_	_
$5d^2(^3F)6n$	${}^{4}G^{0}_{77}$	$5d^{2}(^{3}F)6^{9}$	${}^{4}\mathbf{F}_{5/2}$	15424 06 ^B	15593 94 ^a	_	_
$5d^{2}(^{3}F)6n$	⁴ F ⁰	$5d^2(^3F)6c$	4 5/2	17444 QAB	17073 01 ^a	_	_
$5d^{2}(^{3}E)$	⁴ D ⁰	$5d^{2}(^{3}E)$	4 ¹ 5/2 4 ¹	17777,277	10704 25 ^a	_	_
эц (г)ор	$D_{5/2}$	JULTIOS	F 5/2	20302,92	17174,23	—	-

Tablo 3.3. La I'in ΔE geçiş enerjileri (cm⁻¹) ve üst seviyeleri için τ yarı ömürler (ns)

Tablo 3.3. Devam

Üst Sav	.	A 14 S a		Α.	F		
Ust Sev	Turing	Alt Se	T	<u> </u>	Ľ D'Y	<u> </u>	D''
Konf.	Terim	Konf.	Terim	Bu çalışma MCHE PD	Diger çalışmalar	Bu çalışma	Diger çalışmalar
5 1 ² (³ E)(-	4D0	5 1 ² (³ E)(-	4 _E	10405 CO ^B	10420.208	MCIIITEDI	
5d (F)op	D _{3/2}	50 (F)08	Γ _{5/2}	19495,60	19429,30	-	—
5d6s(³ D)6p	${}^{4}D^{o}{}_{5/2}$	5d ² (³ F)6s	${}^{4}F_{7/2}$	11533,74 ^A	19429,558 12009,09 ^a	196,80 ^A	-
$5d^{2}(^{3}E)6n$	⁴ D ⁰	$5d^2(^3E)6c$	$4\mathbf{F}$	17142 47 ^A	10300 68 ^a	155,74 0.07 ^A	$10.7(1.0)^{c1}$
5а (г)ор	D 5/2	30 (F)08	$\Gamma_{7/2}$	1/142,47 10700 00 ^B	19309,08 19309 724 ^b	9,07 6.13 ^B	9.70^{c2}
5d ² (³ F)6p	${}^{4}F^{o}_{7/2}$	5d ² (³ F)6s	${}^{4}F_{7/2}$	15010,74 ^A 17651 40 ^B	17268,73 ^a	22,23 ^A	_
5d ² (³ F)6p	${}^{4}G^{o}_{9/2}$	5d ² (³ F)6s	${}^{4}F_{7/2}$	13264,69 ^A	15634,76 ^a	32,37 ^A	_
5d ² (³ F)6p	${}^{2}G^{o}_{7/2}$	5d ² (³ F)6s	${}^{4}F_{7/2}$	15715,80 ^A 18257 57 ^B	18168,03 ^a	40,81 ^A	-
4f5d(³ G)6s	${}^{4}G^{o}_{7/2}$	5d ² (³ F)6s	${}^{4}F_{7/2}$	47240,32 ^A	23960,76 ^a	5,06 ^A	$21,6(1,6)^{c1}$
$5d^{2}(^{3}F)6n$	${}^{2}\mathbf{G}^{0}$	$5d^2({}^3F)6s$	${}^{4}\mathbf{F}_{-12}$	16921 47 ^A	18791 27 ^a	49.09 ^A	9,40
$4f5d(^{3}F)6s$	${}^{4}\text{F}^{0}$	$5d^{2}({}^{3}F)6s$	⁴ E ₌₁₂	34549 85 ^A	21885 75 ^a	49,09 5.67 ^A	$23.2(1.5)^{c1}$
4150(1)03	1 7/2	54 (1)05	1 7/2	34349,05	21005,75	5,07 5,40 ^B	$12 40^{c2}$
$5d^{2}(^{3}F)6n$	${}^{2}\mathbf{G}^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathrm{F}_{\pi\pi}$	19579 16 ^B	18791 27 ^a	-	-
$5d^{2}({}^{3}F)6n$	${}^{2}F^{0}_{7/2}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathbf{F}_{7/2}$	16057.36^{B}	17953 34 ^a	_	_
$5d^{2}(^{3}F)6p$	${}^{2}D^{0}z^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathbf{F}_{7/2}$	16946 43 ^B	15884 86 ^a	_	_
$5d^{2}(^{3}F)6p$	${}^{4}F^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathbf{F}_{\pi/2}$	18519 90 ^B	17889 48 ^a	_	_
$5d^{2}(^{3}F)6p$	${}^{4}G^{0}c^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathbf{F}_{7/2}$	$13854 40^{B}$	1445258^{a}	_	_
$5d^{2}(^{3}F)6n$	${}^{4}G^{0}\pi^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathbf{F}_{7/2}$	14860 22 ^B	15109 37 ^a	_	_
$5d^{2}(^{3}F)6n$	${}^{2}F^{0}r^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}F_{\pi}$	14600,22 18671 20 ^B	17477 64 ^a	_	_
$5d^{2}(^{3}F)6p$	${}^{4}D^{0}\pi^{0}$	$5d^{2}(^{3}F)6s$	${}^{4}\mathbf{F}_{\pi}$	20413 69 ^B	19808 73 ^a	_	_
$5d6s(^{3}D)6n$	${}^{4}\mathbf{F}^{0}$	$5d^{2}({}^{3}F)6s$	${}^{4}\mathbf{F}_{0}$	11717 56 ^A	-	1974 83 ^A	_
$5d6s(^{3}D)6p$	${}^{4}D^{0}$	$5d^{2}(^{3}F)6s$	⁴ E	11390 28 ^A	11977 67 ^a	270 92 ^A	_
$5d^{2}(^{3}F)6n$	${}^{4}D^{0}\pi^{0}$	$5d^{2}({}^{3}F)6s$	${}^{4}\mathbf{F}_{0}$	17052.86 ^A	19181.70^{a}	9 20 ^A	$161(01)^{c1}$
5 u (1)0p	$D_{1/2}$	54 (1)05	1 9/2	19696 32 ^B	19181 688 ^b	6.14 ^B	0.01^{c2}
$5d^2(^3F)6n$	$4 \mathbf{F}^{0}$	$5d^2(^3F)6c$	$4\mathbf{F}$	15147 77 ^A	17262 45 ^a	10.18 ^A	<i>)</i> , <i>)</i> 1
5u (17)0p	1 9/2	5u (17)0s	1'9/2	17802 53 ^B	17202,45 17262 428 ^b	19,10	
$5d^2(^3F)6n$	${}^{4}C^{0}$	$5d^2(^3F)6c$	$4\mathbf{F}$	13538.00 ^A	17202,420 15005 70 ^a	36 56 ^A	_
5u (17)0p	U 11/2	5u (17)0s	1'9/2	15558,00	15995,79	50,50	
4 f5 d(³ U)6a	4 11 0	$5d^{2}(^{3}E)6a$	4 E	22024 40 ^A	13993,808	2050 77A	_
4130(-11)08	$4 \Gamma^{0} 11/2$	5d(F)0s $5d^2(^3F)6a$	Г _{9/2} 4	24666 75 ^A	- 21975 66 ^a	2030,77 7.11 ^A	$-22.2(1.5)^{cl}$
413d(F)08	F 9/2	30 (F)08	Г 9/2	54000,75	218/3,00	7,11 6 78 ^B	23,3(1,3) 12 78 ^{c2}
$4f5d(^{3}C)6a$	$4C^{0}$	$5d^{2}(^{3}E)6a$	4 E	47751 21A	24621 40 ^a	0,78 1.26 ^A	12,78
4130(0)08	U 11/2	5u (F)0s	F _{9/2}	47731,31 50411.27 ^B	24021,49	1,50	_
$455 \frac{1}{3}$	4°	$5 1^{2} (^{3}\Gamma) (-$	4 _E	30411,27 47001.11 ^A	24021,008	10.02 ^A	
4150(G)08	$4C^{9/2}$	50 (F)08 $5 \frac{12}{3} (3F) (-100)$	Г _{9/2} 4Б	4/091,11	-	10,95	—
50 (°F)0p	4 C ⁰	50(F)08	Г _{9/2} 4г	15200,00	15007,75	—	—
$5d^{-}(^{2}F)6p$	$F_{7/2}^{*}$	$5d^{-}(^{-}F)6s$	4F9/2	16934,12 ⁻	$16641, 70^{\circ}$	—	_
5d ⁻ (°F)6p	$G^{*}_{7/2}$	$5d^{-}(^{-}F)6s$	4F 4F	1/640,21 ⁻	1/541,00"	_	-
$5d^{-}(^{2}F)6p$	${}^{2}G^{*}_{9/2}$	$5d^{-}(^{-}F)6s$ $5d^{2}(^{3}P)6s$	² F _{9/2}	18861,/9 ⁻	18164,24"	—	_
$5d^{2}(^{3}P)6p$	$^{2}D^{\circ}_{3/2}$	$5d^{2}(^{3}P)6s$	${}^{2}P_{1/2}$	16811,57 ²	15/18,41"	_	-
5d ² (³ P)6p	${}^{2}S_{1/2}^{0}$	$5d^{2}(^{3}P)6s$	${}^{-}P_{1/2}$	14496,82	14216,69"	- 20.07Å	_
5d ² (³ P)6p	$^{1}D_{1/2}^{0}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{1/2}$	14633,65 ¹¹	16297,02	20,97	-
5d ² (³ P)6p	${}^{2}S_{1/2}^{\circ}$	$5d^{2}(^{3}P)6s$	⁴ P _{1/2}	16616,14 ⁵	16029,54"	-	-
5d ² (³ P)6p	S ^{3/2}	$5d^{2}(^{3}P)6s$	⁴ P _{1/2}	17493,57 ²	17407,91	_	_
5d ² (³ P)6p	⁴ P ^o _{1/2}	$5d^{2}(^{3}P)6s$	⁻ P _{1/2}	19519,78 ^b	18385,54"	_	-
5d ² (³ P)6p	$^{4}P^{0}_{3/2}$	$5d^{2}(^{3}P)6s$	⁴ P _{1/2}	19578,51 ^B	18411,66 ^{°°}	_	_
4f5d(°D)6s	$^{1}D^{0}_{1/2}$	$5d^{2}(^{3}P)6s$	⁴ P _{1/2}	4///1,8/2	21662,11"	-	_
5d6s(°D)6p	${}^{4}P_{1/2}^{\circ}$	$5d^{2}(^{3}P)6s$	${}^{-}P_{3/2}$	8466,25	-	733,43	_
5d ² (³ P)6p	${}^{4}D_{3/2}^{0}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{3/2}$	14585,88 ^A	16214,30 ^a	20,74 ^A	_
5d ² (°P)6p	$^{7}D_{5/2}^{\circ}$	$5d^{2}(^{9}P)6s$	⁻ P _{3/2}	15011,66	16555,60ª	17,37	-
4f5d('D)6s	⁴ D ^o _{1/2}	$5d^{2}(^{3}P)6s$	[¬] P _{3/2}	45425,45 ^A	-	1,22	-
4f5d(°D)6s	${}^{4}D_{3/2}^{o}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{3/2}$	45411,24 ^A	_	1,21	_
4f5d(°D)6s	$^{4}D^{o}_{5/2}$	5d ² (°P)6s	${}^{4}P_{3/2}$	45960,70 ^A	22011,71 ^a	1,01 ^A	-
5d²(°P)6p	${}^{4}P^{0}{}_{1/2}$	5d ² (³ P)6s	${}^{4}P_{3/2}$	16432,99 ^A	18126,44 ^a	15,48 ^A	-
2.2	4 .	2.2	4	19289,50 ^в			
5d ² (°P)6p	${}^{4}D^{o}_{1/2}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{3/2}$	17175,55 ^в	16037,92 ^a	-	-
5d ² (°P)6p	${}^{4}S^{o}_{3/2}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{3/2}$	17263,29 ^в	17148,81 ^a	-	-
5d²(°P)6p	⁴ P ⁰ _{5/2}	5d ² (°P)6s	^ч Р _{3/2}	19379,71 ^в	18848,44 ^a	-	_

Tablo 3.3. Devam

Üst Sev	viye	Alt Se	viye	Δ	Е	1	;
Konf.	Terim	Konf.	Terim	Bu çalışma	Diğer	Bu çalışma	Diğer
				MCHF+BP	çalışmalar	MCHF+BP	- çalışmalar
5d ² (³ P)6p	${}^{4}S^{o}_{3/2}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{5/2}$	17158,55 ^B	16959,33 ^a	-	_
$5d^{2}(^{3}P)6p$	${}^{2}D_{3/2}^{o}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{5/2}$	18595,86 ^B	17082,68 ^a	-	-
$5d^{2}(^{3}P)6p$	${}^{4}D_{7/2}^{o}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{5/2}$	15687,01 ^A	17403,48 ^a	17,30 ^A	$21,1(0,9)^{c1}$
							$28,66^{c^2}$
$5d^{2}(^{3}P)6p$	${}^{4}P^{o}_{3/2}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{5/2}$	16615,39 ^A	17963,08 ^a	14,66 ^A	_
$5d^{2}(^{3}P)6p$	${}^{4}P^{o}_{5/2}$	$5d^{2}(^{3}P)6s$	${}^{4}P_{5/2}$	16686,85 ^A	18658,96 ^a	12,69 ^A	_
				19274,96 ^B			
$5d^{2}(^{3}P)6p$	${}^{2}P^{0}{}_{1/2}$	$5d^{2}(^{1}D)6s$	${}^{2}D_{3/2}$	17187,55 ^A	18779,24 ^a	13,73 ^A	_
$5d^{2}(^{3}F)6p$	${}^{4}\mathrm{F}^{0}_{3/2}$	$5d^{2}(^{1}D)6s$	$^{2}D_{3/2}$	10372,54 ^B	11636,99 ^a	_	_
$5d^{2}(^{3}P)6p$	${}^{2}P_{3/2}^{0}$	$5d^{2}(^{1}D)6s$	$^{2}D_{3/2}$	19999,59 ^B	19303,02 ^a	_	_
$4f5d(^{3}H)6s$	${}^{4}\text{H}^{0}_{7/2}$	$5d^{2}(^{1}G)6s$	$^{2}G_{7/2}$	24802,83 ^A	_	341,18 ^A	_
$5d^{2}(^{1}G)6p$	${}^{2}G^{o}_{7/2}$	$5d^{2}(^{1}G)6s$	${}^{2}G_{7/2}$	16478,99 ^B	17171,54 ^a	_	_
$5d^{2}(^{1}G)6p$	${}^{2}G^{0}_{9/2}$	$5d^{2}(^{1}G)6s$	$^{2}G_{9/2}$	16454,97 ^B	17699,75 ^a	_	_
$4f5d(^{3}H)6s$	${}^{4}\text{H}^{0}_{9/2}$	$5d^{2}(^{1}G)6s$	$^{2}G_{9/2}$	25048,04 ^A	_	375,50 ^A	_

^aAtomic Spectral Line database from R.L.Kurucz's CD-ROM 23 [102], ^bNIST Atomic Spectra Database [63], ^{c1,c2}Biémont ve çalışma arkadaşları [80], ^dBulos ve çalışma arkadaşları [75], ^ePenkin ve çalışma arkadaşları [76]

3.1.3. La I'in elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

La I'in Tablo 3.1'de verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında yapılan elektrik dipol geçişleri için λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve A_{ki} (sn⁻¹) geçiş olasılıkları MCHF program paketi [412] ile hesaplandı. Bu çalışma sonuçları [105] kaynağından da bulunabilir. Sırasıyla A, B, C ve D konfigürasyon setleriyle yapılan hesaplamalarda 114709, 45645, 24146 ve 34152 tane mümkün E1 geçişi elde edildi. Tablo 3.4 ve Ekler kısmındaki Tablo A.1'de bu geçişler için elde edilen veriler çok fazla olduğu için sadece literatürde mevcut geçişlere karşılık gelen sonuçlar sunulmaktadır. Ağırlıklı salınıcı şiddetleri, logaritmik ağırlıklı salınıcı şiddetine çevrildi. Tablolarda sadece tek pariteli seviyeler "^o" indisiyle belirtildi ve geçiş olasılıkları için 10'un kuvvetleri parantez içinde yazıldı.

MCHF+BP ile elde edilen $5d6s^2-5d^26p$, $5d6s^2-5d6s6p$, $5d6s^2-4f5d6s$, $5d^26s-5d^26p$, $5d^26s-5d^26s$

çoğunlukla A'dan daha iyidir. Bazı J değerleri hariç $5d6s^2-5d6s6p$ geçişlerinin, özellikle D konfigürasyon setiyle elde edilen sonuçları daha iyidir. $5d6s^2-4f5d6s$ geçişlerinde, log(gf) ve A_{ki} için biraz uyum varken, her dalga boyu karşılaştırma değerinin hemen hemen iki katıdır. 4f alt tabakalı konfigürasyonları içeren D konfigürasyon seti log(gf) ve A_{ki} değerlerini daha iyi vermektedir. $5d^26s-5d^26p$ geçişlerinde, B ve C konfigürasyon setlerinin dalga boyları ve log(gf) için iyi sonuçlar vermektedir. Fakat A_{ki} sonuçlarında A konfigürasyon seti kullanılarak elde edilen sonuçlar iyidir. A konfigürasyon seti kullanılarak elde edilen $5d^26s-5d6s6p$ geçişleri, bazı geçişler hariç karşılaştırma değerleriyle uyum içindedir. $5d^26s-4f5d6s$ geçişlerinde bazı J değerleri için log(gf) ve A_{ki} değerleri iyi olmasına rağmen elde edilen dalga boyu sonuçları iyi değildir. İkiden fazla dolu olan 4f alt tabakasını içeren konfigürasyon setlerinin alınmaması bazı uyumsuzlukların nedeni olarak açıklanabilir.

Relativistik Hartree-Fock (HFR) yöntemiyle, La I'in [Xe] özü dışında 5d6s², 5d²6s, $5d^3$ ve 4f6s6p çift pariteli ve 5d6s6p, 4f6s², 6s²6p, 6s²7p, 6s²8p, 5d²6p ve 4f5d6s tek pariteli konfigürasyonları arasında 3796 tane mümkün elektrik dipol geçişleri hesaplandı. 5d6s²-5d²6p, 5d6s²-5d6s6p, 5d6s²-4f5d6s, 5d²6s-5d²6p, 5d²6s-5d6s6p ve 5d²6s-4f5d6s geçişlerinin sonuçları Tablo 3.4 ve daha geniş olarak Ekler kısımdaki Tablo A.1'de sunulmaktadır. En küçük kareler yöntemiyle enerjileri deneysel seviyelere uydurma yaparak iyileştirildi ve elde edilen uydurma parametreleriyle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. Diğer çalışmalarla karşılaştırıldığında elde edilen sonuçların bazı geçişler için dalga boyları uyumlu olmasına rağmen logaritmik ağırlıklı salınıcı şiddetleri ve geçiş olasılıklarının uyumlu olmadığı görülmektedir. Özellikle MCHF+BP yönteminde fazla uyumlu olmayan $5d6s^2-4f5d6s$ ve $5d^26s-4f5d6s$ geçişlerinin dalga boyları için HFR vöntemiyle elde edilen sonuçları uyumlu olmuştur. Bazı geçişlerin log(gf) ve Aki değerleri için karşılaştırma değerleriyle uyum az olmasına rağmen MCHF+BP ile elde edilen sonuçlarla uyumludur. Bazı uyumsuzlukların iyileştirilmesi için öz ve elektronları etkilesmenin ele değerlik arasındaki karşılıklı alındığı konfigürasyonlarda hesaba katılmalıdır.

(Geçişler		λ			log(gf)		$\mathbf{A}_{\mathbf{k}\mathbf{i}}$	
Alt seviye	Üst seviye	Bu çalı	şma	Diğer	Bu çal	ışma	Diğer	Bu çalışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP HFR	çalışmalar
5d6s ² ² D _{3/2}	$5d^{2}(^{3}P)6p^{4}P^{0}_{1/2}$	3851,32 ^A	4546,608	3902,567 ^a	-2,177 ^A	-4,260	$-1,400^{a}$	$1,4962(6)^{A}$ 0,88(4)	8,713(6) ^a
5/2	× / 1 1/2	$3367,58^{B}$,	,	$-2,136^{B}$,	,	2,1473(6) ^B	/ //
		3654,34 ^C			-1,249 ^C			$14,068(6)^{\rm C}$	
		3966,54 ^D			$-2,118^{D}$			1,6158(6) ^D	
5d6s ² ² D _{3/2}	$5d^{2}(^{3}P)6p {}^{4}P^{o}_{3/2}$	3842,78 ^A	_	3898,592 ^a	-1,017 ^A	_	-1,240 ^a	$1,0852(7)^{A}$ –	$0,6310(7)^{a}$
		3360,94 ^B			$-0,898^{B}$			$1,8677(7)^{B}$	
		3634,93 ^C			-1,028 ^C			$1,1816(7)^{C}$	
		3957,32 ^D			$-1,272^{D}$			$0,5692(7)^{D}$	
$5d6s^2 {}^2D_{3/2}$	$5d^{2}(^{3}P)6p {}^{4}D^{o}{}_{5/2}$	4074,43 ^A	4065,03	4157,513 ^a	-1,437 ^A	-2,095	-1,450 ^a	$2,4465(6)^{A}$ 0,54(6)	$2,281(6)^{a}$
		3527,94 ^B			-0,792 ^B			14,393(6) ^B	
		4190,91 ^D			-0,673 ^D			13,428(6) ^D	
5d6s ² ² D _{3/2}	$5d^{2}(^{3}P)6p^{2}D^{0}_{3/2}$	3940,97 ^A	3612,86	4037,204 ^a	-0,440 ^A	-1,386	-0,860 ^a	$3,9002(7)^{A}$ 0,52(7)	$1,411(7)^{a}$
		3435,74 ^B			-0,414 ^B			5,4398(7) ^B	
		3602,05 ^C			-0,457 ^C			$4,4880(7)^{C}$	
		4061,44 ^D			-0,317 ^D			4,8644(7) ^D	
5d6s ² ² D _{3/2}	$5d^{2}(^{3}P)6p^{2}P^{o}_{3/2}$	3627,14 ^A	3915,89	3672,012 ^a	-1,005 ^A	-1,856	-1,530 ^a	$1,2509(7)^{A}$ 0,52(7)	$0,3648(7)^{a}$
		3195,02 ^B			-0,923 ^B			1,9374(7) ^B	
		3611,67 ^C			-1,196 ^C			0,8133(7) ^C	
		3729,31 ^D			-0,897 ^D			$1,5182(7)^{D}$	
5d6s ² ² D _{3/2}	$5d^{2}(^{3}F)6p {}^{4}F^{0}_{3/2}$	5573,13 ^A	4645,77	4977,942 ^a	-0,803 ^A	-1,281	-1,910 ^a	$8,4535(6)^{A}$ 4,04(6)	$0,8274(6)^{a}$
		4614,97 ^B			$-0,750^{B}$			13,906(6) ^B	
		4768,14 ^C			-1,003 ^C			$7,2862(6)^{C}_{-}$	
		5819,13 ^D			-1,187 ^D			3,1977(6) ^D	
5d6s ² ² D _{3/2}	$5d^{2}(^{3}F)6p^{2}D^{0}_{3/2}$	5938,76 ^A	4364,29	5501,325 ^a	-0,209 ^A	-1,871	$-0,850^{a}$	$2,9187(7)^{A}$ 0,12(7)	$0,7778(7)^{a}$
		5090,22 ^C		5501,34 ^b	-0,886 ^C			$0,8360(7)^{\rm C}_{-}$	$5,29(7)^{b}$
		6216,81 ^D			-0,338 ^D			1,9798(7) ^D	
5d6s ² ² D _{3/2}	$5d6s(^{3}D)6p ^{2}P^{0}_{1/2}$	2964,39 ^A	5433,12	3927,556 ^a	-0,051 ^A	-0,042	-0,750 ^a	$3,3758(8)^{A}$ 1,03(8)	$0,3842(8)^{a}$
		4816,86 ^B			-2,231 ^B			8,4421(5) ^B	
		6143,83 ^D			-2,815 ^D			$1,3528(5)^{D}$	
5d6s ² ² D _{3/2}	$5d6s(^{3}D)6p ^{2}D_{3/2}^{o}$	3262,38 ^A	6436,67	6650,793 ^a	0,176 ^A	-0,035	-1,900 ^a	$2,3495(8)^{\text{A}}$ 3,71(7)	$0,4743(6)^{a}$
		2908,43 ^B			$0,163^{B}$			$2,8698(8)^{B}$	
		3344,62 ^D			0,376 ^D			3,5379(8) ^D	

Tablo 3.4. La I'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş olasılıkları (sn⁻¹)*

(Jeçişler		λ			log(gf)		A _{ki}		
Alt seviye	Üst seviye	Bu çalı	ışma	Diğer	Bu çal	ışma	Diğer	Bu çalı	şma 🛄	Diğer
-	•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ² ² D _{3/2}	5d6s(³ D)6p ⁴ D ^o _{3/2}	6748,61 ^A	6759,09	6796,701 ^a	-1,680 ^A	-0,140	$-2,940^{a}$	7,6373(5) ^A	2,64(7)	$0,4142(5)^{a}$
		5530,65 ^B			-3,908 ^B			$0,6732(4)^{B}$		
		4894,60 ^C			-1,737 ^C			$12,752(5)^{C}$		
		$7110,15^{D}$			-1,745 ^D			$5,9295(5)^{D}$		
$5d6s^2 {}^2D_{3/2}$	$5d6s(^{3}D)6p ^{4}P^{o}_{5/2}$	5369,28 ^A	5649,55	5505,988 ^a	-1,370 ^A	-1,259	$-1,810^{a}$	1,6438(6) ^A	1,92(6)	$0,5676(6)^{a}$
		4473,79 ^B			-1,303 ^B			$2,7597(6)^{B}$		
		5596,45 ^D			-1,551 ^D			$0,9973(6)^{D}$		
$5d6s^2 {}^2D_{3/2}$	$5d6s(^{1}D)6p ^{2}P^{0}_{1/2}$	3448,42 ^A	4868,97	4949,756 ^a	-0,392 ^A	-0,270	$-0,850^{a}$	1,1359(8) ^A	0,75(8)	$0,1922(8)^{a}$
		3055,65 ^B		4949,77 ^b	$-0,452^{B}$			$1,2604(8)^{B}$		$0,87(8)^{b}$
		3090,11 ^C			$-1,863^{\rm C}$			$4,7810(6)^{C}$		
		3540,80 ^D			$-0,417^{D}$			$1,0190(8)^{D}$		
5d6s ² ² D _{3/2}	5d6s(¹ D)6p ² P ^o _{3/2}	3427,20 ^A	4785,08	4993,861 ^a	-0,481 ^A	-1,013	-1,610 ^a	$4,6862(7)^{A}$	0,71(7)	$0,1640(7)^{a}$
		3039,00 ^B			-0,503 ^B			$5,6618(7)^{B}$		
		3128,40 ^C			-2,923 ^C			$1,9036(5)^{C}$		
		3518,46 ^D			$-0,452^{D}$			4,7520(7) ^D		
5d6s ² ² D _{3/2}	$4f5d(^{3}F)6s {}^{4}F^{0}_{5/2}$	2640,92 ^A	4218,65	4079,167 ^a	-3,556 ^A	-2,860	$-0,940^{a}$	$4,4312(4)^{A}$	0,86(5)	$7,666(6)^{a}$
		2404,86 ^B			-1,636 ^B			$4,4380(6)^{B}$		
		2695,55 ^D			-1,369 ^D			6,5310(6) ^D		
5d6s ² ² D _{5/2}	$5d^{2}(^{3}P)6p {}^{4}P^{0}{}_{3/2}$	4006,97 ^A	4716,79	4065,575 ^a	-3,971 ^A	-3,013	-1,110 ^a	$1,1160(4)^{A}$	0,73(5)	$7,827(6)^{a}$
		3487,25 ^B			-3,512 ^B			$4,2184(4)^{B}$		
		3783,13 ^C			-1,784 ^C			1,9160(6) ^C		
5d6s ² ² D _{5/2}	$5d^{2}(^{3}P)6p ^{4}P^{o}_{5/2}$	3995,53 ^A	4645,27	3953,686 ^a	-1,337 ^A	-2,752	-1,240 ^a	$3,2026(6)^{A}_{-}$	0,91(5)	$4,090(6)^{a}$
		3483,42 ^B			$-1,443^{B}$			$3,2981(6)^{B}$		
		3750,38 ^C			-0,779 ^C			$13,132(6)^{C}_{-}$		
		4170,68 ^D			-2,053 ^D			$0,5655(6)^{D}$		
5d6s ² ² D _{5/2}	$5d^{2}(^{3}F)6p ^{4}F^{o}_{3/2}$	5925,25 ^A	4884,71	5253,448 ^a	-3,212 ^A	-2,611	$-0,820^{a}$	$2,9129(4)^{A}$	0,17(6)	$9,140(6)^{a}$
		4856,51 ^B			$-3,265^{B}_{-}$			$3,8368(4)^{\text{B}}_{-}$		
		6304,96 ^D			-2,873 ^D			5,6198(4) ^D		
5d6s ² ² D _{5/2}	$5d^{2}(^{3}F)6p {}^{4}F^{o}_{5/2}$	5784,93 ^A	4853,06	5183,907 ^a	-0,570 ^A	-2,395	-1,380 ^a	8,9193(6) ^A	0,19(6)	$1,724(6)^{a}$
		4761,83 ^B			-0,529 ^B			$14,501(6)^{\text{B}}_{-}$		
		4930,44 ^C			-0,511 ^C			14,094(6) ^C _		
		6146,31 ^D			$-0,860^{D}$			$4,0640(6)^{D}$		

Tablo 3.4. Devam

(Geçişler		λ			log(gf)			A _{ki}	
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	lışma	Diğer	Bu çalı	ışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ² ² D _{5/2}	$5d^{2}(^{3}P)6p^{2}D^{o}_{5/2}$	4013,98 ^A	3775,07	4137,041 ^a	-0,147 ^A	-1,084	$-0,880^{a}$	4,9161(7) ^A	0,64(7)	$0,8558(7)^{a}$
		3523,72 ^B			$-0,060^{B}$			$7,7952(7)^{B}$		
		$4228,58^{D}$			$-0,072^{D}$			$5,2587(7)^{D}$		
$5d6s^2 {}^2D_{5/2}$	$5d^{2}(^{3}F)6p^{2}D^{0}_{5/2}$	5897,95 ^A	4574,49	5455,141 ^a	-0,357 ^A	-1,646	$-0,690^{a}$	$1,4038(7)^{A}$	0,12(7)	$0,7623(7)^{a}$
5/2	() 1 5/2	$4841,14^{B}$,	5455,15 ^b	$-0,292^{B}$,	,	$2,4179(7)^{B}$, , ,	/ (//
		4985.13 ^C		, -	-0.298 ^C			$2.2492(7)^{C}$		
		6279.09^{D}			-0.438 ^D			$1.0289(7)^{D}$		
$5d6s^{2} {}^{2}D_{5/2}$	$5d^{2}(^{3}F)6p^{4}G^{0}_{5/2}$	6511.86 ^A	5900.02	5917.636 ^a	-0.812^{A}	-2.199	-1.800^{a}	$4.0241(6)^{A}$	0.20(6)	$0.5028(6)^{a}$
		5693.67 ^B			-1.090 ^B	_,,	-,	$2.7856(6)^{B}$	•,=•(•)	0,000_0(0)
		5997.74 ^C			-1.358 ^C			$1.3557(6)^{\rm C}$		
		7792.42^{D}			-1.682^{D}			$0.3804(6)^{D}$		
$5d6s^2 {}^2D_{5/2}$	$5d^{2}(^{3}F)6p^{2}F^{0}c_{2}$	5295.75 ^A	5257.21	6325.915 ^a	-3.536 ^A	-3.027	-1.490^{a}	$0.1151(5)^{A}$	0.38(5)	$8.984(5)^{a}$
<i>caco 2</i> _{3/2}	00 (1)0p 1 3/2	5665 36 ^D	0207,21	0020,710	-2.661 ^D	0,027	1,120	$0.7549(5)^{D}$	0,00(0)	0,901(0)
$5d6s^2 {}^2D_{52}$	$5d^{2}(^{1}D)6n^{2}D^{0}c^{2}$	3793 83 ^A	4835 46	3641 526 ^a	-1 943 ^A	-1 226	-0.380 ^a	8,8000(5) ^A	0.28(7)	$3493(7)^{a}$
5405 25/2	54 (D)0p D 3/2	3326.22 ^B	1055,10	5011,520	-1.429^{B}	1,220	0,000	$0.3741(7)^{B}$	0,20(7)	5,155(7)
		3293.05 ^C			-0.553 ^C			$2.8698(7)^{C}$		
		3947 32 ^D			-1.666 ^D			$0.1538(7)^{D}$		
$5d6s^2 {}^2D_{cr}$	$5d^{2}(^{3}F)6n^{4}D^{0}\pi^{2}$	4896 49 ^A	4941 01	4493 099 ^a	-2.127^{A}	-2.288	-1 440 ^a	$0.2593(6)^{A}$	0.18(6)	$1.499(6)^{a}$
5405 25/2		4145 15 ^B	1911,01	1193,099	-2.037^{B}	2,200	1,110	$0.4451(6)^{B}$	0,10(0)	1,199(0)
		4316 69 ^C			-2,037 -2.249 ^C			$0,772(6)^{C}$		
		5156 20 ^D			-2,24) -2,851 ^D			$0,2322(0)^{D}$		
$5d6s^{2} D_{r}$	$5d^2(^3F)6p^2G^{o}$	5444 77 ^A	1627.86	4850 797 ^a	-2,001 -2,585 ^A	-2 181	-1.370^{a}	$7,3126(4)^{A}$	0.26(6)	$1.511(6)^{a}$
5005 D _{5/2}	54 (17)0p C 7/2	4531 48 ^B	4027,80	4050,777	-2,385 -2,483 ^B	-2,101	-1,570	$(1333(6)^{B})^{B}$	0,20(0)	1,511(0)
		4501.40			-2,405			$4.8210(4)^{C}$		
		5767.87 ^D			-2,914 -1.803 ^D			$0.3038(6)^{D}$		
$5d6s^{2}$	$5d^2(^3E)6n^2E^0$	6200.02 ^A	5130.08	6455 078 ^a	-1,803 0.170 ^A	1 631	1 140 ^a	$1,3330(0)^{A}$	0.74(6)	$1.448(6)^{a}$
$5008 D_{5/2}$	5u (19)0p 1° 7/2	5058 05 ^B	5150,98	0455,978	-0,179 0.085 ^B	-1,051	-1,140	1,4347(7) 2,6761(7) ^B	0,74(0)	1,448(0)
		5354 77 ^C			-0,085 0.137 ^C			2,0701(7) 2,1221(7) ^C		
		5554,77			-0,137 0.487 ^D			2,1221(7) 0.6122(7) ^D		
$5d6a^{2}$ ² D	$5d6a(^{3}D)6p ^{4}D^{0}$	5605 25 ^A	6006 87	5845 024ª	-0,407	1 101	2 080ª	0,0135(7) 8 2126(6) ^A	2.02(6)	0 2705(6)a
5008 D _{5/2}	Juos (D)op r 5/2	4700 41 ^B	0000,07	3843,034	-0,014 0.572 ^B	-1,101	-2,000	3,3130(0) 13,450(6) ^B	2,03(0)	0,2705(0)
		4700,41 4404.68 ^C			-0,372 2,458 ^C			13,439(0)		
		4404,08			-2,430 0.824 ^D			0,1994(0) 4,5610(6) ^D		
		0044,37			-0,824-			4,3019(6)		

Tablo 3.4. Devam

^aAtomic Spectral Line database from R.L.Kurucz's CD-ROM 23 [102], ^bNIST Periodictable [62], *Tablonun daha geniş hali Tablo A.1'de verilmektedir.

3.1.4. ¹³⁹La I'in bazı düşük hal seviyelerinin aşırı ince yapısı

Lantanın ¹³⁸La ve ¹³⁹La olan iki doğal izotopu vardır. ¹³⁹La izotopunun bolluğu %99,910, çekirdek spini 7/2, manyetik dipol momenti $\mu_I = 2,7830455(9)\mu_N$ ve elektrik kuadrupol momenti Q = 0,20(1) barn'dır [97].

La I atomunun [Xe] özü dışında çift ve tek pariteli seviyeleri için Tablo 3.1'de verilen A konfigürasyon setindeki konfigürasyonlar seçilerek MCHF program paketiyle 5d6s², 5d²6s, 5d³, 5d²7s, 5d6s7s, 5d6p², 4f²5d, 4f6s6p, 5d6s6p, 5d²6p, 4f5d6s ve 4f5d² seviyelerinin *A* manyetik dipol ve *B* elektrik kuadrupol etkileşim terimleri hesaplandı [106]. Tablo 3.5'te 5d6s², 5d²6s, 5d³, 5d6s6p, 5d²6p ve 4f5d6s seviyelerinin elde edilen *A* manyetik dipol ve *B* elektrik kuadrupol aşırı ince yapı sabitleri diğer sonuçlarla karşılaştırılmaktadır.

La l'in aşırı ince yapı hesaplamaları geçmişte lazer-indirgenmiş floresans yöntemi, atomik-demet manyetik rezonans ve lazer-rf çift-rezonans tekniği, yüksekçözünürlüklü lazer optogalvanik, lazer-indirgenmiş rezonans floresans ve Dopplerindirgenmiş soğurma spektroskopisi gibi deneysel yöntemlerle çalışılmıştır. Sadece çok konfigürasyonlu Dirac-Fock (MCDF) yöntemiyle teorik hesap sonuçları mevcuttur. Bu sonuçlarla karşılaştırıldığında bazı seviyeler hariç uyumun iyi olduğu görülmektedir. $5d^2({}^{3}F)6s {}^{2}F_{7/2}$ ve $5d^{3} {}^{4}F_{7/2,9/2}$ seviyeleri için deneysel sonuçlarla uyum az olmasına rağmen Childs ve Nielsen tarafından yapılan MCDF hesaplarıyla [88] uyumludur. Tek pariteli seviyeler incelendiğinde, 5d6s(¹D)6p ²P^o_{1/2,3/2}, 5d²(³F)6p $^{4,2}D^{o}_{7/2,5/2}$, $5d^{2}(^{3}P)6p \ ^{4}S^{o}_{3/2}$, $^{4}P^{o}_{1/2}$, $4f5d(^{1}G)6s \ ^{2}G^{o}_{7/2}$ ve $4f5d(^{1}H)6s \ ^{2}H^{o}_{9/2}$ için deneysel verilerle uyumlu olmadığı görülmektedir. Az uyumun sebebinin öz-değerlik ve öz-öz karşılıklı içeren elektronları arasındaki etkileşmeleri konfigürasvonların, konfigürasyon setinde alınmamış olmasından kaynaklandığı düşünülmektedir. Ağır atomların spektrumunda, elektronlar arasındaki karşılıklı etkileşme ve relativistik etkilerinin önemli olduğu bilinmektedir. Lantan atomunun karmaşık yapısı ve mevcut bilgisayar kısıtlamalarından dolayı MCHF yönteminde bu etkileri dikkate almak oldukça zor olmaktadır.

Seviye	eler		HFS sabitleri				
			A			В	
Konf.	Terim	Bu çalışma	Diğer çalış	malar	Bu çalışma	Diğer ça	lışmalar
		MCHF+BP	Deneysel	MCDF	MCHF+BP	Deneysel	MCDF
Cift parite	icin:						
5d6s ²	² D _{3/2}	143,27	$141,1959^{a}$ $147(6)^{e}$	111,23 ^a	27,57	44,781 ^a	29,59 ^a
	${}^{2}D_{5/2}$	184,10	182,1706 ^a	235,64 ^a	37,57	54,213 ^a	32,21 ^a
			210(5) ^c 183(5) ^g				
5d ² (³ F)6s	${}^{4}F_{3/2}$	-322,87	-480,292 ^a -480,312 ^b -480,66(28) ^c -480(6) ^e -479(6) ^g	-398,55ª	11,66	$\begin{array}{c} 15,\!188^a \\ 15,\!082^b \\ 16,\!7(2,\!1)^c \\ 14,\!2{\pm}0,\!2^h \end{array}$	14,84 ^a
	${}^{4}F_{5/2}$	246,44	-480,224(8) ^h 300,563 ^a 300,56 ^b 300,58(18) ^c 300(5) ^{e,g}	250,19 ^a	11,62	$10,873^{a} \\ 10,87^{b} \\ 11,3(2,8)^{c} \\ 14,0\pm0,3^{h}$	11,41 ^a
	${}^{4}F_{7/2}$	379,86	300,631(8) ⁿ 462,868 ^a 462,87 ^b 463,25(32) ^c 459(8) ^e	392,78 ^a	16,08	$17,925^{a}$ $17,93^{b}$ $23,3(5,9)^{c}$ $19,3+0,2^{b}$	15,45 ^a
	⁴ F _{9/2}	410,92	459(4) ^g 462,889(7) ^h 489,534 ^a 489,534 ^b 489,71(22) ^c 495(4) ^e	451,32 ^a	24,22	32,180 ^a 32,180 ^b 32,6(6,1) ^c 31,9±0,2 ^h	26,17 ^a
5d ² (³ P)6s	${}^{4}P_{1/2}$	2137,07	$489,533(2)^{n}$ 2460,161 ^a 2460,172(70) ^h	1913,46 ^a	0,00	0^{a}	0^{a}
	${}^{4}P_{3/2}$	822,32	929,618 ^a 936(6) ^e	844,26 ^a	23,27	37,221 ^a 37,2±2,5 ^h	28,58ª
	${}^{4}P_{5/2}$	604,59	929,6 \pm 0,2 ⁿ 802,172 ^a 810(5) ^{e,g}	731,87 ^a	-17,17	$-34,186^{a}$ -40 ± 8^{h}	-36,09 ^a
5d ² (³ F)6s	${}^{2}F_{5/2}$	209,15	$801,9\pm0,5$ $304,372^{a}$ $303(5)^{g}$ $204,281(4)^{h}$	271,92 ^a	21,26	28,091 ^a 27,8±0,1 ^h	20,04 ^a
	${}^{2}F_{7/2}$	-11,01	$-197,064^{a}$ $-197(4)^{e,g}$ $107,068(7)^{h}$	-12,80 ^a	27,46	$\begin{array}{c} 40,\!754^a \\ 41,\!4{\pm}0,\!2^h \end{array}$	29,02 ^a
5d ² (¹ G)6s	$^{2}G_{7/2}$	-98,07	$-292,267^{a}$ $-300(4)^{e}$	-178,47 ^a	79,38	67,537 ^a	76,66 ^a
$5d^{2}(^{1}S)6s$	${}^{2}G_{9/2}$ ${}^{2}S_{1/2}$	333,93 2543.29	559,812 ^a	431,58 ^a -	70,67 0.00	202,638 ^a	85,78 ^a -
5d ³	${}^{4}F_{3/2}$ ${}^{4}F_{5/2}$ ${}^{4}F_{5/2}$	109,78 182,90	445,086 ^a 97,510 ^a	176,15 ^a 105,89 ^a	-12,02 -14,69	-16,068 ^a -16,521 ^a	$-12,02^{a}$ $-12,91^{a}$
	${}^{4}F_{7/2}$	102,15 155 31	-19,103° -63.829 ^a	86,06° 82,06°	-14,33 -3 29	-20,898" -27 385 ^a	-17,80° -23.87°
Tek parite 5d6s(³ D)6p	$f_{3/2}^{icin:}$	-81,93	-351,3(3) ^b -348,8(1,8) ^d	-	13,09	75(5) ^b	_
	${}^{4}F^{o}_{5/2}$	239,54	$-471(6)^{g}$ 333(1) ^b 334 4(2 0) ^d	-	35,62	20(5) ^b	_
	${}^{4}F^{o}_{7/2}$	438,90	$673,6(3)^{b}$	-	49,23	60(10) ^b	-
	${}^{4}F^{o}_{9/2}$	416,81	$613,3(4)^{b}$ $611,0(3,1)^{d}$	-	93,92	150(15) ^b	-

Tablo 3.5. ¹³⁹La I'in A ve B aşırı ince yapı (HFS) sabitleri (MHz)

Tablo 3.5. Devam

Seviy	eler			HFS s	abitleri		
			A			В	
Konf.	Terim	Bu çalışma	Diğer çalı	şmalar	Bu çalışma	Diğer ça	alışmalar
2	4	MCHF+BP	Deneysel	MCDF	MCHF+BP	Deneysel	MCDF
5d6s(³ D)6p	⁴ D ^o _{1/2}	-600,20	-581,4(1,3) ^b -579,0(0,9) ^d	-	0,00	0 ^в	-
	⁴ D ^o _{3/2}	261,01	$586,1(3)^{b}$ 589,3(3,3) ^d	-	26,56	53(5) ^b	-
	${}^{4}D^{0}$	365.92	$589.5(2.2)^{d}$	_	1.42	_	_
	${}^{4}D^{0}_{7/2}$	490.06	$585.9(3.5)^{d}$	_	-7.98	_	_
$5d6s(^{3}D)6n$	${}^{4}\mathbf{P}^{0}_{1/2}$	1926 43	$28877(2.6)^{d}$	_	0.00	_	_
Subs(D)op	${}^{4}P^{0}_{a}$	770 34	$13286(2.9)^{d}$	_	3 24	_	_
	${}^{4}P^{0}{}^{5/2}_{5/2}$	579,97	$633,3(1,2)^{d}$	-	19,27	18(10) ^d	_
$5d6s(^{3}D)6n$	$^{2}\mathbf{P}^{0}$	358 40	-	_	0.00	_	_
Subs(D)op	${}^{2}\mathbf{P}^{0}_{a}$	188 61		_	14.80		_
$5d6a(^{3}D)6n$	$^{2}D^{0}$	260.27	_	_	2 66	_	_
Subs(D)op	$^{2}D^{3/2}$	200,27	_	_	5,00	_	_
TIC (ID)C	2D ² 5/2	48,37	-	_	14,24	–	_
5d6s("D)6p	$-P_{1/2}$	-1/2,/1	$126,88(56)^{d}$ $132,6(2,0)^{d}$ $145(7)^{g}$	-	0,00	0,0-	_
	² P ^o _{3/2}	420,80	-41,81(15) ^c -38,7(5,2) ^d -48(6) ^g	_	19,92	1,8(1,2) ^c	-
$5d^{2}(^{1}G)6p$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	154,71	_	_	63,56	_	_
· / I	${}^{2}\mathrm{F}^{0}_{7/2}$	106,77	_	_	68,80	_	_
$5d^{2}(^{3}P)6p$	${}^{2}D_{2/2}^{0}$	133.93	$478.5(1.9)^{d}$	_	2.08	$18(16)^{d}$	_
6 6 (1)0p	${}^{2}D^{0}_{5/2}$	118.78	$100(5)^{e}$	_	14.12	-	_
$5d^{2}(^{3}F)6n$	${}^{2}F^{0}z^{0}$	6.80	-	_	29.75	_	_
5 u (1)0p	${}^{2}E^{0}$	83 78			22,75		
$5 d^{2}(3E) \leq n$	$4 D^{0}$	03,70	- 524 8(0 0) ^d	_	25,20	- od	-
5а (г)ор	$\frac{D_{1/2}}{4D^{0}}$	244,67	524,8(9,0)	_	0,00	0,0	_
	$^{4}D^{*}_{3/2}$	155,32	149,5(3,2)	_	2,34	-45(35) ⁻	_
	$^{+}D^{\circ}_{5/2}$	216,31	45,4(6,5) ^a	-	7,01	$0(20)^{a}$	-
	${}^{4}D^{0}_{7/2}$	188,99	$-28,1(0,5)^{a}$	-	18,76	49(20) ^a	-
5d ² (³ F)6p	⁴ G ^o _{5/2}	342,30	539,9(3,3) ^d 540(5) ^g	_	28,76	_	_
	${}^{4}\text{G}^{0}_{7/2}$	169,93	223(4) ^g	-	39,44	_	_
	${}^{4}G^{0}_{9/2}$	136,17	$110,1(1,0)^{d}$	_	49,07	$85(30)^{d}$	_
	${}^{4}\text{G}^{0}_{11/2}$	111.08	_	_	61.13	_	_
$5d^{2}(^{1}S)6p$	${}^{2}P^{0}_{1/2}$	307.91	_	_	0.00	_	_
6 u (5)0p	${}^{2}P_{2}^{0}$	61 61	_	_	32.05	_	_
$5d^{2}(^{1}D)6n$	${}^{2}D^{0}a^{3/2}$	71 24	$132.9(1.6)^{d}$	_	-21.93	_	_
5u (D)op	${}^{2}D^{0}$	160.34	$3443(50)^{d}$		-21,95	$71(40)^{d}$	
$5d^{2}(^{1}C)6n$	${}^{2}C^{9}$	120,34	$75 9^{a}$	_	-24,50	-71(40)	_
3d (8)op	$G_{7/2}^{2}$	159,77	73.8 88(4) ^e	_	40,01	45,0	_
5 12/1 C) C	U 9/2	108,68	186,/(2,0)	-	58,84	35(30)-	-
5d ² ('G)6p	² H ^o _{9/2}	155,00	_	_	123,50	_	_
2.2	$^{2}\text{H}^{0}_{11/2}$	138,48	-	-	138,40	-	-
5d ² (³ P)6p	${}^{2}S^{o}_{1/2}$	5,42	-	-	0,00	-	-
5d ² (³ P)6p	⁴ S ^o _{3/2}	1,71	$-199,77(8)^{c}$ $-199,6(1,0)^{d}$ $-232(6)^{e}$ $-235(6)^{g}$	-	0,095	2,75(64) ^c 14(10) ^d	-
$5d^{2}(^{3}P)6n$	${}^{4}\mathrm{D}^{0}$	220.27	$290.3(2.0)^{d}$	_	0.00	0.00^{d}	_
5 u (1)6p	${}^{4}D^{o}_{3/2}$	125,90	$105,1(2,0)^{d}$ $156(6)^{e}$	-	-0,23	$-21(15)^d$	_
	${}^{4}\mathrm{D}^{\mathrm{o}}$	112 51	324 8(1 7) ^d	_	-7 13	$-44(15)^{d}$	_
	⁴ D ^o _{7/2}	149,03	$70(2)^{b}$ 68,1(2,0) ^d	_	8,49	$13(20)^{b}$ $70(20)^{d}$	_
- 12/35	200	000 / C	//(4) ^c		0.00	o ood	
5d~(~P)6p	${}^{2}P_{1/2}^{\circ}$	232,42	274,8(3,4)"	-	0,00	0,004	-
	${}^{2}P_{3/2}^{\circ}$	59,26		-	4,61	-	-
5d²(°F)6p	$^{2}D^{o}_{3/2}$	59,14	$142,1(0,6)^{a}$	_	8,93	-	-
	² D ^o _{5/2}	144,41	$-58,1(0,6)^{a}$ $-58,7(3)^{f}$	_	15,88	-	_

Tablo 3.5. Devam

Seviy	veler		HFS sabitleri									
•			A			В						
Konf.	Terim	Bu çalışma	Diğer çalı	şmalar	Bu çalışma	Diğer ça	lışmalar					
		MCHF+BP	Deneysel	MCDF	MCHF+BP	Deneysel	MCDF					
5d ² (³ F)6p	${}^{2}G^{o}_{7/2}$	156,40	$283,9(3)^{b}$ 284,7(1,0) ^d	-	32,61	$60(25)^{b}$ $44(27)^{d}$	-					
	${}^{2}G^{0}_{9/2}$	119,34	_	_	40,83	_	_					
5d ² (³ F)6p	${}^{4}\mathrm{F}^{0}_{3/2}$	160,14	88,67(10) ^c 83,6(10) ^d 91(6) ^e	_	-2,06	-4,0(1,8) ^c	_					
	${}^{4}F^{o}_{5/2}$	287,18	258,76(26) ^c 265(5) ^g	-	-2,10	6,9(4,1) ^c	-					
	${}^{4}F^{o}_{7/2}$	204,08	195,59(8) ^c 194,5(1,6) ^d 193(8) ^e	-	8,15	1,8(3,1) ^c	_					
		176,09	92,38(4) ^c 94,9(1,0) ^d 96(4) ^e	_	10,49	-10,1(3,2) ^c -20(15) ^d	-					
5d ² (³ P)6p	${}^{4}P^{o}{}_{1/2}$	-1,48	$-296,8^{a}$ $-297,3(1,5)^{d}$	-	0,00	$\begin{array}{c} 0^{\mathrm{a}} \\ 0,00^{\mathrm{d}} \end{array}$	-					
	${}^{4}P^{0}_{3/2}$	51,01	_	_	-4,87	_	_					
	${}^{4}P^{o}{}_{5/2}$	94,860	$100,7^{a}$ $103,2(2,2)^{d}$	-	13,81	$-5,6^{a}$ $-29(20)^{d}$	_					
$4f5d(^{1}D)6s$	${}^{2}D^{0}{}_{3/2}$	-84,09	-	_	-2,01	_ ` ´	_					
	$^{2}D_{5/2}^{o}$	197,02	_	_	14,72	_	_					
$4f5d(^{1}F)6s$	${}^{2}\mathrm{F}^{0}_{5/2}$	232,65	_	_	43,06	_	_					
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	248,33	_	_	53,67	_	_					
4f5d(¹ G)6s	${}^{2}G^{o}_{7/2}$	-21,67	$188,4(1,7)^{d}$ $182,8(2)^{f}$	-	26,47	17(15) ^d	_					
	${}^{2}G^{o}_{9/2}$	335,98	$373,1(0,5)^{d}$	_	10,95	$18(10)^{d}$	_					
4f5d(¹ H)6s	${}^{2}\mathrm{H}^{0}_{9/2}$	65,01	-97,5(7,0) ^d	_	77,01	_	_					
	${}^{2}\mathrm{H}^{0}_{11/2}$	209,87	$423,5(4,5)^{d}$	_	91,77	-	_					
4f5d(³ D)6s	${}^{2}D^{o}_{3/2}$	172,71	-	_	22,62	-	_					
	${}^{2}\mathrm{D}^{\mathrm{o}}{}_{5/2}$	112,50	-	_	0,93	-	-					
4f5d(³ F)6s	${}^{4}F^{o}_{3/2}$	-244,04	$-228,9(2,2)^{d}$	_	-11,07	$30(11)^{d}$	-					
	${}^{4}F^{o}_{5/2}$	233,64		_	-15,10		_					
	⁴ F ^o _{7/2}	245,25	$391,0(0,5)^{d}$	-	-9,74	$-42(19)^{d}$	-					
2	${}^{4}F^{o}_{9/2}$	300,18	$414,3(2,0)^{d}$	-	6,13	$40(20)^{d}$	-					
4f5d(³ G)6s	${}^{2}G^{o}_{7/2}$	163,64	-	-	44,24	_	-					
2	${}^{2}G^{o}_{,9/2}$	96,76	- ,	_	54,46		_					
4f5d(°G)6s	${}^{4}G^{o}_{5/2}$	-23,18	-147,7(1,6) ^a	-	34,72	$17(20)^{d}_{d}$	-					
	${}^{4}G^{o}_{,7/2}$	127,33	$358,0(1,6)^{d}$	_	33,74	50(13) ^a	_					
	${}^{4}G^{0}_{9/2}$	171,41	393,0(5,2) ^d	-	34,04	$120(60)^{d}$	-					
2	${}^{4}G^{o}_{11/2}$	159,26	-	-	39,54	-	-					
4f5d(°H)6s	${}^{2}\text{H}^{0}_{9/2}$	163,09	- ,	-	64,81	-	-					
1 0 - 1 / ²	² H ⁰ 11/2	1,05	$17,3(0,4)^{u}$	-	72,20	_	-					
4f5d(°H)6s	⁺ H ^o _{7/2}	-107,53	$-134,1(4,0)^{d}$	-	69,78	72(30) ^a	_					
	⁴ H ⁹ 9/2	171,68	-	-	67,93	_	_					
	⁴ H ⁰ 11/2	251,55	-	-	75,31	_	_					
	⁻ H ^o _{13/2}	275,59	-	-	88,13	-	_					

^aChilds ve Nielsen [88], ^bBaşar ve çalışma arkadaşları [97], ^cGangrsky ve çalışma arkadaşları [95], ^dFurmann ve çalışma arkadaşları [99], ^eGovindarajan ve Pramila [90], ^fLuo ve çalışma arkadaşları [92], ^gPramila [91], ^hChilds ve Goodman [85]

3.1.5. La I ve La II'nin geçiş enerjileri

Geçiş enerjileri (iyonlaşma potansiyelleri, uyarılma enerjileri ve elektron ilgileri) bir çok lantanit atomlarını da içeren atomlar için deneysel olarak bilinmektedir [1]. İyonlaşma potansiyelleri atomların fiziksel özelliklerinin tanımlanması için önemlidir ve atomik spektrumlarının yorumlanmasında ve elementten elemente bağlanma enerjilerinde sistematik eğilimlerin tanımlanmasında yararlıdır.

Nötral ve bir kez iyonlaşmış lantan atomunun (La I ve La II) geçiş enerjileri (iyonlaşma potansiyeli, uyarılma enerjileri ve elektron ilgisi) Breit-Pauli relativistik düzeltmeler çerçevesinde çok konfigürasyonlu Hartree-Fock yöntemi (MCHF) [412] ile hesaplandı. Bu çalışma sonuçlarına [107]'de yer verildi. Hesaplamalarda değerlik elektronları arasındaki karşılıklı etkileşme dikkate alındı ve mümkün olduğunca 4f elektronları konfigürasyon setine dahil edildi. Çünkü ağır atomlar için 4f alt tabakasının karşılıklı etkileşme etkileri ve relativitenin etkileri oldukça önemlidir. Literatürde bu alt tabakanın ve relativistik etkilerin dikkate alınması durumunda özellikle lantanitlerde yarıçapın küçülmesine ve iyonlaşma potansiyelinin artmasına neden olduğu vurgulanmaktadır. Ayrıca yine literatürde büyük atomlar için karmaşık spektrumlarından dolayı karşılıklı etkileşmenin de dikkate alınması gerektiği belirtilmektedir. Çünkü 4f elektronlarının çekirdek etkisini hissetmesi, 5p, 5d ve 6s yörüngeleri ile kuvvetli bir şekilde perdelenir.

La I ve La II'nin geçiş enerjileri hesaplamalarında La⁺'nın iyonlaşma potansiyeli için $5p^{6}5d$, $5p^{6}6d$, $5p^{5}5d4f$ ve $5p^{5}4f6s$, La⁺'nın uyarılma enerjileri ve La'nın iyonlaşma potansiyeli için nd² (n = 5, 6), 4f², 5d6d, 6s6d, 4fnp, 5dns, ns², np² (n = 6–9), 6sns, 6pnp, 6dns (n = 7–9), 7sns, 7pnp (n = 8, 9), 8s9s ve 8p9p konfigürasyonları dikkate alındı. La'nın uyarılma enerjileri için 5dns², 5d²ns, 5dnp², 6snp², 4f²ns, 4f6snp (n = 6, 7), 4f²nd (n = 5, 6), 5d³, 6p²7s, 6s7s², 6s²7s, 7s7p², 5d6s7s, 5d6p7p, 6s6p7p, 6p7s7p, 6s²6p, 4f6s², 4f7s², 4f5d6s, 5d6s6p ve 5d6s7p konfigürasyonları seçildi. Ayrıca, La'nın elektron ilgisi hesabında taban hali için 5dns², 5d²ns, 5dnp², 6s67s, 5d6p7p, 6s6p7p, 6s6p7p ve 6p7s7p konfigürasyonları ve La⁻ için 5d6s²np, 5d²6snp (n = 6, 7), 5d7s²7p, 5d²7s7p, 4f5d6s², 4f5d²6s, 4f5d6p², 4f²5d6p,

4f6s6p², 4f²6s6p, 5d²6s², 5d²6p², 4f²6s², 4f²6p², 4f²5d6s ve 4f5d²6p konfigürasyonları alındı. Bu konfigürasyonlar [Xe] özünü içerir.

La I ve La II'nin iyonlasma potansiyelleri, uyarılma enerjileri ve La'nın elektron ilgisi hesap sonuçları Tablo 3.6'da diğer hesap ve deney sonuçlarıyla karşılaştırmalı olarak sunulmaktadır. Tabloda enerji birimi olarak eV kullanıldı ve tek pariteli seviyeler "" indisiyle gösterildi. Karşılaştırma için veriler [79] ve [63]'ten alındı. Son çalışma sonuçları "a" üst indisiyle belirtildi [51]. Diğer çalısmalarla karşılaştırıldığında sonuçların uyumlu olduğu görülmektedir. MCHF+BP ile elde edilen relativistik elektron ilgisi değerleri için uyum az iken MCHF ile elde edilen relativistik olmayan elektron ilgisi sonuçları uyumludur. Elektron ilgisi için iyileştirme 4f alt tabakasını içeren konfigürasyonların sayısı arttırılarak ve özdeğerlik veya öz-öz elektronları arasındaki karşılıklı etkileşme hesaba katılarak yapılabilir. Bu durumda seviyeleri sayısı çok fazla arttığı için konfigürasyon etkileşme hesabı çok zor olmaktadır. La⁺'nın iyonlaşma potansiyeli ve La'nın elektron ilgisini hesaplamada MCHF+BP hesabı, konfigürasyonlar için terim sınırlandırılması yapıldığında mümkün olmaktadır. Bundan dolayı La⁻ icin ¹D ve ³F ve La⁺ için ²D terimleri seçildi. Relativistik hesaplamalar için elektron ilgisi sonuçları [79] ile uyumludur.

	Son hal		Relativisti	k olmayan	Relativi	stik	
			hesaj	plama	hesapla	ma	
			MCHF	NR [79]	MCHF+BP	DCB [79]	[63]
			La^+ , Ta	aban hal [Xe] :	$5d^2 {}^3F_2$		
İP	5d	${}^{2}D_{3/2}$	9,379	10,311	10,390	11,330	11,059
UE	$5d^2$	${}^{3}F_{3}$	0,00	0	0,136472	0,127	0,125980
		${}^{3}F_{4}$	0,00	0	0,264259	0,246	0,244336
	$5d^2$	${}^{1}D_{2}$	0,169839	0,293	0,171074	0,172	0,172891
	5d6s	$^{3}D_{1}$	0,547477	1,067	0,206136	0,237	0,234969
		$^{3}D_{2}$	0,547477	1,067	0,307077	0,323	0,321317
	2	$^{3}D_{3}$	0,547477	1,067	0,383780	0,404	0,402992
	$5d^2$	$^{3}P_{0}$	0,593908	0,586	0,666765	0,669	0,650880
		$^{3}P_{1}$	0,593908	0,586	0,743923	0,727	0,708956
	2	$^{3}P_{2}$	0,593908	0,586	0,807517	0,791	0,772102
	$6s^2$	$^{1}S_{0}$	2,145235	3,112	0,797039	0,911	0,916810
	$5d^2$	$^{1}G_{4}$	0,888165	0,737	1,083513	0,920	0,926574
	5d6s	$^{1}D_{2}$	1,204632	1,605	1,247895	1,309	1,251603
	6p ²	P_0	7,223080	-	7,159121	_	7,450810
		[°] P ₁	7,223080	-	7,271370	-	7,579009
		³ P ₂	7,223080	_	7,348589	_	7,749800
			La, Tab	an hal [Xe] 5d	$6s^{2}D_{3/2}$		
İP	$5d^2$	${}^{3}F_{2}$	5,050	7,135	4,575	5,582	5,577
	2	2		3,31 ^a		4,22 ^a	
UE	$5d6s^2$	$^{2}D_{5/2}$	0,00	0	0,137089	0,153	0,130575
	5d ² (³ F)6s	${}^{4}F_{3/2}$	0,095947	-	0,283845	-	0,330813
		${}^{4}F_{5/2}$	0,095947	-	0,336422	_	0,373192
		${}^{7}F_{7/2}$	0,095947	_	0,410451	_	0,433266
		$F_{9/2}$	0,095947	_	0,506622	_	0,511009
	5d ² (³ F)6s	² F _{5/2}	0,518613	-	0,823048	_	0,869365
	5 1 ² (3 D) 5	⁻ F _{7/2}	0,518613	-	0,972209	_	0,998340
	5d ² (³ P)6s	[•] P _{1/2}	0,704415	-	0,964710	_	0,896580
		⁴ P _{3/2}	0,704415	_	0,999558	-	0,928/06
	- 1 ³	⁴ P _{5/2}	0,704415	_	1,01/935	-	0,952191
	5d ²	4E	1,278919	_	1,556/86	_	1,541199
		4 _E	1,278919	—	1,61/2/1	_	1,585455
		Γ _{7/2} 4Γ	1,278919	—	1,094055	—	1,041342
	5 4 ³	Г _{9/2} 4р	1,2/8919	—	1,782013	—	1,704444
	Ju	⁴ D	1,000001		2,243393	_	2,000282
		4 D	1,000001		2,200740	_	2,074693
	$6s^26n$	$2\mathbf{p}^{0}$	2 666945	2 668	2,324903	2 032	2,120033
	us op	${}^{2}P_{2}^{0}$	2,000945	2,008	2,021017	2,032	2 018495
		■ <u>3/2</u>	2,000745	La ⁻	2,055025	2,277	2,010775
гi	5 1 c ² c	100	0.426	0.492	0.110	0.225	
EI	$5005^{-}6p$	³ E	0,430	0,482	0,110	0,525	_
	50-65-	$^{3}\Gamma_{2}$	0,635	0,610	0,297	0,193	_
		г ₃ 3г	0,035	0,010	0,215	0,115	_
		\mathbf{F}_4	0,635	-	0,106	-	-

Tablo 3.6. La⁻ ve La⁺'nın İP iyonlaşma potansiyeli (eV), UE uyarılma enerjileri (eV) ve La'nın Eİ elektron ilgisi (eV)

^aGálvez ve çalışma arkadaşları [51]

3.2. La II (Z = 57) için Hesaplama Sonuçları

Farklı derecelerde iyonlaşmış hallerdeki nadir toprak elementlerinin doğru geçiş olasılıklarına ve salınıcı şiddetlerine, astrofizikte nükleosentez ve yıldızların kimyasal bileşenlerinin belirlenmesinde ihtiyaç vardır.

Bir kez iyonlaşmış lantanın (La II) enerji seviyeleri, ışıma parametreleri, yarı ömürleri, aşırı ince yapı ve geçiş enerjileri ile ilgili deneysel ve teorik çalışmalar Tablo 1.3'te özetlenmiştir [6, 10, 21, 34, 45, 52, 62, 68, 108–128]. Bu çalışmalarda La II'nin zaman-çözünürlüklü lazer-indirgenmiş floresans, zaman-çözünürlüklü lazer spektroskopisi, demet-lazer teknikleri, MCDF ve HFR+CP yöntemleriyle yarı ömürleri, Fourier dönüşüm spektroskopisi, Hartree+istatistiksel-takas ve HFR+CP yöntemleriyle dallanma kesirleri, salınıcı şiddetleri ve geçiş olasılıkları ve relativistik konfigürasyon etkileşme yöntemi, lazer ve radyo-frekanslı çift rezonans ve lazeriyon-demet spektroskopisiyle ince ve aşırı ince yapısı incelenmiştir.

Bir kez iyonlaşmış lantanın (La II) bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları, elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları çok konfigürasyonlu Hartree-Fock (MCHF) [412, 413] ve relativistik Hartree-Fock [418] yöntemleri (HFR) kullanılarak hesaplandı. La II'nin [Xe] özü dışında değerlik-değerlik ve öz-değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen konfigürasyon setleri Tablo 3.7'de verilmektedir.

3.2.1. La II'in bazı seviyelerinin enerjileri ve Landé g-çarpanları

Bir kez iyonlaşmış lantanın [Xe] özü dışında $5d^2$, 5d6s, $6s^2$, 4f6p, 5d7s, 5d6d, $4f^2$, $6p^2$, 6s6d, 6s7s, 4f6s, 4f5d, 5d6p ve 6s6p uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları hesaplandı. Elde edilen sonuçlar Tablo 3.8'de sunulmaktadır. Enerji seviyeleri taban hal olan $5d^2 {}^3F_2$ seviyesine göre cm⁻¹ birim sisteminde verilmektedir. Tabloda farklı konfigürasyon setlerine göre hesaplanan sonuçlar MCHF+BP için A, B, C ve D, HFR için A ve B üst indisleriyle ve sadece tek pariteli seviyeler "" indisiyle belirtilmektedir. Elde edilen sonuçlar NIST verileri [63] ve Kułaga-Egger ve Migdałek'in HFR'ye öz-kutuplanmaya (CP) göre tanımlanan yarı klasik bir

potansiyel ekleyerek geliştirilmiş olan HFR+CP yöntemi ile elde edilen hesaplama sonuçları [121] ile karşılaştırılmaktadır.

Seviyeler		Konfigü	rasyonlar	
	Α	В	С	D
MCHF+BP h	esaplamaları için:			
Çift parite	nd ² (n = 5, 6), 4f ² , 5d6d, 6s6d, 4fnp, 5dns, ns ² , np ² (n = 6–9), 6sns, 6pnp, 6dns (n = 7–9), 7sns, 7pnp (n = 8, 9), 8s9s, 8p9p	Konfigürasyon seti A hesabı ile aynı, MCHF çalışması farklı	5p ⁶ 5d ² , 5p ⁶ 5d6s, 5p ⁶ 6s ² , 5p ⁶ 4f6p, 5p ⁶ 4f ² , 5p ⁵ 4f6s ² , 5p ⁵ 5d ² 6p, 5p ⁵ 6s ² 6p	$5p^{6} nd^{2} (n = 5, 6),$ $5p^{6}4f^{2}, 5p^{6}5d6d,$ $5p^{6}6s6d, 5p^{6}4fnp,$ $5p^{6}5dns, 5p^{6}ns^{2},$ $5p^{6}np^{2} (n = 6-9),$ $5p^{6}6sns, 5p^{6}6dns$ $(n = 7-9), 5p^{6}7sns,$ $5p^{6}7p8p, 5p^{6}8s9s,$ $5p^{6}8p9p$
Tek parite	4f6s, 4f5d, 5dnp, 6snp (n = 6–9), 6pns 7snp (n = 7–9), 7pns, 8snp (n = 8, 9), 8p9s, 9s9p	Konfigürasyon seti A hesabı ile aynı, MCHF çalışması farklı	5p ⁶ 4f6s, 5p ⁶ 4f5d, 5p ⁶ 5d6p, 5p ⁵ 4f ² 6s, 5p ⁵ 5d6s ² , 5p ⁵ 5d6p ²	
HFR hesapla	maları için:			
Çift parite	5d ² , 5d6s, 6s ² , 4f6p, 4f ²	5d ² , 5d6s, 6s ² , 4f6p, 5d7s, 5d6d, 4f ² , 6p ² , 6s6d, 6s7s		
Tek parite	4f6s, 4f5d, 5d6p, 6s6p	4f6s, 4f5d, 5d6p, 6s6p, 4f7s, 4f6d, 5d7p, 6s7p		

Tablo 3.7. La II'ye ait hesaplamalar için alınan konfigürasyon setleri

MCHF yönteminde değerlik-değerlik ve öz-değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen konfigürasyonlar için önce, elde edilen dalga fonksiyonların baskınlığını belirleyen karışım katsayıları ve relativistik olmayan enerjiler hesaplandı. Elde edilen bu dalga fonksiyonları, relativistik düzeltmeleri dikkate almak için Breit-Pauli Hamiltonyeni ile köşegenleştirilerek karışım katsayıları yeniden belirlendi ve konfigürasyon etkileşme yöntemiyle seviye enerjileri elde edildi. Jönsson ve Gustafsson tarafından geliştirilen Zeeman programında [413], elde edilen seviye enerjileri kullanılarak seviyelerin Landé *g*-çarpanları hesaplandı.

MCHF+BP hesaplamaları Tablo 3.7'de verilen konfigürasyon setlerinde La II'nin özü olarak A ve B hesaplarında [Xe], C ve D hesaplarında [Cd] alındı. A, B ve D'de değerlik elektronları arasındaki karşılıklı etkileşme dikkate alınırken C hesabında öz ve değerlik elektronları arasındaki karşılıklı etkileşme dikkate alındı. $5d^2$, 5d6s, $6s^2$, 5d6d, $6p^2$, 6s6d, 4f6s, 4f5d, 5d6p ve 6s6p seviyelerinin enerjisi ve Landé *g*-çarpanları Tablo 3.8'de verilmektedir. Hesap sonuçları NIST [63] ve Kułaga-Egger ve Migdalek'in [121] verileri ile karşılaştırıldığında 5d6d, 6s6d ve 4f5d seviyelerinde uyum az iken diğer seviyeler için uyum iyidir. Uyumsuzluk durumlarının, dolu olmayan d ve f alt tabakalarından kaynaklandığı söylenebilir. Bu seviyelerdeki uyumsuzluğun giderilmesi için yapılan öz-değerlik elektronları arasındaki karşılıklı etkileşme C hesabında ele alındı. Bu hesapta 4f5d seviyesi için bir miktar daha iyi sonuç elde edildi. Tek pariteli seviyelerde ise özden uyarılmaları içeren C hesabında daha iyi sonuçlar elde edildi. Landé *g*-çarpanlarının tüm hesap sonuçları NIST verileri ile uyum içindedir.

HFR hesaplamalarında konfigürasyon setleri değerlik elektronları arasındaki karşılıklı etkileşme etkilerini dikkate alacak şekilde seçildi ve Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurmayı yapmak için iyileştirildi. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A hesabı için 0,75 ve B hesabı için 0,70 olarak seçildi. HFR sonuçları, [Xe] özü dışında Tablo 3.7'de verilen konfigürasyon setleri dikkate alınarak HFR atomik yapı paketi [418] kullanılarak elde edildi. Tabloda 5d², 5d6s, 6s², 4f6p, 5d7s, 5d6d, 4f², 6p², 6s6d, 6s7s, 4f6s, 4f5d, 5d6p ve 6s6p seviyelerinin enerjisi ve Landé *g*-çarpanları sunuldu. Diğer çalışmalarla [63, 121] karşılaştırıldığında sonuçların tüm seviyeler için oldukça uyumlu olduğu görülmektedir. Özellikle A hesabı için uyumun daha iyi olduğu görülmektedir.

Sev	viveler		E		g-carpani			
Konf.	Terim	Bu ca	lışma	Diğer	Bu cal	işma	Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
Çift p	arite için:							
$5d^2$	${}^{3}F_{2}$	0,00 ^{A,B,C,D}	-0,13 ^A 0,02 ^B	$0,00^{a}$ -4 ^b	$0,728^{A}$ $0,708^{B}$ 0.715^{C}	0,732 ^A 0,736 ^B	0,721 ^a	
	³ F ₃	1100,72 ^A 816,18 ^B 743,03 ^C	1018,92 ^A 1046,86 ^B	1016,100 ^a 1028 ^b	1,083 ^{A,B,C}	1,084 ^{A,B}	1,038 ^a	
	${}^{3}F_{4}$	898,90 2131,38 ^A 1612,45 ^B 1456,54 ^C 1741,21 ^D	1935,49 ^A 1974,01 ^B	1970,700 ^a 1963 ^b	1,249 ^{A,B,C}	1,249 ^{A,B}	1,248 ^a	
5d ²	$^{1}D_{2}$	1741,51 1379,80 ^A 1443,25 ^B 1236,03 ^C 1398 12 ^D	1394,91 ^A 1393,79 ^B	1394,460 ^a 1395 ^b	$0,993^{\rm A}$ $0,981^{\rm B}$ $0,968^{\rm C}$	0,965 ^A 0,959 ^B	0,977 ^a	
5d ²	${}^{3}P_{0}$	5377,78 ^A 5918,77 ^B 5575,39 ^C 5654 01 ^D	5228,71 ^A 5265,77 ^B	5249,700 ^a 5244 ^b				
	³ P ₁	6000,10 ^A 6374,80 ^B 5867,74 ^C 6132,57 ^D	5769,81 ^A 5737,42 ^B	5718,120 ^a 5725 ^b	1,501 ^{A,B,C}	1,501 ^{A,B}	1,497 ^a	
	³ P ₂	6513,01 ^A 6798,78 ^B 6247,36 ^C 6588,07 ^D	6261,60 ^A 6239,70 ^B	${}^{6227,420^a}_{6224^b}$	1,485 ^A 1,488 ^B 1,497 ^C	1,489 ^A 1,488 ^B	1,481 ^a	
5d ²	$^{1}G_{4}$	8739,05 ^A 8468,71 ^B 8941,04 ^C 9027,98 ^D	7445,09 ^A 7374,70 ^B	7473,320 ^a 7476 ^b	1,002 ^A 1,001 ^{B,C}	1,002 ^{A,B}	1,000 ^a	
5d ²	${}^{1}S_{0}$	16629,75 ^A 18979,63 ^B 18143.98 ^D	16453,30 ^A 13675,30 ^B	-				
5d6s	³ D ₁	1662,59 ^A 2481,69 ^B 1994,95 ^C 2533 26 ^D	1893,01 ^A 1898,19 ^B	1895,150 ^a 1902 ^b	0,499 ^{A,B,C}	0,499 ^{A,B}	0,498 ^a	
	³ D ₂	2939,28 2476,73 ^A 2939,18 ^B 2550,88 ^C 3010,41 ^D	2580,063 ^A 2549,72 ^B	2591,600 ^a 2572 ^b	1,119 ^A 1,165 ^B 1,154 ^C	1,143 ^A 1,144 ^B	1,133 ^a	
	³ D ₃	3094,79 ^A 3501,39 ^B 3204,83 ^C 3614.27 ^D	3311,82 ^A 3255,89 ^B	3250,350 ^a 3260 ^b	1,334 ^{A,B,C}	1,334 ^{A,B}	1,334 ^a	
5d6s	$^{1}D_{2}$	10064,87 ^A 11480,98 ^B 13078,05 ^C 11980,57 ^D	10088,91 ^A 10095,00 ^B	10094,800 ^a ? 10096 ^b	1,010 ^A 1,003 ^B 1,001 ^C	1,006 ^{A,B}	1,005 ^a	
6s ²	¹ S ₀	6428,50 ^A 6664,52 ^B 9713,71 ^C 6709,28 ^D	7371,89 ^A 7393,30 ^B	7394,570 ^a 7395 ^b				
4f6p	${}^{3}F_{2}$	_	35544,74 ^A 35756,53 ^B	35787,53 ^a 35771 ^b	_	0,669 ^A 0,747 ^B	0,719 ^a	
	² F ₃	-	35687,88 ^A 37062,30 ^B	36954,65° 36953 ^b	_	1,050 ^A 1,005 ^B	1,061ª	
	°F4	_	37018,59 ^A 37733,47 ^B	37790,57 ^a 37779 ^b	_	1,212 ^A 1,105 ^B	1,113 ^a	

Tablo 3.8. La II'nin E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları

Tablo 3.8. Devam

Sevi	veler		E		g-carpani		
Konf.	Terim	Bu ça	lışma	Diğer	Bu çal	işma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f6p	$^{1}F_{3}$	-	36917,97 ^A	37209,71 ^a	-	0,934 ^A	0,944 ^a
1	5		37302,79 ^B	37243 ⁶		1,036 ^B	,
4f6p	${}^{3}G_{3}$	_	37604,82 ^A	35452,66 ^a	_	0,854 ^A	$0,876^{a}$
1	5		35373,81 ^B	35465 ^b		$0,856^{B}$	
	${}^{3}G_{4}$	_	37768,59 ^A	37172,79 ^a	-	$1,068^{A}$	1,127 ^a
			37186,27 ^B	37157 ^b		1,098 ^B	
	${}^{3}G_{5}$	_	39201,02 ^A	39018,74 ^a	-	$1,200^{A,B}$	1,21 ^a
			39035,52 ^в	39007 ^b			
4f6p	${}^{3}D_{1}$	_	38123,37 ^A	38534,11 ^a	-	0,499 ^{A,B}	0,497 ^a
			38536,02 ^B	38545 ^b			
	$^{3}D_{2}$	-	38214,22 ^A	38221,49 ^a	-	1,131 ^A	1,071 ^a
	2		38070,87 ^B	38210 ^b		1,027 ^B	
	$^{3}D_{3}$	-	39512,21 ^A	39402,55 ^a	-	1,329 ^A	1,274 ^a
			39535,50 ^в	39403 ^b		1,270 ^в	
4f6p	$^{1}G_{4}$	_	38968,77 ^A	39221,65 ^a	_	1,021 ^A	1,059 ^a
	1		39162,52 ^в	39235°		1,097 ^в	
4f6p	$^{1}D_{2}$	_	40343,10 ^A	40457,71 ^a	_	1,033 ^A	1,036 ^a
	2		40233,91 ^B	40456 ^b		1,059 ^B	
5d7s	$^{3}D_{1}$	_	49703,78 ^B	49733,13 ^a	_	0,500 ^в	0,500 ^a
	2		D	49714 ⁶		D	
	$^{3}D_{2}$	_	49952,52 [⊾]	49884,35ª	_	1,128 ^b	1,117 ^a
	2		р	49905 [°]		р	
	³ D ₃	_	51238,10 ^b	51228,57ª	-	1,307 ^b	1,315 ^a
	1		D	51235°		D	
5d7s	$^{1}D_{2}$	_	51501,10 ^b	51523,86ª	_	1,058 ^b	1,036 ^a
	1		P	51516°		D. D. D.	
5d6d	$^{1}F_{3}$	70728,01 ^A	51978,02 ^b	52137,67ª	0,978 ^A	1,048 ^b	0,987 ^a
	3_	74919,76 ^b	B	52216	0,988 ^b	B	
5d6d	$^{\rm J}\rm{D}_1$	71108,98 ^A	52220,02 ^b	52169,66°	0,544	0,557 ^b	0,621"
	2_	75022,05 ^b	P	52148		. . P	
	$^{3}D_{2}$	71922,34 ^A	52746,60 ^b	52734,81ª	1,167 ^A	1,126 ^b	1,154ª
	3-	75364,62		52728	1,036	4 a a - B	1.0103
	$^{5}D_{3}$	72905,11 ^A	53276,41	53689,56°	1,302 ^A	1,297	1,218"
5 1 6 1	l n	75927,05	5005505B	53647	1,233	1.0.40B	1.0053
5d6d	P_1	74454,96 ¹⁴	53356,36	53302,56°	1,048 ¹¹	1,3435	1,335"
5161	30	75644,43	52055 01B	53317	1,010	0 7 4 1 B	0.7518
5d6d	$^{3}F_{2}$	8685/,66 ¹¹	53855,012	53885,24"	0,68/1	0,7415	0,751"
	3	/5086,62 ⁻	5 4202 50B	53914	0,728-	1.050B	1 0008
	$^{-}F_{3}$	/6042,84=	54392,59	54840,04 ⁻	1,084	1,050-	1,088"
	3 _E	88422 20A	FACCA COB	54/55 55201 25 ^a	1 10c ^B	1.120 ^B	1 1268
	\mathbf{r}_4	88422,30	54004,09	55521,55	1,190	1,139	1,130
5464	³ c	/0155,48	54175 01 ^B	55505 54265 80ª		1 566 ^B	1 455 ^a
3000	\mathbf{s}_1	-	54175,01	54305,80	—	1,500	1,455
5464	¹ s	74225 00 ^B	54244 40 ^B	54570 54703 82 ^a			
5d6d	^{1}D	84447 02 ^A	55024.06 ^B	55184 05 ^a	0.006 ^A	1.056 ^B	1 183 ^a
Juou	D_2	76453 25 ^B	55024,00	55208 ^b	0,770	1,050	1,105
5464	³ G.	69310 22 ^A	55160 13 ^B	52847 88 ^a	0.803 ^A	0 798 ^B	0.861 ^a
5000	U ₃	75153 22 ^B	55109,15	52878 ^b	0,805 0,776 ^B	0,798	0,801
	³ G.	70502 05 ^A	55607 00 ^B	53333 37 ^a	1,050 ^A	1 060 ^B	1.036 ^a
	\mathbf{U}_4	75330 70 ^B	55007,00	53368 ^b	1,050 1.052^{B}	1,007	1,050
	$^{3}G_{r}$	71830 19 ^A	56214 97 ^B	54434 65 ^a	1,052 $1,200^{A,B}$	1.200^{B}	1 21 ^a
	05	76224.45^{B}	50217,77	54435 ^b	1,200	1,200	1,21
5d6d	${}^{3}\mathbf{P}_{0}$	90419 13 ^A	55630 81 ^B	54964 19 ^a			
5404	• 0	76456 13 ^B	55050,01	54786 ^b			
	³ P1	90863 55 ^A	55411 73 ^B	55230 33 ^a	1.501 ^{A,B}	1.535 ^B	1.552 ^a
	• 1	76858 62 ^B	55 111,75	55352 ^b	1,001	1,000	1,002
	$^{3}P_{2}$	91525.97 ^A	55746.81 ^B	56036.60 ^a	1.488^{A}	1.392 ^B	1.203^{a}
	- 2	76983.87 ^B	201.0,01	56090 ^b	1.496^{B}	-,	-,===
5d6d	${}^{1}G_{4}$	76564.89 ^B	59068.02 ^B	56035.70 ^a	$1,000^{B}$	1.056^{B}	$1,027^{a}$
	4	·	- , -	55076 ^b		, -	

Tablo 3.8. Devam

Sevi	yeler		Ε		g-çarpanı		
Konf.	Terim	Bu ça	lışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^2$	${}^{3}\text{H}_{4}$	_	55201,97 ^A	55107,25 ^a	_	0,839 ^A	0,883 ^a
	3		53676,92 ^B	55079 ⁶		0,887 ^b	1.0223
	$^{3}H_{5}$	_	56092,25 ^A	55982,09ª	-	1,033	1,033"
	311		55318,80 ⁻	55995°		1 166A	1 1 1 4 2
	H_6	_	56547 80 ^B	50857,94 50845 ^b	_	1,100 1,165 ^B	1,14
Af^2	1 G		56304 01 ^A	59845 59527 60 ^a		1,105 0.074 ^A	1.046^{a}
41	\mathbf{U}_4	-	55328 98 ^B	59527,00 59522 ^b	—	0,974 1.016 ^B	1,040
$4f^2$	${}^{3}F_{2}$	_	57396 38 ^A	57399 58 ^a	_	0.672^{A}	0.675 ^a
	• 2		56706.59 ^B	57385 ^b		$0.680^{\rm B}$	0,075
	$^{3}F_{3}$	_	57884,41 ^A	57918,50 ^a	_	1,084 ^A	1,085 ^a
	5		57513,31 ^B	57936 ^b		1,083 ^B	
	${}^{3}F_{4}$	_	58533,37 ^A	58259,41 ^a	_	1,237 ^A	1,196 ^a
			58315,69 ^B	58264 ^b		1,184 ^B	
$4f^2$	${}^{1}I_{6}$	_	61521,93 ^A	$62408,40^{a}$	-	1,001 ^A	1,003 ^a
	1		61759,71 ^b			1,002 ^B	
$4f^2$	$^{1}D_{2}$	-	62065,79 ^A	62026,27°	-	1,028 ^A	1,054ª
102	30		62417,80 ⁸	62029°		1,044	
41	\mathbf{P}_0	_	63593,22	63463,95 62406 ^b	_		
	3 D		63865 10 ^A	63703 18 ^a		1 501 ^{A,B}	1 17 1 ^a
	1	_	64480.52^{B}	63736 ^b	_	1,501	1,471
	$^{3}P_{2}$	_	64283 97 ^A	64278 92 ^a	_	1 467 ^A	1 414 ^a
	• 2		65194.71 ^B	64214 ^b		1.449 ^B	1,111
$4f^2$	${}^{1}S_{0}$	_	69782,30 ^A	69505,06 ^a	_	, -	
	0		71321,50 ^B				
6p ²	${}^{1}D_{2}$	61118,75 ^A	59830,40 ^B	59900,08 ^a	1,205 ^A	1,061 ^B	1,035 ^a
		63903,98 ^B		59899 ^b	$1,200^{B}$		
2	2	68314,29 ^D	D				
6p²	$^{3}P_{0}$	57741,75 ^A	60001,21 ^в	60094,84 ^a			
		57033,69 ^B		60091			
	3 D	58691,43 ⁵	60514 00 ^B	(1100.028	1.501Å	1 502B	1 5208
	\mathbf{P}_1	58647,09	60514,89	61128,83 61122 ^b	1,501 1,201 ^B	1,502	1,528
		50347 37 ^D		01132	1,391		
	$^{3}P_{2}$	59269.90 ^A	61418 50 ^B	62506 36 ^a	1 296 ^A	1 435 ^B	1.416^{a}
	1 2	58826.49 ^B	01410,50	62504 ^b	1.301^{B}	1,455	1,410
		60398,00 ^D			-,		
$6p^2$	${}^{1}S_{0}$	70729,58 ^A	66977,30 ^B	66591,91 ^a			
•	-	83062,12 ^B					
		82414,06 ^D					
6s6d	$^{3}D_{1}$	79297,74 ^A	63251,92 ^в	64361,28 ^a	0,499 ^{A,B}	0,499 ^в	$0,506^{a}$
	3-	86162,37 ^b	races of B	64374 [°]	1 100 ^A	. B	4 9 4 7 3
	$^{5}D_{2}$	79538,63 ^A	63833,975	64529,90°	1,133 ⁴	1,165	1,217"
	³ D	861/2,16 ⁻	64952 61 ^B	64509°	$1,166^{-1}$	1 224B	
	D_3	86191 20 ^B	04655,01	64701 ^b	1,554	1,334	—
6s6d	$^{1}D_{2}$	86532 15 ^B	69906 50 ^B	-	1.001 ^B	1 003 ^B	_
6s7s	${}^{3}S_{1}$	-	61127.80^{B}	60660.18 ^a ?	1,001	2.001^{B}	1.955 ^a
	~1		,	60660 ^b		_,	-,,
6s7s	${}^{1}S_{0}$	_	63307,50 ^B				
Tek pa	rite için:						
4f6s	${}^{3}F_{2}^{0}$	14378,61 ^A	14174,39 ^A	14147,980 ^a	0,666 ^{A,C}	0,666 ^{A,B}	0,664 ^a
		14264,12 ^b	14267,68 ^b	14184	0,668		
	300	13925,11°	14202 214	1 4075 1708	1 ocoAC	1.055Å	1.0568
	F ₃	14/36,50 14858 63 ^B	14283,31 ²⁴	143/3,1/0" 1/338 ^b	1,060 ⁻³⁻²	1,055 ¹¹ 1,047 ^B	1,056"
		14030,02 14201 70 ^C	14230,22	14330	1,008	1,047	
	³ F ^o	16270 43 ^A	15651 91 ^A	15698 740 ^a	1 250 ^{A,B}	1 250 ^A	1 247 ^a
	• 4	16250.88 ^B	15747.51 ^B	15682 ^b	1,250 ^C	1,245 ^B	1,477
		15785,08 ^C			,	, -	

Tablo 3.8. Devam

Sevi	yeler		Ε		g-çarpanı		l
Konf.	Terim	Bu ça	lişma	Diğer	Bu ça	lışma	Diğer
	1-0	MCHF+BP	HFR	çalışmalar	MCHF+BI	<u>'HFR</u>	çalışmalar
4f6s	${}^{1}F_{3}^{0}$	16349,78 ^A	15822,29 ^A	15773,770 ^a	1,023 ^{A,C}	1,028 ^A	1,017ª
		16448,12 ^B	15725,69 ^b	15790	1,016	1,037 ^b	
	1-0	15889,78 [°]	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •	4	
4f5d	$^{1}G_{4}^{0}$	23958,81 ^A	16965,67 ^A	16559,170 ^a	0,971 ^{A,C}	0,905 ^A	0,969"
		25542,89 ^B	15525,19 ^b	16630	1,059 ^b	1,005 ^b	
	3-0	23797,47 ^c			A		
4f5d	$^{3}F_{2}^{3}$	25007,46 ^A	17448,60 ^A	17211,930"	0,725 ^A	$0,713^{A}$	0,754"
		28148,54 ⁵	18658,835	17196°	0,684	0,6805	
	3=0	24733,62°	10242.204	10005 5 603	0,735	1.0004	1.00 5
	F_3	$25/40, 72^{B}$	18242,30 [°]	18235,560°	1,091 ⁻¹	1,083 ¹	1,086
		29158,71 25470.92 ^C	18800,08	18215	1,085 1,008 ^C	1,079	
	3 E 0	25479,85°	10267.27A	10014 5408	1,098 ^a	1.22cA	1 2228
	г₄	27201,89	19207,57	19214,340	1,223 $1,241^{B}$	1,220 1.241 ^B	1,252
		26022.00 ^C	19255,10	19199	1,241 1.224 ^C	1,241	
4f5 d	3 11 0	20932,00 25660 10 ^A	17777 74 ^A	17825 620 ^a	1,224 0.855 ^A	0.020 ^A	0.8468
4150	Π_4	23009,19 27280.07 ^B	177682 40 ^B	17823,020 17802 ^b	0,855 0,862 ^B	0,920	0,840
		27280,97 25499.67 ^C	17085,40	17805	0,802 0.856 ^C	0,800	
	³ H ⁰ -	25455,07 26756.81 ^A	18250 23 ^A	18580 /10 ^a	1.033 ^{A,B,C}	1.034 ^A	1 017 ^a
	11 5	20730,01 28223.06 ^B	18230,23 18122.03 ^B	18573 ^b	1,055	$1,034^{B}$	1,017
		26223,00 26582.89 ^C	10122,05	10575		1,054	
	³ H ⁰	28460 49 ^A	19394 18 ^A	19749 620 ^a	1 167 ^{A,C}	1 167 ^A	1 178 ^a
	11 6	28775 22 ^C	18802 98 ^B	19767 ^b	1,107	1,167 ^B	1,170
4f5d	${}^{1}D^{0}$	31071 25 ^A	19151 58 ^A	18895 410 ^a	0.981 ^A	0.970 ^A	0.923 ^a
iie u	2 2	32636.97 ^B	21057.91 ^B	18926 ^b	0.997^{B}	1.114^{B}	0,920
		30916.96 ^C	21007,71	10/20	0.982°	1,111	
4f5d	${}^{3}G_{2}^{0}$	31665.41 ^A	20315.59 ^A	20402.820^{a}	0.763 ^A	0.757^{A}	0.757^{a}
	-)	34021.44 ^B	21064.80 ^B	20405 ^b	0.757 ^B	0.782^{B}	-,
		31554,09 ^C			0.764°		
	${}^{3}\mathrm{G}^{\mathrm{o}}{}_{4}$	32976,84 ^A	21247,80 ^A	21331,600 ^a	$1,050^{A,B,C}$	1,049 ^A	1,049 ^a
	-	35195,62 ^B	$21629,90^{\text{B}}$	21324 ⁶	,	$1,054^{B}$,
		32859,39 ^C					
	${}^{3}\text{G}^{0}{}_{5}$	34349,12 ^A	22107,93 ^A	22282,900 ^a	$1,200^{A,B}$	1,200 ^A	1,197 ^a
		36498,47 ^B	21982,01 ^B	22269 ^b	1,199 ^C	1,199 ^B	
		34188,45 [°]					
4f5d	${}^{3}D_{1}^{0}$	35406,25 ^A	$21395,42^{\text{A}}_{-}$	21441,730 ^a	$0,503^{A}_{-}$	$0,508^{\rm A}_{-}$	$0,542^{a}$
		37453,79 ^B	22982,69 ^в	21477 ^b	0,501 ^B	0,591 ^B	
	2	35168,59 ^C			0,511 ^C		
	$^{3}D_{2}^{o}$	35923,09 ^A	22032,81 ^A	$22106,020^{a}$	1,170 ^A	1,159 ^A	1,167 ^a
		37936,33 ^B	23003,68 ^B	22112 ^b	$1,169^{B,C}$	1,195 ^в	
	3- 0	35808,76					
	${}^{3}D_{3}^{0}$	36203,19 ^A	22475,18 ^A	22537,300 ^a	1,263 ^A	1,305 ^A	1,288"
		38173,895	23296,42 ^b	22483	1,270 ^B	1,251	
4.67 1	300	36085,58°	22445 504	22 (02 500)	1,168°		
4f5d	${}^{5}\mathbf{P}_{0}^{\circ}$	39198,12 ^A	22445,78 ^A	22683,700°			
		40330,43	22463,20	226/4			
	300	38565,29°	22667 40A	22705 1508	1.400Å	1 401A	1 4218
	\mathbf{P}_1	39440,20	22667,40	22/05,150°	1,499 1,408 ^B	1,481 1,245 ^B	1,431
		40455,15	22524,24	22090	1,498	1,345	
	3 D 0	56500,21 40081 21 ^A	22571 02A	22246 020ª	1,464 1.407 ^A	1 400A	1 450 ^a
	r ₂	40081,21 40802 14 ^B	23371,92 21850 66 ^B	23240,930 23294 ^b	1,497 1 407 ^{B,C}	1,409 1 327 ^B	1,439
		30052,14	21050,00	23274	1,472	1,557	
4f5d	${}^{1}\mathbf{F}^{0}$	38/65 61 ^A	24240 21A	24552 700ª	1.061 ^A	1.024 ^A	1.034 ^a
+1.JU	1 3	40442 67 ^B	27270,21 22482 21 ^B	24569 ^b	1.057^{B}	1,024 1,055 ^B	1,034
		38356 86 ^C	22702,21	27507	1,023 ^C	1,055	
4f5d	${}^{1}\mathrm{H}^{0}$	46448 76 ^C	28811 47 ^A	28525 710 ^a	1,020	$1.001^{A,B}$	1.004^{a}
1150	•• 5	10110,70	27193.29 ^B	28529 ^b	1,000	1,001	1,001
4f5d	${}^{1}P^{0}{}_{1}$	47396.25 ^C	30265.31 ^A	30353.330 ^a	1,003 ^C	1,040 ^A	1,074 ^a
-	1	- 7 -	21477.10^{B}	,	· -	$1,060^{B}$,

Tablo 3.8. Devam

Sevi	yeler		Е			g-çarpanı	panı		
Konf.	Terim	Bu ça	lışma	Diğer	Bu çal	lişma	Diğer		
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar		
5d6p	$^{1}D^{0}2$	22996.58 ^A	24514.82 ^A	24462.66 ^a	0.968^{A}	1.014 ^A	0.887 ^a		
r	- 2	19478.98 ^B	24310.90 ^B	24567 ^b	1.011 ^B	1.017 ^B	.,		
		22618.34 ^C	,,		0.974 ^C	-,			
5d6p	${}^{3}D^{0}{}_{1}$	24485.41 ^A	25907.37 ^A	25973.37 ^a	0.502^{A}	0.579^{A}	0.782^{a}		
1	1	20646.65^{B}	25815.48 ^B	25839 ^b	0.499 ^B	0.507^{B}	- ,		
		23978.78 ^C	,		0.511 ^C	·			
	$^{3}D^{0}{}_{2}$	25339,58 ^A	26457,83 ^A	27388,11 ^a	1,161 ^{A,B}	1.133 ^A	1.168^{a}		
	2	$21467,30^{B}$	26411,29 ^B	27362 ⁶	1,138 ^C	$1,120^{B}$,		
		24934,60 ^C	,		,	,			
	$^{3}D_{3}^{0}$	26382,52 ^A	26950,18 ^A	28315,25 ^a	1,323 ^A	1,316 ^A	1,308 ^a		
	5	22400,30 ^B	26951,83 ^B	28290 ⁶	$1,332^{B}$	1,312 ^B	,		
		25902,53 ^C	,		1,316 ^C				
5d6p	${}^{1}P_{1}^{0}$	_	26059,89 ^A	-	_	0,955 ^A	_		
1	•		30735,20 ^B			$1,064^{B}$			
5d6p	${}^{3}\mathrm{F}^{\mathrm{o}}{}_{2}$	27730,01 ^A	27524,69 ^A	26414,01 ^a	0,702 ^A	0,691 ^A	0,825 ^{aa}		
	-	23795,02 ^B	27633,61 ^B	26409 ^b	$0,700^{B}$	$0,705^{B}$			
		27441,41 ^C			0,693 ^C				
	${}^{3}\mathrm{F}^{0}{}_{3}$	28937,43 ^A	27941,30 ^A	26837,66 ^a	1,083 ^{A,B,C}	1,098 ^A	1,088 ^a		
	-	24648,21 ^B	28199,61 ^B	26828 ^b		1,103 ^B			
		28616,27 ^C							
	${}^{3}\mathrm{F}^{\mathrm{o}}_{4}$	30401,18 ^A	28617,50 ^A	28565,40 ^a	1,248 ^{A,C}	1,251 ^{A,B}	1,245 ^a		
		26075,37 ^B	29206,78 ^B	28531 ^b	1,138 ^B				
		30028,17 ^C							
5d6p	${}^{3}P_{0}^{0}$	27489,54 ^A	31804,81 ^A	31785,82 ^a					
		23324,32 ^B	32009,00 ^B	31797 ^b					
		27777,75 [°]							
	${}^{3}P_{1}^{0}$	27767,31 ^A	32243,52 ^A	32160,99 ^a	1,498 ^A	1,497 ^A	1,492 ^a		
		23622,98 ^B	32711,11 ^в	32134 ^b	$1,500^{B}$	1,437 ^B			
	2	27808,39 ^C			1,473 ^C				
	${}^{3}P_{2}^{o}$	28480,17 ^A	33269,26 ^A	29593 ^b	1,469 ^A	1,501 ^A	-		
		24351,70 ^B	33441,59 ^в		$1,460^{B}_{C}$	$1,500^{B}$			
	1.	28624,94 [°]			1,482 ^C				
5d6p	${}^{1}F_{3}^{0}$	34048,66 ^A	32144,41 ^A	32201,05 ^a	0,998 ^A	1,002 ^A	1,005 ^a		
		31107,39 ^B	32749,00 ^в	32273°	1,000 ^B	1,003 ^b			
	2	33748,76 [°]			0,996 [°]				
6s6p	${}^{3}\mathbf{P}_{0}^{0}$	36704,74 ^A	27560,27 ^A	27545,850 ^a					
	3-0	32174,15 ^b	28370,01 ^b	27563					
	\mathbf{P}_{1}	37150,85 ^A	28103,04 ^A	28154,550°?	1,498 ^A	1,438 ^A	1,267"		
	300	32612,03 ^b	28403,35 ^b	28147°	1,501	1,496 ^b			
	${}^{3}\mathbf{P}_{2}^{3}$	37997,38 ^A	29477,41 ^A	29498,050°?	1,493 ^A	1,500 ^A	1,471"		
	1=0	33501,99 ^b	28508,94 ^b	33133	1,491	1,501 ^B	0.0003		
6s6p	$^{1}P_{1}^{2}$	-	45700,40 ^A	45692,170 ^a	-	1,002 ^b	0,999"		
			45953,40 ^b	45/02		1,1215			

^aNIST Atomic Spectra Database [63], ^bKułaga-Egger ve Migdałek [121]

3.2.2. La II'nin elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

La II'nin elektrik dipol geçişleri için λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve A_{ki} (sn⁻¹) geçiş olasılıkları gibi ışıma parametreleri hem relativistik hem konfigürasyon etkileşme etkilerinin ele alındığı MCHF+BP ve HFR yöntemleriyle hesaplandı. Tablo 3.9 ve daha geniş olarak Ekler kısmındaki Tablo A.2'de 5d6p–5d², 5d6p–5d6s, 5d6p–6s², 4f5d–5d², 4f5d–5d6s, 4f5d–6s², 6s6p–5d², 6s6p–5d6s, 6s6p–6s² ve 4f6p–4f6s elektrik dipol geçişlerinin dalga boyları, log(*gf*) logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} (sn⁻¹) geçiş olasılıkları sunulmaktadır. Tablolarda sadece tek pariteli seviyeler "^{on}" indisiyle belirtildi ve geçiş olasılığı için 10'un kuvvetleri parantez içinde yazıldı.

MCHF program paketi [412] ile Tablo 3.7'de verilen A konfigürasyon setindeki tek ve çift pariteli seviyeler arasında yapılan El geçişleri A hesabı, D konfigürasyon setinin çift pariteli seviyesi ile C konfigürasyon setinin tek pariteli seviyesi arasındaki E1 gecisleri B hesabı ve B konfigürasyon setindeki cift ve tek pariteli seviyeler arasındaki E1 geçişleri C hesabı olarak gösterildi. A, B ve C hesaplamalarında sırasıyla 13951, 35060 ve 13943 tane mümkün E1 geçişleri elde edildi. Tablo 3.9 ve Tablo A.2'de bu geçişler için elde edilen veriler çok fazla olduğu için sadece düşük seviye geçişleri sunulmaktadır. Tablolarda, ağırlıklı salınıcı şiddetleri, logaritmik ağırlıklı salınıcı şiddetine çevrilerek verilmektedir. 5d6p–5d², 5d6p-5d6s, 5d6p-6s², 4f5d-5d², 4f5d-5d6s, 4f5d-6s², 6s6p-5d², 6s6p-5d6s, 6s6p-6s² ve 4f6p-4f6s geçişleri için dalga boyları, logaritmik ağırlıklı salınıcı şiddetleri ve geçiş olasılıklarının farklı konfigürasyon setlerine ait hesaplamaları A, B ve C üst indisiyle belirtilmektedir. Genel olarak tüm geçişlerde dalga boyları için öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin dikkate alındığı B konfigürasyon seti kullanılarak elde edilen sonuçlar diğer çalışmalarla daha uyum içerisindedir. Fakat aynı durum log(gf) ve A_{ki} değerleri için geçerli değildir. Sadece bazı geçişlerde uyum söz konusudur. A ve C konfigürasyon setleriyle elde edilen sonuçlar log(gf) ve A_{ki} için çoğunlukla B'den daha iyidir. 6s6p-5d6s geçişi için sadece A sonuçları elde edildi. A sonuçlarındaki dalga boylarında uyum az iken diğer parametrelerde uyum daha iyidir. $6s6p-5d^2$ geçişlerin de ise dalga boyları için C

sonuçları, log(gf) ve A_{ki} için A sonuçları daha iyidir. Ayrıca, 4f6p–4f6s geçişleri de sadece A hesabında elde edildi ve dalga boylarında uyum çok az olmasına rağmen logaritmik ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları için uyum bir miktar iyidir.

HFR hesaplamalarında Tablo 3.7'de verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında, A hesabı için 768 ve B hesabı için 2906 tane mümkün E1 geçişleri hesaplandı. Tablolarda kısalık için sadece 5d6p–5d², 5d6p–5d6s, 5d6p–6s², 4f5d-5d², 4f5d-5d6s, 4f5d-6s², 6s6p-5d², 6s6p-5d6s, 6s6p-6s² ve 4f6p-4f6s düşük seviye E1 geçişlerinin dalga boyları, logaritmik ağırlıklı salınıcı şiddetleri ve geçiş olasılıkların sonuçları A ve B üst indisiyle verilmektedir. En küçük kareler yöntemiyle enerjileri deneysel verilere uydurma yapıldı. Elde edilen uydurma parametreleriyle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. Diğer çalışmalarla karşılaştırıldığında elde edilen sonuçların hemen hemen tüm geçişler için uyumlu olduğu görülmektedir. Uyum en çok dalga boylarında görülmektedir. Bazı geçişler için logaritmik ağırlıklı salınıcı şiddetleri ve geçiş olasılıklarında uyum azdır. A hesabının sonuçları B hesabına göre daha iyidir. Fakat geçiş olasılıkları için Kułaga-Egger ve Migdałek'in HFR+CP vöntemiyle [121] ve Lawer ve calısma arkadaşlarının Fourier dönüşüm spektroskopisi ile [115] yaptıkları çalışmaları kendi aralarında uyumlu iken, Zhiguo ve çalışma arkadaşlarının zaman-çözünürlüklü lazer spektroskopisiyle sundukları verilerinin [113] uyumlu olmadığına da dikkat edilmelidir. Bazı geçişlerde (5d6p ³F^o_{3,4}-5d² ³F_{3,4}, ¹D₂, 5d6p ³F^o_{3,4}-5d6s ³D_{3,4} gibi) geçiş olasılığı sonuçları [121] ve [115] ile karşılaştırıldığında az uyumlu olmasına rağmen, B hesabi ile elde edilen sonuçlar [113] ile uyumludur. Bazı uyumsuzlukların iyileştirilmesi için öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin ele alındığı konfigürasyonlar da hesaba katılmalıdır. Fakat öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin olduğu konfigürasyonlar, konfigürasyon setlerine dahil edildiğinde bilgisayar kısıtlamalarıyla karsılasıldığından bu tür hesapları yapmak zor olmaktadır.

Geçişler			λ			log(gf)			A_{ki}		
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer	
•	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+B	P HFR	çalışmalar	
5d6p ¹ D ^o ₂	$5d^2 {}^3F_2$	3706,09 ^A	4079,151 ^A	4086,71 ^b	-0,170 ^A	-0,139 ^A	-0,07 ^b	6,47(7) ^A	$5,82(7)^{A}$	$9,69(7)^{a}$	
· -		4184,23 ^B	4113,391 ^B	$4086,72^{\rm e}$	$-2,050^{B}$	$-2,630^{B}$		$6,72(5)^{B}$	$9,24(5)^{B}$	$6,80\pm0,40(7)^{b}$	
		4228,75 ^C			$-0,370^{\circ}$			$3,15(7)^{C}$		0,552(8) ^e	
$5d6p {}^{1}D_{2}^{0}$	$5d^{2} {}^{3}F_{3}$	3863,75 ^A	4256,059 ^A	-	-1,305 ^A	-1,190 ^A	_	$4,42(6)^{A}$	$4,76(6)^{A}$	$3,73(4)^{a}$	
		4347,81 ^B	4298,485 ^B		-3,441 ^B	-2,328 ^B		$2,56(4)^{B}$	$1,70(6)^{B}$		
$5d6p {}^{1}D_{2}^{0}$	$5d^{2} D_{2}$	3905,89 ^A	4325,272 ^A	4333,75 ^b	$0,260^{A}$	$0,307^{A}$	$-0,06^{b}$	$1,58(8)^{A}$	$1,45(8)^{A}$	$9,85(7)^{a}$	
-		4444,30 ^B	4363,552 ^B	4333,74 ^{d,e}	$-2,970^{B}$	-0,895 ^B	-0,03 ^d	$7,18(4)^{B}$	$4,46(7)^{B}$	$6,20\pm0,30(7)^{b}$	
		4566,03 ^C			0,329 ^C			$1,37(8)^{C}$			
$5d6p {}^{1}D_{2}^{0}$	5d6s ${}^{3}D_{1}$	3949,52 ^A	4420,514 ^A	4429,91 ^b	-1,153 ^A	-2,861 ^A	-0,35 ^b	$6,01(6)^{A}$	$9,41(4)^{A}$	$3,56(7)^{a}$	
		$4680,50^{B}$	4461,757 ^B	4429,90 ^d	-2,306 ^B	$-2,602^{B}$	-0,37 ^d	$3,00(5)^{A}$	$8,39(5)^{B}$	$3,03\pm0,17(7)^{b}$	
$5d6p {}^{1}D_{2}^{0}$	$5d6s$ $^{3}D_{2}$	$4080,78^{A}$	4558,978 ^A	-	-1,201 ^A	-1,388 ^A	_	$5,04(6)^{A}$	$2,63(6)^{A}$	$5,52(4)^{a}$	
		4787,44 ^B	4595,339 ^B		-2,739 ^B	-1,357 ^B		$1,06(5)^{B}$	$1,39(7)^{B}$		
5d6p ¹ D ^o ₂	5d6s ³ D ₃	4186,40 ^A	4716,323 ^A	-	-4,093 ^A	$-2,619^{A}$	-	$6,14(3)^{A}_{-}$	$1,44(5)^{A}_{-}$	$6,26(4)^{a}$	
		4930,01 ^B	4749,460 ⁸		$-4,606^{B}$	-3,377 ^B		$1,36(3)^{B}$	$1,24(5)^{B}$		
$5d6p {}^{1}D_{2}^{0}$	$5d^2 {}^3P_1$	5629,08 ^B	5334,748 ^A	-	$-4,140^{B}$	-1,928 ^A	_	$3,04(3)^{B}$	$5,54(5)^{A}$	-	
		5644,15 ^C	5384,029 ^B		-3,753 ^C	$-2,004^{B}$		7,39(3) ^C	$2,28(6)^{B}$		
$5d6p {}^{1}D_{2}^{0}$	$5d^2 {}^{3}P_2$	4885,76 ^A	5478,473 ^A	-	-2,541 ^A	$-2,306^{A}_{-}$	-	$1,61(5)^{A}_{-}$	$2,20(5)^{A}_{-}$	-	
		5777,25 ^B	5533,675 ^B		$-3,575^{\text{B}}_{-}$	-1,926 ^B		$1,06(4)^{B}_{-}$	$2,58(6)^{B}$		
		5818,50 ^C			-2,625 [°]			9,34(4) ^C			
$5d6p D_{2}^{o}$	5d6s ¹ D ₂	5912,00 ^A	6931,966 ^A	-	-0,893 ^A	$-1,045^{A}_{-}$	_	$4,87(6)^{A}_{-}$	$2,50(6)^{A}_{-}$	-	
_		8392,61 ^B	7034,381 ^B		$-2,901^{B}$	$-0,022^{B}$		$2,37(4)^{B}$	$1,28(8)^{B}$		
5d6p ³ D ^o ₁	$5d^2 {}^3F_2$	3512,23 ^A	3859,891 ^A	3849,01 ^b	-0,095 ^A	$-0,227^{A}_{-}$	-0,45 ^b	$1,45(8)^{A}$	$8,85(7)^{A}_{-}$	$4,53(7)^{a}$	
_		4029,71 ^C	3873,652 ^B		-0,086 ^C	$-0,216^{B}$		$1,12(8)^{C}$	$2,70(8)^{B}$	$5,30\pm0,30(7)^{b}$	
$5d6p^{-3}D_{1}^{\circ}$	$5d^{2} D_{2}$	3691,17 ^A	$4079,553^{\text{A}}_{-}$	4067,38 ^b	-0,296 ^A	$-0,641^{A}_{-}$	-0,96 ^b	8,23(7) ^A	$3,06(7)^{A}_{-}$	$2,00(7)^{a}$	
		4334,84 ^C	4094,718 ^B		-0,604 ^C	-2,453 ^B		$2,94(7)^{C}$	$1,40(6)^{B}$	$1,49\pm0,11(7)^{b}$	
$5d6p^{-3}D_{1}^{\circ}$	$5d6s^{3}D_{1}$	3730,12 ^A	4164,175 ^A	4151,96 ^b	-0,023 ^A	-0,163 ^A	-0,46 ^b	$1,51(8)^{A}$	$8,80(7)^{A}$	$4,00(7)^{a}$	
			4181,076 ^B			$-0,161^{B}$			$2,64(8)^{B}$	$4,55\pm0,29(7)^{b}$	
$5d6p {}^{3}D_{1}^{\circ}$	$5d6s {}^{3}D_{2}$	3846,98 ^A	4286,823 ^A	4275,63 ^b	-0,889 ^A	-0,968 ^A	-1,15 ^b	$1,94(7)^{A}$	$1,30(7)^{A}$	$0,74(7)^{a}$	
			4298,159 ^B			$-0,657^{B}$			$7,96(7)^{B}$	$8,70\pm0,8(6)^{b}$	
$5d6p^{-3}D_{1}^{\circ}$	$5d^{2} {}^{3}P_{0}$	4330,41 ^A	4835,906 ^A	4824,05 ^b	-1,336 ^A	-0,780 ^A	-0,87 ^b	$5,46(6)^{A}$	$1,58(7)^{A}$	$1,82(7)^{a}$	
		5100,89 ^B	4866,255 ^B		$-2,761^{B}$	-2,074 ^B		$1,48(5)^{B}$	$2,37(6)^{B}$	$1,29\pm0,10(7)^{b}$	
		5165,36 ^C			-1,312 ^C			$4,05(6)^{C}$			
$5d6p {}^{3}D_{1}^{0}$	$5d^{2} {}^{3}P_{1}$	4450,38 ^A	4965,838 ^A	-	-1,520 ^A	-1,106 ^A	-	3,38(6) ^A	$7,06(6)^{A}_{-}$	$1,34(6)^{a}$	
		5295,08 ^C	4980,565 ^B		-1,514 ^C	-2,632 ^в		$2,42(6)^{C}$	$6,27(5)^{B}$		

Tablo 3.9. La II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş olasılıkları (sn⁻¹)*

Tablo 3.9. Devam	Tab	lo 3.9.	. Devam
------------------	-----	---------	---------

Geçişler			λ			$\log(gf)$			A _{ki}		
Üst seviye	Alt seviye	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer	Bu ça	alışma	Diğer	
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+B	P HFR	çalışmalar	
$5d6p^{3}D_{1}^{\circ}$	$5d^2 {}^{3}P_2$	4554,37 ^A	5090,142 ^A	_	-2,713 ^A	-2,638 ^A	_	$2,07(5)^{A}$	$1,97(5)^{A}$	$1,33(6)^{a}$	
1 1	-	5448,24 ^C	5108,356 ^B		$-2,625^{\circ}$	-4,325 ^B		$1,77(5)^{C}$	$1,21(4)^{B}$		
$5d6p^{3}D_{1}^{0}$	$6s^{2} S_0$	4536,91 ^A	5395,057 ^A	5380,98 ^b	-1,898 ^A	-1,580 ^A	-1,13 ^b	$1,36(6)^{A}$	$2,01(6)^{A}$	$7,36(6)^{a}$	
-		5391,16 ^B	5428,247 ^B		$-3,662^{B}$	-3,675 ^B		$0,17(5)^{B}$	$0,48(5)^{B}$	$5,7\pm0,8(6)^{b}$	
$5d6p^{3}D_{1}^{0}$	5d6s $^{1}D_{2}$	5433,59 ^A	6321,720 ^A	_	-2,139 ^A	-1,302 ^A	_	$5,48(5)^{A}$	$2,78(6)^{A}$	$1,63(7)^{a}$	
			6361,127 ^B			-2,579 ^B			$4,35(5)^{B}$		
$5d6p {}^{3}D_{2}^{o}$	$5d^2 {}^3F_2$	3409,90 ^A	3779,586 ^A	3650,18 ^{c,d}	-0,983 ^A	-2,091 ^A	$-1,17\pm0,02^{\circ}$	1,19(7) ^A	$7,57(5)^{A}$	$1,03(7)^{a}$	
-		3814,43 ^B	3786,266 ^B		-2,583 ^B	$-2,108^{B}$	-1,009 ^d	$2,39(5)^{B}$	$3,63(6)^{B}$	$6,70(7)^{c}$	
		3900,67 ^C			-1,085 ^C			7,19(6) ^C			
$5d6p {}^{3}D_{2}^{\circ}$	$5d^2 {}^3F_3$	3542,92 ^A	3930,983 ^A	3790,82 ^b	0,174 ^A ?	0,101 ^A	0,03 ^b	$1,58(8)^{A}$	$1,09(8)^{A}$	$1,41(8)^{a}$	
		4060,77 ^C	3942,532 ^в	3790,83 ^{c,d,e}	0,139 ^C	$0,004^{B}$	$0,03\pm0,02^{\circ}$	1,11(8) ^C	$4,33(8)^{B}$	$9,90\pm0,60(7)^{b}$	
							0,143 ^d			9,94(8) ^c	
$5d6p {}^{3}D^{0}{}_{2}$	$5d^{2} D_{2}$	3578,31 ^A	3989,953 ^A	-	-1,977 ^A	-2,245 ^A	_	$1,09(6)^{A}_{D}$	$4,77(5)^{A}$	$1,43(7)^{a}$	
		4029,38 ^B	3997,200 ^в		-2,883 ^B	-1,000 ^B		$1,07(5)^{B}$	$4,17(7)^{B}$		
2	2	4185,89 ^C			-1,671 ^C		,	$1,62(6)^{C}$			
$5d6p {}^{3}D^{0}{}_{2}$	5d6s $^{3}D_{1}$	3614,90 ^A	4070,862 ^A	3921,54 ^{b,c,d}	$0,662^{A}$	-0,183 ^A	-0,45 ^b	$2,22(7)^{A}$	$5,28(7)^{A}_{D}$	$6,76(7)^{a}$	
			4079,452 ^в			-0,141 ^в	$-0,50\pm0,02^{\circ}$		$2,90(8)^{B}$	$3,10\pm0,40(7)^{b}$	
2	2			h			-0,251 ^d			$2,72(8)^{c}$	
$5d6p ^{\circ}D_{2}^{\circ}$	5d6s ³ D ₂	3724,55 ^A	4187,998 ^A	4031,69 ^{b,c,d,e}	0,186 ^A	$-0,025^{A}_{D}$	-0,08 ^b	$1,48(8)^{A}$	$7,19(7)^{A}$	$5,53(7)^{a}$	
			4190,837 ^в			$-0,202^{B}$	$-0,09\pm0,02^{\circ}$		$2,39(8)^{B}$	$6,80\pm0,50(7)^{\text{D}}$	
2 .	2	٨		L	٨		-0,133ª			$6,58(8)^{c}$	
$5d6p ^{\circ}D_{2}^{\circ}$	5d6s ³ D ₃	3812,34 ^A	4320,406 ^A	4141,72 ^b	-0,337 ^A	-0,739 ^A	-0,66 ^b	$4,22(7)^{A}$	$1,30(7)^{A}_{P}$	$2,58(7)^{a}$	
			4318,643 ^b	4141,74 ^{c,a}		-0,767 ^в	$-0,66\pm0,02^{\circ}$		6,11(7) ^в	$1,70\pm0,15(7)^{6}$	
3-0	2 3-						-0,465 ^d	· · · · · · · · · · · · · · · · · · ·		$1,68(8)^{c}$	
$5d6p^{-3}D_{-2}^{-3}$	$5d^2$ $^{3}P_1$	4287,35 ^A	4833,709 ^A	4613,38°	-0,823 ^A	-0,633 ^A	-0,76°	$1,09(7)^{A}$	1,33(7) ^A	2,15(7) ^a	
		4979,62 ^b	4837,028 ^b	4613,39 ^{e,a}	-2,358 ^b	-1,596 ^b	$-0,75\pm0,02^{\circ}$	2,35(5) ^b	7,23(6) ^b	$1,10\pm0,10(7)^{6}$	
5 1 5 3 5 0		50/4,50	10.51 1004		-0,881	a - aaA	-0,467ª	6,81(6) ^C		1,10(8)	
$5d6p^{-5}D_{-2}^{-5}$	$5d^2$ $^{3}P_2$	4383,78 ^A	4951,408 ^A	-	-1,618 ^A	-0,798 ^A	-	$1,6/(6)^{A}$	8,67(6) ^A	1,12(6)"	
		5095,23 ⁸	4957,4715		-3,205	$-4,190^{10}$		$3,20(4)^{5}$	$1,75(4)^{5}$		
515 ³ D0		5215,00 ^e	6100 100 ^A		-1,467°	2 100Å		$1,6/(6)^{\circ}$	2 70 (7) A		
5d6p ⁵ D ⁵ ₂	$5d6s^{-1}D_2$	5192,53	6109,132 ^{rr}	-	-1,738	-2,109 ¹⁴	_	9,03(5)	$2,78(5)^{\text{B}}$	-	
			6128,843			-0,824			2,66(7)		

Geo	cisler		λ			log(gf)			Aki	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu çal	ışma	Diğer
•		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d6p^{3}D_{3}^{\circ}$	$5d^{2} {}^{3}F_{2}$	3292,76 ^A	3710,536 ^A	-	-1,644 ^A	-2,343 ^A	_	$1,99(6)^{A}$	$3,14(5)^{A}$	$3,81(5)^{a}$
1 5	-	3678,57 ^B	3710,328 ^B		$-2,625^{B}$	-1,699 ^B		$1,67(5)^{B}$	$9,69(6)^{B}$	
		3763,66 ^C			$-2,104^{\rm C}$			$5,29(5)^{\rm C}$		
$5d6p^{3}D_{3}^{\circ}$	$5d^{2} {}^{3}F_{3}$	3416,64 ^A	3856,345 ^A	3662,07 ^b	$-0,756^{A}$	-1,519 ^A	-1,37 ^b	$1,43(7)^{A}$	$1,94(6)^{A}$	$7,82(5)^{a}$
		3804,41 ^B	3860,263 ^B	3662,08 ^c	$-2,262^{B}$	$-1,585^{B}$	$-0,73\pm0,02^{\circ}$	$0,36(6)^{B}$	$1,16(7)^{B}$	$3,0\pm0,6(6)^{b}$
		3912,49 ^C			-0,775 ^C			$1,04(7)^{C}$		$1,29(8)^{c}$
$5d6p^{3}D_{3}^{\circ}$	$5d^{2} D_{2}^{1}$	3449,54 ^A	3913,081 ^A	3713,54 ^{b,c}	-0,845 ^A	-0,906 ^A	$-0,80^{b}$	$1,14(7)^{A}$	$0,77(7)^{A}$	$1,51(7)^{a}$
		3878,09 ^B	3912,659 ^B		$-2,990^{B}$	-0,634 ^B	$-0,73\pm0,02^{\circ}$	$0,06(6)^{B}$	$1,01(8)^{B}$	$1,09\pm0,17(7)^{b}$
		4028,51 ^C			-1,699 ^C			$1,17(6)^{C}$		$1,28(8)^{c}$
$5d6p^{3}D_{3}^{\circ}$	$5d^{2} {}^{3}F_{4}$	3541,38 ^A	3997,64 ^A	3794,77 ^b	0,359 ^A	$0,267^{A}$	0,21 ^b	$1,74(8)^{A}$	$1,10(8)^{A}$	$1,47(8)^{a}$
		4069,04 ^C	4003,551 ^B	3794,78 ^{c,d,e}	$0,322^{\rm C}$	$0,226^{B}$	$0,14\pm0,02^{\circ}$	$1,21(8)^{C}$	$7,00(8)^{B}$	$1,07\pm0,09(8)^{b}$
							0,318 ^d			9,33(8) ^c
$5d6p^{3}D_{3}^{\circ}$	5d6s $^{3}D_{2}$	3585,24 ^A	4103,386 ^A	3886,37 ^{b,c,d}	-0,416 ^A	-0,117 ^A	$-0,28^{b}$	$2,84(7)^{A}$	$4,32(7)^{A}$	$6,69(7)^{a}$
			4098,002 ^B			-0,134 ^B	$-0,31\pm0,02^{\circ}$		$2,92(8)^{B}$	$3,30\pm0,40(7)^{b}$
							-0,135 ^d			$3,06(8)^{c}$
$5d6p {}^{3}D^{0}{}_{3}$	5d6s ³ D ₃	3666,52 ^A	4230,416 ^A	3988,51 ^b	$0,400^{A}$	$0,187^{A}$	0,21 ^b	$1,78(8)^{A}$	$8,19(7)^{A}$	$9,73(7)^{a}$
			4220,125 ^B	3988,52 ^{c,d,e}		$0,225^{B}$	$0,17\pm0,02^{\circ}$		$6,29(8)^{B}$	$9,70\pm0,90(7)^{b}$
_							0,244 ^d			8,97(8) ^c
$5d6p {}^{3}D^{0}{}_{3}$	$5d^{2} {}^{3}P_{2}$	4192,07 ^A	4833,571 ^A	4526,12 ^{c,d}	-0,703 ^A	-0,311 ^A	$-0,65\pm0,02^{\circ}$	$1,07(7)^{A}$	1,99(7) ^A	$2,11(7)^{a}$
		4855,69 ^B	$4828,088^{B}$		-2,157 ^B	-1,125 ^B	$-0,350^{d}$	$0,28(6)^{B}$	$2,15(7)^{B}$	$1,03(8)^{c}$
_		4972,97 ^C			-0,724 ^C			$0,73(7)^{C}$		
5d6p ³ D ^o ₃	$5d^{2}G_{4}$	4623,66 ^A	5126,855 ^A	4796,68 ^b	-4,208 ^A	$-3,599^{A}_{-}$	-1,70 ^b	$0,02(5)^{A}$	$9,14(3)^{A}_{-}$	8,95(5) ^a
_		5600,66 ^C	5107,999 ^B		-2,344 ^C	-2,754 ^B		$1,37(5)^{C}$	$4,50(5)^{B}$	$8,3\pm1,0(5)^{b}$
5d6p ³ D ^o ₃	5d6s ¹ D ₂	4925,70 ^A	5930,741 ^A	-	-3,889 ^A	-3,086 ^A	-	$5,06(3)^{A}_{-}$	$2,22(4)^{A}_{-}$	$2,87(5)^{a}$
_		3878,09 ^B	5932,307 ^B		$-2,990^{B}$	$-2,403^{B}$		$6,47(4)^{B}$	$7,49(5)^{B}$	
$5d6p {}^{3}F_{2}^{0}$	$5d^2 {}^3F_2$	3152,83 ^A	3633,091 ^A	3784,81 [°]	-0,229 ^A	$-0,266^{A}_{-}$	$-2,02\pm0,02^{c}$	$7,89(7)^{A}_{-}$	$5,47(7)^{A}_{-}$	$4,03(6)^{a}$
		3481,43 ^B	3618,789 ⁸		$-1,265^{B}$	-0,386 ^в		$5,96(6)^{B}$	$2,09(8)^{B}$	$8,78(6)^{c}$
_		3575,89 ^C			-0,981 ^C			$1,09(7)^{C}$		
$5d6p {}^{3}F_{2}^{0}$	$5d^2 {}^3F_3$	3266,21 ^A	$3772,762^{\text{A}}_{-}$	3936,22 ^{b,c}	-0,954 ^A	-3,090 ^A	-1,29 ^b	$1,38(7)^{A}$	$7,63(4)^{A}_{-}$	2,95(5) ^a
		3593,94 ^B	3761,276 ^в		-2,324 ^B	-2,545 ^B	$-1,34\pm0,02^{\circ}$	$0,49(6)^{B}$	$1,34(6)^{B}$	$4,5\pm0,7(6)^{b}$
		3709,98 ^C			-1,515 ^C			$2,96(6)^{C}$		$3,88(7)^{c}$

Tablo 3.9. Devam

^aKułaga-Egger ve Migdałek [121], ^bLawer ve çalışma arkadaşları [115], ^cZhiguo ve çalışma arkadaşları [113, *g*A_{ki}'den çevrildi], ^dBord ve çalışma arkadaşları [114], ^eNIST Periodictable [62], *Tablonun daha geniş hali Tablo A.2'de verilmektedir.

3.3. La III (Z = 57) için Hesaplama Sonuçları

İki kez iyonlaşmış lantan (La III), kapalı bir öz dışında bir dış değerlik elektronuna sahip olduğu için La I ve La II'ye göre basit bir atomik yapıya sahiptir. La III, nötral ve bir kez iyonlaşmış hallerine göre geçmişte daha az çalışılmıştır. La III'ün enerji seviyeleri, Landé *g*-çarpanları, zaman-çözünürlüklü lazer spektroskopisiyle yarı ömürleri, geçiş enerjileri ve dalga boyları incelenmiştir [29, 68, 79, 119, 129, 130, 133, 135]. Ayrıca salınıcı şiddetleri ve geçiş olasılıkları HFR+CP ve model potansiyel yöntemleriyle çalışılmıştır [48, 68, 129–131, 133–135]. 700-12000Å aralığındaki çizgileri çeşitli deneysel tekniklerle gözlenmiştir [131, 132].

İki kez iyonlaşmış lantanın (La III) bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları, elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları çok konfigürasyonlu Hartree-Fock (MCHF) [412, 413] ve relativistik Hartree-Fock (HFR) [418] yöntemleri kullanılarak hesaplandı. La III'ün MCHF+BP ve HFR hesaplamaları için, hem değerlik-değerlik hem de özdeğerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen ve A, B, C ve D ile gösterilen konfigürasyon setleri Tablo 3.10'da verilmektedir.

Seviyeler	_	Konfig	ürasyonlar	
	Α	В	С	D
MCHF+BP	nesaplamaları için:			
Çift parite	nd, ng (n = 5–9), ns (n = 6–9)	A hesabı ile aynı	$5p^{6}nd$, $5p^{6}ng$ (n = 5–9), $5p^{6}ns$ (n = 6–9), $5p^{5}6snp$ (n=6, 7), $5p^{5}5d4f$, $5p^{5}5d6p$	C hesabı ile aynı
Tek parite	nf (n = 4–9), np (n = 6–9)	$5p^{6}nf (n = 4-9),$ $5p^{6}np (n = 6-9),$ $5p^{5}5dns (n = 6, 7)$	B hesabı ile aynı	$5p^{6}nf (n = 4-9),$ $5p^{6}np (n = 6-9),$ $5p^{5}5dns (n = 6, 7),$ $5p^{5}4f^{2}, 5p^{5}6p^{2}$
HFR hesapla	ımaları için:			
Çift parite	nd, ng (n = 5–10), ns (n = 6–10)	$5p^{6}nd$, $5p^{6}ng$ (n = 5– 10), $5p^{6}ns$ (n = 6–10), $5p^{5}6s6p$, $5p^{5}6s4f$, $5p^{5}5d6p$	nd, ng (n = 5–15), ns (n = 6–12)	nd (n = 5-20), ns (n = 6-20), ng (n = 5-15)
Tek parite	nf (n = 4–10), np (n = 6–10)	$5p^{6}nf (n = 4-10),$ $5p^{6}np (n = 6-10),$ $5p^{5}4f^{2}, 5p^{5}6p^{2}$	nf (n = 4–15), np (n = 6–15)	nf (n = 4–20), np (n = 6–20)

Tablo 3.10. La III'e ait hesaplamalar için alınan konfigürasyon setleri

İki kez iyonlaşmış lantanın [Xe] özü dışında nd (n = 5–20), ns (n = 6–20), ng (n = 5–15), nf (n = 4–20) ve np (n = 6–20) uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF+BP ve HFR yöntemleriyle hesaplandı. Elde edilen sonuçlar Tablo 3.11 ve daha geniş şekli Tablo A.3'te taban hal seviyesi 5d $^{2}D_{3/2}$ 'ye göre cm⁻¹ birim sistemine göre sunulmaktadır. Tablolarda farklı konfigürasyon setlerine göre elde edilen sonuçlar MCHF+BP ve HFR için A, B, C ve D üst indisleriyle ve sadece tek pariteli seviyeler "^o" indisiyle belirtilmektedir. Elde edilen sonuçlar için seviye enerjileri NIST verileri [63] ve Sugar ve Kaufman'ın çalışmaları [131] ile ve Landé *g*-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ve [63] ile karşılaştırılmaktadır.

MCHF+BP hesaplamaları için, Tablo 3.10'da verilen konfigürasyon setlerinde La III'ün özü olarak A hesabında [Xe], B, C ve D hesaplarında [Cd] alındı. A'nın tek ve çift pariteli ve B'nin çift pariteli seviyelerinde değerlik elektronları arasındaki karşılıklı etkilesme dikkate alınırken B'nin tek pariteli ve C ve D'nin tek ve çift pariteli seviyelerinde değerlik elektronları arasındaki karşılıklı etkileşmenin yanı sıra öz ve değerlik elektronları arasındaki karşılıklı etkileşme de hesaplamalara dahil edildi. MCHF yönteminde değerlik-değerlik ve öz-değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen konfigürasyonlar için ilk olarak dalga fonksiyonları ve relativistik olmayan enerjiler hesaplandı. Elde edilen bu dalga fonksiyonlarında relativistik düzeltmeler dikkate alınarak, konfigürasyon etkileşme yöntemiyle seviye enerjileri elde edildi. Daha sonra MCHF dalga fonksiyonları ve seviye enerjileri kullanılarak Jönsson ve Gustafsson tarafından geliştirilen Zeeman programıyla [413] Landé g-çarpanları hesaplandı. MCHF+BP hesaplamalarında elde edilen nd (n = 5-9), ns (n = 6-9), ng (n = 5-9), nf (n = 4-9) ve np (n = 6-9)uvarılmıs seviyelerinin enerjisi ve Landé g-çarpanları Tablo 3.11 ve Tablo A.3'te sunulmaktadır. Çift pariteli seviyeler için hesap sonuçları incelendiğinde 6s seviyesinin A ve C hesaplarında elde edilen sonuçların iyi olmadığı fakat B ve D sonuçlarının iyi olduğu görülmektedir. 8s seviyesi için C ve D sonuçları uyumluyken 7s ve 9s seviyelerinde uyum azdır. 6d seviyesinin uyumsuzluğu yapılan çeşitli hesap sonuçlarında düzeltilememiştir. 7d ve 8d seviyeleri için C ve D sonuçları iyi iken 9d

seviyesi için A ve B sonuçları iyidir. Tüm g alt tabakasını içeren seviyeler için A ve B hesap sonuçları oldukça uyumludur. Tek pariteli seviyelerde ise ilk 4f seviyesi için uyum az olmasına rağmen diğer f alt tabakasını içeren seviyelerde uyum oldukça iyidir. 7f ve 8f seviyeleri için A hesabı, 9f seviyesi için A ve B hesapları NIST değerleri ile uyumludur. 6p seviyesi için uyum iyi olmasına rağmen 7p seviyesi için uyum iyi değildir. Ayrıca, 8p ve 9p seviyeleri için B ve C hesapları uyumludur. Uyumsuzlukların giderilmesi için özden uyarılmalarla yapılan hesaplamalarda bazı seviyelerde iyileşme olmuşken bazı seviyelerde iyileşme olmamıştır. Elde edilen Landé *g*-çarpanlarının [63] ve [48] ile uyumu oldukça iyidir.

HFR hesaplamalarında konfigürasyonlar A, C ve D'de değerlik elektronları arasındaki ve B'de değerlik-değerlik ve öz-değerlik elektronları arasındaki karşılıklı etkileşme etkilerini dikkate alacak şekilde seçildi ve Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurmayı yapmak için iyileştirildi. Spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkilesme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A, B, C ve D hesaplarında 0,85 olarak seçildi. HFR hesaplamaları Tablo 3.10'da verilen konfigürasyon setleriyle HFR atomik yapı paketi [418] kullanılarak elde edildi. HFR sonuçlarının hem karşılaştırma değeri olanlar hem de yeni veriler sunmak amacıyla yüksekçe uyarılmış seviyeleri Tablo 3.11 ve Tablo A.3'te sunulmaktadır. La III'ün özü olarak A, C ve D hesaplarında [Xe], B hesaplarında [Cd] alınarak yapılan hesaplamaların nd (n = 5–20), ns (n = 6–20), ng (n = 5–15), nf (n = 4–20) ve np (n = 6-20) uyarılmış seviyelerinin enerjileri ve Landé g-çarpanları tablolarda verilmektedir. NIST verileri [63] ile karşılaştırıldığında A, B ve C sonuçları karsılastırma değerleri ile bire bir uyumludur. D hesabında en küçük kareler yöntemi ile deneysel verilere uydurma bilgisayar kısıtlamalarından dolayı yapılamadığından bu sonuçlar ilk elde edilen şekli ile verilmektedir. D hesabında 4f seviyesinde uyum az iken diğer seviyelerinde uyum iyidir. Ayrıca, tüm hesaplamalarda Landé gçarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ve [63] ile oldukça uyumludur.

Sevi	veler		E			g-carpani				
Konf.	Terim	Buc	alisma	Diğer	Bu ca	lisma	Diğer			
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar			
Çift pa	rite için:									
5d	${}^{2}D_{3/2}$	$0,00^{A,B,C,D}$	$0,00^{A,B,C,D}$	$0,00^{a}$	$0,800^{A,B,C,D}$	$0,800^{A,B,C,D}$	$0,800^{b}$			
	${}^{2}D_{5/2}$	1623,73 ^A	1603,23 ^{A,B,C}	1603,23 ^{a,c}	$1,200^{A,B,C,D}$	$1,200^{A,B,C,D}$	1,200 ^b			
		1652,04 ^B	1686,00 ^D							
		1729,42 ^C								
	2	1755,92 ^D	10							
6s	${}^{2}S_{1/2}$	125488,13 ^A	13591,140 ^{A,C}	13591,14 ^a	2,002 ^{A,B,C,D}	2,002 ^{A,B,C,D}	$2,10^{a}$			
		16931,68 ⁵	13591,10 ^b	13590,76°			2,002			
		120670,31°	14367,30							
-	20	22012,63 ^D	and the need BC	00015 003	a coa A B	a coa A B C D	a ooah			
/s	$-S_{1/2}$	132410,66 ¹²	8234/,280 ^{-1,2,2}	82347,28	2,002	2,002	2,002			
9	$2\mathbf{c}$	135/33,22 126017 44 ^A	62130,30 110200 57 ^{A,B,C}	82343,0 110200 57 ^a	2 002A,B,C,D	2 002A,B,C,D	2 002p			
08	$S_{1/2}$	130917,44 128228 55 ^B	100520.60 ^D	110209,37	2,002	2,002	2,002			
		136526,55 113546.00 ^C	109529,00	110207,0						
		115540,09 116566 98 ^D								
98	$^{2}S_{12}$	140188 88 ^A	124504 10 ^{A,B,C}	124504 10 ^a	$2.002^{A,B,C,D}$	$2.002^{A,B,C,D}$	2 002 ^b			
20	D 1/2	141758 61 ^B	123616 10 ^D	124503.8°	2,002	2,002	2,002			
		142101.27 ^C	125010,10	121000,0						
		140412.16 ^D								
10s	${}^{2}S_{1/2}$	_	132840,41 ^{A,B,C}	132840,41 ^b	_	$2,002^{A,B,C,D}$	2,002 ^b			
	1/2		131856,70 ^D	,		,	,			
6d	${}^{2}D_{3/2}$	122595,38 ^A	82380,76 ^{A,B,C}	82380,76 ^a	$0,800^{A,B}$	$0,800^{A,B,C,D}$	$0,800^{b}$			
		123862,14 ^B	$82050,50^{D}$	82378,75 [°]						
	${}^{2}D_{5/2}$	122624,36 ^A	82814,27 ^{A,B,C}	82814,27 ^a	$1,200^{A,B}$	$1,200^{A,B,C,D}$	1,200 ^b			
	2	123890,23 ^B	82415,20 ^D	82812,51 ^c						
7d	$^{2}D_{3/2}$	130584,95 ^A	110534,20 ^{A,B,C}	110534,20 ^a	0,800 ^{A,B,C,D}	0,800 ^{A,B,C,D}	0,800 ^b			
		131854,34 ^B	109894,00 ^D	110532,0 ^e						
		106332,06 ^C								
	20	10/582,55	110700 21A.B.C	110720.218	1 200A.B.C.D	1 200A.B.C.D	1.000			
	$^{-}D_{5/2}$	130598,53 rd	110/38,31 ^{-1,2,2}	110/38,31	1,200	1,200	1,200			
		131807,33	110058,50	110/30,1						
		100554,02 107584 50 ^D								
84	$^{2}D_{\rm eva}$	135616 77 ^A	124742 24 ^{A,B,C}	124742 24 ^a	0 800 ^{A,B,C,D}	0 800 ^{A,B,C,D}	0.800 ^b			
ou	D 3/2	136887 56 ^B	123908 10 ^D	124741.8°	0,000	0,000	0,000			
		126663.66 ^C	125900,10	121711,0						
		127914,64 ^D								
	$^{2}D_{5/2}$	135624,45 ^A	124856,08 ^{A,B,C}	124856,08 ^a	$1,200^{A,B,C,D}$	$1,200^{A,B,C,D}$	$1,200^{b}$			
	5/2	136895,05 ^B	123998,10 ^D	124855,9 ^c	,	,	,			
		126665,31 ^C								
		127916,29 ^D								
9d	${}^{2}D_{3/2}$	139029,45 ^A	133006,65 ^{A,B,C}	133006,65 ^a	0,800 ^{A,B,C,D}	$0,800^{A,B,C,D}$	0,800 ^b			
		140301,17 ^в	132063,20 ^D							
		159747,58 [°]								
	200	160985,81 ^b	12207 C 00 A B C	10005 (003		1 200 A B C D	1 coch			
	$^{2}D_{5/2}$	139033,81 ¹¹	1330/6,90 ^{1,0,0}	133076,90*	1,200	1,200	1,200°			
		140305,42	132118,50							
		159/52,22 160000 48 ^D								
50	^{2}G	111057 30 ^A	11/75/ 90 ^{A,B,C}	114754 90 ^a	0 889 ^{A,B}	0 880 ^{A,B,C,D}	0 880 ^b			
Jg	U 7/2	113227 32 ^B	113598 10 ^D	1147534°	0,007	0,007	0,007			
	$^{2}G_{\alpha \alpha}$	111957.59 ^A	114755.34 ^{A,B,C}	114755.34 ^a	1.111 ^{A,B}	1.111 ^{A,B,C,D}	1.111 ^b			
	-9/2	113227.50 ^B	113599.70 ^D	114753.4°	-,	-,	.,			
6g	$^{2}G_{7/2}$	124028,46 ^A	126952,47 ^{A,B,C}	126952,47 ^a	0,889 ^{A,B}	0,889 ^{A,B,C,D}	0,889 ^b			
0	112	125298,62 ^B	125790,20 ^D	126950,2 ^c						
	${}^{2}G_{9/2}$	124028,57 ^A	126953,16 ^{A,B,C}	126953,16 ^a	1,111 ^{A,B}	1,111 ^{A,B,C,D}	1,111 ^b			
	=	125298,73 ^B	125791,10 ^D	126950,2°						
7g	$^{2}G_{7/2}$	131313,86 ^A _	134318,02 ^{A,B,C} _	134318,02 ^a	0,889 ^{A,B,C,D}	0,889 ^{A,B,C,D}	0,889 ^b			
		132584,70 ^B	133162,00 ^D	134316,4°						
		118378,81 ^C								
		119632,94 ^D								

Tablo 3.11. La III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Seviveler		Е			g-carpani		
Konf. Terim		Bu ç	alışma	Diğer	Bu ça	işma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	${}^{2}G_{9/2}$	131313,92 ^A	134319,39 ^{A,B,C}	134319,39 ^a	1,111 ^{A,B,C,D}	1,111 ^{A,B,C,D}	1,111 ^b
	<i>y</i> /2	132584,77 ^B	133162,50 ^D	134316,4°	,	,	,
		118379,35 ^C					
		119633,48 ^D					
8g	$^{2}G_{7/2}$	136044,56 ^A	139100,48 ^{A,B,C}	139100,48 ^a	0,889 ^{A,B,C,D}	0,889 ^{A,B,C,D}	0,889 ^b
		137315,97 ^b	137948,60 ^D				
		133348,66°					
	$2\mathbf{C}$	134598,81 ⁻	120101 70A,B,C	120101 708	1 111A,B,C,D	1 111A,B,C,D	1 111b
	G _{9/2}	137316.02 ^B	139101,70 ^D	159101,70	1,111	1,111	1,111
		133349 58 ^C	137740,70				
		134599.75 ^D					
Tek par	ite icin:	10.077,70					
4f	${}^{2}F^{0}{}_{5/2}$	11875.50 ^A	7195.14 ^{A,B,C}	7195.14 ^a	0.857 ^{A,B,C}	0.857 ^{A,B,C,D}	0.857 ^b
	512	11874,53 ^B	14522,06 ^D	7193,4°	- ,	- ,	- ,
		11831,40 ^C					
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	13549,56 ^A	8695,41 ^{A,B,C}	8695,41 ^a	1,143 ^{A,B,C}	1,143 ^{A,B,C,D}	1,143 ^b
		13540,91 ^B	16218,56 ^D	8693,6 [°]			
	200	13544,79 ^C	A DALE O LA BC		o sssABC	o cccABCD	0. (0)
6р	${}^{2}\mathbf{P}_{1/2}^{0}$	43454,17 ^A	42015,04 ^{A,B,C}	42015,04 ^a	0,666 ^{A,b,C}	0,666 ^{A,B,C,D}	0,63 ^a
		$43384, / /^{-}$	42306,96	42014,92			0,666°
	$2\mathbf{p}^{0}$	45540 70 ^A	45110 04A,B,C	45110 04 ^a	1 23/A,B,C	1 334A,B,C,D	1 37 ^a
	I 3/2	45525 89 ^B	44801 76 ^D	45110,94	1,554	1,554	1,37 1 334 ^b
		45533.23 ^C	44001,70	45110,04			1,554
7p	${}^{2}\mathrm{P}^{\mathrm{o}}{}_{1/2}$	132426,11 ^A	93232,39 ^{A,B,C}	93232,39ª	0,666 ^A	0,666 ^{A,B,C,D}	0,666 ^b
1	1/2	,	93037,26 ^D	93232,4°	,	,	,
	${}^{2}P^{o}_{3/2}$	132639,00 ^A	94461,44 ^{A,B,C}	94461,44 ^a	1,334 ^A	1,334 ^{A,B,C,D}	1,334 ^b
			94040,46 ^D	94461,5°			
8p	${}^{2}P^{0}{}_{1/2}$	137060,08 ^A	115602,26 ^{A,B,C}	115602,26 ^a	0,666 ^{A,B,C}	0,666 ^{A,B,C,D}	0,666 ^b
		110535,08 ^b	115010,10 ^D	115601,6 ^e			
	200	110535,09 ^e	11, coo5, coA.B.C	11/225 028	1.224A.B.C	1 22 (A.B.C.D	1 2240
	P ⁺ _{3/2}	13/243,34 110577 74 ^{B,C}	116225,92	116225,92 116225 3°	1,334	1,334	1,334
9n	$2\mathbf{p}^{0}$	$140245 \ 12^{A}$	127548 93 ^{A,B,C}	110223,5 127548 93 ^a	0 666 ^{A,B,C}	0 666 ^{A,B,C,D}	0.666 ^b
уþ	1 1/2	134640.09^{B}	127348,93 126788.60 ^D	127540,75	0,000	0,000	0,000
		134640.05°	120700,00				
	${}^{2}P^{0}_{3/2}$	140430,97 ^A	127935,04 ^{A,B,C}	127935,04 ^a	1,334 ^{A,B,C}	1,334 ^{A,B,C,D}	1,334 ^b
	5/2	134699,70 ^B	127088,10 ^D				
		134699,64 ^C					
5f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	113330,40 ^A	92454,54 ^{A,B,C}	92454,54 ^a	0,857 ^A	0,857 ^{A,B,C,D}	-
	2-0		92659,86 ^b	92454,6°		AABCD	
	${}^{2}F_{7/2}^{\circ}$	113359,79*	92534,73 ^{m,b,c}	92534,73"	1,143**	1,143	-
6f	$2 \mathbf{E}^{0}$	125128 22 ^A	92769,56 ⁻	92534,4°	0 857 ^{A,B}	0.857A,B,C,D	0.857 ^b
01	Г 5/2	96/16 81 ^B	114669,60 114679 40 ^D	114889,80	0,837	0,837	0,857
	${}^{2}\mathrm{F}^{\mathrm{o}}$	125156 56 ^A	114079,40 114938 90 ^{A,B,C}	114938 90 ^a	1 143 ^{A,B}	1 143 ^{A,B,C,D}	1 143 ^b
	1 // <u>2</u>	96418.07 ^B	114731.70 ^D	114938.8°	1,145	1,145	1,145
7f	${}^{2}\mathrm{F}^{0}_{5/2}$	132277,92 ^A	127042,58 ^{A,B,C}	127042,58 ^a	0,857 ^{A,C}	0,857 ^{A,B,C,D}	0,857 ^b
	5/2	106805,03 ^C	126536,40 ^D	127042,6 ^c	,		
	${}^{2}F^{o}_{7/2}$	132290,12 ^A	127075,60 ^{A,B,C}	127075,60 ^a	1,143 ^{A,C}	1,143 ^{A,B,C,D}	1,143 ^b
	2_0	106813,72 ^C	126566,00 ^D	127074,7°	A A A A A A A A A A A A A A A A A A A		h
8f	² F ^o _{5/2}	136924,41 ^A	134373,83 ^{А, Б, С}	134373,83 ^a	0,857 ^{д.в.с}	0,857 ^{а,в,с,р}	0,857°
		116902,98 ⁵	133689,50	134371,8°			
	$^{2}\mathbf{F}^{0}$	125556,48 136033 11 ^A	13/300 63 ^{A,B,C}	13/300 63 ^a	1 1/13 ^{A,B,C}	1 1/3 ^{A,B,C,D}	1 1/13 ^b
	1 7/2	116903 48 ^B	133708 00 ^D	134399,03	1,145	1,145	1,145
		125559.39 ^C	100,00,00	101021,0			

^aNIST Atomic Spectra Database [63], ^bQuinet ve Biémont [48], ^cSugar ve Kaufman [131], *Tablonun daha geniş hali Tablo A.3'te verilmektedir.

3.3.2. La III'ün elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

MCHF ve HFR yöntemleriyle La III'ün elektrik dipol geçişleri için ışıma parametreleri (dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları) hesaplandı. nd (n = 5–9)–nf (n = 4–8), nd–np (n =5–9), np (n = 6–9)–ns (n = 6–10) ve ng (n = 5–8)–nf (n = 4–8) geçişlerinin λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve *g*A_{ki} (sn⁻¹) ağırlıklı geçiş olasılıkları Tablo 3.12'de verilmektedir. Ayrıca daha çok sayıda sonuçlar Ekler kısmındaki Tablo A.4'te yer almaktadır. Tablolarda sadece tek pariteli seviyeler "^o" indisiyle belirtilirken geçiş olasılığı için 10'un kuvvetleri parantez içinde yazıldı.

MCHF+BP hesaplamalarında Tablo 3.10'da verilen B konfigürasyon setindeki çift pariteli ve A'nın tek pariteli seviyeleri arasında yapılan geçişler A hesabı ve A konfigürasyon setindeki çift ve tek pariteli seviyeleri arasındaki geçişler B hesabı olarak MCHF program paketi [412] ile 272 mümkün elektrik dipol geçişleri elde edildi. Bu geçişler için elde edilen veriler Tablo 3.12 ve Tablo A.4'te sunulmaktadır. Tablolarda geçiş olasılıkları üst seviyenin istatistiksel ağırlığıyla çarpılarak ağırlıklı geçiş olasılıklarına (gA_{ki}) çevrildi. Tablo 3.12 ve Tablo A.4'te hesaplanan geçişler için dalga boyları, ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarının farklı konfigürasyon setlerine ait hesaplamaları A ve B üst indisiyle verilmektedir. Hesap sonuçları incelendiğinde birçok geçiş için karşılaştırma değerleri [119, 132–135] ile uyumun olduğu görülmektedir. 6s-6p, 6s-8p ve 6s-9p geçişlerinde A hesabı iyi olmasına rağmen B hesabının sonuçları kötüdür. 5f-6g, 5f-7g, 5f-8g ve 6d-9p geçişlerinde hem A hem de B hesap sonuçlarıyla karşılaştırma değerleri arasında uyum yoktur. 6f-7g, 6f-8g 7d-9p geçişlerinde dalga boyu ve gf sonuçları kötü olmasına rağmen gA_{ki} değerleri uyumludur. 5d–4f geçişlerinin dalga boyu uyumsuzken, 6d-5f geçişlerinin dalga boyu iyi olmasına rağmen diğer ışıma parametrelerinde uyum azdır. Bu uyumsuzlukların giderilmesi için öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin dikkate alındığı konfigürasyon setleriyle yapılan geçişlerde de düzelme olmadığı görüldüğünden tablolarda verilmedi. Kapalı alt tabakaların dışında bir dış elektron olduğu için diğer alt tabakalardaki elektronlar arasındaki etkileşim oldukça azdır. Konfigürasyon
HFR program paketiyle [418] Tablo 3.10'da verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında yapılan A, B, C ve D hesaplamaları için sırasıyla 383, 7785, 1235 ve 2499 tane mümkün elektrik dipol geçişleri elde edildi. Geçiş verileri fazla olduğu için sadece nd (n = 5-9)-nf (n = 4-8), nd-np (n = 5-9), np (n = 5-9)(6-9)-ns (n = 6-10) ve ng (n = 5-8)-nf (n = 4-8) geçişlerinin dalga boyları, ağırlıklı salınıcı siddetleri ve ağırlıklı geçiş olasılıkları A, B, C ve D üst indisiyle Tablo 3.12 ve Tablo A.4'te verilmektedir. A, B ve C hesaplarında en küçük kareler yöntemiyle elde edilen enerji değerleri deneysel verilere uydurma yapılarak elde edilen parametrelerle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. D hesabında en küçük kareler yöntemi kullanılmadı. Birçok geçiş için diğer çalışmalarla karşılaştırıldığında elde edilen sonuçların uyumlu olduğu görülmektedir. Dalga boylarında uyum çok iyi olmasına rağmen bazı ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarında uyum azdır. Özellikle 6s–8p, 6s–9p, 4f–6d ve 7s–9p gecislerinde dalga boyundaki uyum iyi olduğu halde diğer gecis parametrelerinde uyum oldukça azdır. 5d–4f geçişinin D hesabında dalga boylu sonuçları uyumsuzdur. Ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları için karşılaştırma verileri birkaç geçiş hariç sadece Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle yapılan çalışmadır [135]. Bu çalışma ile karşılaştırıldığında sadece HFR yöntemiyle elde edilen bazı geçişler için uyum daha az gözükmektedir. Ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarındaki uyumsuzlukların iyileştirilmesi için özden uyarılmaların yapıldığı B hesabındaki sonuçlarda da iyileştirme olmadığı görülmektedir.

Geç	işler		λ			gf			gA _{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ç	çalışma	Diğer	Bu ç	alışma	Diğer
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d ² D _{3/2}	8f ² F ^o _{5/2}	729,95 ^A 727,90 ^B	744,192 ^{A,C} 744,193 ^B 748 504 ^D	744,19 ^a	0,102 ^{A,B}	0,17566 ^{A,C} 0,17605 ^B 0,17465 ^D	0,110 ^a	1,28(9) ^{A,B}	2,12(9) ^{A,B,C} 2,08(9) ^D	1,33(9) ^a
$5d^{-2}D_{5/2}$	$8f^{2}F^{o}_{7/2}$	738,81 ^A 736,57 ^B	753,032 ^{A,B,C} 757,964 ^D	753,03 ^a	0,153 ^{A,B}	0,24800 ^{A,C} 0,24857 ^B 0,24638 ^D	0,155 ^a	$1,87(9)^{A}$ $1,89(9)^{B}$	2,92(9) ^{A,B,C} 2,86(9) ^D	1,83(9) ^a
$5d^{-2}D_{5/2}$	$8f^{2}F^{0}_{5/2}$	738,86 ^A 736,60 ^B	753,179 ^{A,B,C} 758,070 ^D	753,18 ^a	0,008 ^{A,B}	0,01240 ^{A,C} 0,01243 ^B 0,01232 ^D	0,008 ^a	9,33(7) ^A 9,42(7) ^B	1,46(8) ^{A,B,C} 1,43(8) ^B	9,14(7) ^a
$4f^{2}F^{o}_{5/2}$	$8g^{-2}G_{7/2}$	797,65 ^A 808,30 ^B	758,120 ^{A,C} 758,119 ^B 809,611 ^D	758,12 ^a	0,027 ^{A,B}	0,02434 ^{A,C} 0,02349 ^B 0,02279 ^D	0,014 ^a	$2,86(8)^{A}$ 2,75(8) ^B	2,82(8) ^A 2,73(8) ^B 2,83(8) ^C	1,67(8) ^a
$4f^{2}F^{o}_{7/2}$	$8g^{2}G_{9/2}$	808,44 ^A 819,40 ^B	766,833 ^{A,C} 766,834 ^B 820,884 ^D	766,83 ^a	0,035 ^A 0,034 ^B	0,03120 ^{A,C} 0,03005 ^B 0,02914 ^D	0,018 ^a	3,53(8) ^A 3,39(8) ^B	3,54(8) ^{A,C} 3,41(8) ^B 2,89(8) ^D	2,09(8) ^a
5d ² D _{3/2}	$9p {}^{2}P^{o}_{3/2}$	711,73 ^A 709,80 ^B	781,647 ^{A,B,C} 787,411 ^D	781,65 ^a	0,002 ^{A,B}	0,00240 ^{A,C} 0,00231 ^B 0,00239 ^D	0,001 ^a	2,20(7) ^{A,B}	$2,62(7)^{A}$ 2,52(7) ^B 2,63(7) ^C	1,54(7) ^a
$5d^{2}D_{3/2}$	$9p \ ^{2}P^{o}_{1/2}$	712,67 ^A 710,70 ^B	784,013 ^{A,B,C} 789,272 ^D	784,01 ^a	0,006 ^{A,B}	0,01199 ^{A,C} 0,01153 ^B 0,01191 ^D	0,007 ^a	7,58(7) ^A 7,56(7) ^B	13,01(7) ^{A,C} 12,50(7) ^B 12,80(7) ^D	7,61(7) ^a
$4f^{2}F^{0}_{5/2}$	$7g^{-2}G_{7/2}$	828,93 ^A 808,30 ^B	786,641 ^{A,C} 786,640 ^B 842.250 ^D	786,64 ^a	0,039 ^A 0,027 ^B	0,03412 ^{A,C} 0,03300 ^B 0,03186 ^D	0,021 ^a	$3,74(8)^{A}$ 2,75(8) ^B	$3,68(8)^{A,C}$ $3,56(8)^{B}$ $3,00(8)^{D}$	2,23(8) ^a
$5d^{2}D_{3/2}$	$7f^{2}F^{o}_{5/2}$	755,57 ^A 753,40 ^B	787,137 ^{A,C} 787,138 ^B 790,847 ^D	787,14 ^a	0,156 ^{A,B}	0,30476 ^{A,C} 0,30501 ^B 0,30333 ^D	0,203 ^a	$1,82(9)^{A}$ $1,84(9)^{B}$	3,28(9) ^{A,B,C} 3,24(9) ^D	2,18(9) ^a
5d ² D _{5/2}	$9p {}^{2}P^{o}_{3/2}$	720,20 ^A 718,10 ^B	791,566 ^{A,B,C} 798,005 ^D	791,57 ^a	0,009 ^{A,B}	0,02137 ^{A,C} 0,02054 ^B 0,02120 ^D	0,013 ^a	$1,14(8)^{A}$ $1,13(8)^{B}$	$2,28(8)^{A,C}$ $2,19(8)^{B}$ $2,22(8)^{D}$	1,33(8) ^a
$4f^{2}F^{o}_{5/2}$	$9d^{-2}D_{3/2}$	779,10 ^A 789,30 ^B	794,840 ^{A,B} 794,397 ^C 850,118 ^D	794,84 ^ª	0,001 ^{A,B}	0,00030 ^{A,C} 0,00021 ^B 0,00002 ^C 0,00028 ^D	0,004 ^a	0,95(7) ^{A,B}	$3,20(6)^{A}$ 2,17(6) ^B 2,29(5) ^C 2,62(6) ^D	4,35(7) ^a

Tablo 3.12. La III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹)*

Tablo	3.12	2. D	evam
1 4010			e , am

Geç	işler		λ			gf			gA _{ki}			
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	Bu çalışma			
		MCHF+BP	P HFR	çalışmalar	MCHF+BI	P HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar		
$4f^{2}F^{o}_{7/2}$	$7g^{-2}G_{9/2}$	840,60 ^A 852,44 ^B	796,034 ^A 796,027 ^B 796,026 ^C 854,456 ^D	796,03 ^ª	0,049 ^{A,B}	$0,00125^{A,C}$ $0,04222^{B}$ $0,04370^{C}$ $0,04071^{D}$	0,026 ^a	4,67(8) ^A 4,48(8) ^B	$0,13(8)^{A}$ $4,44(8)^{B}$ $4,60(8)^{C}$ $3,72(8)^{D}$	2,78(8) ^a		
$5d^{-2}D_{5/2}$	$7f^{2}F^{o}_{7/2}$	765,05 ^A 762,66 ^B	796,989 ^{A,B,C} 801,343 ^D	796,99ª	0,231 ^A 0,233 ^B	0,42998 ^{A,C} 0,43038 ^B 0,42765 ^D	0,286 ^a	$2,64(9)^{A}$ $2,69(9)^{B}$	4,52(9) ^{A,B,C} 4,44(9) ^D	3,00(9) ^a		
$5d^{-2}D_{5/2}$	$7f^{2}F^{o}_{5/2}$	765,12 ^A 762,70 ^B	797,198 ^{A,C} 797,197 ^B 801.534 ^D	797,20 ^a	0,012 ^{A,B}	0,02149 ^{A,C} 0,02151 ^B 0,02138 ^D	0,014 ^a	$1,32(8)^{A}$ $1,34(8)^{B}$	2,26(8) ^{A,B,C} 2,22(8) ^D	1,50(8) ^a		
$4f \ ^2F^{o}{}_{7/2}$	9d ² D _{5/2}	789,37 ^A 799,80 ^B	803,977 ^{A,C} 803,978 ^B 862,147 ^D	803,98ª	0,0001 ^A 0,00 ^B	0,00043 ^{A,C} 0,00028 ^B	0,006 ^a	$0,18(7)^{A}$ $0,20(7)^{B}$	$0,442(7)^{A,C}$ $0,289(7)^{B}$ $0.358(7)^{D}$	6,00(7) ^a		
$4f^{2}F^{o}_{5/2}$	$6g^{-2}G_{7/2}$	882,21 ^A 895,30 ^B	835,023 ^{A,C} 835,022 ^B 898,006 ^D	835,02 ^a	$0,058^{\rm A}$ $0,057^{\rm B}$	$0,04789^{A,C}$ $0,04643^{B}$ 0.04453^{D}	0,030 ^a	$4,98(8)^{A}$ $4,73(8)^{B}$	$4,58(8)^{A,C}$ $4,44(8)^{B}$ $3,68(8)^{D}$	2,87(8) ^a		
$4f^{-2}F^{o}_{\ 7/2}$	$6g^{-2}G_{9/2}$	895,44 ^A 908,89 ^B	845,609 ^{A,C} 845,610 ^B 911 892 ^D	845,61 ^a	$0,073^{\rm A}$ $0,072^{\rm B}$	0,06130 ^{A,C} 0,05938 ^B 0,05685 ^D	0,038 ^a	$6,06(8)^{A}$ 5,79(8) ^B	$5,72(8)^{A,C}$ $5,54(8)^{B}$ $4,56(8)^{D}$	3,58(8)		
$4f \ ^2F^{o}_{\ 7/2}$	$6g^{-2}G_{7/2}$	895,44 ^A 908,89 ^B	845,615 ^{A,C} 845,616 ^B 911 899 ^D	845,62 ^a	0,002 ^{A,B}	$0,00175^{A,C}$ $0,00171^{B}$ 0.00162^{D}	0,001 ^a	$1,73(7)^{A}$ $1,65(7)^{B}$	$1,63(7)^{A,C}$ $1,59(7)^{B}$ $1,30(7)^{D}$	1,02(7) ^a		
$4f^{2}F^{o}_{5/2}$	8d ² D _{3/2}	800,38 ^A 845,60 ^B	850,723 ^{A,C} 850,722 ^B 913,446 ^D	850,72 ^a	$0,0003^{\rm A}$ $0,000^{\rm B}$	$0,00044^{A,C}$ $0,00032^{B}$ $0,00041^{D}$	0,007 ^a	$0,29(7)^{A}$ $0,12(7)^{B}$	$0,409(7)^{A,C}$ $0,297(7)^{B}$ $0,330(7)^{D}$	6,16(7) ^a		
$5d^{-2}D_{3/2}$	$8p^{2}P^{o}_{3/2}$	728,25 ^A 726,20 ^B	860,393 ^{A,C} 860,394 ^B 866,294 ^D	860,39 ^a	0,001 ^{A,B}	0,00484 ^{A,C} 0,00470 ^B 0,00481 ^D	0,003 ^a	$1,27(7)^{A}$ $1,26(7)^{B}$	$4,36(7)^{A,C}$ $4,24(7)^{B}$ $4,28(7)^{D}$	2,76(7) ^a		
$4f \ ^2F^{o}_{\ 7/2}$	8d ² D _{5/2}	811,20 ^A 822,20 ^B	860,876 ^{A,C} 860,877 ^B 927 049 ^D	860,88 ^a	$0,00003^{\rm A}$ $0,000^{\rm B}$	0,000401 0,00063 ^{A,C} 0,00044 ^B 0,00058 ^D	0,009 ^a	$0,35(6)^{\mathrm{A}}$ $0,45(6)^{\mathrm{B}}$	$0,564(7)^{A,C}$ $0,399(7)^{B}$ $0.451(7)^{D}$	8,49(7) ^a		
$5d^{2}D_{3/2}$	8p ² P ^o _{1/2}	729,22 ^A 727,20 ^B	865,035 ^{A,C} 865,036 ^B 870,167 ^D	865,04 ^a	0,004 ^{A,B}	0,02409 ^{A,C} 0,02338 ^B 0,02395 ^D	0,015 ^a	0,50(8) ^A 0,49(8) ^B	$2,15(8)^{A,C}$ $2,08(8)^{B}$ $2,11(8)^{D}$	1,36(8) ^a		

Tablo	3.12.	Devam
-------	-------	-------

Geç	işler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ç	alışma	Diğer	Bu ç	alışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d ² D _{3/2}	6f ² F ^o _{5/2}	798,66 ^A 796,20 ^B	870,398 ^{A,C} 870,399 ^B 872,678 ^D	870,40 ^a	0,256 ^A 0,258 ^B	0,61357 ^A 0,61441 ^B 0,61357 ^C 0,61196 ^D	0,446 ^a	2,68(9) ^A 2,71(9) ^B	$5,402(9)^{A}$ $5,41(9)^{B}$ $5,40(9)^{C}$ $5,36(9)^{D}$	3,93(9) ^a 4,21(9) ^b
$5d^{-2}D_{5/2}$	$8p^{2}P^{0}_{3/2}$	737,12 ^A 734,90 ^B	872,428 ^{A,B,C} 879,134 ^D	872,43 ^a	0,007 ^{A,B}	0,04299 ^{A,C} 0,04170 ^B 0,04266 ^D	0,027 ^a	$0,82(8)^{\rm A}$ $0,81(8)^{\rm B}$	$3,77(8)^{A,C}$ $3,65(8)^{B}$ $3,68(8)^{D}$	2,38(8) ^a
6s ² S _{1/2}	$9p {}^{2}P^{o}_{3/2}$	809,25 ^A 6492,90 ^B	874,555 ^{A,B,C} 887,8532 ^D	874,56 ^a	$0,058^{\rm A}$ $0,649^{\rm B}$	0,00017 ^{A,C,D} 0,00004 ^B	0,005 ^a	5,88(8) ^A 1,03(8) ^B	$1,50(6)^{A,C}$ $3,10(5)^{B}$ $1.43(6)^{D}$	3,89(7) ^a
$6s^{2}S_{1/2}$	$9p \ ^2P^{o}_{1/2}$	810,47 ^A 6572,20 ^B	877,518 ^{A,B,C} 890,220 ^D	877,52 ^ª	$0,029^{\rm A}$ $0,238^{\rm B}$	0,00009 ^{A,C} 0,00002 ^B 0,00008 ^D	0,002 ^a	$2,95(8)^{A}$ $0,37(8)^{B}$	$7,41(5)^{A,C}$ $1,52(5)^{B}$ $7,10(5)^{D}$	1,93(7) ^a
$5d^{2}D_{5/2}$	$6f^{2}F^{o}_{7/2}$	809,22 ^A 806,53 ^B	882,334 ^{A,B,C} 885,300 ^D	882,34 ^a	0,386 ^A 0,389 ^B	0,86466 ^{A,C} 0,86593 ^B 0,86177 ^D	0,629 ^a	3,93(9) ^A 3,99(9) ^B	7,41(9) ^{A,C} 7,42(9) ^B 7,33(9) ^D	5,39(9) ^a 5,95(9) ^b
5d ² D _{5/2}	$6f^{2}F^{o}_{5/2}$	809,34 ^A 806,70 ^B	882,712 ^A 882,716 ^{B,C} 885,709 ^D	882,72 ^a	0,019 ^A 0,020 ^B	0,04321 ^{A,C} 0,04328 ^B 0,04307 ^D	0,031 ^a	$1,98(8)^{\rm A}$ 2,00(8) ^B	3,69(8) ^A 3,71(8) ^B 3,70(8) ^C 3,66(8) ^D	2,69(8) ^a 2,99(8) ^b
$4f^{-2}F^{o}_{5/2}$	$5g^{-2}G_{7/2}$	987,36 ^A 1003,70 ^B	929,717 ^{A,C} 929,714 ^B 1008,41 ^D	929,72 ^a	0,093 ^A 0,091 ^B	0,06003 ^A 0,05824 ^B 0,06004 ^C 0,05535 ^D	0,040 ^a	6,35(8) ^A 6,05(8) ^B	4,63(8) ^{A,C} 4,49(8) ^B 3,63(8) ^D	3,06(8) ^a
$4f^{\ 2}F^{o}_{\ 7/2}$	$5g^{-2}G_{9/2}$	1003,96 ^A 1020,89 ^B	942,862 ^{A,C} 942,863 ^B 1025,949 ^D	942,86 ^a	0,106 ^A 0,104 ^B	0,07674 ^{A,C} 0,07440 ^B 0,07052 ^D	0,051 ^a	6,99(8) ^A 6,64(8) ^B	5,76(8) ^{A,C} 5,58(8) ^B 4,47(8) ^D	3,81(8) ^a
$4f \ ^2F^{o}_{\ 7/2}$	$5g^{2}G_{7/2}$	1003,96 ^A 1020,89 ^B	942,867 ^{A,C} 942,866 ^B 1025,966 ^D	942,87ª	0,003 ^{A,B}	0,00219 ^{A,C} 0,00213 ^B 0,00201 ^D	0,00 1 ^a	2,00(7) ^A 1,89(7) ^B	1,65(7) ^{A,C} 1,60(7) ^B 1,28(7) ^D	1,09(7) ^a
$4f^{-2}F^{o}_{-5/2}$	$7d^{-2}D_{3/2}$	833,98 ^A 845,60 ^B	967,688 ^{A,B,C} 1047,542 ^D	967,69 ^a	0,0001 ^A 0,000 ^B	$0,00067^{A,C}$ $0,00054^{B}$ $0,00062^{D}$	0,012 ^a	1,48(6) ^A 1,17(6) ^B	0,474(7) ^{A,C} 0,381(7) ^B 0,374(7) ^D	8,53(7) ^a

^aBiémont ve çalışma arkadaşları [135], ^bMigdalek ve Wyrozumska [134], * Tablonun daha geniş hali Tablo A.4'te verilmektedir.

Nadir toprak elementlerinden seryumun özellikle hem nötral hem de bir kez iyonlaşmış hallerinin optik yayınlama spektrumu zengindir. Bu özellik seryumun, hem ışık verimi hem de renk oluşturmayı geliştirdiğinden dolayı yüksek yoğunluklu deşarj ışık kaynaklarında kullanımını cazip hale getirmektedir.

Nötral seryumun (Ce I) karmaşık spektrumu hem deneyciler hem de teorikçiler için bir sorun oluşturmayı sürdürmektedir. Atomik yapı parametrelerinin belirlenmesi üzerine yoğun bir çalışma vardır. Nötral seryumun (Ce I) enerji seviyeleri, ışıma parametreleri, izotop kaymaları ve geçiş enerjileri ile ilgili şimdiye kadar yapılan çalışmalar Tablo 1.3'te kaynak numaraları ile verilmiştir [1, 34, 35, 38-40, 45, 51, 52, 136–158]. Ce I için yayınlanan mevcut çalışmalar arasında büyük öneme sahip olanlar, Martin'in kapsamlı enerji seviye analizleri [1, 138, 139], Meggers ve arkadaşları tarafından gözlenen yaklaşık 1000 çizgi için çizgi şiddetleri [140, 141] ve Bisson ve çalışma arkadaşlarının seviye yarı ömürleri ve atomik geçiş olasılıklarıyla ilgili olan calışmalarıdır [142, 143]. Martin'in 338,5–1000 nm aralığında yaklaşık 20000 sınıflandırılmış çizgilerini içeren yayınlanmamış olan verileri nötral seryum spektrumunun zorluğunu büyük ölçüde gösterir. Son yıllarda yapılan çalışmalarda Fourier dönüşüm spektrumu ile 2874 çizgi için geçiş olasılıkları [151] ve zamançözünürlüklü lazer indirgenmiş floresans tekniğiyle 153 seviyenin yarı ömürleri sunulmuştur [150]. Ayrıca, seryumun izotop kaymaları da çeşitli çalışma grupları tarafından çalışılmıştır [153–158].

Seryum güneş sistemindeki nadir toprak elementleri arasında en yüksek bolluğa sahip olduğu için de önemli bir elementtir. Ce II'nin spektrum çizgileri sönmüş yıldızların kimyasında çokça gözlenir. Ce II'nin enerji seviyeleri, iyonlaşma potansiyeli, bazı çizgilerinin tanımlanması ve güneşteki bollukları incelenmiştir [10, 21, 34, 52, 69, 136, 159–161]. Işıma parametreleri deneysel olarak geçmişte az çalışılmıştır. Zaman-çözünürlüklü lazer-indirgenmiş floresans tekniğiyle yarı ömürler [116, 148, 162, 163] ve 921 çizginin geçiş olasılıklarını belirlemek için Fourier dönüşüm spektroskopisiyle dallanma kesirleri [152] incelenmiştir. Ayrıca, 6185 spektrum çizgisinin Landé g-çarpanları ve ağırlıklı salınıcı şiddetleri [164], HFR+CP

yöntemiyle yarı ömürleri, salınıcı şiddetleri ve geçiş olasılıkları [165] çalışılmıştır. Ce II'nin kararlı izotopları için 566,1–590,0 nm aralığındaki geçişlerin izotop kaymaları lazer-iyon-demet spektroskopisiyle belirlenmiştir [166].

Nötral ve bir kez iyonlaşmış seryumun (Ce I ve Ce II) iyonlaşma potansiyelleri ve uyarılma enerjileri çok konfigürasyonlu Hartree-Fock [412] ve relativistik Hartree-Fock [418] yöntemleri ile hesaplandı.

3.4.1. Ce I ve Ce II'nin geçiş enerjileri

Ce I ve Ce II'nin iyonlaşma potansiyelleri ve uyarılma enerjileri MCHF [412] ve HFR [418] yöntemleri ile hesaplandı ve elde edilen sonuçlar Tablo 3.13'te verilmektedir. Tabloda iyonlaşma potansiyelleri ve uyarılma enerjileri cm⁻¹ birim sistemlerinde ve sadece tek pariteli seviyeler "^o" indisiyle sunulmaktadır. Her iki hesaplamada da değerlik elektronları arasındaki karşılıklı etkileşme dikkate alındı.

Ce I ve Ce II'nin geçiş enerjilerinin MCHF+BP hesaplamalarında Ce II'nin iyonlaşma potansiyeli için [Cd] özü dışında $5p^64f^2$, $5p^65d^2$, $5p^64fnp$ (n = 6, 7), $5p^64fnf$ (n = 5, 6), $5p^64f6s$, $5p^55d^26p$ ve $5p^56s^26p$, Ce II'nin uyarılma enerjileri ve Ce I'in iyonlaşma potansiyeli için [Xe] özü dışında $4f5d^2$, 4f5d6s, $4f6s^2$ ve $4f^26p$ konfigürasyonları dikkate alındı. Ce I'in uyarılma enerjileri için $4f5d6s^2$, $4f5d^26s$, $4f^26s6p$, $4f6s6p^2$, $5d^36p$, $5d^26s6p$, $5d6s^26p$, $5d6p^3$ ve $6s6p^3$ konfigürasyonları seçildi. HFR hesaplamalarında ise, Ce II'nin iyonlaşma potansiyeli için $4f^2$, $5d^2$, 4fnp (n = 6, 7), 4f5f, 5d6s, 4fnd (n = 5–7), 4f6s ve 4f5g, Ce II'nin uyarılma enerjileri ve Ce I'in iyonlaşma potansiyeli için $4f5d^2$, 4f5d6s, $4f6s^2$, $4f^26p$, $4f^3$, $4f^26s$, $4f^25d$, 4f5d6p, $5d^3$, 4f6s6p ve $5d^26s$ konfigürasyonları alındı. Ce I'in uyarılma enerjileri için $4f5d6s^2$, $4f^26s6p$, $4f6s6p^2$, $4f^26s^2$, $4f^25d6s$, $4f6s^26p$ ve $4f5d^26p$ konfigürasyonları seçildi. Bu konfigürasyonlar [Xe] özünü içerir.

HFR hesaplamalarında alınan konfigürasyon setleri değerlik elektronları arasındaki karşılıklı etkileşmeleri içerir. Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yaparak iyileştirilir ve en küçük kareler yönteminde spin-

yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri Ce I için 0,65 ve Ce II için 0,75 olarak seçildi. Ce I için en küçük kareler yöntemi ile deneysel verilere uydurma bilgisayar kısıtlamalarından dolayı yapılamadığından bu sonuçlar ilk elde edilen şekli ile verilmektedir.

Ce I ve Ce II'nin iyonlaşma potansiyelleri ve uyarılma enerjileri Tablo 3.13'te diğer calışmalarla karşılaştırmalı olarak sunulmaktadır. Karşılaştırma için veriler [63], [45] ve [51]'den alındı. Ce I ve Ce II'nin iyonlaşma potansiyelleri karşılaştırma verileri ile az uyumlu iken iki hesap birbiriyle uyumludur. Ce I'in uyarılma enerjilerinde ise $4f5d6s^{2} {}^{3}G^{0}$, ${}^{3}D^{0}$ ve ${}^{1}D^{0}{}_{2}$ seviyelerinin MCHF+BP ve HFR hesap sonuclarında uyum azdır. Ce II'nin MCHF+BP hesabı için $4f5d^2$ $^4H^{o}_{9/2}$ ve HFR için $4f5d^2$ $^4I^{o}_{9/2}$ seviyelerinde uyum kötüdür. Her iki yöntemde de $4f5d^2$ seviyesinin J = 9/2'li seviyelerinin birbirine konfigürasyon katkılarının fazla olduğu görüldü. Ce I ve Ce II'nin hesaplamalarında görülen uyumsuzlukların iyileştirilmesi için öz-değerlik veya öz-öz elektronları arasındaki karşılıklı etkilesmelerin hesaba alındığı konfigürasyonlar, konfigürasyon setlerine dahil edilmelidir. Bu durumda hem konfigürasyon sayısı hem de açık alt tabakalardaki elektron sayısı çok fazla arttığı için konfigürasyon etkileşme hesabı çok zor olmaktadır.

3.5. Ce III (Z = 58) için Hesaplama Sonuçları

İki kez iyonlaşmış seryum (Ce III) nötral ve bir kez iyonlaşmış hallerine göre daha az çalışılmıştır. Ce III enerji seviyeleri, ışıma parametreleri ve geçiş enerjileri ile ilgili çalışmalar [45, 167–175]'te bulunabilir. Ce III için yapılan ilk çalışmalarda enerji seviyeleri ve spektrum analizleri mevcuttur [167–170]. 11000–26000Å bölgesinde $4f^2$ –4f5d geçişlerinin dalga boyları deneysel olarak ölçülmüştür [171]. Bazı uyarılmış seviyelerin yarı ömürleri demet-folyo yöntemiyle [172] ve zaman-çözünürlüklü lazer spektroskopisiyle [148] çalışılmıştır. Ce III'ün enerji seviyeleri, Landé *g*-çarpanları, salınıcı şiddetleri ve geçiş olasılıkları için çeşitli teorik çalışmaları da yapılmıştır [48, 148, 173–175].

	Seviyele	er	Bu ç	alışma	Diğer çalışmalar
	Konf.	Terim	MCHF+BP	HFR	
		Ce I, T	aban hal [Xe] 4f5	$d6s^2 G_4^{\circ}$	
İP	$4f(^{2}F^{\circ})5d^{2}(^{3}F)$	⁴ H° _{7/2}	38495,91	39740,00	44672 ^a
		112			30971,44 ^b
					44521,44 ^c
UE	4f5d6s ²	${}^{3}\mathrm{F}^{\mathrm{o}}{}_{2}$	598,83	286,939	228,849 ^a
		${}^{3}\mathrm{F}^{\mathrm{o}}{}_{3}$	2015,07	1745,079	1663,120 ^a
		${}^{3}F^{0}_{4}$	3869,07	3548,514	3100,151 ^a
	$4f5d6s^2$	${}^{3}\text{H}^{0}_{4}$	1944,75	1459,635	1279,424 ^a
		${}^{3}\text{H}^{0}_{5}$	3318,86	2560,725	2208,657 ^a
		${}^{3}\text{H}^{0}_{6}$	5476,71	4546,599	3976,104 ^a
	$4f5d6s^2$	${}^{3}G^{o}{}_{3}$	2348,59	1512,246	1338,941 ^a
		${}^{3}\text{G}^{0}{}_{4}$	4123,27	3245,696	-
		${}^{3}\text{G}^{0}{}_{5}$	6016,45	4758,608	4199,367 ^a
	$4f5d6s^2$	$^{1}D_{2}^{o}$	4667,70	3455,762	2378,827 ^a
	$4f5d6s^2$	${}^{3}D_{1}^{0}$	5993,80	4093,175	3710,513 ^a
		${}^{3}D^{o}{}_{2}$	7301,30	5461,096	4766,323 ^a
		${}^{3}D_{3}^{0}$	7143,12	6979,718	5006,719 ^a
	(Ce II, Tabar	n hal [Xe] 4f(² F°)	$5d^{2}(^{3}F) {}^{4}H^{\circ}_{7/2}$	
İP	$4f^2$	${}^{3}\mathrm{H}_{4}$	103596,12	95394,10	87500 ^a
	2 2 2	4			89768,79 ^c
UE	$4f({}^{2}F^{\circ})5d^{2}({}^{3}F)$	⁴ H° _{9/2}	960,26	1162,368	2581,257 ^a
		⁴ H° _{11/2}	2749,12	2704,945	2879,695 ^a
	2 2 2	⁴ H° _{13/2}	4388,64	4235,424	4203,934 ^a
	$4f(^{2}F^{\circ})5d^{2}(^{3}F)$	⁴ I° _{9/2}	1346,88	685,785	1410,304 ^a
		⁴ I° _{11/2}	2506,23	2031,472	2563,233ª
		⁴ I° _{13/2}	3695,30	3333,187	3793,634 ^a
	2	⁴ I° _{15/2}	5754,10	5188,407	5455,845 ^a
	4f5d(³ F)6s	${}^{3}F^{o}_{3/2}$	3373,97	2654,066	2595,644 ^a
		${}^{3}F^{o}_{5/2}$	4283,66	4375,606	3363,427 ^a
		${}^{3}F^{o}_{7/2}$	4873,40	4705,325	4459,872 ^a
	2.2	${}^{3}F^{o}_{9/2}$	6420,99	6038,878	5675,763 ^a
	$4f^{2}(^{3}H)6s$	${}^{4}\text{H}_{7/2}$	-	3947,707	3854,012 ^a
		${}^{4}\text{H}_{9/2}$	-	4217,783	4165,550 ^a
		${}^{4}H_{11/2}$	—	5607,925	5513,709 ^a
	2 2 2	⁴ H _{13/2}	—	7076,004	6967,547 ^a
	$4f({}^{2}F^{\circ})5d^{2}({}^{3}F)$	${}^{2}S^{0}_{1/2}$	4410,83	4100,367	3508,470 ^a
	$4f(^{2}F^{\circ})5d^{2}(^{3}F)$	${}^{4}G^{o}_{5/2}$	3864,16	4466,708	-
		${}^{4}G^{o}_{7/2}$	5269,67	5395,109	5437,422 ^a
		${}^{4}G^{o}_{9/2}$	6174,73	6318,497	6389,942 ^a
		${}^{4}\text{G}^{0}_{11/2}$	7157,76	7381,370	7522,622 ^a

Tablo 3.13. Ce I ve Ce II'nin İP iyonlaşma potansiyeli (cm⁻¹) ve UE uyarılma enerjileri (cm⁻¹)

^aNIST Atomic Spectra Database [63], ^bGálvez ve çalışma arkadaşları [51], ^cCao ve Dolg [45]

İki kez iyonlaşmış seryumun (Ce III) çok konfigürasyonlu Hartree-Fock (MCHF) [412] ve relativistik Hartree-Fock (HFR) [418] yöntemleriyle bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları ve elektrik dipol geçişlerinin dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları hesaplandı. Bu sonuçlar Tablo 3.15 (daha geniş hali Tablo A.5) ve Tablo 3.16'da (daha geniş hali Tablo A.6) verilmektedir. Ce III'ün [Xe] özü dışında MCHF+BP ve HFR hesaplamaları için hem değerlik-değerlik hem de öz-değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen A ve B konfigürasyon setleri Tablo 3.14'te verilmektedir.

Seviyeler	Kor	Konfigürasyonlar						
	Α	В						
MCHF+BP hesa	plamaları için:							
Çift parite	$4f^2$, $5d^2$, $4fnp$ (n = 6, 7), $4f5f$, $5d6s$	$5p^{6}4f^{2}$, $5p^{6}5d^{2}$, $5p^{6}4fnp$ (n = 6, 7), $5p^{6}4fnf$ (n = 5, 6), $5p^{6}4f6s$, $5p^{5}5d^{2}6p$, $5p^{5}6s^{2}6p$						
HFR hesaplama	ları için:							
Çift parite	$4f^2$, $5d^2$, $4fnp$ (n = 6, 7), $4f5f$, $5d6s$	4f ² , 5d ² , 4fnp (n = 6, 7), 4fnf (n = 5, 6), 5d6s, 5d6d, 6p ²						
Tek parite	4fnd (n = 5–7), 4f6s, 4f5g	4fnd (n = 5–7), 4fns (n = 6–8), 4f5g, 5d6p						

Tablo 3.14. Ce III'e ait hesaplamalar için alınan konfigürasyon setleri

3.5.1. Ce III'ün bazı seviyelerinin enerjileri ve Landé g-çarpanları

İki kez iyonlaşmış seryumun [Xe] özü dışında $4f^2$, $5d^2$, 4fnp (n = 6, 7), 4fnf (n = 5, 6), 5d6s, 5d6d, $6p^2$, 4fnd (n = 5–7), 4fns (n = 6–8), 5d6p ve 4f5g uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF+BP ve HFR yöntemleriyle hesaplandı. Elde edilen sonuçlar Tablo 3.15 ve Ekler kısmındaki Tablo A.5'te sunulmaktadır. Enerji seviyeleri $4f^2$ ${}^{3}H_4$ taban hal seviyesine göre cm⁻¹ birim sistemine göre verilmektedir. Tablolarda farklı konfigürasyon setlerine göre hesaplanan sonuçlar MCHF+BP ve HFR için A ve B üst indisleriyle ve sadece tek pariteli seviyeler "⁰" indisiyle belirtilmektedir. Elde edilen sonuçların seviye enerjileri NIST verileri [63] ile ve Landé *g*-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ve [63] ile karşılaştırılmaktadır.

Ce III için MCHF+BP yöntemiyle tek pariteli seviyeleri için yapılan çalışmalarda 4f5d seviyesi taban enerji seviyesinden daha düşük çıktığından sadece çift pariteli seviyeler hesaplanabildi. Hem değerlik hem de öz ve değerlik elektronları arasındaki etkileşmelerin de alındığı konfigürasyon setleriyle bu durum düzeltilemedi. Bu yüzden Tablo 3.15 ve Tablo A.5'te MCHF+BP hesaplamaları için sadece çift pariteli seviyelerin enerjileri sunulmaktadır. A hesabında [Xe] özü alınarak değerlik elektronları arasındaki karşılıklı etkileşme dikkate alınırken, B hesabında [Cd] özü alınarak hem değerlik elektronları arasındaki hem de öz ve değerlik elektronları arasındaki karşılıklı etkileşme dikkate alınırken, B hesabında [Cd] özü alınarak hem değerlik elektronları arasındaki hem de öz ve değerlik elektronları arasındaki karşılıklı etkileşme dikkate alınırken, B hesabında [Cd] özü alınarak hem değerlik elektronları arasındaki hem de öz ve değerlik elektronları arasındaki karşılıklı etkileşme dikkate alınırken, B hesabında [Cd] özü alınarak hem değerlik elektronları arasındaki hem de öz ve değerlik elektronları arasındaki hem de öz ve değerlik elektronları arasındaki karşılıklı etkileşme dikkate alındı. Relativistik düzeltmeler dikkate alınarak elde edilen dalga fonksiyonlarıyla konfigürasyon etkileşme yöntemiyle

seviye enerjileri elde edildi. MCHF dalga fonksiyonları ve seviye enerjileri kullanılarak Landé *g*-çarpanları hesaplandı [413]. MCHF+BP hesaplamalarında elde edilen $4f^2$, 4fnp (n = 6, 7) ve 4f5f çift pariteli seviyelerinin enerjileri ve Landé *g*-çarpanları tablolarda verilmektedir. Hesap sonuçları incelendiğinde $4f^2$, 4f7p ve 4f5f seviyeleri için A hesabı karşılaştırma değerleri ile daha uyumluyken, özden uyarılmaların da olduğu B hesabında 4f6p seviyesi için iyileşme olmuştur. A ve B hesaplarının Landé *g*-çarpanları karşılaştırma değerleri ile uyumludur.

Ce III için HFR hesaplamaları Tablo 3.14'te verilen konfigürasyon setleriyle hesaplandı. HFR hesaplamalarında, A ve B konfigürasyon setlerindeki konfigürasyonlar, değerlik elektronları arasındaki karşılıklı etkileşme etkileri dikkate alınarak seçildi ve en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yapıldı. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkilesme integralleri (R^k) icin ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A ve B hesaplarında 0,75 olarak seçildi. Tablo 3.15 ve Tablo A.5'te HFR sonuclarının $4f^2$, $5d^2$, 4fnp (n = 6, 7), 4fnf (n = 5, 6), 5d6s, 5d6d, $6p^2$, 4fnd (n = 5-7), 4fns (n = 6-8), 5d6p ve 4f5g uyarılmış seviyelerinin enerjileri ve Landé g-çarpanları verilmektedir. Sonuçlar karşılaştırma değerleri ile uyumludur. $5d^2$ ve 4f5d seviyeleri için B çalışması daha iyi iken 5d6s, 4f6s ve 4f6d seviyeleri için A hesabı daha uyumludur. Ayrıca, tüm hesaplamalarda Landé g-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ve [63] ile oldukça uyumludur.

3.5.2. Ce III'ün elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

HFR yöntemiyle Ce III'ün elektrik dipol geçişlerine ait ışıma parametreleri (dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları) hesaplandı. Tablo 3.16 ve Ekler kısmındaki Tablo A.6'da sadece karşılaştırma değeri olan düşük enerjili çift ve tek pariteli seviyeler arasındaki elektrik dipol geçişleri sunulmaktadır. Tablolarda sadece tek pariteli seviyeler "" indisiyle belirtilmektedir ve ağırlıklı geçiş olasılık verilerinde 10'un kuvvetleri parantez içinde yazılmaktadır.

HFR program paketiyle Tablo 3.14'te verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında yapılan A ve B hesaplamaları için sırasıyla 3096 ve 6216 tane mümkün elektrik dipol geçişleri elde edildi. Geçiş verileri fazla olduğu için sadece 4f²-4f5d, 4f²-4f6d, 4f²-4f6s, 4f5d-5d², 4f5d-4f6p, 4f5d-5d6s, 4f5d-4f5f, 4f6s-5d², 4f6s-4f6p ve 4f6s-5d6s geçişlerinin dalga boyları, logaritmik ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları A ve B üst indisiyle verilmektedir. A ve B hesaplarında en küçük kareler yöntemiyle elde edilen enerji değerleri deneysel verilere uydurma yapıldı. Elde edilen parametrelerle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. Tablolarda Ce III için karşılaştırma değerleri fazla olduğundan sadece DREAM veri tabanındaki [64] verilerle karşılaştırma yapılmaktadır. Bu veriler Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle yapılmıştır ve bir kısmı [175] de sunulmuştur. A ve B hesap sonucları [64] ile karşılaştırıldığında birçok geçiş için oldukça uyumlu olduğu görülmektedir. A ve B hesaplarının dalga boylarında uyum çok iyi olmasına rağmen bazı logaritmik ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarında bazen A bazen de B hesabı daha uyumludur. A hesabının 4f5d ³F^o₂-5d^{2 3}P₂ geçişinin gA_{ki} değeri uyumsuzken, 4f5d ${}^{3}G_{4}^{o}$ -4f6p (7/2, 3/2)₅ geçişinin de B hesabının log(gf) ve gA_{ki} değerleri uyumsuzdur. 4f5d ${}^{3}G_{3}^{\circ}-5d6s {}^{3}D_{2}$, 4f5d ${}^{3}F_{4}^{\circ}-5d^{2} {}^{3}F_{3}$ ve 4f6s (5/2, 1/2) ${}^{\circ}_{2}-5d^{2} {}^{3}P_{2}$ geçişlerinde dalga boyundaki uyum iyi olduğu halde diğer geçiş parametrelerinde uyum oldukça azdır. Logaritmik ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarındaki uyumsuzlukların iyileştirilmesi için konfigürasyon setlerine özden uyarılmaların yapıldığı konfigürasyonlar eklenmelidir fakat bu durumda da çok fazla konfigürasyon hal fonksiyonları üretildiğinden geçişlerin yapılması için bilgisayar kısıtlamalarıyla karşılaşıldığından bu tür hesaplamaları yapmak zor olmaktadır.

	Seviy	eler		E		g-çarpanı			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Konf.	Terim	Bu ça	lışma	Diğer	Bu çal	işma	Diğer	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cift parite içi Af^2	n: ³ 11	0.00 ^{A,B}	0.02A	o oo ^{a,b}	0.005 ^{A,B}	0 805 ^{A,B}	0 805 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	\mathbf{H}_4	0,00	0,02 0,00 ^B	0,00	0,805	0,805	0,805	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		³ Н.	1307 50 ^A	151374^{A}	1528 32 ^a	1 033 ^{A,B}	1 033 ^{A,B}	1.033 ^b	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		115	1316.88 ^B	1535.39 ^B	1520,52	1,055	1,055	1,055	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{3}H_{6}$	2684,65 ^A	3107,48 ^A	3127,10 ^a	$1,167^{A,B}$	$1,167^{A,B}$	1.167^{b}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	2713,52 ^B	3147,01 ^B		, - ·	,	,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^2$	${}^{3}F_{2}$	4252,69 ^A	3660,47 ^A	3762,75 ^a	$0,670^{A,B}$	0,673 ^{A,B}	0,673 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	4617,14 ^B	3696,42 ^B		4.0	4 D	ŀ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		${}^{3}F_{3}$	5080,60 ^A	4671,27 ^A	4764,76 ^a	1,083 ^{A,B}	1,084 ^{A,B}	1,084	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		35	5447,64 ^b	4718,90 ^b	5006.068	1.1.40Å	1 1 5 7 A	1.15cb	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{3}\mathbf{F}_{4}$	6788,94 ⁴	$5001,47^{A}$	5006,06"	1,140 ⁻⁴	1,15/ ¹	1,156°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Af^2	¹ G	/193,19 4252.60 ^A	5002,26 7131.03 ^A	7120.00 ^a	1,138 1,104 ^A	1,150 1,088 ^A	1 080 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	\mathbf{U}_4	5358 35 ^B	7118 91 ^B	/120,00	1,104 1 107 ^B	1,088 1.095 ^B	1,009	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^2$	$^{1}D_{2}$	14593.93 ^A	12844.70^{A}	12835.09 ^a	1,107	1,028 ^A	1.027 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22	15764,55 ^B	12777,09 ^B	12000,00	1,015 ^B	1,026 ^B	1,027	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^2$	${}^{3}P_{0}$	18563,34 ^A	16001,42 ^A	16072,04 ^a				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		~	20060,93 ^B	16029,38 ^B		. –			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{3}\mathbf{P}_{1}$	18923,64 ^A	16494,98 ^A	16523,66 ^a	1,501 ^{A,B}	$1,501^{A,B}$	1,501 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2_	20421,00 ^B	16520,61 ^B				.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{3}P_{2}$	19565,80 ^A	17372,82 ^A	17317,49 ^a	1,480 ^A	$1,466^{A}$	1,467°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 62	1.	21057,80 ²	17390,99 ⁵	17400 (08	1,482 ⁵	1,468 ⁵	1.000 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41-	Γ_6	1/519,13 ¹²	1/541,69 ¹⁴	1/420,60*	1,000	1,000	1,000*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^2$	¹ S	10921,47 40084 20 ^A	17430,32 32779.20 ^A	32838 62 ^a				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	\mathbf{S}_0	40084,20 42426.66 ^B	32890 30 ^B	52656,02				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f(^{2}F^{o}s_{2})6p_{12}$	$(5/2, 1/2)_{2}$	32444.57 ^A	47919.80 ^A	48267.00 ^a	1.290 ^A	1.297 ^A	0.87^{a}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5/2/°F1/2	(2, 2, 2, 2, 3)	47560,89 ^B	48434,60 ^B	,	1,297 ^B	$1,287^{B}$	0,872 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 1/2)_2$	37697,89 ^A	48159,93 ^A	48404,86 ^a	1,088 ^A	$1,062^{A}$	0,81 ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			46523,69 ^B	49108,59 ^B		1,091 ^B	$1,064^{B}$	0,825 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			44106,61 ^B	50223,61 ^B		0,846 ^B	0,819 ^B	1,149 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2, 1/2)_4$	36673,43 ^A	52705,32 ^A	50057,60 ^a	1,101 ^A	1,103 ^A	1,06 ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10/200	(5/2 2/2)	45330,26 ^b	50932,28 ^b	51000 0 13	1,089 ^b	1,088 ^b	1,034	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f({}^{2}F_{5/2})6p_{3/2}$	$(5/2,3/2)_1$	38347,46 ^A	48980,07 ^A	51932,34"	0,499	0,499	$0,40^{\circ}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(5/2) 2/2)	47290,01 22601.26 ^A	50769,20 50222.02 ^A	51640 68 ^a	0.710 ^A	0 785 ^A	0,499	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(3/2, 3/2)_2$	40888 93 ^B	52069 89 ^B	51040,08	0,710 0.704^{B}	0,785 0.892 ^B	0,99 0 991 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 3/2)_{2}$	34043 53 ^A	51477 60 ^A	51262.21 ^a	1.095^{A}	1.002^{A}	0.94^{a}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0, 2,0, 2)3	42235,20 ^B	52896,53 ^B	01202,21	1,090 ^B	1,099 ^B	0,937 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 3/2)_4$	34589,46 ^A	50703,29 ^A	52440,96 ^a	1,180 ^A	1,165 ^A	1,135 ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			42839,47 ^B	53583,49 ^B		1,195 ^B	1,171 ^B	1,122 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f({}^{2}F^{o}_{7/2})6p_{3/2}$	$(7/2, 3/2)_5$	38416,98 ^A	53818,91 ^A	54193,84 ^a	1,200 ^A	$1,200^{A,B}$	1,21 ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			47195,31 ^B	53704,28 ^B		1,200 ^B		1,200 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2,3/2)_2$	41086,48 ^A	55043,11 ^A	54556,48ª	1,033 ^A	0,994	1,08 ^a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(7/2)	49899,59 ⁵	53775,10 ⁵	52C15 008	1,0375 0,015A	0,906 ⁵	1,045°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1/2, 3/2)_3$	38772,14 40816 78 ^B	52992,48 53024.67 ^B	55015,98	0,915 0.032 ^B	0,957 0.063 ^B	1,24 1,208 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(7/2) 3/2	39440 84 ^A	54158 88 ^A	54549 34 ^a	1.018^{A}	1,015 ^A	1,208 1.05^{a}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2, 3/2)_4$	47988 20 ^B	54437 04 ^B	54547,54	$1,010^{B}$	1,013 1.022^{B}	$1,052^{b}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f(^{2}F^{o}_{5/2})5f$	$^{2}[7/2]_{3}$	100376.54 ^A	98760.59 ^A	98913.68 ^a	0.823 ^A	0.828 ^A	0.837 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ 5127-	L . 15	109313,80 ^B	99984,97 ^B	,	$0,797^{B}$	$1,030^{B}$	- ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{2}[7/2]_{4}$	101098,47 ^A	99499,13 ^A	99577,01 ^a	$1,050^{A}$	1,050 ^A	1,047 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2	109792,83 ^B	100516,83 ^B		1,044 ^B	1,063 ^B		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f({}^{2}F^{o}{}_{5/2})5f$	$^{2}[3/2]_{1}$	100930,29 ^A	100384,29 ^A	99248,38 ^a	0,699 ^A	1,282 ^A	0,758 ^b	
$[3/2]_2$ 101564,45 ^A 100185,39 ^A 99894,15 ^a 1,166 ^A 1,141 ^A 1,144 ^b		250 107	110618,20 ^B	98738,82 ^B	00004 1	0,596 ^в	0,692 ^в	a a a ab	
		² [3/2] ₂	$101564,45^{\text{A}}$	100185,39 ^A	99894,15 ^a	1,166 ^A	1,141 ^A	1,144°	
$110930,51^{\circ} 99628,59^{\circ} 1,123^{\circ} 1,148^{\circ}$	46/200 >56	2[11/0]	110930,51 ^b	99628,59 ^b	00170 178	1,123°	1,148 ^b	0 soop	
41($r_{5/2}$)51 [11/2]5 100/21,08 99051,75 991/8,16 0,930 0,879 0,899 110596 89 ^B 0,0060 0.2 ^B 0,050 ^B 0,050 ^B 0,050 ^B	4I(⁻ F ⁻ _{5/2})5I	$[11/2]_5$	100/21,08 ⁴	$99051, /3^{\circ}$	99178,16"	0,930	0,8/9	0,899°	
$10300,00$ 99000,05 0,950 0,059 2 [11/2], 101667 34 ^A 00027 07 ^A 100015 70 ^a 1.022 ^A 1.025 ^A 1.025 ^b		² [11/2]	110300,88 101667 34 ^A	99000,03 99977 07 ^A	100015 70 ^a	0,930 1.023 ^A	0,039 1.025 ^A	1.026 ^b	
$111205.17^{B} 100204.30^{B} 1032^{B} 1032^{B} 10206^{B}$		[11/2]6	111205 17 ^B	$100204 30^{B}$	100013,70	1.032^{B}	1.026^{B}	1,020	

Tablo 3.15. Ce III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Tablo 3.15. Devam

Sevi	veler		Е			g-çarpanı			
Konf.	Terim	Bu ca	lısma	Diğer	Bu cal	isma	Diğer		
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar		
$4f({}^{2}F^{0}{}_{5/2})5f$	$^{2}[9/2]_{5}$	101230,44 ^A	99593,06 ^A	99604,30 ^a	0,964 ^A	1,016 ^A	0,993 ^b		
5/2/-	1. 13	109537,72 ^B	100046,72 ^B	, , , , , , , , , , , , , , , , , , , ,	1,032 ^B	1,015 ^B	- ,		
	$^{2}[9/2]_{4}$	109719,15 ^A	101120,11 ^A	100814,08 ^a	0,831 ^{A,B}	0,863 ^A	0,851 ^b		
		111165,91 ^B	100037,28 ^B			0,825 ^B			
$4f(^{2}F^{o}_{5/2})5f$	$^{2}[5/2]_{3}$	102332,59 ^A	102070,62 ^A	99708,39 ^a	1,208 ^A	1,168 ^A	1,083 ^b		
	2	111678,74 ^B	101428,08 ^B		1,230 ^B	1,114 ^B	1		
	$^{2}[5/2]_{2}$	110291,83 ^A	101075,11 ^A	101354,33 ^a	0,721 ^A	0,871 ^A	0,797		
10/2770	254 (07	112175,81	100288,10 ^b	100100 103	0,746 ^b	0,823 ^b			
$4f({}^{2}F_{5/2})5f$	$[1/2]_1$	102855,78 ^A	99067,49 ^A	100189,69ª	1,410 ^A	0,893 ^A	1,519		
	2[1/2]	$112054,30^{-1}$	$101/16,39^{-102240,00^{-1022}}$	102502 418	1,161	1,282			
	$[1/2]_0$	111880,75	102240,99	102502,41					
$4f(^{2}F^{0}_{-1})5f$	$2[0/2]_{-}$	102017 45 ^A	102240,29	101178 46 ^a	1 137 ^A	1 1/10 ^A	1 142 ^b		
41(1, 7/2)31	[9/2]5	110933.05 ^B	102000,49 $102025,10^{B}$	101178,40	1,137 1.058 ^B	1,140 1 173 ^B	1,142		
	$^{2}[9/2]$	110920 92 ^A	102025,10 $104177 10^{A}$	102566 29 ^a	1,050 1.068 ^A	1,173 1,123 ^A	1 052 ^b		
	[)/2]4	110920,92 112710.55^{B}	103173.40^{B}	102500,25	1.053^{B}	1,081 ^B	1,052		
$4f({}^{2}F^{0}_{7/2})5f$	$2[5/2]_{3}$	101330.28 ^A	99770.58 ^A	101343.93 ^a	1.051 ^A	1.062 ^A	1.158^{b}		
(1/2/-	L 15	110273,27 ^B	99148,96 ^B		1,034 ^B	$0,986^{B}$,		
	$^{2}[5/2]_{2}$	111907,86 ^A	104876,51 ^A	103231,23 ^a	1,111 ^A	1,059 ^A	1,095 ^b		
		114280,52 ^B	102175,49 ^B		1,037 ^B	0,966 ^B			
4f(² F ^o _{7/2})5f	$^{2}[13/2]_{7}$	102580,54 ^A	102017,09 ^A	101564,83 ^a	1,143 ^{A,B}	1,143 ^{A,B}	1,143 ^b		
	2	112291,84 ^B	101735,72 ^B				1		
	$^{2}[13/2]_{6}$	112392,45 ^A	104323,61 ^A	103676,13 ^a	1,010 ^A	1,057 ^A	1,025		
10/2770	250 (07	115029,16 ^b	103126,39 ^B	10111	1,002 ^b	1,040 ^b	a aa ah		
$4f({}^{2}F_{7/2})5f$	$[3/2]_1$	102855,78 ^A	102171,79 ^A	101647,49ª	1,390 ^A	1,253 ^A	1,214		
	210/01	113236,995	100244,39	104177.078	1,711	1,516 ²	1. 2 0.0h		
	$[3/2]_2$	112934,31 ^a	103/15,01 ¹⁰	1041//,0/*	1,334 ¹	1,295 rd	1,298		
$4f(^2\mathbf{E}^0)$)5f	2[11/2]	110500,82	103/19,09 103281.00 ^A	102408 708	1,425 1,022 ^A	1,370 1,022 ^A	1.022 ^b		
4I(Г _{7/2})3I	[11/2]5	110002,30	105281,90	102408,70	1,035 1.025^{B}	1,052 1,010 ^B	1,052		
	2[11/2]	112227,00 111224 59 ^A	101303,70 103741.25^{A}	102897 68 ^a	1,025 1,156 ^{A,B}	1,019 1,108 ^A	1 140 ^b		
	[11/2]6	11224,39 112679 38 ^B	$102711 32^{B}$	102077,00	1,150	1,100 $1,125^{B}$	1,140		
$4f({}^{2}F^{o}_{7/2})5f$	$2[7/2]_{2}$	110980.40 ^A	102211,32 103422.24^{A}	102649.22 ^a	1.083 ^A	1,108 ^A	1.089^{b}		
1/2/00	[., -]2	112926,74 ^B	101840,43 ^B		1,103 ^B	1,036 ^B	-,		
	$^{2}[7/2]_{4}$	111789,93 ^A	103388,60 ^A	103351,21 ^a	1,149 ^A	1,082 ^A	1,157 ^b		
		113409,66 ^B	102041,87 ^B		1,169 ^B	1,126 ^B			
$4f(^{2}F^{o}_{7/2})5f$	${}^{2}[1/2]_{1}$	112370,47 ^A	103776,30 ^A	103612,68 ^a	1,501 ^A	1,564 ^A	1,510 ^b		
2 .	2	115235,30 ^B	103064,83 ^B		1,532 ^B	1,513 ^B			
$4f({}^{2}F{}^{0}_{7/2})5f$	$^{2}[1/2]_{0}$	114818,42 ^A	107351,60 ^A	-			_		
		11850/,355	106284,40 ^b						
Tek parite iç	$\frac{1}{100}$		2421 CIA	2276 668		0.024A	0.008		
4150	G_4	_	3431,01 2272.01 ^B	3276,66	_	0,924 0.014 ^B	0,99 0.065 ^b		
4f5d	³ F ⁰		3372,91 3050 38 ^A	3821 53 ^a		0,914 0.737 ^A	0,903 0.76 ^a		
4150	1° 2	—	3843.05 ^B	5621,55	-	0,737 0,743 ^B	0,70 0,763 ^b		
			5645,05			0,745	0,705		
	${}^{3}\mathrm{F}^{\mathrm{o}}{}_{2}$	_	5539.56 ^A	5502.37 ^a	_	1.055 ^A	1.10^{a}		
	- 5		5479.13 ^B	0002,07		1.032 ^B	1.072 ^b		
	${}^{3}F_{4}^{0}$	_	7277,68 ^A	7150,05 ^a	_	1,189 ^A	$1,30^{a}$		
			7262,13 ^B			$1,170^{B}$	1,214 ^b		
4f5d	${}^{3}\mathrm{H}^{0}{}_{4}$	-	5020,45 ^A	5127,27 ^a	-	0,911 ^A	$0,87^{a}$		
	2		5017,42 ^B			0,924 ^B	0,864 ^b		
	³ H ^o 5	-	6064,41 ^A	6361,27 ^a	_	1,033 ^{а,в}	1,07 ^a		
	3++0		6025,20 ^в	22 10 003		1.1.5=A B	1,033		
	[°] H [°] ₆	_	8136,50 ^A	8349,99"	-	1,167	1,1′/"		
4f5d	³ C ⁰		8159,59°	6265 218		0 700A	$1,16/^{\circ}$ 0.76 ^a		
413U	U 3	_	6002.01 ^B	0203,21	-	0,700 0.813 ^B	0,70 0,773 ^b		
	$^{3}G^{0}$	_	7720.04 ^A	7836 72 ^a	_	1.077^{A}	1.06^{a}		
	U 4		7739.26 ^B	,030,12		1.092 ^B	1.057 ^b		
	${}^{3}G^{o}_{5}$	_	9217,38 ^A	9325,51 ^a	_	1,198 ^{A,B}	$1,22^{a}$		
	2		9243,80 ^B			,	1,198 ^b		

Tablo 3.15. Devam

Seviyeler			Е			g-çarpanı			
Konf.	Terim	Bu ça	lışma	Diğer	Bu çalı	ışma	Diğer		
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar		
4f5d	$^{1}D_{2}^{0}$	-	7083,69 ^A	6571,36 ^a	-	0,956 ^A	$0,88^{a}$		
4f5d	³ D ⁰		/0/4,81 ² 8851 76 ^A	8022 05ª		$0,950^{3}$ 0.521 ^A	$0,922^{\circ}$ 0.52 ^a		
4130	D_1	-	8837 31 ^B	8922,03	-	0,521 0.529 ^B	0.52 0.520 ^b		
	${}^{3}D_{2}^{o}$	_	9942,57 ^A	9900,49 ^a	_	1,161 ^A	$1,18^{a}$		
	-		9915,68 ^B			1,166 ^B	1,164 ^b		
	${}^{3}D_{3}^{0}$	-	10148,74 ^A	10126,53 ^a	-	1,249 ^A	1,34 ^a		
4 f5 d	3 D 0		10061,79 ^b	11577 168		1,236	1,239		
4130	P ₀	-	11598,45 11616 39 ^B	11377,10					
	${}^{3}P_{1}^{0}$	_	11615,86 ^A	11612,67 ^a	_	1,467 ^A	1,29 ^a		
			11586,90 ^B	,		1,458 ^B	1,469 ^b		
	${}^{3}\mathrm{P}^{0}{}_{2}$	-	12735,02 ^A	12641,55 ^a	-	1,480 ^A	1,38 ^a		
1.55 1	100		12640,30 ^B	12500 728		1,475 ^b	1,485		
4150	F [*] 3	_	12/00,10 ¹⁴	12500,72*	-	$1,0/5^{B}$	1,03 ²		
4f5d	¹ H ^o _c	_	12025,58 16081 53 ^A	16152 32 ^a	_	1,000 $1,003^{A,B}$	1,085 1.06 ^a		
4150	11 5		$16200,62^{B}$	10152,52		1,005	1,002 ^b		
4f5d	${}^{1}P_{1}^{0}$	_	18415,28 ^A	18443,63 ^a	-	1,013 ^{A,B}	0,99 ^a		
	-		18316,19 ^B				1,011 ^b		
$4f({}^{2}F^{o}{}_{5/2})6s_{1/2}$	$(5/2, 1/2)^{\circ}_{2}$	_	19239,51 ^A	19236,23 ^a	-	0,666 ^{A,B}	0,665 ^a		
			19173,08 ^b	101111		1 0 7 0 A B	0,666		
	$(5/2, 1/2)^{\circ}_{3}$	-	19460,29 ^A	19464,46"	-	1,058	1,0/ ^a		
$4f(^2E^0) = 6c$	$(7/2 \ 1/2)^{0}$		19403,42 21474 30 ^A	21476 46 ^a		1 251 ^{A,B}	1,057 1,27 ^a		
41(1, 7/2)081/2	$(7/2, 1/2)_4$	—	21474,59 21406 51 ^B	21470,40	-	1,231	1,27 1,251 ^b		
	$(7/2.1/2)^{\circ}_{3}$	_	21400,91 21851.41 ^A	21849.47 ^a	_	$1.026^{A,B}$	1.035^{a}		
			21773,59 ^B	, -		,	1,026 ^b		
$4f({}^{2}F^{o}{}_{5/2})7s_{1/2}$	$(5/2, 1/2)^{\circ}_{3}$	_	89380,20 ^B	89663,07 ^a	-	1,051 ^B	1,051 ^b		
	$(5/2, 1/2)^{\circ}_{2}$	-	89497,51 ^B	89596,39 ^a	-	0,693 ^B	0,673 ^b		
$4f({}^{2}F_{7/2})/s_{1/2}$	$(7/2, 1/2)^{\circ}_{4}$	-	91798,29 ^B	91840,44 ^a	-	$1,192^{B}$	1,236 ^b		
$4f(^{2}F^{0})$)6d	$(1/2, 1/2)_3$	_	91890,01 80534.06 ^A	91922,55 80350.03 ^a	-	1,047 0.754 ^A	1,097 0.774 ^b		
41(1, 5/2)00	$[3/2]_{2}$	-	88813.69 ^B	89350,05	-	0,734 0.741 ^B	0,774		
	$^{2}[5/2]^{\circ}_{3}$	_	90142,41 ^A	90086,92 ^a	_	1,056 ^A	1,079 ^b		
			89917,29 ^B	,		1,034 ^B			
4f(² F ^o _{5/2})6d	$^{2}[9/2]^{o}_{4}$	-	89493,00 ^A	89651,91 ^a	-	0,876 ^A	0,88 ^a		
	200 (010		90217,03 ^b	00.650.0.48		0,872 ^b	0,924		
	$[9/2]_{5}^{\circ}$	_	$90544,71^{A}$	90658,94"	-	$1,037^{11}$	1,0/"		
$4f(^{2}F^{0}r_{a})6d$	$2[7/2]^{\circ}$	_	90794,31 90044 32 ^A	90045 27 ^a	_	1,045 0.985 ^A	1,041 0.942 ^b		
41(1 5/2)0d	[//2] 4		89972.19 ^B	J00 4 3,27		1.011 ^B	0,942		
	$^{2}[7/2]^{o}_{3}$	_	89698,61 ^A	89743,68 ^a	_	0,812 ^A	0,786 ^b		
2			90086,48 ^B			0,826 ^B			
$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[3/2]^{0}_{1}$	-	90170,42 ^A	90144,52 ^a	-	0,554 ^A	0,577 ^b		
	212/019		90132,70 ^B	00000 708		$0,709^{\text{B}}$	1.045b		
	$[3/2]_2$	-	92190,88 00204 30 ^B	90223,72	_	1,155 0.087 ^B	1,045		
$4f(^{2}F^{o}_{\epsilon/2})6d$	${}^{2}[1/2]^{\circ}_{0}$	_	90294,39 90862.07 ^A	90902.41 ^a	_	0,987			
11(1 5/2)04	[1/2] ()		90726,31 ^B	,11					
	$^{2}[1/2]^{o}_{1}$	_	90865,83 ^A	90878,78 ^a	_	1,390 ^A	1,357 ^b		
2	2		90829,30 ^B			1,259 ^B			
$4f({}^{2}F^{o}_{7/2})6d$	$^{2}[7/2]^{0}_{4}$	-	92156,59 ^A	92080,62 ^a	-	1,183 ^A	1,165°		
	217/010		91432,91 ^b	0105450^{a}		1,211 ¹⁰	1 Appb		
	$[//2]_{3}$	-	91899,93 ¹¹ 92640 42 ^B	91954,59"	_	1,151 ¹¹ 1,233 ^B	1,088-		
$4f(^{2}F^{0}_{\pi/2})6d$	$^{2}[5/2]^{0}_{2}$	_	92670.48 ^A	92705.16 ^a	_	1,235 1,148 ^A	1.149 ^b		
//2/00	[] 3		91591,70 ^B	. =		1,056 ^B	-,>		
	$^{2}[5/2]^{o}_{2}$	_	90329,56 ^A	92018,61 ^a	_	1,096 ^A	1,085 ^b		
			91729,67 ^B			$1,030^{B}$			

^aNIST Atomic Spectra Database [63], ^bQuinet ve Biémont [48],*Tablonun daha geniş hali Tablo A.5'te verilmektedir.

	(Geçişler		2	L	lo	g(gf)	gA	ki
Α	lt seviye	Üst se	viye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
	·		•	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^2$	${}^{3}\text{H}_{4}$	4f5d	${}^{3}D_{3}^{0}$	9853,452 ^A	9872,344 ^a	-3,360 ^A	-3,39 ^a	$3,00(4)^{A}$	$2,78(4)^{a}$
			5	9938,551 ^B	*	$-3,209^{B}$		$4,17(4)^{B}$	
$4f^2$	$^{3}H_{4}$	4f5d	${}^{1}F_{3}^{0}$	7873,966 ^A	7997,339 ^a	-3,539 ^A	$-3,60^{a}$	$3,11(4)^{A}$	$2,62(4)^{a}$
			5	7920,536 ^B		-3,469 ^B		$3,61(4)^{B}$	
$4f^2$	${}^{3}H_{4}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[7/2]^{0}_{3}$	1114,844 ^A	1114,285 ^a	-1,951 ^A	$-2,18^{a}$	$6,01(7)^{A}$	$3,55(7)^{a}$
	-			1110,044 ^B		-2,023 ^B		$5,14(7)^{B}$	
$4f^2$	${}^{3}H_{4}$	$4f({}^{2}F^{o}{}_{7/2})6d$	$^{2}[5/2]^{\circ}_{3}$	1079,092 ^A	1078,689 ^a	-3,445 ^A	-3,75 ^a	$2,06(6)^{A}$	$1,02(6)^{a}$
				1093,698 ^B		-3,915 ^B		$6,78(5)^{B}$	
$4f^2$	${}^{3}H_{5}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[9/2]^{o}_{4}$	1136,631 ^A	1134,770 ^a	-3,620 ^A	-3,24 ^a	$1,24(6)^{A}$	$2,98(6)^{a}$
	-			1127,628 ^B		-2,383 ^B		$2,17(7)^{B}$	
$4f^2$	${}^{3}H_{5}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[7/2]^{o}_{4}$	1129,552 ^A	1129,727 ^a	$-2,140^{A}$	$-2,40^{a}$	$3,79(7)^{A}$	$2,06(7)^{a}$
				1130,751 ^B		$-2,515^{B}$		$1,59(7)^{B}$	
$4f^2$	${}^{3}H_{5}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[9/2]^{o}_{5}$	1123,204 ^A	1121,949 ^a	-2,821 ^A	-2,94 ^a	7,98(6) ^A	$6,07(6)^{a}$
				1120,333 ^B		-2,792 ^B		$8,58(6)^{B}$	
$4f^2$	${}^{3}H_{5}$	$4f({}^{2}F^{o}_{7/2})6d$	$^{2}[9/2]^{o}_{4}$	1108,750 ^A	1108,555 ^a	-2,025 ^A	-2,35 ^a	$5,12(7)^{A}$	$2,43(7)^{a}$
				1107,260 ^B		-2,416 ^B		$2,09(7)^{B}$	
$4f^2$	$^{3}H_{6}$	4f5d	$^{1}\text{H}^{0}_{5}$	7707,692 ^A	7675,301 ^a	-2,847 ^A	-3,09 ^a	$16.0(4)^{A}$	$9,36(4)^{a}$
				7660,727 ^B		-2,830 ^B		$16.8(4)^{B}$	
$4f^2$	$^{3}H_{6}$	4f(² F ^o _{5/2})6d	$^{2}[9/2]^{o}_{5}$	1143,677 ^A	1142,441 ^a	-2,761 ^A	-2,87 ^a	$8,84(6)^{A}$	$6,90(6)^{a}$
				1140,933 ^B		$-2,608^{B}$		$1,26(7)^{B}$	
$4f^2$	$^{3}H_{6}$	$4f({}^{2}F^{o}_{7/2})6d$	$^{2}[11/2]^{0}_{6}$	1119,627 ^A	1118,575 ^a	-2,488 ^A	$-2,60^{a}$	$1,73(7)^{A}$	$1,35(7)^{a}$
				1122,264 ^B		-2,453 ^B		$1,87(7)^{B}$	
4f5d	${}^{1}G_{4}^{0}$	$5d^2$	${}^{3}F_{4}$	2479,155 ^A	2484,29 ^a	-1,360 ^A	-1,55 ^a	$4,74(7)^{A}$	$3,02(7)^{a}$
				2505,432 ^B		$-1,509^{B}$		$3,29(7)^{B}$	
4f5d	${}^{1}G_{4}^{0}$	$4f({}^{2}F^{o}_{7/2})6p_{3/2}$	$(7/2, 3/2)_3$	2017,721 ^A	1986,519 ^a	-1,209 ^A	-1,31 ^a	$1,01(8)^{A}_{-}$	$8,23(7)^{a}$
				1978,172 ^B		$-1,276^{B}$		$9,03(7)^{B}$	
4f5d	${}^{1}G_{4}^{0}$	$4f({}^{2}F^{o}_{7/2})6p_{3/2}$	$(7/2, 3/2)_4$	1971,325 ^A	1950,356 ^a	-0,773 ^A	$-0,92^{a}$	$2,89(8)^{A}$	$2,09(8)^{a}$
				1958,322 ^B		$-0,702^{B}$		$3,46(8)^{B}$	
4f5d	${}^{1}G_{4}^{0}$	5d6s	$^{3}D_{3}$	$1608,865^{A}_{-}$	1605,805 ^a	-3,672 ^A	-3,63 ^a	$5,48(5)^{A}_{-}$	$6,12(5)^{a}$
				1610,940 ^B		-4,164 ^B		$1,76(5)^{B}$	
$4f^2$	${}^{3}F_{2}$	$4f({}^{2}F^{o}{}_{5/2})6s_{1/2}$	$(5/2, 1/2)^{\circ}_{2}$	6418,882 ^A	6460,885 ^a	-2,943 ^A	-3,71 ^a	$1,84(5)^{A}$	$3,11(4)^{a}$
				6461,343 ^B		-3,161 ^B		$1,10(5)^{B}$	
$4f^2$	${}^{3}F_{2}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[7/2]^{o}_{3}$	1162,274 ^A	1163,049 ^a	-3,548 ^A	-3,84 ^a	$1,40(6)^{A}_{-}$	$0,72(6)^{a}$
				1157,540 ^B		-3,469 ^в		$1,69(6)^{B}$	

Tablo 3.16. Ce III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹)*

1 ao10 5.10. De tain	Tab	lo 3.1	16. E) evam
----------------------	-----	--------	-------	---------------

	(Gecisler			λ	lo	g(gf)	g	4 _{ki}
A	lt seviye	Üst sev	viye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
	-			HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^2$	${}^{3}F_{2}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[3/2]^{o}_{1}$	1155,936 ^A	1157,652 ^a	-3,398 ^A	-3,90 ^a	$2,00(6)^{A}_{-}$	$6,21(5)^{a}$
				1156,921 ^B		$-2,791^{B}$		$8,06(6)^{B}$	
$4f^2$	${}^{3}F_{2}$	$4f({}^{2}F^{o}_{7/2})6d$	$^{2}[3/2]^{o}_{1}$	1110,194 ^A	1113,089 ^a	-3,958 ^A	-3,81 ^a	$5,96(5)^{A}$	$8,31(5)^{a}$
				1114,414 ^B		-3,154 ^B		$3,76(6)^{B}$	
4f5d	${}^{3}F_{2}^{0}$	$5d^2$	${}^{3}F_{2}$	2756,523 ^A	2730,039 ^a	-0,751 ^A	-1,00 ^a	$1,56(8)^{A}$	$8,98(7)^{a}$
				2742,549 ^в		-0,834 ^B		$1,30(8)^{B}$	
4f5d	${}^{3}F_{2}^{0}$	$5d^2$	${}^{3}F_{3}$	2627,552 ^A	2622,718 ^a	-1,740 ^A	-1,99 ^a	$1,76(7)^{A}$	$9,84(6)^{a}$
				2637,455 ^B		-1,832 ^B		$1,41(7)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	$5d^2$	${}^{1}D_{2}$	2358,312 ^A	2321,182 ^a	-3,235 ^A	-3,12 ^a	$6,98(5)^{A}$	$9,40(5)^{a}$
				2325,978 ^B		-3,359 ^B		$5,39(5)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	$4f({}^{2}F^{o}{}_{5/2})6p_{1/2}$	$(5/2, 1/2)_2$	2261,955 ^A	2242,295 ^a	$-0,454^{A}$	-0,25 ^a	$4,59(8)^{A}$	$7,56(8)^{a}$
				2209,187 ^B		-0,361 ^B		$5,95(8)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	$5d^2$	${}^{3}P_{1}$	2157,082 ^A	2228,833 ^a	-3,519 ^A	$-3,67^{a}$	$4,34(5)^{A}$	$2,87(5)^{a}$
				2232,315 ^B		-3,375 ^B		$5,64(5)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	$5d^2$	${}^{3}P_{2}$	2098,689 ^A	2162,778 ^a	-3,303 ^A	-2,00 ^a	$7,53(5)^{A}$	$1,44(7)^{a}$
				2167,500 ^B		$-1,746^{B}$		$2,55(7)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	$4f(^{2}F^{o}_{7/2})6p_{1/2}$	$(7/2, 1/2)_3$	2175,450 ^A	2147,392 ^a	-0,821 ^A	$-2,10^{a}$	$2,13(8)^{A}$	$1,15(7)^{a}$
				2156,077 ^B		$-0,857^{B}$		$2,00(8)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	$4f({}^{2}F^{o}{}_{5/2})6p_{3/2}$	$(5/2, 3/2)_1$	2220,756 ^A	2077,873 ^a	-0,971 ^A	$-0,88^{a}$	$1,45(8)^{A}$	$2,02(8)^{a}$
				2131,008 ^B		$-0,858^{B}$		$2,04(8)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	5d6s	${}^{3}D_{1}$	1683,554 ^A	1680,281 ^a	-2,091 ^A	-2,06 ^a	1,91(7) ^A	$2,05(7)^{a}$
				1676,283 ^B		-2,043 ^B		$2,15(7)^{B}$	
4f5d	${}^{3}\mathrm{F}^{0}{}_{2}$	5d6s	$^{3}D_{2}$	1664,672 ^A	1661,428 ^a	-2,409 ^A	$-2,72^{a}$	9,38(6) ^A	$4,61(6)^{a}$
				1660,227 ^в		$-2,707^{B}$		$4,75(6)^{B}$	
$4f^2$	${}^{3}F_{3}$	$4f({}^{2}F^{o}{}_{5/2})6d$	$^{2}[7/2]^{0}_{4}$	1171,329 ^A	1172,601 ^a	-3,656 ^A	-3,98 ^a	$1,07(6)^{A}$	$5,10(5)^{a}$
				1176,887 ^B		-2,956 ^B		$5,33(6)^{B}$	
$4f^2$	${}^{3}F_{3}$	4f(² F ^o _{5/2})6d	$^{2}[5/2]^{o}_{3}$	1169,984 ^A	1172,028 ^a	-3,005 ^A	-3,00 ^a	$4,82(6)^{A}$	$4,85(6)^{a}$
				1177,648 ^B		-3,442 ^B		$1,74(6)^{B}$	
$4f^2$	${}^{3}F_{3}$	$4f({}^{2}F^{o}{}_{7/2})6d$	$^{2}[7/2]^{o}_{4}$	1143,048 ^A	1145,267 ^a	-3,736 ^A	-3,89 ^a	9,38(5) ^A	$6,60(5)^{a}$
	-			1156,997 ^B		-3,199 ^B		$3,15(6)^{B}$	
$4f^2$	${}^{3}F_{4}$	4f5d	$^{1}\text{H}^{0}_{5}$	9025,223 ^A	8969,157 ^a	-3,252 ^A	-3,39 ^a	$4,59(4)^{A}_{-}$	$3,32(4)^{a}$
				8929,883 ^B		-3,213 ^B		$5,12(4)^{B}$	
$4f^2$	${}^{3}F_{4}$	4f(² F ^o _{5/2})6d	$^{2}[9/2]^{o}_{5}$	1168,998 ^A	1167,503 ^a	-3,406 ^A	-3,56 ^a	$1,92(6)^{A}$	$1,35(6)^{a}$
				$1165,606^{B}$		-3,348 ^B		$2,20(6)^{B}$	

1 abio 5.10. Devain	Tablo	3.16.	Devam
---------------------	-------	-------	-------

	(Geçişler		2	λ		g(gf)	gA _{ki}		
Α	lt seviye	Üst sev	viye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer	
				HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^2$	${}^{3}F_{4}$	4f(² F ^o _{7/2})6d	$^{2}[9/2]^{0}_{4}$	1153,350 ^A 1151,461 ^B	1153,006 ^a	-2,769 ^A -3.302 ^B	-2,80 ^a	$8,53(6)^{A}$ 2,51(6) ^B	7,99(6) ^a	
$4f^2$	${}^{3}F_{4}$	$4f(^{2}F^{o}_{7/2})6d$	² [9/2] ^o ₅	1146,940 ^A 1148,825 ^B	1147,126 ^a	$-3,087^{A}$ $-3,270^{B}$	-3,61 ^a	$4,15(6)^{A}$ 2,72(6) ^B	1,24(6) ^a	
$4f^2$	${}^{3}\mathrm{F}_{4}$	$4f(^{2}F^{o}_{7/2})6d$	² [11/2] ^o ₅	1136,162 ^A 1130,842 ^B	1133,520 ^a	$-3,129^{A}$ $-2,708^{B}$	-3,16 ^a	$3,84(6)^{A}$ 1 02(7) ^B	3,58(6) ^a	
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{4}$	$5d^2$	${}^{3}F_{4}$	2580,811 ^A 2613.098 ^B	2604,054 ^a	$-1,171^{A}$ -1,224 ^B	-1,68 ^a	$6,76(7)^{A}$ 5 84(7) ^B	2,08(7) ^a	
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{4}$	$4f(^2F^{o}_{5/2})6p_{1/2}$	(5/2,1/2) ₃	2331,038 ^A 2303 238 ^B	2317,337 ^a	$-1,273^{A}$	-0,57 ^a	$6,54(7)^{A}$ 1 31(8) ^B	3,31(8) ^a	
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{4}$	$4f(^2F^{o}_{7/2})6p_{3/2}$	(7/2,3/2) ₅	2049,242 ^A 2053 944 ^B	2037,393 ^a	-2,157 ^A -1 859 ^B	-1,98 ^a	$1,11(7)^{A}$ 2,19(7)^{B}	1,71(7) ^a	
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{4}$	5d6s	³ D ₃	1651,070 ^A 1654 778 ^B	1654,986 ^a	-3,090 ^A -3,197 ^B	-3,22 ^a	$1,99(6)^{A}$ 1,55(6) ^B	1,45(6) ^a	
4f5d	${}^{3}F_{3}^{o}$	$5d^2$	${}^{3}F_{2}$	2882,807 ^A 2871 390 ^B	2861,387 ^a	$-1,053^{A}$ -0.935 ^B	-1,45 ^a	$7,11(7)^{A}$ 9 40(7) ^B	2,92(7) ^a	
4f5d	${}^{3}F_{3}^{o}$	$5d^2$	${}^{3}F_{3}$	2742,050 ^A 2756,396 ^B	2743,714 ^a	-0,721 ^A -0.891 ^B	-0,91 ^a	$1,69(8)^{A}$ $1,13(8)^{B}$	1,10(8) ^a	
4f5d	${}^{3}F_{3}^{o}$	$5d^2$	${}^{3}F_{4}$	2615,857 ^A 2645,008 ^B	2629,750 ^a	$-1,615^{A}$ -1.751 ^B	-1,85 ^a	$2,36(7)^{A}$ 1,69(7) ^B	1,36(7) ^a	
4f5d	${}^{3}F_{3}^{o}$	5d ²	$^{1}D_{2}$	2450,137 ^A 2417,995 ^B	2415,459 ^a	$-2,157^{A}$ $-2,102^{B}$	-2,45 ^a	$7,75(6)^{A}$ 9,01(6) ^B	4,07(6) ^a	

^aDream Database [64], *Tablonun daha geniş hali Tablo A.6'da verilmektedir.

İterbiyum yedi doğal izotopa (¹⁶⁸Yb (%0,13), ¹⁷⁰Yb (%3,04), ¹⁷¹Yb (%14,28), ¹⁷²Yb (%21,83), ¹⁷³Yb (%16,13), ¹⁷⁴Yb (%31,83) ve ¹⁷⁶Yb (%12,76)) sahip nadir toprak elementidir. İterbiyumun yapısı, $4f^{14}6s^2$ ¹S₀ taban hal konfigürasyonuyla alkali topraklara benzediğinden dolayı spektroskopi çalışmaları için, onu önemli bir element haline getirmektedir. Ancak, iç alt tabaka ve çift uyarma sınırlarında, enerji seviyelerinin yakınlığından dolayı iterbiyumda 4f alt tabakası bir toprak alkali elementinden, spektrumlarının ayrılması için kolayca uyarılabilir.

Hem nötral hem de bir kez iyonlaşmış iterbiyum, lazer soğutma, nötral atom ve iyonların hapsi, atomik saatler, frekans standartları, kuantum bilgisayar deneyleri, kuantum optik ve atomik parite korumasız deneyleri gibi hapsedilmiş atom ve iyonları içeren deneylerde kullanılan yaygın bir elementtir. Nötral iterbiyum atomunun çeşitli atomik yapı özelliklerini içeren gözlem, deney ve teorik çalışmalar Tablo 1.3'te özetlenmektedir. Yb I'in seviye enerjileri, Rydberg halleri, kendiliğinden iyonlaşması, iyonlaşma potansiyeli ve çift uyarılmış rezonanslarının fotoiyonlaşma kesitleriyle ilgili çalışmalar farklı çalışma grupları tarafından incelenmiştir [4, 6, 10, 38, 39, 40, 51, 52, 176–221]. Bu çalışmalarda, optik-mikrodalga çift-rezonans spektrumu, üç-foton polarizasyon spektroskopisi, iki-foton iyonlaşma sı ile 4f iç tabaka uyarılması, üç aşamalı lazer uyarma tekniği, seçici üç aşamalı lazer spektroskopisi, relativistik çiftlenmiş-küme yöntemi, Hartree-Fock-Dirac yöntemi gibi deneysel ve teorik yöntemler kullanılmıştır.

İterbiyumun ışıma parametrelerinden yarı ömürleri geniş ölçüde incelenmiştir. Bazı düşük seviyelerinin ve 4f¹⁴6snp ^{1,3}P_{1,2}, 4f¹⁴6sns ¹S₀ ve 4f¹⁴6snd ^{1,3}D₂ Rydberg seviyelerinin yarı ömürleri çeşitli çalışmalarda, optik çift rezonans, zamançözünürlüklü floresans spektroskopisi, gecikmeli elektrik-alan iyonlaşma tekniği, çok konfigürasyonlu Dirac-Fock yöntemi ve çok kanallı kuantum kusur teorisi ile çalışılmıştır [34, 36 222–230, 234, 238–241, 243–254, 259]. Diğer ışıma parametreleri olan salınıcı şiddetleri ve geçiş olasılıkları daha çok 4f¹⁴6s²–4f¹⁴6s6p geçiş için model-potansiyel ve çok konfigürasyonlu Dirac-Fock yöntemleri ile incelenmiştir [231–242]. Ayrıca, $4f^{14}6s^2$ ${}^{1}S_0-4f^{14}5d6s$ ${}^{3}D_1$ yasaklı geçişi farklı gruplar tarafından çalışılmıştır [255–257].

Nötral iterbiyumun bazı uyarılmış seviyelerinin aşırı ince yapısı ve $4f^{14}6s^2$ ${}^{1}S_0-4f^{14}6s6p$ ${}^{1}P_{1}^{o}$, $4f^{14}6s^2$ ${}^{1}S_0-4f^{14}6s6p$ ${}^{3}P_{1}^{o}$ ve $4f^{14}6s6p$ ${}^{3}P_{0}^{o}-4f^{14}6s7s$ ${}^{3}S_{1}$ geçişlerinin izotop kayması ve aşırı ince yapısı atomik demet-lazer spektroskopisi, iki-foton spektroskopisi, seviye-çarpışma ve ters çarpışma spektroskopisi, optik çiftrezonans spektroskopisi, doymuş-soğurma spektroskopisi, Doppler-bağımsız doymuş soğurma lazer spektroskopisi, yüksek-çözünürlüklü lazer spektroskopisi, Fabry-Perot spektroskopi gibi deneysel yöntemlerle incelenmiştir [158, 258–282]. Yb I'in izotop kaymaları ve aşırı ince yapı sabitleri için teorik çalışmalar oldukça azdır [283, 284]. Ayrıca, Yb'in elektron ilgisi çalışmaları [57, 61, 285–292] kaynaklarında bulunabilir.

Nötral iterbiyumun (Yb I) bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*çarpanları, elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları çok konfigürasyonlu Hartree-Fock (MCHF) [412, 413] ve relativistik Hartree-Fock (HFR) [418] yöntemleri kullanılarak hesaplandı. Ayrıca bazı uyarılmış seviyelerinin yarı ömürleri ve geçiş enerjileri (iyonlaşma potansiyeli, uyarılma enerjileri ve elektron ilgisi) de aynı yöntemlerle incelendi.

Yb I'in [Xe] özü dışında, MCHF+BP hesaplamalarında, dört farklı hesaplama değerlik elektronları arasındaki karşılıklı etkileşmelere göre konfigürasyon hal fonksiyonlarını elde etmek için seçildi. Atomlarda karşılıklı etkileşme etkileri değerlik-değerlik, öz-değerlik ve öz-öz katkıları olarak sınıflandırılabilir. Genellikle, bu katkılar çok konfigürasyon teknikleri ile değerlendirilebilir. Özellikle salınıcı şiddetleri hesaplamaları için, ilk iki katkı çok önemlidir. Ancak, özden uyarılmalar çok fazla konfigürasyon üretir. MCHF+BP hesaplamalarında, öz-değerlik ve öz-öz elektronları arasındaki karşılıklı etkileşme etkileri de hesaplara dahil edilmeye çalışıldı. Bununla birlikte, bu tür konfigürasyonlar açık öz ve değerlik alt tabakalarından dolayı çok fazla konfigürasyon hal fonksiyonları üretir ve bu da iyileştirme problemlerini ortaya çıkarır. Bu nedenle hesaplamalarda sadece değerlik elektronları arasındaki karşılıklı etkileşme dikkate alındı. HFR hesaplamalarında ise, değerlik elektronları arasındaki karşılıklı etkileşme dikkate alındı. HFR hesaplamalarında ise,

değerlik elektronları arasındaki karşılıklı etkileşme (C ve D) de göz önüne alındı. C ve D hesaplamalarında hem değerlik hem de öz ve değerlik elektronları arasındaki karşılıklı etkileşmelerin alındığı konfigürasyonların sayısı, bilgisayar kısıtlamalarından dolayı fazla seçilemedi. MCHF+BP ve HFR hesaplamaları için A, B, C ve D olarak isimlendirilen bu konfigürasyon setleri Tablo 3.17'de verilmektedir.

Seviyeler		Konfigür	asyonlar	
	Α	В	С	D
MCHF+BP hes	saplamaları için:			
Çift parite	$\begin{array}{l} 4f^{14}6s^2, 4f^{14}5dns,\\ 4f^{14}6snd (n=6-9),\\ 4f^{14}6sns (n=7-9),\\ 4f^{14}6p^2, 4f^{14}5d^2,\\ 4f^{14}5dnd (n=6-8),\\ 4f^{14}5d5g, 4f^{14}5g^2,\\ 4f^{14}6sng (n=5-7),\\ 4f^{14}6p5f, 4f^{14}5f7p,\\ 4f^{14}5f^2 \end{array}$	$\begin{array}{l} 4f^{14}6s^2, 4f^{14}5d6s, \\ 4f^{14}5d^2, 4f^{14}6p^2, \\ 4f^{14}6sns (n=7, 8), \\ 4f^{14}6snd (n=6, 7) \end{array}$	A hesabı ile aynı	$\begin{array}{l} 4f^{14}\mathrm{ns}^2,4f^{14}5\mathrm{dns},\\ 4f^{14}\mathrm{np}^2(\mathrm{n}=6-9),\\ 4f^{14}5\mathrm{d}^2,4f^{14}6\mathrm{snd}\\ (\mathrm{n}=6,7),4f^{14}6\mathrm{sng}\\ (\mathrm{n}=5-7),4f^{14}\mathrm{ns}5\mathrm{g}\\ (\mathrm{n}=7,8),4f^{14}\mathrm{6p5f},\\ 4f^{14}5f7\mathrm{p},4f^{14}6\mathrm{sns},\\ 4f^{14}5\mathrm{npn}(\mathrm{n}=7-9),\\ 4f^{14}7\mathrm{sns},4f^{14}7\mathrm{pnp}\\ (\mathrm{n}=8,9),4f^{14}8\mathrm{s9s},\\ 4f^{14}8\mathrm{p9p} \end{array}$
Tek parite	$\begin{array}{l} 4f^{14}6 \mathrm{snp} \ (\mathrm{n}=6-9),\\ 4f^{14}6 \mathrm{snf} \ (\mathrm{n}=5, 6),\\ 4f^{14}7 \mathrm{s5f}, 4f^{14}6 \mathrm{p5g},\\ 4f^{14}5 \mathrm{f5g}, 4f^{14}6 \mathrm{pns},\\ 4f^{14}7 \mathrm{snp} \ (\mathrm{n}=7-9),\\ 4f^{14}7 \mathrm{pns}, 4f^{14}8 \mathrm{snp}\\ (\mathrm{n}=8, 9), 4f^{14}8 \mathrm{p9s},\\ 4f^{14}9 \mathrm{s9p}\end{array}$	$4f^{14}6snp (n = 6, 7),$ $4f^{14}6snf (n = 5, 6),$ $4f^{14}5f5g$	B hesabı ile aynı	4f ¹⁴ 6snp (n = 6–9), 4f ¹⁴ 6snf (n = 5–9), 4f ¹⁴ 5dnp (n = 6, 7)
HFR hesaplam	aları için:			
Çift parite	$\begin{array}{l} 4f^{14}6s^2, 4f^{14}5d6s, \\ 4f^{14}6p^2, 4f^{14}6snd \\ (n=6,7), 4f^{14}6s7s \end{array}$	$\begin{array}{l} 4f^{14}6s^2, 4f^{14}5d6s,\\ 4f^{14}6p^2, 4f^{14}5d^2,\\ 4f^{14}6snd \ (n=6-14),\\ 4f^{14}6sns \ (n=7-11) \end{array}$	4f ¹⁴ 6s ² , 4f ¹³ 6s ² 6p	4f ¹⁴ 6s ² , 4f ¹⁴ 5d6s, 4f ¹³ 6s ² 6p, 4f ¹³ 5d6s6p
Tek parite	$4f^{14}6snp (n = 6, 7),$ $4f^{14}6snf (n = 5, 6),$ $4f^{14}5d6p$	$4f^{14}6snp (n = 6-14),$ $4f^{14}6snf (n = 5-12),$ $4f^{14}5d6p$	4f ¹⁴ 6s6p, 4f ¹³ 5d6s ²	4f ¹⁴ 6s6p, 4f ¹³ 5d6s ² , 4f ¹³ 5d ² 6s

Tablo 3.17. Yb I'e ait hesaplamalar için alınan konfigürasyon setleri

3.6.1. Yb I'in bazı seviyelerinin enerjileri ve Landé g-çarpanları

Nötral iterbiyumun [Xe] özü dışında $4f^{14}6s^2$, $4f^{14}5d6s$, $4f^{13}6s^26p$, $4f^{14}6sns$ (n = 7, 8), $4f^{14}6snd$ (n = 6, 7), $4f^{14}6p^2$, $4f^{14}5d^2$, $4f^{14}6snp$ (n = 6–8), $4f^{13}5d6s^2$, $4f^{14}6snf$ (n = 5, 6) ve $4f^{14}5d6p$ uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları hesaplandı [293].

Elde edilen sonuçlar $4f^{14}6s^{2} {}^{1}S_{0}$ taban hal seviyesine göre cm⁻¹ biriminde Tablo 3.18 ve daha geniş şeklide Ekler kısmındaki Tablo A.7'de sunulmaktadır. Tablolarda farklı konfigürasyon setlerine göre hesaplanan sonuçlar MCHF+BP ve HFR için A, B, C ve D üst indisleriyle ve sadece tek pariteli seviyeler "^o" indisiyle belirtilmektedir. Elde edilen enerji seviyelerinin sonuçları NIST verileri [63], Wyart ve Camus'un çok kanallı kuantum kusur teorisiyle [185] ve Baumann ve çalışma arkadaşlarının zaman-çözünürlüklü floresans spektroskopisiyle [226] yaptıkları çalışmaları ile karşılaştırılmaktadır.

MCHF atomik yapı paketinde bazı parametre değerleri değiştirilerek Tablo 3.17'de verilen konfigürasyon setleri ile hesaplamaları yapmak mümkün oldu. Ayrıca, Zeeman programıyla [413], relativistik etkiler dikkate alınarak elde edilen seviye enerjileri ve dalga fonksiyonları kullanılarak seviyelerin Landé *g*-çarpanları hesaplandı. Sonuçlar Tablo 3.18 ve Tablo A.7'de diğer çalışma sonuçları ile karşılaştırılmaktadır.

MCHF atomik vapı paketi ile elde edilen $4f^{14}6s^2$, $4f^{14}5d6s$, $4f^{14}6sns$ (n = 7, 8), $4f^{14}6snd$ (n = 6, 7), $4f^{14}6p^2$, $4f^{14}5d^2$, $4f^{14}6snp$ (n = 6–8), $4f^{14}6snf$ (n = 5, 6) ve 4f¹⁴5d6p uyarılmış seviyelerinin enerjileri ve Landé g-çarpanlarının farklı konfigürasyon setlerine ait sonuçları A, B, C ve D üst indisleriyle Tablo 3.18 ve Tablo A.7'de verilmektedir. Elde edilen enerjiler diğer çalışmalarla karşılaştırıldığında, uyumun bazı yüksek uyarılmış seviyeleri hariç iyi olduğu görülmektedir. 4f¹⁴5d6s seviyesi için A ve C hesaplamaları ve 4f¹⁴6s7p seviyesi için C hesabı karşılaştırma değerleri ile uyumludur. $4f^{14}6p^2$ ve $4f^{14}6s6d$ seviyeleri için A, B ve C hesapları ile elde edilen sonuçlar, D hesabı ile elde edilenden daha iyidir. Özellikle 4f146s7s ve 4f146s8s seviyeleri için B konfigürasyon seti ile elde edilen sonuclar ividir. $4f^{14}6s6p$, $4f^{14}6s6f$ ve $4f^{14}5d6p$ tek pariteli seviyeleri icinde B hesabı uyumludur. Aynı zamanda, bazı seviyeler için A ve D hesapları diğerler çalışmalarla uyumludur. Tüm hesaplamalarda elde edilen Landé g-çarpanları da diğer çalışmalarla uyum içindedir. MCHF+BP hesaplamaları sadece değerlik elektronları arasındaki karşılıklı etkileşmeler dikkate alınarak yapıldığından bazı uyumsuzluklar, özden uyarılarak elde edilen konfigürasyonlar hesaba katılarak düzeltilebilir. Fakat bu tür hesaplamalar konfigürasyonlardaki tüm yörüngeler için iyileştirme

149

kısıtlamaları nedeniyle mümkün olmadı. 4f¹⁴'ten uyarma ve daha çok dolu olmayan d ve f alt tabakalarını içeren konfigürasyonlar alındığında son derece karmaşık ve zaman alıcı hesaplamalar ortaya çıkmaktadır.

Cowan'ın program paketi [418] kullanılarak yapılan HFR hesaplamalarında karsılıklı etkileşme etkilerini dikkate almak için Tablo 3.17'de verilen konfigürasyon setleri alındı. Bu hesaplamalarda, Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yapmak için iyileştirildi. En küçük kareler yönteminde tüm deneysel seviyeler NIST'ten alındı. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^{k} ve G^{k}) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirilmemiş değerleri A, B, C ve D hesaplamalarında 0,75 olarak seçildi. HFR hesaplamalarıyla elde edilen 4f¹⁴6s², $4f^{14}5d6s, 4f^{13}6s^{2}6p, 4f^{14}6sns (n = 7, 8), 4f^{14}6snd (n = 6, 7), 4f^{14}6p^{2}, 4f^{14}5d^{2}, 4f^{14}6snp$ (n = 6-8), $4f^{13}5d6s^2$, $4f^{14}6snf$ (n = 5, 6) ve $4f^{14}5d6p$ uvarılmıs sevivelerinin enerjileri ve Landé g-çarpanları Tablo 3.18 ve Tablo A.7'de verilmektedir. Tüm hesaplamalar için seviye enerjileri ve Landé g-çarpanları diğer çalışma verileri ile çok iyi uyum icindedir. C ve D konfigürasyon setleri öz ve değerlik elektronları arasındaki karşılıklı etkileşimleri hesaba katmak için 4f14'ten uyarılmış konfigürasyonları (4f¹³6s²6p, 4f¹³5d6s6p, 4f¹³5d6s² ve 4f¹³5d²6s) içerir. Fakat bu konfigürasyonlar A ve B konfigürasyon setlerine iyileştirme sorunlarından dolayı alınamadı.

Seviyel	er		Ε			g- çarpanı	
Konf.	Terim	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
Çift parite için:							
$4f^{14}6s^2$	${}^{1}S_{0}$	$0,00^{A,B,C,D}$	0,00 ^{A, D} 0.03 ^B , 0.001 ^C	0,00 ^a -1 ^b			
4f ¹⁴ 5d6s	³ D ₁	23740,08 ^{A,C} 24094,77 ^B	24489,390 ^A 24484,649 ^B	24489,102 ^a 24489 ^b	0,499 ^{A,B,C,D}	0,499 ^{A,B,D}	0,50 ^{a,b}
	${}^{3}D_{2}$	28871,97 ^D 24171,81 ^{A,C}	24489,586 ^D 24751,614 ^A	24751,948 ^a	1,150 ^{A,C}	1,164 ^{A,B,D}	1,16 ^a
	3	24505,97 ^b 28973,71 ^D	24752,449 ^b 24751,119 ^D	24751	1,147 ^b 1,142 ^D		1,164°
	$^{5}D_{3}$	25499,96 ^{A,C} 25860,31 ^B 29374.42 ^D	25271,096 ^A 25275,501 ^B 25271.295 ^D	25270,902" 25270 ^b	1,334 ^{11,0,0,0}	1,334 ^{4,0,0}	1,34 ^a 1,333 ^b
4f ¹⁴ 5d6s	$^{1}D_{2}$	26841,47 ^{A,C} 26984,49 ^B 29633 76 ^D	27677,700 ^A 27636,403 ^B 27677,700 ^D	27677,665 ^a 27654 ^b	$1,017^{A,C}$ $1,020^{B}$ $1,026^{D}$	1,003 ^{A,B,D}	1,01 ^a 1,003 ^b
$4f^{13}(^2F^{o}_{7/2})6s^26p_{1/2}$	(7/2,1/2) ₃	_	32028,422 ^C 32100,309 ^D	32065,282 ^a 31957 ^b	_	1,266 ^C 1,254 ^D	1,23 ^a 1,262 ^b
	$(7/2, 1/2)_4$	-	32346,703 ^C 32169,573 ^D	32273,597 ^a 32279 ^b	-	1,062 ^{C,D}	1,064 ^b
4f ¹⁴ 6s7s	${}^{3}S_{1}$	40022,96 ^{A,C} 57664,65 ^B 32594,31 ^D	32694,700 ^A 32694,713 ^B	32694,692 ^a 32695 ^b	2,002 ^{A,B,C,D}	2,002 ^{A,B}	2,01 ^{a,c} 2,00 ^b
4f ¹⁴ 6s7s	${}^{1}S_{0}$	43110,06 ^{A,C} 59389,89 ^B 34038 53 ^D	$34350,700^{\rm A}$ $34349,725^{\rm B}$	34350,65 ^a 34350 ^b			
$4f^{13}(^2\!F^o_{7/2})6s^26p_{3/2}$	(7/2,3/2) ₅	-	35039,281 ^C 35163,035 ^D	35178,78 ^a 35172 ^b	_	1,20 ^{C,D}	1,200 ^b
	(7/2,3/2) ₂	-	35210,312 ^C 35397,304 ^D	35196,98ª 35199 ^b	-	1,060 ^C 1,059 ^D	1,05 ^a 1,059 ^b
	(7/2,3/2) ₃	-	35826,279 ^C 35778,076 ^D	35807,52 ^a 35741 ^b	_	1,080 ^C 1,093 ^D	1,08 ^a 1,085 ^b
	(7/2,3/2) ₄	_	36199,503 ^C 35977,204 ^D	36060,98 ^a 36041 ^b	_	1,202 ^C 1,201 ^D	1,199 ^b

Tablo 3.18. Yb I'in E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Tablo 3.18. Devam

Seviyel	er		E		g- çarpanı			
Konf.	Terim	Bu ç	alışma	Diğer	Bu çal	ışma	Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
4f ¹⁴ 6s6d	${}^{3}D_{1}$	47446,68 ^{A,C}	39807,524 ^A	39808,72 ^a	0,499 ^{A,B,C,D}	0,499 ^{A,B}	$0,50^{a,b,c}$	
	•	46870,04 ^B	39807,056 ^B	39795 ^b	,	,		
		51420,55 ^D						
	$^{3}D_{2}$	47446,68 ^{A,C}	39839,374 ^A	39838,04 ^a	1,167 ^{A,B,C,D}	1,143 ^A	1,16 ^a	
		46870,06 ^B	39838,732 ^в	39833 ^b		1,142 ^B	1,151 ^b	
		51421,52 ^D					1,163°	
	$^{3}D_{3}$	47446,68 ^{A,C}	39965,998 ^A	39966,09 ^a	1,334 ^{A,B,C,D}	1,334 ^{A,B}	1,33 ^a	
		46870,09 ^B	39967,809 ^B	39952 ^b			1,333 ^b	
		51422,53 ^D					1,354 ^c	
lf ¹⁴ 6s6d	$^{1}D_{2}$	47452,23 ^{A,C}	40061,204 ^A	40061,51 ^a	$1,00^{A,B,C,D}$	1,024 ^A	1,03 ^a	
		46877,79 ^B	40057,109 ^B	40094 ^b		1,025 ^B	1,016 ^b	
		51460,07 ^D	_			_	1,020 ^c	
lf ¹⁴ 6s8s	${}^{3}S_{1}$	58195,51 ^{A,C}	41615,099 ^B	41615,04 ^a	$2,002^{A,B,C}_{-}$	$2,002^{B}$	$2,02^{a}$	
		$47835,38^{\rm B}_{-}$		41602 ^b	2,001 ^D		2,00 ^b	
		54228,50 ^D					2,01 ^c	
lf ¹⁴ 6s8s	${}^{1}\mathbf{S}_{0}$	58900,12 ^{A,C}	41919,359 ^в	41939,90 ^a				
		47843,59 ^B		41955 ^b				
12.2		60105,46 ^D	6			G	,	
$f^{13}({}^{2}F^{o}{}_{5/2})6s^{2}6p_{1/2}$	$(5/2, 1/2)_3$	-	42253,692 ^C	42413,58 ^a	-	0,797 ^C	0,801 ^b	
			42079,725 ^D	42471 ^b		0,814 ^D		
	$(5/2, 1/2)_2$	-	42521,983 ^C	42531,87 ^a	-	0,973 ^C	1,01 ^a	
14 2	2		42361,895 ^D	42578 ^b		0,953 ^D	0,976 ^b	
lf ¹⁴ 6p ²	$^{3}P_{0}$	44243,37 ^{A,C}	42511,300 ^A	42436,91 ^a				
	2	43519,96 ^B	42559,755 ^B	42429 ^b	A D C	A D		
	$^{3}P_{1}$	45487,64 ^{A,C}	43835,200 ^A	43805,42ª	1,501 ^{A,b,C}	1,501 ^{A,B}	1,47 ^a	
	2	44864,27 ^b	43534,913 ^b	43823	A		$1,510^{5}$	
	$^{3}P_{2}$	46912,30 ^{A,C}	44540,599 ^A	44760,37 ^a	1,469 ^A	1,335 ^A	1,34 ^a	
-14 2	1	46380,96 ^B	44393,023 ^b	44716"	1,473 ^{b,C}	1,412 ^B	1,336"	
lf¹⁺6p²	$^{1}D_{2}$	51411,60 ^{A,C}	46531,601 ^A	47821,78 ^a ?	0,986 ^{A,C}	1,154 ^A	1,04 ^a ?	
-14 2	1	51313,31 ^B	46780,665 ^в	h	0,984 ^в	1,027 ^в		
4f146p2	$^{1}S_{0}$	56732,09 ^{A,C}	48324,000 ^A	48332 ^b				
		56804,45 ^B	48382,640 ^в					

Tablo 3.18. Devam

Seviyel	er		Ε		g- çarpanı			
Konf.	Terim	Bu q	çalışma	Diğer	Bu çalı	ışma	Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
Tek parite icin:								
4f ¹⁴ 6s6p	${}^{3}P_{0}^{0}$	18850,70 ^A	17320,693 ^A	17288,439 ^a				
1	0	18087.44^{B}	$17287,302^{B}$	17312 ⁶				
		18730,43 ^C	17310,632 ^C					
		17262,64 ^D	17313,665 ^D					
	${}^{3}P_{1}^{0}$	18883,84 ^A	17954,209 ^A	17992,007 ^a	1,501 ^{A, B,C}	$1,490^{A,B}$	1,49282 ^a	
	1	18174.60^{B}	17917,397 ^B	17962 ⁶	1,499 ^D	1,492 ^C	1,490 ^b	
		18817.59 ^C	17963.859 ^C		,	1.491 ^D	,	
		17567,98 ^D	17959,345 ^D			, -		
	${}^{3}\mathrm{P}^{\mathrm{o}}{}_{2}$	18951.41 ^A	19710.498 ^A	19710.388 ^a	$1.501^{A,B,C,D}$	1.501 ^{A,B,C,D}	$1.50^{a,b}$	
	2	18356.54 ^B	19663.600 ^B	19716 ⁶	,	,	,	
		18999.52 ^C	19715,408 ^C					
		18248,59 ^D	19717,191 ^D					
4f ¹⁴ 6s6p	${}^{1}P_{1}^{0}$	24474,23 ^A	25069,400 ^A	25068,222 ^a	$1,000^{A,B,C}$	$1.011^{A,B}$	1,035 ^a	
1	1	24613,97 ^B	25163,800 ^B	25075 ⁶	1,001 ^D	$1,065^{\rm C}$	1,052 ^b	
		25256,96 ^C	25063,101 ^C			$1,050^{D}$		
		26667,25 ^D	25033,399 ^D					
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}6s^{2}$	$(7/2, 3/2)^{\circ}_{2}$	_ `	23341,506 ^C	23188,518 ^a	-	1,468 ^C	1,45 ^a	
			23392,975 ^D	23229 ^b		$1,462^{D}$	1,463 ^b	
	$(7/2, 3/2)^{\circ}_{5}$	_	25851,108 ^C	25859,682 ^a	_	$1,021^{\rm C}$	$1,04^{a}$	
	, .		25757,722 ^D	25847 ^b		1,023 ^D	1,022 ^b	
	$(7/2, 3/2)^{\circ}_{3}$	_	27562,712 ^C	27445,638 ^a	-	1,199 ^C	1,22 ^a	
			27330,304 ^D	27349 ^b		1,213 ^D	1,215 ^b	
	$(7/2, 3/2)^{\circ}_{4}$	_	28217,685 ^C	28184,512 ^a	_	1,163 ^C	1,14 ^a	
			28136,414 ^D	28128 ^b		1,135 ^D	1,139 ^b	
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}6s^{2}$	$(7/2, 5/2)^{\circ}_{6}$	_	26980,996 ^C	27314,919 ^a	_	1,167 ^{C,D}	1,16 ^a	
			27130,014 ^D	27348 ^b		_	1,167 ^b	
	$(7/2, 5/2)^{\circ}_{2}$	_	28583,678 ^C	28195,960 ^a	_	1,015 ^C	$1,02^{a,b}$	
			28454,612 ^D	28185 ^b		1,023 ^D		
4f ¹⁴ 6s7p	${}^{3}P_{0}^{0}$	39035,66 ^A	38071,599 ^A	38090,71 ^a				
-	-	41425,37 ^B	38064,690 ^B	38073 ^b				
		42068,36 ^C						

Sevi	yeler		Ε			g- çarpanı	
Konf.	Terim	Bu ç	alışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	${}^{3}P_{1}^{0}$	39035,66 ^A	38204,902 ^A	38174,17 ^a	1,501 ^{A,B,C}	1,495 ^A	1,14 ^a
	•	41425,46 ^B	38198,014 ^B	38199 ^b		1,497 ^B	1,468 ^b
		$42068, 45^{\circ}$					
4f ¹⁴ 6s7p	${}^{3}P_{2}^{0}$	39035,66 ^A	38551,699 ^A	38551,93 ^a	1,501 ^{A,B,C}	1,501 ^{A,B}	$1,50^{a,b}$
•		41425,64 ^B	38526,996 ^B	38543 ^b			
		$42068, 62^{\circ}$					
4f ¹⁴ 6s7p	${}^{1}P_{1}^{0}$	39045,72 ^A	40567,400 ^A	40563,97 ^a	$1,000^{A,B,C}$	1,005 ^A	1,01 ^a
		41663,45 ^B	40833,500 ^B	40561 ^b		1,004 ^B	1,001 ^b
		42306,44 ^C					
4f ¹⁴ 6s5f	${}^{3}F_{2}^{0}$	38159,19 ^A	43510,488 ^A	43433,85 ^a	0,666 ^{A,B,C}	$0,685^{A,B}$	$0,68^{a}$
		37628,69 ^B	43579,210 ^B	43419 ^b			$0,678^{b}$
		38271,68 ^C					
	${}^{3}F_{3}^{0}$	38159,22 ^A	43137,729 ^A	43292 ^b	1,083 ^{A,B,C}	1,061 ^A	1,057 ^b
		37628,71 ^B	43284,921 ^B			1,083 ^B	
		38271,70 ^C					
	${}^{3}\mathrm{F}_{4}^{\mathrm{o}}$	38159,27 ^A	43282,598 ^A	43326 ^b	1,251 ^{A,B,C}	1,251 ^{A,B}	1,250 ^b
		37628,73 ^B	43330,273 ^B				
		38271,72 ^C		,			
4f ¹⁴ 6s5f	${}^{1}F_{3}^{0}$	38189,29 ^A	43356,784 ^A	43271 ^b	1,000 ^{A,B,C}	1,035 ^A	1,029 ^b
		37648,71 ^B	43439,200 ^в			1,001 ^B	
14	2	38291,71 ^C	D				
4f ¹⁴ 6s8p	$^{3}P_{0}^{0}$	45073,77 ^A	43298,721 ^B	43614,27 ^a			
	2	46387,38 ^D	D			D	
	${}^{3}\mathrm{P}_{1}^{0}$	45074,60 ^A	43303,371 ^B	43659,38 ^a	1,501 ^A	1,498 ^B	$1,48^{a}$
	2	46387,37 ^D	D		1,499 ^D	D	
	$^{3}P_{2}^{o}$	45076,29 ^A	43319,907 ^в	43805,69 ^a	1,501 ^{A,D}	1,494 ^в	1,49 ^a
14	1 0	46387,48 ^D	D		Δ	D	
4f¹⁴6s8p	${}^{1}P_{1}^{0}$	45620,30 ^A	43751,100 ^B	44017,60 ^a	1,000 ^A	1,004 ^B	$1,00^{a}$
		46392,17 ^D			1,001 ^D		

^aNIST Atomic Spectra Database [63], ^bWyart ve Camus [185], *Tablonun daha geniş hali Tablo A.7'de verilmektedir.

3.6.2. Yb I'in bazı uyarılmış seviyelerinin yarı ömürleri

HFR yöntemiyle Yb I'in 4f¹⁴5d6s, 4f¹³6s²6p, 4f¹⁴6sns (n = 7, 8), 4f¹⁴6snd (n = 6, 7), 4f¹⁴6p², 4f¹⁴5d², 4f¹⁴6snp (n = 6–8), 4f¹³5d6s², 4f¹⁴6snf (n = 5, 6) ve 4f¹⁴5d6p seviyelerinin yarı ömürleri Tablo 3.17'de verilen konfigürasyon setleri için hesaplandı ve E ile gösterilen 4f¹⁴6s², 4f¹⁴5d6s, 4f¹⁴6p², 4f¹⁴5d², 4f¹⁴6snd (n = 6–20), 4f¹⁴6sns (n = 7–12), 4f¹⁴6sng (n = 5–8), 4f¹⁴6snp (n = 6–20), 4f¹⁴6snf (n = 5–18) ve 4f¹⁴5d6p konfigürasyon setiyle yeni bir hesaplama daha yapıldı [293]. Elde edilen sonuçlar Tablo 3.19'da sunulmaktadır. E konfigürasyon seti için elde edilen seviye enerjileri ve Landé *g*-çarpanları A ve D'nin sonuçlarıyla hemen hemen aynı olmasına rağmen yarı ömür sonuçları Tablo 3.19'da sunulmaktadır. Bundan dolayı Tablo 3.18 ve Ekler kısmındaki Tablo A.7'de seviye enerjileri ve Landé *g*-çarpanları sunulmamasına rağmen yarı ömür sonuçları Tablo 3.19'da sunulmaktadır. Bundan dolayı Tablo 3.18 ve Ekler kısmındaki Tablo A.7'de seviye enerjileri ve Landé *g*-çarpanları sunulmamasına rağmen yarı ömür sonuçları Tablo 3.19'da sunulmaktadır. Bundan dolayı Tablo 3.18 ve Ekler kısmındaki Tablo A.7'de seviye enerjileri ve Landé *g*-çarpanları sunulmamasına rağmen yarı ömür sonuçları Tablo 3.19'da sunulmaktadır. Bu hesaplamada, ölçeklendirme faktörlerinin en küçük kareler yöntemiyle iyileştirilmemiş değerleri 0,85 olarak seçildi. Tek ve çift pariteli seviyelerinin yarı ömürleri, bu seviyelerden daha düşük seviyelere olan tüm mümkün geçişler üzerinden (2.249) formülüne göre hesaplandı.

Tablo 3.19'da görüldüğü gibi, HFR yöntemiyle elde edilen sonuçlar diğerleri ile uvum içindedir. $4f^{13}({}^{2}F^{0}_{7/2})6s^{2}6p_{3/2}$, $4f^{14}6s6p {}^{3}P^{0}_{1}$ ve bazı yüksek uyarılmış seviyeler için uyum azdır. İlk uyarılmış $4f^{14}6s6p^{-3}P^{0}_{1}$ seviyesi için diğer teorik [234] ve deneysel [34, 222, 224, 229, 262] yöntemlerle elde edilen sonuçlar arasında uyumun az olduğuna dikkat edilmelidir. $4f^{14}6s6p {}^{3}P^{0}_{1}$ seviyesinin dalga fonksiyonu için en önemli katkı bu seviyeden gelmektedir. Diğer seviyelerin konfigürasyon katkısı tüm hesaplamalar için [293] kaynağından ulaşılabilir. Öz ve değerlik elektronları arasındaki karşılıklı etkileşmelerin dikkate alındığı C ve D hesaplarında 4f¹⁴6s6p ¹P^o₁ seviyesi diğer çalışmalarla daha uyumludur. Fakat $4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}6s^{2}(7/2,5/2)^{o}_{1}$ için uvum azdır. Ayrıca, 5g yörüngesini içeren E hesabında özellikle $4f^{14}6snf$ (n = 5, 6) ${}^{3}F_{2}^{o}$ ve $4f^{14}6snp {}^{3}P_{1,2}^{o}$ (n = 7, 8) seviyeleri diğer çalışmalar ile uyum içindedir. E hesabı için çift pariteli seviyelerde uyum iyidir. Diğer çalışmalarla karşılaştırıldığında görülen bazı seviyelerdeki uyumsuzluklar, özden uyarılan daha çok konfigürasyon içeren konfigürasyon setleriyle daha iyi olabilir.

Sovivol	or				7			
Konfigüresvon	Torim		Bu o	aliemo (H	τ FD)		Diğor oolı	emolor
Konngurasyon	Term	Δ	Bu ça	anşına (11 C	TK) D	F		şillalal Toorik
Cift novito ising		л	U	t	D		Deneysei	ICUIK
Viii parite için:	³ D	247.0	246.0		202.0	227.0	$280(20)^{a}$	
41 5008	^{3}D	247,0	240,0	-	202,0	227,0	$360(30)^{a}$	-
	$^{3}D^{2}$	480.0	301,0 461.0	-	243,0	420.0	400(30)	-
$4f^{14}5d6s$	${}^{1}D_{2}$	10500.0	12400.0	_	4360.0	10700	$-6700(500)^{a}$	_
$4f^{14}6s7s$	^{3}S	16.0	15 3	_	-	13.1	$15.9(19)^{b}$	21 ^b
41 0373	51	10,0	15,5			15,1	$12,5(15)^{\circ}$	21
$4f^{14}6s7s$	$^{1}S_{\circ}$	31.4	37.1	_	_	37.1	$45.8(1.0)^{d}$	_
$4f^{13}(^{2}F^{0}_{72})6s^{2}6n_{12}$	$(7/2,1/2)_2$	_	_	376.0	871.0	_	-	_
(1 (1 //2)00 op1/2	$(7/2,1/2)_{4}$	_	_	537.0	1220.0	_	_	_
$4f^{13}({}^{2}F^{0}_{7/2})6s^{2}6n_{2/2}$	$(7/2,3/2)_{5}$	_	_	247.0	556.0	_	_	_
(1 //2)00 0P3/2	$(7/2,3/2)_2$	_	_	279.0	526.0	_	$1120(50)^{c}$	_
	$(7/2,3/2)_3$	_	_	317.0	756.0	_	_	_
	$(7/2.3/2)_{4}$	_	_	305.0	776.0	_	_	_
$4f^{13}(^{2}F^{0}_{5/2})6s^{2}6p_{1/2}$	$(5/2,1/2)_3$	_	_	626.0	1360.0	_	_	_
(5/2/ 1/2	$(5/2, 1/2)_2$	_	_	512,0	986.0	_	_	_
$4f^{13}(^{2}F^{0}_{5/2})6s^{2}6p_{3/2}$	$(5/2,3/2)_1$	_	_	227,0	573,0	_	_	_
(<i>J/2/</i> 1 <i>J/2</i>	$(5/2,3/2)_4$	_	_	309.0	792,0	_	_	_
$4f^{13}(^{2}F^{0}_{5/2})6s^{2}6p_{3/2}$	$(5/2,3/2)_2$	_	_	334,0	804,0	_	_	_
(5/2/ 15/2	$(5/2,3/2)_3$	_	_	375,0	856,0	_	_	_
4f ¹⁴ 6s6d	$^{3}D_{1}$	60,0	39,8		_	28,8	$22,7(7)^{b,e}$	12 ^b
	${}^{3}D_{2}^{1}$	54,2	40,5	_	_	30,0	$24,2(12)^{b,e}$	24 ^b
	${}^{3}D_{3}^{2}$	89.1	55.2	_	_	38,6	$23.4(11)^{b}$	35 ^b
4f ¹⁴ 6s6d	${}^{1}D_{2}^{J}$	44,6	52,5	_	_	43,4	$35,2(10)^{b,e}$	11 ^b
$4f^{14}6s8s$	${}^{3}S_{1}^{2}$	_	32,0	_	_	34,4	$34,3(42)^{b}$	85^{b}
$4f^{14}6s8s$	${}^{1}S_{0}$	_	42,6	_	_	18,9	$37.9(42)^{b}$	143 ^b
$4f^{14}6p^2$	${}^{3}P_{0}$	3,76	3.97	_	_	4,15		_
	${}^{3}P_{1}^{\circ}$	3,13	3,64	_	_	3,34	$15(1)^{c}$	_
	${}^{3}P_{2}$	3,91	4,43	_	_	3.39	- ``	_
$4f^{14}6p^2$	${}^{1}D_{2}^{2}$	4.51	6.53	_	_	5.92	$21.8(0.9)^{f}$	28.6^{g}
$4f^{14}6p^2$	${}^{1}S_{0}^{2}$	10,9	5,48	_	_	3,51	$25,3(3,8)^{f}$	_
1	0	,	,			,	$27.5(16)^{h}$	
$4f^{14}6s7d$	$^{1}D_{2}$	45.2	24.1	_	_	74.6	$49.8(20)^{b}$	38 ^b
4f ¹⁴ 6s7d	${}^{3}D_{1}^{2}$	32.8	61.8	_	_	49,0	$38.4(17)^{b}$	34 ^b
	${}^{3}D_{2}$	37,1	57.0	_	_	53,9	$66.5(36)^{b}$	63 ^b
	${}^{3}D_{3}^{2}$	40,1	80.7	_	_	63,1	$43.1(12)^{b}$	93 ^b
$4f^{14}5d^2$	${}^{3}P_{0}$	_	7,21	_	_	4,60	_	_
	${}^{3}P_{1}$	_	7.28	_	_	4,45	_	_
	${}^{3}P_{2}$	_	5.67	_	_	4,03	_	_
$4f^{14}5d^2$	${}^{1}D_{2}^{2}$	_	5,54	_	_	1,82	_	_
$4f^{14}5d^2$	${}^{1}S_{0}^{-}$	_	2,76	_	_	0,629	_	_
Tek parite için:								
4f ¹⁴ 6s6p	${}^{3}P^{0}{}_{1}$	366,9	374,7	419,1	396,2	323,6	$850(50)^{a}$	1294 ^j
1	-						850(80) ^c	
							$820(20)^{i}$	
							$827(40)^{k}$	
							$760(80)^{1}$	
4f ¹⁴ 6s6p	${}^{1}P_{1}^{0}$	3,303	2,989	6,088	4,872	2,881	$5,8(0,8)^{c}$	4,78 ^j
-							$5,12(0,12)^{i}$	
							$5,50(0,25)^{k}$	
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}6s^{2}$	$(7/2, 5/2)^{\circ}_{1}$	_	_	3,806	5,266	_	$15(1)^{c}$	-
							$14,4(0,4)^{i}$	
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}6s^{2}$	$(5/2, 5/2)^{\circ}_{1}$	_	_	4,655	7,198	-	_	_
4f ¹⁴ 6s7p	$^{3}P_{0}^{0}$	58,09	64,71	_	_	83,90	_	_
	${}^{3}P_{1}^{o}$	54,54	61,34	_	_	77,74	$120(30)^{a}$	_
	$^{3}P^{o_{2}}$	47,92	55,55	_	_	69,09	_ ` ´	_
4f ¹⁴ 6s7p	${}^{1}P_{1}^{0}$	29,28	27,81	_	_	25,15	9,8(0,6) ^c	_
-	-						$9,32(0,6)^{i}$	
4f ¹⁴ 5d6p	${}^{3}F_{2}^{0}$	40,58	51,71	_	_	16,89	$68(9)^{a}$	_
-	${}^{3}F_{3}^{o}$	10,86	10,31	-	-	10,28	$22(7)^{a}$	-

Tablo 3.19. Yb I'in bazı uyarılmış seviyelerinin τ yarı ömürleri (ns)

Tablo 3.19. Devam

Seviyo	eler				τ			
Konfigürasyon	Terim		Bu	çalışma (H	IFR)		Diğer çal	ışmalar
		Α	В	С	D	Е	Deneysel	Teorik
	${}^{3}\mathrm{F}^{\mathrm{o}}_{4}$	33,70	18,17	_	_	7,881	_	-
4f ¹⁴ 5d6p	${}^{3}P_{0}^{0}$	5,031	11,17	_	_	5,757	_	_
	${}^{3}P_{1}^{0}$	5,323	12,11	_	_	6,851	_	_
	${}^{3}P_{2}^{0}$	10,04	11,37	-	-	11,76	_	_
4f ¹⁴ 5d6p	${}^{1}D_{2}^{0}$	7,551	8,707	_	_	9,768	$25(20)^{a}$	_
4f ¹⁴ 5d6p	${}^{3}D_{1}^{0}$	6,509	10,80	_	_	14,01	_	_
•	$^{3}D_{2}^{o}$	5,735	8,191	_	_	7,085	_	_
	$^{3}D_{3}^{o}$	6,531	8,619	_	_	9,214	_	_
4f ¹⁴ 5d6p	${}^{1}F_{3}^{0}$	5,978	8,309	_	_	10,07	_	_
4f ¹⁴ 5d6p	${}^{1}P_{1}^{0}$	0,716	1,820	_	_	5,551	_	_
$4f^{14}6s5f$	${}^{1}F_{3}^{0}$	41,82	45,96	_	_	38,20	$62(9)^{a}$	_
$4f^{14}6s5f$	${}^{3}F_{2}^{o}$	11,84	11,37	_	_	23,55	$26(7)^{a}$	_
	${}^{3}F_{3}^{0}$	180,8	93,92	_	_	59,86	$88(10)^{a}$	_
	${}^{3}\mathrm{F}_{4}^{0}$	52,18	57,59	_	_	49,14	_	_
4f ¹⁴ 6s6f	${}^{3}\mathrm{F}^{\mathrm{o}}{}_{2}$	38,36	35,38	_	_	47,60	$53(9)^{a}$	_
	${}^{3}F_{3}^{0}$	29,33	36,87	_	_	40,89	_	_
	${}^{3}\mathrm{F}_{4}^{0}$	8,585	14,59	_	_	822,9	_	_
4f ¹⁴ 6s6f	${}^{1}F_{3}^{0}$	226,0	99,73	_	_	78,05	_	_
4f ¹⁴ 6s8p	${}^{3}P_{0}^{0}$	_	89,20	_	_	141,9	_	_
•	$^{3}P_{1}^{o}$	_	93,06	_	_	120,5	$140(20)^{a}$	_
	${}^{3}P_{2}^{o_{2}}$	_	109,6	_	_	99,84	$140(20)^{a}$	_
4f ¹⁴ 6s8p	${}^{1}P_{1}^{o_{1}}$	_	80,36	_	_	82,32	$50(20)^{a}$	_
*	•						$47(4)^{c}$	
							$39.1(3.5)^{i}$	

^aBowers ve çalışma arkadaşları [229], ^bBaumann ve çalışma arkadaşları [226], ^cBlagoev and Komarovskii [34], ^dBai ve Mossberg [238], ^cBaumann ve çalışma arkadaşları [225], ^fBaumann ve çalışma arkadaşları [249], ⁱRambow ve Schearer [222], ^jMigdalek ve Baylis [234], ^kBaumann ve Wandel [224], ^lBudick ve Snir [262]

3.6.3. Yb I'in elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

Yb I'in elektrik dipol geçişler için geçiş parametreleri (dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları) MCHF+BP [412] ve HFR [418] program paketleri ile hesaplandı [294]. Her iki yöntemle yapılan hesaplamalarda, konfigürasyon etkileşimi ve relativistik düzeltmeler dikkate alınmaktadır. 4f¹⁴6s6p–4f¹⁴6s², 4f¹⁴6s7p–4f¹⁴6s², 4f¹⁴6s6p, 4f¹⁴6s6d–4f¹⁴6s6p, 4f¹⁴6s6p, 4f¹⁴6s6p, 4f¹⁴6s6d–4f¹⁴6s6p, 4f¹⁴6s6p, 4f¹⁴6s7s–4f¹⁴6s6p, 4f¹³5d6s²–4f¹⁴6s², 4f¹³5d6s²–4f¹⁴6s6p, 4f¹³5d6s²–4f¹⁴6s², 4f¹³5d6s6p–4f¹⁴6s6p ve 4f¹³6s²6p–4f¹³5d6s² elektrik dipol geçişlerinin λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve A_{ki} (sn⁻¹) geçiş olasılıkları Tablo 3.20'de sunulmaktadır. Tabloda verilen veriler büyük-ölçekli geçiş hesaplamalarının bir kısmını içermektedir. Farklı konfigürasyon setleriyle yapılan sonuçlar A, B, C ve D üst indisleriyle ve sadece tek pariteli seviyeler "o" indisiyle belirtilmektedir. Ayrıca, geçiş olasılığı için 10'un kuvvetleri parantez içinde yazılmaktadır. Yb I'in dalga boyları için karşılaştırma değerleri NIST verileri [62] ve Afzal ve çalışma arkadaşlarının Fabry-Perot spektroskopisi ile

yaptıkları [281] çalışmalarıdır. Salınıcı şiddetleri ve geçiş olasılıkları için ise sadece birkaç geçiş için veriler mevcuttur. Ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları, NIST'teki veriler [62] ile, Migdalek ve çalışma grubunun MCDF, HFR+CP ve relativistik model-potansiyel hesaplarıyla [232–234], Doige [35], Baumann ve Wandel [224] ve Bai ve Mossberg'in [238] deneysel sonuçları ile karşılaştırılmaktadır. Bu çalışmalardaki salınıcı şiddetleri, ağırlıklı salınıcı şiddetlerine çevrilerek tabloda verilmektedir. Hesaplamalarda relativistik etkilerin yanı sıra, karmaşık yapısından dolayı elektronlar arası karşılıklı etkileşmeyi hesaplamak zor olmasına rağmen, 5g alt tabakası da konfigürasyon setlerine dahil edilmeye çalışıldı.

MCHF+BP hesaplamalarında, Tablo 3.17'de verilen konfigürasyon setleri ile MCHF atomik yapı paketi [412] kullanılarak çalışıldı. Yb I'in taban haline, Tablo 3.17'de verilen diğer konfigürasyonların katkısı tüm hesaplamalar için sadece 4f¹⁴6p² konfigürasyonundan ve ilk uyarılmış seviyesi için katkı ise tüm hesaplamalarda 4f¹⁴6s6p konfigürasyonundan gelmektedir. MCHF+BP yöntemiyle A, B, C ve D hesaplamaları için sırasıyla 9136, 349, 3254 ve 5734 mümkün elektrik dipol geçişleri elde edildi ve bir kısmı Tablo 3.20'de sunulmaktadır. Tablodaki hesap sonuçları incelendiginde $4f^{14}6s6p-4f^{14}6s^2$, $4f^{14}6s7p-4f^{14}6s^2$ ve $4f^{14}6p^2-4f^{14}6s6p$ gecislerin diğer çalışmalarla uyumlu olduğu fakat 4f¹⁴6s6d–4f¹⁴6s6p, 4f¹⁴6s7d–4f¹⁴6s6p ve 4f146s7s-4f146s6p geçişlerin diğer çalışmalarla uyumlu olmadığı görülmektedir. $4f^{14}6s6p {}^{1}P_{1}^{0}, {}^{3}P_{1}^{0}-4f^{14}6s^{2} {}^{1}S_{0}$ ve $4f^{14}6s7p {}^{1}P_{1}^{0}-4f^{14}6s^{2} {}^{1}S_{0}$ geçişleri için dalga boyu sonuçları karşılaştırma değerleri ile oldukça uyumludur. $4f^{14}6p^{2}{}^{3}P_{2,1}-4f^{14}6s6p{}^{3}P_{2,1}^{o}$ $4f^{14}6s7d {}^{3}D_{1}-4f^{14}6s6p {}^{3}P^{o}_{0,1}$ ve $4f^{14}6s7s {}^{3}S_{1}-4f^{14}6s6p {}^{3}P^{o}_{1,2}$ geçişlerinin dalga boyları için uyum iyi olmasına rağmen $4f^{14}6p^2$ ${}^{1}S_0-4f^{14}6s6p$ ${}^{1}P_{1}^{o}$, $4f^{14}6s6d$ ${}^{3}D_{2,3}-4f^{14}6s6p$ ³P^o_{1.2}, 4f¹⁴6s7d ¹D₂-4f¹⁴6s6p ³P^o₁ geçişleri için kötüdür. Salınıcı şiddetleri ve geçiş olasılıkları ile ilgili karşılaştırma değerleri azdır. Bundan dolayı sadece $4f^{14}6s6p-4f^{14}6s^2$, $4f^{14}6s7p-4f^{14}6s^2$ ve $4f^{14}6s7s-4f^{14}6s6p$ gecislerinin gf ve A_{ki} karşılaştırılması yapıldı. $4f^{14}6s6p {}^{3}P^{o}_{1}-4f^{14}6s^{2} {}^{1}S_{0}$ geçişi hariç diğer geçişler uyumludur. Özellikle $4f^{14}6s6p P^{0} - 4f^{14}6s^{2} S_{0}$ geçişi için B ve D hesaplarından elde edilen gf değerleri [232] ile uyumlu iken A ve C'den elde edilen gf değerleri [35, 224, 233] ile uyumludur. Bu geçiş için A, C ve D hesaplamalarından elde edilen A_{ki} değerleri [62, 234] ile uyum içindedir. 4f¹⁴6s6p ${}^{3}P_{1}^{o}-4f^{14}6s^{2}$ ${}^{1}S_{0}$ geçişi için ise gf ve

 A_{ki} değerleri için uyum kötüdür. $4f^{14}6s7s \, {}^{1}S_0 - 4f^{14}6s6p \, {}^{3}P_{1}^{o}$ geçişinin *gf* değeri [238] ile uyumludur. $4f^{14}6s7p \, {}^{1}P_{1}^{o} - 4f^{14}6s^{2} \, {}^{1}S_{0}$ geçişi için B hesabına ait A_{ki} değeri [62] ile karşılaştırıldığında uyumun iyi olduğu görülmektedir. MCHF+BP hesaplamalarında görülen bazı uyumsuzlukların öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin de alındığı konfigürasyonlarla düzeltilebileceği düşünülmektedir.

HFR hesaplamalarında ise Tablo 3.17'de verilen dört farklı konfigürasyon seti ile çalışıldı. Yb I'in taban haline ve ilk uyarılmış seviyesine Tablo 3.17'de verilen diğer konfigürasyonların katkısı tüm hesaplamalar için [294] kaynağından ulaşılabilir. HFR program paketiyle [418] Tablo 3.17'deki tek ve cift pariteli seviyeler arasında yapılan A, B, C ve D geçişleri için sırasıyla 345, 3074, 151 ve 19485 mümkün elektrik dipol geçişleri elde edildi. HFR ile elde edilen 4f¹⁴6s6p-4f¹⁴6s², $4f^{14}6s6d-4f^{14}6s6p$, $4f^{14}6s7d-4f^{14}6s6p$, $4f^{14}6s7p-4f^{14}6s^2$, $4f^{14}6p^2-4f^{14}6s6p$, $4f^{14}6s10d-4f^{14}6s6p$, $4f^{14}6s7s-4f^{14}6s6p$, $4f^{13}5d6s^2-4f^{14}6s^2$, $4f^{13}5d6s6p-4f^{14}6s6p$ ve 4f¹³6s²6p-4f¹³5d6s² E1 geçişleri Tablo 3.20'de sunulmaktadır. Bu geçişler için dalga boyu sonuçları ile diğer çalışmalar arasındaki uyumun iyi olduğu görülmektedir. 3.20'de $4f^{14}6s6p-4f^{14}6s^2$, $4f^{14}6s7p-4f^{14}6s^2$, $4f^{14}6s7s-4f^{14}6s6p$ Tablo ve $4f^{13}5d6s^2 - 4f^{14}6s^2$ geçişleri için *gf* ve A_{ki} değerleri de diğer çalışmalarla karşılaştırıldı. $4f^{14}6s6p \, {}^{1}P^{0}_{1}-4f^{14}6s^{2} \, {}^{1}S_{0}$ geçişinin ağırlıklı salınıcı şiddetleri incelendiğinde [232] ile A hesabı ve [35, 224, 233] ile C ve D hesapları uyum içindedir. Bu geçişinin geçiş olasılığının A, C ve D sonuçları, [62, 234] ile uyumludur. 4f¹⁴6s6p ${}^{3}P_{1}^{o}-4f^{14}6s^{2}$ ${}^{1}S_{0}$ geçişi için ise *gf* değerleri [35, 224] ile karşılaştırıldığında iyidir. 4f¹⁴6s7s ${}^{1}S_{0}$ -4f¹⁴6s6p ${}^{3}P_{1}^{o}$ geçişinin *gf* değeri [238] ile uyumu az olmasına rağmen $4f^{14}6s7p P^{0} - 4f^{14}6s^{2} S_{0}$ geçişinin geçiş olasılığında uyum kötüdür. Tablodan da görüldüğü gibi HFR sonuçları, HFR hesaplamalarında elde edilen seviyeler deneysel değerlerine uydurulduğundan ve değerlik elektronları arasındaki karşılıklı etkileşmelerinin yanı sıra öz ve değerlik elektronlar arasındaki karşılıklı etkilesmelerde hesaba dahil edildiğinden MCHF+BP sonuçlarından daha iyidir.

Ge	çişler		λ			gf			A _{ki}	
Üst seviye	Alt seviye	Bu ç	alışma	Diğer	Bu çal	işma	Diğer	Bu ça	alışma	Diğer
-		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6s6p^{-1}P^{0}_{1}$	$4f^{14}6s^{2}S_0$	4079,50 ^A	3988,9272 ^A	3987,99 ^a	1,06431 ^A	2,16663 ^A	1,818 ^c	$1,4219(8)^{A}_{-}$	$3,027(8)^{A}_{-}$	$1,92(8)^{a}$
		$4052,49^{B}$	3973,9645 ^B		$1,73756^{B}$	$2,37646^{\text{B}}$	1,36 ^d	$2,3524(8)^{B}$	$3,346(8)^{B}$	$2,91(8)^{h1}$
		3953,26 ^C	3989,9337 ^C		1,16198 ^C	$1,17606^{\circ}$	1,30 ^e	$1,6531(8)^{C}_{-}$	$1,643(8)^{C}$	$2,09(8)^{h2}$
		3757,65 ^D	3994,7719 ^D		1,98381 ^D	1,47337 ^D	1,50 ^f	3,1238(8) ^D	$2,053(8)^{D}$	
$4f^{14}6s6p^{-3}P^{0}_{1}$	$4f^{14}6s^2$ $^{1}S_0$	5483,41 ^B	5569,7197 ^A	5556,466 ^a	0,00018 ^B	0,03803 ^A	0,0159 ^d	$0,1342(5)^{B}$	$2,725(6)^{A}$	$1,15(6)^{a}$
		$5303,30^{\circ}_{-}$	$5581,1762^{B}$		$0,00009^{\circ}$	0,03739 ^B	0,0167 ^e	$0,7151(4)^{C}_{-}$	$2,668(6)^{B}$	$7,55(5)^{h1}$
		5710,02 ^D	5566,7341 ^C		$0,00223^{D}$	0,03326 ^C		$0,1526(6)^{D}$	$2,387(6)^{C}$	$7,71(5)^{h2}$
			5568,3393 ^D			0,03520 ^D			$2,524(6)^{D}$	
$4f^{14}6s7p^{-1}P^{0}_{1}$	$4f^{14}6s^2$ $^{1}S_0$	2396,61 ^B	2465,0365 ^A	2464,50 ^a	0,32074 ^B	$0,00588^{A}_{-}$	-	$1,2416(8)^{B}$	$0,215(7)^{A}_{-}$	$1,00(8)^{a}$
		2361,55 ^C	2448,9719 ^B		1,26039 ^C	0,00367 ^B		5,0249(8) ^C	$0,136(7)^{B}$	
$4f^{14}6p^2 {}^{3}P_1$	$4f^{14}6s6p^{-3}P^{0}_{0}$	3759,63 ^A	3771,5296 ^A	_	0,38228 ^A	0,78922 ^A	_	$0,6013(8)^{A}$	1,233(8) ^A	_
		3743,27 ^B	3809,8716 ^B		0,43528 ^B	$0,68260^{B}$		$0,6907(8)^{B}$	$1,046(8)^{B}$	
14 0.0	14 0	3742,71 ^C			0,42802 ^C			0,6794(8) ^C		
$4f^{14}6p^2 {}^{3}P_0$	$4f^{14}6s6p^{-3}P^{0}_{1}$	3949,30 ^A	4072,1552 ^A	_	0,34641 ^A	0,66105 ^A	_	1,4815(8) ^A	$2,660(8)^{A}$	_
		3955,21 ^в	4058,0550 ^B		0,40521 ^B	$0,60985^{B}$		$1,7278(8)^{B}$	$2,470(8)^{B}$	
14 0.0	14 0	3938,99 ^C			0,39444 ^C			1,6957(8) ^C		
$4f^{14}6p^2 {}^{3}P_2$	$4f^{14}6s6p^{-3}P^{0}_{2}$	3581,37 ^A	4027,3692 ^A	3990,885 ^a	1,38625 ^A	1,78403 ^A	-	$1,4418(8)^{A}_{P}$	$1,467(8)^{A}$	-
		3576,26 ^B	4043,7714 ^B		1,58958 ^B	1,88076 ^в		$1,6580(8)^{B}_{B}$	$1,534(8)^{B}$	
14 2 2	14 2 -	3587,55 [°]			1,54255 ^C			1,5989(8)		
$4f^{14}6p^2 {}^{5}P_1$	$4f^{14}6s6p^{-3}P^{0}_{2}$	3773,92 ^A	4145,1301 ^A	-	0,47584 ^A	0,85923 ^A	_	$0,7428(8)^{A}_{p}$	$1,112(8)^{A}_{P}$	-
		3781,36 ^B	4189,1345 ^в		0,53859 ^B	0,77339 ^в		0,8375(8) ^B	$0,979(8)^{B}$	
14 2 2	14 2 -	3780,79 ^C			0,52945 [°]			0,8235(8)		
$4f^{14}6p^2 {}^{5}P_1$	$4f^{14}6s6p^{-5}P_{1}^{0}$	3764,32 ^A	3863,8476 ^A	3872,852 ⁶	0,28637 ^A	$0,56668^{A}_{B}$	-	$4,4933(7)^{A}_{P}$	$8,440(7)^{A}_{p}$	-
		3755,53 [⊾]	3903,5806 ^b		0,32526 ^B	0,48952 ^b		5,1275(7) ^B	7,140(7) ^в	
. 14 2 2	. 14 2 0	3754,96 [°]	Δ	, , , , , , , h	0,31989 ^C			$5,0445(7)^{C}_{P}$	Δ	
$4f^{14}6p^2$ $^{3}P_2$	$4f^{14}6s6p^{-3}P_{1}^{0}$	3553,14 ^b	3761,3289 ^A	3734,694°	0,53935 ^b	0,91937 ^A	_	$5,6993(7)^{\text{B}}_{C}$	$8,660(7)^{A}_{P}$	-
· 14 - 2 1-	· 14 · · · 1-0	3564,28	3777,0602 ^b		0,52407 ^C	0,74353 ^b		5,5032(7) ^C	6,950(7) ^b	
$4f^{14}6p^2$ $^{1}S_0$	$4f^{14}6s6p^{-1}P_{1}^{0}$	3103,73 ^A	4300,2239 ^A	4295,026°	0,65791 ^A	0,15087 ^A	-	4,5555(8) ^A	$0,540(8)^{A}_{P}$	-
. 14 . 2	. 14 2 0	3181,01	4306,8521 ^b		0,73318	0,50331 ^B		4,8331(8) ^C	1,810(8) ^b	
$4f^{14}6s6d^{-3}D_1$	$4f^{14}6s6p^{-3}P_{0}^{0}$	3501,72 ^A	4447,0553 ^A	-	0,07874 ^A	0,08449 ^A	_	$1,4278(7)^{A}$	$0,950(7)^{A}$	-
		3481,85 ^b	4440,5474 ^B		0,12632 ^в	0,12802 ^в		2,3167(7) ^B	1,443(7) ^b	
		3487,03 ^C			0,15205 ^C			2,7805(7) ^C		
		2922,88 ^b			0,01376			$0,3582(7)^{D}$		

Tablo 3.20. Yb I'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş olasılıkları (sn⁻¹)

Tablo 3.2). Devam
-----------	----------

Geçişler			λ			gf			A _{ki}	
Üst seviye	Alt seviye	Bu çalışma		Diğer	Bu çalışma		Diğer	Bu çalışma		Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6s6d^{-3}D_1$	$4f^{14}6s6p^{-3}P^{0}_{1}$	3505,79 ^A	4575,9705 ^A	_	0,05871 ^A	0,05826 ^A	-	$1,0621(7)^{A}$	$0,619(7)^{A}$	_
		3492,45 ^B	4568,3693 ^B		$0,09402^{B}$	$0,08974^{B}$		$1,7139(7)^{B}$	$0,956(7)^{B}$	
		3497,66 ^C			0,11315 ^C			$2,0566(7)^{C}$		
		$2949,20^{D}$			0,01072 ^D			$0,2740(7)^{D}$		
$4f^{14}6s6d^{-3}D_2$	$4f^{14}6s6p^{-3}P^{0}_{2}$	3514,11 ^A	4967,9823 ^A	_	$0,05862^{A}$	0,04073 ^A	-	6,3332(6) ^A	$2,200(6)^{A}$	-
		3520,06 ^C	4956,6053 ^B		0,11232 ^C	0,06471 ^B		1,2093(7) ^C	$3,510(6)^{B}$	
		$3008,65^{D}$			0,01077 ^D			$1,5861(6)^{D}$		
$4f^{14}6s6d^{-3}D_2$	$4f^{14}6s6p^{-3}P^{0}_{1}$	3505,79 ^A	4569,3107 ^A	4576,209 ^a	0,17565 ^A	$0,20342^{A}$	_	1,9067(7) ^A	1,299(7) ^A	_
		3492,45 ^в	4561,7679 ^в		0,28159 ^B	0,29035 ^B		3,0799(7) ^B	1,861(7) ^B	
		3497,67 ^C			0,33881 ^C			3,6947(7) ^C		
		2949,12 ^D			0,03037 ^D			$0,4658(7)^{D}$		
4f ¹⁴ 6s6d ³ D ₃	4f ¹⁴ 6s6p ³ P ^o ₂	3514,11 ^A	4936,9154 ^A	4935,500 ^a	0,32539 ^A	$0,27685^{A}_{-}$	_	$2,5109(7)^{A}_{-}$	$1,080(7)^{A}_{-}$	-
		3514,78 ^B	4925,0950 ^B		0,51936 ^B	0,45068 ^B		$4,0061(7)^{B}$	$1,770(7)^{B}$	
		3520,06 ^C			0,62477 ^C			$4,8046(7)^{C}$		
		3009,43 ^D			0,05649 ^D			$0,5943(7)^{D}$		
$4f^{14}6s6d^{-3}D_1$	$4f^{14}6s6p^{-3}P^{0}_{2}$	3514,11 ^A	4975,8561 ^A	-	0,00386 ^A	$0,00327^{A}_{-}$	_	$6,9664(5)^{A}_{-}$	$2,930(5)^{A}_{-}$	-
		3514,78 ^B	4964,3998 ⁸		$0,00618^{B}$	0,00530 ^B		$1,1113(6)^{B}$	$4,770(5)^{B}$	
		3520,06 ^C			$0,00743^{\circ}_{-}$			$1,3334(6)^{C}_{-}$		
		3009,61 ^D			0,00076 ^D			$1,8618(5)^{D}$		
$4f^{14}6s6d^{-1}D_2$	$4f^{14}6s6p^{-3}P^{0}_{2}$	3519,38 ^C	4913,8190 ^A	-	$0,00124^{\circ}$	$0,00866^{A}_{-}$	_	$1,3403(5)^{C}_{-}$	$4,780(5)^{A}_{-}$	-
		3006,04 ^D	4903,5289 ^B		0,00218 ^D	0,01555 ^B		$3,2210(5)^{D}$	$8,620(5)^{B}$	
$4f^{14}6s7d^{-3}D_1$	$4f^{14}6s6p^{-3}P^{0}_{0}$	2889,24 ^B	3704,7699 ^A	3699,514 ^b	$0,08644^{B}$	$0,10081^{A}_{-}$	_	$2,3022(7)^{B}$	$1,633(7)^{A}_{-}$	-
		2626,45 ^C	3682,9295 ^B		$0,00340^{\circ}_{-}$	$0,05024^{B}$		$0,1095(7)^{C}_{-}$	$0,823(7)^{B}$	
		2560,15 ^D			0,00645 ^D			$0,2188(7)^{D}$		
$4f^{14}6s7d^{-3}D_1$	$4f^{14}6s6p^{-3}P^{0}_{1}$	2896,53 ^B	3793,8099 ^A	3798,402 ^b	0,06432 ^B	0,07263 ^A	-	$1,7045(7)^{B}$	$1,123(7)^{A}$	-
		$2632,47^{\circ}$	3770,4262 ^в		$0,00254^{\circ}_{-}$	0,03537 ^в		$0,8155(6)^{C}_{-}$	$0,553(7)^{B}$	
		2580,32 ^D			$0,00602^{D}$			$2,0099(6)^{D}_{D}$		
$4f^{14}6s7d^{-1}D_2$	$4f^{14}6s6p^{-3}P^{0}_{1}$	2595,68 ^D	3785,2214 ^A	3791,741 ^b	0,00157 ^D	$0,00736^{A}_{-}$	_	$0,3105(6)^{D}$	$0,686(6)^{A}_{-}$	-
		_	3768,3532 ^B		_	0,09121 ^B		_	$0,856(7)^{B}$	
$4f^{14}6s7d^{-3}D_1$	4f ¹⁴ 6s6p ³ P ^o ₂	2911,88 ^B	4064,6303 ^A	-	$0,00422^{B}$	$0,00473^{A}_{-}$	_	1,1071(6) ^B	$0,637(6)^{A}_{-}$	-
			4036,1683 ^B			$0,00215^{B}$			$0,294(6)^{B}$	
$4f^{14}6s7d^{-3}D_2$	$4f^{14}6s6p^{-3}P^{0}_{2}$	2911,86 ^B	4064,4941 ^A	-	$0,06325^{B}$	0,00632 ^A	_	9,9509(6) ^B	$0,510(6)^{A}$	-
		2645,58 ^C	4035,8924 ^B		$0,00249^{\circ}_{-}$	$0,00543^{B}$		0,4753(6) ^C	$0,445(6)^{B}$	
		2623,43 ^D			$0,00742^{D}$			1,4391(6) ^D		

Geçişler		λ		gf			A _{ki}			
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu çal	ışma	Diğer	Bu ça	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6s7d^{-3}D_3$	$4f^{14}6s6p^{-3}P^{o}_{2}$	2911,83 ^B	4054,7393 ^A	_	0,35302 ^B	0,39839 ^A	_	3,9675(7) ^B	2,310(7) ^A	_
		2645,95 ^C	4035,2949 ^в		0,01305 ^C	$0,18092^{B}$		0,1777(7) ^C	$1,060(7)^{B}$	
		$2620,40^{D}$	_		$0,02872^{D}$	_		$0,3986(7)^{D}$	_	
$4f^{14}6s10d^{-3}D_3$	$4f^{14}6s6p^{-3}P^{0}_{2}$	-	3511,5585 ^B	3488,855 ^b	-	$0,02070^{B}_{-}$	-	-	$0,160(7)^{B}_{-}$	-
$4f^{14}6s10d^{-1}D_2$	$4f^{14}6s6p^{-1}P^{0}_{1}$	-	4313,5041 ^B	4284,170 ^b	-	0,18184 ^B	-	-	$1,304(7)^{B}$	-
$4f^{14}6s7s^{-1}S_0$	4f ¹⁴ 6s6p ³ P ^o 1	4123,05 [°]	6098,8906 ^A	_	0,00685 ^C	0,01924 ^A	0,0024 ^g	$2,6905(6)^{C}$	$3,450(6)^{A}$	-
		6051,27 ^D	6085,5692 ^B		0,00349 ^D	0,01363 ^B		$0,6363(6)^{D}$	$2,454(6)^{B}$	
$4f^{14}6s7s^{-3}S_1$	$4f^{14}6s6p^{-3}P^{0}_{0}$	4731,79 ^A	6504,4801 ^A	_	0,88909 ^A	0,18502 ^A	-	8,8291(7) ^A	$0,973(7)^{A}$	-
		4705,01 ^C	6490,3864 ^B		1,13533 ^C	$0,19152^{B}$		1,1403(8) ^C	$1,011(7)^{B}$	
14 2	14 2 -	6499,17 ^D			0,21494 ^D			1,1314(7)		
$4f^{14}6s7s^{-3}S_1$	$4f^{14}6s6p^{-3}P^{0}_{1}$	4739,22 ^A	6784,0229 ^A	6799,60 ^a	2,66325 ^A	$0,51472^{A}_{P}$	-	$2,6364(8)^{A}_{P}$	$0,249(8)^{A}_{p}$	-
		2536,28 ^B	6767,1333 ^B		0,08688 ^B	0,53418 ^B		$0,3003(8)^{B}_{C}$	0,259(8) ^B	
		4724,38 [°]			3,38861 ^C			3,3756(8) ^C		
14 2	-14 2 a	6630,76 ^D			0,61408 ^D			0,3105(8) ^D		
$4f^{14}6s7s^{-3}S_1$	$4f^{14}6s6p^{-5}P_{2}^{0}$	4754,44 ^A	7701,6249 ^A	7699,49 ^a	4,42608 ^A	0,74723 ^A	-	$4,3535(8)^{A}_{P}$	$0,280(8)^{A}_{P}$	-
		2548,04 ^B	7673,9616 ^b		0,14238 ^B	0,77995 ^b		$0,4876(8)^{\rm B}$	0,294(8) ^b	
		4765,34 ^C			5,59391 [°]			5,4770(8) ^C		
(a)3,2=0) = 1 = 2	14 - 2	6944,14 ^D			0,92929 ^D	0.07.10.10		$0,4285(8)^{D}$	a a a a <i>c</i> a C	
$4f^{13}({}^{2}F^{0}_{5/2})5d6s^{2}$	$4f^{14}6s^2 S_0$	_	25/3,6410 ^e	-	_	$0,2/421^{\circ}$	-	-	9,200(7) ^e	-
$(5/2,5/2)^{\circ}_{1}$	$10^{14} - 2$		2594,0224 ^B			0,21176			6,990(7) ^b	
$4f^{13}(^{2}F^{0}_{5/2})5d6s^{2}$	$4f^{4}6s^{2}$ S_{0}	—	2686,4828 ^e	_	—	0,69733 ^e	-	_	2,150(8) ^e	-
$(5/2,3/2)^{\circ}_{1}$	cl4 = 2 lo		2677,42085	2464.258		0,44461			1,380(8)	0.00000
4f ¹³ (² F ^o _{7/2})5d6s ²	$4f^{1}6s^{2}S_{0}$	—	3463,4175°	3464,37*	—	1,41740°	-	_	2,627(8) ^o	0,683(8)"
$(1/2, 5/2)^{\circ}_{1}$	$4cl^4c$ c $3D0$		3463,8424 ^D	acco ocob		$1,024/2^{D}$			1,898(8) ^D	
$41^{-5}d6s6p(F_{7/2})$	4f 6s6p P [*] 1	_	3562,6755-	3559,032	_	0,00467-	-	_	2,454(6)	-
$(1/2, 1/2)_0$	$4f^{14}(-6,-3D^{0})$		2605 7862D	2655 720b		0.00011D			0.109(5)D	
$41^{-5} 300 \text{sop}(D^{-}_{5/2})$	41 osop P_1	_	3005,7803	3035,729	_	0,00011	-	-	0,108(5)	-
$(1/2, 5/2)_2$	$4f^{14}$		1265 2020 ^D	4222 000 ^b		0.0001.0 ^D			0.120(5) ^D	
41 Sabsop($D_{3/2}^{\circ}$)	41 OSOP P_1	_	4265,3038	4333,909	-	0,00018-	-	_	0,129(5)	-
$(1/2, 3/2)_2$ $4f^{13}(^2F^{\circ}) 6c^2f^{\circ}$	$4f^{13}(^{2}E^{\circ}) 5d6c^{2}$		1275 5526 ^C	4227 500 ^b		0.00080 ^C			$0.442(5)^{\rm C}$	
41 ($\Gamma_{5/2}$)os $\delta p_{3/2}$	41 $(\Gamma_{7/2})$ 3008	_	43/3,3320 4420.0485 ^D	4337,399	_	0,00089	_	_	$0,443(5)^{D}$	_
$(3/2, 3/2)_3$	$(1/2, 3/2)^{-2}$		4439,9483			0,00203			1,280(3)	

Tablo 3.20. Devam

^aNIST Periodictable [62], ^bAfzal ve çalışma arkadaşları [281], ^cMigdalek ve Marcinek [232, *f* den çevrildi], ^dDoige [35, *f* den çevrildi], ^eBaumann ve Wandel [224, *f* den çevrildi], ^fMigdalek ve Baylis [233, *f* den çevrildi], ^gBai ve Mossberg [238, *f* den çevrildi], ^{h1,h2}Migdalek ve Baylis [234]

3.6.4. Yb I, Yb II ve Yb III'ün geçiş enerjileri

Çok konfigürasyonlu Hartree-Fock (MCHF) ve relativistik Hartree-Fock (HFR) yöntemleri kullanılarak nötral, bir ve iki kez iyonlaşmış iterbiyumun (Yb I, Yb II, Yb II) geçiş enerjileri (iyonlaşma potansiyelleri, uyarılma enerjileri ve elektron ilgisi) hesaplandı [295]. İyonlaşma potansiyelleri ve uyarılma enerjileri ile ilgili hesaplamalar değerlik-değerlik ve öz-değerlik elektronları arasındaki karşılıklı etkileşmelere göre Tablo 3.21'de verilen konfigürasyon setleri ile yapıldı. Elektron ilgisi hesapları için seçilen konfigürasyon setleri ise Tablo 3.22'de sunulmaktadır. Elde edilen sonuçlar Yb I'için Tablo 3.23'te, Yb II için Tablo 3.24'te ve Yb III için Tablo 3.25'te konfigürasyon katkıları ile verilmektedir. Tablolarda iyonlaşma potansiyelleri, uyarılma enerjileri cm⁻¹ ve elektron ilgisi meV birim sistemlerinde ve sadece tek pariteli seviyeler "^o" indisiyle sunulmaktadır.

MCHF+BP hesaplamaları, MCHF atomik yapı paketi [412] ile yapıldı ve elde edilen sonuçlar Tablo 3.23 ve Tablo 3.24'te verilmektedir. Diğer çalışmalarla karşılaştırıldığında Yb I'in 4f¹⁴6s7s ve 4f¹⁴6s6d seviyeleri hariç diğer seviyelerde uyum iyidir. Yb II için 4f¹⁴6p, 4f¹⁴6d, 4f¹⁴7s ve 4f¹⁴8s seviyeler için uyum iyi değildir. Bu seviyeleri iyileştirmek için 5p yörüngesinden uyararak öz ve değerlik elektronları arasındaki karşılıklı etkileşmelerinde hesaba dahil edildiği 4f¹⁴5p⁶ns (n = 6-9), 4f¹⁴5p⁶nd, 4f¹⁴5p⁶ng (n = 5-9), 4f¹⁴5p⁵6snp (n = 5, 6), 4f¹⁴5p⁵5d7p, 4f¹⁴5p⁶np (n = 6-9), 4f¹⁴5p⁶nf (n = 5-9), 4f¹⁴5p⁵5d6s ve 4f¹⁴5p⁵5d7s konfigürasyon seti ile hesaplama yapıldı ve 4f¹⁴6p, 4f¹⁴6dve 4f¹⁴8s seviyeleri için daha iyi sonuçlar elde edildi. Bu konfigürasyon setiyle elde edilen Yb I ve Yb II'in iyonlaşma potansiyelleri de daha iyidir. Bu sonuçlar tablolarda "*" üst indisiyle belirtilmektedir. İki kez iyonlaşmış iterbiyum için MCHF+BP hesaplamaları yapılmadı. MCHF atomik yapı paketinde $l \ge 3$ alt tabakalardaki doluluk iki elektrondan daha fazla elektronlar için izinli değildir. Bu yüzden sadece bir konfigürasyonla Yb III'ün iyonlaşma potansiyeli 169180,328 cm⁻¹ olarak bulundu.

	Konfigürasvonlar							
	Yb I	Yb II	Yb III					
MCHF-	-BP hesaplamaları için:							
İP	Yb II'in ikinci sütunundakiyle aynı	Yb III'ün üçüncü sütunundakiyle aynı	-					
UE	$\begin{array}{l} 4f^{14}6s^2, 4f^{14}5d6s, 4f^{14} 6snd(n=\\ 6,7), 4f^{14}5d^2, 4f^{14}6p^2, 4f^{14}6sns\\ (n=7,8), 4f^{14}6snp(n=6-9),\\ 4f^{14}6snf(n=5,6), 4f^{14}5f5g \end{array}$	$4f^{14}$ ns (n = 6–9), $4f^{14}$ nd $4f^{14}$ ng, $4f^{14}$ nf (n = 5–9), $4f^{14}$ np (n = 6–9)	4f ¹⁴					
HFR he	saplamaları için:							
İP	Yb II'in ikinci sütunundakiyle aynı	Yb III'ün üçüncü sütunundakiyle aynı	$4f^{13}$, $4f^{12}$ 6p, $4f^{12}$ 5d, $4f^{12}$ 6s					
UE	$\begin{array}{l} 4f^{14}6s^2, 4f^{14}5d6s, 4f^{14}5d^2, \\ 4f^{14}6p^2, 4f^{14}6sns (n=7-12), \\ 4f^{14}6snd (n=6-14), 4f^{14}6snp \\ (n=6-20), 4f^{14}6snf (n=5-15) \end{array}$	$4f^{14}6s (n = 6-11), 4f^{13}6s^{2}, 4f^{14}nd (n = 5-12), 4f^{14}ng (n = 5, 6), 4f^{14}np (n = 6-12), 4f^{13}5d6s, 4f^{14}nf (n = 5-12)$	4f ¹⁴ , 4f ¹³ np, 4f ¹³ ns (n = 6, 7), 4f ¹³ nf, 4f ¹³ nd (n =5–7)					

Tablo 3.21. Yb I, Yb II ve Yb III'ün İP iyonlaşma potansiyeli ve UE uyarılma enerjileri hesaplamaları için alınan konfigürasyon setleri

Tablo 3.22. Yb'nin Eİ elektron ilgisi hesaplamaları için alınan konfigürasyon setleri

Konfigürasyonlar							
	Taban hal	Eİ					
MCHF+B	P hesaplamaları için:						
A	4f ¹⁴ 6s ² , 4f ¹⁴ 5d6s, 4f ¹⁴ 5d ² , 4f ¹⁴ 6p ² , 4f ¹⁴ 6s7s, 4f ¹⁴ 6s5g	$\begin{split} &4f^{14}6s^2np,4f^{14}5d6snp,4f^{14}5dns5f,4f^{14}5d^2np\\ &(n=6,7),4f^{14}5d^25f,4f^{14}5d6p7s,4f^{14}5d7s7p,\\ &4f^{14}6s6p7s,4f^{14}6s7s7p,4f^{14}6p^27p,4f^{14}7s^27p,\\ &4f^{14}np^3(n=6,7),4f^{14}6p7s^2,4f^{14}6p7p^2 \end{split}$					
В	$\begin{array}{l} 4f^{14}6s^2,4f^{14}5d6s,4f^{14}6snd(n=6-9),\\ 4f^{14}5d^2,4f^{14}6p^2,4f^{14}6sns,4f^{14}5dns\\ (n=7-9),4f^{14}5dnd(n=6-8),4f^{14}5d5g,\\ 4f^{14}6sng(n=5-7),4f^{14}5g^2,4f^{14}6p5f,\\ 4f^{14}5f7p,4f^{14}5f^2 \end{array}$	4f ¹⁴ 6s ² 6p, 4f ¹⁴ 5d6s6p, 4f ¹⁴ 5d ² 6p					
С	B hesabı ile avnı	A hesabi ile aynı					
D	B hesabi ile aynı	$A + 4f^{14}6p5g^{2}$					
Ε	B hesabı ile aynı	4f ¹⁴ 6s ² 6p, 4f ¹⁴ 5d6s6p					
HFR hesaplamaları için:							
A (1,00)	$4f^{14}6s^2$	4f ¹⁴ 6s ² 6p					
B (2,50)	A hesabı ile aynı	A hesabı ile aynı					
C (3,00)	A hesabı ile aynı	A hesabı ile aynı					

*HFR hesaplamalarında parantez içindeki değerler CORRF değerlerini göstermektedir.
HFR hesaplamalarında alınan konfigürasyon setleri Tablo 3.21 ve Tablo 3.22'de verilmektedir. Bu konfigürasyon setleri hem değerlik hem de öz-değerlik elektronları arasındaki karşılıklı etkileşmeleri içerir. Hamiltonyenin hesaplanan özdeğeri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelere uydurma yapmak için iyileştirilir ve en küçük kareler yönteminde spinyörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri Yb I için 0,75 ve Yb II, Yb III ve Yb⁻ için 0,85 olarak seçildi ve elde edilen sonuçlar Tablo 3.23–3.25'te sunulmaktadır. Yb I, Yb II ve Yb III için hesaplanan iyonlaşma potansiyelleri ve uyarılma enerjileri diğer çalışmalarla karşılaştırıldığında uyumun oldukça iyi olduğu görülmektedir. Sadece Yb II ve Yb III'ün iyonlaşma potansiyellerinde uyum daha azdır.

HFR hesaplamalarında, CORRF niceliği teorik yaklaşık karşılıklı etkileşme potansiyeli için bir çarpım faktörü olarak kullanılmaktadır. 1,0 değeri teorik olarak doğru değeridir. Fiziksel olarak birden büyük olan gerçek dışı değerleri negatif iyon hesaplamaları için gerekli olabilir [418]. İterbiyumun elektron ilgisi hesabında, CORRF için farklı değerler alındı ve bu değerleri de Tablo 3.22'de belirtilmektedir.

İterbiyum için kararlı negatif iyonların oluşumu birçok teorik çalışmaların konusu olmuştur. $4f^{14}6s^26p$ konfigürasyonuna sahip bir Yb⁻ iyonun varlığı ilk olarak Vidolova-Angelova ve çalışma arkadaşları tarafından tahmin edildi [285]. Yb⁻'nin elektron ilgisi relativistik çok-cisim katkı teorisi, relativistik karşılıklı etkileşmepotansiyel yöntemi ve hızlandırıcı kütle spektrometresi gibi yöntemlerle incelenmiştir [286–292]. Bu çalışmalarda Yb'nin elektron ilgisi için çeşitli sonuçlar elde edilmiştir. İterbiyumun negatif iyon kararlılığı olmadığına dair güçlü kanıtlar sunulmuş ve Yb atomunun kararlı negatif iyonunun bulunmadığı gösterilmiştir [289]. Yb⁻ için hem HFR hem de MCHF+BP hesaplamalarında çeşitli sonuçlar bulundu. $4f^{14}6s^26p$ ²P^o_{3/2} seviyesi hariç elde edilen sonuçlar diğer çalışmalarla uyum içindedir. Tablo 3.23. Yb I için geçiş enerjileri

Sevive	ler	Bı	ı çalışma	Diğer	Konfigürasvon	rasvon katkıları (%)		
Konf.	Terim	n HFR MCHF+BP		çalışmalar	HFR	MCHF+BP		
			İyonlaşı	na potansiyel	$i (cm^{-1})$			
$4f^{14}6s^2$	${}^{1}S_{0}$	49184,10	47229,42 41257,22*	50441,0 ^a 41295,25 ^b 51143 ^c 48074 ^d	$\begin{array}{l} 97,0 + 2,3 \ 4 f^{14} 6 p^{2} \ ^1S + \\ 0,4 \ 4 f^{14} 5 d^{2} \ ^1S \end{array}$	$\begin{array}{l} 99,97471+0,02528\\ 4f^{14}6p^{2} \ {}^{3}P\end{array}$		
			Uyarılı	na enerjileri	(cm ⁻¹)			
14	2				14 2			
4f ¹⁴ 6s6p	³ P ⁰ 0	17325,350	17816,72	17288,439 ^a 17346 ^c	99,2 + 0,6 4f ¹⁴ 5d6p ³ P + 0,1 4f ¹⁴ 6s7p ³ P	100,0		
	${}^{3}\mathrm{P}^{0}{}_{1}$	17945,548	17914,72	17992,007 ^a 18082 ^c	96,7 + 2,3 4f ¹⁴ 6s6p ¹ P + 0,7 4f ¹⁴ 5d6p ³ P	99,95463 + 0,04537 4f ¹⁴ 6s6p ¹ P		
	${}^{3}P_{2}^{0}$	19718,427	18119,98	19710,388 ^a 19847 ^c	98,9 + 0,8 4f ¹⁴ 5d6p ³ P +0.2 4f ¹⁴ 6s7p ³ P	100,0		
4f ¹⁴ 6s6p	$^{1}P_{1}^{o}$	25069,266	24593,78	25068,222 ^a 27283 ^c	$89,1+7,24f^{14}5d6p^{-1}P$ + 2.54f^{14}6s6p^{-3}P	99,95465 + 0,04534 4f ¹⁴ 6s6n ³ P		
4f ¹⁴ 5d6s	$^{3}D_{1}$	24487,351	24085,73	24489,102 ^a 24981 ^c	99,9	100,0		
	$^{3}D_{2}$	24753,621	24494,30	24751,948 ^a	$98,3 + 1,5 4f^{14}5d6s {}^{1}D$	88,02093 + 11,07421,4f ¹⁴ 5d6a ¹ D		
	³ D ₃	25271,212	25851,28	25229 25270,902 ^a 25735 ^c	+ 0,1 41 6p D 99,9	99,99		
4f ¹⁴ 5d6s	$^{1}D_{2}$	27668,606	26954,27	27677,665 ^a 28673 ^c	89,6 + 7,3 4f ¹⁴ 6p ² ¹ D + 1,6 4f ¹⁴ 5d6s ³ D	87,97825 + 11,96983 4f ¹⁴ 5d6s ³ D		
$4f^{14}6s7s$	${}^{3}S_{1}$	32694,747	50254,17	32694,692 ^a	99,9 + 0,1 $4f^{14}6s8s^{3}S$	100,0		
	${}^{1}S_{0}$	34343,985	51163,44	34350,65 ^a	$97,9 + 0,7 4f^{14}6s8s {}^{1}S$ + 0,6 4 $f^{14}6p^{2} {}^{1}S$	99,22644 + 0,077358 $4f^{14}6p^{2}{}^{3}P$		
4f ¹⁴ 6s7p	${}^{3}P_{0}^{o}$	38068,154	39431,08	38090,71 ^a	99,1 + 0,5 $4f^{14}5d6p {}^{3}P$ + 0.2 $4f^{14}6s6p {}^{3}P$	100,0		
	${}^{3}P_{1}^{o}$	38203,869	39431,08	38174,17 ^a	$98,0 + 1,0 4f^{14}6s7p P^{1}P$ + 0.6 4f^{14}5d6p P^{3}P	100,0		
	${}^{3}P_{2}^{o}$	38544,364	39431,08	38551,93 ^a	$98,6 + 0,9 4f^{14}5d6p {}^{3}P$ + 0.3 4f^{14}6s6p {}^{3}P	100,0		
4f ¹⁴ 6s7p	${}^{1}P_{1}^{0}$	40563,221	39440,04	40563,97 ^a	$93,7 + 4,2 4f^{14}5d6p P^{1}$ + 1 1 4 $f^{14}6s7p P^{3}$	100,0		
4f ¹⁴ 6s6d	${}^{3}D_{1}$	39807,357	46794,87	39808,72 ^a	99.9	99,99		
	${}^{3}D_{2}$	39839,630	46794,89	39838,04 ^a	$85,7 + 14,0 4f^{14}6s6d$ $^{1}D + 0.1 4f^{14}5d^{2} {}^{1}D$	99,99782 + 0,00208 4f ¹⁴ 6s6d ¹ D		
	$^{3}D_{3}$	39966,361	46794,92	39966,09 ^a	99,9	99,99		
4f ¹⁴ 6s6d	${}^{1}D_{2}$	40060,175	46800,70	40061,51 ^a	$84,7 + 14,2 4f^{14}6s6d$ $^{3}D + 0.5 4f^{14}5d^{2} {}^{1}D$	99,92783 + 0,06983 $4f^{14}6n^{2} {}^{3}P$		
			Elek	tron ilgisi (m	eV)			
1014 - 2 -	2-0			• • •	100.0			
4f ¹⁴ 6s ² 6p	${}^{2}P_{1/2}^{0}$	74,49 ^A	$21,02^{A}$	20°	100,0	99,99		
		45,40 25.33 ^C	60,54 50,53 ^C	45,0 36 ^g				
		25,55	35.14 ^D	54±27 ^h				
			99,05 ^E	98,5 ⁱ				
	${}^{2}P^{o}_{3/2}$	7,20 ^A	-39,23 ^A	80 ^e	100,0	99,99		
		-80,21 ^B	-41,61 ^B	-13,5±27 ^h				
		-113,28°	11,79° -3,55 ^D 6,15 ^E	175,5'				

^aNIST Atomic Spectra Database [63], ^bGálvez ve çalışma arkadaşları [51], ^cEliav ve çalışma arkadaşları [216], ^dMigdalek ve Baylis [233], ^eDzuba ve Gribakin [289], ^fAvgoustoglou ve Beck [287], ^gDzuba ve Gribakin [288], ^hVosko ve çalışma arkadaşları [291], ⁱGribakina ve çalışma arkadaşları [286]

Seviyel	er	Bu ç	alışma	Diğer	Konfigürasyon katkıları (%)			
Konf.	Terim	HFR	MCHF+BP	çalışmalar	HFR	MCHF+BP		
			İyonlaş	sma potansiyeli				
4f ¹⁴ 6s	${}^{2}S_{1/2}$	92513,00	94132,73* 100104,92	98269,00 ^a 97934 ^b 102764 ^{c1} 95317 ^{c2}	100,0	100,00 99,94* + 0,02 5p ⁵ 6s6p ² P + 0,04 5p ⁵ 6s6p ⁴ P		
			Uyarı	lma enerjileri		<i>.</i>		
(13/2-0) < 2	200	21 410 2 00		01 (10 55)	100.0			
4f ¹⁹ (2F ⁸)6s ²	² F ^o _{7/2} ² F ^o _{5/2}	21418,700 31568,099	-	21418,75° 31568,08°	100,0 99,5 + 0,2 4f ¹³ 5d6s(¹ F) ² F + 0.1 4f ¹³ 5d6s(³ F) ⁴ F	-		
4f ¹⁴ 5d	$^{2}D_{3/2}$	22960,700	18285,09	$22960,80^{a}$ 23770^{b} 20333 ^{c2}	100,0	99,99		
	² D _{5/2}	24332,700	20044,26	24332,69 ^a 25072 ^b 21140 ^{c2}	100,0	100,0		
4f ¹⁴ 6p	${}^{2}P^{o}_{1/2}$	27061,953	20177,41 24390,85*	27061,82 ^a 27868 ^b	90,6+7,5 $4f^{13}5d6s(^{1}P)^{2}P +$	100,0 100,0*		
	${}^{2}P^{o}_{3/2}$	30393,883	22103,51 26429,19*	26559 ²² 30392,23 ^a 31324 ^b 29679 ^{c2}	$0,9 4f^{13}5d6s(^{2}P) ^{2}P$ 50,0 + 21,6 $4f^{13}5d6s(^{3}P) ^{2}P +$ $17 2 4f^{13}5d6s(^{3}P)^{4}P$	100,0 100,0*		
$4f^{14}7s$	${}^{2}S_{1/2}$	54304,300	85126,80	54304,30 ^a 52181 ^{c2}	100,0	100,0		
4f ¹⁴ 6d	${}^{2}D_{3/2}$	62174,100	80957,10 59079,24*	62174,10 ^a 59440 ^{c2}	100,0	100,0 99,996*		
	${}^{2}D_{5/2}$	62559,100	80962,07 59092.90*	62559,02 ^a 59744 ^{c2}	100,0	100,0 99,996*		
4f ¹⁴ 7p	² P ^o _{1/2}	63705,387	77001,42	63706,25 ^a 60922 ^{c2}	96.5 + 3.0 $4f^{13}5d6s(^{1}P)^{2}P +$ $0.3 4f^{13}5d6s(^{3}P)^{2}P$	99,99		
	${}^{2}P^{o}_{3/2}$	65598,211	77002,66	$65594,10^{a}$ 62028^{c2}	97,9+2,0 $4f^{13}5d6s(^{1}P)^{2}P$	99,99		
4f ¹⁴ 5f	${}^{2}F^{o}{}_{5/2}$	70504,300	68441,98	70502,90 ^a 67507 ^{c2}	100,0	100,0		
	${}^{2}F^{o}_{7/2}$	70581,400	68443,98	70580,19 ^a 67511 ^{c2}	100,0	100,0		
$4f^{14}8s$	${}^{2}S_{1/2}$	73039,600	87135,42? 70164,50*	73039,61 ^a 70488 ^{c2}	100,0	100,0		
4f ¹⁴ 8p	${}^{2}P^{o}{}_{1/2}$	76578,499	79117,93	74474 ^{c2}	99,6 + 0,3 4f ¹³ 5d6s (¹ P) ² P	100,0		
	${}^{2}P^{o}_{3/2}$	77031,801	79118,38	74998 ^{c2}	99,7 + 0,3 4 f^{13} 5d6s (¹ P) ² P	100,0		
$4f^{14}7d$	${}^{2}D_{3/2}$	76517,300	84151,00	76517,21 ^a ?	100,0	100,0		
	${}^{2}D_{5/2}$	76676,300	84153,52	76676,31 ^a ?	100,0	99,99		
4f ¹⁴ 6f	² F ^o _{5/2}	80459,600	73817,05	80458,95 ^a 77554 ^{c2}	100,0	100,0		
	${}^{2}F^{o}_{7/2}$	80472,400	73818,38	80471,80 ^a 77557 ^{c2}	100,0	100,0		
$4f^{14}5g$	${}^{2}G_{7/2}$	80607,500	75554,30	80607,45 ^a	100,0	100,0		
-	$^{2}G_{9/2}$	80607,500	75554,34	80607,45 ^a	100,0	100,0		

Tablo 3.24. Yb II'nin iyonlaşma potansiyeli (cm⁻¹) ve uyarılma enerjileri (cm⁻¹)

^aNIST Atomic Spectra Database [63], ^bGálvez ve çalışma arkadaşları [51], ^{c1,c2}Koc ve Migdalek [307]

Konf. Terim HFR çalışmalar HFR İyonlaşma potansiyeli İ İyonlaşma potansiyeli I <th></th>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{4f^{14}}{4f^{14}} \frac{{}^{1}S_{0}}{15045,00} \frac{202070,0^{a}}{202070,0^{a}} \frac{98,5+0,5}{98,5+0,5} \frac{4f^{13}({}^{2}F^{o}{}_{7/2})5f_{7/2}+0,3}{4f^{13}({}^{2}F^{o}{}_{5/2})5f_{5/2}} Uyarılma enerjileri$	
Uyarılma enerjileri $4e^{3/2}\Gamma^{0}$ >54 (7/2 2/2) ⁰ 22217 (0(22225 80 ⁴ 75.9 + 21.6 4e^{3/2}\Gamma^{0} >5.1 + 1.4 4e^{3/2}\Gamma^{0} >5.1	10
ACI3/2E9 SEL (7/2 2/0)9 22217 COC 22295 808 75 9 31 CACI3/2E9 SEL 1 A ACI3/2E9 SEL	
$41^{\circ}(F_{7/2})3d_{3/2} (1/2,5/2)^{\circ}_{2} 3331/,090 33383,80^{\circ} /5,8 + 21,0 41^{\circ}(F_{7/2})3d_{5/2} + 1,4 41^{\circ}(F_{5/2})3d$	2
$(7/2,3/2)^{o}_{5}$ 37003,304 37020,25 ^a 96,0 + 3,7 4f ¹³ (² Fo _{7/2})5d _{5/2} + 0,3 4f ¹³ (² Fo _{5/2})5d _{5/2}	
$(7/2,3/2)^{o}_{3} 39200,109 39141,18^{a} 98,5+0,8 4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}+0,4 4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}$	
$(7/2,3/2)^{o}_{4}$ 39456,473 40160,03 ^a 76,7 + 22,5 4f ¹³ (² F ^o _{7/2})5d _{5/2} + 0,5 4f ¹³ (² F ^o _{5/2})5d _{5/2}	2
$4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}$ (7/2,1/2) ^o ₄ 34650,593 34656,13 ^a 100,0	
$(7/2,1/2)^{o}_{3}$ 34964,007 34990,66 ^a 99,0 + 0,5 4f ¹³ (² F ^o _{7/2})5d _{3/2} + 0,4 4f ¹³ (² F ^o _{7/2})5d _{5/2}	
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}$ (7/2,5/2)° ₆ 38733,010 39085,39 ^a 100,0	
$(7/2,5/2)^{\circ}_{1}$ 39037,476 39720,79 ^a 76,2 + 13,1 4f ¹³ (² F ^o _{5/2})5d _{5/2} + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f ¹³ (² F ^o _{5/2}) + 10,4 4f	3/2
$(7/2,5/2)^{\circ}_{2}$ 41286,128 40288,07 ^a 76,4 + 22,7 4f ¹³ (² F ^{\eta} _{7/2})5d _{3/2} + 0,9 4f ¹³ (² F ^{\eta} _{5/2})5d _{5/2}	/2
$(7/2,5/2)^{\circ}_{4}$ 41932,308 42425,08 ^a 75,4 + 21,2 4f ¹³ (² F ^{\ef{P}} _{7/2})5d _{3/2} + 3,4 4f ¹³ (² F ^{\ef{P}} _{5/2})5d _{5/2}	/2
$(7/2,5/2)^{o}_{3} 42802,880 43019,16^{a} 95,5+3,5 4f^{13}(^{2}F^{o}_{5/2})6s_{1/2} + 0,5 4f^{13}(^{2}F^{o}_{5/2})5d_{3/2} + 0,5 4f^{13}(^{2}F^{o}_{5/2})6s_{1/2} + 0,5 4f^{13}(^{2}F^{o}_$	
$(7/2,5/2)^{o}_{5} 43114,705 43622,75^{a} 95,1+3,4 4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}+1,5 4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}$	
$4f^{13}({}^{2}F^{0}{}_{5/2})6s_{1/2}$ (5/2,1/2) ⁰ ₂ 44859,109 44853,59 ^a 100,0	
$(5/2,1/2)^{o}_{3}$ 45207,292 45207,64 ^a 95,7 + 3,1 4f ¹³ (² F ^o _{7/2})5d _{5/2} + 0,5 4f ¹³ (² F ^o _{5/2})5d _{3/2}	
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}$ (5/2,5/2) ^o ₀ 45247,509 45276,85 ^a ? 99,8 + 0,2 4f^{13}(^{2}F^{o}_{5/2})6d_{5/2}	
$(5/2,5/2)^{\circ}_{1}$ 49788,615 50029,42 ^a 50,6 + 25,5 4f ¹³ (² F ^o _{5/2})5d _{5/2} + 23,0 4f ¹³ (² F ^o _{7/2}) + 23,0 4f ¹³ (² F ^o _{7/2}) + 23,0 4f ¹³ (² F ^o _{7/2}) + 23,0 4f ¹³ (² F ^o _{7/2}) + 23,0 4f ¹³ (² F ^o _{7/2}) + 2	-5/2
$(5/2,5/2)^{o}_{5}$ 50527,394 50357,46 ^a 98,2 + 1,2 4f ¹³ ₁ (² Fo _{7/2})5d _{5/2} + 0,6 4f ¹³ ₁ (² Fo _{7/2})5d _{3/2}	
$(5/2,5/2)^{\circ}_{2}$ 52204,897 51463,38 ^a 96,3 + 1,9 4f ¹³ (² F ^{\6} _{5/2})5d _{3/2} + 1,3 4f ¹³ (² F ^{\6} _{7/2})5d _{5/2}	
$(5/2,5/2)^{\circ}_{3}$ 53013,413 53122,79 ^a 91,1 + 7,5 4f ¹³ (² F ^{\circ} _{5/2})5d _{3/2} + 0,7 4f ¹³ (² F ^{\circ} _{7/2})5d _{5/2}	
$(5/2,5/2)^{o}_{4}$ 54011,891 53735,86 ^a 94,9 + 4,6 4f ¹³ (² F ^o _{5/2})5d _{3/2} + 0,3 4f ¹³ (² F ^o _{7/2})5d _{3/2}	
$4f^{13}(^{2}F^{o}_{5/2})5d_{3/2}$ (5/2,3/2) ^o ₄ 47720,024 47056,92 ^a 91,8 + 4,5 $4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}$ + 1,9 $4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}$	
$(5/2,3/2)^{\circ}_{2}$ 49397,684 48414,67 ^a 96,3 + 2,2 4f ¹³ (² F ^{\circ} _{5/2})5d _{5/2} + 1,4 4f ¹³ (² F ^{\circ} _{7/2})5d _{5/2}	
$(5/2,3/2)^{\circ}_{3}$ 51809,312 51581,78 ^a 91,8 + 7,0 4f ¹³ (² F ^{\circ} _{5/2})5d _{5/2} + 0,5 4f ¹³ (² F ^{\circ} _{5/2})6s _{1/2}	
$(5/2,3/2)^{o}_{1}$ 51938,571 53365,19 ^a 63,5 + 36,1 4f ¹³ (² F ^o _{5/2})5d _{5/2} + 0,2 4f ¹³ (² F ^o _{7/2}	'2
$(4f^{13})^2 F^0_{-1}(6p_{-1})(6p_{-1})(7/2) + (7/2)^{1/2}(7/2)(7/2)(7/2)(7/2)(7/2)(7/2)(7/2)(7/2)$	
+1 $(1_{7/2})0p_{1/2}$ $(7/2,1/2)_3$ 72170,00+ 72140,00 77,00 7,0 + 2,3 +1 $(1_{7/2})0p_{3/2}$ + 0,1 +1 $(1_{5/2})0p_{3/2}$ ($1_{7/2}$) + 0,1 $(1_{7/2})0p_{3/2}$ + 0,1 $(1_{$	
$(1/2,1/2)_4$ 1/2402,201 1/2400,77 77,4 + 0,0 41 (1 7/2)0 $\mu_{3/2}$ + 0,1 41 (1 5/2)0 $\mu_{3/2}$	
$4f^{13}(^2F^{\circ}_{7/2})6p_{3/2}$ (7/2,3/2) ₅ 77975,876 78020,45 ^a 100,0	
$(7/2,3/2)_2$ 78193,816 78183,44 ^a 99,2 + 0,4 4f ¹³ (² F ^o _{5/2})6p _{1/2} + 0,4 4f ¹³ (² F ^o _{5/2})6p _{3/2}	
$(7/2,3/2)_3$ 78777,656 78779,29 ^a 96,9 + 2,3 4f ¹³ (² F ^o _{7/2})6p _{1/2} + 0,8 4f ¹³ (² F ^o _{5/2})6p _{3/2}	
$(7/2,3/2)_4$ 79287,697 79282,90 ^a 99,4 + 0,6 4f ¹³ (² F ^o _{7/2})6p _{1/2}	
$4f^{13}(^{2}F^{o}{}_{5/2})6p_{1/2} (5/2,1/2)_{3} \\ 82527,268 \\ 82546,33^{a} \\ 98,4 \\ + 0,8 \\ 4f^{13}(^{2}F^{o}{}_{5/2})6p_{3/2} \\ + 0,8 \\ 4f^{13}(^{2}F^{o}{}_{7/2})6p_{3/2} \\ + 0,8 \\ 4f^{13}(^{2}F^{o$	
$(5/2,1/2)_2$ 82894,878 82907,42 ^a 97,9 + 1,6 4f ¹³ (² F ^o _{5/2})6p _{3/2} + 0,5 4f ¹³ (² F ^o _{7/2})6p _{3/2}	
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}$ (5/2.3/2), 87628.099 87612.61 ^a 100.0	
$(5/2,3/2)_{4}$ 88499,501 88497.90 ^a 99.9 + 0.1 4f ¹³ (² F ^o _{7/2})6p _{2/2}	
$(5/2,3/2)_2$ 88983,522 88977.09 ^a 98.0 + 1.7 4f ¹³ (² F ⁰ _{5/2})6p _{1/2} + 0.3 4f ¹³ (² F ⁰ _{7/2})6p _{3/2}	
$(5/2,3/2)_3$ 89405,032 89397,41 ^a 99,1 + 0,8 4f ¹³ (² F ^o _{5/2})6p _{1/2}	

Tablo 3.25. Yb III'ün iyonlaşma potansiyeli (cm⁻¹) ve uyarılma enerjileri (cm⁻¹)

^aNIST Atomic Spectra Database [63]

3.7. Yb II (Z = 70) için Hesaplama Sonuçları

İterbiyum iyonu son yıllarda birkaç sebepten dolayı fizikçilerin çok fazla ilgisini çekmektedir. Optik, kızılötesi veya mikrodalga frekans standartlara neden olan düşük enerjili seviyeleri ile ilgili olarak atomik saatler ve sıkıştırılmış-iyon frekans standartları için özellikle ilginçtir. Çeşitli yıldızların ve iyon tuzaklarının geliştirilmesi çalışmaları için bir kez iyonlaşmış iterbiyuma ait birkaç spektrumun incelenmesini sağlamıştır. Aynı zamanda Yb II güneş fotosfer spektrumunda gözlenmektedir.

Bir kez iyonlaşmış iterbiyumun (Yb II) spektrum çalışmaları [4, 6, 109, 185, 230, 296, 322], düşük ve yüksek seviyelerinin enerjileri ve Landé *g*-çarpanları [201, 202, 297–299, 304, 305, 307, 324, 325, 333], iyonlaşma potansiyeli [21, 24–27, 308, 322] ve kendiliğinden iyonlaşmış seviyelerinin spektroskopisi [301, 302] ile ilgili çalışmalar Tablo 1.3'te özetlenmektedir. Gözlenen spektrum çizgilerinin dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları [300, 303, 305, 306, 308, 335] ve yarı ömürleri [34, 309–311, 323, 326–331, 335–337] demet-lazer yöntemi, zaman-çözünürlüklü lazer-indirgenmiş floresans spektroskopisi ve relativistik modelpotansiyel, tek konfigürasyonlu Dirac-Fock, HFR+CP ve relativistik çok-cisim yöntemleriyle çalışılmıştır. 4f¹⁴6s ${}^{2}S_{1/2}$ –4f¹⁴5d ${}^{2}D_{5/2}$ geçişlerinin frekansları [313, 314] ve elektrik oktopol geçişleri farklı çalışma arkadaşları tarafından incelenmiştir [315–321]. Ayrıca, Yb II'nin izotop kaymaları ve aşırı ince yapı çalışmaları da mevcuttur [218, 332–335].

Yb II'nin bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları ve elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları MCHF [412, 413] ve HFR [418] yöntemleri kullanılarak hesaplandı.

Yb II'nin MCHF+BP ve HFR hesaplamaları için, hem değerlik-değerlik hem de özdeğerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen A, B ve C konfigürasyon setleri Tablo 3.26'da verilmektedir. MCHF+BP'de elektron 5p⁶'dan, HFR'de 4f¹⁴'ten uyarılarak öz ve değerlik elektronları arasındaki karşılıklı etkileşme etkileri B ve C hesaplamaların da dikkate alındı.

Seviyeler		Konfigürasyonlar	
	Α	В	С
MCHF+BP hesa	aplamaları için:		
Çift parite	$4f^{14}ns(n = 6-9),$	$4f^{14}5p^6ns (n = 6-9), 4f^{14}5p^6nd$	B hesabı ile aynı
	$4f^{14}nd (n = 5-9),$	$(n = 5-9), 4f^{14}5p^{6}ng (n = 5-9),$	
	$4f^{14}ng (n = 5-9)$	$4f^{14}5p^56snp$ (n = 6, 7), $4f^{14}5p^55d7p$	
T 1	4614 (6 0)		A 1
Tek parite	$4f^{-n}np(n=6-9),$	$4f^{-} Sp^{-}np (n = 6-9), 4f^{-} Sp^{-}nf$	A hesabi ile ayni
	$4f^{4}nf(n = 5-9)$	$(n = 5-9), 4f^{-5}p^{-5}dns (n = 6, 7)$	
HFR hesaplama	ıları için:		
Çift parite	$4f^{14}ns (n = 6-11),$	$4f^{14}ns (n = 6-12), 4f^{14}nd$	$4f^{14}ns (n = 6-11), 4f^{14}nd$
	$4f^{14}nd (n = 5-12)$	$(n = 5-12), 4f^{13}6s6p, 4f^{13}5d6p$	$(n = 5-12), 4f^{14}ng (n = 5, 6)$
Tek parite	$4f^{14}np (n = 6-12),$	4f ¹³ 6s ² , 4f ¹³ 5d6s, 4f ¹³ 5d ² , 4f ¹⁴ np	$4f^{13}6s^2$, $4f^{13}5d6s$, $4f^{14}np$ (n =
_	$4f^{14}nf(n=5-12)$	$(n = 6-12), 4f^{14}nf (n = 5-14),$	$6-12$), $4f^{14}nf(n = 5-12)$

Tablo 3.26. Yb II'ye ait hesaplamalar için alınan konfigürasyon setleri

3.7.1. Yb II'nin bazı seviyelerinin enerjileri ve Landé g-çarpanları

Bir kez iyonlaşmış iterbiyumun $4f^{14}$ ns (n = 6–12), $4f^{14}$ nd (n = 5–12), $4f^{14}$ ng (n = 5–9), $4f^{13}$ 6s6p, $4f^{13}$ 5d6p, $4f^{13}$ 6s², $4f^{13}$ 5d6s, $4f^{13}$ 5d², $4f^{14}$ np (n = 6–12) ve $4f^{14}$ nf (n = 5–14) uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF+BP ve HFR yöntemleriyle hesaplandı. Elde edilen sonuçlar Tablo 3.27 ve Ekler kısmındaki Tablo A.8'de taban hal seviyesi $4f^{14}$ 6s ${}^{2}S_{1/2}$ 'ye göre cm⁻¹ birim sisteminde sunulmaktadır. Tablolarda farklı konfigürasyon setlerine göre hesaplanan sonuçlar MCHF+BP ve HFR için A, B ve C üst indisleriyle ve sadece tek pariteli seviyeler "^o" indisiyle belirtilmektedir. Elde edilen sonuçlar NIST verileri [63] ile karşılaştırılmaktadır.

MCHF+BP hesaplamaları için, Tablo 3.26'da verilen konfigürasyon setlerinde Yb II'nin özü olarak A hesabında [Xe], B ve C hesaplarında [Cd] alındı. A'nın tek ve çift pariteli seviyelerinde değerlik elektronları arasındaki karşılıklı etkileşme dikkate alınırken, B ve C'nin tek ve çift pariteli seviyelerinde değerlik elektronları arasındaki karşılıklı etkileşmenin yanı sıra öz ve değerlik elektronları arasındaki karşılıklı etkileşme de hesaplara dahil edildi. MCHF yönteminde dalga fonksiyonları relativistik düzeltmeler dikkate alınarak konfigürasyon etkileşme yöntemiyle seviye enerjileri elde edildi. Daha sonra MCHF+BP dalga fonksiyonları ve seviye enerjileri kullanılarak Jönsson ve Gustafsson tarafından geliştirilen Zeeman programıyla [413] Landé *g*-çarpanları hesaplandı. MCHF+BP hesaplamalarında elde edilen 4f¹⁴ns (n = 6-9), 4f¹⁴nd (n = 5-9), 4f¹⁴ng (n = 5-9), 4f¹⁴np (n = 6-9) ve 4f¹⁴nf (n = 4-9)

uyarılmış seviyelerinin enerjileri ve Landé g-çarpanları Tablo 3.27 ve Tablo A.8'de verilmektedir. Çift pariteli seviyeler için hesap sonuçları incelendiğinde, 4f¹⁴7s seviyesi için A hesabı ile elde edilen sonuç iyi değildir ve 4f¹⁴8s seviyesi için ise A hesabı iyi değil iken B ve C'nin sonuçları daha iyidir. 4f¹⁴9s seviyesi için de B hesabı daha iyidir. 4f¹⁴6d ve 4f¹⁴7d seviyeleri icin A sonucları iyi olmadığı halde, 4f¹⁴6d seviyesi için B hesabı, 4f¹⁴7d seviyesi için C hesabı iyidir. 4f¹⁴8d seviyesi için durum tam tersidir. A'nın uyumu iyi iken B'nin kötüdür. g alt tabakasını içeren seviyeler de uyum karşılaştırma değeriyle iyidir. $4f^{14}$ ng (n =7–9) seviyeleri için karşılaştırma değeri mevcut değildir. Tek pariteli seviyelerde ise 4f¹⁴6p seviyesi için C hesabı iyi iken 4f¹⁴7p seviyesi için A hesabı iyidir. 4f¹⁴8p ve 4f¹⁴9p seviyeleri için karşılaştırma değeri olmadığından diğer hesap ile yapılan karşılaştırmada uyumlu olduğu görülmektedir. f alt tabakasını içeren seviyelerde daha iyi sonuçlar elde edildi. 4f¹⁴5f seviyesi için A hesabı ve $4f^{14}nf (n = 6-9)$ seviyeleri için C hesabı NIST değerleri ile uyumludur. Uyumsuzlukların giderilmesi için 5p⁶'dan uyarılmalarla yapılan hesaplamalarda bazı seviyelerde düzelme olurken bazı seviyelerde düzelme olmamıştır. Çift ve tek pariteli seviyelerin Landé g-çarpanlarının, [63] ile uyumu oldukça iyidir.

HFR hesaplamalarında konfigürasyonlar A hesabında, değerlik elektronları arasındaki etkileşme ve C ve B hesaplarında, değerlik-değerlik ve öz-değerlik elektronları arasındaki karşılıklı etkileşme etkilerini dikkate alacak şekilde seçildi. Hamiltonyene karşılık gelen özdeğerleri, mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile uydurma yaparak iyileştirildi. Spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A, B ve C hesaplamalarında 0,85 olarak seçildi. HFR hesaplamaları Tablo 3.26'da verilen konfigürasyon setleriyle HFR atomik yapı paketi [418] kullanılarak elde edildi. 4f¹⁴ns (n = 6–12), 4f¹⁴nd (n = 5–12), 4f¹⁴ng (n = 5, 6), 4f¹³6s6p, 4f¹³5d6p, 4f¹³5d6s, 4f¹³5d², 4f¹⁴np (n = 6–12) ve 4f¹⁴nf (n = 5–14) uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları Tablo 3.27 ve Tablo A.8'de sunulmaktadır. NIST verileri [63] ile karşılaştırıldığında A, B ve C sonuçları uyumludur. 4f¹³5d6s seviyesinin bazı terimlerinde C hesabına ait sonuç B'den daha

Seviyeler			Ε			g-çarpanı	
Konfigürasyon	Terim	Bu	çalışma	Diğer	Bu ç	alışma	Diğer
		MCHF+B	P HFR	çalışmalar	MCHF+B	P HFR	çalışmalar
Çift parite için:	2-	a a a A P C	A C		1		
4f ¹⁴ 6s	${}^{2}S_{1/2}$	0,00 ^{A,B,C}	$0,00^{A,C}$	0,00 ^a	2,002 ^A	2,002 ^{A,B,C}	1,998ª
1 cl45 1	² D	10205 00Å	0,089 ²	22060 208	0.700Å	o oooA.B.C	1.0008
41 5d	$D_{3/2}$	18285,09	22960,700	22960,80	0,799	0,800	1,802
	2 D	20044 26 ^A	22900,781 24332 700 ^{A,C}	24332 60 ^a	1 200 ^A	1 200 ^{A,B,C}	1 202 ^a
	D _{5/2}	20044,20	24332,700 24332,606 ^B	24332,07	1,200	1,200	1,202
$4f^{13}(^{2}F^{\circ}_{7,2})6s6p(^{3}P^{\circ}_{0})$	$(7/2.0)_{7/2}$	_	48012.405 ^B	47912.31 ^a	_	1.287^{B}	1.280^{a}
$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{1})$	$(7/2.1)_{7/2}$	_	48895.034 ^B	48900.41 ^a	_	1.046 ^B	1.0^{a}
(//2/ *** 1 ()/	$(7/2.1)_{9/2}$	_	49146,770 ^B	49301.16 ^a	_	1.193 ^B	1.187^{a}
	$(7/2,1)_{5/2}$	_	49267,568 ^B	49498,04 ^a	_	1,141 ^B	1,145 ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{2})$	$(7/2,2)_{11/2}$	_	52553,278 ^B	52517,35 ^a	_	1,273 ^B	$1,27^{a}$
· · · · · · · · · · · · · · · · · · ·	$(7/2,2)_{3/2}$	_	53041,307 ^B	52938,01 ^a	_	$0,879^{B}$	$0,877^{a}$
	$(7/2,2)_{5/2}$	_	53419,334 ^B	53404,96 ^a	_	$1,050^{B}$	1,033 ^a
	$(7/2,2)_{7/2}$	_	53693,563 ^B	53715,26 ^a	_	1,192 ^B	1,181 ^a
	$(7/2,2)_{9/2}$	_	53670,445 ^B	53720,71 ^a	-	1,266 ^B	$1,26^{a}$
$4f^{13}(^{2}F^{\circ}_{7/2})6s6p(^{1}P^{\circ}_{1})$	$(7/2,1)_{9/2}$	-	55681,260 ^B	57765,32 ^a	-	1,123 ^B	1,12 ^a
	$(7/2,1)_{7/2}$	-	57177,731 ^B	_	_	1,129 ^B	-
$4f_{13}^{13}({}^{2}F_{5/2}^{\circ})6s6p({}^{3}P_{0}^{\circ})$	(5/2,0)5/2	-	58295,741 ^B	58283,91 ^a	_	0,796 ^B	0,77 ^a
$4f_{13}^{13}({}^{2}F_{7/2}^{\circ})6s6p({}^{1}P_{1}^{\circ})$	$(7/2,1)_{7/2}$		57177,731 ^B	59090,13 ^a ?		1,129 ^B	1,122 ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{1})$	$(5/2,1)_{5/2}$	-	59211,452 ^B	59259,24 ^a	-	1,115 ^B	1,105 ^a
	$(5/2,1)_{7/2}$	-	59408,581 ^B	59618,90 ^a	-	$1,000^{B}_{p}$	$1,00^{aa}$
	$(5/2,1)_{3/2}$		59531,071 ^B	59710,65 ^a		0,776 ^B	$0,82^{a}$
$4f^{14}7s$	${}^{2}S_{1/2}$	85126,80 ^A	54304,300 ^{A,C}	54304,30 ^a	2,002 ^A	$2,002^{A,B,C}$	2,001 ^a
12.2			54304,307 ^B			P	
$4f^{13}({}^{2}F^{\circ}_{5/2})6s6p({}^{3}P^{\circ}_{2})$	$(5/2,2)_{1/2}$	_	62263,475 ^в	62136,94 ^a	-	0,253 ^B	$0,08^{a}$
	$(5/2,2)_{3/2}$	-	62960,431 ^B	63011,85 ^a	_	0,815 ^B	0,79 ^a
	$(5/2,2)_{9/2}$	-	63204,805 ^B	63163,79 ^a	_	1,140 ^B	1,12 ^a
	$(5/2,2)_{5/2}$	-	63693,510 ^b	63702,32ª	-	1,048 ^b	1,07
$4c^{13}/2r_{2}$	$(5/2,2)_{7/2}$	_	63910,320 ^B	63957,80 ^a	-	1,137 ^B	1,148"
$4f^{13}({}^{2}F^{0}{}_{5/2})6s6p({}^{4}P^{0}{}_{1})$	$(5/2,1)_{5/2}$	_	6/341,616 ^B	-	_	0,892 ^B	-
$4\Gamma^{*}(^{-}\Gamma^{*}_{7/2})5d6p(^{+}\Gamma^{*}_{2})$	$(7/2,2)_{3/2}$	_	56060,480 ⁻	55702,07	_	1,692 ⁻	1,693
	$(7/2,2)_{5/2}$	_	$58625,567^{-1}$	$58823,58^{-1}$	_	$1,255^{-1}$	$1,200^{-1}$
	$(7/2,2)_{11/2}$	_	59111,454	58901,37	_	0,980 1.162 ^B	0,974
	$(7/2,2)_{7/2}$	—	61222 287 ^B	61214 66 ^a	_	1,105 1,040 ^B	1,10 1.07^{a}
$4f^{13}(^{2}E^{\circ}) > 5d6n(^{1}D^{\circ})$	$(7/2,2)_{9/2}$	_	01525,587 55020 770 ^B	56275.01^{a_2}	_	1,049 1,102 ^B	1,07 $1,226^{a}$
41 ($\Gamma_{7/2}$)Suop(Γ_1) $4f^{13}(^2E^\circ)$)Sd6p($^3D^\circ$)	$(7/2,1)_{5/2}$	-	53030,779	50575,91 ?	—	1,195 1 346 ^B	1,220 1 327 ^a
$4f^{13}(^{2}F^{\circ}_{-\pi})5d6p(^{3}F^{\circ}_{-\pi})$	$(7/2,2)_{7/2}$	_	60927.064 ^B	60586 46 ^a	_	1,340 1 332 ^B	1,327 1 323 ^a
41 (1 ⁻ 7/2)500p(1 ⁻ 3)	$(7/2,3)_{3/2}$	_	61531 500 ^B	61120 40 ^a	_	1,552 1.504 ^B	1,525 1,661 ^a
	$(7/2,3)_{1/2}$	_	61857 572 ^B	6187340^{a}	_	1,504 1 114 ^B	1,001 1 10 ^a
	$(7/2,3)_{13/2}$	_	64266 103 ^B	64055 82 ^a	_	$1,068^{B}$	1,108 ^a
	$(7/2,3)_{5/2}$	_	63669 777 ^B	64923 11 ^a	_	$1,000^{B}$	1,100 1 10 ^a
	$(7/2,3)_{7/2}$	_	65284 661 ^B	65093 14 ^a	_	$1,009^{B}$	0.973
	$(7/2,3)_{11/2}$	_	66131.242 ^B	66082.25 ^a	_	1.147 ^B	1.141^{a}
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}D^{\circ}_{2})$	$(7/2,2)_{5/2}$	_	61586.570 ^B	61374.49 ^a ?	_	1.306 ^B	1.299 ^a
$4f^{14}6d$	$^{2}D_{3/2}$	80957.10 ^A	62174.100 ^{A,B,C}	62174.10 ^a	$0.799^{A,B}$	0.800 ^{A,C}	0.80^{a}
	5/2	59079,24 ^B	- ,		- ,	$0,801^{B}$	- ,
	$^{2}D_{5/2}$	80962,07 ^A	62559,100 ^{A,C}	62559,02 ^a	$1,200^{A,B}$	$1,200^{A,C}$	$1,22^{a}$
	5/2	59092,90 ^B	62559,062 ^B	,	,	$1,202^{B}$,
$4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{3}D^{\circ}_{1})$	$(7/2,1)_{5/2}$	_	63422,538 ^B	63234,11 ^a	-	1,281 ^B	$1,208^{a}$
	$(7/2,1)_{9/2}$	_	63669,777 ^B	63726,83 ^a	_	1,001 ^B	1,005 ^a
	$(7/2,1)_{7/2}$	_	64722,735 ^B	$64598,28^{a}$	-	1,209 ^B	1,223 ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}D^{\circ}_{2})$	$(7/2,2)_{3/2}$	_	63774,851 ^B	63647,73 ^a ?	_	$1,099^{B}_{-}$	1,149 ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{3}D^{\circ}_{2})$	$(7/2,2)_{11/2}$	_	63992,066 ^B	63944,18 ^a	-	$1,106^{B}_{D}$	1,115 ^a
	(7/2,2)3/2	-	64678,565 ^B	64461,08 ^a	-	1,127 ^в	$1,176^{a}$

Tablo 3.27. Yb II'nin E seviye enerjileri (cm⁻¹) ve Landé *g*-çarpanları*

Tablo 3.27. Devam

Seviyeler			Е			g-çarpanı	l
Konfigürasyon	Terim	Bu	calısma	Diğer	Bu ca	lışma	Diğer
8 /		MCHF+B	P HFR	calismalar	MCHF+BI	P HFR	calışmalar
	$(7/2)_{0,0}$	_	66182 935 ^B	65950 95 ^a	_	1.079 ^B	1 09 ^a
	$(7/2,2)_{9/2}$	_	66444 830 ^B	66351 21 ^a	_	1,075 1,081 ^B	$1,0^{-1}$ 1,125 ^a
	$(7/2,2)_{5/2}$	_	66777 041 ^B	66558 00 ^a	_	1,001 1,100 ^B	1,125 1 100 ^a
4f ¹⁴ 8c	$(7/2,2)_{7/2}^{2}$	87135 42 ^A	73030 600 ^{A,C}	73030 61 ^a	$\frac{1}{2}$ 002 ^{A,B,C}	$2.002^{A,C}$	1,100
41 05	$S_{1/2}$	0/155,42 70164 50 ^B	73039,000 72020 627 ^B	/3039,01	2,002	2,002 $2,000^{B}$	—
		70104,30	75059,057			2,000	
4 140	20	77088,59°	91127 200AC		a ooaA.B.C	a oooA.C	
41 98	$S_{1/2}$	94062,06	81137,200 ^m	-	2,002	2,002	-
		90142,47	81149,204			1,9175	
101410	20	97054,91°		0.17.00.0.13			
4f ¹⁴ 10s	${}^{2}S_{1/2}$	-	86768,300 ^{m,e}	86768,26"	-	2,002 ^{A,C}	-
14	2-		86768,557			1,999 ^b	
4f ¹⁴ 11s	${}^{2}S_{1/2}$	_	86847,100 ^{A,C}	_	_	2,002 ^{A,C}	_
14	2		86897,915 [°]			1,996 ^b	
$4f_{14}^{14}12s$	${}^{2}S_{1/2}$		89782,189 ^B	-	-	2,002 ^{A,B}	-
$4f^{14}7d$	${}^{2}D_{3/2}$	84151,00 ^A	76517,300 ^{A,C}	76517,21 ^a	0,799 ^{A,C}	0,800 ^{A,C}	0,85 ^a
		73482,70 ^C	76517,200 ^в			0,799 ^в	
	${}^{2}D_{5/2}$	84153,52 ^A	76676,300 ^{A,C}	76676,31 ^a	$1,200^{A,C}$	1,200 ^{A,C}	$1,110^{a}$
		73484,77 ^C	76676,241 ^B			$1,198^{B}$	
$4f^{14}8d$	$^{2}D_{3/2}$	86240,57 ^A	83839,900 ^{A,C}	83839,86 ^a	0,799 ^{A,B}	0,800 ^{A,C}	_
	5/2	73808.20 ^B	83826.201 ^B	,	,	0.927^{B}	
	$^{2}D_{5/2}$	86241.98 ^A	84015,900 ^{A,C}	84015.98 ^a	$1.200^{A,B}$	1.200 ^{A,C}	1.20^{a}
	2 3/2	73817 38 ^B	84015 037 ^B	0.010,20	1,200	1 198 ^B	1,20
$4f^{14}Qd$	$^{2}D_{a}$	87679.22 ^A	87804 900 ^{A,C}	87804 88 ^a	0 799 ^{A,B,C}	0 800 ^{A,B,C}	_
41)u	D ^{3/2}	91034 44 ^B	87804 819 ^B	07004,00	0,777	0,000	
		07507 75 ^C	07004,017				
	² D	87582,75 87690.06 ^A	97090 000 ^{A,C}	87080 04ª	1 200 ^{A,B,C}	1 200 ^{A,B,C}	
	$D_{5/2}$	8/080,00	87980,900	87980,90	1,200	1,200	_
		91066,04	87980,744				
1 cl4 =	20	8/583,14°	00 co z z 00C	00 607 458	0.000Å	0.000	
4f ⁻¹ 5g	² G _{7/2}	75554,30	80607,500°	80607,45	0,889	0,889	_
14	${}^{2}G_{9/2}$	75554,34 ^A	80607,500 [°]	80607,45°	1,111	1,111 ^C	-
4f ¹⁴ 6g	${}^{2}G_{7/2}$	80919,20 ^A	85994,900 [°]	85994,92 ^a	0,889 ^A	0,889 ^C	_
	$^{2}G_{9/2}$	80919,21 ^A	85994,900 [°]	85994,92 ^a	1,111 ^A	1,111 ^C	-
Tek parite için:							
$4f^{13}6s^2$	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	21419,998 ^B	21418,75 ^a	-	1,143 ^{B,C}	1,145 ^a
			21418,700 ^C				
	${}^{2}\mathrm{F}^{0}{}_{5/2}$	_	32524,193 ^в	31568,08 ^a	_	$0,874^{B,C}$	$0,852^{a}$
			31568,099 ^C				
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	${}^{3}[3/2]^{\circ}_{5/2}$	_	26869,695 ^B	26759,02 ^a	_	$1,577^{B}$	$1,570^{a}$
(1/2) ()	L 3 5/2		27062.027 ^C	,		1.578 ^C	,
	${}^{3}[3/2]^{\circ}_{2/2}$	_	28782.111 ^B	28757.98^{a}	_	1.453 ^B	1.440^{a}
	[0, =] 3/2		29124 098 ^C	20101,20		1 435 ^C	1,110
	$3[3/2]^{\circ}$	_	34022 882 ^B	33653 86 ^a	_	1 383 ^B	1.320^{a}
	[3/2] 1/2		34314 092 ^C	55055,00		1,505 1 474 ^C	1,520
4f ¹⁴ 6p	$2\mathbf{p}^{0}$	20177 41 ^A	27061 800 ^A	27061 82 ^a	0 666 ^{A,B,C}	0.666^{A}	0 667 ^a
чгор	1 1/2	20177,41 30302.00 ^B	27001,000 27038 783 ^B	27001,02	0,000	0,600	0,007
		26716 55 ^C	27058,785			0,075 ^C	
	² D ⁰	20/10,55 22102 51 ^A	27001,935 20202 200 ^A	20202 228	1 22 (A,B,C	0,075	1 2228
	P _{3/2}	22105,51 22420,42 ^B	30392,300	30392,23	1,334	1,334	1,333
		32430,42	30404,308			1,314-	
(13,270) = 1 = (37)	354.4 (0.70)	28694,62°	30393,883°	20224223		1,369 ^e	0.00-73
$4f^{13}({}^{2}F^{0}_{7/2})5d6s({}^{3}D)$	$[11/2]_{9/2}^{\circ}$	-	30093,006 ^b	30224,33"	-	0,936 ^{b,e}	0,935°
	2		30194,329 [°]			D C	
	$[11/2]_{11/2}^{0}$	_	30551,503 ^B	30562,79 ^a	_	1,124 ^{b,C}	1,112 ^a
	2		30649,713 [°]				
	${}^{3}[11/2]^{\circ}_{13/2}$	_	31412,668 ^B	31631,59 ^a	_	1,231 ^{B,C}	1,230 ^a
			31562,176 ^C				
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$^{3}[5/2]^{o}_{7/2}$	_	31859,051 ^B	31979,90 ^a	_	1,339 ^{B,C}	1,331 ^a
=/ . /			31989,828 ^C				
	$^{3}[5/2]^{\circ}_{5/2}$	_	32209,956 ^B	32371,10 ^a	_	$1,150^{B}$	$1,170^{a}$
			32482,474 ^C	*		1,167 ^C	-
	$^{3}[5/2]^{\circ}_{3/2}$	_	33039,434 ^B	32981.59 ^a	_	0.888 ^B	0,866 ^a
	L 3 3/4		33351.367 ^C	,		0,894 ^C	*
			,			,	

Tablo 3.27. Devam

Seviyeler			Е			g-çarpanı	l
Konfigürasvon	Terim	Bu	calisma	Diğer	Bu ca	lisma	Diğer
8,		MCHF+B	P HFR	calismalar	MCHF+B	P HFR	calismalar
$4f^{13}(^{2}F^{\circ}) 5d6s(^{3}D)$	³ [7/2] ⁰		33056 870 ^B	33052 20 ^a		1.267 ^B	1.264 ^a
41 ($\Gamma_{7/2}$)5005(D)	[//2] 9/2	—	33030,870 33135 471 ^C	55052,29	—	1,207 1,273 ^C	1,204
	³ [7/2] ⁰		33133,471 34462 455 ^B	3/380 76ª		1,273	1 007 ^a
	[//2] 5/2	-	24402,433	54569,70	-	0,999	1,007
	317/010		34877,044 25007 521 ^B	25050 00 ^a		0,980	1 1048
	[//2] 7/2	-	25212 021 ^C	55059,00	_	1,119 1,120 ^C	1,124
$4c^{13}(2n) \rightarrow 54c^{-3}(3n)$	310/010		35213,931°	22404 608		$1,130^{\circ}$	0.0018
$4f^{-5}(^{2}F^{0}_{7/2})5d6s(^{5}D)$	$[9/2]_{7/2}^{\circ}$	_	33309,035	33494,68"	_	0,993	0,991"
	2		33605,163°			0,996 ^e	
	$[9/2]_{9/2}^{0}$	_	35069,242 ^b	35019,13ª	_	1,160 ^B	1,158ª
	2		35200,174 [°]			1,156 ^C	
	³ [9/2] ⁰ 11/2	-	36107,404 ^в	35831,68 ^a	-	1,191 ^в	1,214 ^a
			35527,153 [°]			1,237 ^C	
$4f^{13}(^{2}F^{\circ}_{7/2})5d^{2}(^{3}F)$	${}^{3}[5/2]^{\circ}_{5/2}$	-	45302,214 ^B	45012,79 ^a	-	1,314 ^B	1,281 ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d^{2}(^{3}F)$	${}^{3}[7/2]^{\circ}_{7/2}$	_	45695,018 ^B	45273,02 ^a ?	_	1,259 ^B	$1,18^{a}$
	${}^{3}[7/2]^{\circ}_{9/2}$	_	46556,453 ^B	46354,55 ^a	_	$1,276^{B}$	1,29 ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d^{2}(^{3}F)$	${}^{3}[3/2]^{0}_{1/2}$	_	47323.544 ^B	46902.71^{a}	_	1.374^{B}	1.30^{a}
(1/2/ ()	${}^{3}[3/2]^{0}_{5/2}$	_	48810.046 ^B	48272.77^{a}	_	1.157^{B}	1.14^{a}
$4f^{13}({}^{2}F^{\circ}_{\pi})5d^{2}({}^{3}F)$	${}^{3}[13/2]^{0}$	_	46668 314 ^B	46547 72 ^a	_	0.968^{B}	0.97^{a}
(1 //2) 3a (1)	${}^{3}[13/2]^{\circ}$	_	47616 823 ^B	47680.40^{a}	_	1,116 ^B	1.12^{a}
	$^{3}[13/2]^{0}$		48776 540 ^B	48023 30 ^a		1,110 1,107 ^B	1,12 1 20 ^a
$4f^{13}(2E^{\circ}) = 4^{2}(3E)$	$\begin{bmatrix} 1 & 5/2 \end{bmatrix} & \frac{15/2}{3} \end{bmatrix}$	_	46770,340 47802.001 ^B	40923,30	-	1,197 1,007 ^B	1,20
41 ($\Gamma_{7/2}$)54 (Γ)	$\begin{bmatrix} 1 & 1/2 \end{bmatrix}_{9/2}^{3}$	_	47603,901	47003,32	_	1,007	0,98 1 10 ^a
	$\begin{bmatrix} 1 1/2 \end{bmatrix}_{11/2}$	_	48514,840	48505,82	-	1,120	1,10
4 cl3 (2 D D) = 12 (3 D)	${}^{3}[11/2]_{13/2}^{\circ}$	_	49782,969 ⁵	49727,19"	_	1,202 ^B	1,20 ^a
$4f^{13}({}^{2}F^{0}_{7/2})5d^{2}({}^{3}F)$	³ [9/2] ⁰ _{7/2}	-	48258,097 ^b	47758,54"	-	1,035 ^b	1,08"?
$4f^{15}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{3}F)$	${}^{3}[1/2]^{0}_{3/2}$	-	48277,923 ^в	48024,70 ^a	-	1,326 ^b	1,38 ^a
12.2	$[1/2]^{\circ}_{1/2}$	-	50038,039 ^B	49419,13 ^a	-	1,362 ^B	1,41 ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d^{2}(^{3}F)$	$[9/2]^{\circ}_{7/2}$	_	49699,311 ^B	49008,93 ^a	_	1,139 ^B	1,03 ^a
	${}^{3}[9/2]^{o}_{9/2}$	_	50069,143 ^B	49916,50 ^a	_	1,070 ^B	1,090 ^a
	${}^{3}[9/2]^{\circ}_{11/2}$	_	50513,185 ^B	50468,05 ^a	_	$1,204^{B}$	1,213 ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{3}F)$	${}^{3}[5/2]^{\circ}_{3/2}$	_	51358,539 ^B	50832,65 ^a ?	_	0.961^{B}	0.956^{a}
$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{1}G)$	$1[1/2]^{0}1/2$	_	53157.955 ^B	52067.87 ^a	_	0.517 ^B	0.54 ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d^{2}(^{3}P)$	${}^{3}[7/2]^{\circ}_{0/2}$	_	53196.740 ^B	52880.75 ^a	_	1.297 ^B	1.26^{a}
(1)//2/00(1)	${}^{3}[7/2]^{\circ}_{7/2}$	_	53239 596 ^B	52921 62 ^a	_	$1,176^{B}$	1,20 1,15 ^a
	³ [7/2]° ₂	_	53725 651 ^B	53120 58 ^a	_	0.960^{B}	0.944^{a}
$4f^{13}({}^{2}F^{\circ}_{-1})5d^{2}({}^{1}G)$	$1[3/2]^{5/2}$	_	53957 312 ^B	52087 76 ^a	_	$1,106^{B}$	$1,131^{a}$
$4f^{13}(^{2}F^{\circ}) 5d^{2}(^{1}C)$	1[15/2] 3/2		52862 270 ^B	52207,70 52202.80 ^a		1,100 1,071 ^B	1,151 1 04 ^a
$4f^{13}(^{2}F^{\circ}) 5d^{2}(^{1}D)$	15/2 $15/2$	-	52020,279	53522,89	-	1,071 1,176 ^B	1,04 1 19 ^a
41 ($\Gamma_{7/2}$)54 (D) $4f^{13}(^{2}E^{9}) = f^{2}(^{3}E)$	$[1/2]_{7/2}^{3}$	_	55259,590	53044,09	_	1,170 1,157 ^B	1,10
41 ($F_{5/2}$)50 (F) 4 $f_{3/2}$ FP ($F_{5/2}$)51 (F)	$[5/2]^{-}{}_{5/2}$	_	54945,742	55/10,58 /	_	1,157	1,185
$4f^{(2}F^{\circ}_{7/2})5d^{-}(^{2}D)$	$[11/2]_{11/2}^{\circ}$	-	55/24,456 ⁻	54192,51	_	1,156 ⁻	1,11
$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{1}D)$	$[9/2]_{9/2}^{\circ}$	-	56049,546 ^B	54640,82"	-	1,107 ^B	1,13"
$4f_{12}^{13}({}^{2}F_{7/2}^{0})5d_{2}^{2}({}^{1}D)$	$[3/2]_{3/2}^{\circ}$	-	56436,374 ^B	55221,46 ^ª	-	0,838 ^b	1,11"
$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{3}P)$	$[9/2]_{7/2}^{0}$	-	55895,468 ^b	55462,68ª	-	0,898 ^B	0,878ª
	$[9/2]_{9/2}^{0}$	-	56924,227 ^b	56088,39 ^a	-	1,099 ^b	1,11 ^a
	$[9/2]^{\circ}_{11/2}$	-	57204,690 ^B	56621,15 ^a	-	1,170 ^в	$1,16^{a}$
$4f^{13}(^{2}F^{\circ}_{5/2})5d^{2}(^{3}F)$	${}^{3}[11/2]^{\circ}_{9/2}$	-	56494,585 ^B	56480,77 ^a	-	0,757 ^в	$0,76^{a}$
	${}^{3}[11/2]^{\circ}_{11/2}$	_	58168,613 ^B	58051,51 ^a	_	0,967 ^в	0,95 ^a
	${}^{3}[11/2]^{\circ}_{13/2}$	_	58437,674 ^B	59632,21 ^a	_	$1,042^{B}$	-
$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{3}P)$	${}^{3}[5/2]^{\circ}_{3/2}$	_	57551,645 ^B	56500,64 ^a	_	1.048^{B}	1.352^{a}
(112) ()	${}^{3}[5/2]^{\circ}_{5/2}$	_	57032.324 ^B	57798.51 ^a	_	1.163 ^B	1.151 ^a
	${}^{3}[5/2]^{\circ}_{7/2}$	_	58339,138 ^B	58162.75 ^a	_	1.057^{B}	0.94^{a}
$4f^{14}7n$	${}^{2}P^{0}$	$77001 42^{A}$	63631 500 ^A	63706 25 ^a	0.666 ^{A,C}	0.666 ^{A,C}	$0,51^{a}$
41 /P	1 1/2	83251 70 ^C	63723 992 ^B	05700,25	0,000	0,658 ^B	0,001
		05251,70	63705 387 ^C			0,050	
	2_{D^0}	77002 66A	62621 500 ^A	65504 10 ^a	1 224A,C	1 224A,C	
	P 3/2	77002,00	05051,500	03394,10	1,554	1,554 1,105 ^B	_
		83205,05	0001,049			1,185	
4 140	200	TO11	00098,211		O CC-ABC	O CC-ABC	
41 ⁻ 8p	$-P_{1/2}$	/911/,93	/6486,600	-	0,666	0,666	-
		74099,85 ^B	76655,562 [™]				
	2	85803,16 ^C	76578,499 [°]				
	${}^{2}P^{o}_{3/2}$	79118,38 ^A	76946,000 ^A	-	1,334 ^{а,в,С}	1,334 ^{а,в,С}	-
		74125,62 ^B	77118,905 ^в				
		85804,30 ^C	77031,801 ^C				

Tablo 3.27. Devam

Seviyele	r	E		g-çarpar	11
Konfigürasyon	Terim	Bu çalışma	Diğer	Bu çalışma	Diğer
		MCHF+BP HFR	çalışmalar	MCHF+BP HFR	çalışmalar
4f ¹⁴ 5f	${}^{2}\mathrm{F}^{0}_{5/2}$	68441,98 ^A 70502,900 ^A 75100,19 ^C 70522,232 ^B	70502,90 ^a	$\begin{array}{ccc} 0,857^{\mathrm{A,C}} & 0,857^{\mathrm{A,C}} \\ & 0,877^{\mathrm{B}} \end{array}$	_
	${}^{2}F^{o}_{7/2}$	70504,300° 68443,98 ^A 70580,300 ^A 75102,24 ^C 70592,108 ^B 70581 400 ^C	70580,19 ^a	1,143 ^{A,C} 1,143 ^{A,C} 1,135 ^B	-
$4f^{14}6f$	${}^{2}F^{o}{}_{5/2}$	70381,400 73817,05 ^A 80458,900 ^A 80475,75 ^C 80522,886 ^B 80459,600 ^C	80458,95 ^a	0,857 ^{A,C} 0,857 ^{A,B,C}	
	${}^{2}F^{o}_{7/2}$	73818,38 ^A 80471,900 ^A 80477,12 ^C 80607,894 ^B 80472,400 ^C	80471,80 ^a	1,143 ^{A,C} 1,143 ^{A,B,C}	_
$4f^{14}7f$	${}^{2}F^{o}_{5/2}$	77058,95 ^A 85898,100 ^A 70713,65 ^B 85963,286 ^B 83717 95 ^C 85898 500 ^C	85898,13 ^a	0,857 ^{A,B,C} 0,857 ^{A,B,C}	-
	${}^{2}F^{o}_{7/2}$	77059,84 ^A 85906,100 ^A 70715,66 ^B 85967,039 ^B	85906,20 ^a	1,143 ^{A,B,C} 1,143 ^{A,B,C}	_
$4f^{14}8f$	${}^{2}F^{o}_{5/2}$	79163,09 ^A 89175,900 ^A 82327,56 ^B 89210,460 ^B 85822,28 ^C 89176,100 ^C	89175,85 ^a	0,857 ^{A,B,C} 0,857 ^{A,B,C}	-
	${}^{2}F^{o}_{7/2}$	79163,72 ^A 89185,300 ^A 82329,57 ^B 89219,391 ^B 85822 94 ^C 89185 500 ^C	89185,44 ^a	1,143 ^{A,B,C} 1,143 ^{A,B,C}	_
4f ¹⁴ 9f	${}^{2}F^{o}_{5/2}$	80605,59 ^A 91311,400 ^A 87264,91 ^C 91332,817 ^B 91311,500 ^C	91311,40 ^a	0,857 ^{A,C} 0,857 ^{A,B,C}	2 _
	${}^{2}F^{o}_{7/2}$	80606,04 ^A 91314,900 ^A 87265,37 ^C 91336,306 ^B 91315,000 ^C	91314,85 ^a	1,143 ^{A,C} 1,143 ^{A,B,C}	2 _

^aNIST Atomic Spectra Database [63], *Tablonun daha geniş hali Tablo A.8'de verilmektedir.

3.7.2. Yb II'nin elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

MCHF+BP ve HFR yöntemleriyle Yb II'nin elektrik dipol geçişleri için dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları hesaplandı. 4f¹⁴6s–4f¹⁴6p, 4f¹⁴7p, 4f¹³5d6s, 4f¹³5d², 4f¹³6s²–4f¹³6s6p, 4f¹³5d6p, 4f¹⁴7d, 4f¹⁴5d–4f¹⁴6p, 4f¹³5d6s, 4f¹³5d², 4f¹⁴7p, 4f¹³5d6s–4f¹³6s6p, 4f¹³5d6p, 4f¹⁴6d, 4f¹⁴7d, 4f¹⁴6s–4f¹³6s6p, 4f¹³5d6p, 4f¹⁴ns (n = 7–9), 4f¹⁴nd (n = 6–9), 4f¹⁴np (n = 7–9)–4f¹⁴ns (n = 6–9), 4f¹⁴nd (n = 6–9) ve 4f¹⁴nf (n = 5–9)–4f¹⁴nd (n = 5–9) geçişlerinin λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve *g*A_{ki} (sn⁻¹) ağırlıklı geçiş olasılıkları Tablo 3.28 ve Ekler kısmındaki Tablo A.9'da sunulmaktadır. Tablolarda sadece tek pariteli seviyeler "^o" indisiyle belirtilirken geçiş olasılığı için 10'un kuvvetleri parantez içinde yazılmaktadır ve DREAM veri tabanındaki [64] verileriyle karşılaştırma yapılmaktadır. Bu veriler Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle elde edilmiştir ve bir kısmı [331]'de sunulmuştur. Ayrıca birkaç seviye için Migdalek'in relativistik model-potansiyel ve tek konfigürasyonlu Dirac-Fock [306, 308], Facwett ve Wilson'un HFR [305] ve U.I. Safronova ve M.S. Safronova'nın relativistik çok-cisim [335] yöntemleriyle yaptıkları çalışmaları ile karşılaştırılmaktadır.

MCHF+BP hesaplamalarında Tablo 3.26'da verilen A ve B konfigürasyon setlerindeki çift ve tek pariteli seviyeleri arasındaki geçişler A ve B hesabı ve C konfigürasyon setindeki çift ve B'nin tek pariteli seviyeleri arasındaki geçişler C hesabı olarak MCHF program paketi [412] ile hesaplandı. A, B ve C hesapları için sırasıyla 242, 4911 ve 4911 mümkün elektrik dipol geçişleri elde edildi. Bu geçişler için elde edilen veriler Tablo 3.28 ve Tablo A.9'da verilmektedir. Tablolarda geçiş olasılıkları üst seviyenin istatistiksel ağırlığıyla çarpılarak ağırlıklı geçiş olasılıklarına (gAki) çevrildi. Tablo 3.28 ve Tablo A.9'da hesaplanan geçişler için dalga boyları, ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarının farklı konfigürasyon setlerine ait hesaplamaları A, B ve C üst indisiyle verildi. Hesap sonuçları incelendiğinde birçok geçiş için karşılaştırma değerleri ile uyumun iyi olmadığı görülmektedir. $4f^{14}6s-4f^{14}6p$ geçişlerinde λ ve gf değerleri için uyum iyi olmasına rağmen gA_{ki} değerlerinde uyum azdır. $4f^{14}6s-4f^{14}7p$ geçişlerinde ise dalga boyu iyi, diğer ışıma parametreleri kötüdür. 4f¹⁴5d–4f¹⁴6p geçişlerinde durum tam tersidir ve $4f^{14}6p-4f^{14}6d$ geçişlerinde sadece gA_{ki} değerleri uyumludur. Karşılaştırma değeri olmayan $4f^{14}$ np (n = 7-9)- $4f^{14}$ ns (n = 6-9), $4f^{14}$ nd (n = 6-9) ve $4f^{14}$ nf (n = 5-9)-4 f^{14} nd (n = 5-9) geçişlerinde HFR ile yapılan diğer çalışmayla uyum bazı geçişler hariç iyidir. Bu uyumsuzlukların giderilmesi için 5p6'dan uyararak öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin dikkate alındığı konfigürasyon setleriyle yapılan geçişlerde de fazla iyileşme olmadığı görülmektedir. Bu uyumsuzluklar 4f¹⁴, ten uyarılarak elde edilen konfigürasyonlar katılarak bir miktar düzeltilebilir.

Tablo 3.26'da verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında HFR program paketiyle [418] yapılan A, B ve C hesaplamaları için sırasıyla 443, 11853 ve 1001 tane mümkün elektrik dipol geçişleri elde edildi. Geçiş verileri fazla olduğu için sadece karşılaştırma değerleri olan ve $4f^{14}$ np (n = 7–9)– $4f^{14}$ ns (n =

6-9), $4f^{14}nd$ (n = 6-9) ve $4f^{14}nf$ (n = 5-9)- $4f^{14}nd$ (n = 5-9) geçişlerinin dalga boyları, ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları A, B ve C üst indisiyle Tablo 3.28 ve Tablo A.9'da verilmektedir. A, B ve C hesaplarında en küçük kareler vöntemiyle elde edilen enerji degerleri deneysel verilere uydurma yapılarak elde edilen parametrelerle geçişler tekrar hesaplandı. Hesap sonuçları diğer verilerle karşılaştırıldığında dalga boylarında uyum iyi olmasına rağmen bazı ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarında uyum daha azdır. 4f¹⁴6s-4f¹⁴6p ve 4f¹⁴6s-4f¹⁴7p geçişlerinde uyum oldukça iyidir. Karşılaştırma değerlerinde farklı gAki sonuçları mevcuttur. gAki için farklı konfigürasyon setleriyle yapılan HFR farklı karşılaştırma verileriyle uyumludur. 4f¹³6s²-4f¹³6s6p ve sonucları 4f¹³6s²-4f¹³5d6p geçişleri nicelendiğinde bazı seviyeler hariç uyumun iyi olduğu görülmektedir. $4f^{13}6s^2-4f^{14}7d$ geçişlerinde λ değerleri için uyum iyi olmasına rağmen gf ve gA_{ki} değerlerinde uyum azdır. 4f¹⁴5d ²D_{5/2}-4f¹⁴7p ²P^o_{3/2} geçişinde ise gf ve gA_{ki} sonuçları için B hesabı daha iyidir. Ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları için en geniş karşılaştırma verileri birkaç seviye hariç Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle yapılan çalışmadır [64, 345]. Bu yöntemde öz-kutuplanmaya göre tanımlanan bir potansiyel kullanıldığından sadece HFR yöntemiyle elde edilen bazı geçişler için uyum daha az gözükmektedir. $4f^{14}6s-4f^{14}6p$. $4f^{14}6s-4f^{14}7p$, $4f^{14}6p-4f^{14}7s$, $4f^{14}6p-4f^{14}6d$, $4f^{14}6p-4f^{14}8s$. 4f¹⁴7s-4f¹⁴7p ve 4f¹⁴7p-4f¹⁴8s geçişleri içinde relativistik model-potansiyel, tek konfigürasyonlu Dirac-Fock [306, 308], HFR [305] ve relativistik çok-cisim [335] yöntemleriyle yapılan çalışmalardaki geçiş olasılıkları ağırlıklı geçiş olasılıklarına çevrilerek karşılaştırılmaktadır. Bunlardan bazıları farklı çalışma sonuçlarıyla uyumludur. Ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarındaki uyumsuzlukların iyileştirilmesi için özden uyarılmaların yapıldığı B ve C hesaplarındaki sonuçlarda iyileştirme olduğu görülmektedir.

Geçişler		λ			gf			gA_{ki}		
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	ışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}6p^{-2}P^{0}_{1/2}$	4953,97 ^A	3695,245 ^A 3698,403 ^B 3702,106 ^C	3694,19 ^{a,b} 3695,24 ^d	0,71854 ^A	0,81277 ^A 0,52442 ^B 0,57751 ^C	0,474 ^a 0,574 ^c	1,952(8) ^A	3,970(8) ^A 2,557(8) ^B 2,810(8) ^C	$2,31(8)^{a}$ $2,46(8)^{b}$ $3,00(8)^{d}$ $2,28(8)^{e}$ $2,92(8)^{f}$
$4f^{14}6s\ ^2S_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	-	3474,391 ^B	3476,30 ^a	-	0,14070 ^B	0,048 ^a	-	7,774(7) ^B	$2,66(7)^{a}$
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}6p^{-2}P^{o}_{-3/2}$	4522,33 ^A	3290,312 ^A 3289,017 ^B 3283,666 ^C	3289,37 ^{a,b} 3290,31 ^d	1,57513 ^A	1,82560 ^A 0,97472 ^B 0,85305 ^C	0,887 ^a 1,300 ^c	5,134(8) ^A	1,130(9) ^A 6,010(8) ^B 5,277(8) ^C	5,46(8) ^a 6,48(8) ^b 8,40(8) ^d 4,80(8) ^e
$4f^{14}6s^{-2}S_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	-	3026,694 ^B	3031,11 ^a	-	0,04130 ^B	0,034 ^a	-	3,007(7) ^B	$8,24(8)^{a}$ 2,49(7) ^a
$4f^{14}6s\ ^2S_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	_	2939,206 ^B	2970,56 ^a	-	0,11130 ^B	0,082 ^a	_	8,593(7) ^B	$6,13(7)^{a}$ 5,22(7) ^b
$4f^{14}6s\ ^2S_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{1}D)$	-	2864,930 ^B	2891,38 ^a	-	0,11599 ^B	0,166 ^a	-	0,943(8) ^B	$1,33(8)^{a}$
$4f^{14}6s\ ^2S_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6s({}^{3}D)$	_	2533,003 ^B	2538,67 ^a	-	0,02348 ^B	0,012 ^a	-	2,441(7) ^B	1,308(8) $1,22(7)^{a}$
$4f^{14}6s^{-2}S_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6s({}^{3}D)$	-	2316,200 ^B	2320,81 ^a	-	0,01165 ^B	0,024 ^a	-	1,448(7) ^B	2,96(7) ^a
$4f^{14}6s\ ^2S_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{3}F)$	_	2113,117 ^B	2131,40 ^a	-	0,00030 ^B	0,109 ^a	-	4,418(5) ^B	1,61(8) ^a
$4f^{14}6s\ ^2S_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6s({}^{1}D)$	_	2154,275 ^B	2126,74 ^{a,b}	-	0,15126 ^B	0,139 ^a	-	2,174(8) ^B	$2,05(8)^{a}$
$4f^{14}6s^{-2}S_{1/2}$	$(5/2)_{3/2}$ 4f ¹³ (² F° _{5/2})5d6s(¹ D)	-	2022,670 ^B	$2116,68^{a}$	-	0,30559 ^B	0,046 ^a	-	4,982(8) ^B	$6,82(7)^{a,b}$
$4f^{14}6s^{-2}S_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{1}D)$	-	1771,909 ^B	1810,89 ^a	-	0,01982 ^B	0,014 ^a	-	4,211(7) ^B	2,87(7) ^a
$4f^{14}6s\ ^2S_{1/2}$	$4f^{14}7p^{-2}P^{0}_{-1/2}$	1298,63 ^A	1571,548 ^A 1569,269 ^B 1569,725 ^C	1569,705 ^b 1569,70 ^d	0,09712 ^A	0,00742 ^A 0,02452 ^B 0,04150 ^C	0,005 ^b	3,841(8) ^A	2,003(7) ^A 6,642(7) ^B 1,123(8) ^C	1,44(7) ^b 9,62(6) ^d 8,12(7) ^e 4,08(6) ^f

Tablo 3.28. Yb II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹)*

Tablo 3.2	28. Devam
-----------	-----------

	Geçişler		λ			gf			gA _{ki}	
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu çal	ışma	Diğer	Bu ça	alışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}7p^{-2}P^{0}_{-3/2}$	1298,61 ^A	1571,548 ^A 1526,683 ^B 1524,432 ^C	1524,53 ^a 1557,85 ^d	0,19231 ^A	0,01483 ^A 0,03507 ^B 0,06840 ^C	0,011 ^a	7,606(8) ^A	4,010(7) ^A 1,003(8) ^B 1,963(8) ^C	$3,02(7)^{a}$ $1,03(6)^{d}$ $8,24(7)^{e}$ $5,24(6)^{f}$
$4f^{13}6s^2\ ^2F^o_{7/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{0})$	-	3760,471 ^B	3773,43 ^a	_	0,02552 ^B	0,011 ^a	-	1,204(7) ^B	$5,09(6)^{a}$
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,0)_{7/2}$ 4f ¹³ (² F° _{7/2})6s6p(³ P° ₁) (7/2,1)	_	3639,667 ^B	3637,75 ^a	-	0,24059 ^B	0,121 ^a	_	1,211(8) ^B	$6,12(7)^{a}$
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,1)_{7/2}$ 4f ¹³ (² F° _{7/2})6s6p(³ P° ₁) (7/2,1)	-	3606,622 ^B	3585,47 ^a	-	0,54338 ^B	0,242 ^a	-	2,786(8) ^B	1,25(8) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(7/2,1)_{9/2}$ 4f ¹³ (² F° _{7/2})6s6p(³ P° ₁) (7/2,1)	_	3590,977 ^B	3560,33 ^a	_	0,41788 ^B	0,177 ^a	-	2,161(8) ^B	0,93(8) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(7/2,1)_{5/2}$ 4f ¹³ (² F° _{7/2})6s6p(³ P° ₂)	_	3100,732 ^B	3094,89 ^a	_	0,04447 ^B	0,011 ^a	-	3,085(7) ^B	0,73(7) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(7/2,2)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(¹ P° ₁)	_	2975,235 ^B	2859,8 ^a	-	1,97878 ^B	1,065 ^a	-	1,491(9) ^B	8,63(8) ^a
$4f^{13}6s^2 \ ^2F^o_{7/2}$	$(7/2,1)_{5/2}$? 4f ¹³ (² F° _{7/2})6s6p(¹ P° ₁)	_	2918,748 ^B	2750,48 ^a	-	4,43144 ^B	3,651 ^a	-	3,469(9) ^B	3,20(9) ^{a,b}
$4 f^{13} 6 s^2 \ ^2 F^o_{7/2}$	$(7/2,1)_{9/2}$ 4f ¹³ (² F° _{5/2})6s6p(³ P° ₀)	_	2711,809 ^B	2750,477° 2711,78°	-	0,02616 ^B	0,02 ^a	-	2,373(7) ^B	1,81(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(5/2,0)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₂)	_	2687,769 ^B	2672,66 ^a	_	0,48583 ^B	0,864 ^a	-	4,486(8) ^B	8,10(8) ^a
$4 f^{13} 6 s^2 \ ^2 F^o_{\ 7/2}$	$(7/2,2)_{5/2}$ 4f ¹³ (² F° _{7/2})6s6p(¹ P° ₁) (7/2 1)	_	2796,597 ^B	2653,75 ^{a,b}	_	4,06944 ^B	3,286 ^a	-	3,470(9) ^B	3,12(9) ^{a,b}
$4 f^{13} 6 s^2 \ ^2 F^o_{\ 7/2}$	$(7/2, 1)_{7/2}?$ 4f ¹³ (² F° ₇₅₂)6s6p(³ P° ₁)	_	2646,101 ^B	2641,88 ^a	_	0,04697 ^B	0,151 ^a	-	4,474(7) ^B	1,44(8) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(5/2,1)_{5/2}$ $4f^{13}({}^{2}F^{\circ}_{752})6s6p({}^{3}P^{\circ}_{1})$	_	2632,369 ^B	2617,01 ^a	_	0,01599 ^B	0,132 ^a	-	1,539(7) ^B	1,28(8) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(5/2,1)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₂)	-	2516,598 ^B	2522,43 ^a	-	0,04136 ^B	0,124 ^a	-	4,356(7) ^B	1,30(8) ^a
$4 f^{13} 6 s^2 \ ^2 F^o_{\ 7/2}$	$(7/2,2)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₂)	-	2506,052 ^B	2512,06 ^a	-	0,28573 ^B	0,465 ^a	-	3,035(8) ^B	4,92(8) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(7/2,2)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(¹ D° ₂) (7/2,2) _{5/2} ?	_	2489,632 ^B	2502,02 ^a	-	0,05185 ^B	0,087 ^a	-	5,579(7) ^B	9,32(7) ^a

Tablo	3.28.	Devam
-------	-------	-------

	Geçişler		λ			gf		gA _{ki}		
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{13}6s^2 {}^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{1})$	-	2380,808 ^B	2390,74 ^a	-	0,44168 ^B	0,589 ^a	-	5,197(8) ^B	$6,86(8)^{a}$
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,1)_{5/2}$ $4f^{13}(^{2}F^{\circ}_{5/2})6s6p(^{3}P^{\circ}_{2})$ (5/2,2)	-	2365,547 ^B	2364,26 ^a	-	0,02856 ^B	0,01 ^a	-	3,405(7) ^B	1,20(7) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{1})$	-	2366,876 ^B	2362,89 ^a	-	0,25121 ^B	0,329 ^a	-	2,991(8) ^B	3,91(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(7/2,1)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₃)	_	2333,934 ^B	2344,66 ^a	_	0,05524 ^B	0,063 ^a	_	6,764(7) ^B	7,70(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,3)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ D° ₁)	_	2309,322 ^B	2315,20 ^a	-	0,18843 ^B	0,267 ^a	_	2,357(8) ^B	3,32(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(7/2, 1)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₃)	_	2271,909 ^B	2288,97 ^a	-	0,07783 ^B	0,092 ^a	_	1,006(8) ^B	1,17(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(7/2,3)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₂)	_	2282,944 ^B	2283,40 ^a	-	0,24715 ^B	0,299 ^a	_	3,163(8) ^B	3,80(8) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,2)_{9/2}?$ $4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{1}D^{\circ}_{2})$	-	2271,909 ^B	2263,88 ^a	-	0,07783 ^B	0,047 ^a	-	1,006(8) ^B	6,11(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,2)_{7/2}$? 4f ¹³ (² F° _{7/2})5d6p(³ D° ₂) (7/2,2)	-	2226,283 ^B	2224,87 ^a	-	0,00981 ^B	0,029 ^a	-	1,320(7) ^B	3,91(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,2)_{5/2}$ $4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{3}D^{\circ}_{2})$ (7/2,2)	-	2204,729 ^B	2214,68 ^a	-	0,05881 ^B	0,072 ^a	-	8,070(7) ^B	9,83(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,2)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ D° ₃)	-	2169,913 ^B	2173,36 ^a	-	0,03001 ^B	0,035 ^a	-	4,251(7) ^B	4,88(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,5)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₄) (7/2,4)	-	2120,896 ^B	2125,57 ^a	-	0,15243 ^B	0,108 ^a	-	2,260(8) ^B	$1,60(8)^{a}$
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,4)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₄) (7/2,4)	-	2118,239 ^B	2121,10 ^a	-	0,00794 ^B	0,013 ^a	-	1,180(7) ^B	1,95(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,4)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ P° ₀) (7/2,0) 2	_	2075,704 ^B	2083,69 ^a	-	0,05693 ^B	0,047 ^a	-	8,813(7) ^B	7,24(7) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(7/2,0)_{7/2}?$ 4f ¹³ (² F° _{7/2})5d6p(³ P° ₂) (7/2,2)	-	2013,611 ^B	2022,03 ^a	-	0,11639 ^B	0,129 ^a	-	1,915(8) ^B	2,09(8) ^a
$4f^{13}6s^2\ ^2F^o_{\ 7/2}$	$(7/2,2)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ P° ₂) (7/2,2) _{7/2}	_	1999,491 ^B	2007,24 ^a	_	0,01576 ^B	0,015 ^a	_	2,630(7) ^B	2,42(7) ^a

^aDream Databese [64], ^bNIST Periodictable [62], ^cMigdalek [306, *f*' den çevrildi], ^dU.I. Safronova ve M.S. Safronova [335, A_{ki}' den çevrildi], ^eFacwett and Wilson [305, A_{ki}' den çevrildi], ^fMigdalek [308, A_{ki}' den çevrildi], *Tablonun daha geniş hali Tablo A.9' da verilmektedir.

3.8. Yb III (Z = 70) için Hesaplama Sonuçları

İki kez iyonlaşmış iterbiyum, nötral ve bir kez iyonlaşmış iterbiyuma göre geçmişte daha az çalışılmıştır. Lantanitlerin birinci ve ikinci spektrumları kadar özellikle çift atom numaralı nadir toprakların üçüncü spektrumları da acayip yıldızlarda gözlenir. Yb III, 4f¹⁴ taban hal konfigürasyonuyla Yb I ve Yb II'ye göre basit bir atomik yapıya ve düşük uyarılmış konfigürasyonları [Xe]4f¹³ özünün dışındaki bir dış elektrona sahiptir.

İki kez iyonlaşmış iterbiyumun (Yb III) enerji seviyeleri, Landé *g*-çarpanları, spektrumları [4, 15, 48, 109, 296, 298, 338, 339, 342] ve iyonlaşma potansiyeli [23, 45, 46, 300, 340] ile ilgili çalışmalar Tablo 1.3'te verilmiştir. Yb III'ün yarı ömürleri [341, 342, 345], geçiş olasılıkları ve salınıcı şiddetleri [342–346] zamançözünürlüklü lazer-indirgenmiş floresans tekniği, Fourier-dönüşüm spektroskopisi ve HFR+CP ve çok-cisim katkı teorisi gibi deneysel ve teorik yöntemlerle incelenmiştir.

Yb III'ün bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları ve elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları HFR [418] yöntemi kullanılarak hesaplandı. Elde edilen sonuçlar Tablo 3.30, Tablo A.10 (Ekler kısmında), Tablo 3.31 ve Tablo A.11'de (Ekler kısmında) sunulmaktadır.

Yb III'ün HFR hesaplamaları için, [Xe] özü dışındaki elektronlar arasındaki karşılıklı etkileşmelere göre seçilen ve A ve B ile gösterilen konfigürasyon setleri Tablo 3.29'da verilmektedir.

Tablo 3.29. Yb III'e ait hesaplamalar için alınan konfigürasyon setleri

Seviyeler	Konfigürasyonlar							
	Α	В						
HFR hesaplama	ları için:							
Çift-parite	4f ¹⁴ , 4f ¹³ 6p, 4f ¹³ 5f	$4f^{14}$, $4f^{13}$ np (n = 6, 7), $4f^{13}$ nf (n = 5-7)						
Tek-parite	$4f^{13}nd (n = 5, 6), 4f^{13}ns (n = 6-8)$	$4f^{13}nd (n = 5-7), 4f^{13}ns (n = 6, 7)$						

İki kez iyonlaşmış iterbiyumun [Xe] özü dışında $4f^{14}$, $4f^{13}$ np (n = 6, 7), $4f^{13}$ nf (n = 5–7), $4f^{13}$ nd (n = 5–7), $4f^{13}$ ns (n = 6–8) uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları HFR yöntemiyle [418] hesaplandı. Elde edilen sonuçlar Tablo 3.30 ve Ekler kısmındaki Tablo A.10'da taban hal seviyesi $4f^{14}$ ¹S₀'a göre cm⁻¹ biriminde sunulmaktadır. Tablolarda farklı konfigürasyon setlerine göre elde edilen sonuçlar HFR için A ve B üst indisleriyle ve sadece tek pariteli seviyeler "^o" indisiyle belirtilmektedir. Elde edilen sonuçlar için seviye enerjileri NIST verileri [63], Öberg ve Lundberg [345] ve U.I. Safronova ve M.S. Safronova'nın [346] çalışma sonuçlarıyla ve Landé *g*-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ile karşılaştırılmaktadır.

HFR hesaplamalarında, Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurmayı yapmak için iyileştirildi. Spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkilesme integralleri (R^k) icin ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A ve B hesaplarında 0,85 olarak seçildi. HFR hesaplamaları, Tablo 3.29'da verilen konfigürasyon setleriyle HFR atomik yapı paketi [418] kullanılarak elde edildi. HFR sonuçlarının hem karşılaştırma değeri olanlar hem de yeni veriler sunmak amacıyla diğer uyarılmış seviyeleri de Tablo 3.30 ve Tablo A.10'da sunulmaktadır. $4f^{14}$, $4f^{13}$ np (n = 6, 7), $4f^{13}nf$ (n = 5-7), $4f^{13}nd$ (n = 5-7), $4f^{13}ns$ (n = 6-8) uyarılmış seviyelerinin enerjileri ve Landé g-çarpanları tablolarda verilmektedir. NIST verileri [63], Öberg ve Lundberg'in çalışmaları [345] ve U.I. Safronova ve M.S. Safronova'nın relativistik cok-cisim katkı teorisiyle hesapladıkları çalışma sonuçları [346] ile karşılaştırıldığında uyumun hemen hemen tüm seviyeler için iyi olduğu görülmektedir. Bazı seviyelerde A sonuçları daha iyi iken bazı sonuçlarda B sonuçları daha iyidir. U.I. Safronova ve M.S. Safronova'nın sonuçlarının bazı seviyeler için NIST verileri ile uyumsuz olduğuna dikkat edilmelidir. Ayrıca, tüm hesaplamalarda Landé g-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ile oldukça uyumludur.

Seviyeler			E	g-çarpanı		
Konfigürasyon	Terim	<u>Bu çalışma</u> HFR	_ Diğer calısmalar	<u>Bu çalışma</u> HFR	_ Diğer calısmalar	
Cift parite icin•		III K	şunşınanı	mx	çunymunu	
$4f^{14}$	$^{1}S_{0}$	0.00 ^{A,B}	$0.00^{a,b}$			
$4f^{13}(^2F^{0}_{7/2})6n_{1/2}$	$(7/2,1/2)_2$	72177.703 ^A	72140.35 ^a	$1.246^{A,B}$	1.246^{b}	
(1 (1 //2)°P1/2	(,,_,_,_)	72176.654 ^B	73274°	1,210	1,210	
	$(7/2, 1/2)_4$	72482.348 ^A	72486.97 ^a	$1.069^{A,B}$	1.069^{b}	
	(,	72482.201 ^B	73457 ^c	,	,	
$4f^{13}(^{2}F^{0}_{7/2})6p_{3/2}$	$(7/2, 3/2)_5$	77973,979 ^A	78020,45 ^a	$1,200^{A,B}$	$1,200^{b}$	
(12) 1012	. , ,,	77975,876 ^B	78889 ^c			
	$(7/2, 3/2)_2$	78193,573 ^A	78183,44 ^a	1,063 ^{A,B}	1,063 ^b	
		78193,816 ^B	79043°			
	$(7/2, 3/2)_3$	78778,064 ^A	78779,29 ^a	1,099 ^{A,B}	1,099 ^b	
		78777,656 ^B	79512 ^c			
	$(7/2, 3/2)_4$	79288,011 ^A	79282,90 ^a	1,195 ^{A,B}	1,195 ^b	
		79287,697 ^B	80103 ^c			
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}$	$(5/2, 1/2)_3$	82526,095 ^A	82546,33 ^a	$0,808^{A,B}$	$0,808^{b}$	
		82527,268 ^B	81757 ^c			
	$(5/2, 1/2)_2$	82894,990 ^A	82907,42 ^a	0,939 ^{A,B}	0,939 ^b	
		82894,878 ^B	82129 ^c			
4f ¹³ (² F ^o _{5/2})6p _{3/2}	$(5/2, 3/2)_1$	87629,245 ^A	87612,61 ^a	0,499 ^{A,B}	0,499 ^b	
		87628,099 ^B	86729 ^c			
	$(5/2, 3/2)_4$	88499,295 ^A	88497,90 ^a	1,037 ^{A,B}	1,037 ^b	
		88499,501 ^B	87546 ^c			
	$(5/2, 3/2)_2$	88984,068 ^A	88977,09 ^a	0,831 ^{A,B}	0,831 ^b	
		88983,522 ^B	87925 [°]			
	$(5/2,3/2)_3$	89404,789 ^A	89397,41 ^a	1,015 ^{A,B}	1,015 ^b	
12.0	2	89405,032 ^B	88432 ^c	P		
$4f^{13}(^{2}F^{0})7p$	$^{3}D_{3}$	133830,195 ^B	133653,80 ^b	1,245 ^B	1,236 ^b	
	$^{3}D_{2}$	137159,215 ^B	-	$1,060^{B}$	-	
12.0	$^{3}D_{1}$	147279,916 ^B	- ,	0,499 ^B		
$4f^{13}(^{2}F^{0})7p$	${}^{3}G_{4}$	133865,941 ^B	133933,40 ^b	1,065 ^B	1,071 ^b	
	${}^{3}G_{5}$	136490,467 ^B	-	1,200 ^B	-	
	${}^{3}G_{3}$	144914,081 ^B		0,805 ^B		
$4f_{13}^{13}(^{2}F^{o})7p$	${}^{1}F_{3}$	136872,602 ^B	137102,00 ^b	$1,102^{B}$	1,111 ^b	
$4f^{13}(^{2}F^{0})7p$	${}^{3}F_{4}$	137043,180 ^B	136755,50 ^b	1,199 ^B	1,193 ^b	
	${}^{3}F_{2}$	147970,504 ^B	-	0,862 ^B	-	
12.0	${}^{3}F_{3}$	148086,129 ^B	-	1,016 ^B	-	
$4f_{12}^{13}({}^{2}F^{0})7p$	$^{1}D_{2}$	145519,982 ^B	_	0,912 ^B	-	
$4f_{12}^{13}({}^{2}F^{0})7p$	$^{1}G_{4}$	147556,188 ^B	-	1,037 ^B	-	
$4f^{13}(^{2}F^{0})5f$	³ I ₇	138659,169 ^A	138272,20 ^b	1,143 ^{A,B}	1,143°	
	2	138665,488 ^b	L		Ŀ	
	³ I ₆	138868,825 ^A	138987,10 ^b	1,026 ^A	1,012 ^b	
	2	138869,320 ^B		1,024 ^B		
	${}^{5}I_{5}$	149042,084 ^A	-	0,847 ^{д,в}	-	
. 12.0	2	149043,679 ^B		A D		
$4f^{15}(^{2}F^{0})5f$	$^{3}D_{3}$	138740,285 ^A	_	1,256 ^{д,в}	-	
	2	138774,926 ^b				
	$^{5}D_{1}$	148997,157 ^A	-	0,737 ^A	-	
	2	149004,199 ^B		0,734 ^b		
	$^{3}D_{2}$	149074,864 ^A	-	1,204 ^A	-	
· 12.2-0 a	1-	149073,403 ^b		1,216 ^b		
$4f^{13}(^{2}F^{0})5f$	$^{1}D_{2}$	138959,712 ^A	-	0,983 ^A	-	
$(a^{13})^{2} = 0 = 2$	3~	138952,110 ^B	1 accost a ch	0,968 ^b		
4t ^{**} (*F [°])5f	G_5	139070,471 ^A	139081,90°	1,174 ^{A,B}	1,155°	
	3~	139081,097 ^B		o ot - A B		
	G_3	149403,421 ^A	-	0,810 ^{л,в}	-	
	2	149406,234 ^B		0		
	$^{3}G_{4}$	149448,227 ^A	-	0,978 ^A	-	
12.2	2	149416,405 ^B		1,056 ^B		
$4f^{13}(^{2}F^{0})5f$	³ H ₆	139071,572 ^A	-	1,141 ^A	-	
	2	139082,649 ^B		1,143 ^B		
	°H5	149421,652 ^A	-	1,044 ^{А,В}	-	
		149429,688 ⁸				

Tablo 3.30. Yb III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Tablo 3.30. Devam

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sevive	er	T	.	g-carpani	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Konfigürasyon	Terim	Bu çalışma	Diğer	Bu çalışma	Diğer
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		311		çalışmalar		çalışmalar
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		\mathbf{H}_4	149416,/10 140433 734 ^B	_	0,928 0.850 ^B	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}(^{2}F^{0})5f$	1 G	139117 213 ^A	_	0,850 0,993 ^A	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41 (1)51	\mathbf{O}_4	139095 485 ^B		0.990^{B}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}(^{2}F^{o})5f$	${}^{1}I_{6}$	149232,447 ^A	_	1,024 ^{A,B}	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	× /-	0	149224,897 ^B		, -	
$ \begin{array}{c} 151474,000^8 \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$4f^{13}(^{2}F^{o})5f$	${}^{1}S_{0}$	153127,572 ^A	_		
Tek parite için: $4f^{13}(^{2}F^{\circ}_{72})5d_{32} (7/2,3/2)^{\circ}_{2} 33480,516^{A} 33385,80^{A} 1,466^{A} 1,466^{A} 1,466^{A} 1,466^{A} 1,466^{A} 1,475^{B} 3317,696^{B} 39755^{\circ} 1,475^{B} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,025^{A} 1,218^{B} 1,025^{A} 1,025^{A} 1,218^{B} 1,025^{A} 1,129^{A} 1,218^{B} 1,025^{A} 1,129^{A} 1,218^{B} 1,218^{A} 1,218^{B} 1,218^{A} 1,12^{A} 1,218^{B} 1,218^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A} 1,228^{A$		÷	151474,000 ^B			
$\begin{split} 4f^{13}(^2F^{9}{}_{7/2})5d_{3/2} & (7/2,3/2)^{9}_{2} & 33480,516^{A} & 33385,80^{A} & 1,466^{A} & 1,466^{A} \\ & 3317,696^{B} & 39755^{c} & 1,475^{B} \\ & (7/2,3/2)^{9}_{5} & 37048,092^{A} & 37020,25^{A} & 1,025^{A} & 1,025^{H} \\ & 7/2,3/2)^{9}_{3} & 39016,884^{A} & 39141,18^{A} & 1,221^{A} & 1,218^{H} \\ & (7/2,3/2)^{9}_{4} & 40055,138^{A} & 40160,03^{a} & 1,112^{A} & 1,120^{H} \\ & 39200,109^{B} & 44429^{c} & 1,147^{B} \\ & (7/2,3/2)^{6}_{4} & 40055,138^{A} & 40160,03^{a} & 1,112^{A} & 1,120^{H} \\ & 34956,473^{B} & 46122^{c} & 1,177^{B} \\ & 1,127^{A} & 34956,93^{B} & 36336^{c} \\ & (7/2,1/2)^{9}_{3} & 34956,93^{B} & 36336^{c} \\ & (7/2,1/2)^{9}_{3} & 34958,872^{A} & 34990,66^{a} & 1,037^{A} & 1,038^{H} \\ & 4f^{13}(^2F^{9}{}_{7/2})5d_{5/2} & (7/2,5/2)^{6} & 88934,893^{A} & 39085,39^{B} & 1,167^{A,B} & 1,167^{H} \\ & (7/2,5/2)^{9}_{4} & 39696,095^{A} & 39720,79^{a} & 1,350^{A} & 1,348^{H} \\ & (7/2,5/2)^{9}_{4} & 40601,07^{A} & 40288,07^{a} & 1,029^{A} \\ & (7/2,5/2)^{9}_{4} & 42567,595^{A} & 42425,08^{a} & 1,100^{A} & 1,091^{H} \\ & 41932,308^{B} & 47427^{c} & 1,043^{B} \\ & (7/2,5/2)^{9}_{4} & 422507,595^{A} & 42425,08^{a} & 1,100^{A} & 1,091^{H} \\ & 41932,208^{B} & 47427^{c} & 1,043^{B} \\ & (7/2,5/2)^{9}_{5} & 43842,72^{A} & 43622,75^{a} & 1,169^{A} & 1,168^{H} \\ & 41^{13}(^2F^{9}{}_{5/2})5d_{5/2} & (5/2,1/2)^{9}_{2} & 44820,054^{A} & 44853,59^{a} & 0,666^{A,B} & 0,666^{H} \\ & (5/2,1/2)^{9}_{5} & 435249,752^{A} & 45207,64^{a} & 1,049^{A,B} & 1,046^{H} \\ & (5/2,5/2)^{9}_{5} & 51348,571^{B} & 47664^{c} & 0,605^{B} \\ & (5/2,5/2)^{9}_{5} & 51348,571^{B} & 47664^{c} & 0,605^{B} \\ & (5/2,5/2)^{9}_{5} & 51378,169^{A} & 5029,42^{a} & 0,6556^{A} & 0,658^{H} \\ & (5/2,5/2)^{9}_{5} & 51378,169^{A} & 5027,34^{H} & 1,040^{H} \\ & (5/2,5/2)^{9}_{5} & 53783,505^{A} & 53735,86^{a} & 1,043^{A} & 1,043^{H} \\ & (5/2,5/2)^{9}_{5} & 53783,505^{A} & 53735,86^{a} & 1,043^{A} & 1,043^{H} \\ & (5/2,5/2)^{9}_{5} & 53783,505^{A} & 53735,86^{A} & 0,687^{H} \\ & 41^{13}(^2F^{9}_{52})5d_{32} & (5/2,3/2)^{9}_{5} & 4668,435^{A} & 47056,92^{a} & 0,845^$	Tek parite için:					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}$	$(7/2,3/2)^{\circ}_{2}$	33480,516 ^A	33385,80 ^a	1,466 ^A	1,466 ^b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			33317,696	39755°	1,475	1 0 2 7 b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1/2,3/2)^{\circ}_{5}$	37048,092 ^A	37020,25 ^a	1,025 ^A	1,025°
		$(7/2)^{2}$	37003,304 ⁵	42569°	1,023	1 21.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1/2,3/2)^{*}_{3}$	39016,884 ¹²	39141,18" 44420°	$1,221^{11}$ 1,140 ^B	1,218
$ \begin{array}{c} (1/2, 1/2)^{4} & 4005, 113^{8} & 4010, 055 & 1, 117^{8} \\ 4f^{13}(^{2}F^{0}_{7/2})6s_{1/2} & (7/2, 1/2)^{9}_{4} & 34687, 931^{A} & 34656, 13^{a} & 1, 251^{A,B} & 1, 251^{b} \\ & 34650, 593^{B} & 36536^{c} \\ (7/2, 1/2)^{9}_{3} & 34958, 872^{A} & 34990, 66^{a} & 1, 037^{A} & 1, 038^{b} \\ & 34964, 007^{B} & 36764^{c} & 1, 0338^{B} \\ (7/2, 5/2)^{9}_{6} & 38934, 893^{A} & 39085, 393^{a} & 1, 167^{A,B} & 1, 167^{b} \\ & 38733, 010^{B} & 44360^{c} \\ (7/2, 5/2)^{9}_{2} & 40601, 076^{A} & 40288, 07^{a} & 1, 029^{A} & 1, 028^{b} \\ (7/2, 5/2)^{9}_{2} & 40601, 076^{A} & 40288, 07^{a} & 1, 029^{A} & 1, 028^{b} \\ (7/2, 5/2)^{9}_{4} & 42567, 595^{A} & 42425, 08^{a} & 1, 100^{A} & 1, 091^{b} \\ & 41932, 308^{B} & 47427^{c} & 1, 043^{B} \\ (7/2, 5/2)^{9}_{5} & 4280, 880^{P} & 45862^{c} & 1, 162^{B} \\ (7/2, 5/2)^{9}_{5} & 4280, 880^{P} & 45862^{c} & 1, 162^{B} \\ (7/2, 5/2)^{9}_{5} & 4280, 880^{P} & 45862^{c} & 1, 162^{B} \\ (7/2, 5/2)^{9}_{5} & 43484, 272^{A} & 43622, 75^{a} & 1, 169^{A} & 1, 168^{b} \\ 44^{f13}(^{2}F^{o}_{5/2})6s_{12} & (5/2, 1/2)^{9}_{2} & 44820, 054^{A} & 44853, 59^{a} & 0, 666^{A,B} & 0, 666^{b} \\ (5/2, 1/2)^{9}_{3} & 45249, 752^{A} & 45207, 64^{a} & 1, 049^{A,B} & 1, 046^{b} \\ (5/2, 5/2)^{9}_{5} & 53378, 169^{A} & 50357, 46^{a} & 1, 040^{A} & 1, 041^{b} \\ (5/2, 5/2)^{9}_{5} & 51938, 571^{B} & 47664^{c} & 0, 605^{B} \\ (5/2, 5/2)^{9}_{5} & 51938, 169^{A} & 50357, 46^{a} & 1, 040^{A} & 1, 041^{b} \\ (5/2, 5/2)^{9}_{5} & 51328, 169^{A} & 5357, 46^{a} & 1, 040^{A} & 1, 041^{b} \\ (5/2, 5/2)^{9}_{5} & 51328, 169^{A} & 5357, 46^{a} & 1, 040^{A} & 1, 041^{b} \\ (5/2, 5/2)^{9}_{5} & 51325, 759^{A} & 53122, 79^{a} & 1, 002^{A} & 0, 928^{b} \\ (5/2, 5/2)^{9}_{5} & 53735, 86^{a} & 1, 043^{A} & 1, 043^{b} \\ (5/2, 5/2)^{9}_{4} & 53755, 86^{a} & 1, 043^{A} & 1, 043^{b} \\ (5/2, 5/2)^{9}_{4} & 45921^{c} & 1, 341^{B} \\ (5/2, 5/2)^{9}_{4} & 4898, 57921^{c} & 1, 041^{B} \\ (5/2, 5/2)^{9}_{4} & 48618, 40^{A} & 8414 67^{a} & 0, 910^{A} & 0, 915^{b} \\ \end{array}$		$(7/2 3/2)^{0}$	39200,109 40055 138 ^A	44429 40160 03 ^a	1,149 1,112 ^A	1 120 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1/2,3/2) 4	39456 473 ^B	46122°	1,112 1 177 ^B	1,120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}$	$(7/2.1/2)^{\circ}$	34687.931 ^A	34656.13 ^a	1.251 ^{A,B}	1.251 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	II (I //2)001/2	(1,2,1,2) 4	34650.593 ^B	36336°	1,201	1,201
$\begin{split} 4f^{13}(^2F^{o}_{7,2})5d_{5/2} & (7/2,5/2)^{o}_{6} & 38934,893^{A} & 39085,39^{a} & 1,167^{A,B} & 1,167^{b} \\ & 38733,010^{B} & 44360^{c} & 1,038^{B} \\ & (7/2,5/2)^{o}_{1} & 39696,095^{A} & 39720,79^{a} & 1,350^{A} & 1,348^{b} \\ & 39037,476^{B} & 39720,79^{a} & 1,350^{A} & 1,348^{b} \\ & (7/2,5/2)^{o}_{2} & 40601,076^{A} & 40288,07^{a} & 1,029^{A} & 1,028^{b} \\ & 41286,128^{B} & 44488^{c} & 0,996^{B} \\ & (7/2,5/2)^{o}_{4} & 42567,595^{A} & 42425,08^{a} & 1,100^{A} & 1,091^{b} \\ & 41932,308^{B} & 47427^{c} & 1,043^{B} \\ & (7/2,5/2)^{o}_{3} & 42980,531^{A} & 43019,16^{a} & 1,099^{A} & 1,165^{b} \\ & 42802,880^{B} & 45862^{c} & 1,162^{B} \\ & (7/2,5/2)^{o}_{5} & 43484,272^{A} & 43622,75^{a} & 1,169^{A} & 1,168^{b} \\ & 43114,705^{B} & 48991^{c} & 1,170^{B} \\ & 44^{c13}(^2F^{o}_{5/2})6s_{1/2} & (5/2,1/2)^{o}_{2} & 44820,054^{A} & 44853,59^{a} & 0,666^{A,B} & 0,666^{b} \\ & 45207,292^{B} & 47959^{c} \\ & 4f^{13}(^2F^{o}_{5/2})5d_{5/2} & (5/2,5/2)^{o}_{1} & 45249,752^{A} & 45207,64^{a} & 1,049^{A,B} & 1,046^{b} \\ & 45207,292^{B} & 47959^{c} \\ & 4f^{13}(^2F^{o}_{5/2})5d_{5/2} & (5/2,5/2)^{o}_{1} & 45808,796^{A} & 50029,42^{a} & 0,656^{A} & 0,658^{b} \\ & (5/2,5/2)^{o}_{5} & 50378,169^{A} & 50357,46^{a} & 1,040^{A} & 1,041^{b} \\ & 50527,394^{B} & 54313^{c} & 1,041^{B} \\ & (5/2,5/2)^{o}_{2} & 51439,823^{A} & 51463,38^{a} & 0,920^{A} & 0,928^{b} \\ & 5204,897^{B} & 55361^{c} & 1,060^{B} \\ & (5/2,5/2)^{o}_{4} & 53785,50^{A} & 53735,86^{a} & 1,043^{A} & 1,043^{b} \\ & 54011,891^{B} & 57921^{c} & 1,041^{B} \\ & 4f^{13}(^2F^{o}_{5/2})5d_{3/2} & (5/2,5/2)^{o}_{4} & 46968,435^{A} & 47056,92^{a} & 0,845^{A} & 0,847^{b} \\ & (5/2,5/2)^{o}_{4} & 46968,435^{A} & 47056,92^{a} & 0,845^{A} & 0,847^{b} \\ & 54011,891^{B} & 57921^{c} & 1,041^{B} \\ & (5/2,3/2)^{o}_{4} & 46968,435^{A} & 47056,92^{a} & 0,845^{A} & 0,847^{b} \\ & 54011,891^{B} & 51438^{c} & 0,919^{A} & 0,912^{b} \\ \end{array}$		$(7/2, 1/2)^{\circ}_{3}$	34958,872 ^A	34990,66 ^a	1,037 ^A	1,038 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. , , , , ,	34964,007 ^B	36764 [°]	1,038 ^B	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}$	$(7/2, 5/2)^{\circ}_{6}$	38934,893 ^A	39085,39 ^a	$1,167^{A,B}$	1,167 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			38733,010 ^B	44360 ^c		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2, 5/2)^{\circ}_{1}$	39696,095 ^A	39720,79 ^a	1,350 ^A	1,348 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			39037,476 ^в	39762°	1,339 ^B	h
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2,5/2)^{\circ}_{2}$	40601,076 ^A	40288,07 ^a	1,029 ^A	1,028 ^b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			41286,128 ^b	44488°	0,996 ^b	1.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1/2, 5/2)^{\circ}_{4}$	42567,595 ¹¹	42425,08"	1,100 ⁻¹	1,091°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2 5/2)^{0}$	41952,508 42080 521 ^A	$4/42/^{2}$	1,043 1,000 ^A	1 105 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(1/2, 3/2)_{3}$	42960,331 42802 880 ^B	45019,10 45862°	1,099 1,162 ^B	1,105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(7/2 5/2)^{\circ}$	42002,000 43484 272 ^A	43622 75 ^a	1,169 ^A	1 168 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(112,312) 5	43114.705^{B}	48991°	1.170^{B}	1,100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}(^{2}F^{0}_{5/2})6s_{1/2}$	$(5/2, 1/2)^{\circ}_{2}$	44820,054 ^A	44853,59 ^a	0,666 ^{A,B}	0,666 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ 5/2/ 1/2	× , , , 2	44859,109 ^B	45194 [°]	,	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 1/2)^{\circ}_{3}$	45249,752 ^A	45207,64 ^a	1,049 ^{A,B}	1,046 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			45207,292 ^B	47959 [°]		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{13}({}^{2}F^{o}{}_{5/2})5d_{5/2}$	$(5/2, 5/2)^{\circ}_{0}$	45261,499 ^A	45276,85 ^a ?		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			45247,509 ^b	49469°		, , , h
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2,5/2)^{0}_{1}$	49808,796 ^A	50029,42ª	0,656 ^A	0,658°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(5/0.5/0)	51938,571 ^B	47664°	0,605 ^b	1.041b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 5/2)_5$	50577 204 ^B	50557,40 54212°	1,040 1.041 ^B	1,041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 5/2)^{0}$	50527,594 51/30 823 ^A	514515 51463 38 ^a	1,041 0.020 ^A	0 928 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(3/2,3/2) 2	52204 897 ^B	55361°	1.060^{B}	0,720
$4f^{13}(^{2}F^{o}_{5/2})5d_{3/2} (5/2,3/2)^{o}_{4} 46968,435^{A} 47056,92^{a} 0,845^{A} 0,847^{b} (5/2,3/2)^{o}_{2} 48618,140^{A} 48414,67^{a} 0,919^{A} 0,912^{b}$		$(5/2,5/2)^{\circ}_{2}$	53256.759 ^A	53122.79 ^a	1.002^{A}	0.987^{b}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0, 2, 0, 2) 3	53013.413 ^B	56856°	0.932 ^B	0,907
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(5/2, 5/2)^{\circ}_{4}$	53783,505 ^A	53735,86 ^a	1,043 ^A	1,043 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			54011,891 ^B	57921 [°]	1,041 ^B	
$\begin{array}{ccccc} & 47720,024^{B} & 51438^{c} & 0,839^{B} \\ (5/2,3/2)^{0}_{2} & 48618,140^{A} & 48414,67^{a} & 0.919^{A} & 0.912^{b} \end{array}$	$4f^{13}(^{2}F^{o}_{5/2})5d_{3/2}$	$(5/2,3/2)^{\circ}_{4}$	46968,435 ^A	47056,92 ^a	$0,845^{A}_{-}$	0,847 ^b
$(5/2,3/2)^{\circ}_{2}$ 48618 140 ^A 48414 67 ^a 0.919 ^A 0.912 ^b			47720,024 ^B	51438 ^c	0,839 ^B	ŀ
$(0, 2, 0, 2)_{2}$ $(0, 0, 0, 1)$ $(0, 1)_{2}$ $(0, 1)_{2}$		$(5/2,3/2)^{\circ}_{2}$	48618,140 ^A	48414,67 ^a	0,919 ^A	0,912
49397,684 ^b 52632 ^c 0,803 ^b		(5/0.0/0)0	49397,684 ^b	52632	0,803 ^b	0.05 ch
$(5/2,3/2)^{\circ}_{3}$ $51529,619^{\circ}_{3}$ $51581,7/8^{\circ}_{3}$ $0,842^{\circ}_{3}$ $0,856^{\circ}_{3}$		$(5/2,3/2)^{\circ}_{3}$	51529,619 ^A	51581,78"	0,842 ^A	0,856°
$51809,512^{-5}$ $559/8^{-5}$ $0,921^{-5}$		$(5/2)^{2}/2^{2}$	51809,312°	539/8°	0,921 ²	0.005 ^b
$(3/2,3/2)_1$ $335/2,830$ $33305,19$ $0,994^{-1}$ $0,995^{\circ}$		$(3/2,3/2)^{2}$	55572,850 19788 615 ^B	55144°	0,994 1.057 ^B	0,995
47/00,013 33144 $1,03/4f^{13/2}F_{a}^{0}, 7/2 1/2)^{0}, 120249 285^{A} 120247 02^{a} 1.251^{A,B} 1.251^{b}$	$4f^{13}(^{2}F^{0}r)7s$	$(7/2 \ 1/2)^{\circ}$	47700,013 120240 285 ^A	120247 02 ^a	1,057 1,251 ^{A,B}	1 251 ^b
$\frac{1}{12029021^{B}} \frac{1}{20247,02} \frac{1}{1,251} \frac{1}{1$	(1° 7/2)/ 81/2	(112,112) 4	120249,203 120229 021 ^B	120247,02 121796°	1,401	1,231
$(7/2.1/2)^{\circ}_{3}$ 120362.702 ^A 120364.81 ^a 1.037 ^{A,B} 1.037 ^b		$(7/2, 1/2)^{\circ}_{2}$	120362.702 ^A	120364.81 ^a	1.037 ^{A,B}	1.037 ^b
120392,579 ^B 121872 ^c			120392,579 ^B	121872 ^c		

Tablo 3.30. Devam

Seviyel	er	ŀ	£	g-çarı	Dani
Konfigürasyon	Terim	Bu çalışma	Diğer	Bu çalışma	Diğer
		HFR	çalışmalar	HFR	çalışmalar
$4f^{13}(^{2}F^{o}_{5/2})7s_{1/2}$	$(5/2, 1/2)^{\circ}_{2}$	130454,876 ^A	130457,45 ^a	$0,666^{A,B}$	0,666 ^b
(5/2/ 1/2	. , , 2	130461,674 ^B	130196 ^c	,	*
	$(5/2, 1/2)^{\circ}_{3}$	130553,708 ^A	130551,08 ^a	1,047 ^A	1,047 ^b
		130592,826 ^B	130254 ^c	$1,046^{B}$	
4f ¹³ (² F ^o _{7/2})6d _{3/2}	$(7/2, 3/2)^{\circ}_{2}$	125500,623 ^A	-	$1,420^{A}$	_
		125071,206 ^B		1,421 ^B	
	$(7/2,3/2)^{\circ}_{3}$	125706,930 ^A	125560,50 ^b	$1,108^{A}$	1,220 ^b
		125838,894 ^B	125560,54 ^d	1,239 ^B	
	$(7/2, 3/2)^{\circ}_{4}$	125716,887 ^A	125810,04 ^b	1,176 ^A	1,116 ^b
		126944,433 ^B	127338°	1,142 ^B	
			125810,11 ^d		
	$(7/2, 3/2)^{\circ}_{5}$	125575,110 ^A	125167,10 ^b	1,025 ^A	1,023 ^b
12.2		125497,082 ^B	126890 ^c	1,023 ^B	
$4f^{15}({}^{2}F^{0}_{7/2})6d_{5/2}$	$(7/2, 5/2)^{\circ}_{6}$	125984,522 ^A	125730,90 ^b	1,167 ^{A,B}	1,167°
		126077,305 ^в	127697°		
			125731,113 ^ª	٨	h
	$(7/2,5/2)_{2}^{0}$	126286,475 ^A	125986,98	1,034 ^A	1,029
		126218,191 ^b	126620°	1,044 ^b	
			125987,08 ^d		h
	$(7/2,5/2)_4^{\circ}$	126211,986 ^A	126456,07	1,061 ^A	1,119°
		126263,395	128174°	1,0925	
	$(\overline{a}, \overline{a}, \overline{c}, \overline{a})^{0}$	106402.010Å	126456,119 ⁻	1 101A	1.004
	$(1/2, 5/2)^{3}$	126423,912	120559,11	1,191 1.065 ^B	1,084
		120/11,098	12/1/5 126550 21 ^d	1,005	
	$(7/2 5/2)^0$	126422 450A	120339,21 126671 40 ^b	1 100 ^A	1 101 ^b
	(7/2,5/2) 5	120423,439	1200/1,40	1,180 1 191 ^B	1,181
		127008,215	126270 126671 50 ^d	1,101	
	$(7/2 5/2)^0$	127634 908 ^A	120071,39	1 111 ^A	_
	$(7/2, 3/2)_{1}$	127034,908 120540 873 ^B	-	1,111 1 175 ^B	_
$4f^{13}(^{2}F^{0}r_{0})6dr_{0}$	$(5/2, 5/2)^{\circ}$	136614 805 ^A	_	1,175	
+1 (1 5/2)045/2	(3/2,3/2) ()	135905 491 ^B			
	$(5/2, 5/2)^{\circ}$	137006 929 ^A	_	0.898 ^A	_
	(2,2,2,2)]	136335.329 ^B		0.803 ^B	
	$(5/2,5/2)^{\circ}_{5}$	136867.729 ^A	136206 ^c	1.029 ^A	_
	······································	136568,016 ^B		1.030^{B}	
	$(5/2, 5/2)^{\circ}_{2}$	136399,507 ^A	136350,98 ^b	$0,766^{A}$	0,916 ^b
	2	136865,559 ^B	136313 ^c	$0,850^{\rm B}$	
		*	136350,97 ^d	-	

^aNIST Atomic Spectra Database [63], ^bQuinet ve Biémont [48], ^cU.I. Safronova ve M.S. Safronova [346], ^dÖberg ve Lundberg [345], *Tablonun daha geniş hali Tablo A.10'da verilmektedir.

3.8.2. Yb III'ün elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

Yb III'ün elektrik dipol geçişlerine ait ışıma parametreleri (dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları) HFR yöntemiyle [418] hesaplandı. Tablo 3.31 ve Ekler kısmındaki Tablo A.11'de sadece karşılaştırma değeri olan düşük enerjili çift ve tek pariteli seviyeler arasındaki elektrik dipol geçişleri sunulmaktadır. Tablolarda sadece tek pariteli seviyeler "" indisiyle belirtilmektedir ve ağırlıklı geçiş olasılık verilerinde 10'un kuvvetleri parantez içinde yazılmaktadır.

HFR program paketiyle [418] Tablo 3.29'da verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında yapılan A ve B hesapları için sırasıyla 956 ve 3188 tane mümkün E1 geçişleri elde edildi. Tablo 3.31 ve Tablo A.11'de geçiş verileri fazla olduğu için sadece $4f^{14}-4f^{13}$ 5d, $4f^{13}$ 5d- $4f^{13}$ 6p, $4f^{13}$ 6s- $4f^{13}$ 6p, $4f^{13}$ 6p- $4f^{13}$ 7s ve $4f^{13}6p-4f^{13}6d$ geçişlerinin λ (Å) dalga boyları, $\log(gf)$ logaritmik ağırlıklı salınıcı siddetleri ve gA_{ki} (sn⁻¹) ağırlıklı geçiş olasılıkları A ve B üst indisiyle verilmektedir. A ve B hesaplarında en küçük kareler yöntemiyle elde edilen enerji değerleri, deneysel verilere uydurma yapıldı. Elde edilen parametrelerle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. Tablolarda, Yb III için daha çok DREAM veri tabanındaki [64] verilerle karşılaştırma yapılmaktadır. Bu veriler Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle yapılmıştır ve bir kısmı [342]'de sunulmuştur. Ayrıca, relativistik çok-cisim katkı teorisi ile U.I. Safronova ve M.S. Safronova tarafından yapılan [346] ve Zhang ve çalışma grubunun [341] çalışmaları ile de karşılaştırma yapıldı. A ve B hesap sonuçları [64] ile karşılaştırıldığında birçok geçiş için oldukça uyumlu olduğu görülmektedir. A hesabı için uyum daha iyidir. A ve B hesaplarının dalga boylarında uyum çok iyi olmasına rağmen bazı logaritmik ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarında uyum azdır. A ve B hesaplarında $4f^{13}({}^{2}F^{o}_{7/2})6s_{1/2}$ $(7/2,1/2)^{o}_{4}-4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}$ $(7/2,1/2)_{4}$, $4f^{13}({}^{2}F^{o}_{7/2})5d_{5/2}$ $(7/2,5/2)^{o}_{5}-4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}$ $(7/2,3/2)_{4}$, $4f^{13}(^{2}F^{o}_{5/2})6s_{1/2}$ $(5/2,1/2)^{o}_{2}-4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}$ $(5/2,3/2)_3, 4f^{13}(^2F^{o}_{5/2})5d_{3/2} (5/2,3/2)^{o}_4 - 4f^{13}(^2F^{o}_{5/2})6p_{1/2} (5/2,1/2)_3$ ve $4f^{13}(^2F^{o}_{7/2})6p_{3/2}$ $(7/2,3/2)_4 - 4f^{13}(^2F^{o}_{7/2})6d_{3/2}$ $(7/2,3/2)^{o}_4$ geçişlerinin logaritmik ağırlıklı salınıcı şiddetleri karşılaştırma verileri ile uyumsuzdur. A hesabının $4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}$ $(7/2,3/2)^{\circ}_{3} - 4f^{13}(^{2}F^{\circ}_{7/2})6p_{3/2}$ $(7/2,3/2)_{3}$ ve $4f^{13}(^{2}F^{\circ}_{7/2})5d_{5/2}$ $(7/2,5/2)^{\circ}_{3} - 4f^{13}(^{2}F^{\circ}_{7/2})6p_{3/2}$ $(7/2,3/2)_3$ geçişlerinde ve B hesabının $4f^{13}(^2F^{o}_{5/2})6s_{1/2}$ $(5/2,1/2)^{o}_3-4f^{13}(^2F^{o}_{7/2})6p_{3/2}$ $(7/2,3/2)_4$ geçişinde dalga boyu [64] ile uyumlu olmasına rağmen $\log(gf)$ ve gA_{ki} değerlerinde uyum iyi değildir. Logaritmik ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları için karşılaştırma verileri birkaç geçiş hariç sadece Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle yapılan çalışmadır [64]. Bu yöntemde öz-kutuplanmaya (CP) göre tanımlanan bir potansiyel kullanıldığından sadece HFR yöntemiyle elde edilen bazı geçişler için uyum daha az gözükmektedir.

Geo	zişler	λ	L C	log	(gf)	gA_{ki}	
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
-	-	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^{14}S_0$	$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{1}$	2519,1229 ^A	2516,816 ^a	-1,692 ^A	-1,77 ^a	2,136(7) ^A	$1,80(7)^{a}$
		2561,6609 ^B	2517,6 ^b	-1,311 ^B	-1,91 [°]	$4,965(7)^{B}$	$0,13(8)^{b}$
$4f^{14} {}^{1}S_0$	$4f^{13}({}^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{1}$	2007,6694 ^A	1998,824 ^a	-2,187 ^A	-2,28 ^a	$1,075(7)^{A}$	$0,871(7)^{a}$
		1925,3625 ^в	1998,8 ^b	-1,110 ^B	-2,19 ^c	$1,395(8)^{B}$	$0,11(8)^{b}$
$4f^{14} S_0$	$4f^{13}({}^{2}F^{o}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{1}$	1873,6056 ^A	1873,881 ^a	-0,497 ^A	$-0,60^{a}$	$6,046(8)^{A}$	$4,80(8)^{a}$
		$2008,5054^{\rm B}$	1873,9 ^b	-0,596 ^B	-0,86 ^c	$4,194(8)^{B}$	$2,63(8)^{b}$
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	2584,1715 ^A	2579,563 ^a	-0,225 ^A	-0,30 ^a	$5,947(8)^{A}$	$4,99(8)^{a}$
		2573,4116 ^B		-0,094 ^B		$8,117(8)^{B}$	$1,440(9)^{c}$
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2236,4851 ^A	2231,567 ^a	-2,203 ^A	$-2,16^{a}$	8,350(6) ^A	$9,15(6)^{a}$
		2228,3596 ^B		-1,526 ^B		3,996(7) ^B	
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2207,6266 ^A	2202,272 ^a	-0,839 ^A	-0,90 ^a	$1,984(8)^{A}$	$1,74(8)^{a}$
		2199,7392 ^B		-0,599 ^B		$3,468(8)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}{}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2023,7058 ^A	2018,669 ^a	-2,411 ^A	-2,40 ^a	$6,320(6)^{A}$	$6,47(6)^{a}$
		2017,0582 ^B		-1,988 ^B		$1,684(7)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	1846,7699 ^A	1844,106 ^a	-3,305 ^A	-3,24 ^a	$0,970(6)^{A}$	$1,12(6)^{a}$
		1841,2702 ^B		-2,595 ^B		$4,996(6)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}{}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	1801,6909 ^A	1798,843 ^a	-2,584 ^A	-2,52 ^a	$5,350(6)^{A}$	$6,20(6)^{a}$
		1796,4351 ^B		-1,950 ^B		$2,321(7)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}{}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	1788,1366 ^A	1785,344 ^a	-3,104 ^A	-3,01 ^a	$1,642(6)^{A}$	$2,03(6)^{a}$
		1782,9340 ^B		-2,352 ^B		9,339(6) ^B	
$4f^{13}({}^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	2667,3890 ^A	2666,989 ^a	0,410 ^A	$0,28^{a}$	$2,410(9)^{A}$	$1,81(9)^{a}$
		2664,8180 ^B		0,396 ^B		$2,338(9)^{B}$	$1,975(9)^{c}$
$4f^{13}({}^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	2645,8885 ^A	2642,559 ^a	$0,098^{A}$	-0,01 ^a	1,193(9) ^A	$9,30(8)^{a}$
		2643,2924 ^B		$0,122^{B}$		$1,264(9)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	2310,2072 ^A	2305,334 ^a	0,726 ^A	$0,60^{a}$	$6,654(9)^{A}$	$5,04(9)^{a}$
		2308,1238 ^B		0,719 ^B		$6,561(9)^{B}$	$5,478(9)^{c}$
$4f^{13}({}^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2268,0757 ^A	2265,683 ^a	-0,330 ^A	$-0,46^{a}$	$6,059(8)^{A}$	$4,48(8)^{a}$
		2266,1848 ^B		-0,365 ^B		$5,600(8)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2242,1431 ^A	2240,112 ^a	0,445 ^A	0,34 ^a	$3,696(9)^{A}$	$2,90(9)^{a}$
		2240,2889 ^B		$0,479^{B}$		$4,009(9)^{B}$	$2,745(9)^{c}$
$4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2090,3825 ^A	2087,446 ^a	-2,407 ^A	-2,52 ^a	5,977(6) ^A	$4,67(6)^{a}$
		2088,7011 ^B		-2,375 ^B		$6,453(6)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	1858,3433 ^A	1857,294 ^a	-2,749 ^A	-2,77 ^a	$3,440(6)^{A}$	$3,30(6)^{a}$
		1857,0482 ^B		-2,485 ^B		$6,329(6)^{B}$	

Tablo 3.31. Yb III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹)*

Tablo 3	.31. I	Devam
---------	--------	-------

Ge	çişler	λ		log	g(gf)	ļ	zA _{ki}
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
		HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{4}$	$4f^{13}(^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	1827,5902 ^A	1826,775 ^a	-2,680 ^A	$-2,70^{a}$	4,174(6) ^A	$4,02(6)^{a}$
		1826,3366 ^B		$-2,410^{B}$		$7,776(6)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	2686,8063 ^A	2691,006 ^a	-0,547 ^A	$-0,59^{a}$	$2,623(8)^{A}$	$2,41(8)^{a}$
		2687,2620 ^B		$-0,350^{B}$		$4,129(8)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6s_{1/2}(7/2,1/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	2664,9929 ^A	2666,136 ^a	0,415 ^A	$0,28^{a}$	$2,439(9)^{A}_{P}$	$1,79(9)^{a}$
12.2	12.0	2665,3737 ^B		0,363 ^B		$2,165(9)^{B}$	$1,968(9)^{c}$
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}(7/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2312,9513 ^A	2314,490 ^a	0,418 ^A	0,27 ^a	$3,263(9)^{A}_{P}$	$2,35(9)^{a}$
		2313,2225 ^B		0,338 ^B	0,33 ^ª	$2,713(9)^{B}$	$2,607(9)^{c}$
	12.2				0		2,68(9) ^a
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}(7/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2282,0993 ^A	2282,993ª	0,410 ^A	0,33ª	3,293(9) ^A	$2,72(9)^{a}$
	12.0	2282,3957 ^b		0,497 ^b		4,022(9) ^b	$2,676(9)^{\circ}$
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}(7/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2255,8468 ^A	2257,033ª	$0,177^{A}_{P}$	$0,06^{a}$	$1,970(9)^{A}_{P}$	$1,51(9)^{a}$
12.2.0	12.2	2256,1301 ^b		0,175 ^b		$1,960(9)^{\text{B}}$	
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}(7/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2102,2890 ^A	2102,132ª	-2,055 ^A	-2,05ª	1,331(7) ^A	$1,34(7)^{a}$
13.2.0	12.2	2102,4645 ^b		-1,681 ^b	0	3,149(7) ^b	
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}(7/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2086,1111 ^A	2086,288ª	-1,891 ^A	$-2,30^{a}$	$1,968(7)^{A}_{P}$	$7,63(6)^{a}$
	(13.27)	2086,3399	10.00.00.00	-2,657	a a 43	3,379(6)	
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}(7/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	1867,7473 ^A	1868,906ª	-4,520 ^A	-3,04ª	5,774(4) ^A	$1,74(6)^{a}$
(13.277) (7.10.1.10)	(13.270) (7.10.2.10)	1867,9200	1050 0153	-2,595	a a 4 ³	4,853(6)	0.00=(=)3
$4f^{13}({}^{2}F^{0}_{7/2})6s_{1/2}({}^{7/2},1{}^{7/2})^{0}_{3}$	$4f^{13}({}^{2}F^{3}{}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	1850,9879 ^A	1852,317"	-2,155 ^A	-2,34 ^ª	$1,361(7)^{A}$	0,897(7)"
4 cl ³ /270 > c (7 /2 1 /2)0	4 cl3/2 = 0 > c < (c < 0 2 < 0)	1851,1841 ⁵	1020.0058	-2,194	a col	1,245(7)	117(0)
$41^{-6}(^{2}\mathrm{F}^{\circ}_{7/2})6s_{1/2}(^{1}/2,1/2)^{\circ}_{3}$	$4f^{(2}F^{(3)}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	1836,6847 ^A	1838,007	-2,535 ¹¹	-2,68"	5,762(6) ^A	4,17(6)"
$(13/2\pi^0) > 51 (7/2) (2/2)^0$	4613/250	1836,85085	0010 7158	-2,8/8	0.063	2,618(6)	0.050(0)3
$41^{-6}(^{-7}F_{7/2})5d_{3/2}(7/2,3/2)^{-5}$	$4f^{(2}F^{(2)}_{7/2})6p_{1/2}(7/2,1/2)_4$	2822,134/**	2818,/15"	$0,165^{14}$	0,06"	$1,225(9)^{A}$	0,959(9)*
$4c^{13}/2r^{9} > 51 (7/2)^{2}/2)^{9}$	$4c^{13}/2r^{9}$	2818,5715	0420 0728	0,214	1.008	1,3/4(9)	2,555(9)
$41^{-1}(F_{7/2})5d_{3/2}(7/2,3/2)_{5}$	4I ($F_{7/2}$) $\delta p_{3/2}$ (7/2,3/2) ₅	2443,4439	2438,273	-0,8/6	-1,00	1,480(8) 1,264(8) ^B	1,13(8)
$4c^{13}(2E^{0}) > 54 (7/2) 2(2)^{0}$	$4f^{13}/^2E^0$)(= (7/2.2/2)	2440,0501 2267,4216 ^A	2265 122ª	-0,914	0.008	1,304(8) 1,927(9) ^A	1 40(9)a
$(F_{7/2})5d_{3/2}(7/2,3/2)_5$	41 ($F_{7/2}$) $op_{3/2}$ (7/2,3/2) ₄	2307,4310	2303,433	-0,811	-0,90	1,837(8)	1,49(8)
$(f^{13})^{2} = 0$)54 (7/2 2/2)0	$4f^{13}(2\Sigma^{0}) = (5/2)^{2}(2)$	2304,9331 ⁻	1042 5018	-0,654 2,207 ^A	2 1 9 ⁸	$2,048(8)^{-}$	$1 1 < (7)^{a}$
+1 $(\Gamma_{7/2})3u_{3/2}(1/2,3/2)^{2}$	41 ($F_{5/2}$) $op_{3/2}$ ($5/2, 3/2$) ₄	1945,5949 ¹	1942,391	-2,307	-2,18	$6, 13(0)^{B}$	1,10(7)
$4c^{13}(2r^{0}) > 54$ (7/2 5/2)	$4f^{13}/2r^{0}$) (7 (7/2 2/2)	1941,888/- 2561,5206 ^A	$25.7.1^{a}$	-2,123 0.222 ^A	0.24ª	$1,332(7)^{-1}$	$1.7(0)^{a}$
+1 ($\Gamma_{7/2}$) $3 a_{5/2} (1/2, 3/2)_{6}^{*}$	41 ($\Gamma_{7/2}$)op _{3/2} (1/2,3/2) ₅	2301,3300 2549 2259 ^B	2307,01	0,352 0.414 ^B	0,24	2,183(9)	1,70(9)
		2348,2338		0,414		2,002(9)	4,105(9)

Tablo 3.31	. Devam
------------	---------

Ge	çişler	λ		log	$g(gf)$ gA_{ki}		A _{ki}
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
		HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^{13}(^{2}F^{0}_{7/2})5d_{3/2}(7/2,3/2)^{0}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3015,6130 ^A	3029,488 ^a	-0,136 ^A	$-0,28^{a}$	$5,358(8)^{A}$	$3,83(8)^{a}$
		3032,4607 ^B		-0,232 ^B		$4,253(8)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	2988,1612 ^A	2998,005 ^a	-0,955 ^A	-0,92 ^a	8,277(7) ^A	$8,98(7)^{a}$
		3004,6170 ^B		$-0,528^{B}$		$2,192(8)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2552,5408 ^A	2560,559 ^a	-2,511 ^A	-1,94 ^a	3,157(6) ^A	$1,18(7)^{a}$
12.2	12.2	2564,5196 ^B		-0,848 ^B	-1,88 ^d	$1,438(8)^{B}$	$1,35(7)^{d}$
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2515,0180 ^A	2522,066 ^a	-5,170 ^A	$-2,52^{a}$	$0,713(4)^{A}_{D}$	$3,19(6)^{a}$
12.2	12.2	2526,6860 ^B		-3,279 ^B		$5,497(5)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2483,1706 ^A	2490,422 ^a	-0,478 ^A	-0,68 ^a	$3,599(8)^{A}_{P}$	$2,27(8)^{a}$
12.0	12.2	2494,5366 ^B		-0,953 ^B		$1,194(8)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}{}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2298,3728 ^A	2303,165 ^a	-3,223 ^A	-3,98 ^a	$7,551(5)^{A}_{D}$	$1,32(5)^{a}$
12.2	12.0	2308,0216 ^B		-3,065 ^B		$1,078(6)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}{}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2279,0501 ^A	2284,161 ^a	-2,711 ^A	-3,21 ^a	$2,499(6)^{A}_{P}$	$7,86(5)^{a}$
12.0	12.2	2288,6045 ^B		-2,690 ^B		$2,601(6)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}{}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2020,9255 ^A	2025,414 ^a	-2,281 ^A	-2,91 ^a	$8,560(6)^{A}_{D}$	$2,01(6)^{a}$
12.2	12.0	2028,4221 ^B		-2,133 ^B		1,193(7) ^B	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{3/2}(7/2,3/2)^{0}_{3}$	$4f^{15}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	1984,6086 ^A	1989,803 ^a	-2,242 ^A	-2,62 ^a	$9,701(6)^{A}_{P}$	$4,08(6)^{a}$
12.2	12.2	1991,8365 ^B		-2,546 ^B		$4,784(6)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{0}_{1}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2597,5682 ^A	2599,148 ^ª	-0,415 ^A	-0,52 ^ª	$3,798(8)^{A}_{B}$	$2,99(8)^{a}_{a}$
12.2	12.2	2553,8670 ^B		-0,340 ^B	$-0,46^{\rm u}$	4,670(8) ^b	$3,41(8)^{a}$
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{0}_{1}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2314,8778 ^A	2314,820 ^a	-1,252 ^A	-1,27 ^a	$6,973(7)^{A}_{P}$	$6,61(7)^{a}$
12.2	13.2	2280,1170 ^b		-1,139 ^b	-1,33 ^u	9,324(7) ^b	$5,80(7)^{\rm u}$
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{0}_{1}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	2086,2399 ^A	2087,375ª	-1,733 ^A	-1,73ª	$2,834(7)^{A}$	$2,85(7)^{a}$
	13.2-0	2058,0121 ^b		-1,312 ^B		7,683(7) ^B	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{0}_{1}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2028,8937 ^A	2029,544ª	-1,589 ^A	-1,59ª	$4,178(7)^{A}_{P}$	$4,15(7)^{a}$
		2002,1604 ^B		-1,297 ^b		8,396(7) ^b	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{3/2}(7/2,3/2)^{0}_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3113,0829 ^A	3126,007ª	-0,390 ^A	$-0,50^{a}$	$2,801(8)^{A}$	$2,16(8)^{a}$
12.2	13.2	3056,2202 ^b		-0,410 ^B		2,778(8) ^b	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{3/2}(7/2,3/2)^{0}_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	3083,8365 ^A	3092,497ª	-0,204 ^A	-0,37ª	4,380(8) ^A	$3,02(8)^{a}$
13.2-0		3027,9405 ^B		-0,379 ^B		3,041(8) ^B	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{3/2}(7/2,3/2)^{0}_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	2637,2133 ^A	2640,494 ^a	-0,944 ^A	$-1,00^{a}$	$1,090(8)^{A}_{P}$	$9,66(7)^{a}$
		2596.0963 ^B		-0.752 ^D		1.751(8) ^B	

^aDream Database [64], ^bZhang ve çalışma grubu [341], ^cU.I. Safronova ve M.S. Safronova [346], ^dBiémont ve çalışma arkadaşları [342], *Tablonun daha geniş hali Tablo A.11'de verilmektedir.

3.9. Lu I (Z = 71) için Hesaplama Sonuçları

Lutesyum lantanit grubunun en ağır atomudur ve güneş sisteminde iki baskın izotopa sahiptir (¹⁷⁵Lu (%97), ¹⁷⁶Lu (%3)). Güneş fotosferinde tanımlanmıştır fakat nadir toprak elementlerinden en düşük bolluğa sahip olanlardandır. Düşük kozmik bolluğuna rağmen, lutesyumun nötral ve bir kez iyonlaşmış hali yıldızlarda bulunur.

Nötral lutesyum 14 tane f elektronlu kapalı bir alt tabakanın dışında üç elektronuyla basit bir elektronik yapıya sahiptir. Lu I ile ilgili çeşitli atomik yapı özelliklerini içeren gözlem, deney ve teorik çalışmalar Tablo 1.3'te özetlenmektedir. Lu I'in spektrum çalışmalarına [4, 176, 347–352, 355] kaynaklarından ulaşılabilir. Düşük ve Rydberg seviyelerinin enerjileri lazer çok aşamalı rezonans iyonlaşma spektroskopisi, iki-aşamalı rezonans iyonlaşma spektroskopisi, iki-aşamalı rezonans iyonlaşma spektroskopisi, model potansiyel yöntemi, sıfırıncı mertebe model yaklaşımıyla relativistik katkı teorisi ve relativistik çiftlenmiş-küme yöntemi gibi deneysel ve teorik yöntemler kullanılarak incelenmiştir [52, 216, 353, 354, 356, 358–362, 366]. Farklı çalışma grupları ilk iyonlaşma potansiyelini sunmuşlardır [16, 22, 24–26, 45, 46, 51]. Ayrıca, lutesyumun taban halinin relativistik ve karşılıklı etkileşme etkileri incelenmiştir [363] ve rezonans iyonlaşma spektroskopisi ve optogalvanik spektroskopisiyle lutesyum atomunun kendiliğinden iyonlaşma hallerinin çalışmaları sunulmuştur [364, 365, 370].

Lutesyumun ışıma parametrelerinden seviyelerin yarı ömürleri, zaman-çözünürlüklü lazer-indirgenmiş floresans tekniği, lazer çok aşamalı rezonans iyonlaşma spektroskopisi, sıfırıncı mertebe model yaklaşımıyla relativistik katkı teorisi ve HFR+CP yöntemi ile çalışılmıştır [34, 35, 357, 359, 360, 367, 369]. Lu I'in rezonans geçişleri için dallanma kesirleri, salınıcı şiddetleri ve geçiş olasılıkları ilgili çalışmalar ise Fourier dönüşüm spektroskopisi, HFR+CP ve çok konfigürasyonlu Dirac-Fock yöntemiyle yapılmıştır [35, 52, 367, 368]. Ayrıca, nötral lutesyumun aşırı ince yapısı ve izotop etkileri [355, 371–388] ve elektron ilgisi geçmişte farklı çalışma grupları tarafından çalışılmıştır [57, 216, 366, 389, 390].

Nötral lutesyumun (Lu I) bazı uyarılmış hallerine ait seviye enerjileri ve Landé gçarpanları, elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları çok konfigürasyonlu Hartree-Fock (MCHF) [412, 413] ve relativistik Hartree-Fock (HFR) [418] yöntemleri kullanılarak hesaplandı. Ayrıca bazı uyarılmış seviyelerinin yarı ömürleri ve geçiş enerjileri (iyonlaşma potansiyeli, uyarılma enerjileri ve elektron ilgisi) de aynı yöntemlerle incelendi. Elde edilen sonuçlar Tablo 3.33 (daha geniş hali Ekler kısmındaki Tablo A.12'de)–3.39'da verilmektedir.

Lu I'in [Xe]4f¹⁴ özü dışında, MCHF+BP ve HFR hesaplamalarında, sırasıyla dört ve beş farklı hesaplama değerlik elektronları arasındaki karşılıklı etkileşmelere göre konfigürasyon hal fonksiyonlarını elde etmek için seçildi. MCHF+BP ve HFR hesaplamalarında, öz-değerlik ve öz-öz karşılıklı etkileşme etkileri de hesaplara dahil edildiğinde açık öz ve değerlik alt tabakalarından dolayı çok fazla konfigürasyon hal fonksiyonları üretildiğinden iyileştirme problemleri ortaya çıktı. Bu nedenle sadece değerlik elektronları arasındaki karşılıklı etkileşmeler dikkate alındı. MCHF+BP ve HFR hesaplamaları için alınan sırasıyla A, B, C ve D ve A, B, C, D ve E olarak isimlendirilen konfigürasyon setleri Tablo 3.32'de verilmektedir. Lutesyumun enerji seviyeleri g yörüngelerini içeren konfigürasyonlarındaki elektronlar arasındaki karşılıklı etkileşmelerden etkilendiğinden konfigürasyon setlerinde mümkün olduğunca alınmaya çalışıldı.

3.9.1. Lu I'in bazı seviyelerinin enerjileri ve Landé g-çarpanları

Nötral lutesyumun (Lu I) [Xe]4f¹⁴ özü dışında Tablo 3.32'de verilen konfigürasyon setlerine ait 5d6s², 5d²6s, 5d³, 5d6s7s, 6s6p², 6s²ns (n = 7–14), 6s²nd (n = 6–25), 6s²ng (n = 5–7), 6s²np (n = 6–25), 5d6s6p, 6s²nf (n = 5–23) ve 5d²6p seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF ve HFR yöntemleriyle hesaplandı ve sonuçlar Tablo 3.33 ve Ekler kısmındaki Tablo A.12'de verilmektedir. Enerji seviyeleri taban hal olan 5d6s^{2 2}D_{3/2} seviyesine göre cm⁻¹ birim sistemine göre verildi ve sadece tek pariteli seviyeler "" indisiyle belirtilmektedir. Ayrıca, tablolarda farklı konfigürasyon setlerine göre elde edilen sonuçlar MCHF+BP ve HFR için sırasıyla A, B, C ve D ve A, B, C, D ve E üst indisleriyle verilmektedir.

Seviyeler]	Konfigürasyonlar		
	Α	В	С	D	Ε
MCHF+BP	hesaplamaları için:				
Çift parite	5dns ² , 5 d ² ns,	5dns ² , 5 d ² ns,	5dns ² , 5d ² ns,	$5d6s^2$, $6s^27s$,	
	5dnp ² , 6snp ²	5dnp ² , 6snp ² ,	5dnp ² , 6snp ²	5d6s7s	
	$(n = 6, 7), 5d5f^2,$	5dns5g (n = 6, 7),	$(n = 6, 7), 6s^2 5g,$		
	6s6p5f, 6s5f7p,	$6s^25g$, $5d5f^2$,	5d6s5g, 5d5f ² ,		
	6p7s5f, 7s5f7p,	6s6p5f, 6s5f7p,	6s6p5f, 6s5f7p,		
	$5d^3$, $6p^27s$, $6s7s^2$,	6p7s5f, 7s5f7p,	6p7s5f, 7s5f7p,		
	$6s^27s$, $7s7p^2$,	$5d^3$, $6p^27s$, $6s7s^2$,	$5d^3$, $6p^27s$, $6s7s^2$,		
	5d6s7s, 5d6p7p,	6s ² 7s, 7s7p ² ,	6s ² 7s, 7s7p ² ,		
	6s6p7p, 6p7s7p	5d6s7s, 5d6p7p,	5d6s7s, 5d6p7p,		
		6s6p7p, 6p7s7p	6s6p7p, 6p7s7p		
Tek parite	6s ² 6p, 5d6snp,	6s ² 6p, 5d6snp,	6s ² 6p, 5d6snp,	6s ² 6p, 5d6s6p,	
	$5d^2np$, np^3 , ns^27p ,	$5d^2np$, np^3 , ns^27p ,	$5d^2np$, np^3 , ns^27p ,	6s ² 7p	
	5dns5f (n = 6, 7),	5dns5f (n = 6, 7),	5dns5f (n = 6, 7),		
	$5d^25f$, $5f6d^2$,	5d ² 5f, 5f6d ² ,	6p5g ² , 5d ² 5f,		
	6p7s ² , 5d6p7s,	6p7s ² , 5d6p7s,	5f6d ² , 6p7s ² ,		
	5d7s7p, 6s6p7s,	5d7s7p, 6s6p7s,	5d6p7s, 5d7s7p,		
	6s7s7p, 6p ² 7p,	6s7s7p, 6p ² 7p,	6s6p7s, 6s7s7p,		
	6p7p ²	6p7p ²	6p ² 7p, 6p7p ²		
HFR hesapla	amaları için:				
Çift parite	$5d6s^2$, $5d^26s$,	$5d6s^2$, $5d^26s$,	$5d6s^2$, $5d^26s$,	$5d6s^2$, $5d^26s$,	$5d6s^2$, $5d^26s$,
	$6s^27s$	$6s^2ns (n = 7, 8),$	$6s^2ns (n = 7-14),$	$6s^2ns (n = 7-14),$	6s ² 7s, 6s ² ng
		$6s^2nd (n = 6, 7),$	$6s^2nd (n = 6-25),$	$6s^2nd (n = 6-25)$	(n = 5, 6)
		$6s^2ng (n = 5, 6),$	$6s^2ng (n = 5-7)$		
Tek parite	$6s^2np (n = 6, 7),$	$6s^2np (n = 6, 7),$	$6s^2np (n = 6-25),$	$6s^2np (n = 6-15),$	$6s^2np (n = 6, 7),$
	5d6s6p	5d6s6p, 6s ² nf	5d6s6p, 6s ² nf	5d6s6p, 6s ² nf	5d6s6p
		(n = 5, 6)	(n = 5 - 23)	(n = 5 - 15)	

Tablo 3.32. Lu I'e ait hesaplamalar için alınan konfigürasyon setleri

Tablo 3.32'de verilen konfigürasyon setleri ile MCHF+BP hesaplamalarını yapmak için MCHF atomik yapı paketinde bazı parametre değerleri değiştirildi. Zeeman programıyla [413], relativistik etkiler dikkate alınarak elde edilen seviye enerjileri ve dalga fonksiyonları kullanılarak seviyelerin Landé *g*-çarpanları hesaplandı. Sonuçlar Tablo 3.33 ve Tablo A.12'de diğer çalışma sonuçları ile karşılaştırılmaktadır. MCHF program paketi ile elde edilen 5d6s², 5d²6s, 6s6p², 6s²7s, 5d³, 5d6s7s, 6s²6p, 5d6s6p, 6s²7p ve 5d²6p uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanlarının farklı konfigürasyon setlerine ait sonuçları A, B, C ve D üst indisleriyle Tablo 3.33 ve Tablo A.12'de verilmektedir. Elde edilen enerjiler diğer çalışmalarla karşılaştırıldığında, uyumun, bazı uyarılmış seviyeler hariç iyi olduğu görülmektedir. Çift pariteli seviyeler incelendiğinde 5d6s² seviyesi için A hesabı iyi iken 5d²6s seviyesi için B ve C hesapları daha iyidir. 6s6p² seviyesi için ise C hesabı daha iyidir. 7s alt tabakasını içeren 6s²7s ve 5d6s7s seviyeleri için A, B ve C hesabı iyi olmadığından yapılan 5d²6s seviyesini içermeyen D hesabından daha iyi sonuç elde edilmiştir. Tek pariteli seviyeler incelendiğinde ilk uyarılmış seviye 6s²6p seviyesi için A ve B hesapları kötü olmasına rağmen C ve D hesapları iyidir. 5d6s6p seviyesi için genel olarak A ve B hesapları iyidir. 5d²6p seviyesi için B hesabı uyumluyken 6s²7p seviyesi için C hesabı daha uyumludur. Tüm hesaplamalarda elde edilen Landé *g*-çarpanları da diğer çalışmalarla uyum içindedir. MCHF+BP hesaplamaları sadece değerlik elektronları arasındaki karşılıklı etkileşmeler dikkate alınarak yapıldığından, bazı uyumsuzluklar özden uyarılarak elde edilen konfigürasyonlar katılarak düzeltilebilir. MCHF+BP'nin A ve D hesaplamalarını içeren sonuçlarına kaynak [391]'den ulaşılabilir.

HFR program paketi [418] kullanılarak yapılan HFR hesaplamalarında, değerlik elektronları arasındaki karşılıklı etkileşme etkilerini dikkate almak için Tablo 3.32'de verilen konfigürasyon setleri alındı. Bu hesaplamalarda, Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yapmak için iyileştirildi. En küçük kareler yönteminde tüm deneysel seviyeler NIST'ten alındı. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirilmemiş değerleri A, B, C, D ve E hesaplamaları için sırasıyla 0,75, 0,75, 0,85, 0,70 ve 0,75 olarak secildi. HFR hesaplamalarıyla elde edilen $5d6s^2$, $5d^26s$, $6s^2ns$ (n = 7–14), $6s^2nd$ (n = 6-25), $6s^2ng$ (n = 5-7), $6s^2np$ (n = 6-25), $6s^2nf$ (n = 5-23) ve 5d6s6p sevivelerinin enerjileri ve Landé g-çarpanları Tablo 3.33 ve Tablo A.12'de verilmektedir. Tüm hesaplamalar için seviye enerjileri ve Landé g-çarpanları diğer çalışma verileri ile uvum içindedir. Fakat, D konfigürasyon setiyle elde edilen $5d6s(^{3}D)6p^{2}D^{0}, ^{2}F^{0}, ^{2}P^{0},$ 5d6s(³D)6p ²D^o ve ²P^o seviyelerinin enerjilerinin karşılaştırma değerleri ile uyumu kötüdür. Ayrıca, tüm hesaplamalar için Landé g-çarpanları diğer çalışmalarla uyumludur. HFR'nin C, D ve E hesaplamalarını içeren sonuçlarına kaynak [392]'den ulaşılabilir.

Seviy	eler		E			g-çarpanı	
Konf.	Terim	Bu ça	ılışma	Diğer	Bu ça	lışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
Çift parite	için:	o ooA-D	o ooA-E	0.00	0.7005A-D	o ooA-E	0 700018
5d6s ²	${}^{2}D_{3/2}$	0,00 ¹¹²	0,00 ^{A E}	0,00	0,7995 ^{A-D}	0,80 ^{A-E}	0,79921"
	$^{-}D_{5/2}$	2618,04 ¹²	1993,900 ⁻⁴⁻⁵	1993,920*	1,2004	1,20***	1,20040"
		2023,13	1995,920				
		2001,01 2726 77 ^D	1993,901 1003 870 ^E				
$5d^2(^3F)6s$	⁴ E	2720,77 17831.63 ^A	1993,870 18971 324 ^A	18851 31 ^a	0.414 ^A	0.410 ^{A,C}	_
54 (1)03	1 3/2	18158 82 ^B	18751 599 ^B	10051,51	0.413^{B}	0.411 ^{D,E}	
		17477 68 ^C	18920 110 ^C		0.415°	0,411	
		17 17 ,000	18854.908 ^D		0,110		
			18985,101 ^E				
	${}^{4}F_{5/2}$	18661,16 ^A	19510,228 ^A	19403,31 ^a	1,028 ^{A,C}	1,031 ^{A,C,D,E}	1,04 ^a
		18992,13 ^B	19427,027 ^B		$1,027^{B}$	1,032 ^B	
		18290,76 ^C	19478,635 [°]				
			19473,770 ^D				
	4		19558,390 ^E		ADC	A E	
	${}^{4}F_{7/2}$	20079,73 ^A	20297,539 ^A	20247,29ª	1,236 ^{A,B,C}	1,237 ^{A-E}	_
		20405,10 ⁵	20436,270 ⁵				
		19723,62*	20288,122 ⁻				
			20385,301 20206 610 ^E				
	${}^{4}\mathbf{F}$	21678 08 ^A	20390,010 21188 123 ^A	21242 26 ^a	1 331 ^{A,B}	1 330 ^{A,C,E}	_
	1 9/2	21078,08 21992 15 ^B	21100,125 21532 506 ^B	21242,20	1,331 1,330 ^C	1,330 1,327 ^B	_
		21317.07 ^C	21392,500 21199,662 ^C		1,550	1.329 ^D	
		,	21400,912 ^D			-,	
			21339,194 ^E				
5d ² (³ P)6s	${}^{4}P_{1/2}$	22605,92 ^A	22802,702 ^A	21742,33 ^a	2,637 ^A	2,647 ^A	_
		23301,41 ^B	22319,273 ^B		2,636 ^B	2,623 ^B	
		21084,63 [°]	22514,770 [°]		2,625 [°]	2,644 ^C	
			22623,315 ^b			2,631 ^b	
	40	22020 57Å	22690,391 ²	22467.528	1.667A	$2,640^{2}$	1 728
	P _{3/2}	23920,37 24652.62 ^B	23231,990	22407,55	1,007 1,540 ^B	1,087 1,700 ^B	1,75
		24052,02 23052.00 ^C	22978,022 22985.007 ^C		1,549 1.671 ^C	1,700 1,701 ^C	
		25052,07	22)85,997 23189 319 ^D		1,071	1,701 1,699 ^{D,E}	
			23184.093 ^E			1,077	
	${}^{4}P_{5/2}$	24565,95 ^A	23234,599 ^A	25860.76^{a}	1,377 ^A	$1,460^{A}$	1.60^{a}
	0/2	25107,72 ^B	23084,089 ^B		1,363 ^B	$1,486^{B}$	
		23946,27 ^C	23077,725 [°]		1,357 ^C	1,496 ^C	
			23278,773 ^D			1,485 ^D	
2	2		23263,816 ^E			1,487 ^E	
6s²7s	${}^{2}S_{1/2}$	43021,31 ^A	24119,900 ^A	24125,86 ^a	1,715 ^A	2,005 ^A	2,05ª
		42842,01 ²	24116,600		1,9295	2,014	
		46017,39°	24105,900 ⁺ 24107,500 ^D		$1,723^{\rm D}$	$2,006^{\circ}$ 2.014 ^D	
		55950,40	24107,500 24110.959 ^E		2,002	2,014 2,010 ^E	
$5d^{2}(^{1}D)6s$	$^{2}D_{2}$	26079 11 ^A	24110,999 24699 896 ^A	24518 16 ^a ?	0.884^{A}	0.848 ^A	_
5 u (D)05	D 3/2	26385.50^{B}	25076.711^{B}	24510,10 .	1.010^{B}	$0.839^{B,D}$	
		25523,04 ^C	24789,699 ^C		0,879 ^C	0,833 ^C	
		,	25108,527 ^D			0,837 ^E	
			24982,194 ^E				
	$^{2}D_{5/2}$	27743,27 ^A	24868,679 ^A	24711,19 ^a ?	1,328 ^A	1,211 ^A	-
		28165,06 ^B	25174,274 ^B		1,385 ^B	1,153 ^B	
		27379,99 ⁰	25001,790 ^C		1,339	1,233 ^C	
			25190,196 ^D			1,156 ^D	
5 12/1 C) C	^{2}C	20202.204	25103,624 ^E	0.6570 408	0.001Å	1,184 ⁻	
30 (G)68	G _{7/2}	30293,29 30340 37 ^B	25/18,/90 ⁻ 25577-212 ^B	20570,40	0,901 0,901 ^{B,C}	0,920 0.913 ^B	_
		29524 51 ^C	25688 486 ^C		0,904	0,913 0,908 ^C	
		27527,51	25746.736 ^D			0.917 ^{D,E}	
			25762,776 ^E			y	

Tablo 3.33. Lu I'in E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Tablo 3.33. Devam

Seviyeler			E			g-çarpanı		
Konf.	Terim	Bu ça	ılışma	Diğer	Bu ça	lışma	Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
	$^{2}G_{9/2}$	30278,36 ^A	26012,102 ^A	26671,32 ^a	1,115 ^{A,B,C}	1,115 ^{A,C}	_	
		30305,59 ^b	25919,019 ^B			1,118 ^b		
		29486,78°	25919,890°			1,11/ ⁵ 1,116 ^E		
			26000,839 26044 384 ^E			1,110		
$5d^{2}(^{3}F)6s$	$^{2}\mathrm{F}_{\mathrm{f}/2}$	23013 01 ^A	26040 437 ^A	_	0 953 ^A	0 986 ^A	_	
54 (1)05	- 5/2	23468.62 ^B	26587.905^{B}		0.914^{B}	1.016^{B}		
		22413,60 ^C	26526,288 ^C		0,960 ^C	0,928 ^C		
			26495,361 ^D			1,015 ^D		
	2		26379,914 ^E			0,986 ^E		
	${}^{2}F_{7/2}$	25683,87 ^A	27277,870 ^A	27991,75 ^a	1,132 ^A	1,107 ^A	_	
		26121,01 ^B	27995,993 ^b		1,130 ^B	1,121 ^B		
		25116,84°	27851,092°		1,131°	1,125°		
			27800,135 27651.045 ^E			1,11/ 1,116 ^E		
$5d^{2}(^{3}P)6s$	$^{2}\mathbf{P}_{1}$	30104 57 ^A	27031,043 28831 462 ^A	28793 34 ^a ?	0.715 ^A	0.868 ^A	0 98 ^a	
54 (1)05	I 1/2	30632.14 ^B	28625.601^{B}	20175,54 .	0.705^{B}	$1.063^{B,C}$	0,70	
		29701,75 ^C	29002,966 ^C		0,713 ^C	0,988 ^D		
		,	28912,614 ^D		,	0,934 ^E		
	_		28927,177 ^E					
	${}^{2}\mathbf{P}_{3/2}$	31546,56 ^A	29904,643 ^A	29937,81 ^a ?	1,302 ^A	1,322 ^{A,C}	-	
		32027,24 ^в	30218,107 ^в		1,299 ^B	1,312 ^B		
		31088,25°	30291,243 ^e		1,303°	1,316 ^D		
			$30285,380^{\circ}$			1,320		
$5d^2(^1S)6s$	² S	36500 78 ^A	30143,340 31188 600 ^A	30747 18 ^a	1 985 ^A	1 821 ^A	2 2 ^a	
54 (5)05	51/2	38147 47 ^B	30873 188 ^B	50747,10	2.097^{B}	1,621 1,641 ^B	2,2	
		37130.00 ^C	30869.725 ^C		1.992 ^C	1.628 ^C		
			31131,096 ^D		-,	1,709 ^D		
			31147,253 ^E			1,757 ^E		
Tek parite i	için:					• • • • • • F	O	
6s²6p	${}^{2}\mathrm{P}_{1/2}^{0}$	8883,52 ^A	4137,941 ^A	4136,00 ^a	0,6643 ^A	0,666 ^{AL}	0,66ª	
		9526,51 5005 27 ^C	4136,100 ⁷		0,664 0,660 ^C			
		3903,27 4252 77 ^D	4137,434 4130 101 ^E		0,000 0,665 ^D			
	$^{2}\mathbf{P}^{0}_{2/2}$	$11729 42^{A}$	7475 289 ^A	7476 35 ^a	1 334 ^{A-D}	1 334 ^{A-E}	1 33 ^a	
	■ 3/2	12372.41 ^B	7476.400 ^{B,D}	7170,00	1,001	1,551	1,55	
		7096,97 ^C	7475,877 ^C					
		6935,96 ^D	7473,563 ^E					
5d6s(³ D)6p	${}^{4}F^{o}_{3/2}$	16951,19 ^A	17736,307 ^A	17427,28 ^a	0,458 ^{A,B}	0,439 ^A	$0,50^{a}$	
		17594,18 ^B	17711,912 ^в		0,422 ^C	0,437 ^{B,C}		
		11980,27 ^c	17711,790 [°]		0,4062	0,449 ^D		
		11844,845	17743,528 ⁵			0,4372		
	${}^{4}\mathbf{F}^{0}$	18033.26 ^A	17715,209 18685 152 ^A	18504 56 ^a	1.070 ^{A,B}	1.050 ^A	1.07 ^a	
	1 5/2	18676 25 ^B	18662 473 ^B	10504,50	1,070 1,038 ^C	1,050 1,048 ^{B,C,E}	1,07	
		12761.69 ^C	18665.010 ^C		1.031 ^D	1.067 ^D		
		12632,93 ^D	18488,297 ^D		-,	-,		
			18663,427 ^E					
	${}^{4}\mathrm{F}^{\mathrm{o}}_{7/2}$	20104,97 ^A	20386,465 ^A	20432,53 ^a	1,239 ^{A,B,D}	1,240 ^A	1,22 ^a	
		20747,96 ^в	20319,717 ^в		1,238	1,239 ^{B,C,E}		
		14010,40 ^c	20327,225 ^C			1,235		
		13/6/,14	$20294,592^{\circ}$					
	${}^{4}\mathbf{F}^{0}$	22280 06 ^A	20319,300° 22320 724 ^A	22600 16ª	1 33/ ^{A-D}	1 33/ ^{A-E}	1 30 ^a	
	1 9/2	22209,00 22932 05 ^B	22327,734 22221 306 ^B	22007,40	1,334	1,004	1,50	
		15529.16 ^C	22234.079 ^C					
		15197.53 ^D	22333.511 ^D					
		, -	22219,099 ^E					

Tablo 3.33. Devam

Seviveler			Е			g-carpani		
Konf.	Terim	Bu ça	ılışma	Diğer	Bu ça	lışma	Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
5d6s(³ D)6p	${}^{4}D^{0}{}_{1/2}$	19675,06 ^A	20628,030 ^A	20762,42 ^a	0,0145 ^A	0,037 ^{A,B,C,E}	$0,00^{a}$	
		20318,05 ^B	20579,397 ^B		0,014 ^B	$0,008^{D}$		
		14031,48 ^C	20567,686 [°]		0,012 ^C			
		17856,365	21211,987 ⁵		0,0525			
	4 D ⁰	20027 70A	$205/9,4/4^{-}$	21105 27 ^a	1 080 ^{A,B}	1 160 ^A	1 108	
	D _{3/2}	20027,70 20670.60 ^B	21090,920 21075 701 ^B	21195,57	1,089 °	1,109 1 177 ^B	1,19	
		14245 87 ^C	21075,791 21062 403 ^C		1,147 1,225 ^D	1,177 1,175 ^C		
		18166.50 ^D	22484.650 ^D		1,225	1.071 ^D		
		10100,50	$21075.007^{\rm E}$			1.176^{E}		
	${}^{4}D^{0}{}_{5/2}$	21567,62 ^A	22299,590 ^A	22221,64 ^a	1,355 ^{A,B}	1,373 ^A	1,39 ^a	
	5/2	22210,61 ^B	22316,205 ^B	*	1,299 ^C	1,364 ^B	ŗ	
		16088,78 ^C	22334,727 ^C		$1,318^{D}$	1,362 ^C		
		18769,28 ^D	23282,705 ^D			1,336 ^D		
			22321,638 ^E		4.5	1,363 ^E		
	${}^{4}D^{o}_{7/2}$	22633,21 ^A	23406,733 ^A	23524,24 ^a	1,423 ^{A,B}	1,421 ^A	1,41 ^a	
		23276,21 ^B	23363,277 ^в		1,427 ^C	1,422 ^{в-е}		
		16482,61 ^C	23364,918 ^C		1,428 ^D			
		19846,94 ^D	24278,705 ^D					
516 (3D) C	200	22255 564	23363,694 ^E	01460.058	1 100 A B	1.220Å	1.008	
5d6s(°D)6p	² D ^o _{5/2}	33355,56 ^A	21578,446 ^A	21462,35 ^ª	1,129 ^{4,5}	1,230 ^A	1,23"	
		33998,55 ⁻	$21606,322^{-1}$		1,169°	1,239 ⁻		
		2/146,07	21597,377° 21188,207 ^D			1,241 1 195 ^D		
			21601 251 ^E			1,105 1,220 ^E		
	$^{2}D^{0}$	20607.00 ^A	21001,231 22284 847 ^A	22124 70 ^a	0.822 ^A	1,239 0.873 ^A	0.874a	
	D 3/2	31250.08 ^B	22364,047 22365 782 ^B	22124,70	0,823	0,875 0.864 ^B	0,074	
		15990.05 ^C	22303,782 22301 313 ^C		0,824 0.892 ^C	0,804 0.868 ^C		
		15770,05	22371,315 28724 816 ^D		0,072	0,800 0,814 ^D		
			22364.160^{E}			$0.865^{\rm E}$		
$5d6s(^{3}D)6p$	${}^{4}P^{0}{}_{1/2}$	23195.83 ^A	24005.015 ^A	24108.72^{a}	$2.647^{A,B}$	2.620 ^A	_	
2005(2)op	- 1/2	23838.82 ^B	24061.781 ^B	2.100,72	2.657 ^C	2.616 ^B		
		16678,25 ^C	24045,908 ^C		$2,615^{D}$	2,614 ^C		
		19657,68 ^D	23717,987 ^D		,	2,643 ^D		
			24059,115 ^E			2,616 ^E		
	${}^{4}P^{o}_{3/2}$	23603,41 ^A	24232,041 ^A	24308,20 ^a	1,686 ^{A,B}	1,639 ^{A,B,E}	1,67 ^a	
		24246,40 ^B	24300,422 ^B		1,669 ^C	1,636 [°]		
		17166,22 ^C	24285,002 ^C		1,2857 ^D	1,692 ^D		
		20230,85 ^D	24140,284 ^D					
	4-0	- · · · · · · · · · · · · · · · ·	24299,403 ^E		A B			
	${}^{4}P_{5/2}^{0}$	24775,96 ^A	25257,938 ^A	25191,57 ^a	1,553 ^{A,B}	1,520 ^A	1,53"	
		25418,95 ⁵	25382,618 ⁵		1,559 ^e	1,531 ^{b,c}		
		$1836/,20^{\circ}$	25393,728°		1,420-	1,557 ⁻ 1,522 ^E		
		20879,54	25774,024 25286,624 ^E			1,532		
$5d6s(^{1}D)6n$	$2 \mathbf{F}_0$	28326 82A	23380,034 27205 205 ^A	28020 18ª	0 860 ^{A,B}	0 888A	0 88 ^a	
Subs(D)op	Г <u>5/2</u>	20320,02 28060 81 ^B	27295,205 27665 210 ^B	28020,18	0,809	0,000 0.878 ^{B,E}	0,00	
		22517 71 ^C	27003,210 27702 323 ^C		0,802 0,860 ^D	0,878 0.879 ^C		
		29989 96 ^D	24813 680 ^D		0,000	0,075 0,910 ^D		
		27707,70	27666.050 ^E			0,910		
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	29373.15 ^A	29331.050 ^A	29486.94 ^a	$1.147^{A,B}$	1.147 ^A	_	
	112	30016,14 ^B	29877,773 ^B		1,145 ^C	1,146 ^{B,C,E}		
		23194,33 ^C	29793,370 ^C		1,143 ^D	1,153 ^D		
		31418,77 ^D	26807,873 ^D					
			29878,896 ^E					
6s²7p	${}^{2}P^{0}{}_{1/2}$	48128,44 ^A	29175,949 ^A	29430,90 ^a	0,717 ^{A,B}	$0,667^{A}_{-}$	_	
		48771,43 ^B	29503,198 ^B		0,657 [°]	$0,671^{B}_{B}$		
		32888,95 [°]	29498,251 [°]		0,665 ^D	0,673 [°]		
		40018,95 ^D	29445,402 ^D			0,667 ^D		
			29506,591 ^E			0,671 ^E		

Tablo 3.33. Devam

Seviyeler			Е				
Konf.	Terim	Bu ça	alışma	Diğer	Bu çalışma		Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	${}^{2}P^{0}_{3/2}$	52421.72 ^A	30678.555 ^A	30488.62 ^a	1,316 ^{A,B}	1.296 ^A	1.23 ^a
	5/2	53064.71 ^B	30481.600 ^B	, -	1.325 ^C	1.225 ^B	· ·
		33353.67 ^C	30496,931 ^C		1.328 ^D	1.170 ^C	
		41304.97 ^D	30220.900^{D}		y	1.334 ^D	
			30480,569 ^E			1.222^{E}	
$5d6s(^{1}D)6p$	${}^{2}D^{0}{}_{2/2}$	21377.58 ^A	29360.615 ^A	29607.98 ^a ?	$0.898^{A,B}$	1.040 ^A	_
	5/2	22020.57^{B}	29235.909 ^B		0.811 ^C	1.070^{B}	
		24874.79 ^C	29160.861 ^C		0.814 ^D	1.122 ^C	
		39938.18 ^D	20667.125 ^D		- 7 -	0.904 ^D	
			29229.114 ^E			1.071^{E}	
	${}^{2}D^{o}{}_{5/2}$	20313.40 ^A	32748.303 ^A	32456.87 ^a ?	$1.210^{A,B}$	1.089 ^A	_
	3/2	20956.39 ^B	32546.228 ^B		1.183 ^D	1.114 ^B	
		41394.78 ^D	32585.254 ^C		,	1.129 ^C	
			20279.011 ^D			1.187 ^D	
			32544,372 ^E			1.114^{E}	
$5d6s(^{3}D)6p$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	32160.93 ^A	30931.132 ^A	30183.55 ^a	$0.922^{A,B}$	0.967 ^A	_
() I	5/2	32803.91 ^B	30488.618 ^B	,	0.885°	0.942^{B}	
		25997,87 ^C	30419,565 ^C		0.873 ^D	0,928 ^C	
		39113,97 ^D	35269,828 ^D		,	0.874 ^D	
		,	30487,663 ^E			0,943 ^E	
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	34402,94 ^A	32273,666 ^A	31751,17 ^a	$1,142^{A}$	$1,147^{A,B,C,E}$	_
	112	35045,93 ^B	31553,472 ^B	,	1.147^{B}	1,145 ^D	
		27759,71 ^C	31555,433 ^C		1,143 ^{C,D}	,	
		39955,12 ^D	35901,566 ^D				
			31556,667 ^E				
$5d6s(^{1}D)6p$	${}^{2}P^{o}_{3/2}$	31472,88 ^A	31336,041 ^A	31523,14 ^a	1,323 ^A	1,149 ^A	_
		32115,87 ^B	31635,497 ^B		1,324 ^B	1,194 ^B	
		25595,39 ^C	31625,201 ^C		$1,332^{\rm C}$	1,198 ^C	
		33733,25 ^D	29828,147 ^D		1,325 ^D	1,196 ^D	
			31632,330 ^E			1,341 ^E	
	${}^{2}P^{0}{}_{1/2}$	32135,47 ^A	31969,853 ^A	33443,20 ^a	$0,669^{A,B,C}$	0,679 ^{A,D}	_
		32778,46 ^B	33174,793 ^в		$0,667^{\rm D}$	$0,667^{B,E}$	
		26108,82 ^C	33255,814 ^C			0,666 ^C	
		35061,22 ^D	29894,674 ^D				
			33174,872 ^E				
$5d6s(^{3}D)6p$	${}^{2}P^{0}{}_{1/2}$	34372,49 ^A	33499,295 ^A	32058,10 ^a	$0,667^{A,B}$	0,664 ^A	_
		35015,48 ^B	31867,106 ^B		0,666 ^{C,D}	$0,676^{B,E}$	
		28608,04 ^C	31971,824 ^C			0,675 ^C	
		49166,32 ^D	36272,384 ^D			$0,670^{D}$	
	2		31866,216 ^E				
	${}^{2}P^{o}_{3/2}$	35965,91 ^A	35771,214 ^A	34436,49 ^a	1,324 ^{A,B}	1,330 ^{A,B,D,E}	_
		36608,90 ^B	34773,194 ^B		1,329 ^C	1,331 ^C	
		30001,93 [°]	34753,980 [°]		1,334 ^D		
		51962,70 ^D	38101,516 ^D				
			34770,603 ^E				

^aNIST Atomic Spectra Database [63], ^bVergés ve Wyart [355], *Tablonun daha geniş hali Tablo A.12'de verilmektedir.

3.9.2. Lu I'in bazı uyarılmış seviyelerinin yarı ömürleri

Lu I'in $5d^26s$, $6s^2ns$ (n = 7–14), $6s^2nd$ (n = 6–25), $6s^2np$ (n = 6–25), $6s^2nf$ (n = 5–23) ve 5d6s6p seviyelerinin yarı ömürleri HFR yöntemiyle [418] Tablo 3.32'de verilen C, D ve E konfigürasyon setleri için hesaplandı [392]. D, E, C konfigürasyon setleri ile yapılan hesaplamalar sırasıyla A, B ve C üst indisleriyle ve sadece tek pariteli seviyeler "" indisiyle Tablo 3.34'te sunulmaktadır. Tek ve çift pariteli seviyelerin

yarı ömürleri, bu seviyelerden daha düşük seviyelere olan tüm mümkün geçişler üzerinden (2.249) formülüne göre hesaplandı. Elde edilen yarı ömür sonuçları lazer çok basamaklı rezonans iyonlaşma spektroskopisi, zaman-çözünürlüklü lazerindirgenmiş floresans tekniği, lazer spektroskopisi, relativistik katkı teorisi ve HFR+CP yöntemiyle yapılan deneysel ve teorik çalışma sonuçlarıyla karşılaştırılmaktadır [356, 357, 359, 360, 367, 369].

HFR yöntemiyle elde edilen sonuçlar bazı seviyeler hariç diğer çalışma sonuçları ile uvum içindedir. Karşılaştırma değerleri arasında da tam bir uvumun olmadığına dikkat edilmelidir. Çift pariteli seviyeler karşılaştırma değerleri ile karşılaştırıldığında yüksek uyarılmış d yörüngesini içeren seviyelerde uyumun az olduğu görülmektedir. $6s^2$ nd (n = 20–25) $^2D_{3/2.5/2}$ seviyeleri için C hesabının sonuçları kötü olmasına rağmen A hesabının sonuçları biraz daha iyidir. Tek pariteli seviyelerde ise özellikle 5d6s(${}^{3}D$)6p ${}^{4}D_{5/2}^{o}$, 5d6s(${}^{1}D$)6p ${}^{2}F_{5/2}^{o}$ ve 6s²25p ${}^{2}P_{1/2,3/2}^{o}$ seviyeleri için uyum iyi değildir ve bazı yüksek uyarılmış seviyeler için de uyum azdır. Diğer çalışmalarla karşılaştırıldığında, bazı seviyelerdeki uyumsuzlukların özden uyarılmış seviyeleri içeren konfigürasyon setleriyle daha iyi olması beklenmektedir. Fakat bu tür hesaplamaları yapmak bilgisayar kısıtlamalarından dolayı zordur.

3.9.3. Lu I'in elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

Nötral lutesyumun (Lu I) elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları MCHF+BP [412] ve HFR [418] program paketleri ile hesaplandı [393]. Lutesyum ağır bir element olduğu için, her iki yöntemle yapılan hesaplamalarda aynı anda karşılıklı etkileşme ve relativistik etkiler ele alındı. Lu I'in 5d6s6p–5d6s², 6s²6p–5d6s², 6s²7p–5d6s², 6s²7s–6s²6p, 6s²6d–6s²6p ve 6s²5f–5d6s² elektrik dipol geçişlerinin λ (Å) dalga boyları, log(*gf*) logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} (sn⁻¹) geçiş olasılıkları Tablo 3.35'te sunulmaktadır. Zou ve Fischer [368] taban hal ve ilk uyarılmış seviyesi arasındaki geçişler için g yörüngesinin çok önemli olduğunu gösterdikleri için konfigürasyon setlerinde mümkün olduğunca bu yörünge dahil edildi. Tablo 3.32'deki A, B ve C konfigürasyon setleriyle yapılan sonuçlar A, B ve C üst indisleriyle belirtilmektedir. Ayrıca, tabloda sadece tek pariteli seviyeler "^o" indisiyle belirtilirken geçiş olasılığı için 10'un kuvvetleri parantez içinde yazıldı. HFR hesabında C konfigürasyon seti ile yapılan elektrik dipol geçiş hesabında, ölçeklendirme faktörlerinin en küçük kareler yöntemiyle iyileştirilmemiş değerleri seviye enerji hesabından farklı olarak 0,75 seçilerek tekrar yapıldı. Lu I'in ışıma parametreleri için karşılaştırma değerleri NIST verileri [62], Fedchak ve çalışma grubunun Fourier dönüşüm spektroskopisiyle [367], Zou ve Fischer'in MCDF yöntemiyle [368] ve Kwiatkowski ve çalışma arkadaşlarının lazer spektroskopisi [356] ile yaptıkları çalışmalarıdır. Zou ve Fischer'in çalışmalarındaki salınıcı şiddetleri, ağırlıklı salınıcı şiddetlerine çevrilerek tabloda verilmektedir.

Tablo 3.32'de verilen konfigürasyon setleri ile MCHF atomik yapı paketi [412] kullanılarak MCHF+BP hesaplamaları yapıldı. A, B ve C hesaplamaları için sırasıyla 61426, 64402 ve 39586 mümkün elektrik dipol geçişleri elde edildi. Sadece karsılastırma değerleri olan 5d6s6p–5d6s², $6s^{2}6p-5d6s^{2}$, $6s^{2}7p-5d6s^{2}$ ve $6s^{2}7s-6s^{2}6p$ düşük seviye geçişleri Tablo 3.35'te sunulmaktadır. Tabloda ağırlıklı salınıcı siddetleri logaritmik ağırlıklı salınıcı siddetine çevrilerek verilmektedir. Tablodaki hesap sonuclari incelendiğinde B hesabinin 5d6s6p–5d6s² gecişleri için dalga boyları Fedchak ve çalışma grubunun çalışmaları [367] ile uyum içindedir. Bazı geçişler hariç logaritmik ağırlıklı salınıcı şiddetlerinde uyum iyi iken geçiş olasılıklarında uyum fazla iyi değildir. C hesabının $6s^27p-5d6s^2$ geçişleri için dalga boyu sonuçları uyumlu olmasına rağmen diğer ısıma parametrelerinde uyumsuzdur. 6s²7s-6s²6p geçişlerinde ise dalga boyu ve ağırlıklı geçiş olasılıkları için uyum kötü iken log(gf)için uyum iyidir. $6s^26p-5d6s^2$ geçişleri için sadece log(gf) karşılaştırması vardır. B hesabının sonuçları Zou ve Fischer'in [368] sonuçları ile uyumludur. MCHF+BP hesaplamalarında görülen bazı uyumsuzlukların öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin de alındığı konfigürasyonlarla düzeltilebileceği düşünülmektedir.

HFR hesaplamalarında, HFR program paketiyle [418] Tablo 3.32'deki tek ve çift pariteli seviyeler arasında yapılan A, B ve C geçişleri için sırasıyla 310, 505 ve 4448 mümkün elektrik dipol geçişleri elde edildi. HFR ile elde edilen 5d6s6p–5d6s², 6s²6p–5d6s², 6s²7p–5d6s², 6s²7s–6s²6p, 6s²6d–6s²6p ve 6s²5f–5d6s² geçişleri Tablo

3.35'te sunulmaktadır. Bu geçişler için dalga boyu sonuçları ile diğer çalışmalar arasındaki uyumun iyi olduğu görülmektedir. 5d6s(³D)6p ${}^{2}P_{3/2}^{o}-5d6s^{2} {}^{2}D_{3/2,5/2}$ 5d6s(¹D)6p ${}^{2}F_{7/2}^{o}-5d6s^{2} {}^{2}D_{5/2}$ ve 5d6s(¹D)6p ${}^{2}P_{5/2}^{o}-5d6s^{2} {}^{2}D_{3/2}$ geçişlerinde tüm hesaplamalarda dalga boyu sonuçları uyumlu olmasına rağmen log(*gf*) ve A_{ki} sonuçları uyumlu değildir. 5d6s(¹D)6p ${}^{2}F_{5/2}^{o}-5d6s^{2} {}^{2}D_{3/2}$ geçiş için ise log(*gf*) sonucu kötüdür. B hesabının 6s²6p–5d6s² geçişleri için log(*gf*) sonucu karşılaştırma değeri ile uyumludur. 6s²6d–6s²6p ve 6s²5f–5d6s² geçişleri için ise tüm ışıma parametreleri için uyum iyidir.

Seviyeler		τ					
		Bu çalışma (HFR)			Diğer çalışmalar		
Konf.	Terim	Α	В	С	Deneysel	Teorik	
Çift parite i	çin:						
$5d^{2}(^{3}P)6s$	${}^{4}P_{1/2}$	909	3900,0	952,0	_	-	
	${}^{4}P_{3/2}$	13300	51800,0	6580,0	_	-	
	${}^{4}P_{5/2}$	2570	20400,0	1330,0	_	-	
6s ² 7s	${}^{2}S_{1/2}$	8,196	8,89	8,66	12,3±0,6 ^a	$12,4^{a1}$ $11,7^{a2}$	
5d ² (¹ D)6s	$^{2}D_{3/2}$	406,0	3400,0	204,0	_	_	
	$^{2}D_{5/2}$	1080,	7200,0	416,0	_	_	
5d ² (³ P)6s	${}^{2}P_{1/2}$	515,0	217,0	1260,0	_	_	
	${}^{2}P_{3/2}$	854,0	1790,0	988.0	_	_	
$5d^{2}(^{1}S)6s$	${}^{2}S_{1/2}$	459.0	74.7	518.0	_	_	
$6s^26d$	${}^{2}D_{3/2}$	8.51	_	9.28	9.2 ± 0.5^{a}	10.4^{a1}	
	- 3/2	0,00		,,	2.0 ± 2^{b}	10.5^{a2}	
	$^{2}D_{5/2}$	11 36	_	13.2	$112+11^{a}$	14.8^{a1}	
	23/2	11,50		10,2	$19+2^{b}$	14.9^{a2}	
$6s^28s$	^{2}S	15.5	_	20.3		_	
$6s^27d$	${}^{2}D_{2}$	18.8	_	20,5	_	_	
03 / 4	$^{2}D_{3/2}$	24.0		21,4			
$6e^2\Omega e$	^{2}S	24,0		27,5			
6898	^{2}D	27.0	—	39,2	—	—	
08 80	$^{2}D_{3/2}$	57,0	_	41,7	_	-	
c- ² 10-	25 25	40,5	_	52,9	_	- 50°	
68 108	$^{3}_{2}$	62,9	-	08,5	-	50	
6s 9d	$^{2}D_{3/2}$	62,5	—	62,2	-	-	
c ?	$^{-}D_{5/2}$	69,6	—	/8,1	-	-	
6s ² 11s	${}^{2}S_{1/2}$	110,0	-	117,0	-	80°	
6s ² 10d	$^{2}D_{3/2}$	88,3	-	98,6	-	50°	
2	$^{2}D_{5/2}$	305,0	-	102,0	-	60°	
$6s^{2}_{2}12s$	${}^{2}S_{1/2}$	166,0	-	174,0	-	120 ^c	
6s ² 11d	$^{2}D_{3/2}$	132,0	-	147,0	-	70°	
2	${}^{2}D_{5/2}$	132,0	-	134,0	-	80°	
$6s^2 13s$	${}^{2}S_{1/2}$	222,0	-	225,0	-	180 ^c	
$6s^2 12d$	${}^{2}D_{3/2}$	183,0	-	208,0	-	100°	
	$^{2}D_{5/2}$	152,0	-	159,0	_	110 ^c	
$6s^214s$	${}^{2}S_{1/2}$	303,0	_	302,0	-	250°	
6s ² 13d	$^{2}D_{3/2}$	248,0	-	281,0	-	140 ^c	
	$^{2}D_{5/2}$	272,0	_	294,0	_	150 ^c	
6s ² 14d	${}^{2}D_{3/2}^{3/2}$	322,0	_	375.0	_	190 ^c	
	${}^{2}D_{5/2}^{5/2}$	387.0	_	452,0	_	210 ^c	
$6s^2 15d$	${}^{2}D_{3/2}^{3/2}$	400.0	_	482.0	_	240°	
	${}^{2}D_{5/2}^{3/2}$	171.0	_	127.0	_	270°	
$6s^2$ 16d	${}^{2}D_{3/2}$	505.0	_	599.0	_	300 ^c	
	${}^{2}D_{5/2}$	153.0	_	103.0	_	320°	
$6s^2 17d$	${}^{2}D_{2}$	524.0	_	710.0	_	370 ^c	
55 1.4	${}^{2}D_{5/2}$	146.0	_	82.3	_	400 ^c	
	- 5/2	110,0		·-,-		.00	

Tablo 3.34. Lu I'in bazı uyarılmış seviyelerinin τ yarı ömürleri (ns)
Tablo 3.34. Devam

Seviyeler T						
·		Bu	ı çalışma (H	IFR)	Diğer ç	alışmalar
Konf.	Terim	A	В	С	Deneysel	Teorik
6s ² 18d	$^{2}D_{3/2}$	798,0	-	818,0	-	460 ^c
2	${}^{2}D_{5/2}$	888,0	—	65,8	-	480 ^c
6s ² 19d	${}^{2}_{2}D_{3/2}$	971,0	—	892,0	200±40 ^a	550 ^c
2001	$^{2}D_{5/2}$	1080,0	-	52,0		580°
6s ² 20d	${}^{2}D_{3/2}$	1160,0	—	907,0	310±30 ^d	660 ^c
2	${}^{2}D_{5/2}$	1300,0	-	41,9	- ,	690 ^c
6s ² 21d	${}^{2}D_{3/2}$	1380,0	-	824,0	110±5 ^a	780°
2	${}^{2}D_{5/2}$	1550,0	-	32,7	- ,	820 ^c
6s ² 22d	${}^{2}D_{3/2}$	1620,0	-	638,0	730±40 ^a	920 ^c
2	${}^{2}D_{5/2}$	1820,0	-	25,6	-	960 ^c
6s ² 23d	${}^{2}D_{3/2}$	1890,0	-	390,0	1300±200 ^a	1070 ^c
2	${}^{2}D_{5/2}$	2120,0	_	20,1	-	1110 ^c
6s ² 24d	$^{2}D_{3/2}$	2180,0	_	119,0	840±130 ^a	1240°
	$^{2}D_{5/2}$	2450,0	-	16,3		1280°
6s ² 25d	${}^{2}D_{3/2}$	2500,0	_	65,9	1550±100 ^d	1430 ^c
	$^{2}D_{5/2}$	2820,0	_	21,3	_	1470 ^c
Tek parite iç	in:					
6s ² 6p	${}^{2}\mathbf{P}^{0}_{1/2}$	1584,0	1028,0	1052,0	_	-
	${}^{2}P^{o}_{3/2}$	592,2	377,4	388,0	_	-
5d6s(³ D)6p	${}^{4}F^{o}_{3/2}$	453,7	569,1	310,4	554 ± 28^{a}	370 ^{a1}
						599 ^{a2}
	${}^{4}\mathrm{F}^{\mathrm{o}}{}_{5/2}$	187,8	352,5	237,3	472±24 ^a	303 ^{a1}
					430±20 ^e	499 ^{a2}
	${}^{4}\mathrm{F}^{\mathrm{o}}_{7/2}$	628,1	1030,0	1008,0	_	_
5d6s(³ D)6p	${}^{4}D_{1/2}^{0}$	3877,0	644,3	1617,0	1050 ± 52^{a}	693 ^{a1}
	1/2				1020±60 ^e	1180^{a2}
	${}^{4}D^{0}{}_{3/2}$	75,34	3737,0	2480,0	2450±150 ^e	_
	${}^{4}\text{D}^{0}_{5/2}$	114,8	148,5	83,83	862±43 ^a	305 ^{a1}
	5/2	,	,	,	820±50 ^e	497^{a2}
	${}^{4}D^{0}_{7/2}$	1504.0	818.6	976.5	_	_
$5d6s(^{3}D)6p$	${}^{2}D_{5/2}^{0}$	1.788	96.06	47.93	81.9 ± 4.1^{a}	52.5 ^{a1}
	5/2	· ·	,		83 ± 5^{b}	83.9 ^{a2}
					$80+4^{e}$	00,5
	$^{2}D^{o}_{2/2}$	1.977	29.39	17.28	43.9 ± 2.2^{a}	25.2^{a1}
	2 3/2	1,277	_,	17,20	47+1 ^b	40.6^{a2}
					$43+3^{e}$	40,0
$5d6s(^{3}D)6n$	${}^{4}\mathbf{P}^{0}$	6186.0	2269.0	6695.0	-	_
5003(D)0p	⁴ P ⁰	823.6	950 5	413 7	1640 ± 131^{a}	667 ^{a1}
	1 3/2	025,0	<i>)5</i> 0,5	415,7	1040±131	1050 ^{a2}
	⁴ P ⁰	175 2	103 2	13/1	$332 + 17^{a}$	202 ^{a1}
	■ 5/2	175,5	175,2	134,1	$315+25^{e}$	327 ^{a2}
$5d6s(^{1}D)6r$	${}^{2}\mathbf{F}^{0}$	6 247	1 212	1 367	105 ± 0.5^{a}	0 3 ^{a1}
Juos Dioh	1 5/2	0,247	7,242	ч ,307	$10,3\pm0,3$ 12 ± 1^{b}	2,3 15 7^{a2}
	$2 \mathbf{F}^{0}$	7 886	12 51	17.05	$1 \angle \pm 1$ 151 $\pm 9^{a}$	13,7 11/ ^{al}
	1. 7/2	7,000	12,31	17,05	151±0 165±5 ^b	197 ^{a2}
$5d6c(^{1}D)$	$^{2}D^{0}$	124 0	1 215	4 072	100 ± 3 5 0±0 2 ^a	2 O ^{al}
Juos(D)ob	D 3/2	134,8	4,213	4,773	5,5±0,5 7 2±0 2 ^b	$12 6^{a^2}$
	$^{2}D^{0}$	170.4	2 204	2 150	$7,2\pm0,3$	12,0 2 0^{a1}
	D 5/2	170,4	2,300	2,130	$5,2\pm0,2^{\circ}$	3,0
$5dca(^{3}D)c$	$2r^{0}$	2 270	1 677	2 712	$5,1\pm0,0$	4,9 1 5 ^{al}
Subs(D)op	Г _{5/2}	2,379	2,077	2,712	$5,5\pm0,5$	4,3 7 5^{a2}
	$2\mathbf{r}^{0}$	0.110	0.074	2.004	$0, \pm 0, 4^{\circ}$	7,5 2,2 ^{a1}
	-F ⁻ _{7/2}	2,110	2,074	2,004	$4,1\pm0,2^{\circ}$	$5,5^{}$
< 2 7	200	22.1-	0.700	11.50	5,7±0,4°	5,5
6s²/p	${}^{2}\mathbf{P}^{0}_{1/2}$	32,17	9,799	11,59	9,2±0,5 ^a	9,6" ¹
					8,6±0,8°	$13,1^{a_2}$
						8,1"
	2					8,412
	${}^{2}P_{3/2}^{o}$	69,30	7,588	5,546	$5,9\pm0,3^{a}$	5,8 ^{a1}
					7,4±0,6 ^b	8,9 ^{a2}
						6,3 ¹¹
						6,6 ¹²

Tablo 3.34. Devam

Seviye	ler			1	τ	
		Bu	ı çalışma (l	HFR)	Diğer ç	alışmalar
Konf.	Terim	A	B	С	Deneysel	Teorik
5d6s(°D)6p	${}^{2}\mathbf{P}^{0}{}_{1/2}$	2,909	10,70	73,58	$4,9\pm0,2^{a}$	$5,8^{a1}$
	200	1.50.6	1 550	2 075	$6,3\pm0,4^{\circ}$	$9,5^{a2}$
	${}^{2}\mathrm{P}^{0}_{3/2}$	1,586	1,550	2,075	$3,7\pm0,2^{a}$	$3,2^{a_1}$
5 (D) C	200	C 407	7.026	5 005	$5,1\pm0,3^{\circ}$	$5,2^{a2}$
5d6s(*D)6p	${}^{2}P_{3/2}^{o}$	6,407	7,026	5,905	$8,5\pm0,4^{\circ}$	$6, 7^{a}$
	$2\mathbf{p}^{0}$	2 201	2.000	2 0 2 9	$10,0\pm0,5^{*}$	10, / 4 1 ^{al}
	P 1/2	5,291	2,000	2,028	$7,8\pm0,4$	4,1
$6e^25f$	$2\mathbf{F}^{0}$	22.36		50.27	$9,1\pm0,0$ 30.2+1.5 ^a	0,9 31 0 ^{a1}
08 51	Г <u>5/2</u>	22,30	_	30,27	$30,2\pm1,3$ 31 ± 2^{b}	31,0 35 7^{a2}
					31 ± 2 33 1(3 0) ^f	$30^{f1,f2}$
	${}^{2}\mathrm{F}^{\mathrm{o}}$	17 59	_	55.18	$303+15^{a}$	33 0 ^{a1}
	1 7/2	17,59		55,10	$29+2^{b}$	38.7^{a2}
					$30.7(3.0)^{f}$	$32^{f1,f2}$
$6s^28n$	$^{2}\mathbf{P}^{0}$	13.92	_	49.09	$44(4)^{f}$	22^{f1}
ob op	- 1/2	10,72		.,,,,,		46^{f^2}
	${}^{2}\mathrm{P}^{0}_{3/2}$	59.09	_	17.74	$20.5(2.0)^{\rm f}$	9 ^{f1}
	5/2			.,.	() -)	15 ^{f2}
6s ² 6f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	46,30	_	44,14	$52(5)^{f}$	$52^{f1,f2}$
	${}^{2}\mathrm{F}^{0}_{7/2}$	51,08	_	48,50	$50(5)^{f}$	$56^{f1,f2}$
6s ² 9p	${}^{2}P_{1/2}^{0}$	154,9	-	160,8	_ ``	82 ^{f1}
-						18 ^{f2}
	${}^{2}P^{o}_{3/2}$	63,67	-	95,52	$82(10)^{f}$	44^{f1}
						113 ^{f2}
6s ² 7f	${}^{2}F^{o}_{5/2}$	67,33	-	21,58	$54(5)^{f}$	$68^{f1,f2}$
2	${}^{2}F^{o}_{7/2}$	76,26	-	22,41	$66(7)^{t}$	$71^{f1,f2}$
6s ² 10p	${}^{2}\mathbf{P}^{0}{}_{1/2}$	278,3	-	291,3	-	138 ^{t1}
						143 ¹²
	2 0					370 ^c
	${}^{2}\mathrm{P}^{0}_{3/2}$	199,8	-	211,1	-	89 ¹¹
						96 ¹²
< ² 00	2-0	120.0		12.20	104(10)	260°
6s ² 8f	${}^{2}F_{5/2}^{\circ}$	129,0	-	12,39	$104(10)^{\circ}$	12/ ^{11,12}
$(-^{2}11-$	${}^{2}\mathbf{P}^{0}$	142,6	-	12,45	_	133
6s TIp	$P_{1/2}^{2}$	506,2	-	522,9	_	520 410°
ϵ_{a}^{2} Of	$P_{3/2}^{2}$	396,2	-	391,4	_	$410_{92^{f1,f2}}$
08 91	$\Gamma_{5/2}^{2}$	190,1	-	133,0	-	85 87 ^{f1,f2}
$6s^2 12n$	${}^{\Gamma}_{2\mathbf{p}^{0}}$	222,0	_	704.5	-	87 710 ^c
08 12p	${}^{\Gamma}_{2\mathbf{p}^{0}}$	645.2	_	633.2	_	710 610 ^c
6s ² 10f	${}^{2}F^{0}z^{2}$	279.8	_	363.6	_	-
05 101	${}^{2}F^{0}$	320.1	_	429.3	_	_
$6s^2 13n$	${}^{2}\mathbf{P}^{0}{}_{1/2}$	998.8	_	1092.0	_	1030 ^c
05 150	${}^{2}\mathbf{P}^{0}_{2/2}$	911.8	_	925.0	_	880 ^c
$6s^{2}11f$	${}^{2}F_{5/2}^{0}$	383.2	_	568.3	_	_
00 111	${}^{2}F_{7/2}^{0}$	441.3	_	695.6	_	_
$6s^2 14p$	${}^{2}P_{1/2}^{0}$	467,6	_	685,8	_	1450°
	${}^{2}P_{3/2}^{0}$	458,8	_	641,4	_	1230 ^c
6s ² 12f	${}^{2}\mathrm{F}^{0}_{5/2}$	516,7	_	808,1	_	_
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	587,8	-	982,5	_	_
6s ² 15p	${}^{2}P^{o}{}_{1/2}$	1763,0	-	1937,0	_	1960 ^c
-	${}^{2}P^{o}_{3/2}$	1652,0	-	1677,0	_	1650 ^c
6s ² 13f	${}^{2}F^{o}_{5/2}$	670,5	-	1072,0	_	_
2	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	762,8	-	1311,0	_	-
6s ² 16p	${}^{2}P^{o}_{1/2}$	-	-	2651,0	-	2580 ^c
2	${}^{2}P^{o}_{3/2}$	-	-	2354,0	-	2170 ^c
6s²14f	${}^{2}\text{F}^{0}_{5/2}$	849,1	-	1372,0	-	-
- 2	${}^{2}F_{7/2}^{0}$	967,6	-	1685,0	-	-
6s²17p	${}^{2}P_{1/2}^{0}$	-	-	3343,0	_	3230
c ² 1 = C	${}^{2}P_{3/2}^{0}$	-	-	2991,0	_	2720
6s~15f	² F ^o _{5/2}	1063,0	-	1732,0	-	-
	~F° _{7/2}	1203,0	-	2108,0	-	-

Tablo 3.34. Devam

Seviy	eler			1	Γ	
		B	lu çalışma (1	HFR)	Diğer (çalışmalar
Konf.	Terim	Α	В	С	Deneysel	Teorik
6s ² 18p	${}^{2}P^{0}{}_{1/2}$	_	_	4179,0	_	4000 ^c
1	${}^{2}P_{3/2}^{0}$	_	_	3670,0	_	3370 ^c
6s ² 16f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	2128,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	2599,0	_	_
6s ² 19p	${}^{2}P_{1/2}^{0}$	-	_	4836,0	-	4890 ^c
	${}^{2}P^{0}_{3/2}$	_	_	4414,0	_	4130 ^c
6s ² 17f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	2573,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	3169,0	_	_
6s ² 20p	${}^{2}P_{1/2}^{0}$	_	_	5604,0	_	5910 ^c
	${}^{2}P_{3/2}^{0}$	_	_	5145,0	_	5090 [°]
6s ² 18f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	3098,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	3790,0	_	_
6s ² 21p	${}^{2}P_{1/2}^{0}$	_	_	6421,0	_	7170 ^c
	${}^{2}P^{0}_{3/2}$	_	_	5869,0	_	5990°
6s ² 19f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	3671,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	4483,0	_	_
$6s^2 22p$	${}^{2}P_{1/2}^{0}$	_	_	6757,0	_	8390 ^c
	${}^{2}P^{0}_{3/2}$	_	_	6245,0	_	7110 ^c
6s ² 20f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	4307,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	5270,0	_	_
6s ² 23p	${}^{2}P_{1/2}^{0}$	_	_	7077,0	_	9870 ^c
	${}^{2}P_{3/2}^{0}$	_	_	6652,0	_	8380 ^c
$6s^2 21f$	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	5003,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	6113,0	_	_
6s ² 24p	${}^{2}P_{1/2}^{0}$	_	_	6689,0	_	11530 ^c
	${}^{2}P_{3/2}^{0}$	_	_	6372,0	_	9810 ^c
$6s^2 22f$	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	5751,0	_	_
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	7038,0	_	_
$6s^2 25p$	${}^{2}P_{1/2}^{0}$	_	_	5594,0	_	13380 ^c
	${}^{2}P_{3/2}^{0}$	_	_	5395,0	_	11390 ^c
6s ² 23f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	6502,0	_	_
	${}^{2}\mathrm{F}^{o}_{7/2}$	_	-	7949,0	_	_

^{a,a1,a2}Fedchak ve çalışma grubu [367], ^bGorshkov ve çalışma arkadaşları [357], ^cVidolova-Angelova [360], ^dVidolova-Angelova ve çalışma arkadaşları [359], ^eKwiatkowski ve çalışma arkadaşları [356], ^{f,f1,f2}Dai ve çalışma arkadaşları [369]

Geçişl	er		λ			$\log(gf)$			A _{ki}	
Üst seviye	Alt seviye	Bu ça	lışma	Diğer	Bu çal	ışma	Diğer	Bu ça	lışma	Diğer
·	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d6s(^{3}D)6p {}^{4}D^{0}{}_{1/2}$	$5d6s^2 {}^2D_{3/2}$	5067,39 ^A	4847,764 ^A	4815,04 ^a	-2,85 ^A	-1,689 ^A	$-2,20^{a}$	$0,184(6)^{A}$	$2,910(6)^{A}$	$0,90\pm0,06(6)^{a}$
	5/2	4906,34 ^B	4859,221 ^B	,	$-2,84^{B}$	-1,553 ^B	,	$0,200(6)^{B}$	$3,950(6)^{B}$	
			4861,077 ^C			$-1,603^{\circ}$, , , , ,	$3,520(6)^{C}$	
$5d6s(^{3}D)6p ^{4}D_{3/2}^{0}$	$5d6s^2 \ ^2D_{3/2}$	4978,43 ^A	4740,017 ^A	4716,69 ^a	-2,04 ^A	-3,290 ^A	$-2,82^{\circ}$	$0,609(6)^{A}$	$0.038(6)^{A}$	$0,113 \pm 0,012(6)^{a}$
() 1 5/2	5/2	4822,87 ^B	4744,772 ^B	,	$-2,04^{B}$	$-2,861^{B}$,	$0,657(6)^{B}$	$0,102(6)^{B}$, , , , ,
		6966,58 ^C	4746,881 ^C		$-1,76^{\rm C}$	-3,567 ^C		$0,599(6)^{\rm C}$	$0,020(6)^{\rm C}$	
$5d6s(^{3}D)6p {}^{4}D^{0}{}_{3/2}$	$5d6s^2 {}^2D_{5/2}$	5724,55 ^A	5234,782 ^A	5206,49 ^a	-2,77 ^A	-1.954^{A}	-2.38°	$0.086(6)^{A}$	$0.677(6)^{A}$	$0,254 \pm 0,026(6)^{a}$
() 1 5/2	5/2	5521,61 ^B	5240,593 ^B	,	$-2,71^{B}$	-1.763^{B}	,	$0.107(6)^{B}$	$1,040(6)^{B}$, , , , ,
		8553,09 ^C	5243,132 ^C		$-2,65^{\rm C}$	$-1,804^{\circ}$		$0,051(6)^{\rm C}$	$0,952(6)^{\rm C}$	
$5d6s(^{3}D)6p ^{4}D_{5/2}^{0}$	$5d6s^2 {}^2D_{3/2}$	4623,94 ^A	4484,371 ^A	4498,85 ^a	-1,98 ^A	-1.796^{A}	$-2,63^{a}$	$0.545(6)^{A}$	$0.884(6)^{A}$	$0.128 \pm 0.009(6)^{a}$
() 1 0/2	5/2	4489,35 ^B	4481,036 ^B	,	$-2,00^{B}$	$-1,712^{B}$,	$0,547(6)^{B}$	$1,070(6)^{B}$, , , , ,
		6173,73 ^C	4478,294 ^C		$-1,60^{\circ}$	$-1,621^{\circ}$		$0,734(6)^{C}$	$1,990(6)^{C}$	
$5d6s(^{3}D)6p ^{4}D_{5/2}^{0}$	$5d6s^2 {}^2D_{5/2}$	5260,79 ^A	4924,727 ^A	4942,32 ^a	-1,37 ^A	$-1,080^{A}$	$-1,67^{a}$	$1,712(6)^{A}$	$3,820(6)^{A}$	$0,97 \pm 0,06(6)^{a}$
() 1 0/2	5/2	5088,79 ^B	4920,715 ^B		$-1,38^{B}$	-0,978 ^B		$1,793(6)^{B}$	$4,830(6)^{B}$, , , , ,
		7388,19 ^C	4917,379 ^C		$-0,90^{\circ}$	$-0,878^{\circ}$		$2,557(6)^{\rm C}$	$6,080(6)^{\rm C}$	
$5d6s(^{3}D)6p {}^{4}F^{0}_{3/2}$	$5d6s^2 {}^2D_{3/2}$	5878,84 ^A	5638,139 ^A	5736,54 ^a	-1,66 ^A	-1,498 ^A	$-1,47^{a}$	$1,042(6)^{A}$	$1,670(6)^{A}$	$1,73\pm0,09(6)^{a}$
		5663,43 ^B	5645,911 ^B		$-1,69^{B}$	$-1,544^{B}$		$1,072(6)^{B}$	$1,490(6)^{B}$	
		8272,67 ^C	5647,026 ^C		-1,98 ^C	-1,448 ^C		$0,256(6)^{\rm C}$	$1,860(6)^{\rm C}$	
$5d6s(^{3}D)6p {}^{4}F^{0}_{3/2}$	$5d6s^2 {}^2D_{5/2}$	6948,25 ^A	6352,283 ^A	6477,68 ^a	-2,99 ^A	-2,874 ^A	-2,74 ^a	$0,036(6)^{A}$	$0,055(6)^{A}$	$0,072 \pm 0,006(6)^{a}$
		6651,92 ^B	6362,166 ^B		$-2,98^{B}$	-2,953 ^B		$0,040(6)^{B}$	$0,046(6)^{B}$	
			6363,534 ^C			$-2,802^{\circ}$			$0,065(6)^{\rm C}$	
$5d6s(^{3}D)6p {}^{4}F^{0}_{5/2}$	$5d6s^2 {}^2D_{3/2}$	5527,23 ^A	5351,828 ^A	5402,57 ^a	-1,72 ^A	-1,199 ^A	-1,50 ^a	$0,699(6)^{A}$	$2,460(6)^{A}$	$1,20\pm0,06(6)^{a}$
		5336,31 ^B	5358,338 ^B		$-1,75^{B}$	-1,243 ^B		$0,699(6)^{B}$	$2,220(6)^{B}$	
		7770,23 ^C	5358,377 ^C		-2,23 ^C	-1,217 ^C		$0,108(6)^{C}$	$2,350(6)^{C}$	
$5d6s(^{3}D)6p {}^{4}F^{0}_{5/2}$	5d6s ² ² D _{5/2}	6462,37 ^A	5991,171 ^A	6055,02 ^a	-1,61 ^A	-1,759 ^A	-1,52 ^a	$0,645(6)^{A}$	$0,540(6)^{A}$	$0,92 \pm 0,05(6)^{a}$
		6205,15 ^B	5999,345 ^в		$-1,62^{B}$	-1,871 ^B		$0,686(6)^{B}$	$0,417(6)^{B}$	
		9797,11 ^C	5999,351 ^C		-2,07 ^C	-1,687 ^C		0,098(6) ^C	0,635(6) ^C	
5d6s(³ D)6p ⁴ P ^o _{3/2}	5d6s ² ² D _{3/2}	4226,12 ^A	4126,758 ^A	4112,70 ^a	$-2,78^{A}_{-}$	-2,801 ^A	-2,36 ^a	$0,155(6)^{A}_{-}$	$0,155(6)^{A}_{-}$	$0,43 \pm 0,06(6)^{a}$
		4113,31 ^B	4115,151 ^B		-2,77 ^B	$-2,540^{B}$		$0,166(6)^{B}$	$0,285(6)^{B}$	
		5788,57 ^C	4117,459 ^C		-1,80 ^C	-2,300 ^C		0,791(6) ^C	$0,492(6)^{C}$	
5d6s(³ D)6p ⁴ P ^o _{5/2}	5d6s ² ² D _{3/2}	4026,59 ^A	3959,137 ^A	3968,46 ^a	-2,09 ^A	-1,183 ^A	-1,51 ^a	$0,562(6)^{A}$	$4,660(6)^{A}$	$2,21\pm0,14(6)^{a}$
		3924,00 ^B	3939,696 ^в		$-2,09^{B}$	-1,223 ^B		$0,585(6)^{B}$	$4,280(6)^{B}$	
		5412,21 ^C	3938,733 ^C		-2.12°	$-1,208^{\circ}$		$0.286(6)^{C}$	$4,430(6)^{C}$	

Tablo 3.35. Lu I'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş olasılıkları (sn⁻¹)

Geçişl	er		λ			log(gf)			A_{ki}	
Üst seviye	Alt seviye	Bu ça	lışma	Diğer	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s(³ D)6p ⁴ P ^o _{5/2}	5d6s ² ² D _{5/2}	4501,08 ^A	4298,478 ^A	4309,57 ^a	-2,63 ^A	-2,918 ^A	-1,96 ^a	0,127(6) ^A	0,073(6) ^A	$0,66 \pm 0,04(6)^{a}$
		4374,39 ^B	4275,578 ^B		-2,55 ^B	-2,113 ^B		$0,163(6)^{B}$	$0,468(6)^{B}$	
		6323,44 ^C	4274,421 ^C		$-1,70^{\circ}$	$-1,904^{\circ}$		$0,550(6)^{\rm C}$	$0,758(6)^{C}$	
5d6s(³ D)6p ² F ^o _{5/2}	$5d6s^2 {}^2D_{3/2}$	3103,67 ^A	3232,982 ^A	3312,11 ^a	0,49 ^A	0,590 ^A	$0,26^{a}$	358,35(6) ^A	$414,00(6)^{A}$	$185 \pm 9(6)^{a}$
		3042,15 ^B	3279,912 ^в		$0,51^{B}$	$0,506^{B}$		$384,52(6)^{B}$	$332,00(6)^{B}$	
		3830,00 ^C	3287,721 ^C		0,34 ^C	$0,518^{\rm C}$		$165,91(6)^{\rm C}$	$338,00(6)^{\rm C}$	
5d6s(³ D)6p ² F ^o _{5/2}	$5d6s^2 {}^2D_{5/2}$	3378,17 ^A	3455,757 ^A	3546,39 ^a	$-0,70^{A}$	-0,215 ^A	-1,53 ^a	19,593(6) ^A	56,70(6) ^A	$2,6\pm 0,4(6)^{a}$
	5,2	3306,05 ^B	3509,436 ^B		$-0,71^{B}$	$-0,407^{B}$		19,838(6) ^B	$35,30(6)^{B}$	
		4264,93 ^C	3518,363 ^C		$-1,88^{\rm C}$	$-0,536^{\circ}$		$0,797(6)^{\circ}$	$26,20(6)^{\rm C}$	
$5d6s(^{3}D)6p^{-2}F_{7/2}^{0}$	$5d6s^2 {}^2D_{5/2}$	3140,32 ^A	3302,533 ^A	3359,56 ^a	$0,67^{A}$	$0,844^{A}$	0,52 ^a	393,23(6) ^A	$534,00(6)^{A}$	$244 \pm 12(6)^{a}$
		3077,84 ^B	3383,010 ^B		$0,68^{B}$	$0,810^{B}$		$420,47(6)^{B}$	$470,00(6)^{B}$	
		3966,77 ^C	3384,030 ^C		$0,54^{\rm C}$	$0,827^{\rm C}$		$183,04(6)^{\rm C}$	$488,00(6)^{\rm C}$	
$5d6s(^{3}D)6p^{-2}D_{3/2}^{0}$	$5d6s^2 {}^2D_{3/2}$	3260,93 ^A	4467,290 ^A	4518,56 ^a	$0,38^{A,B}$	-0,492 ^A	$-0,56^{a}$	377,40(6) ^A	$27,00(6)^{A}$	$22,6\pm 1,2(6)^{a}$
	5,2	3193,13 ^B	$4471,105^{B}$	4518,57 ^b	$-0,64^{\rm C}$	$-0,417^{B}$		395,94(6) ^B	$32,00(6)^{B}$	
		$6211,60^{\circ}$	4465,869 ^C			$-0,341^{\circ}$		9,884(6) ^C	$38,20(6)^{\rm C}$	
$5d6s(^{3}D)6p^{-2}D_{3/2}^{0}$	$5d6s^2 {}^2D_{5/2}$	3565,31 ^A	4904,135 ^A	4966,12 ^a	$-0,90^{A}$	$-4,181^{A}$	$-3,31^{a}$	$16,384(6)^{A}$	$0,005(6)^{A}$	$0,033 \pm 0,005(6)^{a}$
() 1 3/2	5,2	3485,14 ^B	4908,742 ^B		$-0,92^{B}$	-4,321 ^B		$16,475(6)^{B}$	$0,003(6)^{B}$	
		7442,50 ^C	4902,403 ^C		$-2,19^{\rm C}$	$-3,623^{\circ}$		$0,196(6)^{C}$	$0,017(6)^{C}$	
$5d6s(^{3}D)6p^{-2}D_{5/2}^{0}$	$5d6s^2 {}^2D_{3/2}$	2992,71 ^A	4634,241 ^A	4658,01 ^a	$-1,62^{A}$	-1,149 ^A	$-1,21^{a}$	$3,007(6)^{A}$	$3,67(6)^{A}$	$3,15\pm0,18(6)^{a}$
		2935,43 ^B	4628,267 ^B		-1,55 ^B	-1,141 ^B		$3,620(6)^{B}$	$3,75(6)^{B}$	
		3668,62 ^C	4629,046 ^C		$-1,88^{\rm C}$	$-1,102^{\circ}$		$1,084(6)^{C}$	$4,10(6)^{C}$	
$5d6s(^{3}D)6p^{-2}D_{5/2}^{0}$	$5d6s^2 {}^2D_{5/2}$	2992,71 ^A	5106,071 ^A	5135,08 ^a	$-1,62^{A}$	$-0,875^{A}$	$-0,67^{a}$	$3,007(6)^{A}$	$5,68(6)^{A}$	$9,1\pm0,5(6)^{a}$
		2935,43 ^B	5098,830 ^B	5135,09 ^b	-1,55 ^B	-0,910 ^B		$3,620(6)^{B}$	$5,27(6)^{B}$	
		3668,62 ^C	5099,744 ^C		-1,88 ^C	-0,770 ^C		$1,084(6)^{C}$	$7,25(6)^{C}$	
$5d6s(^{3}D)6p^{-2}P^{0}_{1/2}$	$5d6s^2 {}^2D_{3/2}$	2904,32 ^A	2985,132 ^A	3118,43 ^a	-0,01 ^A	0,443 ^A	$-0,23^{a}$	387,36(6) ^A	$1040,0(6)^{A}$	$203 \pm 11(6)^{a}$
		2850,31 ^B	3138,030 ^B		$0,01^{B}$	$-0,176^{B}$		$423,38(6)^{B}$	$226,00(6)^{B}$	
		3481,81 ^C	3129,815 ^C		$-0,05^{\circ}$	-0,517 ^C		$245,19(6)^{C}$	$103,00(6)^{\rm C}$	
$5d6s(^{3}D)6p^{-2}P^{0}_{3/2}$	$5d6s^2 {}^2D_{3/2}$	2775,86 ^A	2795,536 ^A	2903,05 ^a	$-1,12^{A}$	$-0,488^{A}$	$-1,40^{a}$	$16,298(6)^{A}$	$69,40(6)^{A}$	$7,9\pm0,5(6)^{a}$
() 1 3/2	5,2	2726,44 ^B	2875,775 ^B		-1,09 ^B	$-0,459^{B}$		$17,998(6)^{B}$	$70,00(6)^{B}$	
		3320,60 ^C	2875,038 ^C		-0.98°	$-0,535^{\circ}$		$15,860(6)^{\rm C}$	$59,00(6)^{C}$	
$5d6s(^{3}D)6p^{-2}P^{0}_{3/2}$	$5d6s^2 {}^2D_{5/2}$	2993,40 ^A	2960,565 ^A	3081,48 ^a	$0,58^{A}$	0,727 ^A	$0,17^{a}$	474,34(6) ^A	$1020,0(6)^{A}$	$262 \pm 14(6)^{a}$
1 5/2	5/2	2936,53 ^B	3050,713 ^B	3081,47 ^b	$0,42^{B}$	$0,682^{B}$	*	$511,46(6)^{B}$	$862,00(6)^{B}$	
		3642,68 ^C	3049,873 ^C		0,29 ^C	0,615 ^C		$246,44(6)^{C}$	737,00(6) ^C	

Tablo 3.35. Devam

Geçişl	er		λ			log(gf)			A_{ki}	
Üst seviye	Alt seviye	Bu ça	lışma	Diğer	Bu çalı	ışma	Diğer	Bu ça	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s(¹ D)6p ² D ^o _{3/2}	$5d6s^2 {}^2D_{3/2}$	4664,93 ^A	3405,915 ^A	3376,49 ^a	-0,88 ^A	0,271 ^A	$0,06^{a}$	$10,004(6)^{A}$	$268,00(6)^{A}$	$168 \pm 9(6)^{a}$
() 1 3/2	5,2	$4528,00^{B}$	3420,448 ^B	3376,50 ^b	$-0,88^{B}$	0,243 ^B		$10,580(6)^{B}$	$249,00(6)^{B}$. ,
		$4002,20^{\circ}$	3425,730 ^C		$0,23^{\rm C}$	$0,200^{\circ}$		$176,70(6)^{\rm C}$	$225,00(6)^{C}$	
5d6s(¹ D)6p ² D ^o _{5/2}	$5d6s^2 {}^2D_{3/2}$	4908,61 ^A	3053,584 ^A	3080,13 ^a	-1,76 ^A	-0,672 ^A	-1,21 ^a	0,798(6) ^A	$25,40(6)^{A}$	$7,2\pm 0,6(6)^{a}$
		4757,30 ^B	3072,547 ^B		-1,77 ^B	-1,476 ^B		$0,839(6)^{B}$	$3,930(6)^{B}$	
			3069,390 ^C			-2,076 ^C			0,990(6) ^C	
5d6s(¹ D)6p ² D ^o _{5/2}	5d6s ² ² D _{5/2}	5632,43 ^A	3251,564 ^A	3281,75 ^a	-1,16 ^A	0,631 ^A	0,47 ^a	$2,424(6)^{A}$	$450,00(6)^{A}$	$305 \pm 19(6)^{a}$
		5435,84 ^B	3273,079 ^B	3281,74 ^b	$-1,16^{B}$	$0,608^{B}$		$2,606(6)^{B}$	$422,00(6)^{B}$	
			3269,484 ^C			0,635 ^C			$448,00(6)^{C}$	
$5d6s(^{1}D)6p^{-2}F^{o}_{5/2}$	$5d6s^2 \ ^2D_{3/2}$	3522,89 ^A	3663,635 ^A	3567,85 ^a	-0,29 ^A	0,211 ^A	-0,10 ^a	45,648(6) ^A	$135,00(6)^{A}$	$69 \pm 4(6)^{a}$
		3443,98 ^B	3614,641 ^B	3567,84 ^b	-0,31 ^B	0,357 ^B		$46,217(6)^{B}$	193,00(6) ^B	
		4419,21 ^C	3610,555 ^C		-0,21 ^C	0,334 ^C		35,346(6) ^C	$185,00(6)^{\rm C}$	
$5d6s(^{1}D)6p^{-2}F_{5/2}^{0}$	5d6s ² ² D _{5/2}	3880,82 ^A	3952,364 ^A	3841,19 ^a	-0,75 ^A	-0,328 ^A	-0,45 ^a	13,171(6) ^A	33,40(6) ^A	$26,5\pm 1,6(6)^{a}$
		3786,12 ^B	3895,409 ^B	3841,18 ^b	$-0,76^{B}$	-0,290 ^B		$13,446(6)^{B}$	$37,50(6)^{B}$	
		5008,54 ^C	3890,645 ^C		$-0,89^{\circ}$	-0,270 ^C		5,6948(6) ^C	39,20(6) ^C	
$5d6s(^{1}D)6p^{-2}F^{0}_{7/2}$	$5d6s^2 {}^2D_{5/2}$	3729,38 ^A	3658,024 ^A	3636,25 ^a	$-0,67^{A}$	-0,001 ^A	-0,99 ^a	12,891(6) ^A	$62,20(6)^{A}$	$6,4\pm0,3(6)^{a}$
		3641,81 ^B	3586,312 ^B		$-0,70^{B}$	$0,075^{B}$		$12,650(6)^{B}$	77,00(6) ^B	
		4844,33 ^C	3596,225 [°]		$-0,51^{\circ}$	-0,061 ^C		10,976(6) ^C	56,00(6) ^C	
$5d6s(^{1}D)6p ^{2}P^{0}_{1/2}$	$5d6s^2 {}^2D_{3/2}$	3106,13 ^A	2985,132 ^A	2989,28 ^a	-0,24 ^A	$0,443^{A}_{-}$	-0,47 ^a	196,96(6) ^A	$1040,0(6)^{A}$	$1286(6)^{a}$
		$3044,50^{\rm B}$	3014,333 ^B		$-0,25^{B}$	$0,207^{B}$		$204,36(6)^{B}$	$590,0(6)^{B}_{-}$	
		3813,78 ^C	3007,879 [°]		$-0,40^{\circ}$	0,244 ^C		90,969(6) ^C	645,0(6) ^C	
$5d6s(^{1}D)6p ^{2}P^{0}_{3/2}$	$5d6s^2 {}^2D_{3/2}$	3171,40 ^A	3191,206 ^A	3171,37 ^a	-0,89 ^A	0,069 ^A	$-0,40^{a}$	21,173(6) ^A	$192,0(6)^{A}$	$66 \pm 3(6)^{a}$
		3107,21 ^B	3161,003 ^в		$-0,90^{B}$	-0,157 ^B		$21,808(6)^{B}$	116,0(6) ^B	
		3889,98 ^C	3162,236 ^C		-1,13 ^C	-0,114 ^C		8,1406(6) ^C	$128,0(6)^{C}$	
$5d6s(^{1}D)6p ^{2}P^{0}_{3/2}$	$5d6s^2 {}^2D_{5/2}$	3458,56 ^A	3408,068 ^A	3385,52 ^a	$-0,60^{\text{A}}_{-}$	-2,494 ^A	$-0,46^{a}$	$34,603(6)^{A}_{-}$	$0,461(6)^{A}_{-}$	$50,3\pm 2,7(6)^{a}$
		3383,03 ^B	3373,647 ^B		$-0,63^{B}$	$-1,126^{B}$		$34,072(6)^{B}$	$10,90(6)^{B}$	
		4339,44 ^C	3375,037 ^C		-0,50 ^C	-1,585 ^C		28,264(6) ^C	38,00(6) ^C	
$6s^27p\ ^2P^{o}_{1/2}$	$5d6s^2 {}^2D_{3/2}$	2075,23 ^A	3427,465 ^A	3396,80 ^a	-0,70 ^A	-1,318 ^A	$-0,45^{a}$	$154,24(6)^{A}_{-}$	$13,60(6)^{A}$	$103 \pm 7(6)^{a}$
		2047,29 ^B	3389,460 ^B		$-0,65^{B}$	$-0,417^{B}$		$176,60(6)^{B}$	$111,00(6)^{B}$	
		2987,94 ^C	3390,236 ^C		-1,63 ^C	-0,332 ^C		8,777(6) ^C	135,00(6) ^C	
$6s^27p^2P_{3/2}^{o}$	$5d6s^2 {}^2D_{3/2}$	1905,46 ^A	3259,596 ^A	3278,97 ^a	-1,15 ^A	$-0,770^{A}_{-}$	-0,19 ^a	$32,443(6)^{A}_{-}$	$26,00(6)^{A}_{-}$	$100\pm 5(6)^{a}$
		1882,43 ^B	3280,665 ^B		$-1,10^{B}$	-0,384 ^B		37,757(6) ^B	$64,00(6)^{\text{B}}_{-}$	
		3030,03 ^C	3279,661 ^C		-2,09 ^C	-0,222 ^C		1,475(6) ^C	93,00(6) ^C	

Tablo 3.35. Devam

	Geçişler		λ			log(gf)			A _{ki}	
Üst seviye	Alt seviye	Bu çal	ışma	Diğer	Bu çalı	ışma	Diğer	Bu çal	ışma	Diğer
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6s ² 7p ² P ^o _{3/2}	5d6s ² ² D _{5/2}	2005,51 ^A	3486,183 ^A	3508,42 ^a	-0,27 ^A	-0,971 ^A	-0,32 ^a	225,12(6) ^A	$14,70(6)^{A}_{P}$	$65 \pm 4(6)^{a}$
		1980,21 ^в	3510,299 ^в		-0,22 ^B	-0,441 ^B		$257,37(6)^{B}$	$49,00(6)^{B}$	
		3295,95 [°]	3509,134 ^C		-1,21 ^C	-0,334 ^C		9,378(6) ^C	$62,70(6)^{\circ}$	
$6s^27s^2S_{1/2}$	$6s^{2}6p^{-2}P^{0}_{1/2}$	1058,17 ^A	5004,536 ^A	5001,14 ^a	-1,44 ^A	-0,391 ^A	$-0,62^{a}$	$107,34(6)^{A}$	$54,10(6)^{A}$	$32 \pm 1,8(6)^{a}$
		3005,97 ^B	5004,864 ^B		$-0,62^{B}$	$-0,384^{B}$		$87,990(6)^{B}$	$55,00(6)^{B}$	
		2498,76 ^C	5002,735 ^C		-0,87 ^C	-0,390 ^C		71,737(6) ^C	54,50(6) ^C	
$6s^27s^2S_{1/2}$	$6s^{2}6p^{-2}P^{0}_{-3/2}$	3201,75 ^A	6007,961 ^A	6004,49 ^a	-0,38 ^A	-0,177 ^{A,C}	-0,27 ^a	$134,25(6)^{A}_{-}$	$61,50(6)^{A,C}_{-}$	$49,3\pm 2,6(6)^{a}$
		3287,28 ^B	6009,518 ^B	6004,52 ^b	0,13 ^B	-0,169 ^в		$416,64(6)^{B}$	$62,50(6)^{B}$	$49(6)^{b}$
		2575,48 ^C	6006,455 ^C		0,29 ^C			988,67(6) ^C		
$6s^26p^2P_{1/2}^{o}$	$5d6s^2 {}^2D_{3/2}$	11182,58 ^A	24165,786 ^A	-	-1,38 ^A	-1,249 ^A	$-1,29^{d1}$	$1,110(6)^{A}$	$0,32(6)^{A}_{P}$	_
		$10430,58^{\text{B}}$	24177,376 ^B		$-1,27^{B}$	$-1,151^{B}$	$-0,98^{d2}$	$1,629(6)^{B}$	$0,20(6)^{B}_{-}$	
		16635,30 ^C	24178,370 ^C		$-2,18^{\circ}$	-1,179 ^C		$0,078(6)^{C}$	$0,38(6)^{C}$	
$6s^26p \ ^2P^{o}_{3/2}$	$5d6s^2 {}^2D_{3/2}$	8482,93 ^A	13377,261 ^A	-	-1,97 ^A	-1,778 ^A	-1,84 ^{d1}	$0,250(6)^{A}_{-}$	$0,15(6)^{A}_{-}$	-
		8042,54 ^B	13375,439 ^B		-1,87 ^B	$-1,646^{B}$	$-1,45^{d2}$	$0,346(6)^{B}$	$0,21(6)^{B}$	
		13882,43 ^C	13375,720 ^C		-2,83 ^C	$-1,687^{C}_{-}$		$0,012(6)^{C}$	0,19(6) ^C	
6s ² 6d ² D _{3/2}	$6s^26p^2P_{1/2}^{o}$	-	3648,439 ^B	3647,78 ^a	-	$-0,129^{B}$	-0,13 ^a	-	$93,00(6)^{B}_{-}$	$92,0\pm 5(6)^{a}$
			3647,671 [°]			-0,127 ^C			93,50(6) ^C	
$6s^2 6d^2 D_{3/2}$	$6s^{2}6p^{-2}P^{0}_{-3/2}$	-	4154,776 ^B	4154,09 ^a	-	-0,903 ^B	$-0,76^{a}$	-	$12,10(6)^{B}$	$16,8\pm1,1(6)^{a}$
			$4153,782^{\circ}_{-}$			-0,897 ^C			$12,20(6)^{C}_{-}$	
6s ² 6d ² D _{5/2}	$6s^{2}6p^{-2}P^{0}_{-3/2}$	-	4124,275 ^B	4124,72 ^a	-	$0,066^{B}$	0,14 ^a	-	$76,00(6)^{B}$	$89,0\pm9(6)^{a}$
			4124,541 ^C			0,065 ^C			75,80(6) ^C	
$6s^2 5f^2 F_{5/2}^{o}$	$5d6s^2 \ ^2D_{3/2}$	_	2729,804 ^B	2728,94 ^a	-	-0,815 ^B	-0,81 ^a	-	$22,80(6)^{B}_{a}$	$23,2\pm 2,0(6)^{a}$
			2729,821 ^C			-0,774 [°]			$25,20(6)^{C}_{-}$	
$6s^25f^2F_{7/2}^{o}$	$5d6s^2 \ ^2D_{5/2}$	_	2885,942 ^B	2885,14 ^a	-	$-0,639^{B}_{C}$	-0,64 ^a	-	$23,00(6)^{B}_{a}$	$23,1\pm2,0(6)^{a}$
			2885,925 ^C			-0,586 ^C			$26,00(6)^{C}$	

Tablo 3.35. Devam

^aFedchak ve çalışma grubu [367], ^bNIST Periodictable [62], ^cKwiatkowski ve çalışma arkadaşları [356], ^{d1,d2}Zou ve Fischer [368, *gf_L*'den çevrildi]

3.9.4. ¹⁷⁵Lu I'in bazı düşük hal seviyelerinin aşırı ince yapısı

Lutesyum ¹⁷⁵Lu ve ¹⁷⁶Lu olan iki doğal izotopa sahiptir. ¹⁷⁵Lu izotopunun bolluğu %97,41, çekirdek spini 7/2, manyetik dipol momenti $\mu_I = 2,2327\mu_N$ ve elektrik kuadrupol momenti Q = 3,49 barn'dır [47]. Nötral lutesyumun aşırı ince yapısı ve izotop etkileri farklı çalışma grupları tarafından incelenmiştir [371–388]. Bu çalışmalar atomik demet manyetik rezonans, lazer spektroskopisi, lazer optogalvanik spektroskopisi ve rezonans-iyonlaşma kütle spektroskopisi gibi deneysel yöntemlerle yapılmıştır [355, 378–382, 387].

Lu I atomunun $[Xe]4f^{14}$ özü dışında çift ve tek pariteli seviyeleri için Tablo 3.32'de verilen B konfigürasyon setindeki konfigürasyonlar seçilerek MCHF program paketiyle [412] $5d6s^2$, $5d^26s$, $5d^3$, $6s^26p$, 5d6s6p ve $5d^26p$ seviyelerinin A manyetik dipol ve B elektrik kuadrupol etkileşim terimleri hesaplandı. Tablo 3.36'da A manyetik dipol ve B elektrik kuadrupol aşırı ince yapı sabitleri diğer sonuçlarla karşılaştırılmaktadır. Bu sonuçlarla karşılaştırıldığında bazı seviyeler hariç uyum iyidir. Fakat bazı seviyelerde uyum kötüdür. Uyumsuzlukların giderilmesi için 5d6s², $5d^{2}6s$, $6s^{2}7s$, $6s6p^{2}$, $5d^{3}$, 5d6s7s, $6s^{2}6p$, 5d6s6p, $5d^{2}6p$ ve $6s^{2}7p$ konfigürasyon setivle tekrar hesap yapıldı. Bu hesaplamada ¹⁷⁵Lu I için elektrik kuadrupol momenti Q =5.68 b [42] alındı. Elde edilen $5d6s^2$ ve $6s^26p$ seviyeleri için sonuçlar tabloda "*" ile belirtilerek verildi. Bu seviyeler için uyum daha iyi oldu. Diğer seviyelerde düzelme olmadığı için tabloda verilmedi. Karşılaştırma değerlerinin deneysel yöntemlerle elde edildiğine dikkat edilmelidir. Lutesyumun aşırı ince yapı sabitleri için daha detaylı teorik çalışmalara ihtiyaç vardır. Tablo 3.32'de verilen diğer konfigürasyon setleri ile ve öz-değerlik ve öz-öz elektronları arasındaki karşılıklı etkileşimleri içeren konfigürasyon setleri ile hesaplamalar tekrarlanarak uyumsuzluğun giderilmesi düşünülmektedir.

Seviye	ler		HFS sa	abitleri	
			4		В
Konf.	Terim	Bu çalışma	Diğer	Bu çalışma	Diğer
		MCHF+BP	çalışmalar	MCHF+BP	çalışmalar
Çift parite i	çin:				
5d6s ²	$^{2}D_{3/2}$	256,49	$194,3(0,1)^{a}$	1036,34	$1511(1)^{a}$
		223,53*	194,33(300) ^b	1489,97*	1511,39(320) ^b
			195,6(40) ^c		$1506(15)^{c}$
	${}^{2}D_{5/2}$	199,16	147,0(1,0) ^a	1456,51	1865(10) ^a
		181,48*	146,78(138) ^b	2118,88*	1860,66(840) ^b
	4		149,0(60) ^c		$1862(18)^{\circ}$
$5d^{2}(^{3}F)6s$	${}^{7}F_{3/2}$	-302,49	-1160(3) ^d	315,62	285(30) ^d
	⁴ F _{5/2}	441,27	492(4,5) ^a	313,91	345(60) ^a
	⁴ F _{7/2}	490,41	765(30) ^a	490,26	201(150)*
5 12(3D)C-	4D	493,48	- 4008(15) ^d	/54,1/	-
5d ⁻ (⁻ P)6s	⁴ P _{1/2}	2131,94	4908(15)-	0,00	_
	P _{3/2} 4 D	559,82	-	890,30	-
$5d^{2}(^{3}\mathbf{D})6a$	$P_{5/2}$	//2,33	1110,3(15)	-052,58	300(00)
5u (F)0s	${}^{2}\mathbf{p}$	99,12 215 50	$10215(2)^{d}$	1011 52	$1101(15)^{d}$
$5d^2(^3F)6c$	¹ 3/2 ² E-	-213,30 210.80	-1021,5(3)	-1011,32	-1171(13)
54 (1908	${}^{2}F_{-2}$	7 27	$-636(15)^{d}$	991 50	$2424(60)^{d}$
$5d^{2}(^{1}G)6s$	${}^{2}G_{7/2}$	-105 56	$-441(3)^{d}$	2748 56	$1719(3)^{d}$
54 (0)05	${}^{2}G_{0/2}$	497.03	-	3118 53	_
$5d^{2}(^{1}S)6s$	${}^{2}S_{1/2}$	2790.34	_	0.00	_
$5d^{2}(^{1}D)6s$	${}^{2}D_{3/2}$	39.72	$-1065(9)^{d}$	32.70	$165(60)^{d}$
	${}^{2}D_{5/2}$	759.46	901.9(50) ^c	-759.64	$-43(20)^{\circ}$
	512	,	$883,5(4,5)^{d}$		$-42(60)^{d}$
$5d^3$	${}^{4}F_{3/2}$	350,24	_	-355,20	-
	${}^{4}F_{5/2}$	226,38	_	-321,50	-
	${}^{4}F_{7/2}$	168,75	-	-469,25	-
	${}^{4}F_{9/2}$	163,12	-	-672,16	-
$5d^3$	${}^{4}P_{1/2}$	688,06	-	0,00	-
	${}^{4}P_{3/2}$	218,62	_	-453,43	-
2	${}^{4}P_{5/2}$	242,07	-	410,51	-
5d ³	${}^{2}G_{7/2}$	264,95	-	1606,93	-
- 1 ³	${}^{2}G_{9/2}$	189,27	—	1597,25	-
5d ⁵	${}^{2}F_{5/2}$	275,78	-	1107,61	-
5 1 ³	² F _{7/2}	184,03	-	1325,91	-
5d°	⁻ H _{9/2}	185,90	-	1968,39	_
Tala a arita i	⁻ H _{11/2}	177,75	—	2190,59	-
$1 \text{ ex parite in } 6 \text{ s}^2 6 \text{ s}^2$	ζι Π: ² D ⁰	750.22	_	0.00	_
os op	r _{1/2}	130,22	_	0,00	_
	$^{2}\mathbf{P}^{0}$	297,47* 295.86	222 8(80)°	1437 54	$2091(23)^{\circ}$
	1 3/2	275,00	222,0(00)	2200 50*	2071(23)
$5d6s(^{3}D)6n$	${}^{4}\mathrm{F}^{\mathrm{o}}_{\mathrm{a}}$	-292.72	-915.8(60)°	1096 81	$1759(22)^{\circ}$
5403(D)0p	1 3/2	-272,12	$-922.5(3)^{d}$	1090,01	1759(22) 1756 5(3) ^d
			$-924.7(0.5)^{e}$		$1767(4)^{e}$
			$-924.82(15)^{f}$		$1766.8(1.0)^{\rm f}$
	${}^{4}\mathrm{F}^{\mathrm{o}}{}_{5/2}$	643.89	989.6(40) ^c	617.57	$1110(20)^{\circ}$
	512	,	$987(3)^{d}$		$1116(9)^{d}$
			$987,2(0,4)^{g}$		1117(6) ^g
			987,35(12) ^f		$1117,9(2,0)^{f}$
	${}^{4}F^{o}_{7/2}$	613,70	1016,5(40) ^c	1824,58	2531(22) ^c
	4		1021,19(7) ^f		2369,5(3,0) ^f
2	${}^{4}F^{o}_{9/2}$	614,62	1079,0(90) ^c	2944,62	3838(17) ^c
5d6s(³ D)6p	⁴ D ^o _{1/2}	-1052,26	-2250,8(40) ^c	0,00	-
	4- 0		-2244(3) ^d		
	⁴ D ^o _{3/2}	533,10	1025,9(50) ^c	308,07	$615(14)^{c}$
	1-0		$1025(15)^{a}$		600(120) ^a
	⁻ D ^o _{5/2}	561,51	$1095,5(90)^{\circ}$	345,30	813(25) ^d
	400	750.00	1092(3) ^a	402.14	855(30) ^a
	$D_{7/2}$	/52,02	1230(30)"	-492,16	-600(90)"

Tablo 3.36.¹⁷⁵Lu I'in A ve B aşırı ince yapı (HFS) sabitleri (MHz)

Tablo 3.36. Devam

Seviye	ler		HFS s	abitleri	
·			A		В
Konf.	Terim	Bu çalışma MCHF+BP	Diğer çalışmalar	Bu çalışma MCHF+BP	Diğer çalışmalar
5d6s(³ D)6p	⁴ P ^o _{1/2}	2484,97	$4511(5)^{a}$ $4528.5(1.8)^{d}$	0,00	_
	${}^{4}P^{o}_{3/2}$	1241,57	$2086(3)^{a}$ 2063 1(3) ^d	-682,47	$-1298(12)^{a}$ $-1095(15)^{d}$
	${}^{4}P^{o}{}_{5/2}$	904,48	$1492(2)^{a}$ $1497(9)^{d}$	124,42	$-237,5(24)^{a}$
$5d6s(^{3}D)6p$	${}^{2}P^{0}_{1/2}$	-483.73	$414(15)^{d}$	0.00	-
0 000(D)0p	${}^{2}P_{2/2}^{0}$	644.34	-	572.04	_
$5d6s(^{3}D)6p$	${}^{2}D_{3/2}^{0}$	238.26	_	151.66	_
••••(-)•P	${}^{2}D_{5/2}^{0}$	-37.43	_	461.41	_
$5d6s(^{3}D)6p$	${}^{2}F_{5/2}^{0}$	-57.99	-	1236.04	-
	${}^{2}\mathrm{F}^{0}_{7/2}$	272.36	-	1612.85	-
$5d6s(^{1}D)6p$	${}^{2}D_{3/2}^{0}$	-558.30	$597(30)^{d}$	-146.79	$210(150)^{d}$
	${}^{2}D_{5/2}^{0}$	808,37	_	-88,60	_
$5d6s(^{1}D)6p$	${}^{2}\mathrm{P}^{0}{}_{1/2}$	197,34	$-1536(6)^{d}$	0.00	-
	${}^{2}\mathrm{P}^{0}_{3/2}$	323,75	-	364,65	-
5d6s(1D)6p	${}^{2}\mathrm{F}^{0}{}^{5/2}{}^{5/2}$	122,96	$310,8(0,6)^{a}$ $309(30)^{d}$	1848,70	$3047(11)^{a}$ 2940(300) ^d
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	417.97	$840(15)^{d}$	2212.27	$3585(150)^{d}$
5d ² (³ P)6p	${}^{2}D_{3/2}^{0}$	122,69	_	516,46	_
	${}^{2}D_{5/2}^{0}$	177,98	_	179,75	-
$5d^{2}(^{3}F)6p$	${}^{4}D_{1/2}^{0}$	460,21	_	0.00	-
	${}^{4}D_{3/2}^{0}$	382,10	_	-57.39	-
	${}^{4}D_{5/2}^{0}$	227,33	-	335,08	-
	${}^{4}D^{0}_{7/2}$	143,74	-	706,80	-
5d ² (³ F)6p	${}^{4}\text{G}^{0}{}_{5/2}$	325,68	_	1244,74	-
	${}^{4}\text{G}^{0}_{7/2}$	209,59	_	1160,32	-
	${}^{4}G^{o}_{9/2}$	164,43	_	1288,96	-
	${}^{4}G^{o}_{11/2}$	131,28	_	1608,08	-
5d ² (¹ D)6p	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	195,89	-	280,57	_
	${}^{2}\mathrm{F}^{o}_{7/2}$	137,43	_	377,76	-
$5d^{2}(^{1}G)6p$	${}^{2}\mathrm{F}^{o}_{5/2}$	190,15	_	4439,37	-
· · · •	${}^{2}\mathrm{F}^{o}_{7/2}$	275,91	-	5017,75	-
5d ² (¹ G)6p	${}^{2}G^{o}_{7/2}$	166,38	-	1356,00	-
· · · ·	${}^{2}G^{o}_{9/2}$	179,20	-	2478,23	-
5d ² (¹ G)6p	${}^{2}\mathrm{H}^{\mathrm{o}}_{\mathrm{9/2}}$	203,24	-	2582,95	-
	${}^{2}\text{H}^{0}_{11/2}$	162.15	_	3684.50	-

^aWitte ve çalışma arkadaşları [387], ^bFigger ve Wolber [378], ^cReddy ve Rao [382], ^dVergés ve Wyart [355], ^eZimmermann ve çalışma arkadaşları [380], ^fKuhnert ve çalışma arkadaşları [381], ^gNunnemann ve çalışma arkadaşları [379]

3.9.5. Lu I, Lu II ve Lu III'ün geçiş enerjileri

Çok konfigürasyonlu Hartree-Fock (MCHF) ve relativistik Hartree-Fock (HFR) yöntemleri kullanılarak nötral, bir ve iki kez iyonlaşmış lutesyumun (Lu I, Lu II, Lu II) geçiş enerjileri (iyonlaşma potansiyeli, uyarılma enerjileri ve elektron ilgisi) hesaplandı [394]. İyonlaşma potansiyelleri ve uyarılma enerjileri ile ilgili hesaplamalar değerlik elektronları arasındaki karşılıklı etkileşmelere göre Tablo 3.37'de verilen konfigürasyon setleri ile yapıldı. Elde edilen sonuçlar Lu I için Tablo 3.38'de, Lu II ve Lu III için Tablo 3.39'da verilmektedir. Tablolarda iyonlaşma

potansiyelleri, uyarılma enerjileri ve elektron ilgisi cm⁻¹ birim sistemlerinde ve sadece tek pariteli seviyeler "^o" indisiyle sunulmaktadır.

Tablo 3.37. Lu I, Lu II ve Lu III'ün İP iyonlaşma potansiyeli ve UE uyarılma enerjileri hesaplamaları için alınan konfigürasyon setleri

		Konfigürasyonlar	
	Lu I	Lu II	Lu III
MCH	F+BP hesaplamaları için:		
İP	Lu II'nin ikinci sütundaki konfigürasyonlarla aynı	Lu III'ün üçüncü sütundaki konfigürasyonlarla aynı	4f ¹⁴
UE	5dns ² , 5d ² ns, 5dnp ² , 6snp ² , 5dns5g (n = 6, 7), 6s ² 5g, 5d5f ² , 6s6p5f, 6s5f7p, 6p7s5f, 7s5f7p, 5d ³ , 6p ² 7s, 6s7s ² , 6s ² 7s, 7s7p ² , 5d6s7s, 5d6p7p, 6s6p7p, 6p7s7p, 6s ² 6p, 5d6snp, 5d ² np, np ³ , ns ² 7p, 5dns5f (n = 6, 7), 5d ² 5f, 5f6d ² , 6p7s ² , 5d6p7s, 5d7s7p, 6s7s7p, 6p ² 7p, 6p7p ² , 6s6p7s	ns ² , 5dns (n = 6–9), ns5g, ns6g (n = 6–8), 6p5f, 5d ² , 5fnp, 6sns (n = 7–9), np ² (n = 6–9), 6pnp (n = 7–9), 7sns, 7pnp, (n = 8, 9), 8s9s, 8p9p, 6snp, 5dnp (n = 6, 7), 6snf (n = 5, 6)	ns (n = 6-9), nd (n = 5-7), ng (n = 5, 6), np (n = 6, 7), 5f
HFR	hesaplamaları için:		
İP	Lu II'nin ikinci sütundaki konfigürasyonlarla aynı	Lu III'ün üçüncü sütundaki konfigürasyonlarla aynı	4f ¹⁴
UE	$5d6s^2$, $5d^26s$, $6s^2ns$ (n = 7–14), $6s^2nd$ (n = 6–25), $6s^2ng$ (n = 5–7), $6s^2np$ (n = 6–25), $5d6s6p$, $6s^2nf$ (n = 5–23)	6s ² , 5d6s, 5d ² , 6s7s, 6s6d, 6snp, 5dnp (n = 6, 7), 5dnf, 6snf (n = 5, 6)	ns (n = 6-10), nd (n = 5-10), ng (n = 5-10), np (n = 6-10), nf (n = 5-10)

MCHF atomik yapı paket [412] ile yapılan MCHF+BP hesap sonuçları Tablo 3.38 ve Tablo 3.39'da verilmektedir. Diğer çalışmalarla karşılaştırıldığında özellikle $6s^26p$ seviyesi uyumsuzdur. Bu seviyeyi iyileştirmek için $5dns^2$, $5d^2ns$, $5dnp^2$, $6snp^2$, 5dns5g (n = 6, 7), $6s^25g$, $5d5f^2$, 6s6p5f, 6s5f7p, 6p7s5f, 7s5f7p, $5d^3$, $6p^27s$, $6s^2r^2$, $6s^27s$, $7s7p^2$, 5d6s7s, 5d6p7p, 6s6p7p, 6p7s7p, $6s^26p$, 5d6s6p, $5d^26p$ ve 5d6s5fseviyelerini içeren konfigürasyon setiyle yapılan hesaplamada daha iyi sonuç elde edildi. Fakat bu durumda da 5d6s6p seviyesindeki karşılaştırma verileri ile olan uyum bozuldu. Ayrıca, çift pariteli seviyeler için $5d6s^2$, $5d^26s$, $5d6p^2$, $6s6p^2$, $5d^3$ ve $6s^25g$ konfigürasyonlarıyla hesaplama yapıldı. Bu hesaplamada $5d6s^2$ $^2D_{5/2}$ seviyesinin enerjisi ve Lu I'in iyonlaşma enerjisindeki uyum daha iyi iken $5d^26s$ seviyesi için uyum azaldı. Bu hesaplamalara ait sonuçlar Tablo 3.38'de "*" üst indisiyle verilmektedir. MCHF+BP hesabında elektron ilgisi hesabı için lutesyumun taban hali için $5d6s^2$ konfigürasyonu ve Lu⁻ için [Xe]4f¹⁴6s² özü dışında 5dnp (n =7–9), 5dnf (n =5, 6), 6p5g, 5f5g ve [Xe]4f¹⁴ özü dışında $6s^2np^2$ (n = 6–9), $6s^2nf^2$ (n = 5–7), $6s^2ng^2$ (n = 5, 6) ve $5d^2ns^2$ (n = 6–8) konfigürasyonları seçildi. $6s^26p^2 {}^{3}P_{0}^{0}$ için karşılaştırma değeri ile uyum iyidir. Fakat $5d6s^26p {}^{1}D_{2}^{0}$ ve ${}^{3}D_{2}^{0}$ seviyeleri için kesin bir sonuç elde edilemedi. $5d6s^26p {}^{3}D_{2}^{0}$ seviyesi için iki sonuç elde edildi. Bu sonuçlar şüpheli olduğu için Tablo 3.38'de sunulmadı ve "?" ile tanımlanarak tablo altında dipnot olarak verildi. Tablo 3.39'da Lu II ve Lu III için hesap sonuçları incelendiğinde Lu II için 5d6p seviyesinde uyumun az ve iyonlaşma potansiyellerinde uyumun iyi olduğu görülmektedir.

HFR hesaplamalarında alınan konfigürasyon setleri Tablo 3.37'de verilmektedir. Bu konfigürasyon setleri değerlik elektronları arasındaki karşılıklı etkileşmeleri içerir. Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yapmak için iyileştirildi ve en küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri Lu I, Lu II ve Lu III için 0,75 olarak seçildi. Elektron ilgisi hesabı için Lu'nun taban hali için 5d6s² konfigürasyonu ve Lu⁻ için [Xe] $4f^{14}$ özü dışında 5d6s²6p, 5d²6s6p ve 6s²6p² konfigürasyonları seçildi. Ölçeklendirme faktörlerinin en küçük kareler yöntemiyle iyileştirilmemiş değerleri 5d6s²6p seviyesi için 0,80 ve 6s²6p² seviyesi için 0,60 olarak seçildi. Lu I, Lu II ve Lu III için elde edilen sonuçlar Tablo 3.38 ve Tablo 3.39'da sunulmaktadır. Lu I, Lu II ve Lu III için hesaplanan iyonlaşma potansiyelleri ve uyarılma enerjileri diğer çalısmalarla karsılastırıldığında uyumun oldukça iyi olduğu görülmektedir. Lutesyumun elektron ilgisi için HFR sonuçları Vosko ve Chevary'in Dirac-Hartree-Fock (DHF) teorisi ve yoğunluk fonksiyonel teorisi-Hartree-Fock [389], Eliav ve çalışma arkadaşlarının relativistik çiftlenmiş-küme yöntemi [216, 366] ve Davis ve Thompson'ın deneysel çalışmaları [390] ile karşılaştırıldığında 5d6s²6p ${}^{1}D_{2}^{o}$ ve 6s²6p 2 ${}^{3}P_{0}^{o}$ seviyeleri uyumlu iken 5d6s²6p ${}^{3}D_{2}^{o}$ seviyesi için uyum azdır.

Seviye	ler	Bu çalışma			Diğer çalışmalar
Konf.	Terim	MC	HF+BP	HFR	8,7,7
		İyo	nlaşma potansi	yeli (İP)	
5d6s ²	${}^{2}D_{3/2}$	40890,52	42388,57*	41921,20	43762,39 ^a 42836,0 ^b 35004,18 ^c
		Uy	arılma enerjile	ri (UE)	, -
5 1 <i>c</i> ²	25	0.600.10	0010 51*	1002 00	1000 000 1045h
5d6s ²	${}^{2}D_{5/2}$	2623,13	2319,71*	1993,90	1993,92*, 1945°
5d ² (³ F)6s	$F_{3/2}$	18158,82	16/31,3/*	18860,31	18851,31"
	⁴ F _{5/2}	18992,13	1/490,/6*	19459,63	19403,31"
	⁻ F _{7/2}	20405,10	18/64,4/*	20335,08	20247,29 ^a
< ²	$F_{9/2}$	21992,15	20237,65*	21304,59	21242,26 ^a
$6s^2/s$	${}^{2}S_{1/2}$	-	-	24125,00	24125,86 ^a , 23730 ^b
6s ² 6d	$^{2}D_{3/2}$	-	-	31550,70	31542,24 ^a , 31929 ^b
2 -	${}^{2}D_{5/2}$	-	_	31721,40	31713,60 ^a , 32040 ^b
6s ² 8s	${}^{2}S_{1/2}$	-	-	34623,70	34610,38 ^a , 33978 ^b
6s²7d	${}^{2}D_{3/2}$	-	-	36770,10	36768,81 ^a , 37028 ^b
2	${}^{2}D_{5/2}$	-	_	36954,10	36952,93 ^a , 37106 ^b
6s ² 9s	${}^{2}S_{1/2}$	-	-	38461,30	38458,36 ^a , 37520 ^b
6s ² 8d	${}^{2}D_{3/2}$	-	-	38820,60	38828,77 ^a
	$^{2}D_{5/2}$	-	-	38954,90	
$6s^2 10s$	${}^{2}S_{1/2}$	-	_	40283,30	40282,01 ^a , 39318 ^b
6s ² 9d	${}^{2}D_{3/2}$	-	-	40898,30	40901,01 ^a
	$^{2}D_{5/2}$	-	-	40918,10	
6s ² 6p	${}^{2}\mathbf{P}^{0}_{1/2}$	9526,51	4419,21*	4136,00	4136,00 ^a , 4080 ^b
	${}^{2}\mathbf{P}^{o}_{3/2}$	12372,41	6595,92*	7476,30	7476,35 ^a , 7383 ^b
5d6s(³ D)6p	${}^{4}F^{o}_{3/2}$	17594,18	16015,84*	17708,48	17427,28 ^a
	${}^{4}\mathrm{F}^{\mathrm{o}}_{5/2}$	18676,25	16756,96*	18662,41	18504,56 ^a
	${}^{4}\mathrm{F}^{\mathrm{o}}_{7/2}$	20747,96	17844,52*	20326,08	20432,53 ^a
	${}^{4}\mathrm{F}^{\mathrm{o}}_{9/2}$	22932,05	19181,57*	22235,00	22609,46 ^a
6s ² 7p	${}^{2}\mathrm{P}^{0}_{1/2}$	-	_	29496,50	29430,90 ^a , 30457 ^b
	${}^{2}\mathrm{P}^{0}_{3/2}$	_	_	30490,99	30488,62 ^a , 30930 ^b
6s ² 5f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	36632,50	36633,31 ^a , 36595 ^b
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	36644,90	36644,12 ^a , 36595 ^b
6s ² 8p	${}^{2}P_{1/2}^{0}$	_	_	36812,60	36808,76 ^a , 36005 ^b
1	${}^{2}\mathrm{P}^{0}_{3/2}$	_	_	37098,10	37131,38°, 36119 ^b
6s ² 6f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	_	39212,30	39212,61 ^a
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	_	39220.40	39220.17 ^a
$6s^29p$	${}^{2}\mathbf{P}^{0}_{1/2}$	_	_	39322.60	39321.96 ^a , 39554 ^b
••• • P	${}^{2}P_{2/2}^{0}$	_	_	39421.90	39424.68 ^a , 39861 ^b
	- 3/2		Elektron ilgisi	(Eİ)	0, 12 1,00 , 0,001
2	1- 0				
5d6s ² 6p	${}^{1}D_{2}^{0}$?	_	2665,134	2706 [°] , 2742,26 [°]
6s ² 6p ²	${}^{2}\mathbf{P}_{0}^{0}$	1203,38	-	1297,70	1345°, 1290,47°
5d6s ² 6p	F_2^{o}	2392,27	-	4262,212	_
	${}^{3}F^{0}_{3}$	2216,69	-	2272,87	-
	³ D ^o ₂	?	_	468,00	917 ^b

Tablo 3.38. Lu I için geçiş enerjileri (cm⁻¹)

^a NIST Atomic Spectra Database [63], ^bBorschevsky ve çalışma arkadaşları [366], ^cGálvez ve çalışma arkadaşları [51], ^dDavis ve Thompson [390], ? ile gösterilen değerler kesin olarak elde edilemedi. 5d6s²6p ³D^o₂ seviyesi için 2283,13 cm⁻¹ ve 1,97 cm⁻¹ şeklinde iki farklı değer hesaplandı.

	Sevi	yeler	Bu ça	ılışma	Diğer çalışmalar
	Konf.	Terim	MCHF+BP	HFR	0, , ,
			Lu II, Taban hal	[Xe] $4f^{14}6s^2 {}^{1}S_0$	
İP	$6s^2$	${}^{1}S_{0}$	106023,02	108709,5	112000 ^a , 113914 ^b
		3-			
UE	5d6s	$^{3}D_{1}$	13136,86	11/68,887	11796,24 ^{°°} , 12861°
		$^{3}D_{2}$	13660,21	12469,817	12435,32°, 13500°
		$^{J}D_{3}$	14819,50	14194,097	14199,08 ^a , 15253 ^b
	5d6s	$^{1}D_{2}$	17721,39	17328,399	17332,58 ^a , 18538 ^b
	$5d^2$	${}_{2}^{\prime}F_{2}$	27814,36	29377,074	29406,70 ^a
		°F ₃	28936,96	30902,303	30889,09 ^a
	2	${}^{\circ}F_4$	30225,76	32490,923	32503,62 ^a
	$5d^2$	³ P ₀	33424,09	35605,608	35652,10 ^a
		$^{3}P_{1}$	34166,97	36584,899	36557,05 ^a
		${}^{3}P_{2}$	34126,00	38519,871	38574,94 ^a
	$5d^2$	$^{1}D_{2}$	36135,77	36154,622	36098,18 ^a
	6s6p	${}^{3}P_{0}^{0}$	27881,79	27290,785	27264,40 ^a , 27569 ^b
		${}^{3}P_{1}^{0}$	28706,85	28473,718	28503,16 ^a , 28821 ^b
		${}^{3}P_{2}^{o}$	31281,89	32453,598	32453,26 ^a , 32811 ^b
	6s6p	${}^{1}P_{0}^{0}$	_	38239,396	38223,49 ^a , 38965 ^b
	5d6p	${}^{3}\mathrm{F}^{0}{}_{2}$	33955,18	41278,809	41224,96 ^a
	-	${}^{3}\mathrm{F}^{0}{}_{3}$	37147,64	44873,493	44918,68 ^a
		${}^{3}\mathrm{F}_{4}^{0}$	40113,44	48550,724	48536,83 ^a
	5d6p	${}^{1}D_{2}^{o}$	37458,69	45429,372	45458,56 ^a
	5d6p	${}^{3}D_{1}^{0}$	39489,16	45488,728	45532,33 ^a
	1	$^{3}D_{2}^{o_{2}}$	39994,82	46929,091	46904,38 ^a
		${}^{3}D_{3}^{o}$	41643,46	48747,289	48733,19 ^a
			Lu III, Taban hal	[Xe] $4f^{14}6s {}^{2}S_{1/2}$	
in		20	1 60 411 5	1 (5 7 4 4 0	1 coo to 3 1 co 1 2 c h
IP	6s	${}^{2}S_{1/2}$	162411,5	165744,0	169049", 169135°
UE	5d	$^{2}D_{22}$	6351 36	5707 60	5707 60 ^a 6812 ^b
СĽ	54	${}^{2}D_{2}$	9901 54	8647.80	8647 80 ^a 9767 ^b
	7s	${}^{2}S_{12}$	-	86681 21	86681 21ª
	6d	${}^{2}D_{2}$	_	92321.60	92321 60 ^a
	ou	$^{2}D_{3/2}$	_	93107.60	93107 60 ^a
	80	${}^{2}S$		11078/ 75	110784 75 ^a
	6n	${}^{2}\mathbf{p}^{0}$	38142 71	38400 61	38400 61 ^a 38688 ^b
	oh	${}^{2}\mathbf{p}^{0}$	12121 02	44705 21	14705 21 ^a 1498 ^b
	7n	${}^{2}\mathbf{p}^{0}$	42121,72	100357.00	10035700^{a}
	۲Y	${}^{2}\mathbf{p}^{0}$	_	102810.82	100337,07 102810 82 ^a
	5f	${}^{2}E^{0}$	_	102010,02	102010,02 105590 60 ^a
	51	¹ 5/2 2 _F o	_	105590,00	105570,00 105704 10 ^a
		Г 7/2	_	103704,10	103704,10

Tablo 3.39. Lu II ve Lu III'ün İP iyonlaşma potansiyeli (cm⁻¹) ve UE uyarılma enerjileri (cm⁻¹)

^aNIST Atomic Spectra Database [63], ^bEliav ve çalışma arkadaşları [216]

3.10. Lu II (Z = 71) için Hesaplama Sonuçları

Bir kez iyonlaşmış lutesyumun (Lu II) bazı çizgileri aşırı tuhaf yıldızın (HD 101065) spektrumunda tespit edilmiştir. Aynı zamanda, Lu II güneş spektrumunda da gözlenmiştir. Fotosferdeki bolluk değerinin saflaştırılması Lu II'nin doğru salınıcı şiddetlerine bağlıdır.

Bir kez iyonlaşmış lutesyum (Lu II) geçmişte az çalışılmıştır. Lu II spektrumuna ait ilk veriler [1, 4, 6, 52, 109, 347, 348] ve iyonlaşma potansiyeli ile ilgili çalışmalar [16, 21, 26, 45, 46] kaynaklarında bulunabilir. Bazı uyarılmış seviyelerin yarı ömürleri, zaman-çözünürlüklü lazer-indirgenmiş floresans tekniği, hızlı-demet-lazer, demet-folyo ve HFR+CP yöntemleri [116, 172, 367, 396–398] ile çalışılmıştır. Işıma parametreleri (dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları) için yapılan çalışmalarda Fourier dönüşüm spektroskopisi, HFR+CP ve MCDF yöntemleri kullanılmıştır [52, 69, 395, 396, 398]. Ayrıca, Lu II'nin 6s6p ³P₁ ve 5d6s ³D₁ seviyelerinin aşırı ince yapı sabitleri sunulmuştur [397].

Bir kez iyonlaşmış lutesyumun (Lu II) bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları ve elektrik dipol geçişlerine ait dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları çok konfigürasyonlu Hartree-Fock (MCHF) [412, 413] ve relativistik Hartree-Fock [418] yöntemleri (HFR) kullanılarak hesaplandı.

Lu II'nin [Xe]4f¹⁴ özü dışında, MCHF+BP ve HFR hesaplamaları için değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen ve A, B ve C olarak isimlendirilen konfigürasyon setleri Tablo 3.40'da verilmektedir.

3.10.1. Lu II'in bazı seviyelerinin enerjileri ve Landé g-çarpanları

Bir kez iyonlaşmış lutesyumun [Xe] $4f^{14}$ özü dışında $6s^2$, 5dns (n = 6, 7), 5d^2, 6s7s, 6s6d, $6p^2$, 5d6d, 6snp, 5dnp (n = 6, 7), 6snf, 5dnf (n = 5, 6) ve 6p6d uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF+BP ve HFR yöntemleri ile hesaplandı. Elde edilen sonuçlar Tablo 3.41 ve Ekler kısmındaki Tablo A.13'te sunulmaktadır. Enerji seviyeleri $6s^2$ ¹S₀ taban hal seviyesine göre cm⁻¹ birim

sisteminde verilmektedir. Tablolarda farklı konfigürasyon setlerine göre hesaplanan sonuçlar MCHF+BP ve HFR için A, B ve C üst indisleriyle ve sadece tek pariteli seviyeler "^o" indisiyle belirtilmektedir. Elde edilen sonuçlar NIST verileri [63] ve Quinet ve çalışma grubunun HFR+CP elde edilen hesaplama sonuçları [398] ile karşılaştırılmaktadır.

Seviyeler	Konfigürasyonlar									
	Α	В	С							
MCHF+BP hesaplan	naları için:									
Çift parite	ns ² , 5dns (n = 6–9), ns5g, ns6g (n = 6–8), 6p5f, 5d ² , 5fnp, 6sns (n = 7–9), np ² (n = 6–9), 6pnp (n =7–9), 7sns,7pnp (n = 8, 9), 8s9s, 8p9p	A hesabı ile aynı	A hesabı ile aynı							
Tek parite	6snp, 5dnp (n = 6, 7), 6snf (n = 5, 6)	6snp, 5dnp (n = 6–9), 5dnf (n = 5–7), 6snf (n = 5–8), 7s5f, 6png (n = 5, 6), 6pns (n = 7–9), 7s7p, 7pns, 8snp (n = 8, 9), 8p9s, 9s9p	6s6p, 5d6p							
HFR hesaplamaları i	çin:									
Çift parite	6s ² , 5d6s, 5d ² , 6s7s, 6s6d	$6s^2$, 5dns (n = 6, 7), 5d ² , $6p^2$, 6s7s, 6snd (n = 6, 7)	6s ² , 5d6s, 5d ² , 6s7s, 6s6d							
Tek parite	6s6p, 5d6p	6snp, 5dnp (n = 6, 7), 6p6d, 5dnf, 6snf (n = 5, 6)	6snp, 5dnp (n = 6, 7), 5dnf, 6snf (n = 5, 6)							

Tablo 3.40. Lu II'ye ait hesaplamalar için alınan konfigürasyon setleri

MCHF yönteminde değerlik arasındaki karşılıklı etkileşmelere göre seçilen konfigürasyonlar için dalga fonksiyonları, relativistik düzeltmeleri dikkate almak için Breit-Pauli Hamiltonyeni ile köşegenleştirildi ve konfigürasyon etkileşme yöntemiyle seviye enerjileri elde edildi. Jönsson ve Gustafsson tarafından geliştirilen Zeeman programında [413], elde edilen seviye enerjileri kullanılarak seviyelerin Landé *g*-çarpanları hesaplandı.

MCHF+BP hesaplamaları Tablo 3.40'da verilen konfigürasyon setleri kullanılarak $6s^2$, 5d6s, 5d², 6s7s, 5d7s, 6s6p ve 5d6p seviyelerinin enerjileri ve Landé *g*-çarpanları Tablo 3.41'de, $6p^2$, 6s7p, 5d7p, 6snf (n = 5, 6) ve 5d5f seviyelerinin enerjileri ve Landé *g*-çarpanları da Tablo A.13'te verilmektedir. Enerji seviyeleri için hesap sonuçları NIST [63] verileri ile karşılaştırıldığında 5d6s seviyesinin ${}^{3}D_{1,2}$

terimlerinde B hesabı, ${}^{3}D_{3}$ ve ${}^{1}D_{2}$ terimlerinde ise A hesabı daha uyumludur. 5d² ve 6s7s seviyeleri için en iyi uyum C hesabında görülmektedir. Diğer çift pariteli seviyeler (6p², 5d7s) için karşılaştırma değeri mevcut olmadığından diğer çalışma sonuçları (HFR) ile karşılaştırıldığında C hesabı uyumludur. Tek pariteli seviyeler için 6s6p ${}^{1}P_{1}^{o}$ seviyesinde uyum oldukça az olmasına rağmen diğer terimlerinde uyum iyidir. Tüm hesaplamalarda 6s6p ${}^{1}P_{1}^{o}$ seviyesine 5d6p ${}^{1}P_{1}^{o}$ seviyesinin konfigürasyon katkısı fazladır. 5d6p seviyeleri için ise C hesabının sonuçları uyumludur. 6s7p, 5d7p, 6snf (n = 5, 6) ve 5d5f seviyeleri, HFR sonuçları ile karşılaştırıldığında 5d5f seviyesi hariç Bu uyum iyidir. seviyelerdeki uyumsuzlukların giderilmesi için öz ve değerlik elektronları arasındaki karşılıklı etkileşmelerde hesaplara dahil edilmemelidir. Landé g-çarpanları, NIST [63] ve Quinet ve calışma grubunun [398] verileri ile karşılaştırıldığında tüm seviyeler için uyumun iyi olduğu görülmektedir.

HFR hesaplamalarında konfigürasyon setleri değerlik elektronları arasındaki karşılıklı etkileşme etkilerini dikkate alacak şekilde seçildi. HFR atomik yapı paketi [418] ile Hamiltonvenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurmayı yapmak için iyileştirildi. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A, B ve C hesaplamalarında 0,75 olarak seçildi. Tablo 3.41 ve Tablo A.13'te 6s², 5d6s, 5d², 6s7s, $6p^2$, 5d7s, 6snp, 5dnp (n = 6, 7), 6snf (n = 5, 6) ve 5d5f seviyelerinin energileri ve Landé g-çarpanları sunulmaktadır. Diğer çalışmalarla [63. 3981 karşılaştırıldığında sonuçların tüm seviyeler için oldukça iyi olduğu görülmektedir.

Sevi	veler	Е			<i>g</i> -çarpanı				
Konf.	Terim	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer		
		MCHF+BP	HFR	çalışmalar	MCHF+BP		çalışmalar		
Çift par	rite için:								
$6s^2$	${}^{1}S_{0}$	$0,00^{A,B,C}$	$0,00^{A,B,C}$	$0,00^{a}$					
516-	30	12126 ocA	117 <i>67 677</i> A	11706 248	0.400A.B.C	0.400A.B.C	0.528		
5068	$^{\circ}D_{1}$	13136,86 ^{°°}	11/6/,6// ¹²	11796,24*	0,499	0,499	0,52"		
		10704,17 13342 31 ^C	11768 887 ^C						
	$^{3}D_{2}$	13660.21^{A}	12471 529 ^A	12435 32 ^a	1 161 ^{A,C}	1 158 ^{A,C}	1 14 ^a		
	D ₂	11269.19^{B}	12447.508^{B}	12100,02	1.159 ^B	1,150 ^B	1,11		
		13861,79 ^C	12469,817 ^C		1,109	1,107			
	$^{3}D_{3}$	14819,50 ^A	14193,395 ^A	14199,08 ^a	1,334 ^{A,B,C}	1,334 ^{A,B,C}	1,41 ^a		
		12454,99 ^B	14196,606 ^B						
		15020,81 ^C	14194,097 ^C		1.6				
5d6s	$^{1}D_{2}$	17721,39 ^A	17324,998 ^A	17332,58 ^a	1,005 ^{A,C}	1,009 ^{A,C}	1,09 ^a		
		14894,33 ^B	17336,445 ^b		1,007 ^b	1,010 ^B			
5 12	3	17897,40°	17328,399 ^e	00406 708	O CTOABC	0.6754	0.663		
5d ²	$^{5}F_{2}$	$2/814,36^{A}$	29279,923 ¹	29406,70*	0,672	$0,6/5^{11}$	0,66"		
		24275,01 28046.48 ^C	29808,800 20377 074 ^C			0,711 0,676 ^C			
	³ F-	28040,48 28936 96 ^A	29377,074 30718 191 ^A	30889 09 ^a	1 083 ^{A,B,C}	1,084 ^{A,B,C}	1.05 ^a		
	13	25399.96 ^B	31626.400^{B}	50009,09	1,005	1,004	1,05		
		29169.61 ^C	30902.303 ^C						
	${}^{3}F_{4}$	30225,76 ^A	32247,486 ^A	32503,62 ^a	$1,248^{A,B,C}$	1,241 ^A	1,27 ^a		
		26694,75 ^B	33144,300 ^B			1,225 ^B			
		30456,34 ^C	32490,923 ^C			1,240 ^C			
$5d^2$	$^{1}D_{2}$	36135,77 ^A	36186,576 ^A	36098,18 ^a ?	1,203 ^A	1,228 ^A	1,37 ^a ?		
		32673,73 ^в	33918,000 ^B		1,195 ^B	1,013 ^B			
2	3-	36332,77 ^c	36154,622°	25 (52 10 ³	1,208 ^c	1,211 ^c			
$5d^2$	$^{5}P_{0}$	33424,09 ^A	35607,504 ^A	35652,10"					
		$29924,14^{-}$	35364,500 ⁻						
	³ D .	33010,00 34166 97 ^A	36515 693 ^A	36557 05 ^a	1 501 ^{A,B,C}	1 501 ^{A,B,C}	1 / 1 ^a		
	11	30657 34 ^B	36874 600 ^B	50557,05	1,501	1,501	1,41		
		34373.32 ^C	36584.899 ^C						
	$^{3}P_{2}$	34126,00 ^A	38419,327 ^A	38574,94 ^a	1,291 ^A	1,265 ^A	1,49 ^a ?		
	-	30639,32 ^B	38159,800 ^B	,	1,299 ^B	1,443 ^B	,		
		34313,56 ^C	38519,871 ^C		1,286 ^C	1,280 ^C			
$5d^2$	$^{1}G_{4}$	37779,18 ^A	36735,900 ^A	_	1,002 ^{A,B,C}	1,009 ^A	-		
		34269,17 ^в	36519,000 [™]			1,026 ^B			
5 12	la	37987,46°	36880,201°			1,011			
5d-	S_0	43936,85 rd	44413,900 ^B	_					
		40899,00 44090 81 ^C	40828,100 44435 899 ^C						
6s7s	$^{3}S_{1}$	80576.40 ^A	63774.300 ^A	63774.3 ^a	$2.002^{A,B}$	$2.002^{A,C}$	2.05^{a}		
0070	21	99398,31 ^B	63800,200 ^B	00771,0	2,000 ^C	1,996 ^B	2,00		
		79101,14 ^C	63774,300 ^C		,	,			
6s7s	${}^{1}S_{0}$	89832,61 ^A	68989,700 ^A	$68988,80^{\rm a}$					
		99675,57 ^B	68988,700 ^B						
	2	85608,83 ^C	68989,200 ^C			10			
6s6d	$^{3}D_{1}$	-	71410,134 ^A	71169,1ª?	-	0,499 ^{A,C}	-		
			71900,800 ^B			0,509			
	³ D		/1435,076°	71705 189		1 101A.C			
	D_2	-	/1414,066 71851,600 ^B	/1/05,1*?	—	1,101 1,150 ^B	—		
			71438 974 ^C			1,150			
	$^{3}D_{2}$	_	72399 885 ^A	72735.6 ^a ?	_	1.334 ^{A,C}	_		
	23		71886.200 ^B	.2.33,0 .		1.333 ^B			
			72373,342 ^C			,			
6s6d	${}^{1}D_{2}$	_	72405,615 ^A	-	-	1,066 ^{A,C}	_		
			71990,700 ^B			1,090 ^B			
			72378,958 ^C						

Tablo 3.41. Lu II'nin E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Tablo 3.41. Devam

Sevi	veler		Е			g-carpani	
Konf.	Terim	Bu c	alısma	Diğer	Bu ca	lisma	Diğer
		MCHF+BP	HFR	calismalar	MCHF+BP	HFR	calismalar
5.47.	³ D	05422.06 ^A	74254 800 ^B	72452 0ª2	0.400 ^{A,B,C}	0.400 ^B	çanşınanı
5078	D_1	93423,90	74554,800	/5455,0 ?	0,499	0,499	-
		103007,14					
	³ D	94880,49	74254 800B	74100 089	1 150A.C	1.1C7 ^B	
	D_2	95914,41	74354,800	/4122,2 ?	1,158	1,167	_
		103610,70-			1,100-		
	35	95413,88°	TATA TOOB		1 aa (A B C	1 22 (B	
	$^{5}D_{3}$	9/115,2/ ^A	74354,500	/5/1/,6"?	1,334	1,334	_
		105304,55					
	1	96628,08 [°]	D			D	
5d7s	$^{1}D_{2}$	99754,44 ^A	74371,500 ^b	-	1,008 ^{A,C}	0,999	-
		105309,95			1,066 ^b		
		98946,53 ^C					
Tek par	rite için:						
6s6p	${}^{3}P_{0}^{0}$	27881,79 ^A	27285,577 ^A	27264,40 ^a			
		27318,60 ^B	27294,193 ^в				
		30572,82 ^C	27290,785 ^C				
	${}^{3}P^{0}{}_{1}$	28706,85 ^A	28477,328 ^A	28503,16 ^a	1,479 ^A	1,476 ^A	1,51 ^a
		$27877,50^{B}$	28470,109 ^B		$1,484^{B}$	1,474 ^B	1,47 ^b
		31232,53 ^C	28473,718 ^C		1,487 ^C	$1,475^{\rm C}$	
	${}^{3}\mathrm{P}^{0}{}_{2}$	31281,89 ^A	32456,197 ^A	32453,26 ^a	1,492 ^A	1,501 ^{A,B,C}	1.66^{a}
	2	29558.38 ^B	32452.198 ^B	,	1.497^{B}	,	1.50^{b}
		33124.95 ^C	32453.598 ^C		1.499 ^C		9
6s6p	${}^{1}P_{1}^{0}$	63500.24 ^A	38230.499 ^A	38223.49 ^a	$1.001^{A,B,C}$	1.009^{A}	0.99^{a}
on of	- 1	57756.20 ^B	38250,199 ^B		-,	1.010 ^{B,C}	• • • •
		67931.60 ^C	38239.396 ^C			1,010	
5d6n	³ F ^o 2	33955 18 ^A	41274 197 ^A	41224 96 ^a	0.775^{A}	0 773 ^A	0.71^{a}
Juop	• 2	32367.66 ^B	41289304^{B}	1122 1,90	0.781 ^B	0.767^{B}	0.77^{b}
		37767 03 ^C	41278 809 ^C		0.780 ^C	0,707 0,771 ^C	0,77
	${}^{3}\mathrm{F}^{0}$	37147 64 ^A	44890 206 ^A	44918 68 ^a	1.086^{A}	1.096^{A}	1 08 ^a
	13	35119 32 ^B	44843 493 ^B	44710,00	1,000 1,083 ^B	1,098 ^B	1,00
		40729 79 ^C	44873 493 ^C		1,005 1,084 ^C	1,097 ^C	1,10
	³ E ⁰	40113 44 ^A	48551 001 ^A	18536 83 ^a	1,004 1,250 ^{A,B,C}	1,057 1,251 ^{A,B,C}	1 25 ^{a,b}
	1 4	37678 03 ^B	48540 407 ^B	40550,05	1,230	1,201	1,23
		43431.80 ^C	48540,407				
5d6n		43451,60 37458 60 ^A	45307 200 ^A	15158 56 ^a	0.016 ^{A,B}	0.082A	0 04 ^a
Juop	D_2	35062 20 ^B	45357,207 45484 602 ^B	45450,50	0,910	1.003^{B}	1.00^{b}
		40772.06 ^C	45404,092		0,900	1,005	1,00
5160	³ D ⁰	40772,00 20480 16 ^A	45429,572 45406 201 ^A	15522 22ª	0.622A	0,990 0.572 ^A	0.42a
Suop	D_1	39469,10 42460.82 ^B	45490,591	45552,55	0,032	0,575	0,43 0,57 ^b
		42400,82	45450,011 45400 720 ^C		0,010	0,374	0,37
	³ D ⁰	20004 82 ^A	45400,720 46040 288 ^A	16001 28ª	0,500 1.160 ^A	0,372 1.151 ^A	1 1 2 ^a
	D_2	27221 06 ^B	40949,200 46022 712 ^B	40904,38	1,109 1,159 ^B	1,131 1,120 ^B	1,15 1 14 ^b
		37221,90	40922,712		1,158 1,167 ^C	1,130 $1,146^{\circ}$	1,14
	³ D ⁰	455/4,51 41642 46 ^A	40929,091 48750 420 ^A	10722 10 ^a	1,107 1,220 ^{A,B}	1,140 1.271 ^A	1 20 ^a
	D_3	41045,40	48730,420	48/33,19	1,520 1,224 ^C	1,271 1,272 ^{B,C}	1,50 1,27 ^b
		36392,91	40/30,///		1,524	1,275	1,27
516	300	44955,08 42642.06 ^A	48/4/,289	100/2 508			
5d6p	\mathbf{P}_{0}	43642,96	499/1,091	49963,58			
		398/0,4/-	49981,128				
	350	46554,18	499/1,193	50040 201	1.400Å	1 (22 A B	1 toah
	$^{\circ}P_{1}^{\circ}$	44127,26 rd	50000,319 rd	50049,20*	1,488 ¹	1,432	1,43
		40433,85	50008,054		1,485	1,434°	
	3-0	4/011,64	50006,595		1,489°	1 100AC	1 0 = 3
	${}^{\circ}P{}^{\circ}{}_2$	45217,85 ^A	51244,092 ^A	51201,66"	1,481	1,429 ^{A,C}	1,37"
		41590,97 ^в	51237,616 ^B			1,426	
	1-0	48103,89	51240,505			A	
5d6p	${}^{1}F_{3}^{0}$	48183,41 ^A	53067,197 ^A	53079,33 ^a	1,011 ^A	1,050 ^A	1,02ª
		44151,39 ^в	53119,404 ^в		1,013 ^в	1,047 ^в	1,05°
	1 -	52686,50 [°]	53089,506 ⁰	-	1,008	1,048	-
5d6p	$^{1}P_{1}^{0}$	36171,08 ^A	59128,400 ^A	59122,4 ^a	0,899 ^A	1,011 ^A	1,37 ^a ?
		33468,22 ^в	59064,501 ^B		0,919 ^в	1,010 ^{в,С}	
		38502.11 ^C	59100.298 ^C		0.961 ^C		

^aNIST Atomic Spectra Database [63], ^bQuinet ve çalışma grubu [398], *Tablonun daha geniş hali Tablo A.13'te verilmektedir.

Lu II'nin elektrik dipol geçişleri için λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve A_{ki} (sn⁻¹) geçiş olasılıkları gibi ışıma parametreleri hem relativistik hem konfigürasyon etkileşme etkilerinin ele alındığı MCHF+BP ve HFR yöntemleriyle hesaplandı. 6s6p–5d6s, 6s6p–6s², 5d6p–5d6s, 5d6p–5d², 5d6p–6s², 6s7s–6s6p ve 6s7s–5d6p elektrik dipol geçişlerinin dalga boyları, log(*gf*) logaritmik ağırlıklı salınıcı şiddetleri ve *g*A_{ki} (sn⁻¹) ağırlıklı geçiş olasılıkları Tablo 3.42 ve Ekler kısmındaki Tablo A.14'te farklı konfigürasyon setlerine ait hesaplamaları A, B ve C üst indisiyle sunulmaktadır. Tablolarda sadece tek pariteli seviyeler "^o" indisiyle belirtildi ve geçiş olasılığı için 10'un kuvvetleri parantez içinde yazıldı. Tablo 3.42 ve Tablo A.14'te tüm geçişler için DREAM veri tabanındaki [64] verilerle karşılaştırma yapılmaktadır. Bu veriler Biémont ve çalışma arkadaşları tarafından HFR+CP yöntemiyle yapılmıştır ve bir kısmı [398]'de sunulmuştur. Ayrıca bazı geçişler için NIST [62] verileri de mevcuttur.

MCHF atomik yapı paketi [412] ile Tablo 3.40'da verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında yapılan A, B ve C hesaplamalarında sırasıyla 1077, 20847 ve 1724 tane mümkün elektrik dipol geçişleri elde edildi. Tablo 3.42 ve Tablo A.14'te, bu geçişler için elde edilen veriler çok fazla olduğu için sadece düşük seviye geçişleri sunulmaktadır. Tablolarda, ağırlıklı salınıcı şiddetleri, logaritmik ağırlıklı salınıcı şiddetine ve geçiş olasılıkları, ağırlıklı geçiş olasılıklarına çevrilerek verilmektedir. Genel olarak tüm geçişlerde değerlik elektronları arasındaki karşılıklı etkileşmenin dikkate alındığı C konfigürasyon seti kullanılarak elde edilen sonuçlar diğer çalışmalarla daha uyum içerisindedir. 5d6s–6s6p ¹P^o₁ ve 6s²–6s6p ¹P^o₁ geçişlerinde dalga boyu sonuçlarında uyum iyi olmamasına rağmen $\log(gf)$ ve gA_{ki} için uyum iyidir. 5d6p–6s², 5d6p–5d6s ve 5d6p–5d² geçişlerinde dalga boyu için uyum az iken $\log(gf)$ ve gA_{ki} için uyum iyidir. 5d6s ³D₂–5d6p ³P^o₁ geçişinde gA_{ki} uyumlu olmasına rağmen λ ve $\log(gf)$ için uyum kötüdür. 5d² ³F₂–5d6p ³P^o₁ için λ (C hesabı) iyi iken diğer ışıma parametrelerinde uyum kötüdür. 5d6s ^{3.1}D₂–5d6p ¹P^o₁ geçişlerinde ise bazı geçişleri hariç λ 'da uyum iyi olmamasına rağmen $\log(gf)$ ve gA_{ki} için uyum iyidir.

HFR program paketi [418] ile Tablo 3.40'da verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında A, B ve C hesaplamaları için 193, 2284 ve 832 tane mümkün elektrik dipol geçişleri hesaplandı. Sadece karşılaştırma değeri olan düşük seviye elektrik dipol geçişlerinin dalga boyları, logaritmik ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları Tablo 3.42 ve Tablo A.14'te verilmektedir. En küçük kareler yöntemiyle enerjileri deneysel verilere uydurma yapıldı. Elde edilen uydurma parametreleriyle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. Diğer çalışmalarla karşılaştırıldığında elde edilen sonuçların hemen hemen tüm geçişler için uyumlu olduğu görülmektedir. 5d² ${}^{1}D_{2}$ –5d6p ${}^{3}D_{2}^{o}$ geçişinde dalga boyu için B hesabı kötü iken ağırlıklı geçiş olasılığı için tüm hesaplar uyumsuzdur. B hesabının $5d^{2} {}^{1}D_{2}$ -5d6p ${}^{3}D_{3}^{o}$, ${}^{3}P_{1}^{o}$ ve ${}^{1}F_{3}^{o}$ geçişlerinde λ uyumsuz olmasına rağmen diğer ışıma parametrelerinde uyum iyidir. 5d² ${}^{1}D_{2}$ -5d6p ${}^{3}P_{2}^{o}$ geçişindeki tüm ışıma parametrelerinde A ve C hesapları için uyum iyi iken B hesabı için uyum kötüdür. 5d6p ${}^{3}P_{012}^{o}$ -6s7s ${}^{3}S_{1}$ ve 5d6p ${}^{3}D_{2}^{o}$ -6s7s ${}^{3}S_{1}$ gecislerinde ise dalga boyları için tüm hesaplarda uyum iyi olmasına rağmen B hesabına ait log(gf) ve gA_{ki} değerleri için uyum iyi değildir. Bazı uyumsuzlukların iyileştirilmesi için öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin ele alındığı konfigürasyonlar da hesaba katılmalıdır. Fakat bu tür konfigürasyon setleri ile yapılan hesaplamalarda bilgisayar kısıtlamalarıyla karşılaşıldığından bu tür hesaplamaları yapmak zor olmaktadır.

G	eçişler		λ			log(gf)			gA_{ki}	
Alt seviye	Üst seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
-	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	PHFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ³ D ₁	6s6p ³ P ^o ₀	6732,28 ^A	6444,1539 ^A	6463,107 ^a	-0,956 ^A	-0,906 ^A	-1,05 ^a	$1,62(7)^{A}$	1,994(7) ^A	$1,43(7)^{a}$
-	• •	$6061,07^{B}$	6448,5809 ^B		$-0,879^{B}$	-0,943 ^B		$2,39(7)^{B}$	$1,828(7)^{B}$	
		5776,16 ^C	6442,5164 ^C		-0,801 ^C	-0,929 ^C		$3,15(7)^{C}$	$1,892(7)^{C}$	
$6s^{2} S_0^{1}$	6s6p ³ P ^o 1	3469,83 ^A	3511,5645 ^A	3507,38 ^a	-1,401 ^A	-1,016 ^A	$-1,17^{a}$	$2,20(7)^{A}$	$5,219(7)^{A}$	$3,62(7)^{a}$
		3593,87 ^B	3512,4500 ^B	3507,39 ^b	-1,474 ^B	-1,049 ^B		$1,73(7)^{B}$	$4,830(7)^{B}$	$3,75(7)^{b}$
		3192,97 ^C	3512,1224 ^C		$-1,526^{\circ}$	$-1,010^{\circ}$		$1,95(7)^{C}$	$5,279(7)^{C}$	
5d6s ³ D ₁	6s6p ³ P ^o 1	6377,92 ^A	5984,5507 ^A	5983,886 ^a	-1,036 ^A	-1,003 ^A	-1,15 ^a	$1,51(7)^{A}$	$1,849(7)^{A}$	$1,33(7)^{a}$
		5862,42 ^B	5994,0530 ^B		-0,973 ^B	-1,039 ^B		$2,06(7)^{B}$	$1,697(7)^{B}$	
		$5564,08^{\circ}$	5986,2947 ^C		$-0,903^{\circ}$	$-1,025^{\circ}$		$2,70(7)^{\rm C}$	$1,757(7)^{C}$	
5d6s ³ D ₂	6s6p ³ P ^o 1	6598,22 ^A	6247,7213 ^A	6221,89 ^a	-0,697 ^A	$-0,588^{A}$	$-0,76^{a}$	$3,07(7)^{A}$	$4,412(7)^{A}$	$2,99(7)^{a}$
-		$6041,34^{B}$	6240,9697 ^B	6221,87 ^b	$-0,603^{B}$	$-0,642^{B}$		$4,55(7)^{B}$	$3,904(7)^{B}$	$2,97(7)^{b}$
		5729,74 ^C	6248,4822 ^C		$-0,503^{\circ}$	$-0,617^{\rm C}$		$6,36(7)^{C}$	$4,128(7)^{C}$, , ,
5d6s ¹ D ₂	$6s6p^{-3}P_{1}^{\circ}$	9014,46 ^A	8966,7278 ^A	8949,629 ^a	$-2,540^{A}$	-3,123 ^A	-2,54 ^a	$2,36(5)^{A}$	$6,254(4)^{A}$	$2,41(5)^{a}$
-		7736,06 ^B	8979,0197 ^B		$-2,203^{B}$	$-2,564^{B}$		$6,98(5)^{B}$	$2,256(5)^{B}$, , ,
		7453,76 ^C	8972,4169 ^C		$-2,301^{\circ}$	-3.127°		$5,70(5)^{\rm C}$	$6,187(4)^{C}$	
$5d6s^{-3}D_1$	$6s6p^{-3}P_{2}^{0}$	5477,99 ^A	4833,5928 ^A	4839,617 ^a	-1,801 ^A	$-2,047^{A}$	$-2,18^{a}$	$3,51(6)^{A}$	$2,561(6)^{A}$	$1,87(6)^{a}$
•	1 -	5336,42 ^B	4839,0331 ^B	,	-1.922^{B}	-2.075^{B}	,	$2,80(6)^{B}$	$2,395(6)^{B}$, , ,
		5033,88 ^C	$4834,4802^{\circ}$		-1,921 ^C	-2.064°		$3.04(6)^{C}$	$2,464(6)^{C}$	
5d6s ³ D ₂	$6s6p^{-3}P_{2}^{\circ}$	5639,72 ^A	5003,8310 ^A	4994,126 ^a	-1,265 ^A	-0,988 ^A	$-1,14^{a}$	$1,14(7)^{A}$	$2,737(7)^{A}$	$1,92(7)^{a}$
-	1 -	5484,26 ^B	4998,6919 ^B	,	-1.130^{B}	-1.038^{B}	,	$1.64(7)^{B}$	$2,443(7)^{B}$, , ,
		5169.09 ^C	5004.0509°		-0.975 ^C	-1.022°		$2.64(7)^{C}$	$2.535(7)^{C}$	
5d6s ³ D ₃	$6s6p^{-3}P_{2}^{\circ}$	6034,36 ^A	5475,6089 ^A	5476,675 ^a	-0,399 ^A	-0,259 ^A	-0.42^{a}	$7,30(7)^{A}$	$1,226(8)^{A}$	$8,52(7)^{a}$
5	1 -	5865,84 ^B	5478,0160 ^B	5476,69 ^b	-0.278^{B}	-0.313 ^B	,	$1.02(8)^{B}$	$1.082(8)^{B}$, , ,
		5498,61 ^C	5476,5980 ^C	,	-0,199 ^C	-0,293 ^C		$1.40(8)^{C}$	$1,133(8)^{C}$	
5d6s ¹ D ₂	$6s6p^{-3}P_{2}^{\circ}$	7315,80 ^A	6608,8644 ^A	6611,633 ^a	-1,428 ^A	-2,027 ^A	-2.12^{a}	$4,64(6)^{A}$	$1,436(6)^{A}$	$1.15(6)^{a}$
2	1 2	$6845,65^{B}$	6614,1258 ^B	,	-1.602^{B}	-2,034 ^B	,	$3.56(6)^{B}$	$1,408(6)^{B}$	
		6532.10°	6611.4864 ^C		-1.745 ^C	-1.995 ^C		$2.76(6)^{C}$	$1.545(6)^{C}$	
$6s^{2} S_0$	$6s6p^{-1}P^{\circ}_{1}$	1572.20^{A}	2615.7115 ^A	2615.411 ^a	0.016 ^A	0.272^{A}	0.14^{a}	$2.81(9)^{A}$	$1.826(9)^{A}$	$1.36(9)^{a}$
0	1 1	1470.40°	2614.3646 ^B	2615.42 ^b	0.059 ^C	0.225^{B}	,	$3.54(9)^{C}$	$1.636(9)^{B}$	$1.359(9)^{b}$
		, .	2615.1650 ^C	/	- ,	$0.274^{\rm C}$		/	$1.831(9)^{C}$, (- /
$5d6s^{-3}D_1$	$6s6p^{-1}P^{o_1}$	2130.08 ^B	3778.8791 ^A	3782.898 ^a	-3.870 ^B	-2.903 ^A	-2.90 ^a	$1.98(5)^{B}$	5.837(5) ^A	$5.82(5)^{a}$
- 1	····· I I	1829.27 ^C	3778.8242 ^B	,	-3.823 ^C	-2.827^{B}	· · ·	$3.00(5)^{\rm C}$	$6.959(5)^{B}$	/- \-/
		, .	3777.7879 ^C		- ,	-2.846°		, \ - /	$6.662(5)^{C}$	

Tablo 3.42. Lu II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹)*

Ge	eçişler		λ		$\log(gf)$ gA_{ki}					
Alt seviye	Üst seviye	Bu ça	ılışma	Diğer	Bu ça	lışma	Diğer	Bu ça	Bu çalışma	
•	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ³ D ₂	6s6p ¹ P ^o 1	2001,56 ^A	3882,1358 ^A	3876,648 ^a	-2,014 ^A	-1,088 ^A	$-1,09^{a}$	$1,61(7)^{A}$	3,613(7) ^A	$3,61(7)^{a}$
		2153,25 ^B	3875,4873 ^B		$-1,816^{B}$	$-1,023^{B}$		$2,20(7)^{B}$	$4,207(7)^{B}$	
		1846,82 ^C	3880,5444 ^C		-1,889 ^C	-1,101 ^C		$2,52(7)^{\rm C}$	3,514(7) ^C	
5d6s ${}^{1}D_{2}$	6s6p ¹ P ^o 1	2178,74 ^A	4783,4253 ^A	4785,433 ^a	0,037 ^A	-1,024 ^A	-1,91 ^a	$1,53(9)^{A}$	$2,761(7)^{A}$	$3,61(6)^{a}$
		2335,64 ^B	4780,7709 ^B		$0,146^{B}$	-1,638 ^B		$1,71(9)^{B}$	$6,723(6)^{B}$	
		1995,55 ^C	4782,1806 ^C		0,181 ^C	-1,042 ^C		$2,54(9)^{\rm C}$	$2,649(7)^{C}$	
$5d6s^{-3}D_1$	$5d6p^{-3}F_{2}^{\circ}$	4778,07 ^A	3389,0766 ^A	3397,066 ^a	-0,208 ^A	-0,004 ^A	-0,11 ^a	$1,81(8)^{A}$	$5,755(8)^{A}$	$4,54(8)^{a}$
	· -	4640,53 ^B	3389,5590 ^B	3397,07 ^b	$-0,182^{B}$	-0,010 ^B		$2,03(8)^{B}$	$5,679(8)^{B}$	
		$4080, 16^{\circ}$	3388,6874 ^C		$-0,145^{\circ}$	-0,013 ^C		$2,87(8)^{\rm C}$	$5,637(8)^{C}$	
5d6s ³ D ₂	$5d6p^{-3}F_{2}^{\circ}$	4900,65 ^A	3471,8961 ^A	3472,477 ^a	-0,338 ^A	-0,124 ^A	$-0,22^{a}$	$1,27(8)^{A}$	$4,163(8)^{A}$	$3,33(8)^{a}$
	-	4751,93 ^B	3467,1286 ^B	3472,48 ^b	$-0,274^{B}$	$-0,155^{B}$		$1,57(8)^{B}$	$3,885(8)^{B}$	
		4168,54 ^C	3471,1359 ^C		-0,283 ^C	$-0,128^{\circ}$		$2,00(8)^{\rm C}$	$4,123(8)^{C}$	
5d6s ³ D ₃	$5d6p^{-3}F_{2}^{\circ}$	5195,94 ^A	3692,6495 ^A	3699,104 ^a	-2,665 ^A	-4,362 ^A	-3,97 ^a	$5,34(5)^{A}$	$2,127(4)^{A}$	$5,22(4)^{a}$
	-	5035,77 ^B	3691,1454 ^B		$-3,132^{B}$	-4,056 ^B		$1,94(5)^{B}$	$4,300(4)^{B}$	
		4380,23 ^C	3692,1193 ^C		-3,599 ^C	-4,437 ^C		$8,75(4)^{C}$	1,789(4) ^C	
5d6s $^{1}D_{2}$	$5d6p^{-3}F_{2}^{\circ}$	6118,80 ^A	4175,5031 ^A	4184,256 ^a	-0,397 ^A	-0,320 ^A	-0,44 ^a	$7,14(7)^{A}$	$1,830(8)^{A}$	$1,38(8)^{a}$
		5741,22 ^B	4174,2789 ^B		-0,350 ^B	$-0,628^{B}$		$9,03(7)^{B}$	$9,024(7)^{B}$	
		5011,92 ^C	4175,2963 ^C		-0,261 ^C	-0,336 ^C		$1,45(8)^{C}$	1,763(8) ^C	
$5d^2 {}^3F_2$	$5d6p^{-3}F_{2}^{\circ}$	16006,91 ^A	8337,2924 ^A	8459,158 ^a	-0,843 ^A	-0,639 ^A	-0,73 ^a	3,73(6) ^A	$2,202(7)^{A}$	$1,75(7)^{a}$
		12443,11 ^B	8710,4773 ^B		$-0,778^{B}$	-0,489 ^B		$7,18(6)^{B}$	$2,849(7)^{B}$	
		10203,60 ^C	8402,1155 ^C		-0,666 ^C	-0,630 ^C		$1,38(7)^{C}$	2,216(7) ^C	
$5d^2 {}^3F_3$	$5d6p^{-3}F_{2}^{\circ}$	19514,51 ^A	9473,2617 ^A	9672,391 ^a	-2,782 ^A	-2,899 ^A	$-2,97^{a}$	$2,89(4)^{A}$	9,384(4) ^A	$7,63(4)^{a}$
		14473,20 ^B	10348,856 ^B		$-2,878^{B}$	-2,913 ^в		$4,21(4)^{B}$	$7,606(4)^{B}$	
		11524,70 ^C	9637,1471 ^C		-2,586 ^C	-2,879 ^C		$1,30(5)^{C}$	9,497(4) ^C	
5d6s ³ D ₂	$5d6p^{-3}F_{-3}^{\circ}$	4237,49 ^A	3084,6386 ^A	3077,605 ^a	$0,186^{A}$	$0,280^{A}$	0,16 ^a	$5,70(8)^{A}$	1,335(9) ^A	$1,01(9)^{a}$
		4202,29 ^B	3086,7506 ^в	3077,60 ^b	$0,255^{B}$	$0,245^{B}$		$6,79(8)^{B}$	1,231(9) ^B	$8.68(8)^{b}$
		3710,18 ^C	3086,0675 ^C		0,266 ^C	$0,262^{\rm C}$		8,95(8) ^C	$1,281(9)^{C}$	
5d6s ³ D ₃	$5d6p^{-3}F_{-3}^{\circ}$	4456,49 ^A	3257,6653 ^A	3254,312 ^a	-0,475 ^A	-0,067 ^A	-0,17 ^a	$1,12(8)^{A}$	5,390(8) ^A	$4,26(8)^{a}$
		4422,74 ^B	3263,0603 ^B	3254,31 ^b	-0,566 ^B	-0,063 ^B		$9,25(7)^{B}$	$5,420(8)^{B}$	$4,20(8)^{b}$
		3876,94 ^C	3259,5162 ^C		-0,466 ^C	-0,068 ^C		$1,52(8)^{C}$	5,370(8) ^C	
5d6s ¹ D ₂	$5d6p^{-3}F_{-3}^{0}$	5118,63 ^A	3627,7608 ^A	3623,981 ^a	-1,302 ^A	-0,685 ^A	-0,81 ^a	$1,27(7)^{A}_{-}$	1,047(8) ^A	$7,75(7)^{a}$
		4957,77 ^B	3634,9823 ^B		$-1,258^{B}$	$-0,626^{B}$		$1,50(7)^{B}$	1,195(8) ^B	
		4363,75 ^C	3630,4123 ^C		-1,237 ^C	-0,701 ^C		2,03(7) ^C	$1,007(8)^{C}$	

Tablo 3.42. Devam

G	eçişler		λ			log(gf)		gA _{ki}		
Alt seviye	Üst seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d^2 {}^3F_2$	$5d6p^{-3}F_{3}^{\circ}$	10592,50 ^A	6406,0246 ^A	6444,849 ^a	-1,479 ^A	-1,449 ^A	-1,53 ^a	1,97(6) ^A	5,779(6) ^A	$4,74(6)^{a}$
_		9268,70 ^B	6651,3049 ^B		$-1,458^{B}$	-1,463 ^B		$2,71(6)^{B}$	$5,187(6)^{B}$	
		$7834,50^{\circ}$	6453,0912 ^C		-1,355 ^C	-1,445 ^C		$4,79(6)^{C}$	$5,748(6)^{C}$	
$5d^2 {}^3F_3$	$5d6p^{-3}F_{-3}^{o}$	12022,51 ^A	$7056,1522^{A}$	7125,827 ^a	$-0,466^{A}$	-0,295 ^A	$-0,41^{a}$	$1,58(7)^{A}$	$6,792(7)^{A}$	$5,04(7)^{a}$
-		$10350, 10^{\rm B}$	7565,9450 ^B		$-0,458^{B}$	$-0,322^{B}$		$2,17(7)^{B}$	$5,555(7)^{B}$	
		8590,62 ^C	7157,5815 ^C		-0,334 ^C	$-0,296^{\circ}$		$4,19(7)^{C}$	$6,579(7)^{C}$	
$5d^2 {}^3F_4$	$5d6p^{-3}F_{3}^{\circ}$	14227,64 ^A	7909,6852 ^A	8052,519 ^a	-2,299 ^A	-2,043 ^A	$-2,16^{a}$	$1,65(5)^{A}$	$9,657(5)^{A}$	$7,09(5)^{a}$
•	1 5	11952,31 ^B	8547,5866 ^B		$-1,724^{B}$	$-1,908^{B}$		$8,80(5)^{B}$	$1,129(6)^{B}$, , ,
		9658,55 ^C	8075,8707 ^C		-1,843 ^C	$-2,014^{\rm C}$		$1,03(6)^{C}$	$9,901(5)^{C}$	
$5d6s^{-3}D_1$	$5d6p^{-1}D_{2}^{0}$	4092,74 ^A	2973,5737 ^A	2969,813 ^a	-0,328 ^A	-0,395 ^A	$-0,58^{a}$	$1,87(8)^{A}$	3,039(8) ^A	$2,00(8)^{a}$
-	1 2	4124,63 ^B	2967,5550 ^B		$-0,181^{B}$	$-0,515^{B}$		$2,58(8)^{B}$	$2,311(8)^{B}$, , ,
		3634,41 ^C	2970,8416 ^C		-0,215 ^C	$-0,446^{C}$		$3,08(8)^{C}$	$2,705(8)^{C}$	
$5d6s^{-3}D_2$	$5d6p^{-1}D_{2}^{o}$	4182,35 ^A	3037,1402 ^A	3027,289 ^a	$-1,282^{A}$	$-2,764^{A}$	-2,64 ^a	$1,99(7)^{A}$	$1,244(6)^{A}$	$1,65(6)^{a}$
-	· -	$4212,40^{\text{B}}$	3026,8430 ^B		$-0,842^{B}$	-4,313 ^B		$5,40(7)^{B}$	$3,538(4)^{B}$	
		3704,37 ^C	3034,0212 ^C		-1,216 ^C	-2,931 ^C		$2,95(7)^{C}$	8,492(5) ^C	
$5d6s^{3}D_{3}$	$5d6p^{-1}D_{2}^{o}$	4395,54 ^A	3204,7345 ^A	3198,105 ^a	-1,217 ^A	-0,348 ^A	$-0,40^{a}$	$2,10(7)^{A}$	$2,915(8)^{A}$	$2,63(8)^{a}$
	· -	4433,95 ^B	3196,1877 ^B		$-1,694^{B}$	$-0,261^{B}$		$6,86(6)^{B}$	$3,580(8)^{B}$	
		3870,60 ^C	3201,5101 ^C		-1,374 ^C	-0,310 ^C		$1,88(7)^{C}$	$3,185(8)^{C}$	
5d6s ${}^{1}D_{2}$	$5d6p^{-1}D_{2}^{\circ}$	5038,39 ^A	3562,2410 ^A	3554,416 ^a	$0,150^{A}$	0,261 ^A	0,19 ^a	$3,71(8)^{A}$	$9,584(8)^{A}$	$8,11(8)^{a}$
	· -	4971,86 ^B	3552,1902 ^B	3554,43 ^b	$0,087^{B}$	$0,112^{B}$		$3,29(8)^{B}$	$6,842(8)^{B}$	
		4355,72 ^C	3558,5997 ^C		$0,185^{\rm C}$	$0,257^{\rm C}$		$5,38(8)^{C}$	9,523(8) ^C	
$5d^2 {}^3F_2$	$5d6p^{-1}D_{2}^{o}$	10254,53 ^A	6204,5102 ^A	6228,084 ^a	-1,213 ^A	-0,895 ^A	-1,06 ^a	$3,88(6)^{A}$	$2,205(7)^{A}$	$1,52(7)^{a}$
		9318,05 ^в	6379,2438 ^B		-1,334 ^B	-1,866 ^B		$3,55(6)^{B}$	$2,230(6)^{B}$	
		7808,64 ^C	6229,6332 ^C		$-1,102^{C}$	-0,910 ^C		$8,65(6)^{C}$	$2,114(7)^{C}$	
$5d^2 {}^3F_3$	$5d6p^{-1}D_{2}^{o}$	11589,00 ^A	6812,4381 ^A	6861,774 ^a	-1,412 ^A	-2,259 ^A	$-2,08^{a}$	$1,92(6)^{A}$	7,923(5) ^A	$1,19(6)^{a}$
		10411,68 ^B	7215,8845 ^B		-0,964 ^B	-1,799 ^B		$6,68(6)^{B}$	$2,035(6)^{B}$	
		8559,53 ^C	6883,7053 ^C		-1,131 ^C	-2,046 ^C		6,73(6) ^C	$1,266(6)^{C}$	
$6s^{2} S_0$	$5d6p^{-3}D_{1}^{\circ}$	2524,88 ^A	2197,9782 ^A	2195,556 ^a	-0,457 ^A	-0,597 ^A	-0,81 ^a	$3,65(8)^{A}$	$3,496(8)^{A}$	$2,14(8)^{a}$
		2752,25 ^B	2199,8981 ^B	2195.54 ^b	-0,483 ^B	$-0,628^{B}$		$2,89(8)^{B}$	$3,249(8)^{B}$	$2.142(8)^{b}$
		2350,12 ^C	2198,3897 ^C		-0,673 ^C	-0,618 ^C		$2,56(8)^{C}$	3,325(8) ^C	
5d6s ³ D ₁	$5d6p^{-3}D_{1}^{0}$	3778,63 ^A	2964,8329 ^A	2963,319 ^a	-0,225 ^A	-0,141 ^A	-0,24 ^a	$2,78(8)^{A}$	5,488(8) ^A	$4,39(8)^{a}$
	-	3911,41 ^в	2970,0298 ^B	2963,32 ^b	-0,146 ^B	$-0,150^{B}$		$3,11(8)^{B}$	$5,351(8)^{B}$	
		3424,18 ^C	2965,6119 ^C		$-0,142^{C}$	-0,144 ^C		$4,10(8)^{C}$	5,443(8) ^C	

Tablo 3.42. Devam

^aDream Database [64], ^bNIST Periodictable [62], *Tablonun daha geniş hali Tablo A.14'te verilmektedir.

3.11. Lu III (Z = 71) için Hesaplama Sonuçları

İki kez iyonlaşmış lutesyum (Lu III), [Xe]4f¹⁴ özü dışında bir dış elektrona sahip olduğundan Lu I ve Lu II'ye göre basit bir atomik yapıya sahiptir. Lu III, nötral ve bir kez iyonlaşmış lutesyuma göre geçmişte daha az çalışılmıştır.

İki kez iyonlaşmış lutesyumun enerjileri ve çizgileri ile ilgili yapılan ilk çalışmalara [347, 348, 399] kaynaklarından ulaşılabilir. İyonlaşma potansiyeli de farklı çalışma grupları tarafından verilmiştir [16, 23, 45, 46, 323]. 4f¹⁴ns (n = 7–10), 4f¹⁴nf (n = 5–9), 4f¹⁴5g, 4f¹⁴nd (n = 6, 7) ve 4f¹⁴7p konfiğürasyonlarının enerjileri ve bu seviyeler arasındaki geçişler tanımlanmıştır ve bu geçişlere ait veriler [401]'de bulunabilir. Daha sonra, 4f¹⁴5d–4f¹⁴6p, 4f¹⁴5d–4f¹⁴5f, 4f¹⁴6s–4f¹⁴6p ve 4f¹⁴5g–4f¹⁴5f geçişlerinin dalga boyları yayınlanmıştır. Bu verilere de [299, 300]'den ulaşılabilir. 4f¹⁴6s ²S_{1/2}–4f¹⁴6p ²P^o_{1/2,3/2} geçişlerinin salınıcı şiddetleri, bazı seviyelerin relativistik enerjileri ve geçiş olasılıkları relativistik model-potansiyel yöntemiyle [306, 307, 402] ve bazı geçişlerin salınıcı şiddetleri ve geçiş olasılıkları da HFR+CP yöntemiyle incelenmiştir [135]. Ayrıca, HFR+CP yöntemiyle deneysel olarak bilinen enerji seviyelerinin Landé *g*-çarpanları da hesaplanmıştır [48]. 4f¹⁴6p'ye ait seviyelerin yarı ömürleri zaman-çözünürlüklü lazer spektroskopisi ve HFR+CP yöntemiyle çalışılmıştır [49, 135, 367]. Lu III'e ait aşırı ince yapı çalışmaları da [399–401] mevcuttur.

Lu III'ün bazı uyarılmış hallerine ait seviye enerjileri ve Landé *g*-çarpanları ve elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları çok konfigürasyonlu Hartree-Fock (MCHF) [412, 413] ve relativistik Hartree-Fock (HFR) [418] yöntemleri kullanılarak hesaplandı. Lu III'ün MCHF+BP ve HFR hesaplamaları için, değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen ve A, B, C ve D ile gösterilen konfigürasyon setleri Tablo 3.43'te verilmektedir.

3.11.1. Lu III'ün bazı seviyelerinin enerjileri ve Landé g-çarpanları

İki kez iyonlaşmış lutesyum, [Xe] özü dışında $4f^{14}$ ns (n = 6–20), $4f^{14}$ nd (n = 5–20), $4f^{14}$ ng (n = 5–15), $4f^{14}$ np (n = 6–20) ve $4f^{14}$ nf (n = 5–20) uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları MCHF+BP ve HFR yöntemleriyle hesaplandı. Elde edilen sonuçlar Tablo 3.44 ve Ekler kısmındaki Tablo A.15'te seviye enerjileri, taban hal seviyesi $4f^{14}$ 6s ${}^{2}S_{1/2}$ 'ye göre cm⁻¹ biriminde verilmektedir. Tablolarda farklı konfigürasyon setlerine göre elde edilen sonuçlar MCHF+BP ve HFR için A, B, C ve D üst indisleriyle ve sadece tek pariteli seviyeler "o" indisiyle belirtilmektedir. Elde edilen sonuçlar için seviye enerjileri NIST verileri [63] ile ve Landé *g*-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ile karşılaştırılmaktadır.

Seviyeler		Konfigi	irasyonlar	
	Α	В	С	D
MCHF+BP hes	aplamaları için:			
Çift parite	$4f^{14}ns (n = 6-9),$	$4f^{14}ns (n = 6-9),$	A hesabıyla aynı	$4f^{14}ns (n = 6-9),$
	$4f^{14}nd (n = 5-7),$	$4f^{14}nd (n = 5-7),$		$4f^{14}nd (n = 5-9),$
	$4f^{14}ng (n = 5, 6)$	$4f^{14}5g$		$4f^{14}ng (n = 5-9)$
Tek parite	$4f^{14}np (n = 6-8),$	$4f^{14}np (n = 6-8),$	$4f^{14}np (n = 6, 7),$	$4f^{14}np (n = 6, 7),$
	$4f^{14}nf(n = 5-9)$	$4f^{14}nf(n = 5, 6)$	$4f^{14}nf(n = 5-7)$	$4f^{14}5f$
HFR hesaplama	ıları için:			
Çift parite	$4f^{14}ns (n = 6-10),$	$4f^{14}ns (n = 6-10),$	$4f^{14}ns (n = 6-15),$	$4f^{14}ns (n = 6-20),$
	$4f^{14}nd (n = 5-7),$	$4f^{14}nd (n = 5-10),$	$4f^{14}nd (n = 5-15),$	$4f^{14}nd (n = 5-20),$
	$4f^{14}5g$	$4f^{14}ng (n = 5-10)$	$4f^{14}ng (n = 5-10)$	$4f^{14}ng (n = 5 - 15)$
Tek parite	$4f^{14}np (n = 6, 7),$	$4f^{14}np (n = 6-10),$	$4f^{14}np (n = 6-20),$	$4f^{14}np (n = 6-20),$
	$4f^{14}nf(n = 5-9)$	$4f^{14}nf(n = 5-10)$	$4f^{14}nf(n = 5-15)$	$4f^{14}nf(n = 5-20)$

Tablo 3.43. Lu III'e ait hesaplamalar için alınan konfigürasyon setleri

MCHF+BP hesaplamaları için, Tablo 3.43'te verilen konfigürasyon setlerinde Lu III'ün özü olarak A, C ve D hesaplarında [Xe] ve B hesabında [Xe]4f¹⁴ alındı. MCHF yönteminde değerlik elektronları arasındaki karşılıklı etkileşmelere göre seçilen konfigürasyonlar için hesaplanan dalga fonksiyonlarında relativistik düzeltmeler dikkate alınarak konfigürasyon etkileşme yöntemiyle seviye enerjileri elde edildi. Daha sonra MCHF+BP dalga fonksiyonları ve seviye enerjileri kullanılarak Zeeman programıyla [413] Landé *g*-çarpanları hesaplandı. MCHF+BP hesaplamalarında elde edilen 4f¹⁴ns (n = 6–9), 4f¹⁴nd (n = 5–7), 4f¹⁴ng (n= 5, 8), $4f^{14}$ np (n = 6-8) ve $4f^{14}$ nf (n = 5-8) uyarılmış seviyelerinin enerjileri ve Landé gçarpanları Tablo 3.44 ve Tablo A.15'te verilmektedir. 4f¹⁴5d, 4f¹⁴8s ve 4f¹⁴7d seviyeleri için D hesabı karşılaştırma verileri ile uyum içindedir. 4f¹⁴9s, 4f¹⁴6d ve 4f¹⁴5g seviyeleri için ise sadece B hesap sonucu olduğundan bu sonuçlar karşılaştırma verileri ile karşılaştırıldığında 4f¹⁴5g seviyesi için uyumun iyi olduğu görülmektedir. Tek pariteli seviyelerde ise ilk 4f¹⁴6p seviyesi için A ve B hesap sonuçlarında uyum iyidir. 4f147p seviyesi için ise D hesabı NIST değerleri ile uyumludur. 4f¹⁴5f seviyesi icin D hesabında uyum iyi iken 4f¹⁴6f seviyesi icin C hesabı iyidir. 4f¹⁴8f seviyesi için uyum iyi olmasına rağmen 4f¹⁴7f seviyesi için uyum azdır. Uyumsuzlukların giderilmesi için 5p6'dan uyarılmaların ele alındığı $5p^{6}4f^{14}ns$ (n = 6, 7), $5p^{6}4f^{14}nd$ (n = 5, 6), $5p^{5}4f^{14}5d5f$, $5p^{6}4f^{14}np$ (n = 6, 7), $5p^{6}4f^{14}nf$ (n = 5, 6) ve $5p^54f^{14}6s^2$ konfigürasyonları ile yapılan hesaplamada herhangi bir düzelme olmadığı görüldüğünden tablolarda verilmedi. Bu uyumsuzlukların düzeltilmesi, öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin dikkate alınması için 4f¹⁴'ten uyarılmalarla yapılan hesaplamalarla olacağı düsünülmektedir. Elde edilen Landé g-carpanlarının [48] ile uyumu oldukça iyidir.

HFR hesaplamalarında konfigürasyonlar, tüm hesaplamalarda değerlik elektronları arasındaki karşılıklı etkileşme etkilerini dikkate alacak şekilde seçildi ve Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurmayı yaparak iyilestirildi. Spin-yörünge parametrelerinin ölceklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkilesme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirme yapılmamış değerleri A ve B hesapları için 0,75 ve C ve D hesapları için 0,85 olarak seçildi. HFR hesaplamaları Tablo 3.43'te verilen konfigürasyon setleriyle HFR atomik yapı paketi [418] kullanılarak elde edildi. HFR sonuçlarının karşılaştırma değeri olanlar Tablo 3.44'te ve yüksekçe uyarılmış seviyeleri de Tablo A.15'te sunulmaktadır. Lu III'ün $4f^{14}$ ns (n = 6–9), $4f^{14}$ nd (n = 5–7), $4f^{14}$ ng (n = 5, 8), $4f^{14}$ np (n = 6-8) ve $4f^{14}nf$ (n = 5-8) uvarılmış seviyelerinin enerjisi ve Landé g-carpanları tablolarda verilmektedir. NIST verileri [63] ile karşılaştırıldığında A, B ve C sonuçları karşılaştırma değerleri ile bire bir uyumludur. D hesabında en küçük kareler yöntemi ile deneysel verilere uydurma bilgisayar kısıtlamalarından dolayı yapılamadığından bu sonuçlar ilk elde edilen şekli ile verilmektedir. D hesabında 5d seviyesinde uyum az iken diğer seviyelerinde uyum iyidir. Ayrıca, tüm hesaplamalarda Landé *g*-çarpanları, Quinet ve Biémont tarafından HFR+CP yöntemiyle elde edilen hesaplama sonuçları [48] ile oldukça uyumludur.

Seviy	eler		Е		<i>g</i> -çarpanı				
Konf.	Terim	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer		
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar		
Çift par	ite için:								
$4f^{14}6s$	${}^{2}S_{1/2}$	$0,00^{A,B,C,D}$	$0,00^{A,B,C,D}$	$0,00^{a}$	$2,002^{A,B,C,D}$	$2,002^{A,B,C,D}$	2,002 ^b		
4f ¹⁴ 5d	${}^{2}D_{3/2}$	6351,36 ^{A,C}	5707,60 ^{A,B,C}	5707,6 ^a	0,799 ^{A,B,C,D}	$0,800^{A,B,C,D}$	$0,800^{b}$		
		7831,22 ^B	3443,00 ^D						
		5262,42 ^D							
	${}^{2}D_{5/2}$	9901,54 ^{A,C}	8647,80 ^{A,B,C}	8647,8 ^a	$1,200^{A,B,C,D}$	$1,200^{A,B,C,D}$	1,200 ^b		
		11315,02 ^B	6914,30 ^D						
. a14-	2	8843,49 ^D	A LARC				b		
$4f^{14}7s$	${}^{2}S_{1/2}$	-	86681,21 ^{A,b,C}	86681,21ª	-	2,002 ^{A,B,C,D}	2,002		
1 cl4o	20	112150.040	84648,80 ^D	11050455	a coa A B C D	a coa A B C D	a ocah		
4f ⁻ 8s	$-S_{1/2}$	1124/0,06 ^{-4,0}	119/84,/5 ^{1,2,2}	119/84,/5	2,002	2,002	2,002		
4f ¹⁴ 0a	² c	114157,90	11/0/8,/0 126200 86 ^{A,B,C}	126200 868	2002^{B}	2 002A,B,C,D	2 002b		
41 98	S _{1/2}	104065,95	130209,80	130209,80	2,002	2,002	2,002		
$4f^{14}10s$	2 S	_	145587 30 ^{A,B,C}	145587 3 ^a	_	2 002 ^{A,B,C,D}	1 998 ^b		
41 103	51/2		14247320^{D}	145507,5		2,002	1,770		
$4f^{14}6d$	$^{2}D_{2/2}$	147466.92 ^B	92321.60 ^{A,B,C}	92321.6 ^a	0.799 ^B	$0.800^{A,B,C,D}$	0.800^{b}		
	- 3/2		89782.40 ^D	,,,	•,••	-,	.,		
	${}^{2}D_{5/2}$	147467,55 ^B	93107,60 ^{A,B,C}	93107,6 ^a	$1,200^{B}$	$1,200^{A,B,C,D}$	1,200 ^b		
	5/2		90525,60 ^D						
$4f^{14}7d$	${}^{2}D_{3/2}$	156521,84 ^{A,C}	122622,50 ^{A,B,C}	122622,5 ^a	0,799 ^{A,B,C,D}	$0,800^{A,B,C,D}$	$0,800^{b}$		
		155096,75 ^B	119776,40 ^D						
	2	107864,09 ^D	4 D C						
	$^{2}D_{5/2}$	156659,16 ^{A,C}	122981,00 ^{А, в, с}	122981,0 ^a	1,200 ^{A,B,C,D}	1,200 ^{A,B,C,D}	1,200		
		155097,45 ^b	120104,60 ^D						
4 cl4 =	20	107912,66 ^D	120105 40ABC	100105 48	o oooB	o cocABCD	o ocoh		
4f 5g	$G_{7/2}$	136234,62	129105,40 ^{-1,2,0}	129105,4"	0,8895	0,889	0,889°		
	$^{2}\mathbf{C}$	126224 01B	125984,10 120106 20 ^{A,B,C}	120106 28	1 111B	1 111A,B,C,D	1 111b		
	09/2	150254,01	129100,30 125085 90 ^D	129100,5	1,111	1,111	1,111		
Tek nar	ite icin•		125765,70						
$4f^{14}6p$	$^{2}P^{0}_{1/2}$	38077.55 ^A	38400.61 ^{A,B,C}	38400.61 ^a	0.666 ^{A,B,C,D}	0.666 ^{A,B,C,D}	0.666 ^b		
n op	- 1/2	38257.83 ^B	37401.90 ^D	20100,01	0,000	0,000	0,000		
		31986,37 ^C	,						
		23139,62 ^D							
	${}^{2}P^{o}_{3/2}$	42113,74 ^A	44705,21 ^{A,B,C}	44705,21 ^a	1,334 ^{A,B,C,D}	1,334 ^{A,B,C,D}	1,334 ^b		
		42132,15 ^B	42639,90 ^D						
		40439,43 ^C							
-14	2 0	27118,82 ^D	APC		. PD		, h		
4f ¹⁴ 7p	${}^{2}P_{1/2}^{0}$	142316,36 ^b	100357,09 ^{A,B,C}	100357,09ª	0,666 ^{B,D}	0,666 ^{A,B,C,D}	0,799		
	200	127505,48 ^b	98308,40 ^D	102010 023	1 22 4B D	1 22 4A B C D	1.410		
	${}^{2}P_{3/2}^{\circ}$	142574,05 ²	102810,82 ^{n,b,c}	102810,82	1,334 ^{5,5}	1,334	1,418°		
4f ¹⁴ 8n	$2\mathbf{p}^{0}$	12//32,83 ⁻	$100314,20^{-1}$		0 666 ^{A,B}	0 666 ^{B,C,D}			
чі ор	r 1/2	141027,12 147345 47 ^B	123034,30 123654 50 ^D	_	0,000	0,000	-		
	$^{2}\mathbf{P}^{0}$	147721 80 ^A	125054,50 126653 20 ^{B,C}	_	1 334 ^{A,B}	1 334 ^{B,C,D}	_		
	1 3/2	147471 89 ^B	124653 20 ^D		1,554	1,334			
$4f^{14}5f$	${}^{2}\mathrm{F}^{\mathrm{o}}{}_{5/2}$	123364.54 ^B	105590.60 ^{A,B,C}	105590.6 ^a	$0.857^{B,D}$	0.857 ^{A,B,C,D}	0.889 ^b		
	512	108502.52^{D}	102365.80 ^D		7	y	,		
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	123375,66 ^B	105704,10 ^{A,B,C}	105704,1 ^a	1,143 ^{B,D}	1,143 ^{A,B,C,D}	1,138 ^b		
		108513,55 ^D	102403,40 ^D	-					

Tablo 3.44. Lu III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları*

Tablo 3.44. Devam

Seviy	eler		E g-çai			g-çarpanı	
Konf.	Terim	Bu ça	ılışma	Diğer	Bu ça	ılışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 6f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	135529,75 ^B	128373,17 ^{A,B,C}	129053,2 ^a	0,857 ^{B,D}	0,857 ^{A,B,C,D}	0,858 ^b
	2	128079,27 ^C	125389,10 ^D				
	${}^{2}F^{o}_{7/2}$	135536,61 ^B	128373,17 ^{A,B,C}	128799,8 ^a	1,143 ^{B,D}	1,143 ^{A,B,C,D}	1,143 ^b
		128084,81 ^C	125414,30 ^D				
4f ¹⁴ 7f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	103567,16 ^A	141069,60 ^{A,B,C}	141069,6 ^a	0,857 ^A	$0,857^{A,B,C,D}$	0,857 ^b
			137807,80 ^D				
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	103568,70 ^A	141092,20 ^{A,B,C}	141092,2 ^a	1,143 ^A	1,143 ^{A,B,C,D}	1,143 ^b
			137824,10 ^D				
$4f^{14}8f$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	151521.61 ^A	148513.80 ^{A,B,C}	148513.8 ^a	0.857^{A}	$0.857^{A,B,C,D}$	0.857 ^b
	572	,-	145267,20 ^D		- ,	- ,	- ,
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	151524,00 ^A	148530,00 ^{A,B,C}	148530,0 ^a	1,143 ^A	1,143 ^{A,B,C,D}	1,143 ^b
			145278,10 ^D				
4f ¹⁴ 9f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	_	153343,60 ^{A,B,C}	153343,6 ^a	_	$0,857^{A,B,C,D}$	0,857 ^b
			150091,90 ^D				
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	_	153354,50 ^{A,B,C}	153354,5 ^a	_	1,143 ^{A,B,C,D}	1,143 ^b
	2		150099,40 ^D	,			

^aNIST Atomic Spectra Database [63], ^bQuinet ve Biémont [48], *Tablonun daha geniş hali Tablo A.15'te verilmektedir.

3.11.2. Lu III'ün elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları

Lu III'ün elektrik dipol geçişleri için dalga boyları, ağırlıklı salınıcı şiddetleri ve geçiş olasılıkları MCHF ve HFR yöntemleriyle hesaplandı. $4f^{14}np$ (n = 6–8)– $4f^{14}ns$ (n = 6–10), $4f^{14}np$ (n = 6–8)– $4f^{14}nd$ (n =5–10), $4f^{14}nf$ (n = 5–9)– $4f^{14}nd$ (n = 5–10) ve $4f^{14}nf$ (n = 5–9)– $4f^{14}ng$ (n = 5–7) geçişlerinin λ (Å) dalga boyları, *gf* ağırlıklı salınıcı şiddetleri ve gA_{ki} (sn⁻¹) ağırlıklı geçiş olasılıkları Tablo 3.45 ve Ekler kısmındaki Tablo A.16'da verilmektedir. Tablolarda sadece tek pariteli seviyeler "^o" indisiyle belirtilirken geçiş olasılığı için 10'un kuvvetleri parantez içinde yazıldı.

MCHF+BP hesaplamalarında Tablo 3.43'te verilen konfigürasyon setlerindeki A, B ve C çift ve tek pariteli seviyeleri arasındaki geçişler MCHF program paketi [412] ile hesaplandı ve sırasıyla 51, 75 ve 34 mümkün elektrik dipol geçişleri elde edildi. $4f^{14}$ np (n = 6–8)– $4f^{14}$ ns (n = 6–9), $4f^{14}$ np (n = 6–8)– $4f^{14}$ nd (n =5–7), $4f^{14}$ nf (n = 5, 6)– $4f^{14}$ nd (n = 5, 6) ve $4f^{14}$ 5f– $4f^{14}$ 5g geçişleri için elde edilen veriler Tablo 3.45 ve Tablo A.16'da sunulmaktadır. Tablolarda geçiş olasılıkları üst seviyenin istatistiksel ağırlığıyla çarpılarak ağırlıklı geçiş olasılıklarına (gA_{ki}) çevrildi. Tablo 3.45 ve Tablo A.16'da hesaplanan geçişler için dalga boyları, ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıklarını farklı konfigürasyon setlerine ait hesaplamaları A, B ve C üst

indisiyle verilmektedir. Hesap sonuçları incelendiğinde birçok geçiş için karşılaştırma değerleri [135] ile uyumun az olduğu görülmektedir. $4f^{14}6s-4f^{14}6p$ geçişlerinde dalga boyları için A ve B hesapları, diğer ışıma parametreleri için C hesabı karşılaştırma verileri ile uyumludur. $4f^{14}6p-4f^{14}6d$ ve $4f^{14}6p-4f^{14}7d$ geçişlerinde dalga boyu ve ağırlıklı salınıcı şiddetleri için uyum kötü iken ağırlıklı geçiş olasılıkları için uyum iyidir. $4f^{14}7p-4f^{14}8s$ geçişinde λ için B iyi iken $4f^{14}7p-4f^{14}9s$ geçişi için C hesabı iyidir. $4f^{14}7p-4f^{14}7d$ geçişlerinde ise λ karşılaştırması iyi olmamasına rağmen *gf* değerleri karşılaştırma değerleri için uyum kötü iken *g*A_{ki} için uyum iyidir. Aynı durum $4f^{14}6d^{2}D_{5/2}-4f^{14}6f^{2}F^{o}_{5/2}$ geçişleri içinde geçerlidir. Bu uyumsuzlukların giderilmesi için öz ve değerlik elektronları arasındaki karşılıklı etkileşmenin dikkate alındığı konfigürasyon setleriyle geçişler hesaplanmalıdır. Bunun için $4f^{14}$ ten uyarılmalarla elde edilen konfigürasyonlar, konfigürasyon setlerine dahil edilmelidir. Fakat bu tür hesaplamalar MCHF program paketinde izinli değildir.

Tablo 3.43'te verilen konfigürasyon setlerindeki tek ve çift pariteli seviyeler arasında HFR program paketiyle [418] yapılan A, B, C ve D hesaplamaları için sırasıyla 98, 354, 1352 ve 2409 tane mümkün elektrik dipol geçişleri elde edildi. $4f^{14}np$ (n = 6-8)- $4f^{14}$ ns (n = 6-10), $4f^{14}$ np (n = 6-8)- $4f^{14}$ nd (n = 5-10), $4f^{14}$ nf (n = 5-9)- $4f^{14}$ nd (n = 5-10) ve $4f^{14}nf (n = 5-9)-4f^{14}ng (n = 5-7)$ geçişlerinin dalga boyları, ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları A, B, C ve D üst indisiyle Tablo 3.45 ve Tablo A.16'da verilmektedir. A, B ve C hesaplarında en küçük kareler yöntemiyle elde edilen enerji değerleri deneysel verilere uydurma yapılarak elde edilen parametrelerle geçişler tekrar hesaplanarak daha iyi sonuçlar elde edildi. D hesabında en küçük kareler yöntemi kullanılmadı. Birçok geçiş için diğer çalışmalarla karşılaştırıldığında elde edilen sonuçların uyumlu olduğu görülmektedir. Genel olarak D hesabında dalga boylu sonuçlarında uyum diğer çalışmalara göre az iken ağırlıklı salınıcı şiddetleri ve ağırlıklı geçiş olasılıkları için uyum iyidir. HFR+CP yöntemiyle yapılan çalışma [135] ile karşılaştırıldığında bazı geçişler için uyum daha azdır. gf ve gAki'deki uyumsuzlukların iyileştirilmesi için, özden uyarılmaların yapıldığı konfigürasyonların da konfigürasyon setlerine dahil edildiğinde düzelme olacağı düşünülmektedir.

Ge	çişler		λ			gf			gA _{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ça	alışma	Diğer
-		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6s^{2}S_{1/2}$	$4f^{14}6p^{-2}P^{0}_{1/2}$	2628,11 ^A	2604,126 ^{A,B,C}	2603,35 ^a	0,93265 ^A	0,83284 ^{A,B,C}	0,630 ^a	9,00(8) ^A	8,19(8) ^{A,B,C}	$6,20(8)^{a}$
	· ··-	$2608,04^{B}$	2673,663 ^D		0,81514 ^B	0,81118 ^D		$7,99(8)^{B}$	$7,57(8)^{D}$	
		3129,21 ^C			0,74398 ^C			$5,06(8)^{C}$		
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}6p^{-2}P^{0}_{1/2}$	3154,90 ^A	3058,754 ^{A,B,C}	3057,87 ^a	0,42777 ^A	0,51625 ^{A,B,C}	0,388 ^a	$2,86(8)^{A}_{-}$	$3,68(8)^{A,B,C}_{-}$	$2,77(8)^{a}$
		3277,71 ^B	2944,742 ^D		$0,42187^{B}$	0,53624 ^D		$2,26(8)^{B}$	$4,12(8)^{D}$	
		3905,71 ^C			0,37399 ^C			$1,63(8)^{C}$		
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}7s^{-2}S_{1/2}$	-	2071,225 ^{A,B,C}	2070,56 ^a	_	$0,48720^{A,B,C}$	0,496 ^a	-	$7,58(8)^{A,B,C}_{-}$	$7,70(8)^{a}$
			2116,539 ^D			0,47677 ^D			$7,10(8)^{D}$	
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}6d^{-2}D_{3/2}$	916,29 ^B	1854,565 ^{A,B,C}	1854,57 ^a	$0,29710^{B}$	2,39725 ^{A,B,C}	2,187 ^a	$2,36(9)^{B}$	$4,65(9)^{A,B,C}$	$4,24(9)^{a}$
			1909,105 ^D			2,32876 ^D			4,26(9) ^D	
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}8s^{-2}S_{1/2}$	1343,52 ^A	1228,739 ^{A,B,C}	1228,74 ^a	0,40967 ^A	$0,06081^{A,B,C}_{-}$	$0,065^{a}$	$1,51(9)^{A}_{-}$	$2,69(8)^{A,B,C}_{-}$	$2,86(8)^{a}$
		816,19 ^B	1255,070 ^D		0,05534 ^B	0,05954 ^D		$5,54(8)^{B}_{-}$	$2,52(8)^{D}$	
		1241,89 ^C			0,26510 ^C			1,14(9) ^C		
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}7d^{-2}D_{3/2}$	844,00 ^A	1187,339 ^{A,B,C}	1187,34 ^a	5,31341 ^A	0,26253 ^{A,B,C}	0,204 ^a	$4,97(10)^{A}$	$1,24(9)^{A,B,C}_{-}$	$9,64(8)^{a}$
		$856,42^{B}$	1213,967 ^D		$0,01495^{B}$	0,25677 ^D		$1,36(8)^{B}$	1,16(9) ^D	
		802,73 [°]			4,05322 ^C			$4,19(10)^{C}$		
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}9s^{-2}S_{1/2}$	795,20 ^в	1022,397 ^{A,B,C}	$1022,40^{a}$	$0,00509^{B}$	0,02145 ^{A,B,C}	0,023 ^a	$5,37(7)^{B}$	$1,37(8)^{A,B,C}$	$1,49(8)^{a}$
			1043,545 ^D			0,02102 ^D			$1,29(8)^{D}$	
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}8d^{-2}D_{3/2}$	-	1016,525 ^{B,C}	-	-	0,08409 ^{B,C}	-	-	$5,43(8)^{B,C}_{D}$	_
14 0			1026,987 ^D			0,08323 ^D			5,26(8) ^D	
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}10s^{-2}S_{1/2}$	_	932,951 ^{A,B,C}	932,95 ^a	-	0,01049 ^{A,B,C}	0,012 ^a	-	$8,04(7)^{A,B,C}$	$8,81(7)^{a}$
14 0 .	14 2		951,734 ^D			0,01028 ^D			7,57(7) ^D	
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}9d^{-2}D_{3/2}$	_	934,298 ^{в,С}	-	-	0,03912 ^{B,C}	_	-	$2,99(8)^{B,C}_{D}$	-
14 0 .	14 2		943,121 ^D			0,03875 ^D			$2,91(8)^{D}_{PC}$	
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{14}10d^{-2}D_{3/2}$	-	888,930 ^{B,C}	-	-	0,02184 ^{B,C}	-	-	$1,84(8)^{B,C}_{D}$	-
14 2 0	14 2		896,912 ^D			0,02164 ^D			$1,79(8)^{D}$	
$4f^{14}6p^{-2}P^{0}_{-3/2}$	$4f^{14}7s^{-2}S_{1/2}$	_	2382,316	2381,59 ^a	-	0,84717 ^{А,В,С}	0,862 ^a	-	9,96(8) ^{A,B,C}	$1,01(9)^{a}$
14 2	14 2 0	٨	2380,448 ^D			0,84783 ^D			9,98(8) ^D	
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}6p^{-2}P^{0}_{-3/2}$	2375,98 ^A	2236,873 ^{A,B,C}	2236,18 ^a	2,06120 ^A	1,93916 ^{A,b,C}	1,468 ^a	$2,43(9)^{A}_{B}$	2,59(9) ^{A,B,C}	$1,96(9)^{a}$
		2368,61 ^B	2345,220 ^D		1,80617 ^b	1,84958 ^D		$2,15(9)^{\text{B}}_{C}$	$2,24(9)^{D}$	
14 2	14 2 0	2474,45 [°]	ARC		1,96978 [°]	ABC		$2,14(9)^{\circ}$	ABC	
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}6p^{-2}P^{0}_{-3/2}$	2798,44 ^A	2564,253 ^{A,B,C}	2563,49 ^a	0,09577 ^A	0,12316 ^{A,B,C}	0,093 ^a	$8,15(7)^{A}_{P}$	$1,25(8)^{A,B,C}$	$9,40(7)^{a}$
		2908,27 ^B	2551,224 ^D		0,09497 ^B	0,12379 ^D		$7,48(7)^{B}_{C}$	$1,27(8)^{D}$	
		2936,05 ^C			0,09388			7,26(7)		

Tablo 3.45. Lu III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹)*

racio er er ber ann	Tablo	3.45.	Devam
---------------------	-------	-------	-------

Ge	çişler		λ			gfs			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ça	lışma	Diğer
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}6p^{-2}P^{0}_{-3/2}$	3107,25 ^A 3236,27 ^B 3277,83 ^C	2773,352 ^{A,B,C} 2799,112 ^D	2772,54 ^a	$0,78922^{\rm A}$ $0,76839^{\rm B}$ $0.76875^{\rm C}$	1,02488 ^{A,B,C} 1,01545 ^D	0,771 ^a	$5,45(8)^{A}$ 4,89(8) ^B 4,77(8) ^C	8,89(8) ^{A,B,C} 8,64(8) ^D	6,69(8) ^a
$4f^{14}6p \ ^2P^o_{\ 3/2}$	$4f^{14}6d\ ^2D_{3/2}$	950,02 ^B	2100,119 ^{A,B,C} 2121,227 ^D	2099,45 ^a	0,05509 ^B	$0,42339^{A,B,C}$ $0,41918^{D}$	0,386 ^a	$4,07(8)^{B}$	6,40(8) ^{A,B,C} 6,21(8) ^D	5,84(8) ^a
$4f^{14}6p \ ^2P^{o}_{\ 3/2}$	$4f^{14}6d\ ^2D_{5/2}$	950,01 ^B	2066,015 ^{A,B,C} 2088,308 ^D	2065,35 ^a	0,49508 ^B	3,87341 ^{A,B,C} 3,83206 ^D	3,533ª	3,66(9) ^B	6,05(9) ^{A,B,C} 5,86(9) ^D	5,52(9) ^a
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}8s^{-2}S_{1/2}$	1420,56 ^A 842,84 ^B 1387,55 ^C	1331,920 ^{A,B,C} 1343,385 ^D	1331,92 ^a	$0,87075^{\rm A}$ $0,03722^{\rm B}$ $0.83076^{\rm C}$	0,11220 ^{A,B,C} 0,11125 ^D	0,120 ^a	2,88(9) ^{A,C} 3,49(8) ^B	4,22(8) ^{A,B,C} 4,11(8) ^D	4,49(8) ^a
$4f^{14}6p \ ^2P^o_{\ 3/2}$	$4f^{14}7d^{-2}D_{3/2}$	873,77 ^A 885,81 ^B 861,17 ^C	1283,412 ^{A,B,C} 1296,403 ^D	1283,41 ^a	1,04117 ^A 0,01236 ^B 0,99409 ^C	0,04857 ^{A,B,C} 0,04809 ^D	0,038 ^a	$9,09(9)^{A}$ 1,05(8) ^B 8,94(9) ^C	1,97(8) ^{A,B,C} 1,91(8) ^D	1,53(8) ^a
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}7d\ ^2D_{5/2}$	872,72 ^A 885,81 ^B	1277,534 ^{A,B,C} 1290,911 ^D	1277,53 ^a	9,33470 ^A 0,11092 ^B	0,43918 ^{A,B,C} 0,43463 ^D	0,341 ^a	$6,17(10)^{A}$ $0,94(9)^{B}$	1,80(9) ^{A,B,C} 1,74(9) ^D	1,39(9) ^a
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}9s\ ^2S_{1/2}$	820,48 ^B	1092,840 ^{A,B,C} 1103,885 ^D	1092,84 ^a	0,01537 ^B	0,04014 ^{A,B,C} 0,03974 ^D	0,044 ^a	$1,52(8)^{B}$	2,24(8) ^{A,B,C} 2,17(8) ^D	2,43(8) ^a
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}10s^{-2}S_{1/2}$	_	991,256 ^{A,B,C} 1001,669 ^D	991,26 ^a	_	0,01974 ^{A,B,C} 0,01953 ^D	0,022 ^a	_	1,34(8) ^{A,B,C} 1,30(8) ^D	1,47(8) ^a
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}8d^{-2}D_{3/2}$	_	1086,133 ^{B,C} 1085,373 ^D	-	_	0,01574 ^{B,C} 0,01575 ^D	_	_	8,90(7) ^{B,C} 8,92(7) ^D	-
$4f^{14}6p^{-2}P^{0}_{-3/2}$	$4f^{14}8d^{-2}D_{5/2}$	_	1084,040 ^{B,C} 1083,282 ^D	_	_	0,14193 ^{B,C} 0,14203 ^D	_	_	8,06(8) ^{B,C} 8,07(8) ^D	_
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}9d^{-2}D_{3/2}$	_	992,777 ^{B,C} 992,134 ^D	_	_	0,00736 ^{B,C} 0,00737 ^D	_	_	4,98(7) ^{B,C} 4,99(7) ^D	_
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}9d^{-2}D_{5/2}$	_	991,716 ^{B,C} 991,074 ^D	_	_	0,06633 ^{B,C} 0,06637 ^D	_	_	4,50(8) ^{B,C} 4,51(8) ^D	-
$4f^{14}6p \ ^{2}P^{o}_{3/2}$	$4f^{14}10d^{-2}D_{3/2}$	_	941,706 ^{B,C} 941,127 ^D	-	_	0,00412 ^{B,C} 0,00413 ^D	_	-	$3,10(7)^{B,C}$ $3,11(7)^{D}$	-
$4f^{14}6p \ ^2P^o_{\ 3/2}$	$4f^{14}10d\ ^2D_{5/2}$	_	941,082 ^{B,C} 940,504 ^D	-	_	0,03713 ^{B,C} 0,03715 ^D	_	_	2,80(8) ^{B,C,D}	_
$4f^{14}6s\ ^2S_{1/2}$	$4f^{14}7p^{-2}P^{o}_{1/2}$	702,30 ^B 618,65 ^C	996,441 ^{A,B,C} 1017,207 ^D	-	0,01593 ^B 0,19835 ^C	0,00262 ^{A,B,C} 0,00256 ^D	_	2,15(8) ^B 3,46(9) ^C	1,76(7) ^{A,B,C} 1,65(7) ^D	_

Geçişler		λ				gf			gA_ki		
Alt seviye	Üst seviye	Bu çalışma		Diğer	Bu çalışma		Diğer	Bu çalışma		Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}7p^{-2}P^{0}_{1/2}$	743,17 ^B	1056,529 ^{A,B,C}	1056,53 ^a	$0,00385^{B}$	0,03334 ^{A,B,C}	$0,017^{a}$	$4,66(7)^{B}$	$1,99(8)^{A,B,C}$	$9,88(7)^{a}$	
	·	643,95 [°]	1054,125 ^D		0,02999 ^C	0,03341 ^D		4,83(8) ^C	$2,01(8)^{D}$		
$4f^{14}7s^{-2}S_{1/2}$	$4f^{14}7p^{-2}P^{0}_{1/2}$	_	7312,133 ^{A,B,C}	7310,13 ^a	_	1,04360 ^{A,B,C}	$0,977^{a}$	_	$1,30(8)^{A,B,C}$	$1,22(8)^{a}$	
	_		7320,862 ^D			1,04235 ^D			$1,29(8)^{D}$		
$4f^{14}6d^{2}D_{3/2}$	$4f^{14}7p^{-2}P^{0}_{1/2}$	19692,00 ^B	12444,777 ^{A,B,C}	-	0,01176 ^B	0,82324 ^{A,B,C}	_	$1,01(5)^{B}$	$3,55(7)^{A,B,C}$	_	
		_	11728,874 ^D		_	0,87349 ^D		_	4,23(7) ^D		
$4f^{14}7p^{-2}P^{0}_{1/2}$	$4f^{14}8s^{-2}S_{1/2}$	$5415,12^{B}$	5147,289 ^{A,B,C}	5145,87 ^a	$0,06478^{B}_{-}$	$0,76695^{A,B,C}_{-}$	$0,767^{a}$	$1,47(7)^{B}$	$1,93(8)^{A,B,C}_{-}$	$1,93(8)^{a}$	
		2032,97 ^C	5327,563 ^D		0,80108 ^C	0,74099 ^D		$1,29(9)^{C}$	$1,74(8)^{D}$		
$4f^{14}7p^{-2}P^{0}_{1/2}$	$4f^{14}7d^{-2}D_{3/2}$	-	4491,273 ^{A,B,C}	4490,01 ^a	_	2,70841 ^{A,B,C}	2,676 ^a	-	$8,96(8)^{A,B,C}_{-}$	$8,85(8)^{a}$	
		_	4658,092 ^D		_	2,61141 ^D		_	8,03(8) ^D		
$4f^{14}7p^{-2}P^{0}_{1/2}$	$4f^{14}9s^{-2}S_{1/2}$	$4607,89^{B}_{-}$	2789,182 ^{A,B,C}	$2788,36^{a}$	$0,34043^{B}$	0,08438 ^{A,B,C}	$0,087^{a}$	$1,07(8)^{B}$	$7,23(7)^{A,B,C}_{-}$	$7,44(7)^{a}$	
		1990,83 ^C	2863,638 ^D		0,21010 ^C	0,08218 ^D		$3,54(8)^{C}$	6,68(7) ^D		
$4f^{14}7p^{-2}P^{0}_{1/2}$	$4f^{14}10s^{-2}S_{1/2}$	-	2210,912 ^{A,B,C}	$2210,22^{a}$	-	0,02893 ^{A,B,C}	0,030 ^a	-	$3,95(7)^{A,B,C}_{-}$	$4,12(7)^{a}$	
			2264,246 ^D			0,02825 ^D			$3,67(7)^{D}_{-}$		
$4f^{14}7p^{-2}P^{0}_{1/2}$	$4f^{14}8d^{-2}D_{3/2}$	-	2745,906 ^{B,C}	-	_	0,32398 ^{B,C}	_	_	$2,87(8)^{B,C}$	_	
			2742,304 ^D			0,32441 ^D			$2,88(8)^{D}$		
$4f^{14}7p^{-2}P^{0}_{1/2}$	$4f^{14}9d^{-2}D_{3/2}$	-	2218,492 ^{B,C}	-	-	0,10875 ^{B,C}	-	-	$1,47(8)^{B,C}$	-	
			2216,100 ^D			0,10887 ^D			1,48(8) ^D		
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}7p^{-2}P^{0}_{-3/2}$	701,03 ^B	972,660 ^{A,B,C}	972,66 ^a	0,06605 ^B	0,00536 ^{A,B,C}	0,001 ^a	8,97(8) ^B	$3,78(7)^{A,B,C}$	$8,75(6)^{a}$	
		442,35 [°]	996,867 ^D		0,06174 ^C	0,00523 ^D		$2,10(9)^{C}_{p}$	3,51(7) ^D		
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}7p^{-2}P^{0}_{-3/2}$	741,75 ^B	1029,831 ^{A,B,C}	1029,83 ^a	0,00110 ^B	0,00684 ^{A,B,C}	0,003 ^a	$1,33(7)^{B}$	$4,30(7)^{A,B,C}$	$2,13(7)^{a}$	
		455,14 ^C	1032,299 ^D		0,04476 [°]	0,00682 ^D		$1,44(9)^{C}_{p}$	4,27(7) ^D		
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}7p^{-2}P^{0}_{-3/2}$	$761,42^{B}$	1061,988 ^{A,B,C}	1061,99 ^a	$0,00825^{B}$	$0,05970^{A,B,C}$	0,030 ^a	$9,50(7)^{B}$	$3,53(8)^{A,B,C}_{-}$	$1,75(8)^{a}$	
	14 0	462,62 ^C	1070,665 ^D		0,36802 ^C	0,05921 ^D		$1,15(10)^{C}$	3,44(8) ^D		
$4f^{14}7s^{-2}S_{1/2}$	$4f^{14}7p^{-2}P^{0}_{3/2}$	-	6199,781 ^{A,B,C}	6198,06 ^a	-	2,46168 ^{A,B,C}	2,305 ^a	-	$4,27(8)^{A,B,C}$	$4,00(8)^{a}$	
			6383,493 ^D			2,39083 ^D			3,91(8) ^D		
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}7p^{-2}P^{0}_{-3/2}$	-	9533,615 ^{A,B,C}	9530,98 ^a	_	0,21492 ^{A,B,C}	0,202 ^a	-	$1,58(7)^{A,B,C}$	$1,49(7)^{a}$	
			9495.072 ^D			0.21580^{D}			$1.60(7)^{D}$		

Tablo 3.45. Devam

^aBiémont ve çalışma arkadaşları [135], *Tablonun daha geniş hali Tablo A.16'da verilmektedir.

BÖLÜM 4. SONUÇ VE ÖNERİLER

Bu çalışmanın amacı, lantanit grubu elementleri için en genel aralık olan Z = 57-71atomlarının nötral ve iyon hallerini inceleyerek elde edilen veriler ile f alt tabakası elektronlarının yapısının anlaşılmasına katkı sağlamaktır. Bu nedenle seçilen lantanit atomlarının nötral ve bazı iyonlarının (La I–III, Ce I–III, Yb I–III ve Lu I–III) seviye enerjileri, Landé *g*-çarpanları, geçiş enerjileri, dalga boyları, salınıcı şiddetleri, geçiş olasılıkları, seviyelerin yarı ömürleri, iyonlaşma potansiyelleri, elektron ilgileri ve aşırı ince yapı sabitleri gibi atomik yapı özellikleri hem relativistik hem de konfigürasyon etkileşme etkilerini içeren çok konfigürasyonlu Hartree-Fock [403] ve relativistik Hartree-Fock [28] yöntemleri ile hesaplanmıştır.

Lantanitlerin ilk üyesi olan lantanın nötral, bir ve iki kez iyonlaşmış hallerinin bazı uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları, elektrik dipol geçişlerine ait dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları MCHF+BP ve HFR yöntemleriyle ve La I'in yarı ömürleri, aşırı ince yapı sabitleri ve geçiş enerjileri (iyonlaşma potansiyelleri, uyarılma enerjileri ve elektron ilgisi) de MCHF+BP yöntemiyle yapılmıştır [103–107].

Seçilen ikinci atom olan seryum için nötral ve bir kez iyonlaşmış halinin iyonlaşma potansiyelleri ve uyarılma enerjileri ve iki kez iyonlaşmış seryumun bazı uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları her iki yöntemle hesaplanmıştır. Ce III'ün tek pariteli seviyeleri için MCHF+BP hesabı yapılamadığından elektrik dipol geçişleri bu yöntemle hesaplanamamıştır. Bu nedenle sadece HFR yöntemiyle Ce III'ün elektrik dipol geçişlerine ait ışıma parametreleri (dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları) hesaplanmıştır.

Çalışmada üçüncü atom olarak iterbiyumun nötral ve bir kez iyonlaşmış hallerinin bazı uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları, geçiş enerjileri

(iyonlaşma potansiyelleri, uyarılma enerjileri ve elektron ilgisi) ve elektrik dipol geçişlerine ait dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları MCHF+BP ve HFR yöntemleriyle, iki kez iyonlaşmış iterbiyum için aynı hesaplamalar ve Yb I'in yarı ömürleri HFR yöntemiyle hesaplanmıştır [293–295].

Son olarak, lantan atomunun simetriği olan lutesyum atomu incelenmiştir. Nötral, bir ve iki kez iyonlaşmış lutesyumun bazı uyarılmış seviyelerinin enerjileri ve Landé *g*-çarpanları, geçiş enerjileri (iyonlaşma potansiyelleri, uyarılma enerjileri ve elektron ilgisi) ve elektrik dipol geçişlerine ait dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları hesaplamaları MCHF+BP ve HFR yöntemleriyle ve Lu I'in yarı ömürleri HFR ve aşırı ince yapı sabitleri MCHF+BP yöntemiyle yapılmıştır [391–394].

Fischer [403, 412] tarafından geliştirilen ve relativistik düzeltmeler için Breit-Pauli Hamiltoniyenini temel alan çok konfigürasyonlu Hartree-Fock yönteminde, ilk olarak MCHF yöntemi kullanılarak seçilen konfigürasyonlar için elde edilen dalga fonksiyonlarının baskınlığını belirleyen karışım katsayıları ve relativistik olmayan enerjiler hesaplanmıştır. Elde edilen bu dalga fonksiyonlarında Breit-Pauli relativistik düzeltmelerini dikkate almak için Breit-Pauli Hamiltonyeni ile köşegenleştirilerek karışım katsayıları yeniden belirlenmiştir. Bu relativistik katkılarla beraber geçişlere ait dalga boyları, geçiş enerjileri, ağırlıklı salınıcı şiddetleri, geçiş olasılıkları, seviye enerjileri, iyonlaşma potansiyeli, elektron ilgisi, yarı ömürler ve aşırı ince yapı parametreleri hesaplanmıştır. Ayrıca, MCHF dalga fonksiyonları ve seviye enerjileri kullanılarak Zeeman programıyla [413] seviyelerin Landé g-çarpanları hesaplanmıştır.

Cowan [28, 418] tarafından geliştirilen relativistik Hartree-Fock yaklaşıklığı Schrödinger denklemine dayalı olmasına rağmen spin-yörünge etkisi yanında kütlehız düzeltmeleri ve Darwin katkıları gibi relativistik etkileri de içerir. HFR hesaplamalarında, Hamiltonyenin hesaplanan özdeğerleri mevcut deneysel enerji seviyeleri kullanılarak en küçük kareler yöntemi ile gözlenen enerji seviyelerine uydurma yaparak iyileştirilmiştir. En küçük kareler yönteminde spin-yörünge parametrelerinin ölçeklendirme faktörü temel kuantum mekaniksel hesaptaki değerlerinde bırakılırken Slater parametreleri (F^k ve G^k) ve konfigürasyon etkileşme integralleri (R^k) için ölçeklendirme faktörlerinin iyileştirilmemiş değerleri farklı çalışmalarda 0,60, 0,65, 0,70, 0,75, 0,80 ve 0,85 olarak seçilmiştir. Ölçeklendirme faktörlerinin bu düşük değerleri ağır elementler için Cowan [28] tarafından öne sürülmüştür. En küçük kareler yöntemiyle elde edilen uydurma parametreleriyle elektrik dipol geçişleri tekrar hesaplanmıştır.

Bu çalışmada kullanılan yöntemlerden biri olan MCHF yöntemi, daha fazla açık 4f alt tabakasını içeren lantanitlerin diğer üyelerinin çalışılmasında bazı zorluklar ortaya çıkarmaktadır. Hesaplamalarda kullanılan MCHF atomik yapı paketinde spin-açısal katsayılarının hesabı ile ilgili programlar çok verimli değildir ve sadece en çok iki elektron içeren açık veya bir boş ve hemen hemen dolu alt tabakalı konfigürasyonlar için daha doğru sonuçlar vermektedir. Daha fazla dolu f alt tabakalı durumları içeren ve açısal integrasyonların hesabını daha hızlı yapan algoritmaların kullanılmasına ihtiyaç vardır. Bu daha büyük-ölçekli hesaplama yapmaya imkan verecektir. Ayrıca, farklı *LS* terimleri veya pariteye ait dalga fonksiyonların açılımları için enerji fonksiyonunun ağırlıklı ortalaması olan bir enerji fonksiyonu daha doğru sonuçlar verecektir. Böylece, karmaşık atomik sistemler için geniş-ölçekli Breit-Pauli hesaplamaları sağlanacaktır. Geniş konfigürasyon halleri, tüm konfigürasyon hallerindeki ortak kapalı alt tabakalara ek olarak belirli sayıya kadar alt tabakalar kısıtlaması ve böylece maksimum boyutun kullanılabilir hafiza ve disk alanıyla sınırlı olması da kaçınılmazdır.

Bu özellikleri içeren yeni MCHF sürümünün [419] derlemesi yapıldı. Fakat paketin alt programlarından MCHF'nin çalışmasında mevcut sistemle hesaplama sorunlarıyla karşılaşıldı. Bu problemin aşılması diğer lantanit atomların çalışılmasına imkan verecektir.

Lantanitler için dalga boyları, ışımalı geçiş oranları, salınıcı şiddetleri, dallanma kesirleri, ışımalı yarı ömür nicelikleri, aşırı ince yapı ve izotop kayması gibi güvenilir spektroskopik verilerin kesin bilgisine ihtiyaç vardır. Güneşinkileri de içeren spektrumlar nadir toprak çizgilerini de içerdikleri için astrofizikte çok önemlidir. Nadir toprak elementlerinin spektrumlarının detaylı analizleri, farklı türdeki yıldızların kimyasal bileşenleri hakkında yararlı bilgiler sağlar ve
bolluklarının anlaşılması çok miktarda yüksek nitelikli atomik verileri gerektirir. Bu nedenle bu çalışmada, MCHF+BP ve HFR yöntemleri ile La I–III, Ce I–III, Yb I–III ve Lu I–III için elde edilen atomik verilerin gelecekte bu alanlarda yapılacak çalışmalar için yararlı bilgiler sağlayacağı düşünülmektedir. Ayrıca sonraki çalışmalarda, çalışılan bu atomlar için yarı ömür, aşırı ince yapı ve izotop kayma hesaplamaları ve manyetik dipol ve elektrik kuadrupol geçişlerine ait hesaplamalar da yapılabilir. Bununla birlikte daha kapsamlı bilgisayar sistemlerinde diğer lantanit atomları için MCHF+BP program paketinin yeni sürümü [419] ve HFR [418] ile bu tür hesaplamalara ait verilerin elde edilmesi, 4f alt tabakasını içeren ve karmaşık spektrumlara sahip olan lantanit atomlarının seviye yapılarının anlaşılmasına katkı sağlayabilir.

KAYNAKLAR

- [1] MARTIN, W.C., ZALUBAS, R., HAGAN, L., Atomic Energy Levels– The Rare Earth Elements, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) Washington, D.C., 60, 1978.
- [2] WYBOURNE, B.G., Spectroscopic Properties of Rare Earths, Interscience, New York, 1965.
- [3] GOLDSCHMIDT, Z.B., Handbook on the Physics and Chemistry of Rare Earths, I. Cilt, North-Holland Publ. Co., Amsterdam, 1978.
- [4] MEGGERS, W.F., Atomic spectra of rare earth elements, Rev. Mod. Phys., 14, 96–103, 1942.
- [5] MEGGERS, W.F., Emission spectra of the rare earth elements, J. Opt. Soc. Am., 31, 157–159, 1942.
- [6] MEGGERS, W.F., CORLISS, C.H., SCRIBNER, B.F., Relative intensities for the arc spectra of seventy elements, Spectrochim. Acta, 17, 1137–1172, 1961.
- [7] JUDD, B.R., LINDGREN, I., Theory of Zeeman effects in the ground multiplets of rare-earth atoms, Phys. Rev., 122, 1802–1812, 1961.
- [8] CONWAY, J.G., WYBOURNE, B.G., Low-lying energy levels of lanthanide atoms and intermediate coupling, Phys. Rev., 130, 2325–2332, 1963.
- [9] MOORE, C.E., The atomic spectra of the rare earths: Their presence in the sun, Appl. Opt., 2, 665–674, 1963.
- [10] GREVESSE, N., BLANQUET, G., Abundances of the rare earths in the sun, Sol. Phys., 8, 5–17, 1969.
- [11] NUGENT, L.J., VANDER SLUIS, K.L., Theoretical treatment of the energy differences between $f^{q}d^{1}s^{2}$ and $f^{q+1}s^{2}$ electron configurations for lanthanide and actinide atomic vapors, J. Opt. Soc. Am., 61, 1112–1115, 1971.

- [12] VANDER SLUIS, K.L., NUGENT, L.J., Relative energies of the lowest levels of the $f^{q}ps^{2}$, $f^{q}ds^{2}$, and $f^{q+1}s^{2}$ electron configurations of lanthanide and actinide neutral atoms, Phys. Rev. A, 6, 86–94, 1972.
- [13] BREWER, L., Energies of the electronic configurations of the lanthanide and actinide neutral atoms, J. Opt. Soc. Am., 61, 1101–1111, 1971.
- [14] BREWER, L., Energies of the electronic configurations of the singly, doubly, triply ionized lanthanides and actinides, J. Opt. Soc. Am., 61, 1666–1681, 1971.
- [15] MARTIN, W.C., Energies differences between two spectroscopic systems in of the singly ionized, and doubly ionized lanthanide atoms, J. Opt. Soc. Am., 61, 1682–1686, 1971.
- [16] MARTIN, W.C., HAGAN, L., READER, J., SUGAR, J., Ground levels and ionization potentials for lanthanide and actinide atoms and ions, J. Phys. Chem. Ref. Data, 3, 771–780, 1974.
- [17] DESCLAUX, J.-P., Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120, At. Data Nucl. Data Tables, 12, 311–406, 1973.
- [18] WYART, J.-F., BLAISE, J., CAMUS, P., Progrès récents dans i'interprétation des configurations $4f^{N}(5d+6s)$ des lanthanides, Phys. Scr., 9, 322–324, 1974.
- [19] WYART, J.-F., BLAISE, J., CAMUS, P., Progrès récents dans i'interprétation des configurations $4f^{N}(5d+6s)$ des lanthanides, Phys. Scr., 9, 325–330, 1974.
- [20] WYART, J.-F., Analysis of lanthanide atomic spectra: Present state and trends, J. Opt. Soc. Am., 68, 197–205, 1978.
- [21] SUGAR, J., READER, J., Ionization energies of the singly ionized rare earths, J. Opt. Soc. Am., 55, 1286–1290, 1965.
- [22] READER, J., SUGAR, J., Ionization energies of the neutral rare earths, J. Opt. Soc. Am., 56, 1189–1194, 1966.
- [23] SUGAR, J., READER, J., Ionization energies of doubly and triply ionized rare earths, J. Chem. Phys., 59, 2083–2089, 1973.
- [24] HERTEL, G.R, Surface ionization. III. The first ionization potentials of the lanthanides, J. Chem. Phys., 48, 2053–2058, 1968.
- [25] WORDEN, E.F., SOLARZ, R.W., PAISNER, J.A., CONWAY, J.G., First ionization potentials of lanthanides by laser spectroscopy, J. Opt. Soc. Am., 68, 52–61, 1978.

- [26] ZHENG, N.-W., XIN H.-W., Successive ionization potentials of $4f^n$ electrons within 'WBEPM' theory, J. Phys. B: At. Mol. Opt. Phys., 24, 1187–1191, 1991.
- [27] LIU, W., DOLG, M., Benchmark calculations for lanthanides atoms: Calibration of *ab initio* and density-functional methods, Phys. Rev. A, 57, 1721–1728, 1998.
- [28] COWAN, R.D., The Theory of Atomic Structure and Spectra, Univ. of California Press, Berkeley, California, USA, 1981.
- [29] OUTRED, M., Tables of atomic spectral lines for the 10000Å to 40000Å region, J. Phys. Chem. Ref. Data, 110, 1–262, 1978.
- [30] CHENG, K.T., CHILDS, W.J., *Ab initio* calculation of $4f^{N}6s^{2}$ hyperfine structure in rare-earth atoms, Phys. Rev. A, 31, 2775–2784, 1985.
- [31] RICHTER, J., Measurements of lifetimes and oscillator strengths of neutral and singly ionized atoms. Experimental results of the last five years, Phys. Scr., T8, 70–76, 1984.
- [32] PENKIN, N.P., GORSHKOV, V.N., KOMAROVSKII, V.A., Radiative lifetimes of excited states and oscillator strengths of spectral lines of some lanthanide atoms and ions (review), J. Appl. Spectrosc., 41, 1091–1104, 1984.
- [33] KOMAROVSKII, V.A., Oscillator strengths of spectral lines and electronic transition probabilities of atoms and singly charged ions lanthanides: A review, Opt. Spectrosc., 71, 322–356, 1991.
- [34] BLAGOEV, K.B., KOMAROVSKII, V.A., Lifetimes of levels of neutral and singly ionized lanthanide atoms, At. Data Nucl. Data Tables, 56, 1–40, 1994.
- [35] DOIDGE, P.S., A compendium and critical review of neutral atom resonance line oscillator strengths for atomic absorption analysis, Spectrochim. Acta B, 50, 209–263, 1995.
- [36] DOIDGE, P.S., Erratum to "A compendium and critical review of neutral atom resonance line oscillator strengths for atomic absorption analysis"
 [Spectrochimica Acta Part B, 50 (1995) 209], Spectrochim. Acta B, 50, 1421–1422, 1995.
- [37] DOIDGE, P.S., Erratum to "A compendium and critical review of neutral atom resonance line oscillator strengths for atomic absorption analysis", Spectrochim. Acta B, 51, 375–375, 1996.

- [38] TATEWAKI, H., SEKIYA, M., SASAKI, F., MATSUOKA, O., KOGA, T., 6s and 4f ionized states of the lanthanides calculated by numerical and analytical Hartree-Fock methods, Phys. Rev. A, 51, 197–203, 1995.
- [39] SEKIYA, M., SASAKI, F., TATEWAKI, H., 6*s* and 4*f* ionized states of lanthanide calculated by the configuration-interaction method, Phys. Rev. A, 56, 2731–2740, 1997.
- [40] SEKIYA, M., NARITA, K., TATEWAKI, H., Energy differences between $4f^{n+1}5d^06s^2$ and $4f^n5d^16s^2$ electron configurations for the lanthanides atoms, Phys. Rev. A, 63, 012503–0125011, 2000.
- [41] MORTON, D.C., Atomic data for resonance absorption lines. II. Wavelengths longward of the Lyman limit for heavy elements, Astrophys. J. Suppl. Ser., 130, 403–436, 2000.
- [42] KURUCZ, R.L., Atomic data for interpreting stellar spectra: Isotopic and hyperfine data, Phys. Scr., T47, 110–117, 1993.
- [43] QUINET, P., PALMERI, P., BIÉMONT, E., LI, Z.S., ZHANG, Z.G., SVANBERG, S., Radiative lifetimes measurements and transition probability calculations in lanthanide atoms, J. Alloys Compd., 344, 255–259, 2002.
- [44] WAHLGREN, G.M., The lanthanide elements in stellar and laboratory spectra, Phys. Scr., T100, 22–36, 2002.
- [45] CAO, X., DOLG, M., Theoretical prediction of the second to fourth actinide ionization potentials, Mol. Phys., 101, 961–969, 2003.
- [46] RODRIGUES, G.C., INDELICATO, P., SANTOS, J.P., PATTÉ, P., PARENTE, F., Systematic calculation of total atomic energies of ground state configurations, At. Data Nucl. Data Tables, 86, 117–233, 2004.
- [47] BIÉMONT, E., QUINET, P., Recent advances in the study of lanthanide atoms and ions, Phys. Scr., T105, 38–54, 2003.
- [48] QUINET, P., BIÉMONT, E., Landé *g*-factors for experimentally determined energy levels doubly ionized lanthanides, At. Data Nucl. Data Tables, 87, 207–230, 2004.
- [49] BIÉMONT, E., Recent advances and difficulties in oscillator strength determination for rare-earth elements and ions, Phys. Scr., T119, 55–60, 2005.
- [50] BIÉMONT, E., QUINET, P., A database of astrophysical interest covering the UV region, J. Electr. Spectrosc. Relat. Phenom., 144–147, 23–25, 2005.

- [51] GÁLVEZ, F.J., BUENDÍA, E., MALDONADO, P., SARSA, A.J., Optimized effective potential energies and ionization potentials for the atoms Li to Ra, Eur. Phys. J. D, 50, 229–235, 2008.
- [52] SANSONETTI, J.E., MARTIN, W.C., Handbook of basic atomic spectroscopic data, J. Phys. Chem. Ref. Data, 34, 1559–2259, 2005.
- [53] INDELICATO, P., SANTOS, J.P., BOUCARD, S., DESCLAUX, J.-P., QED and relativistic corrections in superheavy elements, Eur. Phys. J. D, 45, 155–170, 2007.
- [54] ANGELOV, B.M., Electron affinities of the lanthanides, Chem. Phys. Lett., 43, 368–369, 1976.
- [55] SEN, K.D., SCHMIDT, P.C., WEISS, A., Orbital electronegativity and electron affinity of rare earth atoms using X α -theory, Theoret. Chim. Acta, 58, 69–71, 1980.
- [56] COLE, L.A, PERDEW, J.P., Calculated electron affinities of the elements, Phys. Rev. A, 25, 1265–1271, 1982.
- [57] BRATSCH, S.G., Electron affinities of the lanthanides, Chem. Phys. Lett., 98, 113–117, 1983.
- [58] HOTOP, H., LINEBERGER, W.C., Binding energies in atomic negative ions, J. Phys. Chem. Ref. Data, 4, 539–576, 1975.
- [59] HOTOP, H., LINEBERGER, W.C., Binding energies in atomic negative ions: II, J. Phys. Chem. Ref. Data, 14, 731–750, 1985.
- [60] BATES, D.R., Negative ions: Structure and spectra, Adv. At. Mol. Phys., 27, 1–80, 1990.
- [61] NADEAU, M.-J., GARWAN, M.A., ZHAO, X.-L., LITHERLAND, A.E., A negative ion survey; towards the completion of the periodic table of the negative ions, Nucl. Instr. and Meth. B, 123, 521–526, 1997.
- [62] http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm, Şubat 2011.
- [63] http://www.nist.gov/physlab/data/asd.cfm, Şubat 2011.
- [64] http://w3.umh.ac.be/~astro/dream.shtml, Şubat 2011.
- [65] KING, A.S., CARTER, E., The electric-furnace spectra of yttrium, zirconium, and lanthanum, Astrophys. J., 65, 86–107, 1927.
- [66] MEGGERS, W.F., Regularities in the arc spectrum of lanthanum, J. Washington Acad. Sci., 17, 25–35, 1927.

- [68] RUSSELL, H.N., MEGGERS, W.F., An analysis of lanthanum spectra (La I, La II, La III), J. Res. Nat. Bur. Stand., 9, 625–668, 1932.
- [69] CORLISS, C.H., BOZMAN, W.R., Experimental transition probabilities for spectral lines of seventy elements, Nat. Bur. Stand. (U.S.) Monogr. 53, Washington, 1962.
- [70] HESE, A., Experimentelle untersuchung der 5d6s6p z ${}^{2}F_{5/2,7/2}$ -terme im Lanthan I-spektrum unter verwendung von level crossing-spektroskopie, Z. Phys., 236, 42–51, 1970.
- [71] HESE, A., BULDT, G., Hyperfine structure, stark effect, and lifetimes of the excited 5d6s6p y $^{2}D_{3/2,5/2}$ states of the lanthanum I spectrum, Z. Naturforsch. Teil A, 25, 1537–1545, 1970.
- [72] WILSON, M., *LS*-term dependence of hyperfine-interaction parameters in d^2s configurations, Phys. Rev. A, 3, 45–50, 1971.
- [73] BEN AHMED, Z., BAUCHE-ARNOULT, C., WYART, J.-F., Energy levels and hyperfine structures in the $(5d+6s)^3$ configurations of La I, Physica, 77, 148–158, 1974.
- [74] BEN AHMED, Z., VERGES, J., WILSON, M., GIACCHETTI, A., An extension of the even energy level system of La I, Physica B+C, 84, 275–280, 1976.
- [75] BULOS, B.R., GLASSMAN, A.J., GUPTA, R., MOE, G.W., Measurement of the lifetimes of the $z^{2}F_{5/2}$, $z^{2}D_{3/2}$, $z^{4}G_{5/2}$, and $y^{2}D_{3/2}$ states of lanthanum, J. Opt. Soc. Am., 68, 842–844, 1978.
- [76] PENKIN, N.P., GORSHKOV, V.N., KOMAROVSKII, V.A., Radiative lifetimes of excited La I levels, Opt. Spectrosc., 58, 840–841, 1985.
- [77] THÉVENIN, F., Oscillator strengths from the solar spectrum II, Astron. Astrophys. Suppl. Ser., 82, 179–188, 1990.
- [78] XUE, P., XU, X.Y., HUANG, W., XU, C.B., ZHAO, R.C, XIE, X.P., Observation of the highly excited states of lanthanum, AIP Conf. Proc., 388, 299–302, 1997.
- [79] ELIAV, E., SHMULYIAN, S., KALDOR, U., ISHIKAWA, Y., Transition energies of lanthanum, actinium, and eka-actinium (element 121), J. Chem. Phys., 109, 3954–3958, 1998.

- [80] BIÉMONT, E., QUINET, P., SVANBERG, S., XU, H.L., Lifetime measurements and calculations in La I, Eur. Phys. J. D, 30, 157–162, 2004.
- [81] ZHANG, X.F., JIA, F.-D., ZHONG, Z.-P., XUE, P., XU, X.-Y., YAN, J., Relativistic multichannel treatment of ionic Rydberg states of lanthanum, Chin. Phys. Lett., 24, 2808–2811, 2007.
- [82] MEGGERS, W.F, BURNS, K., Hyperfine structures of lanthanum lines, J. Opt. Soc. Am., 14, 449–453, 1927.
- [83] MURAKAWA, K., KAMEI, T., Hyperfine structure of the spectra of dysprosium, cobalt, vanadium, manganese, and lanthanum, Phys. Rev., 92, 325–327, 1953.
- [84] TING, Y., Hyperfine structure and quadrupole moment of lanthanum-139, Phys. Rev., 108, 295–304, 1957.
- [85] CHILDS, W.J., GOODMAN, L.S., Hyperfine and Zeeman studies of low-lying atomic levels of La¹³⁹ and the nuclear electric-quadrupole moment, Phys. Rev. A, 3, 25–45, 1971.
- [86] CHILDS, W.J. GOODMAN, L.S., ^{138,139}La nuclear electric-quadrupolemoment ratio by laser-rf double-resonance, Phys. Rev. A, 20, 1922–1926, 1979.
- [87] CHILDS, W.J., GOODMAN, L.S., Complete resolution of hyperfine structure in the close doublet λ 5930.6 of ¹³⁹La by laser-atomic-beam spectroscopy, J. Opt. Soc. Am., 67, 1230–1234, 1977.
- [88] CHILDS, W.J., NIELSEN, U., Hyperfine structure of the $(5d+6s)^3$ configuration of ¹³⁹La I: New measurements and *ab inito* multiconfigurational Hartree-Fock calculations, Phys. Rev. A, 37, 6–15, 1988.
- [89] FISCHER, W., HÜHNERMANN, H., MANDREK, K., IHLE, H., Optical determination of the quadrupole moments of ¹³⁸La, Phys. Lett. B, 40, 87–88, 1972.
- [90] GOVINDARAJAN, J., PRAMILA, T., Laser optogalvanic spectroscopy for hyperfine structure studies of La I, J. Opt. Soc. Am. B, 6, 1275–1277, 1989.
- [91] PRAMILA, T., Hyperfine structure studies of some La I transitions by laser optogalvanic spectroscopy, Phys. Scr., 42, 556–558, 1990.
- [92] LUO, C., QU, J., ZHU, L., LIN, F., Studies on the hyperfine structure of La I in a hollow-cathode discharge tube, J. Phys. D: Appl. Phys., 23, 1327–1328, 1990.

- [93] SHAW, R.W., YOUNG, J.P., SMITH, D.H., BONANNO, A.S., DALE, J.M., Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance-ionization mass spectroscopy, Phys. Rev. A, 41, 2566–2573, 1990.
- [94] JIA, L., JING, C., LIN, F., Hyperfine structure of odd-parity levels in ¹³⁹La I by laser optogalvanic spectroscopy, Opt. Commun., 94, 331–334, 1992.
- [95] GANGRSKY, Y.P., KARAIVANOV, D.V., MARINOVA, K.P., MARKOV, B.N., ZEMLYANOI, S.G., Hyperfine splitting of the odd ${}^{4}F_{I}^{o}$, ${}^{2}P_{I}^{o}$ and ${}^{4}S_{I}^{o}$ La I multiplets, Z. Phys. D, 41, 251–252, 1997.
- [96] JIN, W.-G., ENDO, T., UEMATSU, H., MINOWA, T., KATSURAGAWA, H., Diode-laser hyperfine-structure spectroscopy of ^{138,139}La, Phys. Rev. A, 63, 064501–064503, 2001.
- [97] BAŞAR, G., BAŞAR, G., ER, A., KRÖGER, S., Experimental hyperfine structure investigation of atomic La, Phys. Scr., 75, 572–576, 2007.
- [98] BAŞAR, G., BAŞAR, G., KRÖGER, S., High resolution measurements of the hyperfine structure of atomic lanthanum for energetically low lying levels of odd parity, Opt. Commun., 282, 562–567, 2009.
- [99] FURMANN, B., STEFAŃSKA, D., DEMBCZYŃSKI, J., Hyperfine structure analysis odd configurations levels in neutral lanthanum, I. Experimental, Phys. Scr., 76, 264–279, 2007.
- [100] FURMANN, B., STEFAŃSKA, D., DEMBCZYŃSKI, J., Experimental investigations of the hyperfine structure in neutral La: I. Odd parity levels, J. Phys. B: At. Mol. Opt. Phys., 42, 175005–175022, 2009.
- [101] DEMBCZYŃSKI, J., ELANTKOWSKA, M., FURMANN, B., RUCZKOWSKI, J., STEFAŃSKA, D., Critical analysis of the methods of interpretation in the hyperfine structure of free atoms and ions: case of the model space $5d + 6s^{-3}$ of the lanthanum atom, J. Phys. B: At. Mol. Opt. Phys., 43, 065001–065021, 2009.
- [102] http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html, Temmuz 2008.
- [103] KARAÇOBAN, B., ÖZDEMİR, L., Relativistic energies for some excited levels in La I (Z=57), Balkan Physics Letters, Special Issue, 97–102, 2008.
- [104] KARAÇOBAN, B., ÖZDEMİR, L., Energies and lifetimes for some excited levels in La I, Acta Phys. Pol. A, 113, 1609–1618, 2008.

- [105] KARAÇOBAN, B., ÖZDEMİR, L., Electric dipole transitions for La I (Z = 57), J. Quant. Spectrosc. Radiat. Transfer, 109, 1968–1985, 2008.
- [106] KARAÇOBAN, B., ÖZDEMİR L., The hyperfine structure calculations of some excited levels for ¹³⁹La I, Acta Phys. Pol. A, 115, 864–872, 2009.
- [107] KARAÇOBAN, B., ÖZDEMİR L., Transition energies of neutral and singly ionized lanthanum, Indian J. Phys., 84, 223–230, 2010.
- [108] MEGGERS, W.F., The structure of the La II spectrum, J. Opt. Soc. Am., 14, 191–204, 1927.
- [109] MEGGERS, W.F., The strongest lines of singly ionized atoms, J. Opt. Soc. Am., 31, 605–611, 1941.
- [110] SPECTOR, N., GOTTHELF, U., Configuration interaction in singly ionized lanthanum (La II), Opt. Pura Apl., 3, 98–103, 1970.
- [111] XIE, X.P., XU, C.B., SUN, W., XUE, P., ZHONG, Z.P., HUANG, W., XU, X.Y., Study of La⁺ Rydberg and autoionization states: ionization potential of La II, J. Opt. Soc. Am. B, 16, 484–487, 1999.
- [112] SUN, W., YAN, J., ZHONG, Z.P., XIE, X.P., XUE, P., XU, X.Y., Study on ionic Rydberg states of lanthanum, J. Phys. B: At. Mol. Opt. Phys., 34, 369–379, 2001.
- [113] ZHIGUO, Z., ZHONGSHAN, L., JIANG, Z.-K., Experimental investigations of oscillator strengths for ultraviolet transitions in La II, Eur. Phys. J. D, 77, 499–502, 1999.
- [114] BORD, D.J., BARISCIANO, L.P., COWLEY, C.R., *gf*-values for singly ionized lanthanum based on a new calibration of NBS Monograph 145 intensities, Mon. Not. R. Astron. Soc., 278, 997–1004, 1996.
- [115] LAWER, J.E., BONVALLET, G., SNEDEN, C., Experimental radiative lifetimes, branching fractions, and oscillator strengths for La II and a new determination of the solar lanthanum abundance, Astrophys. J., 556, 452–460, 2001.
- [116] ANDERSEN, T., POULSEN, O., RAMANUJAM, P.S., PETRAKIEV PETKOV, A., Lifetimes of some excited states in the rare earths: La II, Ce II, Pr II, Nd II, Sm II, Yb I, Yb II, and Lu II, Sol. Phys., 44, 257–267, 1975.
- [117] ARNESEN, A., BENGTSSON, A., HALLIN, R., LINDSKOG, J., NORDLING, C., NORELAND, T., Lifetime measurements in La II with the beam-laser method, Phys. Scr., 16, 31–34, 1977.

- [119] LI, Z.S., JIANG, Z.-K., Lifetimes measurements in La II and La III using time-resolved laser spectroscopy, Phys. Scr., 60, 414–417, 1999.
- [120] MIGDALEK, J., BAYLIS, W.E., Multiconfiguration Dirac-Fock study of the 5d6p ${}^{3}F_{4}^{o}$ lifetimes in singly ionized lanthanum, Phys. Rev. A, 43, 4625–4628, 1991.
- [121] KUŁAGA-EGGER, D., MIGDAŁEK, J., Theoretical radiative lifetimes of levels in singly ionized lanthanum, J. Phys. B: At. Mol. Opt. Phys., 42, 185002–185007, 2009.
- [122] DERKATCH, A., ILYINSK, L., MANNERVIK, S., NORLIN, L.-O., ROSTOHAR, D., ROYEN, P., SCHEF, P., BIÉMONT, E., Experimental and theoretical investigation of radiative decay rates of metastable levels in La II, Phys. Rev. A, 65, 062508–062514, 2002.
- [123] HÖHLE, C., HÜHNERMANN, H., WAGNER, H., Measurements of the hyperfine structure constants of all the $5d^2$ and 5d6s levels in ¹³⁹La II using the high-resolution spectroscopy on collinear laser-ion-beams, Z. Phys. A, 304, 279–283, 1982.
- [124] BAUCHE, J., WYART, J.-F., BEN AHMED, Z., GUIDARA, K., Interpretation of the hyperfine structures in low even configurations of lanthanum II, Z. Phys. A, 304, 285–292, 1982.
- [125] MAOUSHENG, L., HONGLIANG M., MIAOHUA, C., ZHIJUN, C., FUQUAN, L., JIAYONG T., FUJIA, Y., Hyperfine structure measurements in the lines 576.91 nm, 597.11 nm and 612.61 nm of La II, Phys. Scr., 61, 449–451, 2000.
- [126] IIMURA, H., KOIZUMI, M., MIYABE, M., OBA, M., SHIBATA, T., SHINOHARA, N., ISHIDA, Y., HORIGUCHI, T., SCHUESSLER, H.A., Nuclear moments and isotope shifts of ¹³⁵La, ¹³⁷La, and ¹³⁸La by collinear laser spectroscopy, Phys. Rev. C, 68, 054328–054334, 2003.
- [127] SCHEF, P., BJÖRKHAGE, M., LUNDIN, P., MANNERVIK, S., Precise hyperfine structure measurements of La II utilizing the laser and rf double resonance technique, Phys. Scr., 73, 217–222, 2006.
- [128] DATTA, D., BECK, D.R., Relativistic many-body effects in the fine and hyperfine structure of ¹³⁹La II $(5d+6s)^3 J = 2$ states: The need for second-order electrostatic corrections, Phys. Rev. A, 52, 3622–3627, 1995.

- [129] GIBBS, R.C., WHITE, H.E., Relations between doublets of stripped atoms in five periods of the periodic table, Phys. Rev., 33, 157–162, 1929.
- [130] BADAMI, J.S., The spectrum of trebly-ionized cerium (Ce IV), Proc. Phys. Soc., 43, 53–58, 1931.
- [131] SUGAR, J., KAUFMAN, V., Spectrum of doubly ionized lanthanum (La III), J. Opt. Soc. Am., 55, 1283–1285, 1965.
- [132] ODABASI, H., Spectrum of doubly ionized lanthanum (La III), J. Opt. Soc. Am., 57, 1459–1463, 1967.
- [133] JOHANSSON, S., LITZÉN, U., Resonance lines of La III, J. Opt. Soc. Am., 61, 1427–1428, 1971.
- [134] MIGDALEK, J., WYROZUMSKA, M., Relativistic oscillator strengths for the Cs isoelectronic sequence and collapse of *f* and *d* orbitals, J. Quant. Spectrosc. Radiat. Transfer, 37, 581–589, 1987.
- [135] BIÉMONT, E., LI, Z.S., PALMERI, P., QUINET, P., Radiative lifetimes in La III and oscillator strengths in La III and Lu III, J. Phys. B: At. Mol. Opt. Phys., 32, 3409–3419, 1999.
- [136] KING, A.S., Temperature classification of the stronger lines of cerium and praseodymium, Astrophys. J., 68, 194–247, 1928.
- [137] PAUL, F.W., Absorption spectra of cerium, neodymium and samarium, Phys. Rev., 49, 156–162, 1936.
- [138] MARTIN, W.C., Low energy levels of neutral cerium (Ce I), J. Opt. Soc. Am., 53, 1047–1050, 1963.
- [139] MARTIN, W.C., Low-energy level structure of neutral cerium (Ce I), Phys. Rev. A, 53, 1810–1815, 1971.
- [140] MEGGERS, W.F., CORLISS, C.H., SCRIBNER, B.F., Tables of spectral line intensities, Nat. Bur. Stand. (U.S.) Monogr. 32, Washington, 1961.
- [141] MEGGERS, W.F., CORLISS, C.H., SCRIBNER, B.F., Tables of spectral line intensities, Nat. Bur. Stand. (U.S.) Monogr. 145, Washington, 1975.
- [142] BISSON, S.E., WORDEN, E.F., CONWAY, J.G., COMASKEY, B., STOCKDALE, J.A.D., NEHRING, F., Determination of absolute transition probabilities in neutral cerium from branching ratio and lifetime measurements, J. Opt. Soc. Am. B, 8, 1545–1558, 1991.

- [143] BISSON, S.E., COMASKEY, B., WORDEN, E.F., Method to measure excited-level-to-excited-level branching ratios and atomic transition probabilities by time-resolved laser photoionization spectroscopy, J. Opt. Soc. Am. B, 12, 193–202, 1995.
- [144] VERGES, J., CORLISS, C.H., MARTIN, W.C., Infrared spectra of cerium (Ce I and Ce II) between 0.8 and 2.4 μm, J. Res. Natl. Bur. Stand. A, 76, 285–304, 1972.
- [145] SMITH, K.F., SPALDING, I.J., The atomic *g* values of some rare earth atoms, Proc. R. Soc. London A, 265, 133–140, 1961.
- [146] VINDOLOVA-ANGELOVA, E.P., KRUSTEV, T.B., ANGELOV, D.A., MINCHEVA, S., Laser resonance ionization spectroscopy of the cerium atom, J. Phys. B: At. Mol. Opt. Phys., 30, 667–678, 1997.
- [147] XU, H.L., PERSSON, A., SVANBERG, S. Radiative lifetimes in Ce I and Ce II, Eur. Phys. J. D, 23, 233–236, 2003.
- [148] LI, Z.S., LUNDBERG, H., WAHLGREN, G.M., SIKSTRÖM, C.M., Lifetime measurements in Ce I, Ce II, and Ce III using time-resolved laser spectroscopy with application to stellar abundance determinations of cerium, Phys. Rev. A, 62, 032505–032513, 2000.
- [149] CURRY, J.J., Absolute transition probabilities for 559 strong lines of neutral cerium, J. Phys. D: Appl. Phys., 42, 135205–135213, 2009.
- [150] DEN HARTOG, E.A., BUETTNER, K.P., LAWER, J.E., Radiative lifetimes of neutral cerium, J. Phys. B: At. Mol. Opt. Phys., 42, 085006–085012, 2009.
- [151] LAWER, J.E., CHISHOLM, J., NITZ, D.E., WOOD, M.P., SOBECK, J., DEN HARTOG, E.A., Atomic transition probabilities of Ce I from Fourier transform spectra, J. Phys. B: At. Mol. Opt. Phys., 43, 085701–085710, 2010.
- [152] LAWER, J.E., SNEDEN, C., COWAN, J.J., IVANS, I.I., DEN HARTOG, E.A., Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five *r*-process-rich, metal-poor stars, and rare earth lab data summary, Astrophys. J. Suppl. Ser., 182, 51–79, 2009.
- [153] CHAMPEAU, R.-J., GERSTENKORN, S., Déplacement isotopique des quatre isotopes naturels du cérium, Phys. Lett. A, 26, 334–335, 1968.
- [154] CHAMPEAU, R.-J., Déplacement isotopique dans les spectres d'arc et d'étincelle du cérium, I. Déplacement isotopique relatif des isotopes ¹³⁶Ce, ¹³⁸Ce, ¹⁴⁰Ce et ¹⁴²Ce, Physica, 62, 209–224, 1972.

- [155] CHAMPEAU, R.-J., Déplacement isotopique dans les spectres d'arc et d'étincelle du cérium II. Déplacement isotopique ¹⁴⁰Ce⁻¹⁴²Ce étude des facteurs électroniques, Physica, 62, 225–238, 1972.
- [156] FISCHER, W., HÜHNERMANN, H., MANDREK, K., MEIER TH., AUMANN, D.C., Optical isotope shift in ¹⁴⁴Ce, Physica B+C, 79, 105–112, 1975.
- [157] CHAMPEAU, R.-J., VERGES, J., Déplacement isotopique dans le spectre infrarouge du cérium, Physica B+C, 83, 373–378, 1976.
- [158] WAKUI, T., JIN, W.-G., HASEGAWA, K., UEMATSU, H., MINOWA, T., KATSURAGAWA, H., High-resolution diode-laser spectroscopy of the rare-earth elements, J. Phys. Soc. Jpn., 72, 2219–2223, 2003.
- [159] ALBERTSON, W.E., HARRISON, G.R., Preliminary analysis of the first spark spectrum of cerium-Ce II, Phys. Rev., 52, 1209–1215, 1937.
- [160] HARRISON, G.R., ALBERTSON, W.E., HOSFORD, N.F., Zeeman effect data and further classification of the first spark spectrum of cerium-Ce II, J. Opt. Soc. Am., 31, 439–448, 1941.
- [161] CORLISS, C.H., Wavelengths and energy levels of the second spectrum of cerium, Ce II, J. Res. Natl. Bur. Stand. A (U.S.), 77, 419–546, 1973.
- [162] LANGHANS, G., SCHADE, W., HELBIG, V., Radiative lifetimes of neutral and singly ionized atoms of refractory elements, Z. Phys. D, 34, 151–155, 1995.
- [163] ZHANG, Z.-G., SVANBERG, S., JIANG, Z.-K., PALMERI, P., QUINET, P., BIÉMONT, E., Natural radiative lifetimes in Ce II, Phys. Scr., 63, 122–127, 2001.
- [164] FAWCETT, B.C., Computed oscillator strengths and Landé *g* values of Ce II, At. Data Nucl. Data Tables, 46, 217–283, 1990.
- [165] PALMERI, P., QUINET, P., WYART, J.-F., BIÉMONT, E., Theoretical lifetimes and oscillator strengths in Ce II. Application to chemical composition of the sun, Phys. Scr., 61, 323–334, 2000.
- [166] ISHIDA, Y., IIMURA, H., ICHIKAWA, S., HORIGUCHI, T., Isotope shifts of optical transitions in Ce II by collinear laser-ion-beam spectroscopy, J. Phys. B: At. Mol. Opt. Phys., 30, 2569–2579, 1997.
- [167] KING, A.S., KING, R.B., The spectrum of doubly ionized cerium, Astrophys. J., 75, 40–47, 1932.
- [168] RUSSELL, H.N., KING, R.B., LANG, R.J., The third spectrum of cerium (Ce III), Phys. Rev., 52, 456–466, 1937.

- [169] SUGAR, J., Description and analysis of the third spectrum of cerium (Ce III), J. Opt. Soc. Am., 55, 33–36, 1965.
- [170] SPECTOR, N., 4*fnl* configurations of doubly ionized cerium (Ce III), J. Opt. Soc. Am., 55, 492–501, 1965.
- [171] JOHANSSON, S., LITZÉN, U., The $4f^n 4f5d$ lines of Ce III, Phys. Scr., 6, 139–140, 1972.
- [172] ANDERSEN, T., SØRENSEN, G., Determinations of atomic lifetimes for the rare earth ions: Pr II, Tm II, Lu II, Ce III, Sol. Phys., 38, 343–350, 1974.
- [173] BORD, D.J., COWLEY, C.R., NORQUIST, P.L., Oscillator strength calculations in Ce III: application to HD 200311, Mon. Not. R. Astron. Soc., 284, 869–873, 1997.
- [174] WYART, J.-F., PALMERI, P., Interpretation of the spectrum of Ce III. New energy levels and theoretical transition probabilities, Phys. Scr., 58, 368–376, 1998.
- [175] BIÉMONT, E., QUINET, P., RYABCHIKOVA, T.A., Core-polarization effects in doubly ionized cerium (Ce III) for transitions of astrophysical interest, Mon. Not. R. Astron. Soc., 336, 1155–1160, 2002.
- [176] KING, A.S., Temperature classification of the spectra of ytterbium and lutecium, Astrophys. J., 74, 328–341, 1931.
- [177] MEGGERS, W.F, SCRIBNER, B.F., Arc and spark spectra of ytterbium, J. Res. Natl. Bur. Stand. (U.S.), 19, 651–664, 1937.
- [178] PARR, A.C., ELDER, F.A., Photoionization of ytterbium: 1350–2000 Å, J. Chem. Phys., 49, 2665–2667, 1968.
- [179] CAMUS, P., TOMKINS, F.S., Spectre d'absorption de Yb I, J. Phys. France, 30, 545–550, 1969.
- [180] NIR, S., $4f^{14}6sns$, $4f^{14}6snd$, and $4f^{14}6snp$ sequences in Yb I, J. Opt. Soc. Am., 60, 354–357, 1970.
- [181] SPECTOR, N., Configurations $4f^{N-1}6s^26p$ in neutral gadolinium, dysprosium, erbium and ytterbium, J. Opt. Soc. Am., 61, 1350–1354, 1971.
- [182] MEGGERS, W.F., TECH, J.L., The first spectrum of ytterbium Yb I, J. Res. Natl. Bur. Stand. (U.S.), 83, 13–70, 1978.

- [183] CAMUS, P., DÉBARRE, A., MORILLON, C., Two-photon absorption spectroscopy in ytterbium, J. Phys. B: At. Mol. Opt. Phys., 11, L395–L398, 1978.
- [184] CAMUS, P., DÉBARRE, A., MORILLON, C., Highly excited levels of neutral ytterbium. I. Two-photon and two-step spectroscopy of even spectra, J. Phys. B: At. Mol. Opt. Phys., 13, 1073–1087, 1980.
- [185] WYART, J.-F., CAMUS, P., Extended analysis of the emission spectrum of neutral ytterbium (Yb I), Phys. Scr., 20, 43–59, 1979.
- [186] KOZLOV, M.G., KOTOCHIGOVA, S.A., Classification of energy levels of the ytterbium atom, Opt. Spectrosc., 42, 1–3, 1977 [Opt. Spektrosk. 42, 3–6, 1977 (Russ.)].
- [187] KOZLOV, M.G., KOTOCHIGOVA, S.A., NIKOLAEV, V.N., Absorption spectra of rare-earth elements in the Schumann region. ytterbium, Opt. Spectrosc., 41, 4–7, 1976 [Opt. Spektrosk. 41, 10–14, 1976 (Russ.)].
- [188] KOZLOV, M.G., KOTOCHIGOVA, S.A., KRYLOV, B.E., Absorption spectrum of ytterbium vapor in the 1700-1060 Å region, Opt. Spectrosc., 43, 368–370, 1977 [Opt. Spektrosk. 43, 616–620, 1977 (Russ.)].
- [189] KOZLOV, M.G., KOTOCHIGOVA, S.A., Analysis of the absorption spectrum of ytterbium vapor in the vacuum ultraviolet region. 1. Excitation of $6s^2$ -shell, Opt. Spectrosc., 45, 616–619, 1978 [Opt. Spektrosk. 45, 640–647, 1978 (Russ.)].
- [190] KOZLOV, M.G., KOTOCHIGOVA, S.A., Analysis of the absorption spectrum of ytterbium vapor in the vacuum ultraviolet region: 2. Excitation of the $4f^{44}$ subshell, Opt. Spectrosc., 45, 742–744, 1978 [Opt. Spektrosk., 45, 869–874, 1978 (Russ.)].
- [191] MIRZA, M.Y., DULEY, W.W., Two-photon spectroscopy of ytterbium, Opt. Commun., 28, 179–182, 1979.
- [192] BEKOV, G.I., VIDOLOVA-ANGELOVA, E.P., IVANOV, L.N., LETOKHOV, V.S., MISHIN, V.I., Double-excited narrow autoionization states of ytterbium atom, Opt. Commun., 35, 194–198, 1980.
- [193] BEKOV, G.I, VIDOLOVA-ANGELOVA, E.P., LETOKHOV, V.S., MISHIN, V.I., Multistep laser spectroscopy of high-lying triplet states of the ytterbium atom, Opt. Spectrosc., 48, 239–241, 1980 [Opt. Spektrosk. 48, 435–439, 1980 (Russ.)].
- [194] NAQVI, A.S., MIRZA, M.Y., SEMPLE, D.J., DULEY, W.W., Narrow 3photon autoionizing resonances in Tl and Yb, Opt. Commun., 37, 356– 358, 1981.

- [196] GOMONAĬ, A.I., ZAPESOCHNYĬ, I.P. Resonance excitation of bound and autoionization states of the ytterbium atom in the course of threephoton ionization, JETP Lett., 57, 778–781, 1993 [Pis'ma Zh. Eksp. Teor. Fiz. (Russia) 57, 765–768, 1993 (Russ.)].
- [197] GOMONAĬ, A.I., Three-photon ionization of the ytterbium atom, Opt. Spectrosc., 86, 22–25, 1999 [Opt. Spektrosk. 86, 28–32, 1999 (Russ.)].
- [198] FORREST, L.F., PEJCEV, V., JAMES, G.K., DANIELL, G.J., ROSS, K.J., An experimental investigation of the ejected-electron spectra arising from autoionising and auger transitions in Yb I and Yb II excited by electron impact for the range of incident electron energies 8-500 eV, J. Phys. B: At. Mol. Opt. Phys., 18, 2601–2613, 1985.
- [199] XU, C.B., XU, X.Y., HUANG, W., XUE, M., CHEN, D.Y., Rydberg and autionizing states of neutral ytterbium, J. Phys. B: At. Mol. Opt. Phys., 27, 3905–3913, 1994.
- [200] TRACY, D.H., Photoabsorption structure in lanthanides: 5p subshell spectra of Sm I, Eu I, Dy I, Ho I, Er I, Tm I, and Yb I, Proc. R. Soc. Lond. A, 357, 485–498, 1977.
- [201] MANSFIELD, M.W.D., BAIG, M.A., A high-resolution re-examination of the Yb I 5p-subshell absorption spectrum, J. Phys. B: At. Mol. Opt. Phys., 26, 2273–2288, 1993.
- [202] VIDOLOVA-ANGELOVA, E.P., IVANOV, L.N., LETOKHOV, V.S., Application of model potential method in calculating Rydberg states of rare-earth elements Tm, Yb, Lu and their ions, J. Phys. B: At. Mol. Phys., 15, 981–991, 1982.
- [203] MAEDA, H., MATSUO, Y., TAKAMI, M., SUZUKI, A., Opticalmicrowave double-resonance spectroscopy of highly excited Rydberg states of ytterbium, Phys. Rev. A, 45, 1732–1741, 1992.
- [204] YI, J., LEE, J., KONG, H.J., Autoionizing states of the ytterbium atom by three-photon polarization spectroscopy, Phys. Rev. A, 51, 3053–3057, 1995.
- [205] YI, J., PARK, H., LEE, J., Investigation of even parity autoionizing states of ytterbium atoms by two-photon ionization spectroscopy, J. Korean Phys. Soc., 39, 916–920, 2001.

- [206] BAIG, M.A., AHMAD, S., GRIESMANN, U., CONNERADE, J.P., BHATTI, S.A., AHMAD, N., Inner shell and double excitation spectrum of ytterbium involving the 4*f* and 6*s* subshells, J. Phys. B: At. Mol. Opt. Phys., 25, 321–341, 1992.
- [207] ALİ, R., NADEEM, A., YASEEN, M., ASLAM, M., BHATTI, S.A., BAIG, M.A., Three-colour four-photon resonant excitation of the evenparity autoionizing resonances in Yb I, J. Phys. B: At. Mol. Opt. Phys., 32, 4361–4371, 1999.
- [208] ALİ, R., YASEEN, M., NADEEM, A., BHATTI, S.A., BAIG, M.A., Two-colour three-photon excitation of the 6snf^{1,3}F₃ and 6snp⁻¹P₁, ³P_{1,2} Rydberg levels of Yb I, J. Phys. B: At. Mol. Opt. Phys., 32, 953–956, 1999.
- [209] GRIESMANN, U., BAIG, M.A., AHMAD, S., KAENDERS, W.G., ESSER, B., HORMES, J., Photoionization cross sections of doubly excited resonances in ytterbium, J. Phys. B: At. Mol. Opt. Phys., 25, 1393–1404, 1992.
- [210] WU, B.-R., ZHENG, Y.-F., XU, Y.-F., PAN, L.-G., LU, J., ZHONG, J.-W., The 6snp $^{3}P_{0,2}$ Rydberg series of neutral ytterbium, J. Phys. B: At. Mol. Opt. Phys., 24, 49–55, 1991.
- [211] WU, B.-R., XU, Y.-F., ZHENG, Y.-F., LU, J., SHEN, J.-F., WANG, Y.-X., An experimental investigation of the autoionizing levels of neutral ytterbium, J. Phys. B: At. Mol. Opt. Phys., 25, 355–361, 1992.
- [212] WU, B.-R., XU, Y.-F., ZHENG, Y.-F., HU, Y.-Y., LU, J., The odd-parity autoionization spectra of Yb I, Chin. Phys. (AIP), 11, 287–292, 1991.
- [213] AYMAR, M., DÉBARRE, A., ROBAUX, O., Highly excited levels of neutral ytterbium II. Multichannel quantum defect analysis of odd- and even-parity spectra, J. Phys. B: At. Mol. Opt. Phys., 13, 1089–1109, 1980.
- [214] AYMAR, M., CHAMPEAU, R.-J., DELSART, C., ROBAUX, O., Threestep laser spectroscopy and multichannel quantum defect analysis of oddparity Rydberg states of neutral ytterbium, J. Phys. B: At. Mol. Opt. Phys., 17, 3645–3661, 1984.
- [215] BAIG, M.A., CONNERADE, J.P., The interchannel interaction between single excitation from $4f^{14}$ and double excitation from $6s^2$ in Yb I, J. Phys. B: At. Mol. Opt. Phys., 17, L469–L474, 1984.
- [216] ELIAV, E., KALDOR, U., ISHIKAWA, Y., Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method, Phys. Rev. A, 52, 291–296, 1995.

- [217] BORSCHEVSKY, A., ELIAV, E., VILKAS, M.J., ISHIKAWA, Y., KALDOR, U., Predicted spectrum of atomic nobelium, Phys. Rev. A, 75, 042514–042519, 2007.
- [218] NAYAK, M.K., CHAUDHURI, R.K., Relativistic coupled cluster method–Excitation and ionization energies of Sr and Yb atom, Eur. Phys. J. D, 37, 171–176, 2006.
- [219] KOZLOV, M.G., PORSEV, S.G., Combined configuration-superposition and many-particle perturbation calculations for atoms with two valence electrons, JETP, 84, 461–465, 1997 [Zh. Eksp. Teor. Fiz. (Russia) 111, 838–846, 1997 (Russ.)].
- [220] FRITZSCHE, S., On the accuracy of valence-shell computations for heavy and super-heavy elements, Eur. Phys. J. D, 33, 15–21, 2005.
- [221] KOTOCHIGOVA, S.A., TUPIZIN, I.I., Theoretical investigation of rareearth and barium spectra by the Hartree-Fock-Dirac method, J. Phys. B: At. Mol. Opt. Phys., 20, 4759–4772, 1987.
- [222] RAMBOW, F.H.K., SCHEARER, L.D., Radiative lifetimes and alignment depolarization cross sections for Yb I and II by the Hanle effect in a flowing helium system, Phys. Rev. A, 14, 738–743, 1976.
- [223] BAUMANN, M., WANDEL, G., g_J factors of the 6s6p ³P₁ and 6s6p ¹P₁ states of ytterbium, Phys. Lett. A, 28, 200–201, 1968.
- [224] BAUMANN, M., WANDEL, G., Lifetimes of the excited states (6s6p) ¹P₁ and (6s6p) ³P₁ of ytterbium, Phys. Lett., 22, 283–285, 1966.
- [225] BAUMANN, M., GEISLER, M., LIENING, H., LINDEL, H., Lifetimeand quantumbeat measurements in the excited $4f^{14}6s6d$ D-states in the Yb I-spectrum using stepwise laser excitation, Opt. Commun., 38, 259–261, 1981.
- [226] BAUMANN, M., BRAUN, M., GAISER, A., LIENING, H., Radiative lifetimes and g_J factors of low-lying even-parity levels in the Yb I spectrum, J. Phys. B: At. Mol. Phys., 18, L601–L604, 1985.
- [227] KAUPP, H., BAUMANN, M., g_J -factor measurements in the perturbed 6snd ^{1,3}D₂ series of the Yb I spectrum, J. Phys. B: At. Mol. Opt. Phys., 29, 3783–3786, 1996.
- [228] GUO, C., YU, Y.-N., YU, H., JIANG, Z.-K., PENG, W.-X., Lifetimes of Rydberg levels in the perturbed 6*snp* ³P₂ series of ytterbium I, Phys. Rev. A, 47, 1551–1553, 1993.

- [230] MEGGERS, W.F., CORLISS, C.H., Wavelengths, intensities, and Zeeman patterns in ytterbium spectra (Yb I, II, III, IV), J. Res. Nat. Bur. Stand. A, 70, 63–106, 1966.
- [231] KOMAROVSKII, V.A., PENKIN, N.P., Oscillator strengths of the spectral lines of Tm I and Yb I, Opt. Spectrosc., 26, 483–484, 1969.
- [232] MIGDALEK, J., MARCINEK, R., Model-potential oscillator strengths for $4f^n 6s^2 - 4f^n 6s 6p$ transitions in Sm(I), Eu(I), Dy(I), Er(I) and Yb(I), J. Quant. Spectrosc. Radiat. Transfer, 32, 269–277, 1984.
- [233] MIGDALEK, J., BAYLIS, W.E., Correlation effects in a relativistic calculation of the $6s^2 {}^{1}S_0 6s6p {}^{1}P_1$ transition in ytterbium, Phys. Rev. A, 33, 1417–1420, 1986.
- [234] MIGDALEK, J., BAYLIS, W.E., Relativistic transition probabilities and lifetimes of low-lying levels in ytterbium, J. Phys. B: At. Mol. Opt. Phys., 24, L99–L102, 1991.
- [235] MIGDALEK, J., Model potential approach to core polarization in SCF calculations, Phys. Scr., T100, 47–54, 2002.
- [236] GLOWACKI, L., MIGDALEK, J., Relativistic configuration-interaction oscillator strength calculations with *ab initio* model potential wavefunctions, J. Phys. B: At. Mol. Opt. Phys., 36, 3629–3636, 2003.
- [237] VERNER, D.A., BARTHEL, P.D., TYTLER, D., Atomic data for absorption lines from the ground level at wavelengths greater than 228Å, Astron. Astrophys. Suppl. Ser., 108, 287–340, 1994.
- [238] BAI, Y.S., MOSSBERG, T.W., Lifetimes and oscillator-strength studies involving the (6s6p) ³P₁ and (6s7s) ¹S₀ transition of atomic Yb, Phys. Rev. A, 35, 619–621, 1987.
- [239] FANG, D.-W., XIE, W.-J., ZHANG, Y., HU, X., LIU, Y.-Y., Radiative lifetimes of Rydberg state of ytterbium, J. Quant. Spectrosc. Radiat. Transfer, 69, 469–473, 2001.
- [240] MISHRA, A.P., BALASUBRAMANIAN, T.K., Radiative lifetimes of the first excited ³P°_{2,0} metastable levels in Kr I, Xe I, Yb I and Hg-like atoms, J. Quant. Spectrosc. Radiat. Transfer, 69, 769–780, 2001.

- [241] PORSEV, S.G., RAKHLINA, Y.G., KOZLOV, M.G., Electric-dipole amplitudes lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium, Phys. Rev. A, 60, 2781–2785, 1999.
- [242] DAS, B.P., Computation of correlation effects on the paritynonconserving electric-dipole transition in atomic ytterbium, Phys. Rev. A, 56, 1635–1637, 1997.
- [243] JIANG, Z.-K., LUO, X.-Y., SONG, M., Multichannel-quantum-defecttheory analysis of natural radiative lifetimes in the perturbed Rydberg sequence $4f^{44}6snp$ ³P₂ of Yb I, Phys. Rev. A, 48, 2451–2452, 1993.
- [244] JIANG, Z.-K., LUO, X.-Y, PENG, W.-X., LIU, W.-F., LARSSON, J., GUO, C., YU, Y.-N., YU, H., Lifetimes of Rydberg levels in the perturbed 6*snp*^{1,3}P₁ series of Yb I, Phys. Lett. A, 204, 49–53, 1995.
- [245] JIANG, Z.-K., LARSSON, J., Perturbations in the *np*^{1,3}P Rydberg sequences of neutral Yb probed by Zeeman-effect and lifetime measurements, Z. Phys. D, 22, 387–389, 1991.
- [246] KOMAROVSKII, V.A., VEROLAINEN, YA.F., Rydberg-level lifetimes of ytterbium atom 4f¹⁴6sns¹S₀ series, Opt. Spectrosc., 73, 511–512, 1992 [Opt. Spektrosk. 73, 855–857, 1992 (Russ.)].
- [247] LIU, X.-W., WANG, Z.-W., Multichannel quantum-defect theory of lifetimes for highly excited states of atoms: Calculation of Yb lifetimes in the perturbed 6*snd*^{1,3}D₂ sequences, Phys. Rev. A, 40, 1838–1842, 1989.
- [248] JIANG, Z.-K., WANG, C.-F., WANG, D.-D., Natural radiative lifetime of Yb in the perturbed 6*snd* ^{1,3}D₂ sequences, Phys. Rev. A, 36, 3184–3186, 1987.
- [249] WANG, D.-D., WANG, C.-F., JIANG, Z.-K., Natural radiative lifetimes in the perturbed 6sns ${}^{1}S_{0}$ sequence of Yb, J. Phys. B: At. Mol. Opt. Phys., 20, L555–L558, 1987.
- [250] BAUMANN, M., BRAUN, M., MAIER, J., Configuration interaction in the 6snd $^{1}D_{2}$ and 6sns $^{1}S_{0}$ states of Yb probed by lifetime measurements, Z. Phys. D, 6, 275–278, 1987.
- [251] BORISOV, S.K., KARPOV, N.A., KARULIN, F.E., KRYNETSKII, B.B., MISHIN, V.A., STELMAKH, O.M, PENTEGOV, S.YU., Measurement of the dipole moment of the $6 {}^{3}P_{1}$ (7/2, 3/2)₂ transition and lifetime of the ytterbium atom in the (7/2, 3/2)₂ state, Opt. Spectrosc., 62, 719–720, 1987.
- [252] BLAGOEV, K.B., KOMAROVSKII, V.A., PENKIN, N.P., Radiative lifetimes of Yb I and Yb II excited states, Opt. Spectrosc., 45, 832–833, 1978.

- [253] GUSTAVSSON, M., LUNDBERG, H., NILSSON, L., SVANBERG, S., Lifetime measurements for excited states of rare-earth atoms using pulse modulation of a cw dye-laser beam, J. Opt. Soc. Am., 69, 984–992, 1979.
- [254] BURSHTEIN, M.L., VEROLAINEN, YA.F., KOMAROVSKII, V.A, OSHEROVICH, A.L., PENKIN, N.P., Lifetimes of the ³P^o₁ level of Yb I and the ²P^o_{3/2,1/2} level of Yb II, Opt. Spectrosc., 37, 351–352, 1974.
- [255] DEMILLE, D., Parity nonconservation in the $6s^2 {}^1S_0 \rightarrow 6s5d {}^3D_1$ transition in atomic ytterbium, Phys. Rev. Lett., 74, 4165–4168, 1995.
- [256] BOWERS, C.J., BUDKER, D., FREEDMAN, S.J., GWINNER, G., STALNAKER, J.E., DEMILLE, D., Experimental investigation of the $6s^2$ ${}^{1}S_0 \rightarrow 5d6s$ ${}^{3}D_{1,2}$ forbidden transitions in atomic ytterbium, Phys. Rev. A, 59, 3513–3526, 1999.
- [257] STALNAKER, J.E., BUDKER, D., DEMILLE, D.P., FREEDMAN, S.J., YASHCHUK, V.V., Measurement of the forbidden $6s^2 {}^{1}S_0 \rightarrow 5d6s {}^{3}D_1$ magnetic-dipole transition amplitude in atomic ytterbium, Phys. Rev. A, 66, 031403–031406, 2002.
- [258] ROSS, J.S., MURAKAWA, K., Nuclear quadrupole moment of Yb¹⁷³, Phys. Rev., 128, 1159–1160, 1962.
- [259] MILLERAND, G.E., ROSS, J.S., Isotope shifts in the arc spectra of dysprosium, erbium, and ytterbium, J. Opt. Soc. Am., 66, 585–589, 1976.
- [260] CLARK, D.L., CAGE, M.E., LEWIS, D.A., GREENLEES, G.W., Optical isotopic shifts and hyperfine splitting for Yb, Phys. Rev. A, 20, 239–251, 1979.
- [261] BUDICK, B., SNIR, J., Hyperfine structure of the 6*s*6*p* ¹P₁ level of the stable ytterbium isotopes, Phys. Rev., 178, 18–23, 1969.
- [262] BUDICK, B., SNIR, J., Hyperfine structure anomalies of stable ytterbium isotopes, Phys. Rev. A, 1, 545–551, 1970.
- [263] JIN, W.-G., HORIGUCHI, T., WAKASUGI, M., HASEGAWA, T., YANG, W., Systematic study of isotope shifts and hyperfine structure in Yb I by atomic-beam laser spectroscopy, J. Phys. Soc. Jpn., 60, 2896–2906, 1991.
- [264] KISCHKEL, C.S., BAUMANN, M., KÜMMEL, E., Two-photon spectroscopy of some even-parity levels in neutral ytterbium, J. Phys. B: At. Mol. Opt. Phys., 24, 4845–4862, 1991.
- [265] KISCHKEL, C.S., BAUMANN, M., KÜMMEL, E., Two-photon spectroscopy of $4f^{14}6s9d$ and $4f^{14}6s10d$ levels in neutral ytterbium, J. Phys. B: At. Mol. Opt. Phys., 25, 4447–4454, 1992.

- [267] LOFTUS, T., BOCHINSKI, J.R., MOSSBERG, T.W., Optical doubleresonance cooled-atom spectroscopy, Phys. Rev. A, 63, 023402–023405, 2001.
- [268] DEILAMIAN, K., GILLASPY, J.D., KELLEHER, D.E., Isotope shifts and hyperfine splittings of the 398.8 nm Yb I line, J. Opt. Soc. Am. B, 10, 789–793, 1993.
- [269] VAN WIJNGAARDEN, W.A., LI, J., Measurement of isotope shifts and hyperfine splittings of ytterbium by means of acousto-optic modulation, J. Opt. Soc. Am. B, 11, 2163–2166, 1994.
- [270] PANDEY, K., SINGH, A.K., KIRAN KUMAR, P.V., SURYANARAYANA, M.V., NATARAJAN, V., Isotope shifts and hyperfine structure in the 555.8-nm ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ line of Yb, Phys. Rev. A., 80, 022518–022523, 2009.
- [271] GRUNDEVIK, P., GUSTAVSSON, M., ROSÉN, A., RYDBERG, S., Analysis of the isotope shifts and hyperfine in the 3988 Å $(6s6p \ ^{1}P^{o}_{1} \leftrightarrow 6s^{2} \ ^{1}S_{0})$ Yb I line, Z. Physik A, 292, 307–310, 1979.
- [272] BANERJEE, A., RAPOL, U.D., DAS, D., KRISHNA, A., NATARAJAN, V., Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb, Europhys. Lett., 63, 340–346, 2003.
- [273] BAUMANN, M., LIENING, H., LINDEL, H., Investigation of the HFS in the 6*s*6*p* ¹P₁ state of ¹⁷³Yb (I) LC and AC spectroscopy, Phys. Lett. A, 59, 433–434, 1977.
- [274] TAMM, C., SCHNIER, D., BAUCH, A., Radio-frequency laser doubleresonance spectroscopy of trapped ¹⁷¹Yb ions and determination of line shifts of the ground-state hyperfine resonance, Appl. Phys. B, 60, 19–29, 1995.
- [275] PORSEV, S.G., DEREVIANKO, A., Hyperfine quenching of the metastable ${}^{3}P_{0,2}$ states in divalent atoms, Phys. Rev. A, 69, 042506–042511, 2004.
- [276] HONG, T., CRAMER, C., COOK, E., NAGOURNEY, W., FORTSON, E.N., Observation of the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ transition in atomic ytterbium for optical clocks and qubit arrays, Opt. Lett., 30, 2644–2646, 2005.

- [277] HOYT, C.W., BARBER, Z.W., OATES, C.W., FORTIER, T.M., DIDDAMS, S.A., HOLLBERG, L., Observation and absolute frequency measurements of the ${}^{1}S_{0}{}^{-3}P_{0}$ optical clock transition in neutral ytterbium, Phys. Rev. Lett., 95, 083003–083006, 2005.
- [278] NIZAMANI, A.H., MCLOUGHLIN, J.J., HENSINGER, W.K., Dopplerfree Yb spectroscopy with the fluorescence spot technique, Phys. Rev. A, 82, 043408–043413, 2010.
- [279] AHMAD, S.A., MACHADO, I.J., SAKSENA, G.D., Isotope shift studies in the first spectrum of ytterbium, Spectrochim. Acta B, 35, 215–224, 1980.
- [280] BERENDS, R.W., MALEKI, L., Hyperfine structure and isotope shifts of transitions in neutral and singly ionized ytterbium, J. Opt. Soc. Am. B, 9, 332–338, 1992.
- [281] AFZAL, S.M., RAO, P.M., AHMAD, S.A., Isotope shift studies in the spectral lines of Yb I in the 3405-3565-Å region and term shifts of some odd- and even-parity energy levels, Spectrochim. Acta B, 55, 197–202, 2000.
- [282] KRÜGER, J., BAUMANN, M., The hyperfine structure in the configuration $4f^{13}5d6s6p$ in ytterbium, Part I: Systematic experimental study, Z. Phys. D, 41, 117–120, 1997.
- [283] KRÖGER, S., KRONFELDT, H.-D., RECKSIEK, U., GUTHÖHRLEIN, G., KRÜGER, J., BAUMANN, M., The hyperfine structure in the configuration 4f¹³5d6s6p in ytterbium, Part II: Parametric analysis for the ¹⁷³Yb isotope, Z. Phys. D, 41, 121–123, 1997.
- [284] PORSEV, S.G., RAKHLINA, Y.G., KOZLOV, M.G., Calculation of hyperfine structure constants for ytterbium, J. Phys. B: At. Mol. Opt. Phys., 32, 1113–1120, 1999.
- [285] VIDOLOVA-ANGELOVA, E.V., IVANOV, L.N., IVANOVA, E.P., LETOKHOV, V.S., Narrow low-lying states of the Yb⁻ ion, Opt. Spectrosc., 54, 350–353, 1983.
- [286] GRIBAKINA, A.A., GRIBAKIN, G.F., IVANOV, V.K., The structure and photodetachment of the Yb⁻ negative ion, Phys. Lett. A, 168, 280–284, 1992.
- [287] AVGOUSTOGLOU, E.N., BECK, D.R., All relativistic many-body calculations for the electron affinities of Ca⁻, Sr⁻, Ba⁻, and Yb⁻ negative ions, Phys. Rev. A, 55, 4143–4149, 1997.
- [288] DZUBA, V.A., GRIBAKIN, G.F., Correlations-potential method for negative ions and electron scattering, Phys. Rev. A, 49, 2483–2492, 1994.

- [289] DZUBA, V.A., GRIBAKIN, G.F., Yb⁻ $6p_{1/2}$ -low-lying shape resonance rather than a bound state, J. Phys. B: At. Mol. Opt. Phys., 31, L483–L487, 1998.
- [290] ANDERSEN, H.H., ANDERSEN, T., PEDERSEN, U.V., Search for stable or metastable negative Yb ions, J. Phys. B: At. Mol. Opt. Phys., 31, 2239–2245, 1998.
- [291] VOSKO, S.H., CHEVARY, J.A., MAYER, I.L., Predictions of stable Yb⁻ in the P^o_{1/2} state. The importance of spin-orbit coupling, J. Phys. B: At. Mol. Opt. Phys., 24, L225–L231, 1991.
- [292] LITHERLAND, A.E., KILIUS, L.R., GARWAN, M.A., NADEAU, M.-J., ZHAO, X.-L., Observation of Yb⁻ by accelerator mass spectroscopy, J. Phys. B: At. Mol. Opt. Phys., 24, L233–L236, 1991.
- [293] KARAÇOBAN, B., ÖZDEMİR, L., Energies, Landé factors and lifetimes for some excited levels of neutral ytterbium (Z = 70), Acta Phys. Pol. A, 119, 342–353, 2011.
- [294] KARAÇOBAN, B., ÖZDEMİR, L., Electric dipole transitions for neutral ytterbium (Z = 70), J. Korean Phys. Soc., 58, 417–428, 2011.
- [295] KARAÇOBAN, B., ÖZDEMİR, L., Transition energies of ytterbium (Z = 70), Z. Naturforsh. A (incelemede), 2011.
- [296] MEGGERS, W.F., The second spectrum of ytterbium (Yb II), J. Res. Nat. Bur. Stand. A, 71, 396–544, 1967.
- [297] SPECTOR, N., $4f^{13}5d^2$ configuration of singly ionized ytterbium (Yb II), J. Opt. Soc. Am., 58, 837–842, 1968.
- [298] KAUFMAN, V., SUGAR, J., One-electron of singly ionized ytterbium (Yb II), J. Opt. Soc. Am., 63, 1168–1172, 1973.
- [299] SUGAR, J., KAUFMAN, V., Identification of 5g and 6g terms and revised ionization energies in the Yb II $4f^{14}nl$ isoelectronic sequence, J. Opt. Soc. Am., 69, 141–143, 1979.
- [300] KAUFMAN, V., SUGAR, J., Wavelengths, classifications, and ionized energies in the isoelectronic sequences from Yb II and Yb III though Bi XV and Bi XVI, J. Opt. Soc. Am., 66, 1019–1025, 1976.
- [301] ALEKSAKHIN, I.S., BOROVIK, A.A, VAKULA, V.V., VOL'DMAN, M.L., Electronic spectra of electron-impact-excited autoionization states of Yb I and Yb II, Sov. Phys.-Tech. Phys., 25, 134–135, 1980.
- [302] KAZAKOV, S.M., KHRISTOFOROV, O.V., Electron spectroscopy of autoionizing states of ytterbium, Sov. Phys.-JETP, 57, 290–296, 1983.

- [304] WILSON, M., The identification of $4f^{13}6s7s$ and $4f^{13}5d7s$ in Yb⁺, Phys. Lett. A, 147, 215–217, 1990.
- [305] FACWETT, B.C., WILSON, M., Computed oscillator strengths, Landé *g* values, and lifetimes in Yb II, At. Data Nucl. Data Tables, 47, 241–317, 1991.
- [306] MIGDAŁEK, J., Influence of core polarization on relativistic oscillator strengths for lowest s-p transitions in Yb II-Hf IV spectra, J. Phys. B: At. Mol. Phys., 13, L169–L174, 1980.
- [307] KOC, K., MIGDAŁEK, J., Relativistic many-body calculations of the $4f^{44}nl$ levels in Yb II and Lu III spectra, J. Phys. B: At. Mol. Opt. Phys., 25, 907–911, 1992.
- [308] MIGDALEK, J., One-electron spectrum of Yb⁺: Relativistic energies, transition probabilities and dipole polarizability, J. Quat. Spectrosc. Radiat. Transfer, 28, 61–69, 1982.
- [309] PINNINGTON, E.H., BERENDS, R.W., JI, Q., Beam-laser lifetimes measurements of Yb II energy levels, Phys. Rev. A, 50, 2758–2760, 1994.
- [310] PINNINGTON, E.H., RIEGER, G., KERNAHAN, J.A., Beam-laser measurements of the lifetimes the 6*p* levels in Yb II, Phys. Rev. A, 56, 2421–2423, 1997.
- [311] BERENDS, R.W., PINNINGTON, H.E., GUO, B., JI, Q., Beam-laser lifetime measurements for four resonance levels of Yb II, J. Phys. B: At. Mol. Opt. Phys., 26, L701–L704, 1993.
- [312] HUANG, W., XU, X.Y., XU, C.B., XUE, M., CHEN, D.Y., Constantelectric-field ionization mass spectroscopy in laser-excited Yb⁺ Rydberg states, J. Opt. Soc. Am. B, 12, 961–963, 1995.
- [313] GIIL, P., KLEIN, H.A., LEVICK, A.P., ROBERTS, M., ROWLEY, W.R.C., TAYLOR, P., Measurements of the ${}^{2}S_{1/2}$ - ${}^{2}D_{5/2}$ 411nm interval in laser-cooled trapped 172 Yb⁺ ions, Phys. Rev. A, 52, R909–R912, 1995.
- [314] TAYLOR, P., ROBERTS, M., GATEVA-KOSTOVA, S.V., CLARKE, R.B.M., BARWOOD, G.P., ROWLEY, W.R.C., GIIL, P., Investigation of the ${}^{2}S_{1/2}$ - ${}^{2}D_{5/2}$ clock transition in a single ytterbium ion, Phys. Rev. A, 56, 2699–2704, 1997.

- [315] ROBERTS, M., TAYLOR, P. BARWOOD, G.P., GILL, P., KLEIN, H.A., ROWLEY, W.R.C., Observation of an electric octupole transition in a single ion, Phys. Rev. Lett., 78, 1876–1879, 1997.
- [316] BIÉMONT, E., QUINET, P., Theoretical study of the $4f^{14}6s^{2}S_{1/2}-4f^{14}6s^{2}F^{o}_{7/2}$ E3 transition in Yb II, Phys. Rev. Lett., 81, 3345–3346, 1998.
- [317] BLYTHE, P.J., WEBSTER, S.A., MARGOLIS, H.S., LEA, S.N., HUANG, G., CHOI, S.-K., ROWLEY, W.R.C., GIIL, P., WINDELER, R.S., Subkilohertz absolute-frequency measurement of the 467-nm electric octupole transition in ¹⁷¹Yb⁺, Phys. Rev. A, 67, 020501–020504, 2003.
- [318] HOSAKA, K.,WEBSTER, S.A., STANNARD, A., WALTON, B.R., MARGOLIS, H.S., GILL, P., Frequency measurement of the ${}^{2}S_{1/2}$ - ${}^{2}F_{7/2}$ electric octupole transition in a single 171 Yb⁺ ion, Phys. Rev. A, 79, 033403–033410, 2009.
- [319] ROBERTS, M., TAYLOR, P., BARWOOD, G.P., ROWLEY, W.R.C., GILL, P., Observation of the ${}^{2}S_{1/2}-{}^{2}F_{7/2}$ electric octupole transition in a single 171 Yb⁺ ion, Phys. Rev. A, 62, 020501–020504, 2000.
- [320] ROBERTS, M., TAYLOR, P., GATEVA-KOSTOVA, S.V., CLARKE, R.B.M., ROWLEY, W.R.C., GILL, P., Measurement of the ${}^{2}S_{1/2}-{}^{2}D_{5/2}$ clock transition in a single ${}^{171}Yb^{+}$ ion, Phys. Rev. A, 60, 2867–2872, 1999.
- [321] TAYLOR, P., ROBERTS, M., MACFARLANE, R.M., BARWOOD, G.P., ROWLEY, W.R.C., GILL, P., Measurement of the infrared ²F_{7/2}-²D_{5/2} transition in a single ¹⁷¹Yb⁺ ion, Phys. Rev. A, 60, 2829–2833, 1999.
- [322] KOZLOV, M.G., PORSEV, S.G., Combined configuration-superposition and many-particle perturbation calculations for atoms with two valence electrons, JETP, 84, 461–465, 1997 [Zh. Eksp. Teor. Fiz. (Russia) 111, 838–846, 1997].
- [323] MIGDALEK, J., SIEGEL, W., Collapse of d and f orbitals in the isoelectronic sequence of singly ionized ytterbium, Phys. Rev. A, 61, 062502–062510, 2000.
- [324] DZUBA, V.A., FLAMBAUM, V.V., Relativistic corrections to transition frequencies of Ag I, Dy I, Ho I, Yb II, Yb III, Au I, and Hg II and search for variation of the fine-structure constant, Phys. Rev. A, 77, 012515–012520, 2008.
- [325] DZUBA, V.A., FLAMBAUM, V.V., MARCHENKO, M.V., Relativistic effects in Sr, Dy, Yb II, and Yb III and search for variation of the fine-structure constant, Phys. Rev. A, 68, 022506–022510, 2003.

- [326] LOWE, R.M., HANNAFORD, P., MÅRTENSSON-PENDRILL, A.-M., Radiative lifetimes of the $6p \, {}^{2}P^{\circ}_{1/2}$ and $6p \, {}^{2}P^{\circ}_{3/2}$ levels in Yb II, Z. Phys. D, 28, 283–284, 1993.
- [327] YU, N., MALEKI, L., Lifetime measurements of the $4f^{14}5d$ metastable states in single ytterbium ions, Phys. Rev. A, 61, 022507–022510, 2000.
- [328] GERZ, CH., ROTHS, J., VEDEL, F., WERTH, G., Lifetime and collisional depopulation of the metastable $5D_{3/2}$ -state of Yb⁺, Z. Phys. D, 8, 235–237, 1988.
- [329] BIÉMONT, E., QUINET, P., DAI, Z., JIANG, Z.-K., ZHANG, Z.-G., XU, H.-L, SVANBERG, S., Lifetime measurements and calculations in singly ionized ytterbium, J. Phys. B: At. Mol. Opt. Phys., 35, 4743–4749, 2002.
- [330] LI, Z.S., SVANBERG, S., QUINET, P., TORDOIR, X., BIÉMONT, E. Lifetime measurements in Yb II with time-resolved laser spectroscopy, J. Phys. B: At. Mol. Opt. Phys., 32, 1731–1737, 1999.
- [331] BIÉMONT, E., DUTRIEUX, J.-F., MARTIN, I., QUINET, P., Lifetime calculations in Yb II, J. Phys. B: At. Mol. Opt. Phys., 31, 3321–3333, 1998.
- [332] AHMAD, S.A., RAO, P.M., AFZAL, S.M., Isotope shifts in spectral lines of Yb⁺ in 322-615 nm region and term shifts of odd and even parity energy levels of Yb II, Z. Phys. D, 42, 165–170, 1997.
- [333] MÅRTENSONN-PEDRILL, A.-M., GOUGH, D.S., HANNAFORD, P., Isotope shifts and hyperfine structure in the 369.4-nm 6*s*-6*p*_{1/2} resonance line of singly ionized ytterbium, Phys. Rev. A, 49, 3351–3365, 1994.
- [334] MÜNCH, A., BERKLER, M., GERZ, CH., WILSDORF, D., WERTH, G., Precise ground-state hyperfine splitting in ¹⁷³Yb II, Phys. Rev. A, 35, 4147–4150, 1987.
- [335] SAFRONOVA, U.I., SAFRONOVA, M.S., Third-order relativistic manybody calculations of energies, transition rates, hyperfine constants, and blackbody radiation shift in ¹⁷¹Yb⁺, Phys. Rev. A, 79, 022512–0221521, 2009.
- [336] OLMSCHENK, S., HAYES, D., MATSUKEVICH, D.N., MAUNZ, P., MOEHRING, D.L., YOUNGE, K.C., MONROE, C., Measurement of the lifetime of the 6p ²P°_{1/2} level of Yb⁺, Phys. Rev. A, 80, 022502–022506, 2009.
- [337] KEDZIERSKI, D., KUSZ, J., MUZOLF, J., Atomic transition probabilities for selected Yb II lines emitted from a ferroelectric plasma source, Spectrochim. Acta, Part B, 65, 248–252, 2010.

- [338] BRYANT, B.W., Spectra of doubly and triply ionized ytterbium, Yb III and Yb IV, J. Opt. Soc. Am., 55, 771–779, 1965.
- [339] SUGAR, J., Configuration $4f^{13}5d$ of doubly ionized ytterbium, J. Opt. Soc. Am., 60, 571–572, 1970.
- [340] VANDER SLUIS, K.L., NUGENT, L.J., Ionization energies of doubly and triply ionized lanthanides by a linearization technique, J. Chem. Phys. 60, 1927–1930, 1974.
- [341] ZHANG, Z.G., LI, Z.S., SVANBERG, S., PALMERI, P., QUINET, P., BIÉMONT, E., Experimental and theoretical lifetimes in Yb III, Eur. Phys. J. D, 15, 301–305, 2001.
- [342] BIÉMONT, E., GARNIR, H.P., LI, Z.S., LOKHNYGIN, V., PALMERI, P., QUINET, P., SVANBERG, S., WYART, J.F., ZHANG, Z.G., Experimental and theoretical energy levels, transition probabilities and radiative lifetimes in Yb III, J. Phys. B: At. Mol. Opt. Phys., 34, 1869– 1876, 2001.
- [343] ANISIMOVA, G.P., LOGINOV, A.V., TUCHKIN, V.I., Probabilities of electric dipole transitions in the spectra of ions of the erbium isoelectronic sequence, Opt. Spectrosc., 90, 315–320, 2001.
- [344] LOGINOV, A.V., TUCHKIN, V.I., Radiative constants in the spectra of ions of the erbium isoelectronic sequence, Opt. Spectrosc., 90, 631–638, 2001.
- [345] ÖBERG, K.J., LUNDBERG, H., Experimental transition probabilities and improved level energies in Yb III, Eur. Phys. J. D, 42, 15–34, 2007.
- [346] SAFRONOVA, U.I., SAFRONOVA, M.S., Correlation and relativistic effects for the 4*f*-nl multipole transitions in Yb III ions, Phys. Rev. A, 79, 032511–032521, 2009.
- [347] MEGGERS, W.F., SCRIBNER, B.F., Regularities in the spectra of lutetium, J. Res. Nat. Bur. Stand., 5, 73–81, 1930.
- [348] MEGGERS, W.F., SCRIBNER, B.F., Arc and spark spectra of lutecium, J. Res. Nat. Bur. Stand. A, 19, 31–39, 1937.
- [349] KLINKENBERG, P.F.A., Analysis of the arc spectrum of lutetium, Physica, 21, 53–62, 1954.
- [350] BOVEY, L.F.H., STEERS, E.B.M., WISE, H.S., The infra-red resonance lines of lutetium, Proc. Phys. Soc. London A, 69, 783–784, 1956.
- [351] PINNINGTON, E.H., Zeeman effect analysis of the neutral spectrum of lutetium, Can. J. Phys., 41, 1294–1304, 1963.

- [352] GÖBEL, L.H., Double resonance investigation in excited states of Lu I, Z. Naturforsch. Teil A, 25, 1401–1405, 1970.
- [353] CAMUS, P., TOMKINS, F.S., Absorption-line series in Lu I, J. Phys. France, 33, 197–201, 1972.
- [354] CAMUS, P., MASMOUDI, K., Etude théorique des configurations $5d6s6p + 6s^27p + 5f6s^2 + 5d^26p$ de Lu I, Physica, 60, 513–520, 1972.
- [355] VERGÉS, J., WYART, J.-F., Infrared emission spectrum of lutecium and extended analysis of Lu I, Phys. Scr., 17, 495–499, 1978.
- [356] KWIATKOWSKI M., TEPPNER U., ZIMMERMANN P., Laser spectroscopic investigations in the configuration 5d6s6p of Lu I, Z. Naturforsch. Teil A, 35, 370–372, 1980.
- [357] GORSHKOV, V.N., KOMAROVSKII, V.A., PENKIN, N.P., Lifetimes of excited levels of atomic lutetium, Opt. Spectrosc. (USSR), 56, 575, 1984.
- [358] VIDOLOVA-ANGELOVA, E.P., IVANOV, L.N., LETOKHOV, V.S., Application of model potential method in calculating Rydberg states of rare-earth elements Tm, Yb, Lu and their ions, J. Phys. B: At. Mol. Phys., 15, 981–991, 1982.
- [359] VIDOLOVA-ANGELOVA, E.P., ANGELOV, D.A., KRUSTEV, T.B., MINCHEVA, S.T., Investigation of lutetium Rydberg states by laser multistep resonance ionization spectroscopy, Z. Phys. D, 23, 215–218, 1992.
- [360] VIDOLOVA-ANGELOVA, E., Energies and radiation lifetimes of high lying Rydberg states of lutetium, J. Phys. B: At. Mol. Opt. Phys., 25, 3735–3746, 1992.
- [361] MAEDA, H., MIZUGAI, Y., MATSUMOTO, Y., SUZUKI, A., TAKAMI, M., Highly excited even Rydberg series of Lu I studied by two-step laser photoionisation spectroscopy, J. Phys. B: At. Mol. Opt. Phys., 22, L511–L516, 1989.
- [362] MAEDA, H., MATSUO, Y., TAKAMI, M., Optical and microwave study of a very weak perturbation in high Rydberg states of lutetium, Phys. Rev. A, 47, 1174–1180, 1993.
- [363] WIJESUNDERA, W.P., VOSKO, S.H., PARPIA, F.A., Relativistic and correlation effects in the ground state of atomic lawrencium, Phys. Rev. A, 51, 278–282, 1995.

- [365] KURJIRAI, O., OGAWA Y., Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy, J. Phys. Soc. Jpn., 67, 1056–1057, 1998.
- [366] BORSCHEVSKY, A., ELIAV, E., VILKAS, M.J., ISHIKAWA, Y., KALDOR, U., Transition energies of atomic lawrencium, Eur. Phys. J. D, 45, 115–119, 2007.
- [367] FEDCHAK, J.A., DEN HARTOG, E.A., LAWLER, J.E., PALMERI, P., QUINET, P., BIÉMONT, E., Experimental and theoretical radiative lifetimes, branching fractions, and oscillator strengths for Lu I and experimental lifetimes for Lu II and Lu III, Astrophys. J., 542, 1109–1118, 2000.
- [368] ZOU, Y., FISCHER, C.F., Resonance transition energies and oscillator strengths in lutetium and lawrencium, Phys. Rev. Lett., 88, 183001–183004, 2002.
- [369] DAI, Z.-W., JIANG, Z.-K., XU, H.-L., ZHANG, Z.-G, SVANBERG, S., BIÉMONT, E., LEFÈBVRE, P.H., QUINET, P., Time-resolved laserinduced fluorescence measurements of Rydberg states in Lu I and comparison with theory, J. Phys. B: At. Mol. Opt. Phys., 36, 479–487, 2003.
- [370] SUBRAMANIAM, T.K., Optogalvanic transitions in lutetium in the 570– 630 nm region, Indian J. Phys., 79, 381–384, 2005.
- [371] DEY, W., EBERSOLD, P., LEISI, H.J., SCHECK, F., WALTER, H.K., ZEHNDER, A., Nuclear spectroscopic ground-state quadrupole moments from muonic atoms: The quadrupole moment of ¹⁷⁵Lu, Nucl. Phys. A, 326, 418–444, 1979.
- [372] RITHER, G.J., Hyperfine structure and nuclear moments of Lu¹⁷⁵, Phys. Rev., 126, 240–252, 1962.
- [373] PETERSEN, F.R., SHUGART, H.A., Nuclear spin, hyperfine structure, and 6.8-day lutetium-177, Phys. Rev., 126, 252–257, 1962.
- [374] HORSTMANN, U., NÖLDEKE, G., STEUDEL, A., Zur Feinstruktur des Lu I-Spektrums, Ann. Physik, 467, 14–19, 1963.
- [375] WHITE, M.B., ALPERT, S.S., PENSELIN, S., MORAN, T.I., COHEN, V.W., LIPWORTH, E., Hyperfine structure of Lu^{176m} by method of atomic beams, Phys. Rev., 137, B477–B482, 1965.

- [376] GÖBEL, L.H., Hyperfine structure investigations of excited states of Lu I by means of the level-crossing method, Z. Naturforsch. Teil A, 26, 611–620, 1970.
- [377] GÖBEL, L.H., Concerning the fine and hyperfine structure of Lu I, Z. Naturforsch. Teil A, 26, 1559–1562, 1971.
- [378] FIGGER, H., WOLBER, G., Precision measurement of the hyperfine structure of Lu¹⁷⁵ with the atomic beam magnetic resonance method, Z. Physik, 264, 95–108, 1973.
- [379] NUNNEMANN, A., ZIMMERMANN, D., ZIMMERMANN, P., Investigation of hyperfine structure and isotope shift of the 605.5 nm-Line of Lu¹⁷⁶ by laser spectroscopy, Z. Physik A, 290, 123–126, 1979.
- [380] ZIMMERMANN, D., ZIMMERMANN, P., AEPFELBACH, G., KUHNERT, A., Isotope shift and hyperfine structure of the transition $5d6s^2 {}^2D_{3/2}-5d6s6p {}^4F_{3/2}$ of Lu¹⁷⁵ and Lu¹⁷⁶, Z. Physik A, 295, 307–310, 1980.
- [381] KUHNERT, A., NUNNEMANN, A., ZIMMERMANN, D., Investigation of the hyperfine structure and isotope shift of the 542.2 nm line of Lu, J. Phys. B: At. Mol. Phys., 16, 4299–4303, 1983.
- [382] REDDY, M.N., RAO, G.N., Hyperfine structure studies of ¹⁷⁵Lu by laser optogalvanic spectroscopy, J. Opt. Soc. Am. B, 6, 1481–1485, 1989.
- [383] MILLER, C.M., ENGLEMAN, R., KELLER, R.A., Resonance-ionization mass spectrometry for high-resolution, mass-resolved spectra of rare isotopes, J. Opt. Soc. Am. B, 2, 1503–1509, 1985.
- [384] FEAREY, B.L., PARENT, D.C., KELLER, R.A., MILLER, C.M., Doppler-free saturation spectroscopy of lutetium isotopes through resonance-ionization mass spectrometry, J. Opt. Soc. Am. B, 7, 3–8, 1990.
- [385] JIN, W.G., WAKASUGI, M., INAMURA, T.T, MURAYAMA, T., WAKUI, T., KATSURAGAWA, H., ARIGA, T., ISHIZUKA, T., KOIZUMI, M., SUGAI, I., Isotope shift and hyperfine structure in Lu I and W I, Phys. Rev. A, 49, 762–769, 1994.
- [386] GEORG, U., BORCHERS, W., KEIM, M., KLEIN, A., LIEVENS, P., NEUGART, R., NEUROTH, M., RAO, P.M., SCHULZ, CH., The Isolde Collaboration, Laser spectroscopy investigation of the nuclear moments and radii of lutetium isotopes, Eur. Phys. J. A, 3, 225–235, 1998.
- [387] WITTE, S., VAN DUIJN, E.J., ZINKSTOK, R., HOGERVORST, W., High-resolution LIF measurements on hyperfine structure and isotope shifts in various states of Lu I using the second and third harmonic of a cw Ti: Sapphire laser, Eur. Phys. J. D, 20, 159–164, 2002.

- [388] HAIDUKE, R.L.A., Da SILVA A.B.F., VISSHER, L., The nuclear electric quadrupole moment of lutetium from the molecular method, Chem. Phys. Lett., 445, 95–98, 2007.
- [389] VOSKO, S.H., CHEVARY, J.A., Prediction of a further irregularity in the electron filling of subshells: Lu⁻ [Xe]4f¹⁴5d¹6s²6p¹ and its relation to the group IIIB anions, J. Phys. B: At. Mol. Opt. Phys., 26, 873–887, 1993.
- [390] DAVIS, T.V., THOMPSON, J.S., Measurement of the electron affinity of lutetium, J. Phys. B: At. Mol. Opt. Phys., 34, L433–L437, 2001.
- [391] KARAÇOBAN, B., ÖZDEMİR, L., Energies and Landé factors for some excited levels in Lu I (Z = 71), Cent. Eur. J. Phys., 9, 800–806, 2011.
- [392] KARAÇOBAN, B., ÖZDEMİR, L., The level structure of atomic lutetium (Z = 71): A relativistic Hartree-Fock calculation, Indian J. Phys., (kabul edildi) 2011.
- [393] KARAÇOBAN, B., ÖZDEMİR, L., Electric dipole transitions for Lu I (Z = 71), Arab. J. Sci. Eng. A-Sci. (kabul edildi) 2010.
- [394] KARAÇOBAN, B., ÖZDEMİR, L., Transition energies of lutetium, Pramana-J. Phys. (incelemede) 2010.
- [395] MIGDALEK, J., BAYLIS, W.E., A multiconfiguration Dirac-Fock study of the $6s^2 {}^{1}S_0 6s6p {}^{3}P_1$, ${}^{1}P_1$ transitions in the Yb isoelectronic sequence, J. Quant. Spectrosc. Radiat. Transfer, 37, 521–526, 1987.
- [396] BORD, D.J., COWLEY, C.R., MIRIJANIAN, D., A re-evaluation of the abundance of lutetium in the sun, Sol. Phys., 178, 221–237, 1998.
- [397] DEN HARTOG, E.A., CURRY, J.J., WICKLIFFE, M.E., LAWLER, J.E., Spectroscopic data for the 6s6p ³P₁ level of Lu⁺ for the determination of the solar lutetium abundance, Sol. Phys., 178, 239–244, 1998.
- [398] QUINET, P., PALMERI, P., BIÉMONT, E., MCCURDY, M.M., RIEGER, G., PINNINGTON, E.H., WICKLIFFE, M.E., LAWLER, J.E., Experimental and theoretical radiative lifetimes, branching fractions and oscillator strengths in Lu II, Mon. Not. R. Astron. Soc., 307, 934–940, 1999.
- [399] STEUDEL, A., Über die Hyperfeinstruktur im Spektrum des Lutetiums und die Kernmomente von Lu¹⁷⁵ und Lu¹⁷⁶, Z. Physik, 52, 599–623, 1958.
- [400] HEILIG, K., KASTEN, P., Hyperfeinstruktur im Lutetium III-Spektrum und magnetisches Kerndipolmoment von¹⁷⁵Lu, Naturwiss., 54, 338–338, 1967.

- [401] KAUFMAN, V., SUGAR, J., One-electron spectrum of doubly ionized lutetium (Lu III) and nuclear magnetic dipole moment of ¹⁷⁵Lu, J. Opt. Soc. Am., 61, 1693–1698, 1971.
- [402] MIGDAŁEK, J., One-electron spectrum of Lu²⁺: Relativistic energies, transition probabilities and dipole polarizability, J. Quant. Spectrosc. Radiat. Transfer, 28, 417–424, 1982.
- [403] FISCHER, C.F., BRAGE, T., JÖNSSON, P., Computational Atomic Structure–An MCHF Approach, Institute of Physics Publishing, Bristol and Philadelphia, 1997.
- [404] BETHE, H.A., SALPETER, E.E., Quantum Mechanics of One- and Two-Electron Atoms, Academic, New York, 1957.
- [405] RACAH, G., Theory complex spectra. I, Phys. Rev., 61, 186–197, 1942.
- [406] RACAH, G., Theory complex spectra. II, Phys. Rev., 62, 438–462, 1942.
- [407] RACAH, G., Theory complex spectra. III, Phys. Rev., 63, 367–382, 1943.
- [408] RACAH, G., Theory complex spectra. IV, Phys. Rev., 76, 1352–1365, 1949.
- [409] LÖWDIN, P.-O., Quantum theory of many-particle systems. III. Extension of the Hartree-Fock scheme to include degenerate systems and correlation effects, Phys. Rev., 97, 1509–1520, 1955.
- [410] GLASS, R., HIBBERT, A., Relativistic effects in many electron atoms, Comput. Phys. Commun., 16, 19–34, 1978.
- [411] EINSTEIN, A, Zur quantentheorie der strahlung (On the quantum theory of radiation), Physik Zeit., 18, 121–128, 1917.
- [412] FISCHER, C.F., The MCHF atomic-structure package, Comput. Phys. Commun., 128, 635–636, 2000.
- [413] JÖNSSON, P., GUSTAFSSON, S., A program for computing weak and intermediate field Zeeman splittings from MCHF wave functions, Comput. Phys. Commun., 144, 188–199, 2002.
- [414] SLATER, J.C., The theory of complex spectra, Phys. Rev., 34, 1293–1322, 1929.
- [415] CONDON, E.U., SHORTLEY, G.H., The Theory of Atomic Spectra, University Press, Cambridge, 1935.

- [417] ROSÉN, A., LINDGREN, I., Relativistic effects in the hyperfine structure of the alkali atoms, Phys. Scr., 6, 109–121, 1972.
- [418] http://www.tcd.ie/Physics/People/Cormac.McGuinness/Cowan/, Subat 2011.
- [419] FISCHER, C.F., TACHIEV, G., GAIGALAS, G., GODEFROID, M.R., An MCHF atomic-structure package for large-scale calculations, Comput. Phys. Comm., 176, 559–579, 2007.

EKLER

Ek A. La I-III, Ce III, Yb I-III ve Lu I-III'e ait Ek Tablolar

La I–III, Ce III, Yb I–III ve Lu I–III için çok konfigürasyonlu Hartree-Fock (MCHF) ve relativistik Hartree-Fock (HFR) yöntemleri ile hesaplanan seviye enerjileri, Landé *g*-çarpanları, dalga boyları, salınıcı şiddetleri ve geçiş olasılıkları sonuçları oldukça fazla olduğundan Bölüm 3'te verilen bu hesaplamaların geniş halleri bu kısımda sunulmuştur.

La I ve La II'nin elektrik dipol geçişlerinin sunulduğu Tablo 3.4 ve Tablo 3.9'un daha geniş hali Tablo A.1 ve Tablo A.2'de, La III'ün seviye enerjileri ve Landé gçarpanları ve elektrik dipol geçişlerinin verildiği Tablo 3.11 ve Tablo 3.12'nin geniş hali Tablo A.3 ve Tablo A.4'te, Ce III'ün seviye enerjileri ve Landé g-çarpanları ve elektrik dipol geçişlerinin verildiği Tablo 3.15 ve Tablo 3.16'nın geniş hali Tablo A.5 ve Tablo A.6'da, Yb I'in seviye enerjileri ve Landé g-çarpanları, Yb II ve Yb III'ün seviye enerjileri ve Landé g-çarpanları ve elektrik dipol geçişlerinin verildiği sırasıyla Tablo 3.18, Tablo 3.27, Tablo 3.28, Tablo 3.30 ve Tablo 3.31'in daha geniş halleri Tablo A.7-A.11'de verilmektedir. Ayrıca, Lu I'in seviye enerjileri ve Landé g-çarpanları, Lu II ve Lu III'ün seviye enerjileri ve Landé g-çarpanları ve elektrik dipol geçişlerinin verildiği sırasıyla Tablo 3.33, Tablo 3.41, Tablo 3.42, Tablo 3.44 ve Tablo 3.45'in daha geniş şekli Tablo A.12-A.16'da sunulmaktadır. Tablolarda Bölüm 3'te bahsedildiği gibi enerji seviyeleri taban hal seviyelerine göre cm⁻¹ biriminde verilmektedir. Ayrıca, geçiş verileri tablolarında sadece tek pariteli seviyeler "" indisiyle belirtilmekte ve geçiş olasılık verilerinde 10'un kuvvetleri parantez içinde yazılmaktadır.
	Geçişler		λ			$\log(gf)$			A _{ki}	
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	Bu ça	lışma	Diğer
	•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ² ² D _{5/2}	5d6s(³ D)6p ⁴ D ^o _{5/2}	7050,70 ^A	6680,75	6918,282 ^a	-1,385 ^A	-0,188	-2,530 ^a	9,2069(5) ^A	1,62(7)	$0,6851(5)^{a}$
	· · · •	5587,66 ^B			-1,327 ^B			$16,758(5)^{B}$		
		5088,06 ^C			-1,546 ^C			$1,2217(7)^{C}$		
		7595,21 ^D			-1,559 ^D			$5,3200(5)^{D}$		
5d6s ² ² D _{5/2}	$5d6s(^{1}D)6p ^{2}P_{3/2}^{0}$	3557,20 ^A	5038,96	5271,182 ^a	-0,236 ^A	0,335	$-0,790^{a}$	7,6497(7) ^A	1,42(8)	$0,9728(7)^{a}$
	· · · •	3141,90 ^B			-0,299 ^B			$8,4732(7)^{B}$		
		3237,56 ^C			$-0,178^{\circ}$			$0,2626(7)^{\rm C}$		
		3690,40 ^D			-0,329 ^D			5,7429(7) ^D		
5d6s ² ² D _{5/2}	5d6s(³ D)6p ⁴ D ^o _{7/2}	6775,72 ^A	6589,55	6644,415 ^a	-2,521 ^A	3,977	-2,070 ^a	$0,5469(5)^{A}$	0,20(4)	$1,607(5)^{a}$
	· · · •	7278,43 ^D			-2,500 ^D			$0,4968(5)^{D}$		
5d6s ² ² D _{5/2}	5d6s(³ D)6p ⁴ F ^o _{7/2}	7150,36 ^A	7204,69	7158,094 ^a	-1,474 ^A	-2,504	-1,980 ^a	$5,4693(5)^{A}$	0,50(5)	$1,703(5)^{a}$
	· · *	5651,95 ^B			-1,318 ^B			$1,2547(6)^{B}$		
		5185,96 ^C			-0,710 ^C			$6,0390(6)^{C}$		
		7714,49 ^D			-1,667 ^D			$3,0149(5)^{D}$		
5d6s ² ² D _{5/2}	4f5d(³ F)6s ⁴ F ^o _{7/2}	2687,72 ^A	4361,64	4109,793 ^a	-2,633 ^A	-3,107	-1,210 ^a	$0,2693(6)^{A}$	0,34(5)	$3,042(6)^{a}$
		2443,56 ^B			-2,818 ^B			$0,2121(6)^{B}$		
5d ² (¹ D)6s ² D _{3/2}	5d ² (³ P)6p ² P ^o _{3/2}	5417,15 ^A	5795,08	5323,548 ^a	-1,159 ^A	-0,438	-0,950 ^a	3,9379(6) ^A	1,81(7)	$6,598(6)^{a}$
		4998,71 ^B			-0,980 ^B			$6,9808(6)^{B}$		
		6099,57 ^C			-0,534 ^C			$13,082(6)^{C}$		
5d ² (¹ D)6s ² D _{3/2}	$5d^{2}(^{3}P)6p {}^{2}P^{0}{}_{1/2}$	5321,33 ^A	6050,79	5323,548 ^a	-1,270 ^A	-0,518	-0,950 ^a	6,3247(6) ^A	2,76(7)	$6,598(6)^{a}$
		4917,29 ^B			-1,335 ^B			$6,3655(6)^{B}$		
5d ² (¹ D)6s ² D _{3/2}	$5d^{2}(^{3}P)6p^{2}D^{o}_{3/2}$	6148,38 ^A	3612,86	6127,036 ^a	-1,430 ^A	-1,386	-1,160 ^a	1,6379(6) ^A	5,25(6)	$3,071(6)^{a}$
		5614,08 ^B			-1,064 ^B			$4,5614(6)^{B}$		
		$6072, 16^{\circ}$			-1,230 ^C			$2,6595(6)^{C}$		
5d ² (¹ D)6s ² D _{3/2}	$5d^{2}(^{3}P)6p^{2}D^{o}_{5/2}$	5927,93 ^A	5191,70	5960,589ª	-1,204 ^A	-0,341	-1,140 ^a	$1,9752(6)^{A}$	1,88(7)	$2,265(6)^{a}$
		5505,59 ^B			-0,726 ^B			$6,8933(6)^{B}$		
5d ² (¹ D)6s ² D _{3/2}	$5d^{2}(^{3}F)6p {}^{4}F^{0}_{3/2}$	11320,71 ^A	7550,60	8590,927 ^a	-1,621 ^A	-0,812	-1,640 ^a	$3,1149(5)^{A}$	4,51(6)	5,173(5) ^a
		9638,20 ^B			-3,048 ^B			$0,1605(5)^{B}$		
5d ² (¹ D)6s ² D _{3/2}	$5d^{2}(^{3}P)6p {}^{2}S^{0}{}_{1/2}$	7168,95 ^A	6483,90	6748,112 ^a	-0,947 ^A	-0,864	-1,040 ^a	7,3254(6) ^A	10,90(6)	$6,676(6)^{a}$
		6452,88 ^B			-0,621 ^B			$19,146(6)^{B}$		
		7810,54 ^C			-0,730 ^C			$10,169(6)^{C}$		
5d ² (¹ D)6s ² D _{3/2}	5d6s(¹ D)6p ² P ^o _{3/2}	4982,99 ^A	7925,62	8638,451 ^a	-2,206 ^A	-1,614	-1,450 ^a	$4,1813(5)^{A}$	6,45(5)	$7,924(5)^{a}$
		4627,05 ^B			-1,833 ^B			$11,434(5)^{B}$		
		4837,53 ^C			-1,233 ^C			$4,1669(6)^{C}$		
5d ² (¹ D)6s ² D _{3/2}	4f5d(³ D)6s ⁴ D ^o _{3/2}	2181,36 ^A	4649,85	4870,559ª	-2,852 ^A	-1,968	-0,850 ^a	$0,4919(6)^{A}$	0,83(6)	$9,924(6)^{a}$
. ,		2111,04 ^B			-1,003 ^B			$3,7064(7)^{B}$		
		1842.36°			-1,048 ^C			$4,4030(7)^{C}$		

Tablo A.1. La l'in elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş olasılıkları (sn⁻¹) (Tablo 3.4'ün geniş hali)

Tablo .	A.1. I	Devam
---------	--------	-------

(Geçişler		λ			$\log(gf)$		A_{ki}				
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer		
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar		
5d ² (¹ D)6s ² D _{3/2}	5d6s(¹ D)6p ² P ^o _{1/2}	5027,97 ^A	8158,44	8507,323 ^a	-3,031 ^A	-4,030	-1,510 ^a	$0,1227(6)^{A}$	0,47(4)	$1,423(6)^{a}$		
		3270,54 [°]			$-0,492^{\circ}$			$1,0024(8)^{C}$				
$5d^{2}(^{3}P)6s^{4}P_{1/2}$	$5d^{2}(^{3}P)6p {}^{2}S^{o}{}_{1/2}$	7222,05 ^A	6083,89	6236,757 ^a	-1,198 ^A	-3,269	-1,620 ^a	4,0479(6) ^A	0,47(5)	$2,056(6)^{a}$		
	-	6016,58 ^B			-1,432 ^B			$3,4028(6)^{B}$				
		7180,30 ^C			-1,510 ^C			1,9986(6) ^C				
5d ² (³ P)6s ⁴ P _{1/2}	$5d^{2}(^{3}P)6p ^{4}P^{o}_{1/2}$	5969,25 ^A	6790,02	5437,546 ^a	-1,067 ^A	-0,871	-1,310 ^a	8,0235(6) ^A	9,75(6)	$5,521(6)^{a}$		
	· · •	5121,58 ^B			-0,928 ^B			$15,001(6)^{B}$				
		5757,65 [°]			-1,811 ^C			$1,5558(6)^{C}$				
$5d^{2}(^{3}P)6s^{4}P_{1/2}$	5d ² (³ P)6p ⁴ P ^o _{3/2}	5948,74 ^A	6672,53	5429,832 ^a	-0,372 ^A	-0,260	-1,030 ^a	$1,9990(7)^{A}$	2,06(7)	$0,5275(7)^{a}$		
	· · •	5106,22 ^B			-0,288 ^B			$3,2924(7)^{B}$				
		5766,60 ^C			$-0,322^{\circ}$			$2,3881(7)^{C}$				
5d ² (³ P)6s ⁴ P _{1/2}	5d ² (³ P)6p ⁴ S ^o _{3/2}	6797,34 ^A	5001,83	5742,922ª	-0,458 ^A	-0,430	-1,420 ^a	$1,2557(7)^{A}$	2,47(7)	$0,1921(7)^{a}$		
		5714,80 ^B			-0,235 ^B			$2,9680(7)^{B}$				
		6324,73 ^C			-0,578 ^C			$1,1007(7)^{C}$				
$5d^{2}(^{3}P)6s {}^{4}P_{1/2}$	$5d^{2}(^{3}P)6p ^{4}D^{0}_{3/2}$	6709,20 ^A	7499,07	6068,712 ^a	-0,581 ^A	-0,839	-1,060 ^a	$9,7144(6)^{A}$	4,30(6)	$3,941(6)^{a}$		
		5657,28 ^B			-0,639 ^B			$11,936(6)^{B}$				
		6506,66 ^C			-0,265 ^C			21,377(6) ^C				
$5d^{2}(^{3}P)6s {}^{4}P_{1/2}$	$5d^{2}(^{3}P)6p ^{4}D^{0}_{1/2}$	6831,68 ^A	7458,82	6134,393 ^a	-0,457 ^A	-0,521	-1,010 ^a	$2,4949(7)^{A}$	1,81(7)	$0,8656(7)^{a}$		
()		5743,61 ^B			-0,325 ^B			$4,7774(7)^{B}$, , , , , , , , , , , , , , , , , , ,	, , , ,		
		6618,92 ^C			-0,361 ^C			3,3097(7) ^C				
$5d^{2}(^{3}P)6s^{2}P_{1/2}$	$5d^{2}(^{3}P)6p^{2}D^{0}_{3/2}$	6403,07 ^A	5375,08	6360,208 ^a	-0,647 ^A	-0,182	-1,020 ^a	$9,1612(6)^{A}$	3,80(7)	$3.934(6)^{a}$		
() 1/2	1 32	5946,64 ^B			-0,388 ^B			$19,275(6)^{B}$, , , , , , , , , , , , , , , , , , ,	· · · · ·		
		6463,09 ^C			-0,476 ^C			$13,334(6)^{C}$				
$5d^{2}(^{3}P)6s^{4}P_{1/2}$	$4f5d(^{3}F)6s {}^{4}F_{3/2}^{\circ}$	3527,27 ^A	6149,18	5900,681ª	-3,575 ^A	-2,824	-1,680 ^a	$3,5623(4)^{A}$	0,66(5)	$1.0(6)^{a}$		
() 1/2	() 552	3213,14 ^B			-3,571 ^B			$4,3362(4)^{B}$, , , , , , , , , , , , , , , , , , ,			
$5d^{2}(^{3}P)6s^{4}P_{1/2}$	$4f5d(^{3}D)6s ^{4}D_{1/2}^{0}$	2200,72 ^A	4440,47	4615,063 ^a	-0,159 ^A	-1,360	-1,020 ^a	4,7693(8) ^A	0,74(7)	$0.1495(8)^{a}$		
() 1/2		2092,62 ^B			-0,311 ^B			$3,7205(8)^{B}$, , , , , , , , , , , , , , , , , , ,			
		1808.68°			-0,172 ^C			6,8512(8) ^C				
$5d^{2}(^{3}P)6s {}^{4}P_{3/2}$	$5d^{2}(^{3}P)6p^{2}D^{0}_{5/2}$	6078,39 ^A	_	5639,296ª	-1,070 ^A	_	-1,040 ^a	$2,5626(6)^{A}$	_	$3,186(6)^{a}$		
5/2	· · · · · · · · · · · · · · · · · · ·	5247.47 ^B		,	-3.306 ^B		,	$1.9939(4)^{B}$		- , (- ,		
$5d^{2}(^{3}P)6s^{2}P_{1/2}$	$5d^{2}(^{3}P)6p^{2}S^{0}_{1/2}$	7517,61 ^A	6835,64	7032,047 ^a	-0,604 ^A	-0,338	-1,070 ^a	$1.4685(7)^{A}$	3,28(7)	$0.5737(7)^{a}$		
() 1/2		6896,16 ^B	<i>.</i>	,	-0,451 ^B	,	,	$2,4789(7)^{B}$, , , , , , , , , , , , , , , , , , ,	· · · · · ·		
		8469.49 ^C			-0.530 ^C			$1.3705(7)^{C}$				
$5d^{2}(^{3}P)6s ^{4}P_{3/2}$	$5d^{2}(^{3}P)6p {}^{4}S^{o}_{3/2}$	6946.07 ^A	5071.85	5829.692ª	-0.570 ^A	-0.170	-0.760 ^a	$9.3040(6)^{A}$	4.38(7)	$8.522(6)^{a}$		
. , 52	1 1 3/2	5791,03 ^B		*	-0,702 ^B		*	$9,8684(6)^{B}$				
		6418,23 ^C			-0,258 ^c			22,352(6) ^C				
5d ² (³ P)6s ⁴ P _{3/2}	$5d^{2}(^{3}P)6p ^{4}P^{0}_{1/2}$	6083,64 ^A	6919,70	5515,271ª	-0,354 ^A	-0,259	-1,020 ^a	3,9813(7) ^A	3,84(7)	$1.046(7)^{a}$		
J JI2	× / T 1/2	5182,72 ^B	,		-0,212 ^B	- ,	y	$7.6075(7)^{B}$,- <u>``</u>			
		5835.03 ^C			-0.816 ^C			1 4966(7) ^C				

Tablo .	A.1. I	Devam
---------	--------	-------

	Geçişler		λ			log(gf)	_		A_{ki}	
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d^{2}(^{3}P)6s {}^{4}P_{3/2}$	5d ² (³ P)6p ⁴ P ^o _{5/2}	6036,18 ^A	6650,17	5304,003 ^a	-0,301 ^A	-0,370	-0,910 ^a	$1,5244(7)^{A}$	1,07(7)	$0,4859(7)^{a}$
		5158,60 ^B			$-0,154^{B}$			$2,9260(7)^{B}$		
		5685,16 ^C			-0,490 ^C			1,1133(7)		
$5d^{2}(^{3}P)6s {}^{4}P_{3/2}$	$5d^{2}(^{3}P)6p ^{4}D^{0}_{1/2}$	6981,93 ^A	7615,61	6233,498 ^a	-1,395 ^A	-1,150	-1,190 ^a	$2,7551(6)^{A}$	4,07(6)	$5,538(6)^{a}$
		5820,61 ^B			-0,950 ^B			$11,033(6)^{B}$		
		6721,40 ^C			-0,970 ^C			7,9023(6) ^C		
5d ² (³ P)6s ⁴ P _{3/2}	$5d^{2}(^{3}P)6p ^{4}D^{0}_{3/2}$	6854,05 ^A	7657,58	6165,689 ^a	-0,171 ^A	-0,464	-0,810 ^a	2,3897(7) ^A	9,77(6)	$6,790(6)^{a}$
		5731,98 ^B			-0,005 ^B			5,0160(7) ^B		
2.2 4		6605,67 ^C			-0,328 ^C			1,7965(7) ^C		
5d ² (³ P)6s ⁴ P _{3/2}	$5d^{2}(^{3}P)6p ^{4}D^{0}_{5/2}$	6659,65 ^A	5862,65	6038,58 ^a	-0,137 ^A	0,005	-0,970 ^a	1,8253(7) ^A	3,27(7)	$0,3265(7)^{a}$
		5572,52 ^B			0,005 ^B			3,6192(7) ^B		
		6421,32 ^c			0,062 ^C			3,1056(7) ^C		
5d ² (³ P)6s ⁴ P _{3/2}	5d6s(³ D)6p ⁴ D ⁶ _{5/2}	17476,72 ^A	11794,77	4541,763 ^a	-1,971 ^A	-1,363	-0,790 ^a	3,9007(4) ^A	3,46(5)	8,735(6) ^a
		11662,51 ^b			-1,948 ^B			9,1976(4) ^B		
	4 3 4 3 4 5	9678,91°			-1,803			0,1868(6)		
5d ² (³ P)6s ⁴ P _{3/2}	4f5d(³ F)6s ⁴ F ³ _{5/2}	3528,86 ^A	6187,62	58/4,70	-2,854 ^A	-2,047	-1,000 ^a	$0,1245(6)^{A}$	2,60(5)	3,219(6)"
		3206,985			-3,123			8,1311(4)		
5 1 ² (3D) < 4D	5 1 ² (3D) 5 4D0	2465,51°	1622.02	5106 2268	-2,852	0.007	0.0203	0,2566(6)	0.01(7)	1.001(7)8
5d ² (³ F)6s ³ F _{3/2}	5d ² (³ F)6p ³ D ³ _{1/2}	5966,89 ⁴⁴	4632,93	5106,236"	-0,134 ¹¹	-0,237	-0,830"	$6,8688(7)^{11}$	9,01(7)	1,891(7)"
		5151,17 ²			-0,753			$10,561(7)^{5}$		
5 12/3E) C 4E	5 1 ² (3P) 5 4P9	5158,97*	5201.05	5740 6428	-0,189*	0.057	0.0708	8,1069(7)*	5.00(7)	0.5410(7)8
$50(T)08F_{3/2}$	5d (F)op F _{3/2}	0384,27	5291,95	5740,045	0,039 0,121 ^B	-0,057	-0,970	4,2005(7)	5,22(7)	0,5419(7)
		5000,12			0,121 0.125 ^C			$(,0000(7))^{\circ}$		
$5 d^{2}(^{3}E) \leq a^{4}E$	$5 d^{2}(^{3}E) = 4E^{9}$	5855,78 6411 46 ^A	5751 87	5657 7078	0,135 0,866 ^A	0 5 4 2	1 110a	$0,0890(7)^{A}$	1 15(7)	$2 \in 0.1(6)^{a}$
Ju (17)08 1 ⁻ 3/2	50 (1.)0p 1. 5/2	5480.25 ^B	5254,82	5057,707	-0,800	-0,545	-1,110	5,0792(0) 6,0408(6) ^B	1,13(7)	2,094(0)
		5704 88 ^C			-0,787 0.633 ^C			0,0408(0) 7.0486(6) ^C		
$5d^2({}^3\text{E})6e^4\text{E}$	$5d^{2}(^{3}E)6p^{4}C^{0}$	7316 60 ^A	6504 62	65/13 1/ ^a	-0,035 0,335 ^A	0.200	1.210^{a}	9,5400(0) ^A	5 12(7)	$1.600(6)^{a}$
5u (1)03 1 _{3/2}	5u (1)op G 5/2	6752 16 ^B	0504,02	0545,14	-0,335 -0.209 ^B	0,290	-1,210	$15.073(6)^{B}$	5,12(7)	1,000(0)
		7184 08 ^C			-0.227 ^C			$12,075(0)^{C}$		
$5d^{2}(^{3}F)6s^{4}F_{2}$	$5d^{2}(^{3}F)6n^{2}F^{0}cn$	5816.03 ^A	5731 94	7045 959 ^a	-2.098 ^A	-1 464	-1 250 ^a	$2.6215(5)^{A}$	1 16(6)	$1.259(6)^{a}$
5u (1)05 1 _{3/2}	5d (1)0p 1 5/2	5094 70 ^B	5751,74	1045,555	-1 799 ^B	1,404	1,250	$67920(5)^{B}$	1,10(0)	1,239(0)
$5d^{2}(^{3}F)6s^{4}F_{2/2}$	$5d6s(^{3}D)6n ^{4}D^{0}u_{2}$	8716.57 ^A	8108.18	8748.418^{a}	-1.137 ^A	-0.400	-1.990 ^a	$3,1991(6)^{A}$	2.02(7)	$0.4457(6)^{a}$
54 (1)05 13/2		7078.71 ^B	0100,10	0710,110	-1.157 ^B	0,100	1,770	$4.6289(6)^{B}$	2,02(7)	0,1107(0)
		6203.06 ^C			-1.742 ^C			$1.5686(6)^{C}$		
$5d^{2}(^{3}F)6s^{4}F_{3/2}$	$5d6s(^{1}D)6p^{2}P^{0}ac$	3784.61 ^A	5473.47	5761.825 ^a	-2.559 ^A	-4.542	-1.040^{a}	3.2136(5) ^A	1.60(3)	$4.578(6)^{a}$
× ··· = 3/2	···· /~r = 3/2	3439,45 ^B		,	$-2,670^{B}$,	y	$3.0087(5)^{B}$, . ,	
$5d^{2}(^{3}F)6s^{4}F_{3/2}$	5d6s(³ D)6p ⁴ P ^o _{5/2}	6301,61 ^A	6634,72	6454,494 ^a	-1,963 ^A	-4,124	-1,360 ^a	$0,3047(6)^{A}$	1,90(3)	$1,164(6)^{a}$
		5399,16 ^B		- , -	-1,857 ^B	,	y	$0.5299(6)^{B}$	·· · 、· /	/ - \-/

Tablo	A.1.	Devam
-------	------	-------

(Geçişler		λ		$\log(gf)$				A _{ki}		
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
5d ² (³ F)6s ⁴ F _{3/2}	4f5d(³ G)6s ⁴ G ^o _{5/2}	$2095,62^{A}$ $2008,49^{B}$ $1701,68^{C}$	4208,88	4104,876 ^a	$0,677^{A}$ $0,159^{B}$ 0.777^{C}	-0,516	-0,670 ^a	$1,2013(9)^{A}$ $0,3973(9)^{B}$ $2,2957(9)^{C}$	1,91(7)	0,1410(8) ^a	
$5d^{2}(^{3}F)6s \ ^{4}F_{5/2}$	$5d^2(^3F)6p \ ^4D^o_{5/2}$	5646,80 ^A 4909,52 ^B 5149 73 ^C	5612,57	5050,564ª	-0,291 ^A -0,239 ^B -0,285 ^C	-1,360	-0,750 ^a	$1,7843(7)^{A}$ 2,6617(7) ^B 2,1714(7) ^C	1,54(6)	0,7746(7) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	$5d^2({}^3F)6p \; {}^4D^{o}_{3/2}$	5938,30 ^A 5127,93 ^B 5227 21 ^C	4688,56	5145,416 ^a 5145,42 ^b	-0,058 ^A 0,009 ^B -0.057 ^C	-0,077	-0,440 ^a	$4,1377(7)^{A}$ $6,4647(7)^{B}$ $5,3504(7)^{C}$	6,35(7)	2,286(7) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	$5d^2({}^3F)6p \; {}^2D^{o}_{5/2}$	6724,55 ^A 5709,35 ^B 5910 68 ^C	4921,04	6107,258ª	-0,360 ^A -0,289 ^B -0,633 ^C	-1,002	-2,050 ^a	$1,0729(7)^{A}$ $1,7518(7)^{B}$ $0.7398(7)^{C}$	4,57(6)	0,2655(6) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	$5d^2({}^3F)6p\ {}^4F^{o}_{3/2}$	6760,06 ^A 5730,73 ^B 5968.83 ^C	5408,26	5855,575°	-0,898 ^A -0,812 ^B -0,667 ^C	-0,458	-1,320 ^a	$4,6723(6)^{A}$ 7,8278(6) ^B 10.061(6) ^C	1,98(7)	2,326(6) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	$5d^2(^3F)6p \ ^4F^{o}_{5/2}$	6578,03 ^A 5599,37 ^B 5833,96 ^C	5369,49	5769,31ª	-0,006 ^A 0,076 ^B 0,196 ^C	0,123	-0,640 ^a	2,5306(7) ^A 4,2180(7) ^B 5,1267(7) ^C	5,12(7)	0,7647(7) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	$5d^2(^3F)6p \ ^4F^{o}_{7/2}$	6419,80 ^A 5488,36 ^B 5679,60 ^C	5289,89	5631,193ª	-0,535 ^A -0,490 ^B -0,403 ^C	-0,170	-0,980 ^a	5,9087(6) ^A 8,9532(6) ^B 10,217(6) ^C	2,01(7)	2,752(6) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	$5d^2({}^3F)6p\ {}^4G^{o}_{\ 7/2}$	7822,68 ^A 6481,59 ^B 6880.62 ^C	6528,50	6410,975 ^a	0,040 ^A 0,137 ^B 0,154 ^C	0,379	-0,950 ^a	1,4938(7) ^A 2,7164(7) ^B 2,5103(7) ^C	4,68(7)	0,2275(7) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	5d6s(¹ D)6p ² P ^o _{3/2}	3842,04 ^A 3485.95 ^B	5597,99	5877,615 ^a	-2,182 ^A -2.422 ^B	-1,538	-1,890 ^a	7,4228(5) ^A 5,1948(5) ^B	1,54(6)	6,215(5) ^a	
$5d^2(^3F)6s \ ^4F_{5/2}$ $5d^2(^3F)6s \ ^4F_{5/2}$	$\begin{array}{l} 5d6s(^{3}D)6p\ ^{2}D^{o}_{\ 3/2}\\ 5d6s(^{3}D)6p\ ^{4}D^{o}_{\ 3/2} \end{array}$	3636,11 ^A 8570,88 ^A 7213,84 ^B 6168 33 ^C	7999,20 8503,27	8316,047 ^a 8545,428 ^a	-5,087 ^A -1,381 ^A -1,286 ^B -1,107 ^C	-0,568 -0,469	-2,310 ^a -1,640 ^a	$1,0321(3)^{A}$ 9,4250(5)^{A} 1,6594(6)^{B} 3,4200(6) ^C	7,05(6) 7,83(6)	1,180(5) ^a 5,228(5) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	5d6s(³ D)6p ⁴ F ^o _{5/2}	8739,78 ^A 7091,54 ^B 6504,33 ^C	8702,75	8476,494 ^a	-1,107 -1,533 ^A -1,495 ^B -1,076 ^C	-0,686	-2,010 ^a	$4,2611(5)^{A}$ $7,0639(5)^{B}$ $22,037(5)^{C}$	3,02(6)	1,511(5) ^a	
5d ² (³ F)6s ⁴ F _{5/2}	5d6s(³ D)6p ⁴ P ^o _{5/2}	6462,45 ^A 5514,64 ^B	6818,58	6600,149 ^a	-1,002 ^A -0,890 ^B	-2,792	-1,780 ^a	2,6487(6) ^A 4,7040(6) ^B	3,86(4)	0,4233(6) ^a	
$5d^{2}(^{3}F)6s \ ^{4}F_{5/2}$	4f5d(³ F)6s ⁴ F° _{7/2}	2847,22 ^A 2646,73 ^B 2124,74 ^C	4774,33	4468,955 ^a	-0,575 ^A -0,613 ^B -0,322 ^C	-0,633	-1,200 ^a	2,7318(7) ^A 2,9016(7) ^B 8,7920(7) ^C	8,51(6)	0,2633(7) ^a	

Tablo .	A.1. I	Devam
---------	--------	-------

	Geçişler		λ			$\log(gf)$			A_{ki}	
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d ² (³ F)6s ² F _{5/2}	5d ² (³ F)6p ² G ^o _{7/2}	8283,63 ^A	6381,94	6823,725 ^a	-0,134 ^A	0,290	-1,100 ^a	8,9192(6) ^A	3,99(7)	$1,422(6)^{a}$
		$6606,42^{B}_{-}$			-0,188 ^B			$12,375(6)^{B}$		
		6735,52 ^C			$-0,050^{\circ}$			16,371(6) ^C		
$5d^{2}(^{3}F)6s^{2}F_{5/2}$	$5d^{2}(^{3}P)6p ^{4}P^{0}_{3/2}$	5358,43 ^A	6552,31	5365,872 ^a	-2,232 ^A	-0,766	-1,320 ^a	0,3403(6) ^A	6,66(6)	$2,770(6)^{a}$
		4598,81 ^B			$-2,790^{\text{B}}$			$0,1276(6)^{B}$		
		5127,68 ^C			-1,513 ^C			1,9447(6) ^C		
5d ² (³ F)6s ² F _{5/2}	$5d^{2}(^{3}P)6p ^{2}P^{0}_{3/2}$	4948,23 ^A	5392,28	4945,84 ^a	-1,417 ^A	-1,390	-1,140 ^a	$2,6033(6)^{A}$	2,34(6)	$4,936(6)^{a}$
		4293,74 ^B			-1,777 ^B			$1,5117(6)^{B}$		
		$5081,52^{\circ}$			-1,561 ^C			$1,7727(6)^{C}$		
5d ² (³ F)6s ² F _{5/2}	5d ² (¹ D)6p ² D ^o _{3/2}	5200,31 ^A	6280,89	4770,426 ^a	-1,914 ^A	-0,201	-0,920 ^a	$0,7520(6)^{A}$	2,66(7)	$8,805(6)^{a}$
		4481,57 ^B			$-1,688^{B}$			$1,7037(6)^{B}$		
		4304,94 ^C			-2,317 ^C			$0,4331(6)^{C}$		
5d ² (³ F)6s ² F _{5/2}	5d ² (³ F)6p ⁴ G ^o _{7/2}	11664,15 ^A	8802,63	8624,233 ^a	-2,500 ^A	-1,338	-1,930 ^a	$0,1933(5)^{A}$	4,94(5)	$1,316(5)^{a}$
		8592,21 ^B			-2,018 ^B			$1,0838(5)^{B}$		
		9307,78 ^C			-1,965 ^C			$1,0435(5)^{C}$		
5d ² (³ F)6s ² F _{5/2}	$5d^{2}(^{3}P)6p^{2}D^{0}_{3/2}$	5551,30 ^A	4833,96	5632,011 ^a	-0,742 ^A	-1,702	$-0,870^{a}$	$9,7622(6)^{A}$	1,42(6)	$7,088(6)^{a}$
		4740,03 ^B			-0,792 ^в			$11,975(6)^{B}$		
		5062,48 [°]			-1,020 ^C			6,2165(6) ^C		
5d ² (³ F)6s ² F _{5/2}	$5d^{2}(^{3}P)6p ^{2}D^{o}_{5/2}$	5370,96 ^A	4866,05	5491,063 ^a	-1,116 ^A	-1,233	$-1,250^{a}$	$2,9476(6)^{A}$	2,74(6)	$2,072(6)^{a}$
		4662,46 ^B			-1,076 ^в			4,2873(6) ^B		
5d ² (³ F)6s ² F _{5/2}	5d ² (°F)6p ² F° _{7/2}	7627,69 ^A	7379,84	6925,207 ^a	-2,273 ^A	-1,202	$-0,930^{a}$	$0,7638(5)^{A}$	0,96(6)	$2,041(6)^{a}$
		7790,64 ^B			-2,729 ^в			$2,5601(4)^{B}$		
		8515,03 ^c			-2,910 ^c			1,4151(4) ^C		
5d ² (³ F)6s ² F _{5/2}	5d ² (³ F)6p ² F ⁰ _{5/2}	7943,55 ^A	7643,830	7161,186 ^a	-0,364 ^A	0,184	$-1,020^{a}$	7,6126(6) ^A	2,91(7)	$2,069(6)^{a}$
		6472,28 ^b			-0,500 ^b			8,3771(6) ^b		
5d ² (³ F)6s ² F _{5/2}	4f5d(3F)6s 4F ⁶ _{5/2}	3278,18 ^A	5983,61	5714,01ª	-2,228 ^A	-2,991	$-1,110^{a}$	0,6123(6) ^A	0,32(5)	$2,642(6)^{a}$
		2978,57 ^b			-2,541 ^B			0,3830(6) ^B		
= 1 ² /3p) < 4p	5 12 (3 D) 5 (3 D)	2328,24 ^e		5050 0 53	-2,916		1 1003	0,2486(6)	1.00(0)	0.001/03
$5d^{2}(^{3}P)6s ^{4}P_{5/2}$	$5d^{2}(^{3}P)6p^{2}D^{6}_{3/2}$	6261,11 ^A	7383,59	5852,26ª	-1,197 ^A	-1,224	$-1,120^{a}$	$2,7002(6)^{A}$	1,83(6)	3,691(6) ^a
		5376,045			-1,245			3,2441(6)		
5 1 ² (3p) < 4p	5 1 ² (3P) 5 400	5794,66	5110.07	5004.0268	-1,072	0.100	0.0203	4,2060(6)	105(7)	0 500 4/5)8
5d ² (³ P)6s ⁴ P _{5/2}	$5d^{2}(^{3}P)6p^{4}S^{3}_{3/2}$	6886,42 ^A	5112,97	5894,826"	-0,542 ^A	-0,198	-0,830"	$1,0097(7)^{A}$	4,05(7)	0,7094(7)*
		5826,385			-0,218			$2,9/1/(7)^{5}$		
5 1 ² (3p) (4p	$51^{2}(37) = 200$	6461,69°	6604.66	51 40 52 03	-0,406°	0.750	1 < 103	$1,5658(7)^{\circ}$	2.25(6)	0.004(5)8
5d ² (³ P)6s ³ P _{5/2}	5d ² (³ F)6p ² G ³ _{7/2}	9970,27 ⁴	6684,66	/149,/39"	-3,558 ¹¹	-0,759	-1,640"	$0,0232(5)^{A}$	3,25(6)	3,/34(5)*
		/910,82			-2,851			$0,18/6(5)^{5}$		
5 + 12(3D) = 4D	$= \frac{12}{3}$ (3D) (4D0	8096,64°	(701.04	E2E7 0/58	-2,162	0.054	0 5 4 0 3	$0,8/56(5)^{\circ}$	2 70/7	1 11 (7) 8
50 (°P)68 °P _{5/2}	5d ⁻ ("P)6p 'P ⁻ _{5/2}	5991,08 ⁻²	0/21,04	535/,865"	-0,040	0,054	-0,540"	$2,825/(7)^{B}$	2,79(7)	1,110(7)"
		5180,03 ⁻			$0,142^{-1}$			$5,7350(7)^{\circ}$		
		5/19,23-			-0,128-			2,5285(7)		

Tablo .	A.1. I	Devam
---------	--------	-------

(Geçişler		λ			$\log(gf)$			A _{ki}	
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer	Bu çal	ışma	Diğer
-	•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d ² (³ P)6s ⁴ P _{5/2}	$5d^{2}(^{3}P)6p {}^{4}P^{o}_{3/2}$	6016,85 ^A	6871,80	5565,429 ^a	-0,554 ^A	-0,328	-0,880 ^a	$1,2856(7)^{A}$	1,66(7)	$0,7093(7)^{a}$
	· · •	5195,12 ^B			-0,285 ^B			$3,2042(7)^{B}$		
		$5880,24^{\circ}$			$-0,287^{\circ}$			$2,4920(7)^{C}$		
$5d^{2}(^{3}P)6s ^{4}P_{5/2}$	$5d^{2}(^{3}P)6p ^{4}D^{0}_{7/2}$	6372,94 ^A	5880,59	5744,384 ^a	-0,060 ^A	0,206	-0,430 ^a	$1,7871(7)^{A}$	3,87(7)	$0,9382(7)^{a}$
	· · •	5374,06 ^B			-0,221 ^B			$4,7977(7)^{B}$		
		6244,35 ^C			-0,245 ^C			3,7548(7) ^C		
$5d^{2}(^{3}P)6s {}^{4}P_{5/2}$	$5d^{2}(^{3}P)6p ^{4}D^{o}_{5/2}$	6604,79 ^A	5917,66	6108,493 ^a	-0,507 ^A	-0,741	$-0,780^{a}$	7,9194(6) ^A	5,77(6)	$4,942(6)^{a}$
		5605,25 ^B			-0.268^{B}			$19.087(6)^{B}$		
		6464,81 ^C			-0.393 ^C			$10,743(6)^{C}$		
$5d^{2}(^{3}P)6s {}^{4}P_{5/2}$	$5d^{2}(^{3}P)6p ^{4}D^{0}_{3/2}$	6795,97 ^A	7751,707	6238,594ª	-1,242 ^A	-0,814	-1,420 ^a	$2,0652(6)^{A}$	4,26(6)	$1,628(6)^{a}$
()		5766,61 ^B			-3,717 ^B			9,6230(3) ^B	, (<i>j</i>	, , ,
		6651,71 ^C			-1,084 ^C			$3,1016(6)^{C}$		
$5d^{2}(^{3}P)6s {}^{4}P_{5/2}$	$5d6s(^{3}D)6p^{2}D_{5/2}^{\circ}$	4512,63 ^A	_	4800,245 ^a	-1,001 ^A	_	-1,020 ^a	$5,4451(6)^{A}$	_	$4,605(6)^{a}$
()		4036,41 ^B			-1,239 ^B			3,9346(6) ^B		, , , ,
		3556,70 ^C			-1,358 ^C			3,8501(6) ^C		
$5d^{2}(^{3}P)6s {}^{4}P_{5/2}$	$4f5d(^{1}G)6s ^{2}G^{0}_{7/2}$	3426,56 ^A	5626,85	5975,717 ^a	-3,087 ^A	-1,539	-1,390 ^a	$0.5812(5)^{A}$	7,62(5)	$9.506(5)^{a}$
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{2}D^{0}_{5/2}$	6988,63 ^A	5064,74	6293,562ª	-0,404 ^A	-1,758	-1,390 ^a	8,9696(6) ^A	0,76(6)	$1,143(6)^{a}$
× / ··-		5899.31 ^B			-0.333 ^B	í.	·	$14.829(6)^{B}$, , , , , , , , , , , , , , , , , , ,	· · · · ·
		6114.52 ^C			-0.324 ^c			$14.088(6)^{C}$		
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{4}D^{0}_{5/2}$	5831.85 ^A	5800.27	5177.308 ^a	0.407 ^A	0.090	-0.280 ^a	8.3377(7) ^A	4.07(7)	$2.175(7)^{a}$
12	· · · · · · · · · · · · · · · · · · ·	5049.33 ^B		5177.31 ^b	0.468^{B}	- ,	-,	$12.792(7)^{B}$,,	, ,
		5303.78 ^c		,-	0.311 ^c			8.0897(7) ^C		
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{4}D^{0}_{7/2}$	5625.35 ^A	5655.97	5046.872ª	-0.375 ^A	-2.182	-0.850 ^a	$1.1103(7)^{A}$	0.17(6)	$0.4621(7)^{a}$
///////////////////////////////////////	· · · · · · · · · · · · · · · · · · ·	4897.31 ^B	,	,	-0.320 ^B	, -	- ,	$1.6626(7)^{B}$		
		5138.55 ^C			-0.376 ^C			$1.3285(7)^{C}$		
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{2}F_{5/2}^{\circ}$	6158.78 ^A	6074.19	5720.009 ^a	-1.148 ^A	-0.911	-1.470^{a}	$2.0866(6)^{A}$	3.70(6)	$1.151(6)^{a}$
///////////////////////////////////////	5 T 572	5354.35 ^B	, .	,	-1.121 ^B	-)-	,	$2.9305(6)^{B}$	- / - (- /	, - (-)
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{2}F_{7/2}^{\circ}$	5967.20 ^A	5906.30	5568,448ª	-2,682 ^A	-1.676	-1.210 ^a	$0.0487(6)^{A}$	5.04(5)	$1.657(6)^{a}$
12		5222.52 ^B		, -	-2.086 ^B	,	, -	$0.2506(6)^{B}$, (-)
		5288.14 ^C			-1.227 ^C			$1.7660(6)^{C}$		
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{4}F^{0}_{5/2}$	6830.51 ^A	5541.03	5935.286ª	-1.246 ^A	-1.445	-1.350 ^a	$1.3525(6)^{A}$	1.30(6)	$1.409(6)^{a}$
12	5 T 572	5781.96 ^B	,	,	-1.159 ^B	, -	,	$2.3053(6)^{B}$, (-)
		6032.45 ^c			-1.015 ^C			$2.9470(6)^{C}$		
$5d^{2}(^{3}F)6s^{4}F_{7/2}$	$5d^{2}(^{3}F)6p^{4}F^{0}_{7/2}$	6660.06 ^A	5456.31	5789.208ª	0.238 ^A	0.432	-0.650 ^a	$3.2474(7)^{A}$	7.57(7)	$0.5566(7)^{a}$
· /··· //2	× / I //2	5663.67 ^B		,	0.303 ^B	× -	y	5.2215(7) ^B		· · · · · · · /
		5867.56 ^C			0.388 ^c			$5.9081(7)^{C}$		
$5d^{2}(^{3}F)6s {}^{4}F_{7/2}$	$5d^{2}(^{3}F)6p ^{4}F^{0}_{9/2}$	6300.78 ^A	5413.94	5588.326 ^a	-0.569 ^A	-0.236	-1.220 ^a	$4.5355(6)^{A}$	1.32(7)	$1.286(6)^{a}$
	- ··· (- / • r - 9/2	5398.10 ^B			-0.499 ^B	-,=	,~	$7.2701(6)^{B}$,-=(.)	.,()
		5622 72 ^C			-0.503 ^C			6 6277(6) ^C		

Tablo .	A.1. I	Devam
---------	--------	-------

	Geçişler		λ			$\log(gf)$			A_{ki}	
Alt seviye	Üst seviye	Bu çalı	ışma	Diğer	Bu çal	ışma	Diğer	Bu ça	ışma	Diğer
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d ² (³ F)6s ⁴ F _{7/2}	$5d^{2}(^{3}F)6p \ ^{2}G^{0}_{7/2}$	6361,26 ^A	5249,38	5502,645 ^a	-0,292 ^A	-0,731	-1,840 ^a	$1,0504(7)^{A}$	5,63(6)	$0,3978(6)^{a}$
		5445,83 ^в			-0,174 ^B			$1,8841(7)^{B}$		
		5533,25 [°]			$-0,807^{\rm C}$			$0,4242(7)^{C}$		
5d ² (³ F)6s ⁴ F _{7/2}	$5d^{2}(^{3}F)6p \ ^{2}G^{0}_{9/2}$	5908,01 ^A	5203,95	5320,14 ^a	-1,478 ^A	-1,698	-1,870 ^a	$6,3682(5)^{A}$	4,94(5)	$3,177(5)^{a}$
		5106,05 ^в			-1,370 ^B			$10,834(5)^{B}$		
		5200,93 [°]			-1,866 ^C			3,3575(5) ^C		
5d ² (³ F)6s ⁴ F _{7/2}	$5d^{2}(^{3}F)6p \ ^{4}G^{o}_{5/2}$	7867,51 ^A	6948,92	6917,272 ^a	-1,971 ^A	-1,877	-1,880 ^a	$1,9244(5)^{A}$	3,06(5)	$3,061(5)^{a}$
		7215,93 ^в			-2,028 ^B			$2,0010(5)^{B}$		
		7711,40 [°]			-2,427 ^C			$0,6990(5)^{C}$		
5d ² (³ F)6s ⁴ F _{7/2}	$5d^{2}(^{3}F)6p \ ^{4}G^{o}_{7/2}$	8182,36 ^A	6783,85	6616,582ª	-0,684 ^A	-0,280	-1,510 ^a	2,5736(6) ^A	9,51(6)	$0,5882(6)^{a}$
		6727,52 ^в			-0,554 ^B			$5,1405(6)^{B}$		
		7158,41 ^C			-0,595 ^c			4,1359(6) ^C		
5d ² (³ F)6s ⁴ F _{7/2}	5d ² (³ F)6p ⁴ G ^o _{9/2}	7536,74 ^A	6590,36	6394,237 ^a	0,303 ^A	0,532	-0,570 ^a	$2,3601(7)^{A}$	5,23(7)	$0,4388(7)^{a}$
		6278,32 ^в		6394,23 ^b	0,401 ^B			$4,2546(7)^{B}$		
		9430,72 ^c			-2,196 ^C			$4,7687(4)^{C}$		
5d ² (³ F)6s ⁴ F _{7/2}	5d6s(³ D)6p ⁴ F ^o _{7/2}	8818,94 ^A	8832,77	8674,430 ^a	-1,692 ^A	-0,524	-1,730 ^a	$2,1799(5)^{A}$	3,19(6)	$2,062(5)^{a}$
		7149,05 ^в			-1,947 ^в			$1,8410(5)^{B}$		
		6419,43 ^c			-0,871 ^C			27,238(5) ^C		
5d ² (³ F)6s ⁴ F _{7/2}	5d6s(³ D)6p ⁴ F ^o _{5/2}	9191,17 ^A	9162,50	8839,681ª	-1,900 ^A	-0,802	-2,050 ^a	1,6535(5) ^A	2,09(6)	$1,267(5)^{a}$
		7386,98 ^B			-1,980 ^B			$2,1296(5)^{B}$		
		6752,02 ^C			-1,322 ^C			$11,602(5)^{C}$		
5d ² (³ F)6s ⁴ F _{7/2}	$4f5d(^{3}G)6s \ ^{4}G^{0}_{9/2}$	2090,95 ^A	3961,75	4064,785 ^a	0,785 ^A	-0,382	-0,390 ^a	9,3009(8) ^A	1,76(7)	$0,1644(8)^{a}$
		1707,95 [°]			1,031 ^C			24,546(8) ^C		
5d ² (³ F)6s ⁴ F _{7/2}	4f5d(³ G)6s ⁴ G ^o _{7/2}	2116,17 ^A	4242,93	4172,314 ^a	-0,034 ^A	-0,760	-0,930 ^a	$1,7222(8)^{A}$	8,04(6)	$0,5624(7)^{a}$
		1720,10 ^C			0,116 ^C			3,6781(8) ^C		
5d ² (³ F)6s ⁴ F _{7/2}	4f5d(³ F)6s ⁴ F ^o _{7/2}	2893,52 ^A	4909,47	4567,903 ^a	0,093 ^A	-0,791	-0,570 ^a	1,2331(8) ^A	5,60(6)	0,1075(8) ^a
		2686,84 ^B			$0,046^{B}$			$1,2845(8)^{B}$		
		2150,51 [°]			0,346 ^c			3,9933(8) ^C		
5d ² (¹ G)6s ² G _{7/2}	$5d^{2}(^{1}G)6p ^{2}G^{o}_{7/2}$	6761,27 ^A	5417,16	5821,975 ^a	0,317 ^A	0,452	-0,200 ^a	3,7816(7) ^A	8,04(7)	$1,551(7)^{a}$
		6066,65 ^B			$0,376^{B}$			5,3832(7) ^B		
		6465,59 ^c			0,354 ^C			$4,5042(7)^{C}$		
$5d^{2}(^{1}G)6s ^{2}G_{7/2}$	4f5d(¹ F)6s ² F ^o _{5/2}	2034,61 ^A	-	4800,017 ^a	-0,400 ^A	-	-0,640 ^a	1,0911(8) ^A	-	$0,1105(8)^{a}$
5d ² (¹ G)6s ² G _{7/2}	4f5d(³ G)6s ⁴ G ^o _{7/2}	2541,55 ^A	5693,75	5714,536 ^a	-3,967 ^A	-2,798	-1,220 ^a	0,0139(6) ^A	0,41(5)	1,538(6) ^a
5d ² (¹ G)6s ² G _{7/2}	4f5d(³ H)6s ² H ^o _{9/2}	3540,73 ^A	6064,94	6608,198 ^a	-1,974 ^A	-1,145	-0,780 ^a	0,5649(6) ^A	1,30(6)	2,533(6) ^a
		3339,77 ^в			-1,774 ^B			$1,0048(6)^{B}$		
		2756,85 [°]			-2,184 ^C			0,5739(6) ^C		
5d ² (³ F)6s ² F _{7/2}	5d ² (³ P)6p ⁴ P ^o _{5/2}	5674,73 ^A	6914,094	5466,921ª	-1,461 ^A	-0,617	-1,420 ^a	1,1925(6) ^A	5,62(6)	1,413(6) ^a
		4833,27 ^в			-1,635 ^B			$1,1009(6)^{B}$		
		5362,93 ^C			-1,054 ^C			3,4130(6) ^C		

Tablo .	A.1. I	Devam
---------	--------	-------

(Geçişler		λ			log(gf)		A_{ki}			
Alt seviye	Üst seviye	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer	
-	•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
5d ² (³ F)6s ² F _{7/2}	5d ² (³ P)6p ² D ^o _{5/2}	5712,01 ^A	5147,86	5823,82 ^a	-1,697 ^A	-1,717	-0,870 ^a	0,6845(6) ^A	0,80(6)	4,419(6) ^a	
		4911,20 ^B			-0,954 ^B			$5,1203(6)^{B}$			
5d ² (³ F)6s ² F _{7/2}	$5d^{2}(^{3}F)6p^{2}D^{0}_{5/2}$	10472,12 ^A	6562,25	8825,813 ^a	-0,372 ^A	-0,157	$-1,100^{a}$	$4,2992(6)^{A}_{P}$	1,80(7)	$1,133(6)^{a}$	
		7912,05 ^B			-0,264 ^B			9,6733(6) ^B			
		8304,02 ^C			-0,219 ^C			9,7154(6) ^C			
5d ² (³ F)6s ² F _{7/2}	$5d^{2}(^{1}G)6p ^{2}G^{0}_{7/2}$	5574,60 ^A	5010,11	5239,535ª	-1,904 ^A	-1,942	-0,980 ^a	$0,3342(6)^{A}$	0,38(6)	$3,178(6)^{a}$	
		4753,10 ^B			$-2,776^{B}$			$6,1842(4)^{B}$			
		4994,55 [°]			-2,721 ^C			6,3481(4) ^C			
5d ² (³ F)6s ² F _{7/2}	$5d^{2}(^{3}P)6p \ ^{4}D^{o}_{7/2}$	6016,17 ^A	6027,85	5869,926 ^a	-1,750 ^A	-0,536	-1,400 ^a	$4,0987(5)^{A}$	6,67(6)	$9,628(5)^{a}$	
		4995,63 ^в			-1,124 ^B			$2,5086(6)^{B}$			
5d ² (³ F)6s ² F _{7/2}	5d ² (³ F)6p ² G ^o _{9/2}	8219,39 ^A	6875,59	7023,643 ^a	-0,011 ^A	-0,789	-0,740 ^a	9,6210(6) ^A	2,29(6)	$2,459(6)^{a}$	
		6547,75 ^в			-0,046 ^B			$13,982(6)^{B}$			
		6704,59 ^c			0,041 ^C			16,292(6) ^C			
5d ² (³ F)6s ² F _{7/2}	5d6s(³ D)6p ² D ^o _{5/2}	4330,77 ^A	-	4887,597ª	0,136 ^A	-	-1,000 ^a	8,0959(7) ^A	_	0,4651(7) ^a	
		3819,11 ^в			0,034 ^B			8,2306(7) ^B			
		3386,89 ^C			-0,036 ^C			8,9200(7) ^C			
5d ² (³ F)6s ² F _{7/2}	$4f5d(^{1}G)6s^{2}G^{o}_{9/2}$	3338,33 ^A	5037,32	6485,522ª	-1,232 ^A	-0,587	-1,290 ^a	3,5035(6) ^A	6,81(6)	$0,8128(6)^{a}$	
		3024,69 ^в			-1,345 ^B			$3,2920(6)^{B}$			
		2485,48 ^c			-1,943 ^c			$1,2303(6)^{C}$			
5d ² (³ F)6s ² F _{7/2}	4f5d(1G)6s 2G°7/2	3320,68 ^A	5761,53	6111,693 ^a	-1,016 ^A	-1,729	-0,960 ^a	7,2871(6) ^A	0,47(6)	$2,446(6)^{a}$	
		3010,80 ^B			-1,245 ^B			5,2336(6) ^B			
		2473,58 ^c			-1,391 ^c			5,5354(6) ^C			
5d ² (³ F)6s ² F _{7/2}	4f5d(³ D)6s ⁴ D ^o _{5/2}	2126,28 ^A	4581,38	4660,696 ^a	-1,492 ^A	-3,267	-0,760 ^a	7,9104(6) ^A	0,29(5)	$8,889(6)^{a}$	
		1995,12 ^в			-1,276 ^B			$14,805(6)^{B}$			
5d ² (³ F)6s ⁴ F _{9/2}	$5d^{2}(^{3}F)6p {}^{4}D^{o}_{7/2}$	5862,49 ^A	5896,35	5211,851ª	$0,574^{A}$	0,245	-0,110 ^a	$9,0902(7)^{A}$	4,21(7)	$2,381(7)^{a}$	
	· · •	5075,68 ^B		5211,86 ^b	0,644 ^B			$14,262(7)^{B}$			
		5335,28 ^c			0,477 ^C			8,7780(7) ^C			
5d ² (³ F)6s ⁴ F _{9/2}	5d ² (³ F)6p ⁴ F ^o _{7/2}	6995,07 ^A	5679,67	6007,338 ^a	-0,839 ^A	-0,897	-1,280 ^a	$2,4656(6)^{A}$	3,27(6)	$1,212(6)^{a}$	
	· · •	5903,60 ^в			-0,784 ^B			$3,9308(6)^{B}$			
		6125,46 ^c			$-0,722^{\circ}$			$4,2133(6)^{C}$			
$5d^{2}(^{3}F)6s {}^{4}F_{9/2}$	$5d^{2}(^{3}F)6p {}^{4}F^{0}_{9/2}$	6599,81 ^A	5633,78	5791,315 ^a	0,461 ^A	0,520	-0,420 ^a	$4,4271(7)^{A}$	6,96(7)	$0,7557(7)^{a}$	
		5615,62 ^B		5791,34 ^b	0,539 ^B			$7,3066(7)^{B}$			
		5859,12 ^C			0,561 ^C			$7,0645(7)^{C}$			
5d ² (³ F)6s ⁴ F _{9/2}	5d ² (³ F)6p ² F ^o _{7/2}	7836,09 ^A	6168,915	8051,371 ^a	-1,959 ^A	-0,371	-1,590 ^a	1,4976(5) ^A	9,33(6)	$3,304(5)^{a}$	
		6517,11 ^B			-1,781 ^B			$3,2460(5)^{B}$			
		7016,44 ^C			-2,527 ^C			$0,5028(5)^{C}$			
$5d^{2}(^{3}F)6s {}^{4}F_{9/2}$	5d ² (³ F)6p ⁴ G ^o _{11/2}	7384,58 ^A	6687,78	6249,916 ^a	0,426 ^A	0,665	-0,270 ^a	$2,7195(7)^{A}$	6,90(7)	$0,7638(7)^{a}$	
. / //2	1 1 1 1 2	6171,79 ^B		6249,93 ^b	0,523 ^B	·	·	$4,8662(7)^{B}$	· · · ·		
		6640.35 ^C		, -	0.530 ^C			$42747(7)^{C}$			

Tablo	A.1.	Devam
-------	------	-------

	Geçişler		λ			log(gf)		A_{ki}			
Alt seviye	Üst seviye	Bu çal	ışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer	
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
$5d^{2}(^{3}F)6s^{4}F_{9/2}$	$5d^{2}(^{3}F)6p ^{4}G^{0}_{9/2}$	7968,60 ^A	6919,02	6661,393 ^a	-0,777 ^A	-0,362	-1,200 ^a	$1,7557(6)^{A}$	6,05(6)	$0,9479(6)^{a}$	
		6574,51 ^B			-0.676^{B}			$3,2550(6)^{B}$			
		7043.13 ^C			-0.728°			$2.5155(6)^{C}$			
$5d^{2}(^{3}F)6s^{4}F_{9/2}$	$5d^{2}(^{3}F)6p^{2}G^{0}_{7/2}$	6666.20 ^A	5455.81	5699.348 ^a	-1.035 ^A	-1.850	-1.940^{a}	$1.7297(6)^{A}$	0.39(6)	$0.2945(6)^{a}$	
, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	5667.29 ^B	, -	,	-0.893 ^B	,	· · ·	3.3203(6) ^B	(- /		
		5762.03 ^C			-0.985 ^C			$2.5100(6)^{C}$			
$5d^{2}(^{3}F)6s^{4}F_{9/2}$	$5d^{2}(^{3}F)6p^{2}G^{0}y_{2}$	6170.15 ^A	5406.75	5503.794 ^a	-0.337 ^A	-0.162	-1.060 ^a	8.0592(6) ^A	1.57(7)	$1.917(6)^{a}$	
00 (1)00 19/2		5300.25 ^B	0.100,70	0000,771	-0.257 ^B	0,102	1,000	$13.141(6)^{B}$	1,07(7)	1,,, 1,(0)	
		5402 56 ^C			-0.618 ^C			5 5013(6) ^C			
$5d^{2}(^{3}F)6s^{4}F_{0/2}$	$5d6s(^{3}D)6n ^{4}D^{0}z_{2}$	8777 01 ^A	8405 91	8346 575ª	-0.618 ^A	0.086	-1 210 ^a	$2,6033(6)^{A}$	1.44(7)	$0.7375(6)^{a}$	
54 (1)05 19/2	5405(B)op B //2	7119.01 ^B	0105,91	0510,575	-0.644^{B}	0,000	1,210	$3,7319(6)^{B}$	1,11(7)	0,7575(0)	
		6376.66 ^C			-0.869 ^C			$2,7684(6)^{C}$			
$5d^2({}^3F)6s {}^4F_{02}$	$4f5d(^{3}F)6s^{4}F^{0}aa$	2955.01 ^A	5089 57	4702 636 ^a	-0.790 ^A	-2 127	-1 250 ^a	$1.5414(7)^{A}$	0.24(6)	$0.2119(7)^{a}$	
54 (1)05 19/2	4154(1)03 1 //2	2739.66 ^B	5007,57	4702,050	-0.828 ^B	2,127	1,230	$1,5414(7)^{B}$	0,24(0)	0,211)(7)	
		2132,00 2184 22 ^C			-0.558 ^C			$4,8354(7)^{C}$			
$5d^2(^3F)6s^4F_{ava}$	$4f5d(^{3}F)6s^{4}F^{0}a$	2104,22 2884 26 ^A	1010 80	4570.01ª	-0,009 ^A	-0.657	-0 390ª	$7.8417(7)^{A}$	0.60(7)	$1.300(7)^{a}$	
5u (1)03 19/2	4150(1)05 1 9/2	2678 74 ^B	4747,07	4570,01	-0.045 ^B	-0,057	-0,570	$83861(7)^{B}$	0,00(7)	1,500(7)	
		2078,74 2163 44 ^C			-0,045			4,5136(8) ^C			
$5d^2(^3E)6e^4E_{r}$	$4f5d(^{1}G)6s^{2}G^{0}$	2103,44 2041 52 ^A	4230 71	5167 701 ^a	0,001	0.660	1.060 ^a	9,5150(0) 8,5275(7) ^A	0.82(7)	$0.2174(7)^{a}$	
Ju (1908-19/2	4150(0)08 0 9/2	2728.06 ^B	4230,71	5107,791	0,044	-0,000	-1,000	$8,3273(7)^{B}$	0,82(7)	0,2174(7)	
		2728,00 2281,61 ^C			-0,004			$1,6750(7)^{C}$			
$5d^{2}(^{3}E)6a^{4}E$	$4f5d(^{3}C)6c^{4}C^{9}$	2261,01 2002 52 ^A	4060 12	4060 246ª	-0,885 0.756 ^A	0.040	0 170 ^a	1,0739(7) 7 2185(8) ^A	0.44(8)	0 2278(8)a	
Ju (17)08 179/2	413d(0)08 0 11/2	2093,52 1083 68 ^B	4000,12	4000,340 4060 22 ^b	0,750 0,758 ^B	0,040	-0,170	$^{7,2103(0)}_{8,0022(8)^{B}}$	0,44(8)	0,2278(8)	
		1965,06 1714 47 ^C		4000,33	0,738 1.151 ^C			3,0932(8)			
$5d^{2}(^{1}C) \leq c^{2}C$	$5d^{2}(^{3}E) = C^{0}$	1/14,4/ 12121 52 ^A	7615 01	9512 612ª	1,131 1,220 ^A	0.972	1 220 ^a	20,737(6) 2,2710(5) ^A	1.01(6)	5 277(5)a	
50 (G)08 G _{9/2}	30 (F)op G _{7/2}	15121,52 10591 C4 ^B	/043,81	8313,012	-1,529 1,420 ^B	-0,875	-1,550	2,2719(3)	1,91(0)	5,577(5)	
		10381,04			-1,429			2,7708(3)			
5 12/1 C) C 2C	512(10) = 200	10910,70	5 402 22	5640.000	-1,245	0.420	0.0408	3,9939(5) [*]	(15(7))	2 201/7)8	
5d (G)6s G _{9/2}	5d (G)op G _{9/2}	0843,00	5405,52	5048,25	0,555 0,460 ^B	0,430	0,040	5,0767(7) 5,0156(7) ^B	0,15(7)	2,291(7)	
		6075,51°			0,460-			$5,2156(7)^{-1}$			
51 ² /10) < ² 0	5 1 ² /3 E) 5 ² E ⁰	6462,04°	0115 60	0.570 1.553	0,472	1 40 4	1 1 603	$4,7348(7)^{2}$	0.50(0)	0.76666638	
5d ² ('G)6s ² G _{9/2}	5d ² (³ F)6p ² F ³ _{7/2}	11548,41 ¹¹	8115,60	86/2,165"	$-0, /18^{-1}$	-1,404	-1,160"	1,1969(6) ¹⁴	0,50(6)	0,7666(6)"	
		13987,035			-2,026			4,0110(4)			
5 12 days 20	5 1 ² (3P) 5 4P0	16508,45	7000.00	0700 4703	-2,503	0.506	1.2.403	9,6003(3)	0 (1/6)	1.007(5)3	
5d ⁻ ('G)6s ² G _{9/2}	5d ² (³ F)6p ³ F ³ _{9/2}	12866,76 ^A	/999,98	8/20,4/2*	-2,535 th	-0,596	-1,340"	$0,11/4(5)^{A}$	2,64(6)	4,007(5)"	
		10402,90°			-1,188 ⁵			3,9980(5) ^b			
		11270,60 ^c			-1,517 ^c			$1,5945(5)^{\circ}$			

^aAtomic Spectral Line database from R.L.Kurucz's CD-ROM 23 [102], ^bNIST Periodictable [62]

Geo	Geçişler		λ			$\log(gf)$		A_{ki}			
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer	
•	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
$5d6p {}^{3}F_{2}^{\circ}$	$5d^{2} D_{2}$	3296,27 ^A	3827,048 ^A	3995,74 ^b	-2,014 ^A	-1,308 ^A	-0,06 ^b	$1,19(6)^{A}$	$4,48(6)^{A}$	$7,95(7)^{a}$	
1 -	-	3814,14 ^C	3811,002 ^B	3995,75 ^{c,e}	-1,316 ^C	-0,438 ^B	$0,10\pm0,02^{c}$	$4,42(6)^{C}$	$1,67(8)^{B}$	$7,20\pm0,40(7)^{b}$	
										6,58(8) ^c	
$5d6p {}^{3}F_{2}^{\circ}$	5d6s ${}^{3}D_{1}$	3327,30 ^A	3901,424 ^A	4077,34 ^b	0,142 ^A	0,227 ^A	$-0,06^{b}$	$1,67(8)^{A}$	$1,48(8)^{A}$	$7,04(7)^{a}$	
		3818,28 ^в	3885,697 ^в	4077,35 ^{c,e}	-1,635 ^в	0,146 ^B	$-0,12\pm0,02^{\circ}$	$2,12(6)^{B}$	$6,18(8)^{B}$	$7,00\pm0,4(7)^{b}$	
										$6,08(8)^{c}$	
5d6p ³ F ^o ₂	5d6s ³ D ₂	3419,97 ^A	4008,883 ^A	4196,55 ^{b,c}	-0,705 ^A	-0,075 ^A	-0,30 ^b	$2,25(7)^{A}$	$6,98(7)^{A}$	8,04(7) ^a	
		3889,16 ^в	3986,622 ^в		$-2,549^{B}$	-0,269 ^в	$-0,26\pm0,02^{\circ}$	$2,48(5)^{B}$	$2,26(8)^{B}$	$3,81\pm0,22(7)^{b}$	
2	2									$4,08(8)^{c}$	
5d6p [°] F [°] ²	5d6s ³ D ₃	3493,84 ^A	4130,043 ^A	-	-1,508 ^A	-1,381 ^A	-	$3,39(6)^{A}$	$3,25(6)^{A}$	$6,18(6)^{a}$	
	2.2-		4102,104 ^b			-1,306 ^b			1,96(7) ^b		
5d6p [°] F [°] ²	$5d^{2} {}^{3}P_{1}$	3888,70 ^A	4596,667 ^A	-	-2,525 ^A	-1,957 ^A	-	2,63(5) ^A	$0,70(6)^{A}$	$2,78(6)^{a}$	
3		4538,28	4567,011 ^B		-2,142 ^C	-2,305 ^b		4,66(5)	1,58(6) ^b		
5d6p ³ F ⁰ ₂	$5d^{2} {}^{3}P_{2}$	3967,86 ^A	4702,978 ^A	-	-2,197 ^A	-1,854 ^A	-	5,38(5) ^A	8,44(5) ^A	$2,95(5)^{a}$	
		5095,23 ^b	4674,233 ^b		-3,205	-4,059 ^b		3,20(4) ^B	$0,27(5)^{B}$		
a 1 a 3 mo	etc. In	4650,33			-1,805	a ====A		9,66(5) ^e	1.00(5)	0.04403	
$5d6p {}^{3}F_{2}^{0}$	5d6s ¹ D ₂	4619,03^	5735,331 ^A	-	-2,226*	-2,597 ^A	-	3,71(5) ^A	$1,02(5)^{A}$	$2,36(6)^{a}$	
5 16 300	5 1 ² 3 D	2027 17Å	5701,709	anan ond	1.4c0A	-1,061	1.02:0.026	2.50(c)A	1,78(7)	1.07(6)8	
5d6p 'F' ₃	$5d^2$ 3F_2	3037,17 ^A	3578,920 ^A	3725,05°,4	-1,469 ^A	-1,854 ^A	-1,93±0,03°	3,50(6) ^A	$1,04(6)^{A}$	$1,9'/(6)^{a}$	
		3344,595	3546,155		-2,024	$-0,773^{\circ}$	-1,439	8,06(5)	8,95(7)	/,94(6)°	
5 16 3 5 0	5 1 ² 3 D	3469,99°	2714 200Å	2071 cubede	-2,355	0.0204	0.10	3,27(5)		< 10(T) ³	
5d6p 'F' ₃	$5d^{2}F_{3}$	3142,25 ¹¹	3/14,380 ¹⁴	38/1,64	-0,041 ¹¹	-0,030 ⁻⁴	-0,13°	$8,/6(/)^{A}$	$6,44(7)^{11}$	$6,18(7)^{\circ}$	
		3448,29	3682,871		-1,203	-0,102-	$-0,1/\pm 0,03^{\circ}$	$5,02(6)^{-1}$	3,88(8)-	$4,6/\pm0,24(7)^{2}$	
5 1 C 3 D 0	5 1 ² 1D	3596,12°	2766 007Å	2020 21h	-0,618	0.0004	-0,016 ⁻	$1, 7 (7)^{-1}$	2.04(7)A	3,83(8)	
5d6p "F" ₃	$5d^{-1}D_2$	31/0,06 ¹²	3/66,98/	3929,21*	-0,104 ¹²	$-0,232^{10}$	-0,32"	$7,45(7)^{12}$	$3,94(7)^{B}$	$2,38(7)^{2}$	
		3093,90	3730,532	3929,22	-0,485	-0,544	$-0,40\pm0,03$	2,29(7)*	1,37(8)	$2,9/\pm 0,10(7)$	
5 d 6 n 3 E ⁰	5d ² ³ E	2217 16A	2015 207A		0.850	2 211A		1.25(7) ^A	2 15(5) ^A	2,44(0) 2,25(6) ^a	
Sup F ₃	$50 \Gamma_4$	2551 40 ^B	2812.070 ^B	-	-0,039	-2,311 1,617 ^B	-	1,23(7) $4,10(5)^{B}$	3,13(3) 1 11(7) ^B	2,33(0)	
5 d 6 n 3 E 0	546a ³ D	2284 21 ^A	2042 028 ^A	4122 22b	-2,255 0.150 ^A	-1,017	0.12 ^b	4,19(3) 1 27(8) ^A	1,11(7) $1,18(8)^{A}$	9 05(7) ^a	
Sup r ₃	$5008 D_2$	3204,31 3710 17 ^B	3943,028 3808 651 ^B	4123,22 4123,22 ^{c,d,e}	1 408	0,280 0.235 ^B	0,13 0.11+0.03°	1,27(6) 2,18(6) ^B	1,10(0) 7,53(8) ^B	$7,50\pm0,40(7)^{b}$	
		5/19,17	5696,051	4123,23	-1,490	0,235	0,11±0,05	2,18(0)	7,55(8)	$7,30\pm0,40(7)$	
$5d6n {}^{3}F^{\circ}$	$5d^{2}$ ¹ G	4135 04 ^A	4878 944 ^A	_	-2 319 ^A	-1 535 ^A	-	$2.67(5)^{A}$	$1.17(6)^{A}$	-	
Sup 13	Ju 04	4155,04	4801944^{B}		-2,317	-1 190 ^B		2,07(3)	1,17(0) 1 87(7) ^B		
5d6n ³ F° ₂	$5d^{2}$ ³ P ₂	378640^{A}	$4612\ 601^{\text{A}}$	4850 58 ^{c,d}	-3 460 ^A	-1 414 ^A	-2 01+0 03°	$2\ 30(4)^{A}$	$1,37(6)^{A}$	$3.22(6)^{a}$	
540p 1 3	50 1 <u>2</u>	4290.20^{B}	4553 757 ^B	1000,00	-3 637 ^B	-1.824^{B}	-1 289 ^d	$1.19(4)^{B}$	$4.82(6)^{B}$	3 88(6) ^c	
		4472 81 ^C	1333,131		-3 558 ^C	1,024	1,207	$1.32(4)^{C}$	1,02(0)	3,00(0)	

Tablo A.2. La II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å), log(*gf*) logaritmik ağırlıklı salınıcı şiddetleri ve A_{ki} geçiş olasılıkları (sn⁻¹) (Tablo 3.9'un geniş hali)

Tał	olo A	4.2.	Devam

Gee	çişler		λ			log(gf)			A_{ki}	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu çal	lışma	Diğer	Bu ça	lışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6p ³ F° ₃	5d6s ¹ D ₂	4374,96 ^A	5601,487 ^A	-	-2,658 ^A	-2,189 ^A	-	$1,09(5)^{A}$	$1,97(5)^{A}$	$8,25(5)^{a}$
			5523,456 ^в			-2,063 ^в			$1,89(6)^{B}$	
5d6p ³ F⁰ ₃	5d6s ³ D ₃	3352,38 ^A	4060,182 ^A	4238,37 ^b	-0,689 ^A	-0,032 ^A	-0,26 ^b	$1,73(7)^{A}$	$5,37(7)^{A}$	$5,54(7)^{a}$
			4009,022 ^в	4238,38 ^{c,d}		0,031 ^B	-0,22±0,03°		$4,46(8)^{B}$	$2,93\pm0,19(7)^{b}$
							$-0,085^{d}$			$3,14(8)^{c}$
5d6p ³ F ^o ₄	5d ² ³ F ₃	3004,04 ^A	3623,370 ^A	3628,82 ^b	-0,852 ^A	-1,096 ^A	-1,15 ^b	$1,15(7)^{A}$	$4,53(6)^{A}$	$4,72(6)^{a}$
		3288,15 ^B	3551,149 ^в	3628,83 ^{c,d}	$-1,878^{B}$	$-1,158^{B}$	$-1,06\pm0,03^{\circ}$	$0,90(6)^{B}$	$3,67(7)^{B}$	$4,0\pm0,6(6)^{b}$
		3420,51 ^C			-1,667 ^C		$-1,070^{d}$	$1,36(6)^{C}$		$4,82(7)^{c}$
$5d6p {}^{3}F_{4}^{\circ}$	$5d^{2} {}^{3}F_{4}$	3100.05 ^A	3747.833 ^A	3759.08 ^{b,c,d,e}	0.152 ^A	0.053 ^A	-0.03 ^b	$1.09(8)^{A}$	$5.96(7)^{A}$	$6.28(7)^{a}$
· · · ·		3381.86 ^B	3672.048 ^B	,	-1.108 ^B	-0.022 ^B	$-0.05\pm0.03^{\circ}$	$5.04(6)^{B}$	$4.70(8)^{B}$	$4.90\pm0.40(7)^{b}$
		3539.57 ^C	,		-0.467 ^C	-,	0.087^{d}	$2.01(7)^{\rm C}$.,	4.61(8)°
		000,01			0,107		0,007	2,01(/)		$0.34(8)^{e}$
5d6n ³ F⁰₄	$5d6s^{3}D_{2}$	3195 52 ^A	3951 686 ^A	3949 10 ^{b,c,d,e}	3 295 ^A	0.647^{A}	0 49 ^b	$239(8)^{A}$	$2 \ 10(8)^{A}$	$2.00(8)^{a}$
Juop 1 4	5405 23	3610.63 ^B	3853 429 ^B	5515,10	-1 2967	0.620^{B}	$0.48\pm0.03^{\circ}$	$2,37(6)^{B}$	$1.87(9)^{B}$	$1.47\pm0.08(8)^{b}$
		5010,05	5055,427		1,2707	0,020	0,40±0,05	2,07(0)	1,07())	1,4720,00(0)
$5d6n^{3}F^{0}$	$5d^{2}$ ¹ G	3808 08 ^A	4723 117 ^A	_	-1 805 ^A	-2.140^{A}	-	7 63(5) ^A	$2.41(5)^{A}$	$2.66(5)^{a}$
Juop I 4	5 u 0 ₄	4488 20 ^B	4580 418 ^B		2 725 ^B	2,140 $2,203^{B}$		$6.02(4)^{B}$	$1.00(6)^{B}$	2,00(3)
		4644 43 ^C	4300,410		1 784 ^C	-2,203		5,52(4)	1,99(0)	
$5 d \epsilon n^{3} D^{0}$	546a ³ D	4044,45 2254 14 ^A	2242 158A		-1,764	0.126 ^A		$1,04(3)^{A}$	1 16(9)A	4 21 (8) ^a
Sup F ₀	$5008 D_1$	5554,14	3343,130 2221 072 ^B	-	-0,094	-0,120	-	1,19(0)	4,40(8) 1 59(8) ^B	4,21(0)
$5 dcm ^{3}D^{0}$	5 d ² 3D	2025 41A	3521,072 2840.074 ^A		0 607A	-0,384 0,620 ^A		1.02(9)A	1,30(0) $1.06(0)^{A}$	$1 \ 11(9)^{a}$
$500p P_0$	$Su P_1$	3923,41	3640,974	_	-0,027	-0,629	_	1,02(8)	1,00(8)	1,11(8)
5 1 C 3 D0	c 12.3p	4037,37	3800,405		-0,078	-0,760		$0,51(7)^{-1}$	7,99(7)	2 41(6)8
5d6p "P"1	$5d^{-1}F_2$	3149,12	3101,386 ¹	-	-2,150"	-2,495 ¹⁰	-	1,58(6)	$7,40(5)^{12}$	3,41(6)"
5 IC 3D0	5 1 ² ID	3598,04°	3057,073	22.40.255	-2,8/2	-1,935	1 20 10 046	2,30(5)	8,29(6)	4.00/723
5d6p ³ P ³ 1	$5d^2 \cdot D_2$	3292,22	3241,630 ⁴	3249,35°	-1,196**	-0,649 [.]	$-1,20\pm0,04^{\circ}$	1,30(7)**	$4,75(7)^{11}$	4,00(7)*
- 4 - 3 - 0	3	3839,34	3193,123		-1,906°	-1,558		1,87(6)	1,81(/)	1,30(8)
$5d6p^{-3}P_{1}^{0}$	$5d6s^{-3}D_1$	3323,17*	3294,834 ^A	3303,11	-0,686^	-0,279 ^A	-0,90±0,04°	$4,14(7)^{A}$	$1,08(8)^{A}$	$1,08(8)^{a}$
		- · · · · A	3245,395		- · · · A	-0,799			$1,01(8)^{b}$	2,54(8) ^c
5d6p [°] P [°] 1	5d6s $^{3}D_{2}$	3415,61^	3371,149 ^A	3380,91°	-0,439^	0,183	$0,22\pm0,04^{\circ}$	$6,93(7)^{A}$	$2,98(8)^{A}$	$2,37(8)^{a}$
2	2.2		3315,499 ^B			-0,082 ^B			5,03(8) ^B	$3,29(9)^{c}$
5d6p °P° ₁	$5d^2$ ³ P ₀	3791,41 ^A	3701,670 ^A	3714,87°	-0,783 ^A	-0,710 ^A	$-1,63\pm0,04^{\circ}$	$2,55(7)^{A}$	$3,16(7)^{A}$	$2,22(7)^{a}$
		4476,89 ^C	3643,614 ^B		-0,716 ^C	-0,872 ^в		$2,13(7)^{\circ}$	$6,75(7)^{B}$	$3,70(7)^{c}$
5d6p ³ P ^o ₁	$5d^{2} {}^{3}P_{1}$	3883,06 ^A	3777,324 ^a	3780,67°	-0,737 ^A	-0,784 ^A	-1,27±0,04°	$2,69(7)^{A}$	$2,56(7)^{A}$	$2,62(7)^{a}$
		4356,07 ^в	3707,323 ^в		-2,691 ^B	-0,928 ^в		$2,38(5)^{B}$	$5,72(7)^{B}$	8,30(7) ^c
		4574,01 [°]			-0,789 [°]			$1,72(7)^{C}$		
$5d6p {}^{3}P^{0}{}_{1}$	$5d^{2} {}^{3}P_{2}$	3962,00 ^A	3848,818 ^A	3854,91°	-0,573 ^A	-0,605 ^A	-1,49±0,04°	$3,78(7)^{A}$	$3,72(7)^{A}$	$3,34(7)^{a}$
	-	4687,85 [°]	3777,667 ^B		-0,625 ^B	-0,506 ^B		$2,39(7)^{C}$	$1,46(8)^{B}$	$4,80(7)^{c}$
$5d6p {}^{3}P^{\circ}_{1}$	$6s^{2} S_{0}^{1}$	3948,77 ^A	4020,639 ^A	_	-1,308 ^A	-1,224 ^A	-	$7,02(6)^{A}$	$8,21(6)^{A}$	
	~	,	3949 798 ^B		,	-1.154 ^B			$3.00(7)^{B}$	

Tał	olo A	4.2.	Devam

Ge	çişler		λ			log(gf)			A_{ki}	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d6p^{3}P_{1}^{\circ}$	5d6s ¹ D ₂	4611,08 ^A	4513,722 ^A	-	-1,974 ^A	-2,150 ^A	_	$1,11(6)^{A}$	$7,73(5)^{A}$	-
1			4421,632 ^B			$-1,174^{B}$			$2,28(7)^{B}$	
$5d6p {}^{3}P_{2}^{\circ}$	$5d^{2} {}^{3}F_{2}$	3079,96 ^A	3005,768 ^A	-	-2,262 ^A	-2,468 ^A	-	$7,68(5)^{A}$	$5,02(5)^{A}$	$1,59(4)^{a}$
•		3343,62 ^в	2990,296 ^в		-4,111 ^B	-3,832 ^в		$9,22(3)^{B}$	$1,10(5)^{B}$	
		3506,08 ^C			-2,869 [°]			$1,47(5)^{C}$		
5d6p ³ P ^o ₂	5d ² ³ F ₃	3188,08 ^A	3100,739 ^A	-	-2,062 ^A	-2,805 ^A	-	$1,14(6)^{A}$	$2,18(5)^{A}$	$5,15(6)^{a}$
-		3634,89 ^c	3086,927 ^в		-2,494 ^c	-2,318 ^B		$3,23(5)^{C}$	$3,37(6)^{B}$	
5d6p ³ P ^o ₂	$5d^{2} D_{2}$	3216,71 ^A	3137,315 ^A	3142,76 ^c	-2,756 ^A	-0,994 ^A	-1,64±0,04°	$2,26(5)^{A}$	$1,37(7)^{A}$	$1,48(6)^{a}$
		3734,82 [°]	3120,341 ^в		-2,207 ^C	-2,545 ^в		5,93(5) ^C	$1,95(6)^{B}$	$3,08(7)^{c}$
5d6p ³ P ^o ₂	5d6s ³ D ₁	3246,24 ^A	3187,123 ^A	3193,02 ^c	-4,077 ^A	-1,478 ^A	-1,49±0,04°	$1,06(4)^{A}$	$4,37(6)^{A}$	$8,13(5)^{a}$
		3653,14 ^в	3170,239 ^в		-3,879 ^в	-1,955 ^в		$1,32(4)^{B}$	$7,36(6)^{B}$	$4,18(7)^{c}$
5d6p ³ P ^o ₂	5d6s ³ D ₂	3334,40 ^A	3258,475 ^A	3265,67°	-0,428 ^A	-0,393 ^A	-0,38±0,04°	4,47(7) ^A	$5,09(7)^{A}$	$1,16(7)^{a}$
			3237,100 ^в			-0,636 ^в			$1,47(8)^{B}$	$5,06(8)^{c}$
5d6p ³ P ^o ₂	5d6s ³ D ₃	3404,58 ^A	3338,071 ^A	3337,49°	-0,158 ^A	0,518 ^A	0,37±0,04°	7,99(7) ^A	3,95(8) ^A	$4,75(5)^{a}$
			3312,828 ^B			0,203 ^в			9,69(8) ^B	$2,84(9)^{c}$
5d6p ³ P ^o ₂	5d6s ¹ D ₂	4464,30 ^A	4313,993 ^a	-	-3,737 ^A	-2,889 ^A	-	$1,22(4)^{A}$	$9,26(4)^{A}$	_
		5579,25 ^в	4283,287 ^в		-3,803 ^B	-1,551 ^в		$6,75(3)^{B}$	$1,02(7)^{B}$	
5d6p ³ P ^o ₂	$5d^{2} {}^{3}P_{1}$	3778,44 ^A	3636,431 ^A	3637,15°	-0,646 ^A	-0,558 ^A	-1,22±0,04°	$2,11(7)^{A}$	$2,79(7)^{A}$	$1,09(7)^{a}$
		4206,41 ^B	3609,572 ^в		-2,507 ^в	-0,530 ^в		$2,34(5)^{B}$	$1,51(8)^{B}$	5,96(7) ^c
		4426,42 ^C			-0,655 ^C			$1,50(7)^{C}$		
5d6p ³ P ^o ₂	$5d^{2} {}^{3}P_{2}$	3853,14 ^A	3702,645 ^A	3705,82°	-0,027 ^A	-0,115 ^A	-0,44±0,04°	8,43(7) ^A	7,47(7) ^A	$5,86(7)^{a}$
		4288,60 ^B	3676,222 ^в		-1,991 ^в	-0,147 ^в		$7,39(5)^{B}$	$3,52(8)^{B}$	$3,52(8)^{c}$
		4532,95 [°]			-0,072 ^C			5,49(7) ^C		
5d6p ¹ F ^o ₃	$5d^2 {}^3F_3$	2707,29 ^A	3212,795 ^A	-	-3,764 ^A	-1,926 ^A	-	$2,23(4)^{A}$	$1,10(6)^{A}$	$1,26(6)^{a}$
		2929,63 ^в	3154,360 ^в		-2,765 ^в	-1,693 ^в		$1,90(5)^{B}$	$1,36(7)^{B}$	
5d6p ¹ F ^o ₃	$5d^2 {}^3F_2$	2628,92 ^A	3110,948 ^A	-	-1,068 ^A	-1,022 ^A	-	$1,18(7)^{A}$	9,36(6) ^A	7,15(6) ^a
		2854,43 ^B	3053,530 ^в		-3,805 ^B	-0,526 ^в		$1,83(4)^{B}$	$2,13(8)^{B}$	
		2834,48 ^c			-0,794 ^C			$1,90(7)^{C}$		
5d6p ¹ F ^o ₃	$5d^{2} D_{2}$	2727,91 ^A	3252,079 ^A	3245,13°	-0,018 ^A	-0,392 ^A	-0,48±0,03°	$1,23(8)^{A}$	$3,65(7)^{A}$	$5,08(7)^{a}$
		2973,12 ^B	3189,259 ^в		$-0,806^{B}$	0,127 ^в		$1,68(7)^{B}$	$8,79(8)^{B}$	$2,98(8)^{c}$
		2982,14 ^C			-0,037 ^C			9,82(7) ^C		
5d6p ¹ F ^o ₃	$5d^2 {}^3F_4$	2785,03 ^A	3310,270 ^A	-	-2,206 ^A	-2,388 ^A	-	$7,65(5)^{A}$	$3,56(5)^{A}$	$1,16(6)^{a}$
		3003,78 ^в	3249,390 ^в		-3,452 ^в	-2,379 ^в		$3,72(4)^{B}$	$2,64(6)^{B}$	
5d6p ¹ F ^o ₃	5d6s ³ D ₂	2812,09 ^A	3382,450 ^A	3376,33°	-0,398 ^A	-0,790 ^A	-0,81±0,03°	$4,81(7)^{A}$	$1,35(7)^{A}$	$4,72(6)^{a}$
	_	3122,87 ^в	3311,333 ^B		$-2,061^{B}$	-0,287 ^B		$8,48(5)^{B}$	$3,14(8)^{B}$	$1,28(8)^{c}$
5d6p ¹ F ^o ₃	5d6s ³ D ₃	2861,85 ^A	3468,298 ^A	3453,17 ^c	-1,561 ^A	-3,024 ^A	-0,83±0,03°	3,19(6) ^A	$7,49(4)^{A}_{-}$	$9,05(6)^{a}$
			3390,616 ^B			-2,764 ^в			$9,99(5)^{B}$	$1,16(8)^{c}$
5d6p ¹ F ^o ₃	$5d^{2} {}^{3}P_{2}$	3172,27 ^A	3863,556 ^A	-	-1,522 ^A	-1,219 ^A	-	$2,84(6)^{A}$	$3,86(6)^{A}$	$1,25(6)^{a}$
		3515,80 ^B	3772,259 ^в		-3,599 ^B	-0,979 ^в		$1,94(4)^{B}$	$4,92(7)^{B}$	
		3470,00 [°]			-1,323 ^C			3,76(6) ^C		

Tablo A.2. Dev	/am
----------------	-----

Geçi	şler		λ			log(gf)		A_{ki}		
Üst sevive	Alt sevive	Bu ca	alısma	Diğer	Bu cal	isma	Diğer	Bu ca	lışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d6p {}^{1}F^{0}_{3}$	$5d^{2}G_{4}$	3413,39 ^A	4048,683 ^A	4042,9 ^{c,e}	2,522 ^A	0,404 ^A	0,33±0,03°	$2,06(8)^{A}$	$1,47(8)^{A}$	$1,77(8)^{a}$
		3764,39 ^C	3940,992 ^B		2,257 ^c	0,483 ^B	- , ,	$1,52(8)^{C}$	$1.31(9)^{B}$	$1,26(9)^{c}$
$5d6p {}^{1}F_{3}^{\circ}$	5d6s ¹ D ₂	3575,24 ^A	4534,006 ^A	4522,37 ^{c,d}	1,285 ^A	0,389 ^A	$0,21\pm0,03^{\circ}$	$9,58(7)^{A}$	$1,13(8)^{A}$	$1,11(8)^{a}$
1			4414,226 ^B			$0,165^{B}$	-0,11 ^d		$5,00(8)^{B}$	$7,58(8)^{c}$
$5d6p P_{1}^{0}$	$5d^{2} {}^{3}F_{2}$	-	3837,292 ^A	-	-	-1,146 ^A	-	-	$1,08(7)^{A}$	-
•			3253,600 ^B			-0,484 ^B			$2,07(8)^{B}$	
5d6p ¹ P ⁰ 1	$5d^{2} D_{2}$	-	4054,317 ^A	-	_	-1,024 ^A	-	-	$1,28(7)^{A}$	-
			3408,147 ^в			0,205 ^в			$9,20(8)^{B}$	
5d6p ¹ P ⁰ 1	5d6s ³ D ₁	-	4137,884 ^A	-	_	-0,940 ^A	-	-	$1,49(7)^{A}$	-
			3467,762 ^в			-1,583 ^в			$1,45(7)^{B}$	
5d6p ¹ P ⁰ 1	5d6s ³ D ₂	-	4258,967 ^A	-	-	-1,644 ^A	-	-	$2,78(6)^{A}$	-
			3547,920 ^в			-1,090 ^в			$4,30(7)^{B}$	
$5d6p {}^{1}P^{0}{}_{1}$	$5d^{2} {}^{3}P_{0}$	-	$4800,486^{A}$	-	-	-1,925 ^A	-	-	$1,15(6)^{A}$	-
			3926,274 ^B			-1,229 ^B			$2,56(7)^{B}$	
$5d6p {}^{1}P^{0}{}_{1}$	$5d^{2} {}^{3}P_{1}$	-	4928,496 ^A	-	-	-1,601 ^A	-	-	$2,29(6)^{A}$	-
			4000,352 ^B			-1,860 ^в			$5,75(6)^{B}$	
5d6p ¹ P ^o 1	$5d^2 {}^{3}P_2$	-	5050,915 ^A	-	-	-1,585 ^A	-	-	$2,27(6)^{A}$	-
			4082,379 ^B			-2,262 ^в			$2,19(6)^{B}$	
$5d6p P^{0}$	5d6s ¹ D ₂	-	6261,327 ^A	-	-	-0,419 ^A	-	-	$2,16(7)^{A}_{P}$	-
2	2.2		4844,905 ^в	,		-0,404 ^B			$1,12(8)^{B}$	
$4f5d ^{\circ}D_{1}^{\circ}$	$5d^2 {}^{3}F_2$	2538,30 ^A	4673,873 ^A	4662,50°	-1,283 ^A	-1,037 ^A	-1,24°	$1,79(7)^{A}$	$9,34(6)^{A}$	5,29(6) ^a
		2743,22 ^B	4351,103 ^в	4662,51 ^a	-2,023 ^B	-0,688 ^в	-1,28 ^a	$2,79(6)^{B}$	7,22(7) ^в	$5,8\pm0,3(6)^{\circ}$
2	2.1-	2240,59 ^c			-4,207 ^c		h	2,75(4) ^C		
$4f5d {}^{3}D_{1}^{0}$	$5d^{2} D_{2}$	2630,46 ^A	4999,860 ^A	4986,82°	-1,718 ^A	-1,273 ^A	-1,30°	$6,15(6)^{A}$	4,75(6) ^A	$4,55(6)^{a}$
		2852,66 ^b	4632,000 ^b		-2,880 ^B	0 - 4 4 P		3,59(5) ^b	P	
407 1 300	a 1 a 3 b	2507,42 ^c		ann a chd	-1,934 ^c	-0,741 ^B	1 och	4,11(6) ^C	5,64(7) ^b	$4,48\pm0,29(6)^{\circ}$
$4f5d^{-5}D_{-1}^{-5}$	$5d6s^{-3}D_1$	2650,18 ^e	5127,566 ^A	5114,56°,4	-1,621°	-0,709 ^A	-1,03	7,56(6)	$1,65(7)^{A}$	9,03(6)"
4051300	516 30	2700 654	4742,814	saca sab	2.070Å	-0,504	-1,04 ^d	0.04(6)A	$9,28(7)^{3}$	$8,0\pm0,4(6)^{\circ}$
$4f5d^{-3}D_{-1}^{-3}$	$5d6s^3D_2$	2708,65	5314,805 ¹¹	5303,53°	-3,8/9"	-1,532 ¹¹	-1,35°	0,04(6)	$2,31(6)^{A}$	3,96(6)"
405 1 300	c 12 3D	2020 724	4894,040		0.025Å	-0,880		2.00(7)A	3,6/(/)	$3,54\pm0,2/(6)^{\circ}$
$4150 {}^{\circ}D_{1}^{\circ}$	$5d^{-1}P_0$	2939,73 ¹⁰	6185,548 ¹⁰	-	-0,935 ¹⁰	-2,062 rd	-	$2,98(7)^{B}$	$5,04(5)^{B}$	6,40(5)*
455 1 300	5 1 ² 3D	3247,00°	5644,321°		-1,038 ⁻	-1,164 ⁻		$1,93(7)^{-1}$	$1,44(7)^{-1}$	0 40(5)8
4150 D ₁	$50 P_1$	2994,55 2208.27 ^B	6399,731	-	-1,030	-2,109	-	2,28(7)	3,08(5)	8,42(5)
455 1 300	5 J2 3D	5298,27 2041 25Å	5/98,08/		-1,204 2,405A	-0,909		1,28(7)	2,45(7)	2 50(5)8
4130 D ₁	$\mathbf{J}\mathbf{u} = \mathbf{P}_2$	3041,23 2248 50 ^B	5072 642 ^B	-	-2,405 2,617 ^B	-3,423 2,126 ^B	_	9,44(3) 4 78(5) ^B	$1,92(4)^{B}$	2,39(3)
4f5d 3D0	$6a^{2}$	3340,39 2022 46 ^A	7120 860 ^A		-2,017	-2,120 2,802A		4,/0(3) 8 24(6) ^A	1,40(0)	
4130 D ₁	$\mathbf{0s} \mathbf{s}_0$	2262.24 ^B	6414 617 ^B	_	-1,400 1.845 ^B	-2,002 1,616 ^B	_	0,24(0) 2 80(6) ^B	0,09(3)	_
4f5d 3D0	5d6s ¹ D	3302,24 3400.60 ^A	0414,017 8844 432 ^A		-1,043 3 084 ^A	-1,010 3,688 ^A		2,00(0) 1.08(4) ^A	3,92(0) 0.58(4) ^A	
41JU D 1	$Juos D_2$	409,09 4086 78 ^B	7750 320 ^B	_	-3,704 4 362 ^B	-3,000 2,480 ^B	_	1,70(4) 5 78(3) ^B	3,50(4)	—
		+000,70	1139,320		-4,502	-2,400		5,70(5)	5,07(5)	

1 ao 10 1 1.2. De tain	Tab	lo A	A.2.	De	vam
------------------------	-----	------	------	----	-----

Geo	çişler		λ			$\log(gf)$			A _{ki}	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f5d^{3}D_{2}^{\circ}$	$5d^{2} {}^{3}F_{2}$	2505,42 ^A	4538,662 ^A	-	-2,066 ^A	-1,670 ^A	_	$1,82(6)^{A}$	$1,38(6)^{A}$	$9,02(5)^{a}$
		2695,86 ^B	4347,135 ^B		-3,019 ^B	$-1,705^{B}$		$1,75(5)^{B}$	$6,96(6)^{B}$	
		2374,66 ^C			$-2,167^{\rm C}$			$1,61(6)^{C}$		
$4f5d^{3}D_{2}^{\circ}$	$5d^{2} {}^{3}F_{3}$	2576,50 ^A	4758,747 ^A	4740,28 ^{b,d}	-0,984 ^A	-0,709 ^A	-1,05 ^b	$2,08(7)^{A}$	$11,5(6)^{A}$	$5,43(6)^{a}$
		2762,83 ^B	4554,392 ^B		-1,794 ^B	-0,284 ^B	$-0,832^{d}$	$2,80(6)^{B}$	$1,67(8)^{B}$	$5,30\pm0,29(6)^{b}$
		2433,06 ^C			-1,093 ^C			$1,82(7)^{C}$		
4f5d ³ D ^o ₂	$5d^{2} D_{2}$	2595,17 ^A	4845,442 ^A	_	-3,184 ^A	-1,943 ^A	-	$1,29(5)^{A}$	$6,47(5)^{A}$	$1,26(5)^{a}$
		2801,48 ^B	4627,503 ^B		-3,172 ^B	-0,936 ^B		$1,14(5)^{B}$	$3,61(7)^{B}$	
		2477,44 ^C			-3,476 [°]			$7,25(4)^{\rm C}$		
4f5d ³ D ^o ₂	5d6s ³ D ₁	2614,36 ^A	4965,287 ^A	4946,45 ^{b,d}	-2,083 ^A	-1,195 ^A	-1,73 ^b	$1,61(6)^{A}$	$3,45(6)^{A}$	$1,39(6)^{a}$
			4738,099 ^в			-0,940 ^B	-1,476 ^d		$3,41(7)^{B}$	$1,02\pm0,10(6)^{b}$
4f5d ³ D ^o ₂	5d6s ³ D ₂	2671,24 ^A	5140,660 ^A	5122,99 ^{b,d}	-1,413 ^A	-0,536 ^A	-0,85 ^b	$7,22(6)^{A}$	$1,47(7)^{A}$	8,83(6) ^a
			4889,020 ^B			-0,440 ^B	-0,695 ^d		$1,01(8)^{B}$	$7,2\pm0,4(6)^{b}$
4f5d ³ D ^o ₂	5d6s ³ D ₃	2716,10 ^A	5341,602 ^A	5301,97 ^{b,d}	-2,585 ^A	-1,364 ^A	-1,14 ^b	$0,47(6)^{A}$	$2,02(6)^{A}$	$3,60(6)^{a}$
			5063,845 ^B			$-2,116^{B}$	-0,931 ^d		$1,99(6)^{B}$	3,46±0,23(6) ^b
4f5d ³ D ^o ₂	$5d^{2} {}^{3}P_{1}$	2948,87 ^A	6148,909 ^A	_	-0,449 ^A	-1,685 ^A	-	$5,45(7)^{A}$	$7,29(5)^{A}$	$1,48(6)^{a}$
		3230,04 ^B	5791,640 ^в		-0,630 ^B	-0,804 ^B		$2,99(7)^{B}$	$3,12(7)^{B}$	
4f5d ³ D ^o ₂	$5d^{2} {}^{3}P_{2}$	2994,18 ^A	6340,640 ^A	_	-1,203 ^A	-2,730 ^A	-	9,31(6) ^A	$6,17(4)^{A}$	$5,00(5)^{a}$
		3278,29 ^в	5965,167 ^в		-1,287 ^B	-0,551 ^B		$6,40(6)^{B}$	$5,28(7)^{B}$	
4f5d ³ D ^o ₂	5d6s ¹ D ₂	3350,63 ^A	8372,447 ^A	_	-2,670 ^A	-2,040 ^A	-	$2,54(5)^{A}$	$1,74(5)^{A}$	$1,03(5)^{a}$
		3982,56 ^в	7746,709 ^в		-2,847 ^в	-3,722 ^в		$1,19(5)^{B}$	$2,11(4)^{B}$	
4f5d ³ D ^o ₃	5d ² ³ F ₂	2487,95 ^A	4449,330 ^A	4435,84 ^b	-2,614 ^A	-2,254 ^A	-2,37 ^b	$0,37(6)^{A}$	$2,68(5)^{A}$	$3,12(5)^{a}$
		2675,88 ^B	4292,509 ^B		-2,933 ^в	-2,186 ^B		$1,55(5)^{B}$	$2,36(6)^{B}$	$2,1\pm0,5(5)^{b}$
4f5d ³ D ^o ₃	5d ² ³ F ₃	2558,03 ^A	4660,635 ^A	4645,28 ^{b,d}	-2,335 ^A	-1,745 ^A	-1,79 ^b	$0,67(6)^{A}$	$7,88(5)^{A}$	$8,56(5)^{a}$
		2741,85 ^в	4494,469 ^в		-3,634 ^в	-1,503 ^в	-1,71 ^d	$2,93(4)^{B}$	$1,04(7)^{B}$	7,2±0,5(5)
		2419,08 ^c			-2,466 ^C			5,57(5) ^C		
4f5d ³ D ^o ₃	$5d^{2} D_{2}$	2576,43 ^A	4743,761 ^A	4728,41 ^b	-3,363 ^A	-1,113 ^A	-1,38 ^b	$0,06(6)^{A}$	$3,27(6)^{A}$	$3,31(6)^{a}$
		2779,92 ^в	4565,654 ^B		-1,246 ^B	-1,607 ^в		$6,99(6)^{B}$	$7,91(6)^{B}$	$1,77\pm0,11(6)^{b}$
		2462,94 ^c			-1,184 ^C			$1,03(7)^{C}$		
4f5d ³ D ^o ₃	$5d^{2} {}^{3}F_{4}$	2627,33 ^A	4868,603 ^A	4860,89 ^b	-0,849 ^A	-0,582 ^A	-1,04 ^b	$1,95(7)^{A}$	$1,05(7)^{A}$	$4,15(6)^{a}$
		2806,71 ^B	4689,897 ^B		-1,704 ^B	-0,358 ^B		$2,39(6)^{B}$	$1,33(8)^{B}$	$3,69\pm0,20(6)^{b}$
		2478,03 ^C			-0,963 ^C			$1,69(7)^{C}$		
4f5d ³ D ^o ₃	5d6s ³ D ₂	2651,39 ^A	5026,357 ^A	_	-1,776 ^A	-1,642 ^A	-	2,27(6)	$8,61(5)^{A}$	_
		2910,41 ^в	4820,034 ^B		-2,416 ^B	-0,986 ^B		$4,31(5)^{B}$	$2,97(7)^{B}$	
4f5d ³ D ^o ₃	5d6s ³ D ₃	2695,58 ^A	5218,296 ^A	5183,41 ^b	-1,367 ^A	-0,325 ^A	-0,60 ^b	$5,62(6)^{A}$	$1,66(7)^{A}$	$1,02(7)^{a}$
-			4989,875 ^в			-0,478 ^B			$8,90(7)^{B}$	$8,9\pm0,5(6)^{b}$
4f5d ³ D ^o ₃	$5d^{2} {}^{3}P_{2}$	2969,26 ^A	6167,644 ^A	_	-0,248 ^A	-1,505 ^A	_	$6,10(7)^{A}$	$7,84(5)^{A}$	$1,84(6)^{a}$
-		3248,80 ^B	5862,787 ^B		-0,497 ^B	-0,320 ^B		$2,87(7)^{B}$	$9,29(7)^{B}$	
		2786.50 ^C			-0.232 ^C			$7.19(7)^{C}$		

Tablo A.2. Dev	/am
----------------	-----

Geç	rişler		λ			$\log(gf)$			A_{ki}	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu çal	ışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f5d^{3}D^{\circ}_{3}$	$5d^{2}G_{4}$	3179,49 ^A	6653,295 ^A	_	-0,667 ^A	$-2,609^{A}$	_	$2,03(7)^{A}$	$5,29(4)^{A}$	-
		3528,59 ^B	6280,720 ^B		-3,657 ^B	-1,314 ^B		$1,68(4)^{B}$	$8,20(6)^{B}$	
$4f5d^{3}D_{3}^{\circ}$	5d6s ¹ D ₂	3319,46 ^A	8073,430 ^A	-	-0,688 ^A	-3,689 ^A	-	$1,77(7)^{A}$	$2,99(3)^{A}$	-
		3939,12 ^B	7574,925 ^B		$-1,674^{B}$	$-1,592^{B}$		$1,29(6)^{B}$	$2,98(6)^{B}$	
$4f5d {}^{1}D_{2}^{o}$	5d6s ³ D ₃	3128,51 ^A	6313,242 ^A	-	-3,325 ^A	-4,891 ^A	-	$6,44(4)^{A}$	$4,30(2)^{A}$	$2,33(4)^{a}$
			5617,325 ^B			-1,564 ^B			$5,77(6)^{B}$	
4f5d ¹ D ^o ₂	$5d^{2} {}^{3}F_{2}$	2852,26 ^A	5221,476 ^A	5290,82 ^b	-1,651 ^A	-1,480 ^A	-1,65 ^b	3,66(6) ^A	$1,62(6)^{A}$	$6,82(5)^{a}$
		3105,54 ^в	4748,815 ^в	5290,84 ^d	-2,431 ^B	-1,954 ^в	-1,72 ^d	$5,12(5)^{B}$	$3,29(6)^{B}$	$1,06\pm0,13(6)^{b}$
		2716,66 ^C			-1,955 ^C			$2,00(6)^{C}$		
4f5d ¹ D ^o ₂	$5d^{2} {}^{3}F_{3}$	2944,74 ^A	5514,904 ^A	_	-1,958 ^A	-2,629 ^A	-	$1,69(6)^{A}$	$1,03(5)^{A}$	-
		3194,75 ^в	4997,237 ^в		-2,708 ^B	-2,555 ^в		$2,55(5)^{B}$	$7,45(5)^{B}$	
		2793,36 ^c			-2,234 ^c			9,95(5) ^C		
4f5d ¹ D ^o ₂	$5d^{2} D_{2}$	2969,15 ^A	5631,677 ^A	-	-0,397 ^A	-1,418 ^A	-	$6,05(7)^{A}$	$1,61(6)^{A}$	1,91(5) ^a
		3246,55 ^B	5085,395 ^в		$-0,978^{\rm B}$	-1,546 ^в		$1,33(7)^{B}$	$7,34(6)^{B}$	
		2852,01 ^C			-0,472 ^C			5,52(7) ^C		
$4f5d {}^{1}D_{2}^{0}$	5d6s ³ D ₁	2994,30 ^A	5794,223 ^A	5880,63 ^b	-1,392 ^A	-1,763 ^A	-1,83 ^b	6,03(6) ^A	$6,85(5)^{A}$	$6,38(5)^{a}$
		3370,81 ^B	5219,277 ^в		-3,339 ^в	-2,582 ^в		$0,54(5)^{B}$	$6,41(5)^{B}$	$5,7\pm1,3(5)^{b}$
$4f5d {}^{1}D_{2}^{0}$	5d6s ³ D ₂	3069,15 ^A	6034,455 ^A	-	-0,677 ^A	-3,183 ^A	-	2,97(7) ^A	$2,40(4)^{A}$	$6,46(4)^{a}$
		3425,93 ^B	5403,003 ^B		-2,141 ^B	-1,151 ^B		$8,19(5)^{B}$	$1,61(7)^{B}$	
$4f5d {}^{1}D_{2}^{o}$	$5d^2 {}^{3}P_1$	3441,41 ^A	7472,839 ^A	-	-4,104 ^A	-2,965 ^A	-	$0,88(4)^{A}$	$2,59(4)^{A}$	$7,76(4)^{a}$
		3836,42 ^B	6527,204 ^B		$-3,360^{B}$	-1,457 ^в		$3,95(4)^{B}$	$5,46(6)^{B}$	
		3238,40 ^C			-3,484 ^C			4,17(4) ^C		
$4f5d {}^{1}D_{2}^{o}$	$5d^2 {}^{3}P_2$	3503,27 ^A	7757,936 ^A	-	-2,717 ^A	-2,243 ^A	-	$2,08(5)^{A}$	$1,27(5)^{A}$	-
		3904,67 ^в	6748,449 ^B		$-2,668^{B}$	-0,978 ^B		$1,87(5)^{B}$	$1,54(7)^{B}$	
$4f5d {}^{1}D_{2}^{o}$	5d6s ¹ D ₂	4001,31 ^A	11034,25 ^A	-	-1,583 [°]	-1,210 ^A	-	$2,17(6)^{A}$	$6,76(5)^{A}$	$6,02(5)^{a}$
		4946,52 ^B	9121,643 ^B		-1,423 ^B	-0,399 ^B		$2,06(6)^{B}$	$3,20(7)^{B}$	
$4f5d {}^{3}F_{2}^{0}$	$5d^2 {}^3F_2$	3448,97 ^A	5731,095 ^A	-	-1,157 ^A	-1,782 ^A	-	7,81(6) ^A	$6,71(5)^{A}$	$2,50(5)^{a}$
		3843,91 ^B	5359,410 ^B		$-1,266^{B}$	-0,776 ^B		$4,88(6)^{B}$	$3,89(7)^{B}$	
$4f5d {}^{3}F_{2}^{\circ}$	$5d^2 {}^3F_3$	3585,12 ^A	6086,545 ^A	-	-1,146 ^A	-2,390 ^A	-	$7,42(6)^{A}$	$1,47(5)^{A}$	$1,14(5)^{a}$
		3981,52 ^в	5677,966 ^в		-2,086 ^B	-1,916 ^в		$6,89(5)^{B}$	$2,51(6)^{B}$	
2	2.1	3193,95 [°]			-1,332 ^C			6,07(6) ^C		
$4f5d {}^{3}F_{2}^{0}$	$5d^{2} D_{2}$	3621,37 ^A	6229,093 ^A	-	-0,624 ^A	-1,613 ^A	-	$2,41(7)^{A}$	$8,38(5)^{A}$	$7,87(5)^{a}$
		4062,29 ^B	5792,052 ^в		-2,050 ^B	-1,530 ^в		$7,19(5)^{B}$	$5,87(6)^{B}$	
	2	3270,85 [°]			-2,803 ^C			1,96(5) ^C		
$4f5d F_2^{\circ}$	5d6s ³ D ₁	3658,85 ^A	6428,565 ^A	-	-0,135 ^A	-1,465 ^A	-	$7,29(7)^{A}$	$1,11(6)^{A}$	$1,16(6)^{a}$
2		4258,73 ^в	5966,365 ^в		-1,887 ^в	-1,861 ^в		9,53(5) ^в	$2,58(6)^{B}$	
4f5d ³ F ^o ₂	5d6s ³ D ₂	3771,22 ^A	6725,625 ^A	-	-0,877 ^A	-2,514 ^A	-	$1,24(7)^{A}$	$0,90(5)^{A}$	$1,19(5)^{a}$
		4347,09 ^в	6207,668 ^в		-2,784 ^B	-2,431 ^в		1,16(5) ^в	$6,42(5)^{B}$	
$4f5d F_2^{\circ}$	5d6s ¹ D ₂	5283,68 ^A	13587,53 ^A	-	-1,783 ^A	-2,213 ^A	-	$7,86(5)^{A}$	$4,42(4)^{A}$	$8,84(4)^{a}$
			11677,03 ^в			-2,189 ^в			3,17(5) ^в	

1 ao 10 1 1.2. De tain	Tab	lo A	A.2.	De	vam
------------------------	-----	------	------	----	-----

Ge	çişler		λ			log(gf)			A _{ki}	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f5d {}^{3}F_{2}^{0}$	$5d^{2} {}^{3}P_{2}$	4448,57 ^A	8938,925 ^A	-	-3,576 ^A	-3,493 ^A	-	$1,78(4)^{A}$	$5,37(3)^{A}$	-
		5147,96 ^B	8052,112 ^B		-4,094 ^B	$-2,912^{B}$		$4,04(3)^{B}$	$1,26(5)^{B}$	
		$3867,18^{\circ}$			-3,334 [°]			$4,13(4)^{C}$,	
$4f5d^{3}F_{3}^{\circ}$	$5d^{2} {}^{3}F_{2}$	3363,88 ^A	5481,742 ^A	5482,27 ^{b,d}	$-2,616^{A}$	-2,249 ^A	-2,23 ^b	$0,20(6)^{A}$	$1,79(5)^{A}$	$2,74(5)^{a}$
		3736,69 ^B	5300,536 ^B		-1,932 ^B	$-1,304^{B}$	-1,925 ^d	$7,97(5)^{B}$	$1,69(6)^{B}$	$1,85\pm0,23(5)^{b}$
		3000,26 ^C			-1,303 ^C			$5,27(6)^{C}$		· · · · · ·
4f5d ³ F ^o ₃	$5d^{2} {}^{3}F_{3}$	3493,26 ^A	5806,06 ^A	5805,77 ^b	-1,337 ^A	-1,296 ^A	-1,56 ^b	$3,59(6)^{A}$	$1,43(6)^{A}$	$8,56(5)^{a}$
		3866,61 ^B	5611,928 ^B	5805,78 ^d	-1,063 ^B	$-0,697^{B}$	-1,394 ^d	$5,51(6)^{B}$	$6,07(6)^{B}$	$7,8\pm0,7(5)^{b}$
		3094,09 ^C			$-0,255^{\circ}$			$5,53(7)^{C}$		
4f5d ³ F ^o ₃	$5d^{2} D_{2}$	3527,66 ^A	5935,633 ^A	-	-0,605 ^A	-1,789 ^A	-	$1,90(7)^{A}$	$4,40(5)^{A}$	$2,49(5)^{a}$
		3942,74 ^в	5723,35 ^B		-3,753 ^B	-2,185 ^в		$1,08(4)^{B}$	$1,90(5)^{B}$	
		3166,20 ^C			-1,083 ^C			$7,84(6)^{C}$		
4f5d ³ F ^o ₃	$5d^{2} {}^{3}F_{4}$	3623,77 ^A	6132,391 ^A	6146,53 ^d	-1,369 ^A	-2,698 ^A	-2,314 ^d	$3,09(6)^{A}$	$5,07(4)^{A}$	$1,07(5)^{a}$
		3996,84 ^B	5919,946 ^B		$-2,165^{B}$	-2,047 ^B		$4,07(5)^{B}$	$2,44(5)^{B}$	
		3191,18 ^C			-1,287 ^C			$4,82(6)^{C}$		
4f5d ³ F ^o ₃	5d6s ³ D ₂	3669,71 ^A	6384,796 ^A	6390,48 ^{b,d}	-0,219 ^A	-1,284 ^A	-1,41 ^b	$4,27(7)^{A}$	$12,2(5)^{A}$	$1,30(5)^{a}$
		4210,47 ^B	6128,819 ^B		-1,611 ^B	$-1,626^{B}$	-1,284 ^d	$1,32(6)^{B}$	$4,21(6)^{B}$	$9,0\pm0,8(5)^{b}$
4f5d ³ F ^o ₃	5d6s ³ D ₃	3754,90 ^A	6697,732 ^A	6671,40 ^d	-0,377 ^A	-2,444 ^A	-1,953 ^d	$2,83(7)^{A}$	$7,65(4)^{A}$	$2,25(5)^{a}$
		4320,35 ^B	6406,068 ^B		-2,532 ^B	-2,241 ^B		$1,49(5)^{B}$	$9,34(5)^{B}$	
4f5d ³ F ^o ₃	$5d^{2} {}^{3}P_{2}$	4308,01 ^A	8346,738 ^A	-	-2,111 ^C	-3,592 ^A	-	$3,97(5)^{A}$	$3,50(3)^{A}$	-
		4957,47 ^B	7919,945 ^B		-3,213 ^B	$-2,460^{B}$		$2,37(4)^{B}$	$3,69(5)^{B}$	
		3721,74 ^c			-3,283 ^C			$3,59(4)^{C}$		
4f5d ³ F ^o ₄	$5d^{2} {}^{3}F_{3}$	3323,56 ^A	5479,911 ^A	5493,45 ^{b,d}	-3,397 ^A	-2,509 ^A	-2,29 ^b	$0,26(5)^{A}$	$7,65(4)^{A}$	$1,61(5)^{a}$
		3660,98 ^B	5498,675 ^в		-1,849 ^в	-1,159 ^в	-1,917 ^d	$7,82(5)^{B}$	$1,53(7)^{B}$	$1,24\pm0,18(5)^{b}$
		2983,27 ^C			-1,096 ^C			$6,68(6)^{C}$		
$4f5d {}^{3}F_{4}^{0}$	$5d^{2} {}^{3}F_{4}$	3441,49 ^A	5769,695 ^A	5797,57 ^{b,d}	-1,624 ^A	-1,264 ^A	-1,36 ^b	$1,49(6)^{A}$	$1,21(6)^{A}$	$9,53(5)^{a}$
		3777,52 ^B	5794,060 ^B		-0,914 ^B	-0,592 ^B	-1,302 ^d	$6,32(6)^{B}$	$5,08(7)^{B}$	$1,07\pm1,0(5)^{b}$
		3073,44 ^c			$-0,107^{\circ}$			$6,13(7)^{C}$		
$4f5d {}^{3}F_{4}^{0}$	5d6s ³ D ₃	3559,54 ^A	6267,427 ^A	6262,29 ^{b,d}	0,127 ^A	-1,044 ^A	-1,22 ^b	$7,83(7)^{A}$	$1,71(6)^{A}$	$1,56(6)^{a}$
		4065,23 ^B	6258,916 ^B		-1,538 ^B	$-1,657^{B}$	-1,058 ^d	$1,29(6)^{B}$	$3,75(6)^{B}$	$1,14\pm0,11(6)^{b}$
$4f5d {}^{3}F_{4}^{0}$	$5d^{2} G_{4}$	4454,84 ^A	8458,581 ^A	-	-2,142 ^A	-2,050 ^A	_	$2,69(5)^{A}$	$9,23(4)^{A}$	$7,99(4)^{a}$
·		5212,80 ^B	8432,864 ^B		-1,963 ^B	-2,247 ^B		$2,96(5)^{B}$	$5,31(5)^{B}$	
		3873,58 ^C			-1,695 ^C			$9,96(5)^{C}$,	
4f5d ³ G ^o ₃	$5d^{2} {}^{3}F_{2}$	2804,71 ^A	4922,307 ^A	4899,91 ^b	-0,156 ^A	-0,412 ^A	-0,73 ^b	$8,45(7)^{A}$	$1,52(7)^{A}$	$1,55(7)^{a}$
-	-	3045,27 ^B	4747,271 ^B	4899,92 ^d	-0,221 ^B	$-0,286^{B}$	$-0,402^{d}$	$6,17(7)^{B}$	$1,53(8)^{B}$	$7,3\pm0,4(6)^{b}$
		2618,15 ^C	*		-0,093 ^C	·	,	$1,12(8)^{C}$		
4f5d ³ G ^o ₃	$5d^{2} {}^{3}F_{3}$	2894,09 ^A	5182,237 ^A	5156,73 ^b	-1,074 ^A	-1,518 ^A	-1,85 ^b	$9,58(6)^{A}$	$1,08(6)^{A}$	$1,19(6)^{a}$
2	2	3131,00 ^B	4995,528 ^B	5156,74 ^d	-1,192 ^B	-1,118 ^B	$-1,470^{d}$	$6,23(6)^{B}$	$2,04(7)^{B}$	$5,0\pm0,5(5)^{b}$
		2689.32 ^c		*	-1.017 ^C	*	,	$1.26(7)^{C}$		· · · · · ·

Tał	olo A	4.2.	Devam

Geç	işler		λ			log(gf)			A _{ki}	
Üst seviye	Alt seviye	Bu ça	ılışma	Diğer	Bu çal	ışma	Diğer	Bu ça	lışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f5d^{3}G^{\circ}_{3}$	$5d^{2} D_{2}$	2917,66 ^A	5285,215 ^A	5259,38 ^b	-1,752 ^A	-1,527 ^A	-1,95 ^b	1,98(6) ^A	$1,01(6)^{A}$	$1,05(6)^{a}$
		3180,74 ^B	5083,625 ^B		-1,455 ^B	-1,913 ^в		$3,29(6)^{B}$	$3,15(6)^{B}$	$3,9\pm0,7(5)^{b}$
		2743,64 [°]			-0,963 ^C			$1,38(7)^{C}$		
$4f5d {}^{3}G_{3}^{\circ}$	$5d^2 {}^3F_4$	2983,10 ^A	5440,650 ^A	-	-4,108 ^A	-2,835 ^A	-	8,33(3) ^A	$4,71(4)^{A}_{-}$	$5,74(4)^{a}$
		3215,85 ^B	5238,135 ^в		-3,064 ^B	-3,559 ^в		7,94(4) ^B	$6,72(4)^{B}$	
2	2	2762,38 [°]			-3,151 [°]			8,81(4) ^C		
$4f5d G^{0}_{3}$	5d6s $^{3}D_{2}$	3352,73 ^B	5638,406 ^A	-	-4,676 ^в	-2,648 ^A	-	$1,78(3)^{B}$	$6,74(4)^{A}$	$1,55(4)^{a}$
1 2 1 3 20	3		5401,004 ^B			-3,643 ^B			5,20(4) ^B	
$4f5d^{-3}G^{-3}$	$5d6s^{-3}D_{3}$	3071,40 ^A	5881,063 ^A	-	-2,541	-3,631 ^A	-	2,91(5)	$6,44(3)^{A}$	$2,13(4)^{a}$
465 1 3 60	5 1 ² 10	071576	5615,165 ^b		1.5614	-2,704		1.00(6)Å	4,19(5)	0.00(4)3
415d °G° ₃	5d ² 'G ₄	3/15,/6 ⁴	7769,687 ¹¹	-	-1,561"	-2,880 ¹	_	$1,89(6)^{A}$	$2,08(4)^{A}$	2,89(4)"
455 1 300	5 1 ² 3T	4200,44 ⁻	/304,562	4020 08b.d	-3,/35 ⁻	-2,018 ⁻	0.500	$9,4/(3)^{-1}$	$1,20(6)^{-1}$	1 (9(7))
4150 °G 4	50 F ₃	2/88,23 2008.02 ^B	4945,421	4920,98	-0,029	-0,200	-0,58 0.268d	8,91(7)	1,04(7)	1,08(7)
		3008,03	4858,580		-0,062 1.227 ^C	-0,182	-0,208	(7,09(7))	1,80(8)	8,0±0,4(0)
4f5d ³ C ⁰	5d ² ³ E	2000,97 2870 75 ^A	5178 028A	5162 61 ^b	1,237 1.055 ^A	1 551A	1 Q1b	1,55(6) 7.02(6) ^A	7 72(5) ^A	$0.81(5)^{a}$
4150 G 4	50 F4	2070,75 3086.26 ^B	5087 545 ^B	5163.62 ^d	-1,055 1.161 ^B	-1,334 1.010 ^B	-1,01 1,433 ^d	7,92(0) 5,36(6) ^B	7,72(3) 2,52(7) ^B	$4.3\pm0.4(5)^{b}$
		2675 56 ^C	5007,545	5105,02	-1,101	-1,010	-1,455	$1.02(7)^{C}$	2,32(7)	4,5±0,4(5)
$4f5d^{3}G^{0}$	$5d6s^{3}D_{2}$	2073,30 2952 44 ^A	5575 396 ^A	_	-2 492 ^A	-3 294 ^A	_	$2,73(5)^{A}$	$1.21(4)^{A}$	_
1154 0 4	5465 23	3275.67 ^B	5442,473 ^B		-4,593 ^B	-2.812 ^B		$1.76(3)^{B}$	$3.47(5)^{B}$	
$4f5d^{3}G^{0}$	$5d^{2}$ ¹ G ₄	3543.06 ^A	7244.934 ^A	_	-3.033 ^A	-2.625^{A}	_	$5.46(4)^{A}$	$3.35(4)^{A}$	$1.72(4)^{a}$
1100 0 4	5 u 04	3982.05 ^B	7015.004 ^B		-3.394 ^B	-4.770 ^B		$1.88(4)^{B}$	$2.30(3)^{B}$	1,72(1)
		3262.19 ^C	,		-2.978 ^C	.,		$7.32(4)^{\rm C}$	_,_ (_)	
$4f5d {}^{3}G_{5}^{\circ}$	$5d^{2} {}^{3}F_{4}$	2761,91 ^A	4957,243 ^A	4921,78 ^b	0.099^{A}	-0,148 ^A	-0,45 ^b	$9,98(7)^{A}$	$1,75(7)^{A}$	$1.81(7)^{a}$
5		2964,62 ^B	4998,010 ^B	4921,79 ^d	$0,066^{B}$	-0,040 ^B	-0,145 ^d	$8,04(7)^{B}$	$2,44(8)^{B}$	$8,8\pm0,5(6)^{b}$
		2585,41 ^C			0,215 ^C			$1,49(8)^{C}$, , ,	, , , , , ,
$4f5d {}^{3}P_{0}^{0}$	5d6s ³ D ₁	2408,10 ^A	4865,519 ^A	4809,00 ^b	-0,599 ^A	-1,344 ^A	-1,40 ^b	$2,89(8)^{A}$	$1,28(7)^{A}$	$1,23(7)^{a}$
			4862,632 ^в	4809,01 ^d		-1,276 ^в	-1,267 ^d		$1,50(7)^{B}$	$1,15\pm0,07(7)^{b}$
$4f5d {}^{3}P_{0}^{0}$	$5d^{2} {}^{3}P_{1}$	2689,08 ^A	5996,635 ^A	-	-0,887 ^A	-3,540 ^A	-	$1,19(8)^{A}$	$5,35(4)^{A}$	$1,56(6)^{a}$
		2965,88 ^B	5978,805 ^в		-1,346 ^B	-0,963 ^в		$3,41(7)^{B}$	$2,03(7)^{B}$	
		2592,32 ^c			-0,897 ^C			$1,26(8)^{C}$		
$4f5d {}^{3}P_{1}^{0}$	$5d^2 {}^3F_2$	2302,45 ^A	4411,598 ^A	-	-2,500 ^A	-4,254 ^A	-	$1,32(6)^{A}$	$0,64(4)^{A}$	$5,64(4)^{a}$
		2509,64 ^B	4439,672 ^в		$-4,625^{B}$	-1,264 ^в		$8,37(3)^{B}$	$1,84(7)^{B}$	
		2240,59 ^C			-4,206 ^C			$2,75(4)^{C}$		
$4f5d {}^{3}P_{1}^{0}$	$5d^{2} D_{2}$	2378,03 ^A	4700,894 ^A	4691,17 ^b	-0,873 ^A	-1,769 ^A	-1,81 ^b	$5,26(7)^{A}$	$1,71(6)^{A}_{r}$	1,58(6) ^a
		2600,93 ^в	4732,506 ^в		-2,854 ^в	-1,708 ^в		$4,59(5)^{B}$	$5,84(6)^{B}$	$1,56\pm0,14(6)^{b}$
2		2331,87 ^c			-2,920		1	4,91(5) ^C		
$4f5d P^{0}$	5d6s ³ D ₁	2394,14 ^A	4813,612 ^A	4804,04°	-0,624 ^A	-1,571 ^A	-1,49°	9,22(7) ^A	$2,58(6)^{A}$	3,99(6) ^a
			4848,240 ^в			-1,176°			$1,89(7)^{B}$	$3,14\pm0,19(6)^{\circ}$

1 ao 10 1 1.2. De tain	Tab	lo A	A.2.	De	vam
------------------------	-----	------	------	----	-----

Geç	rişler		λ			$\log(gf)$			A _{ki}	
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	alışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BI	P HFR	çalışmalar
$4f5d^{3}P_{1}^{\circ}$	5d6s $^{3}D_{2}$	2441,75 ^A	4978,257 ^A	4970,39 ^b	-0,259 ^A	-1,038 ^A	-1,16 ^b	$2,05(8)^{A}$	$8,22(6)^{A}$	$6.85(6)^{a}$
		2714,82 ^B	5006,376 ^B		-3,903 ^B	$-1,139^{B}$		$0.37(5)^{B}$	$1.93(7)^{B}$	$6,3\pm0,3(6)^{b}$
$4f5d^{3}P_{1}^{0}$	$5d^{2} {}^{3}P_{0}$	2627,97 ^A	5734,371 ^A	_	-1.067^{A}	-3.270^{A}	_	$2,75(7)^{A}$	$3.63(4)^{A}$	$3.61(5)^{a}$
		2924,80 ^B	5794,268 ^B		$-1,517^{B}$	-1.641^{B}		$7.88(6)^{B}$	$4,54(6)^{B}$	
$4f5d^{3}P_{1}^{0}$	$5d^{2} {}^{3}P_{1}$	2671,68 ^A	5917,985 ^A	_	-1,010 ^A	-3,384 ^A	_	$3.04(7)^{A}$	$2,62(4)^{A}$	-
		2966,33 ^B	5957,063 ^B		-1,364 ^B	-1,101 ^B		$1.09(7)^{B}$	$1.49(7)^{B}$	
		2583,96 ^C			-0,969 ^C			$3,57(7)^{C}$, , ,	
$4f5d^{3}P_{1}^{0}$	$5d^{2} {}^{3}P_{2}$	2708,82 ^A	6095,378 ^A	_	-0,880 ^A	-3,256 ^A	_	$3.99(7)^{A}$	$3,32(4)^{A}$	$1.31(4)^{a}$
-	-	3006,97 ^B	6140,801 ^B		-1,250 ^B	-0,898 ^B		$1.38(7)^{B}$	$2,24(7)^{B}$	
$4f5d^{3}P_{1}^{0}$	$6s^{2} S_{0}^{1}$	2702.63 ^A	6537.853 ^A	_	-1.626 ^A	-2.868 ^A	_	$7.18(6)^{A}$	$7.04(4)^{A}$	_
•		3017.98 ^B	6608.990 ^B		-2.482 ^B	-1.567 ^B		$8.04(5)^{B}$	$4.14(6)^{B}$	
$4f5d^{3}P_{1}^{0}$	5d6s ¹ D ₂	2997.29 ^A	7950.051 ^A	_	-1.901 ^A	-2.325 ^A	_	$3.11(6)^{A}$	$1.66(5)^{A}$	_
		,,,,	8045.546 ^B		-,,	-2.458 ^B		-,(-)	$3.59(5)^{B}$	
$4f5d^{3}P^{\circ}_{2}$	$5d^{2} F_{2}$	2268.95 ^A	4242.312 ^A	4300.43 ^{b,d}	-2.716 ^A	-2.170 ^A	-1.58 ^b	$4.97(5)^{A}$	$5.01(5)^{A}$	$7.56(5)^{a}$
		2223.30 ^c	4576.530 ^B	,	-3.597 ^C	-2.057 ^B	-2.043 ^d	$6.82(4)^{\rm C}$	$2.79(6)^{B}$	$1.89\pm0.15(6)^{b}$
$4f5d^{3}P^{\circ}_{2}$	$5d^{2} F_{3}$	2327.09 ^A	4433.988 ^A	_	-3.992 ^A	-2.473 ^A		$2.50(4)^{A}$	$2.28(5)^{A}$	$1.16(4)^{a}$
		2535.50 ^B	4806.817 ^B		-3.985 ^B	-1.163 ^B		$2.14(4)^{B}$	$1.99(7)^{B}$	-,(-)
		2274.41 ^C	,		-3.261 ^C	-,		$1.41(5)^{C}$	-,,-	
$4f5d^{3}P^{\circ}_{2}$	$5d^{2} D_{2}$	2342.31 ^A	4509.160^{A}	4574.86 ^b	-1.149 ^A	-2.150 ^A	-1.08 ^b	$1.72(7)^{A}$	$4.64(5)^{A}$	$2.77(6)^{a}$
		2313.14 ^c	4888.330 ^B	4574.88 ^d	-2.505 ^C	-4.164 ^B	-1.12 ^d	$7.78(5)^{\rm C}$	$1.92(4)^{B}$	$5.3\pm0.3(6)^{b}$
$4f5d^{3}P^{0}$	$5d6s^{3}D_{1}$	_	4612.769 ^A	-	2,000	-3.492 ^A	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$2.02(4)^{A}$	-
1100 1 2	0000 01		5011.910 ^B			-2.238^{B}			$1.54(6)^{B}$	
$4f5d^{3}P^{0}$	$5d6s^{3}D_{2}$	2404.11 ^A	4763,746 ^A	4840.01 ^{b,d}	-0.610^{A}	-1.632^{A}	-1.79 ^b	$5.65(7)^{A}$	$1.37(6)^{A}$	$1.41(6)^{a}$
1100 1 2	0000 22	2101,11	5181.090 ^B	1010,01	0,010	-1.848 ^B	-1.457 ^d	0,00(/)	$3.53(6)^{B}$	$9.2\pm1.2(5)^{b}$
$4f5d^{3}P^{0}$	$5d6s^{3}D_{2}$	2440.38^{A}	4935.809 ^A	4999.46 ^{b,d}	1.722^{A}	-0.666 ^A	-0.77 ^b	$3.85(8)^{A}$	$1.18(7)^{A}$	$1.10(7)^{a}$
1100 1 2	0000 23	2110,00	5377.848 ^B	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,722	-0.874^{B}	-0.667^{d}	2,02(0)	$3.08(7)^{B}$	$9.0\pm05(6)^{b}$
$4f5d^{3}P^{0}$	$5d^{2} {}^{3}P_{1}$	2626.68 ^A	5617,291 ^A	5703.31 ^b	-0.989 ^A	-4.336 ^A	-2.00 ^b	$1.98(7)^{A}$	$1.95(3)^{A}$	$1.76(5)^{a}$
1100 1 2		2923.60 ^B	6206.082^{B}	0100,01	-1.426^{B}	-0.667 ^B	2,00	$5.84(6)^{B}$	$3.73(7)^{B}$	$4 1\pm 0.9(5)^{b}$
		2560.99 ^C	0200,002		-0.938 ^C	0,007		$2.34(7)^{\rm C}$	0,10(1)	1,1=0,5(0)
$4f5d^{3}P^{0}$	$5d^{2} {}^{3}P_{2}$	2662.57 ^A	5776.872 ^A	_	-0.383 ^A	-2.460^{A}	_	$7.78(7)^{A}$	$1.39(5)^{A}$	$5.24(5)^{a}$
1100 1 2	00 12	2963.07 ^B	$6405,760^{B}$		-0.735 ^B	-1.077^{B}		$2.79(7)^{B}$	$1.36(7)^{B}$	0,21(0)
$4f5d^{3}P^{0}$	5d6s ¹ D ₂	2940.77 ^A	7416.709 ^A	_	-2.387 ^A	-2.402^{A}	_	$6.31(5)^{A}$	$9.61(4)^{A}$	_
1100 1 2	0000 22	3526.78 ^B	8506.535 ^B		-2.485^{B}	-0.630^{B}		$3.50(5)^{B}$	$2.16(7)^{B}$	
$4f5d^{1}F_{2}^{0}$	$5d^{2} {}^{3}F_{2}$	2355 33 ^A	4125 367 ^A	4076 70 ^b	-3 444 ^A	-1.466^{A}	-1 76 ^b	$0.06(6)^{A}$	$1.91(6)^{A}$	$2.02(6)^{a}$
libu i 3	54 I <u>2</u>	2522 51 ^B	4447 970 ^B	1070,70	-1 954 ^B	-1 713 ^B	1,70	$1.66(6)^{B}$	$653(6)^{B}$	$0.99\pm0.10(6)^{b}$
		2241.22 ^C	,,,,,,		-2.372 ^C	1,710		8.05(5) ^C	3,25(0)	0,77=0,10(0)
$4f5d^{1}F_{2}^{0}$	$5d^{2} {}^{3}F_{2}$	2418.04 ^A	4306.395 ^A	_	-2.389 ^A	-2.358 ^A	_	$6.64(5)^{A}$	$2.25(5)^{A}$	_
	56 15	2581.06 ^B	4665,194 ^B		-2.859 ^B	-2.382 ^B		$1.97(5)^{B}$	$1.27(6)^{B}$	
		2293.17 ^C			-2.428 ^C	2,002		6.75(5) ^C	-,_,(0)	
					2, .20			0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

1 ao 10 1 1.2. De tain	Tab	lo A	A.2.	De	vam
------------------------	-----	------	------	----	-----

	Geç	rişler		λ			log(gf)			A _{ki}	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4f5d ¹ F ^o ₃	$5d^{2} D_{2}$	2434,47 ^A	4377,268 ^A	4322,50 ^b	-1,681 ^A	-0,489 ^A	-0,93 ^b	3,35(6) ^A	$1,61(7)^{A}$	$1,54(7)^{a}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2614,76 ^B	4741,936 ^B	4322,51 ^d	$-0,708^{B}$	$-0,302^{B}$	-1,05 ^d	$2,72(7)^{B}$	$1,48(8)^{B}$	$5,9 \pm 0,3(6)$
			2332,55 ^C			-0,790 [°]			$2,84(7)^{C}$, , , , , ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}F_{3}^{\circ}$	$5d^{2} {}^{3}F_{4}$	2479,87 ^A	4483,350 ^A	4432,95 ^b	$-1,660^{A}$	-1,390 ^A	-1,92 ^b	3,38(6) ^A	$1,93(6)^{A}$	$3,26(5)^{a}$
			2346,08 ^C	$4876,100^{B}$		$-1,805^{\circ}$	$-0,794^{B}$		$2,71(6)^{C}$	$4,51(7)^{B}$	$0,58 \pm 0,08(6)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}F_{3}^{0}$	$5d6s^{3}D_{2}$	2501,30 ^A	4616,783 ^A	4558,46 ^{b,d}	-2,252 ^A	-0,910 ^A	-0,97 ^b	$0.85(6)^{A}$	$5,50(6)^{A}$	$5,55(6)^{a}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2729,89 ^B	5016,931 ^B		-1,994 ^B	$-2,118^{B}$		$1,29(6)^{B}$	$2,02(6)^{B}$	$4,94\pm0,28(6)^{b}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4f5d ¹ F ^o ₃	5d6s ³ D ₃	2540,59 ^A	4778,214 ^A	4699,62 ^b	-1,807 ^A	-1,048 ^A	-1,78 ^b	$2,29(6)^{A}$	$3,74(6)^{A}$	$1,05(6)^{a}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5201,196 ^B			-1,182 ^B			$1.62(7)^{B}$	$7,1\pm1,3(5)^{b}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}F_{3}^{0}$	$5d^{2} {}^{3}P_{2}$	2782,29 ^A	5562,161 ^A	_	-1,266 ^A	-2,090 ^A	_	$6,67(6)^{A}$	$2,50(5)^{A}$	$1,09(6)^{a}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3025,48 ^B	6156,688 ^B		-1.064^{B}	-1.031 ^B		$8,95(6)^{B}$	$1.64(7)^{B}$	· · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2620.76°			-0,950 ^C			$1,55(7)^{C}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}F_{3}^{0}$	$5d^{2}G_{4}$	2966,06 ^A	5954,109 ^A	5863,69 ^b	-0,391 ^A	-0,902 ^A	-1,37 ^b	$4,39(7)^{A}$	$3.37(6)^{A}$	$3,62(6)^{a}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		3266,70 ^B	6619,226 ^B	5863,71 ^d	-2,476 ^B	-1,110 ^B	-0,928 ^d	$2,98(5)^{B}$	$1.18(7)^{B}$	$1,19\pm0,13(6)^{b}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2785,28 ^c	,	<i>,</i>	-0,828 ^C		,	$1,82(7)^{C}$, , , , ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}F_{3}^{0}$	5d6s ¹ D ₂	3087.51 ^A	7066.496 ^A	_	-0.072 ^A	-2.616 ^A	_	$8.45(7)^{A}$	$4.62(4)^{A}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3615.54 ^B	8072.839 ^B		-0.760 ^B	-1.711 ^B		$1.26(7)^{B}$	$1.99(6)^{B}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4f5d ¹ H ^o 5	$5d^{2} {}^{3}F_{4}$	2174.10 ^B	3720.786 ^A	_	-3.580 ^B	-2.921 ^A	_	$3.36(4)^{B}$	$5.25(4)^{A}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		,	3965,217 ^B		*	$-2,506^{B}$			$1.32(6)^{B}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4f5d ¹ H ^o 5	$5d^{2}G_{4}$	2583.54 ^B	4680.243 ^A	4748.73 ^{b,d}	0.205 ^B	-0.098 ^A	-0.102^{d}	$1.46(8)^{B}$	$2.21(7)^{A}$	$7.7 \pm 0.4(6)^{b}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5		,-	5045.761 ^B		-,	0.064 ^B	-0.54 ^b	, - (- /	3.03(8) ^B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}G^{0}_{4}$	$5d^{2} {}^{3}F_{3}$	4135.72 ^в	6270.86 ^A	_	-3.745 ^B	-2.962 ^A	_	$7.77(3)^{B}$	$2.05(4)^{A}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	3483,99 ^C	6906,900 ^B		-2,201 ^C	-2,357 ^B		$3,84(5)^{C}$	$6.83(4)^{B}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}G_{4}^{\circ}$	$5d^{2} {}^{3}F_{4}$	3874,00 ^A	6653,252 ^A	_	-2,216 ^A	-2,383 ^A	_	$2,99(5)^{A}$	$6.94(4)^{A}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4285,05 ^B	7379,458 ^B		-1,892 ^B	-2,133 ^B		$5,17(5)^{B}$	$1.00(5)^{B}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3607,58 ^c	,		$-1,312^{\circ}$			$2,77(6)^{C}$, , ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}G^{0}_{4}$	5d6s ³ D ₃	4024,24 ^A	7323,959 ^A	_	-1,820 ^A	-2,788 ^A	_	$6,92(5)^{A}$	$2,25(4)^{A}$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	4659,09 ^B	8150,434 ^B		-3,374 ^B	$-1,882^{B}$		$1,44(4)^{B}$	$1,46(5)^{B}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f5d {}^{1}G^{0}_{4}$	$5d^{2}G_{4}$	5207,39 ^A	$10503,52^{A}$	_	-1,078 ^A	-1,624 ^A	_	$2,28(6)^{A}$	$1.60(5)^{A}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6231,26 ^B	12269,27 ^B		$-1,249^{B}$	-1,253 ^B		$1.07(6)^{B}$	$2,75(5)^{B}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4762,24 ^C			-1,044 ^C			$2,95(6)^{C}$, , ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4f5d ³ H ^o ₄	$5d^{2} {}^{3}F_{3}$	3502,01 ^A	5984,854 ^A	-	-3,494 ^A	-2,269 ^A	-	$1,93(4)^{A}$	$1,11(5)^{A}$	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	3863,64 ^B	6010,871 ^B		-2,833 ^B	-2,231 ^B		$7,28(4)^{B}$	$1,08(6)^{B}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3285,00 ^C			$-2,467^{\circ}$			$2,34(5)^{C}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4f5d ³ H ^o ₄	$5d^{2} {}^{3}F_{4}$	3633,19 ^A	6332,195 ^A	-	-2,972 ^A	-1,991 ^A	-	$5,97(4)^{A}$	$1,89(5)^{A}$	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3993.67 ^B	6365,623 ^B		-1,964 ^B	-3,766 ^B		$5.04(5)^{B}$	$2,82(4)^{B}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3394,66 ^C	*		-1,408 ^C			$2,51(6)^{C}$	· · · ·	
$4316,65^{\text{B}}$ $6931,191^{\text{B}}$ $-3,067^{\text{B}}$ $-4,785^{\text{B}}$ $3,41(4)^{\text{B}}$ $2,28(3)^{\text{B}}$	4f5d ³ H ^o ₄	5d6s ³ D ₃	3765,02 ^A	6936,792 ^A	_	-1,476 ^A	-2,337 ^A	_	$1,74(6)^{A}$	$7,08(4)^{A}$	_
	-	-	4316,65 ^B	6931,191 ^B		-3,067 ^B	-4,785 ^B		$3,41(4)^{B}$	$2,28(3)^{B}$	

Tablo A.2. Devam

Geo	zişler		λ			$\log(gf)$		A_{ki}		
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f5d ³ H ^o ₄	$5d^{2}G_{4}$	4781,41 ^A	9725,083 ^A	_	-1,697 ^A	-1,630 ^A	-	$6,51(5)^{A}$	$1,84(5)^{A}$	-
		5633,54 ^B	9700,551 ^B		-1,895 ^B	-2,964 ^B		$2,96(5)^{B}$	$7,70(4)^{B}$	
		4398,09 ^C			-1,451 ^C			$1,36(6)^{C}$		
$4f5d^{3}H_{5}^{\circ}$	$5d^{2} {}^{3}F_{4}$	3495,04 ^A	6129,396 ^A	_	-3,416 ^A	-2,929 ^A	-	$1,90(4)^{A}$	$1,90(4)^{A}$	_
		3828,02 ^в	6192,714 ^в		-3,475 ^в	-2,208 ^B		$1,38(4)^{B}$	$1,08(6)^{B}$	
		3289,43 ^C			-3,463 [°]			$1,93(4)^{C}$		
4f5d ¹ P ^o 1	5d ² ³ F ₂	2053,98 ^B	3304,105 ^A	-	-2,773 ^в	-2,389 ^A	-	$8,87(5)^{B}$	$8,32(5)^{A}$	-
			4656,127 ^в			-0,708 ^B			$6,03(7)^{B}$	
$4f5d {}^{1}P_{1}^{0}$	$5d^{2} D_{2}$	2114,73 ^в	3463,754 ^A	3452,18°	-1,931 ^в	-1,417 ^A	$-1,15\pm0,02^{\circ}$	$5,82(6)^{B}$	$7,09(6)^{A}$	$1,30(8)^{c}$
			4979,250 ^в			-0,724 ^B			$5,08(7)^{B}$	
$4f5d {}^{1}P_{1}^{0}$	5d6s ³ D ₁	-	3524,567 ^A	3512,93°		-1,711 ^A	-1,29±0,02°		$3,48(6)^{A}$	9,07(7) ^c
			5107,531 ^в			-2,326 ^в			$1,21(6)^{B}$	
$4f5d {}^{1}P_{1}^{0}$	5d6s ³ D ₂	2189,41 ^B	3612,036 ^A	3601,06 ^c	-3,171 ^в	-1,315 ^A	-0,97±0,02°	$3,12(5)^{B}$	$8,25(6)^{A}$	$1,79(8)^{c}$
			5283,341 ^в			-2,015 ^в			$2,31(6)^{B}$	
$4f5d {}^{1}P_{1}^{0}$	$5d^{2} {}^{3}P_{0}$	2323,98 ^в	3994,158 ^A	-	-2,906 ^в	-1,603 ^A	-	$5,11(5)^{B}$	$3,47(6)^{A}$	-
			6168,527 ^в			-0,814 ^B			$2,69(7)^{B}$	
$4f5d {}^{1}P_{1}^{0}$	$5d^{2} {}^{3}P_{1}$	2350,13 ^B	4082,381 ^A	-	-5,158 ^B	-3,694 ^A	-	$0,28(4)^{B}$	$2,70(4)^{A}$	-
		_	6353,367 ^B		_	-3,457 ^B		_	$5,78(4)^{B}$	
$4f5d P^{0}$	$5d^2 {}^{3}P_2$	2375,57 ^в	4166,018 ^A	-	-3,007 ^в	-2,412 ^A	-	$3,87(5)^{B}$	$4,96(5)^{A}$	-
			6562,795 ^B			-2,074 ^B			$1,31(6)^{B}$	
$4f5d P_1^{o}$	$6s^{2} S_{0}^{1}$	2382,43 ^B	4368,071 ^A	-	-1,574 ^B	-0,270 ^A	-	$1,04(7)^{B}$	$6,26(7)^{A}$	-
			7100,359 ^в			-1,877 ^в			$1,76(6)^{B}$	
$4f5d P_1^{\circ}$	5d6s ¹ D ₂	2724,74 ^B	4956,286 ^A	4934,83°	-2,199 ^в	-1,543 ^A	$-0,35\pm0,02^{\circ}$	$1,89(6)^{B}$	$2,59(6)^{A}_{P}$	$4,03(8)^{c}$
2	2		8785,704 ^B			-1,902 ^в			$1,08(6)^{B}$	
6s6p ³ P ^o ₀	5d6s ${}^{3}D_{1}$	2561,99 ^A	3896,008 ^A	—	-0,406 ^A	-1,653 ^A	-	$3,98(8)^{A}$	$9,77(6)^{A}_{P}$	$1,16(7)^{a}$
2	2.2		3777,602 ^B			-0,282 ^B	,		$2,44(8)^{B}$	
6s6p [°] P° ₀	$5d^{2} {}^{3}P_{1}$	2882,41 ^A	4589,151 ^A	4580,05°	-2,551 ^A	-1,190 ^A	-1,01°	$6,64(6)^{A}$	$2,05(7)^{A}_{P}$	1,87(7) ^a
2		3287,69 ^C	4418,410 ^в		$-2,260^{\circ}$	-1,550 ^в		3,38(6)	$9,64(6)^{B}$	3,13±0,19(7) ^b
6s6p ³ P ⁰ 1	$5d^{2} {}^{3}F_{2}$	2430,62 ^A	3558,321 ^A	-	-2,458 ^A	-2,280 ^A	-	1,31(6) ^A	$9,22(5)^{A}$	$2,72(6)^{a}$
3-0	2 1	2718,50	3520,717 ^в		-2,816	-1,614 ^B		4,59(5) ^C	1,31(7) ^B	
$6s6p P_1^{\circ}$	$5d^{2}$ D_{2}	2515,00 ^A	3744,172 ^A	-	-0,696	-1,725 ^A	-	7,07(7)^	2,99(6) ^A	$1,25(7)^{a}$
3-0	3	2854,04	3702,391		-0,991	-0,615		2,78(7)	1,18(8)	
$6s6p^{-3}P_{1}^{0}$	5d6s $^{3}D_{1}$	2533,03 ^A	3815,332 ^A	-	-0,600^	-1,918 ^A	-	8,69(7)^	1,84(6) ^A	$2,01(6)^{a}$
c c 350	7 1 4 3 D	2505204	3772,850		0.040	-0,445		1.05(0)	1,68(8)	0.000
$6s6p^{-1}P_{1}^{0}$	5d6s $^{3}D_{2}$	2586,384	3918,038 ^A	-	-0,249*	-2,138 ^A	_	1,87(8)	$1,05(6)^{A}$	3,77(6)"
c c 350	= 1 ² 3m	250 6 254	3867,926		2 0724	-0,050		2 40 (0 Å	3,98(8)	5 0 2 (6) ³
6s6p 'P' ₁	$5d^2 P_0$	2796,274	43/1,/13 ^A	-	-2,073*	-1,101 ^A	-	2,40(6)	$9,23(6)^{A}$	7,93(6)"
C C 3D0	5 1 ² 3D	3191,95°	4321,978		-2,429°	-1,50/5		8,11(5)	$1,11(/)^{b}$	1 22/7)8
osop 'P'	$5d^2 P_1$	2845,81	44//,625 ^A	-	-1,/92**	-1,298 ⁴	-	4,43(6)	$5,58(6)^{A}$	1,22(7)"
		3241,02~	4411,9115		-2,448-	-1,/55		/,53(5)-	0,05(0)	

Tablo A.2. Dev	/am
----------------	-----

Geg	çişler		λ			log(gf)		A_{ki}		
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	işma	Diğer	Bu çal	ışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6s6p ³ P ^o ₁	$5d^{2} {}^{3}P_{2}$	2887,97 ^A	4578,441 ^A	-	-1,560 ^A	-1,170 ^A	-	$7,32(6)^{A}$	$7,17(6)^{A}$	$1,24(7)^{a}$
1		3297,77 ^C	4511,894 ^B		-2,745 [°]	$-1,486^{B}$		$3,67(5)^{\rm C}$	$1,07(7)^{B}$	
$6s6p {}^{3}P_{1}^{o}$	$6s^{2} S_{0}^{1}$	2880,94 ^A	4823,656 ^A	-	-2,464 ^A	-3,138 ^A	-	$9,19(5)^{A}$	$6,96(4)^{A}$	$8,93(5)^{a}$
			4759,633 ^в			-4,668 ^B			$6,33(3)^{B}$	
6s6p ³ P ^o ₁	5d6s ¹ D ₂	3218,20 ^A	5551,189 ^A	_	-2,644 ^A	-1,549 ^A	_	$4,87(5)^{A}$	$2,04(6)^{A}$	-
-			5461,987 ^в			-3,656 ^в			$4,94(4)^{B}$	
6s6p ³ P ^o ₂	$5d^{2} {}^{3}F_{2}$	2381,60 ^A	3392,419 ^A	_	-3,203 ^A	-3,372 ^A	_	$1,47(5)^{A}$	$4,92(4)^{A}$	$4,14(5)^{a}$
		2654,26 ^c	3507,677 ^в		-2,834 ^C	-2,817 ^в		$2,77(5)^{C}$	$8,27(5)^{B}$	
6s6p ³ P ^o ₂	5d ² ³ F ₃	2445,74 ^A	3513,889 ^A	_	-2,849 ^A	-2,454 ^A	_	$3,15(5)^{A}$	$3,80(5)^{A}$	$9,06(5)^{a}$
			3641,387 ^в			-2,759 ^в			$8,76(5)^{B}$	
6s6p ³ P ^o ₂	$5d^{2} D_{2}$	2462,56 ^A	3560,934 ^A	_	-1,329 ^A	-4,261 ^A	-	$1,03(7)^{A}$	$5,77(3)^{A}$	$6,69(6)^{a}$
		2783,32 ^C	3687,974 ^в		-1,161 ^C	-1,660 ^B		1,19(7) ^C	$1,07(7)^{B}$	
6s6p ³ P ^o ₂	5d6s ³ D ₁	2479,83 ^A	3625,239 ^A	_	-1,964 ^A	-2,911 ^A	-	$2,35(6)^{A}$	$1,25(5)^{A}$	$6,43(6)^{a}$
			3757,880 ^в			-1,733 ^в			$8,73(6)^{B}$	
6s6p ³ P ^o ₂	5d6s ³ D ₂	2530,95 ^A	3717,842 ^A	_	-0,913 ^A	-1,912 ^A	-	$2,54(7)^{A}$	$1,18(6)^{A}$	$7,53(7)^{a}$
			3852,194 ^в			-0,572 ^в			$1,20(8)^{B}$	
6s6p ³ P ^o ₂	5d6s ³ D ₃	2571,18 ^A	3821,820 ^A	-	0,010 ^A	-2,538 ^A	-	$2,06(8)^{A}$	$2,64(5)^{A}$	$3,40(8)^{a}$
			3959,914 ^в			0,274 ^B			7,99(8) ^B	
6s6p ³ P ^o ₂	$5d^{2} {}^{3}P_{1}$	2778,84 ^A	4218,054 ^A	-	-1,607 ^A	-0,820 ^A	-	$4,26(6)^{A}$	$1,13(7)^{A}_{-}$	$1,38(7)^{a}$
		3150,13 ^C	4391,454 ^B		-2,567 ^C	-1,544 ^B		3,63(5) ^C	$9,88(6)^{B}$	
6s6p ³ P ^o ₂	$5d^2 {}^{3}P_2$	2819,03 ^A	4307,403 ^A	-	-0,851 ^A	-0,444 ^A	-	$2,36(7)^{A}$	$2,59(7)^{A}$	5,39(7) ^a
		3203,71 [°]	4490,502 ^B		-1,653 ^C	$-1,266^{B}$		$2,88(6)^{C}$	$1,79(7)^{B}$	
6s6p ³ P ^o ₂	5d6s ¹ D ₂	3132,82 ^A	5157,695 ^A	-	-1,952 ^A	$-2,465^{A}$	-	$1,52(6)^{A}$	$1,72(5)^{A}$	-
			5430,667 ^в			-2,214 ^в			$1,38(6)^{B}$	
6s6p ¹ P ^o 1	$5d^2 {}^3F_2$	-	2188,158 ^A	-	-	-1,333 ^A	-	-	$2,16(7)^{A}$	-
			2176,12 ^в			-2,716 ^в			$9,02(5)^{B}$	
6s6p ¹ P ^o 1	$5d^{2} D_{2}$	-	2257,053 ^A	-	-	-0,507 ^A	-	-	$1,36(8)^{A}$	-
	2		2244,185 ^в			-1,719 ^в			8,43(6) ^B	
$6s6p P^{0}$	5d6s $^{3}D_{1}$	-	2282,718 ^A	_	-	-2,748 ^A	-	_	$7,62(5)^{A}_{B}$	-
1- 0	2-		2269,880 ^B			-2,867 ^в			$5,87(5)^{B}$	
$6s6p P^{0}$	5d6s ³ D ₂	-	2319,090 ^A	_	-	-1,413 ^A	-	_	$1,60(7)^{A}_{B}$	-
	2.2		2303,952 ^B			-3,215 ^в			$2,55(5)^{B}$	
$6s6p P_1^{\circ}$	$5d^2$ ³ P ₀	-	2470,861 ^A	-	-	-1,047 ^A	-	-	$3,27(7)^{A}$	-
1			2457,752 ^B			-2,502 ^B			$1,16(6)^{\text{B}}$	
$6s6p P_1^{\circ}$	$5d^{2} {}^{3}P_{1}$	-	2504,341 ^A	-	-	-3,838 ^A	-	-	$5,14(4)^{A}$	-
			2486,575 ^b			-2,939			4,14(5) ^b	
6s6p 'P' ₁	$5d^2$ $^{3}P_2$	-	2535,568 ^A	-	-	-1,301 ^A	-	-	$1,73(7)^{A}$	-
	c 2 la		2518,024 ^B			-1,795"			5,63(6) ^b	
6s6p 'P' ₁	$6s^2 S_0$	-	2609,021 ^A	-	-	0,121 ^A	-	-	$4,31(8)^{A}$	-
			2593,357			0,0575			3,77(8)	

ruoro runi Devum	Tablo	A.2.	Devam
------------------	-------	------	-------

Ge	çişler		λ			log(gf)		$\mathbf{A}_{\mathbf{k}\mathbf{i}}$		
Üst seviye	Alt seviye	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer	Bu ça	lışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6s6p ¹ P ^o 1	5d6s ¹ D ₂	-	2808,077 ^A	-	-	0,345 ^A	-	-	$6,24(8)^{A}_{p}$	-
			2788,747 ^в			-0,69 ^в			$5,83(7)^{B}$	
4f6p ³ D ₁	$4f6s {}^{3}F_{2}^{0}$	1417,39 ^A	4175,536 ^A	4099,54 ^ª	0,226 ^A	0,116 ^A	0,201 ^d	$1,86(9)^{A}$	$1,66(8)^{A}_{p}$	-
2	2		4120,597 ^B	,		0,164 ^в	,		1,91(8) ^B	
4f6p ³ D ₂	4f6s ${}^{3}\text{F}_{2}^{0}$	1419,91 ^A	4159,758 ^A	4152,78 ^ª	-0,192 ^A	-0,613 ^A	-0,03 ^ª	$4,25(8)^{A}$	$1,88(7)^{A}_{B}$	-
2	2		4201,116 ^B	,		-0,007 ^в	,		7,44(7) ^в	
4f6p ³ F ₂	$4f6s F_2^{\circ}$	1670,11 ^A	4679,376 ^A	4619,88 ^a	0,494 ^A	0,321 ^A	0,148 ^a	$1,49(9)^{A}$	$1,27(8)^{A}_{P}$	-
2	2		4653,569 ^B	,		0,047 ^в	,		$0,69(8)^{B}$	
4f6p ³ G ₃	$4f6s F_2^{\circ}$	1454,80 ^A	4267,953 ^A	4692,50 ^a	-0,924 ^A	0,063 ^A	0,049 ^a	$5,36(7)^{A}$	$6,04(7)^{A}_{P}$	-
2	2		4737,961 ^в	,		0,166 ^в	,		$6,23(7)^{B}$	
4f6p ³ D ₂	$4f6s {}^{3}F_{3}$	1427,57 ^A	4178,693 ^A	4192,36 ^a	0,326 ^A	0,286 ^A	0,222ª	$1,39(9)^{A}$	$1,47(8)^{A}_{P}$	-
2	2		4199,098 ^B	,		0,124 ^B	,		$1,01(8)^{B}$	
4f6p ³ F ₄	$4f6s {}^{3}F_{3}^{0}$	1645,32 ^A	4398,451 ^A	4269,50 ^d	-0,170 ^A	0,078 ^A	0,540 ^d	$1,85(8)^{A}$	$4,58(7)^{A}$	-
2	2		4259,445 ^B	,		0,556 ^B	,		$1,47(7)^{B}$	
4f6p ³ G ₄	$4f6s {}^{3}F_{3}$	1447,15 ^A	4257,983 ^A	4385,20 ^a	-0,474 ^A	0,347 ^A	-0,446 ^a	$1,19(8)^{A}$	$9,08(7)^{A}$	-
2	2		4361,090 ^B	,		-0,198 ^в	,		$2,46(7)^{B}$	
4f6p ³ F ₂	$4f6s {}^{3}F_{3}^{0}$	1680,71^	4703,350 ^A	4668,91 ^a	-0,398	-0,632 ^A	-0,077 ^ª	$1,88(8)^{A}$	$1,41(7)^{A}$	-
			4651,093 ^b		- · · · A	-0,055 ^b			5,42(7) ^b	
4f6p ³ G ₃	$4f6s {}^{3}F_{3}$	1462,84 ^A	4287,888 ^A	4743,09 ^a	-0,546 ^A	-1,520 ^A	0,276 ^a	$1,26(8)^{A}$	$0,16(7)^{A}$	-
			4735,394 ^b		A	0,211 ^B			6,90(7) ^b	
4f6p ³ D ₃	$4f6s {}^{3}F_{4}^{0}$	1460,81^	4191,054 ^A	4217,56 ^ª	0,526 ^A	0,440 ^A	0,369 ^a	$1,50(9)^{A}$	$1,49(8)^{A}$	-
			4203,799 ^b			0,348		A	1,20(8) ^b	
4f6p ³ G₅	$4f6s {}^{3}F_{4}^{0}$	1455,82 ^A	4246,434 ^A	4286,97 ^ª	0,084 ^A	0,622 ^A	0,720 ^d	3,47(8) ^A	1,41(8) ^A	-
			4294,055 ^b			0,743 ^b			1,82(8) ^b	
4f6p ³ F ₄	$4f6s {}^{3}F_{4}^{0}$	1687,35 ^A	4680,173 ^A	4525,31 ^a	0,775^	0,467 ^A	-0,127 ^ª	$1,55(9)^{A}$	9,92(7) ^A	-
			4548,358 ^b			-0,071 ^b		· · · · A	3,04(7) ^b	
4f6p ³ G ₄	$4f6s {}^{3}F_{4}^{0}$	1479,57^	4521,460 ^A	4655,50 ^a	$-0,209^{A}$	0,102 ^A	0,407 ^d	$2,09(8)^{A}$	$4,59(7)^{A}$	-
I=			4664,448 ^b		•	0,270 ^B			6,33(7) ^b	
4f6p ¹ D ₂	$4f6s {}^{1}F_{3}^{0}$	1385,24	4078,163 ^A	4050,08 ^ª	0,278 ^A	0,346 ^A	0,428 ^ª	$1,32(9)^{A}$	$1,78(8)^{A}$	-
122 300	(a		4080,264 ^B	(and and		0,376°	o o o o o d		$1,90(8)^{B}$	
4f6p ³ G ₄	4f6s ${}^{4}F_{3}^{0}$	1481,31 ^A	4556,567 ^A	4671,83ª	-1,561 ^A	-1,777 ^A	0,037 ^d	$9,26(6)^{A}$	$5,96(5)^{A}$	-
			4659,710 ^в			0,229 ^в			$5,77(7)^{B}$	

^aKułaga-Egger ve Migdałek [121], ^bLawer ve çalışma arkadaşları[115], ^cZhiguo ve çalışma arkadaşları 113, gA_{ki}'den çevrildi], ^dBord ve çalışma arkadaşları [114], ^eNIST Periodictable [62]

Seviyeler Konf Torim			<u> </u>	D:*	g-çarpanı Bu calışma				
Konf.	Terim	Bu ça	llışma HED	Diğer 	Bu ça	alışma HED	Diğer 		
C:64	4	мспг+рг	пгк	Çanşınalar	MCHF+BF	пгк	Çalişillalal		
Çitt pari	$\frac{1}{2}$		120005 00C			2 002C,D			
115	S _{1/2}	_	138085,80 [°]	-	-	2,002	_		
12.	² C		13/09/,40			2 002C,D			
128	S _{1/2}	_	141030,70 [°]	-	-	2,002	_		
120	² c		140042,50 142156 40 ^D			2 002D			
158	201/2	-	143130,40 144004 80 ^D	—	_	2,002 2,002 ^D	—		
148	201/2	-	144994,80 146282 50 ^D	—	_	2,002 2,002 ^D	—		
158	31/2 20	-	140382,50 147458.00 ^D	-	-	2,002 2,002 ^D	_		
105	31/2 20	-	14/458,90	-	-	2,002 2,002 ^D	_		
1/8	⁻ S _{1/2}	-	148311,80 ⁻	-	-	2,002 ⁻	-		
188	² S _{1/2}	-	149000,70 ⁵	-	-	2,002	-		
19s	${}^{2}S_{1/2}$	-	149550,50 ^b	-	-	2,002	_		
20s	${}^{2}S_{1/2}$	-	150007,90	-	-	2,002 ^b	-		
10d	$^{2}D_{3/2}$	-	137235,00 ^A	-	-	0,800 ^{A,B,C,D}	-		
			136194,70 ^в						
			138878,80 ^C						
			137246,60 ^D						
	${}^{2}D_{5/2}$	-	137271,50 ^A	-	-	$1,200^{A,B,C,D}$	-		
			136232,80 ^B						
			139915,30 ^C						
			137283.10 ^D						
11d	${}^{2}D_{2/2}$	_	141739.30 ^C	_	_	0.800 ^{C,D}	_		
110	2 3/2		140750 90 ^D			0,000			
	^{2}D	_	140750,50	_	_	1 200 ^{C,D}	_		
	D 5/2		140776 20 ^D			1,200			
124	² D		140770,20			0 800 ^{C,D}			
120	$D_{3/2}$	-	144223,00 142226,60 ^D	-	_	0,800	—		
	20		145250,00			1 200CD			
	$^{-}D_{5/2}$	-	144243,30°	-	-	1,200	-		
	2-		143254,90			0.000CD			
13d	$^{2}D_{3/2}$	-	146043,10 ^c	-	-	0,800 ^{C,D}	-		
			145054,70 ^D			G D			
	${}^{2}D_{5/2}$	-	146056,80 [°]	-	-	1,200 ^{C,D}	-		
			145068,40 ^D						
14d	${}^{2}D_{3/2}$	-	147418,30 ^C	-	-	0,800 ^{C,D}	-		
			146429,90 ^D						
	$^{2}D_{5/2}$	-	147428,80 ^C	_	-	1,200 ^{C,D}	_		
			146440.40 ^D						
15d	${}^{2}D_{3/2}$	_	148485.00°	_	_	0.800 ^{C,D}	_		
	- 5/2		147496.60 ^D			.,			
	$^{2}D_{cr}$	_	148493 20 ^C	_	_	1 200 ^{C,D}	_		
	D 5/2		147504 80 ^D			1,200			
164	² D		147304,80 148242 00 ^D			0.800D			
100	² D	-	140342,90	-	_	1,200 ^D	-		
171	² D _{5/2}	_	146549,40 140024.80 ^D	_	_	1,200 0.800 ^D	_		
1/a	D _{3/2}	-	149024,80	-	-	0,800 1,200D	-		
	² D _{5/2}	-	149030,10 ^b	-	-	1,200 ^b	-		
18d	$^{2}D_{3/2}$	-	149570,80	-	-	0,800 ^D	-		
	${}^{2}D_{5/2}$	-	149575,10 ^b	-	-	1,200 ^b	-		
19d	${}^{2}D_{3/2}$	-	150024,70 ^D	-	-	0,800 ^D	—		
	${}^{2}D_{5/2}$	-	150028,30 ^D	-	-	1,200 ^D	-		
20d	${}^{2}D_{3/2}$	-	150410,20 ^D	-	-	$0,800^{D}$	-		
	${}^{2}D_{5/2}$	-	150413,20 ^D	-	-	1,200 ^D	-		
9g	${}^{2}G_{7/2}$	139288.61 ^A	141216.40 ^{A,C}	_	0.889 ^{A,B,C,D}	$0.889^{A,B,C,D}$	_		
- 0	- 112	140560.45^{B}	141860 20 ^B		-,	.,			
		150001 20 ^C	141000,20 141000,00 ^D						
		139601,26	141228,00						
		161023,895							
	${}^{2}G_{9/2}$	139288,64 ^A	141216,60 ^{A,C}	-	1,111 ^{A,B,C,D}	1,111 ^{A,B,C,D}	-		
		140560,47 ^в	141860,40 ^в						
		159806 69 ^C	141228 20 ^D						
		161029 33 ^D							
10~	2 C	101027,33	143562 40A.C	_	_	0 880 ^{A,B,C,D}	_		
10g	U _{7/2}	_	143302,40	-	-	0,009	_		
			144304,43 ²						
	2~		1435/4,00			AAARCD			
	$G_{9/2}$	-	143562,60 ^{A,C}	_	-	1,111 ^{A, B, C, D}	-		
			$144364,485^{B}$						
			143574,20 ^D						
11g	${}^{2}G_{7/2}$	-	146291,40 ^C	-	-	0,889 ^{C,D}	_		
-			145303,00 ^D						
	${}^{2}G_{9/2}$	_	146291,60 ^C	_	_	1,111 ^{C,D}	_		
			145303,20 ^D						

Tablo A.3. La III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları (Tablo 3.11'in geniş hali)

Tablo A.3. Devam

South	volor		F			a aawnani	
Konf.	Terim	Ви ся	lisma	Diğer	Buca	g-çar panı alısma	Diğer
1101111	101111	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
12g	$^{2}G_{7/2}$	_	147608.70 ^C	_	_	0.889 ^{C,D}	_
8	- 112		146620,30 ^D			-,	
	${}^{2}G_{9/2}$	_	147608,70 ^C	_	_	1,111 ^{C,D}	_
			146620,30 ^D				
13g	${}^{2}G_{7/2}$	-	148633,997 ^C	-	-	0,889 ^{C,D}	-
	2		147645,60 ^D			C D	
	${}^{2}G_{9/2}$	-	148634,00 ^C	-	-	1,111 ^{C,D}	-
			147645,60 ^b				
14a	^{2}C		140448 70 ^C			0 880 ^{C,D}	
14g	G _{7/2}	-	149448,70 148460 30 ^D	-	-	0,889	_
	$^{2}G_{\alpha\alpha}$	_	149448 70 ^C	_	_	1 111 ^{C,D}	_
	09/2		148460 30 ^D			1,111	
15g	$^{2}G_{7/2}$	_	150107.10 ^C	_	_	0.889 ^{C,D}	_
	- 112		149118,70 ^D			-,	
	${}^{2}G_{9/2}$	_	150107,10 ^C	_	_	1,111 ^{C,D}	_
	~-		149118,70 ^D				
Tek pari	ite için:						
10p	${}^{2}P^{o}{}_{1/2}$	-	134776,00 ^{A,C}	-	_	0,666 ^{A,B,C,D}	-
			134770,80 ^в				
	2-0		133877,20 ^D				
	${}^{2}\mathrm{P}^{0}_{3/2}$	-	134965,70 ^{A,C}	-	-	1,334 ^{A,B,C,D}	-
			134960,50 ^b				
11.	$2\mathbf{p}^{0}$		134066,90 ⁻			O CCCC,D	
rip	P 1/2	_	138374,30 138475 70 ^D	_	—	0,000	_
	$2\mathbf{p}^{0}$		138502 30 ^C			1 334 ^{C,D}	
	1 3/2	-	138603 50 ^D	-	-	1,554	-
12n	${}^{2}\mathbf{P}^{0}$	_	142530 70 ^C	_	_	0.666 ^{C,D}	_
12p	▲ 1/2		141631.90 ^D			0,000	
	${}^{2}P^{0}_{3/2}$	_	142620,80 [°]	_	_	1,334 ^{C,D}	_
	5/2		141722,00 ^D			y	
13p	${}^{2}P^{0}_{1/2}$	_	144795,90 [°]	_	_	0,666 ^{C,D}	_
			143897,10 ^D				
	${}^{2}\mathbf{P}^{o}_{3/2}$	-	144861,90 ^C	-	_	1,334 ^{C,D}	-
			143963,10 ^D			C D	
14p	${}^{2}P_{1/2}^{o}$	-	146476,90 ^C	-	-	0,666 ^{C,D}	-
	2-0		145578,10 ^D			(an (CD	
	${}^{2}\mathrm{P}^{0}_{3/2}$	_	146526,60 [°]	-	-	1,334°,5	-
15	² D ⁰		$145627,80^{-1}$			O CCC ^{C,D}	
15p	P 1/2	_	147750,20 146851.40 ^D	_	_	0,000	-
	$^{2}\mathbf{P}^{0}$	_	140851,40	_	_	1 33/ ^{C,D}	_
	1 3/2		146889 80 ^D			1,554	
16p	${}^{2}P^{0}_{1/2}$	_	147847.40 ^D	_	_	0.666 ^D	_
rop	${}^{2}P^{0}_{3/2}$	_	147877.70 ^D	_	_	1.334 ^D	_
17p	${}^{2}P_{1/2}^{0}$	-	148631,70 ^D	-	-	0,666 ^D	_
1	${}^{2}P_{3/2}^{o}$	-	148656,00 ^D	-	_	1,334 ^D	_
18p	${}^{2}P^{o}_{1/2}$	_	149278,80 ^D	-	_	0,666 ^D	-
-	${}^{2}P^{o}_{3/2}$	_	149298,60 ^D	-	-	1,334 ^D	-
19p	${}^{2}P^{o}_{1/2}$	-	149804,80 ^D	-	-	0,666 ^D	-
	${}^{2}P^{o}_{3/2}$	-	149821,10 ^D	-	-	1,334 ^D	-
20p	${}^{2}P_{1/2}^{o}$	_	150231,60 ^D	-	-	0,666 ^D	-
	${}^{2}P_{3/2}^{o}$	-	150245,20 ^D	-	- 	1,334 ^D	-
91	${}^{2}F_{5/2}^{0}$	140118,77 ^A	138237,40 ^{A,C}	-	0,8577,5,0	0,857/1,0,0,0	-
		136/59,41 ⁻	138237,10 ⁻				
	$2r^{0}$	1550/4,80 140125 58 ^A	138338,00 128240 70 ^{A,C}		1 1 / 2 A, B, C	1 1 1 2 A,B,C,D	
	F 7/2	140123,38 126760 58 ^B	138249,70 138240,40 ^B	-	1,145	1,145	-
		155601 75 ^C	138249,40 138350 00 ^D				
10f	${}^{2}\mathrm{F}^{0}_{5/2}$	_	142429 90 ^{A,C}	_	_	0.857 ^{A,B,C,D}	_
101	▲ 3/2		142429.70^{B}			5,057	
			141531.10 ^D				
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	_	142438.50 ^{A,C}	_	_	1.143 ^{A,B,C,D}	_
	- 112		142438.30 ^B				
			141539,70 ^D				
11f	${}^{2}F^{o}_{5/2}$	_	144721,40 ^C	_	_	0,857 ^{C,D}	_
			143822,60 ^D				
	${}^{2}F^{o}_{7/2}$	_	144727,70 [°]	-	-	1,143 ^{C,D}	-
			143828,90 ^D				

Tablo A.3. Devam

Sevi	yeler		Е			g-çarpanı		
Konf.	Terim	Bu ça	lışma	Diğer	Bu ça	alışma	Diğer	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
12f	${}^{2}F^{o}_{5/2}$	_	146415,50 [°]	-	_	0,857 ^{C,D}	_	
			145516,70 ^D					
	${}^{2}F^{o}_{7/2}$	_	146420,20 ^C	_	_	1,143 ^{C,D}	_	
			145521,40 ^D					
13f	${}^{2}F^{o}_{5/2}$	_	147701,30 [°]	-	-	$0,857^{C,D}$	-	
			146802,50 ^D					
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	147705,00 [°]	-	-	1,143 ^{C,D}	-	
			146806,20 ^D					
14f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	148707,00 ^C	-	-	0,857 ^{C,D}	-	
			147808,20 ^D					
	${}^{2}F^{o}_{7/2}$	-	148709,80 ^C	-	-	1,143 ^{C,D}	-	
			147811,00 ^D					
15f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	149503,60 ^C	-	-	0,857 ^{C,D}	-	
			148604,80 ^D					
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	149505,90 ^C	-	-	1,143 ^{C,D}	-	
			148607,10 ^D					
16f	${}^{2}F^{o}_{5/2}$	-	149257,60 ^D	-	-	0,857 ^D	-	
	${}^{2}F^{o}_{7/2}$	-	149259,50 ^D	-	-	1,143 ^D	-	
17f	${}^{2}F^{o}_{5/2}$	-	149781,30 ^D	-	-	0,857 ^D	-	
	${}^{2}F^{o}_{7/2}$	-	149782,90 ^D	-	-	1,143 ^D	-	
18f	${}^{2}F^{o}_{5/2}$	-	150211,90 ^D	-	-	0,857 ^D	-	
	${}^{2}F^{o}_{7/2}$	-	150213,10 ^D	-	-	1,143 ^D	-	
19f	${}^{2}F^{o}_{5/2}$	-	150578,80 ^D	-	-	0,857 ^D	-	
	${}^{2}F^{o}_{7/2}$	-	150579,90 ^D	_	-	1,143 ^D	-	
20f	${}^{2}F^{o}_{5/2}$	-	150894,10 ^D	-	-	0,857 ^D	-	
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	150895,00 ^D	-	-	1,143 ^D	-	

Geç	cişler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	alışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$6s^{2}S_{1/2}$	$8p^{2}P_{3/2}^{o}$	830,68 ^A	974,328 ^{A,C}	974,33ª	0,032 ^A	0,00010 ^{A,C,D}	$0,007^{a}$	$3,14(8)^{A}$	$6,95(5)^{A,C}$	$4,55(7)^{a}$
	1 0.1	8188,00 ^B	989,443 ^D		0,714 ^B			$7,08(7)^{B}$	6,64(5) ^D	, , , , , , , , , , , , , , , , , , ,
$4f^{2}F_{7/2}^{o}$	7d $^{2}D_{5/2}$	_	979,979 ^{A,B,C}	$979,98^{a}$	_	0,00094 ^{A,C}	$0,017^{a}$	_	6,53(6) ^{A,C}	$1,17(8)^{a}$
			1064,628 ^D			0,00074 ^B			$5,17(6)^{B}$	
						$0,00087^{D}$			$5,09(6)^{D}$	
$6s^{2}S_{1/2}$	$8p {}^{2}P_{1/2}^{0}$	831,94 ^A	980,285 ^{A,C}	980,29 ^a	$0,020^{A}$	0,00005 ^{A,C,D}	0,003 ^a	$1,97(8)^{A}$	$3,41(5)^{A,C}$	$2,24(7)^{a}$
	-	8312,80 ^B	994,498 ^D		0,314 ^B			$3,02(7)^{B}$	$3,27(5)^{D}$	
5d ² D _{3/2}	$7p^{2}P_{3/2}^{o}$	753,52 ^A	1058,632 ^{A,C}	1058,63 ^a	$0,001^{A,B}$	0,01348 ^{A,C}	$0,010^{a}$	$1,22(7)^{A}$	$8,02(7)^{A,C}$	$5,72(7)^{a}$
		751,30 ^B	1058,634 ^B			0,01317 ^B		$1,20(7)^{B}$	$7,84(7)^{B}$	
_	_		1064,386 ^D			0,01340 ^D			7,89(7) ^D	
5d ² D _{3/2}	$7p^{2}P_{1/2}^{o}$	754,73 ^A	1072,588 ^{A,C}	1072,59 ^a	$0,004^{A,B}$	0,06651 ^{A,C}	$0,048^{a}$	$0,51(8)^{A}$	$3,86(8)^{A,C}$	$2,75(8)^{a}$
		752,60 ^B	1072,590 ^B			0,06501 ^B		$0,50(8)^{B}$	$3,77(8)^{B}_{B}$	
			1075,875 ^D			0,06631 ^D			3,82(8) ^D	
5d ² D _{5/2}	$7p^{2}P_{3/2}^{o}$	763,02 ^A	1076,901 ^{A,C}	1076,91 ^a	$0,007^{A,B}$	0,11924 ^{A,C}	0,085 ^a	$0,86(8)^{A}_{B}$	$6,86(8)^{A,C}_{p}$	$4,89(8)^{a}$
		760,60 ^B	1076,911 ^B			0,11646 ^B		$0,84(8)^{B}$	$6,70(8)^{B}_{D}$	
2	2 -		1083,835 ^D			0,11848 ^D			6,73(8) ^D	
5d ² D _{3/2}	$5f^2F_{5/2}^0$	881,82 ^A	1081,611 ^{A,C}	1081,61 ^a	0,576 ^A	1,63996 ^{A,C}	1,377 ^a	$4,94(9)^{A}_{B}$	$9,35(9)^{A,C}_{B}$	$7,85(9)^{a}_{b}$
		878,80 ^B	1081,613 ^b		0,585	1,64879 ^b		5,05(9) ^b	$9,40(9)^{\text{B}}$	$9,06(9)^{0}$
2	2-		1080,261		A D	1,64201			9,39(9) ^b	
$6p^2 P_{1/2}^0$	9d ² D _{3/2}	1033,32 ^A	1099,003 ^{A,C}	$1099,00^{a}$	0,002 ^{A,B}	0,02907 ^{A,C}	0,017 ^a	$1,36(7)^{A}$	16,10(7) ^{A,C}	$9,21(7)^{a}$
		1051,30 ^b	1099,004 ^B			0,01547 ^B		$1,29(7)^{B}$	8,54(7) ^b	
- 1 ² D	- c ² - c	004 504	1113,018	1000 503	0.50.54	0,02870	1	0.004	15,50(7) ^b	1.05(1.0)3
5d ² D _{5/2}	5f ² F ^o _{7/2}	894,62 ^A	1099,728 ^{A,C}	1099,73*	0,796 ^A	2,30420 ^{A,C}	1,935"	$0,63(10)^{A}$	$1,27(10)^{R,C,D}$	$1,07(10)^{a}$
		891,305	1099,729 ^b		0,8085	2,317/08 ^b		$0,68(10)^{5}$	$1,28(10)^{5}$	1,28(10)
5 1 ² D	5 C ² F ⁰	004.05Å	1098,973 ²	1100 708	0.040Å	2,305/95	0.0078	2.25(0)A	C 24(0)ACD	5 22(0)3
5d ⁻ D _{5/2}	5I F 5/2	894,85 ¹⁰	1100,699 ^{1,2,2}	1100,70°	0,040 ¹²	0,11511 ^{-4,6}	0,097*	3,35(8) ¹	6,34(8) ^{-1,2,2}	$5,32(8)^{*}$
		891,60-	1100,300-		0,041-	$0,115/5^{-1}$		3,43(8)	6,37(8)	6,49(8)
$C = \frac{2D^{0}}{D}$	10 - 20		1101 015Å	1101 018		0,11515 0.011c1AC	0.0128		C 20(7)AC	7.07(7)8
op P 1/2	108 51/2	-	1101,015 1101,014 ^B	1101,01	-	0,01101	0,015	—	0,39(7)	7,07(7)
			1101,014 1101,010 ^C			0,01519 0.01146 ^D			$(7,20(7))^{D}$	
			1101,010 1115 592 ^D			0,01140			0,14(7)	
$6n^2D^0$	0.4 ² D	1056 05 ^A	1113,362 1126 904 ^{A,B,C}	1126 80ª	0.020 ^A	0.05059A,C	0.020a	1 10(0)A	2 61(9)A,C	$1.50(8)^{a}$
op P _{3/2}	90 D _{5/2}	1030,03 1074 80 ^B	1150,804 1144.082 ^D	1150,80	0,020 0.010 ^B	0,03038 0,02787 ^B	0,029	1,10(0) $1,12(0)^{B}$	$2,01(8)^{B}$	1,50(8)
		1074,80	1144,062		0,019	0,02787		1,12(0)	1,44(0) 2,56(8) ^D	
$6n^{2}P^{0}$	$9d^{2}D_{rr}$	1056 09 ^A	1137 712 ^{A,C}	1137 71 ^a	0.002 ^{A,B}	0,05020 0,00562 ^{A,C}	0.003ª	$1.30(7)^{A}$	2,30(8) 2,80(7) ^{A,C}	$1.66(7)^{a}$
op 1 3/2	Ju D _{3/2}	1074 90 ^B	1137,712 1137 713 ^B	1137,71	0,002	0,00306 ^B	0,005	1,30(7) 1 24(7) ^B	2,09(7) 1 58(7) ^B	1,00(7)
		10/4,20	1144.807 ^D			0.00558 ^D		1,27(7)	$2.84(7)^{D}$	

Tablo A.4. La III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹) (Tablo 3.12'nin geniş hali)

Tablo A.4. Devam

Geç	işler		λ			gf		gA_{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	alışma	Diğer
	•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6p ² P ^o _{3/2}	$10s^{-2}S_{1/2}$	-	1139,868 ^{A,B,C}	1139,87 ^a	-	0,02243 ^{A,C}	0,025 ^a	-	$1,15(8)^{A,C}$	1,27(8) ^a
			1147,519 ^D			0,02556 ^B			$1,31(8)^{B}$	
						0,02228 ^D			1,13(8) ^D	
$6p^{-2}P_{1/2}^{o}$	8d ² D _{3/2}	1071,11 ^A	1208,793 ^{A,C}	1208,79 ^a	0,011 ^{A,B}	0,06468 ^{A,C}	0,041ª	$0,64(8)^{A}$	$2,95(8)^{A,C}$	$1,86(8)^{a}$
		1090,40 ^b	1208,792 ^B			0,03951 ^B		0,61(8) ^b	1,80(8) ^b	
< ² D0	0 20	1017 00Å	1224,130 ^b	1010 008	0.00024	0,063875	0.0263	1.42(6)A	2,84(8)	1.1.((0))
6p ² P ³ _{1/2}	$9s^{-1}S_{1/2}$	1017,99 ⁴	1212,283 ^{1,0,0}	1212,28	0,0002	0,02340 ^{-4,0}	0,026"	$1,43(6)^{11}$	1,06(8) ^{A,C}	1,16(8)"
		1038,605	1228,5215		0,0025	0,02629 ²		$0,13(8)^{5}$	1,19(8) ^D	
C- 20	$7 - 20^{\circ}$	962 71A	1006 546AC	1026 558	0.051Å	0,02310 ⁻	0.000	1 5 C (D)A	$1,02(8)^{-1}$	2 20(7)
os $S_{1/2}$	/p P _{3/2}	803,/1	1230,340	1230,35	0,051	0,00061	0,000	4,50(8)	$0,27(7)^{B}$	2,39(7)
			1256,549			0,00139			0,70(7) 0.25(7) ^D	
$6n^{2}P^{0}$	8d ² D	1005 50 ^A	1253,540 1253,006 ^{A,B,C}	1254 00 ^a	0.047 ^A	0.11223 ^{A,C}	0.071 ^a	$2.61(8)^{A}$	0,23(7)	$3.00(8)^{a}$
op 1 _{3/2}	ou D _{5/2}	1115 70 ^B	1253,990 1261 258 ^D	1254,00	0.046^{B}	0.07021^{B}	0,071	2,01(8) 2,47(8) ^B	$(3)^{4}, (0)^{8}$	5,00(8)
		1115,70	1201,230		0,040	0.11159 ^D		2,47(0)	2,58(8) ^D	
$68^{-2}S_{1/2}$	$7n^{-2}P^{0}_{1/2}$	865.30 ^A	1255.630 ^{A,C}	1255.63ª	0.034 ^A	0.00030 ^{A,C,D}	0.003 ^a	$3.02(8)^{A}$	$0.13(7)^{A,C}$	$1.14(7)^{a}$
05 01/2	/P 1/2	005,50	1255,631 ^B	1255,05	0,051	0.00079^{B}	0,005	5,02(0)	$0.33(7)^{B}$	1,1 ((/)
			1272.583 ^D			0,00072			$0.12(7)^{D}$	
$6p^{-2}P_{3/2}^{0}$	$8d^{2}D_{3/2}$	$1095,59^{A}$	1255,788 ^{A,C}	1255,79 ^a	0,005 ^{A,B}	0,01245 ^{A,C}	0.008^{a}	$2,90(7)^{A}$	5,27(7) ^{A,C}	$3,32(7)^{a}$
1 5/2	5/2	1115,80 ^B	1255,787 ^B			0,00773 ^B		$2,75(7)^{B}$	$3,27(7)^{B}$	
			1262,692 ^D			0,01238 ^D			$5,18(7)^{D}$	
6p ² P ^o _{3/2}	$9s^{-2}S_{1/2}$	1040,09 ^A	1259,554 ^A	1259,55 ^a	0,012 ^A	0,04505 ^{A,C}	$0,049^{a}$	$0,74(8)^{A}$	$1,89(8)^{A,C}$	2,07(8)
-		1061,60 ^B	1259,555 ^{в,с}		0,003 ^B	0,05073 ^B		$0,18(8)^{B}$	$2,13(8)^{B}$	
			1267,365 ^D			0,04478 ^D			1,86(8) ^D	
$4f^{2}F_{5/2}^{0}$	6d ² D _{5/2}	893,31 ^A	1322,417 ^{A,B,C}	1322,42 ^a	$0,00^{A}$	0,00004 ^{A,B,C,D}	$0,002^{a}$	$0,16(5)^{A}$	$0,17(6)^{A,B,C}$	$7,00(6)^{a}$
2	2	906,70 ^в	1470,962 ^D			1.0.0		$0,27(5)^{B}$	$0,12(6)^{D}$	
$4f^{-2}F_{5/2}^{0}$	6d ² D _{3/2}	893,54 ^A	1330,042 ^{A,C}	1330,04 ^a	0,00001 ^A	0,00061 ^{A,B,C}	$0,026^{a}$	$0,86(5)^{A}$	$0,23(7)^{A,C}$	$9,64(7)^{a}$
		906,90 ^в	1330,041 ^B		0,000 ^в	0,00055 ^в		$0,19(6)^{B}$	0,22(7) ^B	
1.0. 200	2-		1478,895 ^b		0 000071	0.0000 AC	0.0.0.0	A	0,168(7) ^D	
$4f^{-2}F_{7/2}^{0}$	6d ² D _{5/2}	906,88 ^A	1349,182 ^{A,C}	1349,18ª	0,00005 ^A	0,00086 ^{A,C}	0,036ª	0,391(6)^	$3,16(6)^{A,C}$	$1,32(8)^{a}$
		920,60 ^b	1349,184 ^b		0,000	0,00084 ^B			3,07(6) ^B	
< ² D0	71 ² D	1100 144	1508,610 ^B	1 450 453	0.0124Å	0,000775	0.1568	0.70(0) Å	2,26(6)	1.00/03
6p ² P ³ _{1/2}	/d ² D _{3/2}	1132,14	1459,445 ^{n,e}	1459,45"	0,0134	0,21583 ^{ra,e}	0,156"	0,70(8).	$6, / 6(8)^{B}$	4,88(8) ^a
			1459,448 ⁵			0,15847 ²			4,96(8) ^b	4,26(8)
$(-2\mathbf{p})^0$	$\rho = \frac{2\rho}{r}$		14//,010 ⁻	1466.20^{a}		$0,21317^{-1}$	0.0008		$0,51(8)^{-}$	$2 15(0)^{a}$
op P 1/2	$\delta S = S_{1/2}$	-	1400,394	1400,39	-	0,06447	0,069	-	$2,00(8)^{B}$	2,15(8)
			1485,015			0,07093			2,20(8)	
						0,06364			1,92(8)	

Tablo A.4. Devam

Geç	çişler		λ			gf		gA _{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	calışma	Diğer	Bu ç	alışma	Diğer
•		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6p ² P ^o _{3/2}	7d ² D _{5/2}	1159,36 ^A	1523,755 ^{A,C}	1523,75 ^a	0,091 ^A	0,37210 ^{A,C}	0,269 ^a	$4,52(8)^{A}$	10,70(8) ^{A,C}	$7,71(8)^{a}$
1		$1182,00^{B}$	1523,753 ^B		0,089 ^B	0,27662 ^B		$4,26(8)^{B}$	$7,95(8)^{B}$	$6,02(8)^{b}$
			1530,308 ^D			0,37050 ^D			$10,60(8)^{D}$	
$6p^{2}P_{3/2}^{o}$	7d $^{2}D_{3/2}$	1159,53 ^A	1528,506 ^{A,C}	1528,51 ^a	0,010 ^{A,B}	0,04122 ^{A,C}	0,030 ^a	$5,04(7)^{A}$	$11,80(7)^{A,C}$	$8,49(7)^{a}$
		1182,20 ^B	1528,510 ^B			0,03052 ^B		$4,76(7)^{B}$	$8,71(7)^{B}$	$6,23(7)^{b}$
			1534,171 ^D			0,04106 ^D			$11,60(7)^{D}$	
6p ² P ^o _{3/2}	8s ${}^{2}S_{1/2}$	1078,56 ^A	1536,130 ^{A,C}	1536,13 ^a	0,009 ^A	0,12309 ^{A,C}	0,132 ^a	$0,52(8)^{A}$	3,48(8) ^{A,C}	3,73(8) ^a
		1099,80 ^B	1536,131 ^B		$0,005^{B}$	0,13556 ^B		$0,25(8)^{B}$	$3,83(8)^{B}_{-}$	
			1542,796 ^D			0,12256 ^D			3,43(8) ^D	
$6d^{-2}D_{3/2}$	$8f^{-2}F_{5/2}^{0}$	-	1923,336 ^{A,C}	1923,33 ^a	-	0,18809 ^{A,C}	0,185 ^a	-	3,39(8) ^{A,C}	$3,33(8)^{a}$
			1923,335 ^в			0,17828 ^B			$3,22(8)^{B}$	
. 2-	2		1939,886 ^D			0,18648 ^D			3,31(8) ^D	
6d ² D _{5/2}	$8f^{-2}F_{7/2}^{0}$	-	1938,533 ^{A,C}	1938,53ª	-	0,26659 ^{A,C}	0,262ª	-	4,73(8) ^{A,C}	$4,65(8)^{a}$
			1938,535 ^b			0,25304 ^B			4,49(8) ^b	
<1. ² D	oc 200		1953,000 ⁸	1020 513		0,26462	0.0103		4,63(8) ^b	2.22(7)3
6d ² D _{5/2}	81 ⁻ F ^o _{5/2}	-	1939,50/ ^{1,0}	1939,51"	-	0,01332 ^{rt,e}	0,013"	—	$2,36(7)^{B}$	2,32(7)"
			1939,508 ⁻			0,01265 ⁻			$2,24(7)^{P}$	
5f 2D0	$8 \times 2C$	4101 72A	1955,700 2142 812A.C	2142 128	0.420Å	0,01525 0.08012 ^{A,C}	0.074 a	1 67(9)A	2,31(7) 1 20(8)A,B,C	1 00(0)a
JI Г 5/2	og 0 _{7/2}	4181,75 4401 10 ^B	2143,815 2142,810 ^B	2145,15	0,439 0.400 ^B	0,08913 0,08013 ^B	0,074	1,0/(8) 1,25(8) ^B	1,29(8) ^D	1,08(8)
		4491,10	2143,810 2203 605 ^D		0,409	0,08913 0.08671 ^D		1,55(8)	1,19(0)	
5f ² F ⁰	$8\sigma^2 G_{rr}$	4186 87 ^A	2203,095 2147 441 ^{A,C}	2146 77 ^a	0 566 ^A	0,03071 0,11535 ^{A,B,C}	0.096 ^a	$2.15(8)^{A}$	1 67(8) ^{A,B,C}	$1.39(8)^{a}$
JI I 7/2	0g 0 _{9/2}	4497 10 ^B	2147,441 2147 443 ^B	2140,77	0,528 ^B	0,11213 ^D	0,000	$1.74(8)^{B}$	1,07(8) 1,53(8) ^D	1,57(0)
		1197,10	2209.021 ^D		0,520	0,11215		1,7 1(0)	1,55(0)	
$5f^{2}F^{0}_{7/2}$	$8g^{-2}G_{7/2}$	4186.87 ^A	2147.503 ^{A,C}	2146.83 ^a	0.016 ^A	0.00330 ^{A,B,C}	0.003 ^a	$6.15(6)^{A}$	$4.77(6)^{A,B,C}$	$3.98(6)^{a}$
	-8 -112	4497.10 ^B	2147.502 ^B		0.015 ^B	0.00320	-,	$4.97(6)^{B}$	$4.38(6)^{D}$	-,, -(-)
		,	2209,037 ^D		-,	-,		.,,, . (0)	.,(.)	
$7s^{-2}S_{1/2}$	$9p^{-2}P_{3/2}^{o}$	_	2193,574 ^{A,B,C}	2192,89 ^a	_	0,00003 ^{A,C,D}	0,001 ^a	_	$4,42(4)^{A,C}$	$1,61(6)^{a}$
	1 0.1		2229,752 ^D			0,00001 ^B			$1,06(4)^{B}$	
									$4,21(4)^{D}$	
6d ² D _{3/2}	$9p^{-2}P_{3/2}^{o}$	6009,31 ^A	2195,187 ^{A,C}	2194,50 ^a	0,009 ^{A,B}	0,00259 ^{A,C}	0,002 ^a	$1,60(6)^{A}$	3,58(6) ^{A,C}	$3,28(6)^{a}$
		5466,00 ^в	2195,182 ^B			0,00300 ^B		$2,07(6)^{B}$	$4,15(6)^{B}$	
	_		2224,792 ^D			0,00255 ^D			3,44(6) ^D	
$6d^{-2}D_{3/2}$	$9p^{-2}P_{1/2}^{o}$	6077,18 ^A	2213,952 ^{A,C}	2213,26 ^a	0,044 ^A	0,01282 ^{A,C}	0,012 ^a	$0,80(7)^{A}$	$1,75(7)^{A,C}$	$1,60(7)^{a}$
		5522,10 ^B	2213,947 ^B		0,048	0,01487 ^в		$1,04(7)^{B}$	$2,02(7)^{B}$	
	- 2-0		2239,716 ^D			0,01267 ^D			1,69(7) ^D	
6d ² D _{5/2}	9p ² P ^o _{3/2}	6019,47 ^A	2216,278 ^{A,C}	2215,58ª	0,072 ^A	0,02306 ^{A,C}	0,021ª	$1,98(7)^{A}$	$3,13(7)^{A,C}$	$2,87(7)^{a}$
		5474,60°	2216,276 [°]		0,0765	0,02665°		1,70(7)	3,62(7) ^b	
			2242,989			0,022785			3,02(7)	

Tablo A.4. Devam

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Geçişler			λ			gf		$gA_{ m ki}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	alışma	Diğer
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5d ² D _{3/2}	$6p^{2}P^{o}_{3/2}$	2192,37 ^A	2216,754 ^{A,C}	2216,07 ^a	0,145 ^A	0,15150 ^{A,C}	0,129 ^a	$2,01(8)^{A}$	$2,06(8)^{A,C}$	$1,75(8)^{a}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2173,50 ^B	2216,758 ^B	2216,067 ^c	$0,150^{B}$	0,13512 ^B		$2,11(8)^{B}$	$1,83(8)^{B}$	$1,56(8)^{b}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2236,528 ^D			0,15016 ^D			$2,00(8)^{D}$	
$\begin{array}{cccc} 2239,044^{B} & 2238,355^{c} & 0,33876^{B} & 4,51(8)^{B} \\ 2252,442^{D} & 0,25408^{D} & 4,6688^{D} \end{array}$	$6d^{2}D_{3/2}$	$7f^{2}F_{5/2}^{0}$	_	2239,050 ^{A,C}	2238,35 ^a	-	0,35620 ^{A,C}	0,358 ^a	_	4,74(8) ^{A,C}	$4,76(8)^{a}$
$2252 \text{ A} \text{A} 2^{\text{D}}$ 0.25408 ^D A cc/0 ^D				2239,044 ^B	2238,355°		0,33876 ^B			$4,51(8)^{B}$	
2252,442 U,53406 4,00(8)				2252,442 ^D			0,35408 ^D			$4,66(8)^{D}$	
$6d^{2}D_{5/2} \qquad 7f^{2}F^{9}_{7/2} \qquad - \qquad 2259,315^{A,C}_{A,C} \qquad 2258,61^{a} \qquad - \qquad 0,50429^{A,C}_{A,C} \qquad 0,507^{a} \qquad - \qquad 6,59(8)^{A,C}_{A,C} \qquad 6,62(8)^{a}$	6d ² D _{5/2}	$7f^{2}F_{7/2}^{\circ}$	-	2259,315 ^{A,C}	2258,61 ^a	-	0,50429 ^{A,C}	0,507 ^a	-	6,59(8) ^{A,C}	$6,62(8)^{a}$
$2259,314^{\text{B}}_{\text{a}}$ $2258,609^{\text{a}}_{\text{a}}$ $0,48020^{\text{B}}_{\text{a}}$ $6,28(8)^{\text{B}}_{\text{a}}$				2259,314 ^B	2258,609 ^a		0,48020 ^B			$6,28(8)^{B}$	
2269,569 ^b 0,50201 ^b 6,50(8) ^b				2269,569 ^D			0,50201 ^D			6,50(8) ^D	
$6d^{2}D_{5/2} \qquad 7f^{2}F^{\circ}_{5/2} \qquad - \qquad 2260,996^{A,C} \qquad 2260,30^{a} \qquad - \qquad 0,02520^{A,C} \qquad 0,025^{a} \qquad - \qquad 3,29(7)^{A,C} \qquad 3,30(7)^{a}$	6d ² D _{5/2}	$7f^{-2}F_{5/2}^{\circ}$	-	2260,996 ^{A,C}	2260,30 ^a	-	0,02520 ^{A,C}	0,025 ^a	-	$3,29(7)^{A,C}$	$3,30(7)^{a}$
$2260,994^{\text{B}}$ $2260,295^{\text{c}}$ $0,02399^{\text{B}}$ $3,13(7)^{\text{B}}$				2260,994 ^B	2260,295°		0,02399 ^B			3,13(7) ^B	
2271,096 ^b 0,02508 ^b 3,24(7) ^b		2		2271,096 ^b			0,02508			3,24(7) ^b	
$5d^{2}D_{5/2}$ $6p^{2}P_{3/2}^{*}$ $2274,76^{*}$ $2298,441^{*,*}$ $2297,74^{*}$ $1,260^{*}$ $1,31503^{*,*}$ $1,120^{*}$ $1,62(9)^{*}$ $1,66(9)^{*,*}$ $1,41(9)^{*}$	5d ² D _{5/2}	$6p^{-2}P_{-3/2}^{0}$	2274,76 ^A	2298,441 ^{A,C}	2297,74ª	1,260 ^A	1,31503 ^{A,C}	1,120 ^a	$1,62(9)^{A}$	1,66(9) ^{A,C}	$1,41(9)^{a}$
$2253,00^{6}$ $2298,439^{6}$ $2297,737^{6}$ $1,302^{6}$ $1,7176^{6}$ $1,71(9)^{6}$ $1,48(9)^{6}$ $1,33(9)^{6}$			2253,00 ^b	2298,439 ^b	2297,737°	1,302	1,17176 ^b		$1,71(9)^{\rm b}$	1,48(9) ^b	1,33(9)
$2324,164^{\circ}$ $2298,44^{\circ}$ $1,5004^{\circ}$ $1,610^{\circ}$ $1,610^{\circ}$	51. ² D	< ² D0	2207 47Å	2324,164	2298,44ª	0.000	1,300475	0 (01)	0.7(0)	1,61(9)	7.07(0)3
5d $D_{3/2}$ 6p $P_{1/2}^{*}$ 2297,4/* 2380,094** 2379,5/* 0,095** 0,7051** 0,601** 8,6(8)** 8,51(8)** 7,07(8)*	5d ² D _{3/2}	6p ² P ³ 1/2	2297,47 ^A	2380,094 ^{4,0}	23/9,3/*	0,693 ⁴	0,70551 ^{rt,e}	0,601"	8, /6(8) ^A	8,31(8) ^{.4,0}	/,0/(8)"
$22/6,80^{-2}$ $2380,099^{-2}$ $2379,574^{-2}$ $0,716^{-2}$ $0,62939^{-2}$ $9,20(8)^{-7}$ $7,41(8)^{-6}$ $6,78(8)^{-7}$			2276,80-	2380,099 ⁻	23/9,3/4 ⁻	0,716-	0,62939 ²		9,20(8)-	$7,41(8)^{-1}$	$6, 78(8)^{\circ}$
$\frac{2508,094^{\circ}}{2508,094^{\circ}} = 2380,10^{\circ} = 0,70890^{\circ} = 0,70890^{\circ} = 8,43(8)^{\circ} = 8,43(8)^{\circ} = 8,43(8)^{\circ} = 8,43(8)^{\circ} = 1,2008,1008,1008,1008,1008,1008,1008,100$	5.6 200	7 - 2C	5012 14Å	2368,694 ⁻	2380,10	1 200Å	$0,70890^{-1}$	0.1068	2 27(0)A	$8,43(8)^{-1}$	$2.20(9)^{3}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51 F 5/2	/g G _{7/2}	5215,14 5702 20 ^B	2388,719 2288,714 ^B	2387,99	1,290 1,180 ^B	0,22590	0,196	2,3/(8) 2,41(8) ^B	2,04(8)	2,29(8)
3703,20 2368,114 2367,988 1,160 0,22000 2,41(8) 2,4			5705,20	2300,/14 2462 556 ^D	2387,988	1,160	0,22000 0.21000 ^D		2,41(8)	2,41(8)	
2405,500 $0,21909$ $0,2190$	5f ² E ⁰	$7\alpha^2 C$	5221 12 ^A	2405,550 2202 222 ^{A,C}	2202 40 ^a	1 660 ^A	0,21909	0.254ª	4 07(8) ^A	2 11(9)A,B,C	$2.06(8)^{a}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	JI I 7/2	/g U _{9/2}	5712.80 ^B	2393,223 2303 226 ^B	2392,49 2302.402°	1,000 1,520 ^B	0,29230 0.20237 ^B	0,234	4,07(8) 3 10(8) ^B	3,41(8) 3 10(8) ^D	2,90(8)
$5712,80$ $2595,220$ $2592,492$ $1,520$ $0,29257$ $5,10(8)$ $5,10(8)$ $2470,000^{\rm D}$			5712,00	2393,220 2470 204 ^D	2392,492	1,520	0,29237 0,28325 ^D		5,10(8)	5,10(8)	
$5f^{2}F_{r,2}^{o}$ $7g^{2}G_{r,2}$ 522114^{A} 2392 $301^{A,C}$ 2392 57^{a} 0.047^{A} $0.00835^{A,B,C}$ 0.007^{a} $1.16(7)^{A}$ 9.73(6) ^{A,B,C} 8.45(6)^{a}	$5f^{2}F^{0}r^{0}$	$7\sigma^2 G_{\pi\pi}$	5221 14 ^A	2393 301 ^{A,C}	2392 57ª	0.047^{A}	0,20325 0,00835 ^{A,B,C}	0.007^{a}	$1.16(7)^{A}$	9 73(6) ^{A,B,C}	$8.45(6)^{a}$
$5117_{1/2}$ $7g$ $61_{1/2}$ $5221,14$ $2552,57$ $0,047$ $0,00055$ $0,007$ $1,1107$ $2,150$ $0,005$	31 1 7/2	15 01/2	5712 80 ^B	2393,301 2393,298 ^B	2372,37	0.043^{B}	$0,00809^{B}$	0,007	$1,10(7)^{B}$	8 85(6) ^D	0,45(0)
2470/233 ^D			5712,00	2470,233 ^D		0,015	0,0000)		1,11(7)	0,05(0)	
$5f^{2}F_{52}^{\circ}$ 9d $^{2}D_{52}$ 3717.06 ^A 2461.702 ^{A,C} 2460.95 ^a 0.0004 ^A 0.00128 ^{A,C} 0.002 ^a 1.95(5) ^A 1.41(6) ^{A,C} 1.67(6) ^a	$5f^{2}F_{5/2}^{0}$	$9d^{-2}D_{5/2}$	3717.06 ^A	2461.702 ^{A,C}	2460.95 ^a	0.0004^{A}	0.00128 ^{A,C}	0.002^{a}	$1.95(5)^{A}$	$1.41(6)^{A,C}$	$1.67(6)^{a}$
$3959.40^{B} 2461.700^{B} 0.000^{B} 0.00137^{B} 1.62(5)^{B} 1.51(6)^{B}$		<i>y</i> =	3959.40 ^B	2461.700 ^B	,.	0.000 ^B	0.00137 ^B	-,	$1.62(5)^{B}$	$1.51(6)^{B}$	-,(-)
2528.558^{D} 0.00125^{D} $1.30(6)^{\text{D}}$, -	2528,558 ^D		- ,	0,00125 ^D		- (- <i>)</i>	$1,30(6)^{D}$	
$5f^{2}F_{5/2}$ 9d $^{2}D_{3/2}$ 3717,64 ^A 2465,967 ^{A,C} 2465,22 ^a 0,006 ^A 0,01788 ^{A,C} 0,021 ^a 0,27(7) ^A 1,96(7) ^{A,C} 2,33(7) ^a	$5f^{2}F_{5/2}^{0}$	$9d^{-2}D_{3/2}$	3717,64 ^A	2465,967 ^{A,C}	2465,22ª	0,006 ^A	0,01788 ^{A,C}	0,021 ^a	$0,27(7)^{A}$	$1,96(7)^{A,C}$	$2,33(7)^{a}$
$3960,10^{B}$ $2465,966^{B}$ $0,005^{B}$ $0,01925^{B}$ $0,22(7)^{B}$ $2,11(7)^{B}$			3960,10 ^B	2465,966 ^B		0,005 ^B	0,01925 ^B		$0,22(7)^{B}$	$2,11(7)^{B}$,
$0.01742^{\rm D}$ $1.81(7)^{\rm D}$				2532,101 ^D			0,01742 ^D			$1,81(7)^{D}$	
$5f^{2}F_{7/2} \qquad 9d^{2}D_{5/2} \qquad 3721,12^{A} \qquad 2466,569^{A,B,C} \qquad 2465,82^{a} \qquad 0,009^{A,B} \qquad 0,02554^{A,C} \qquad 0,030^{a} \qquad 0,44(7)^{A} \qquad 2,80(7)^{A,C} \qquad 3,33(7)^{a} \qquad 0,010^{A,C} \qquad 0,0$	$5f^{2}F_{7/2}^{o}$	9d ² D _{5/2}	3721,12 ^A	2466,569 ^{A,B,C}	2465,82ª	0,009 ^{A,B}	0,02554 ^{A,C}	0,030 ^a	$0,44(7)^{A}$	$2,80(7)^{A,C}$	$3,33(7)^{a}$
$3964,00^{\text{B}}$ $2535,593^{\text{B}}$ $0,02744^{\text{B}}$ $0,36(7)^{\text{B}}$ $3,01(7)^{\text{B}}$			3964,00 ^B	2535,593 ^в			0,02744 ^B		$0,36(7)^{B}$	$3,01(7)^{B}$	
$0.02485^{\rm D}$ 2,58(7) ^D							0,02485 ^D			2,58(7) ^D	
$6p^{-2}P_{1/2} \qquad 6d^{-2}D_{3/2} \qquad 1244,77^{A}_{} \qquad 2477,351^{A,C}_{} \qquad 2476,60^{a} \qquad 0,254^{A}_{} \qquad 2,65084^{A,C}_{} \qquad 2,365^{a} \qquad 1,10(9)^{A}_{} \qquad 2,88(9)^{A,C}_{$	6p ² P ^o _{1/2}	6d ² D _{3/2}	1244,77 ^A	2477,351 ^{A,C}	2476,60 ^a	0,254 ^A	2,65084 ^{A,C}	2,365ª	$1,10(9)^{A}$	$2,88(9)^{A,C}$	2,57(9) ^a
$1270,90^{\text{B}}$ $2477,358^{\text{B}}$ $2476,599^{\text{c}}$ $0,249^{\text{B}}$ $2,47394^{\text{B}}$ $1,03(9)^{\text{B}}$ $2,69(9)^{\text{B}}$ $2,27(9)^{\text{b}}$			1270,90 ^в	2477,358 ^B	2476,599°	0,249 ^в	2,47394 ^B		$1,03(9)^{B}$	$2,69(9)^{B}$	2,27(9) ^b
2510,474 ^b 2,61586 ^b 2,77(9) ^b				2510,474 ^D			2,61586 ^D			2,77(9) ^D	

Tablo A.4. Devam

Geçişler			λ			gf			<u> </u>		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Diğer Bu çal		Diğer	
-	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
$6p^{-2}P_{1/2}^{\circ}$	$7s^{-2}S_{1/2}$	-	2479,409 ^{A,B,C}	2478,66 ^a	-	0,46312 ^{A,C}	0,475 ^a	-	5,03(8) ^{A,C}	$5,16(8)^{a}$	
1			2504,189 ^D	2478,652°		0,48943 ^B	,		$5,31(8)^{B}$	· · · ·	
						0,45853 ^D			$4,88(8)^{D}$		
$7p^{2}P_{1/2}^{o}$	9d ² D _{3/2}	-	2514,189 ^{A,B,C}	2513,43 ^a	-	0,08781 ^{A,C}	$0,077^{a}$	-	9,27(7) ^{A,C}	$8,10(7)^{a}$	
			2556,529 ^D	2513,432 ^c		$0,08266^{B}$			$8,72(7)^{B}$		
						0,08636 ^D			$8,81(7)^{D}$		
$7p^{-2}P_{1/2}^{\circ}$	10s ² S _{1/2}	-	2524,743 ^{A,C}	2523,98 ^a	-	0,03122 ^{A,C}	0,033ª	-	3,27(7) ^{A,C}	$3,44(7)^{a}$	
			2524,736 ^в			0,03106 ^B			$3,25(7)^{B}$		
			2570,097 ^D			0,03067 ^D			$3,10(7)^{D}$		
$7p^{-2}P_{3/2}^{\circ}$	9d ² D _{5/2}	-	2589,640 ^{A,C}	2588,86 ^a	-	0,15346 ^{A,C}	0,134 ^a	-	1,53(8) ^{A,C}	1,33(8) ^a	
			2589,636 ^B	2588,867°		0,14483 ^B			$1,44(8)^{B}_{-}$		
			2620,022 ^D			0,15168 ^D			1,47(8) ^D		
$7p^{-2}P_{3/2}^{o}$	$9d^{-2}D_{3/2}$	-	2594,360 ^{A,C}	2593,58 ^a	-	0,01702 ^{A,C}	0,015 ^a	-	$1,69(7)^{A,C}$	$1,47(7)^{a}$	
			2594,356 ^B			0,01602 ^B			$1,59(7)^{B}_{D}$		
- 2			2623,826 ^b			0,01683 ^D			1,63(7) ^D		
$7p^{-2}P_{-3/2}^{o}$	$10s^{-2}S_{1/2}$	-	2605,599 ^{A,C}	$2604,82^{a}$	-	0,06050 ^{A,C}	$0,064^{a}$	-	$5,94(7)^{A,C}$	$6,25(7)^{a}$	
			2605,588 ^b	2604,827°		0,06019 ^b			5,91(7) ^B		
- 2-0	2-		2638,120		o A	0,05975			5,73(7) ^b		
$6p^{-2}P_{-3/2}^{0}$	6d ² D _{5/2}	1277,51 ^A	2652,284 ^{A,C}	2651,50 ^a	0,444 ^A	4,4568 ^{A,C}	3,976ª	$1,81(9)^{A}$	4,23(9) ^{A,C,D}	$3,77(9)^{a}$	
		1305,005	2652,288 ^b	2651,501	0,433	4,16/6 ^b		1,69(9)	3,95(9)	3,66(9)	
< 2 D 0	<1. ² D	1077.054	2652,312	0.000.048	0.050Å	4,4568	0.4273	2 02 (0) Å	4 54(0) A C	4.05(0)3	
6p ² P ³ _{3/2}	6d $^{2}D_{3/2}$	12/7,96 ⁴	2683,134 ^{4,0}	2682,34"	0,050 ⁻⁴	0,48951 ^{4,0}	0,437	2,03(8) ^A	4,54(8) ^B	4,05(8) ^a	
		1305,50-	2683,143 ⁻	2682,345	0,049-	0,45768 ⁻		1,90(8)-	$4,24(8)^{-1}$	4,01(8)	
$C = \frac{2D^0}{2}$	7 - 20	1157 20 ^B	26/8,214 ⁻	2694 753	0.00CB	0,49041 ⁻	0.0708	$202(7)^{B}$	4,56(8) ⁻	0 12(0)3	
op P _{3/2}	/s S _{1/2}	1157,20	2085,548	2084,75 2684,757°	0,006	0,85514	0,878	2,92(7)	7,91(8)	8,12(8)	
			2085,550 2671.061 ^D	2084,737		0,90571 0,85077 ^D			8,30(8) 8,04(8) ^D		
$5f^{2}F^{0}$	$6\sigma^2 G$	0750 50 ^B	2071,001 2808 736 ^{A,C}	2807 88ª	6 002 ^B	0,85977 0,86572 ^{A,C}	0.786 ^a	1 83(8) ^B	6,04(8) 6,87(8) ^{A,B,C}	$6.24(8)^{a}$	
51 1 5/2	0g 0 _{7/2}	9759,50	2898,730 2898,732 ^B	2897,88 2897,875°	0,902	0,80572 0.86598 ^B	0,780	4,05(0)	$6.14(8)^{D}$	0,24(8)	
			2090,732 3010 240 ^D	2097,075		0,80398 0,83365 ^D			0,14(8)		
$5f^{2}F^{0}r^{0}$	$6\sigma^2 G_{or}$	9790 12 ^B	2905 410 ^{A,C}	2904 57 ^a	8 970 ^B	1,11965 ^{A,C}	1.016	$6.245(8)^{B}$	8 85(8) ^{A,B,C}	8 ()3(8) ^a	
51 1 7/2	05 09/2	5750,12	2905 419 ^B	2904,57 2904 576°	0,770	1 11991 ^B	1,010	0,245(0)	7 88(8) ^D	0,05(0)	
			3020 141 ^D	2004,570		1,07711 ^D			7,00(0)		
$5f^{2}F_{7}$	$6g^2G_{7/2}$	9787.50^{B}	2905 486 ^{A,C}	2904.63ª	0.256^{B}	0.03199 ^{A,C}	0.029^{a}	$1.78(7)^{B}$	2.53(7) ^{A,B,C}	$2.29(7)^{a}$	
01 1 //	06 01/2	<i>y</i> + 61,000	2905,485 ^B	2701,00	0,200	0.03200 ^B	0,020	1,70(7)	$2.25(7)^{D}$	=,=>(')	
			3020.215 ^D			0.03077 ^D			_,(')		
$7s^{-2}S_{1/2}$	$8p^{-2}P_{3/2}^{o}$	_	2951.716 ^{A,C}	2950.843°	_	0.00201 ^{A,C}	_	_	$1.54(6)^{A,C}$	_	
· · · 1/2	- r 3/2		2951,718 ^B	,		0,00236 ^B			$1.81(6)^{B}$		
			3004,470 ^D			0,00197 ^D			$1,46(6)^{D}$		
			·								

Tablo A.4. Devam

Geçişler		λ				gf			gA_{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	calışma	Diğer	Bu ç	alışma	Diğer	
-	•	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
6d ² D _{3/2}	$8p^{2}P_{3/2}^{o}$	-	2954,638 ^{A,C}	2953,77 ^a	-	0,00809 ^{A,C}	$0,008^{a}$	-	$6,18(6)^{A,C}$	$5,87(6)^{a}$	
	1		2954,631 ^B	2953,771°		$0,00892^{B}$			$6,82(6)^{B}$		
			2995,472 ^D			$0,00798^{D}$			5,93(6) ^D		
6d ² D _{5/2}	$8p^{2}P_{3/2}^{o}$	-	2992,973 ^{A,C}	2992,10 ^a	-	0,07185 ^{A,C}	$0,068^{a}$	_	5,35(7) ^{A,C}	$5,08(7)^{a}$	
	•		2992,972 ^в	2992,098°		0,07914 ^B			$5,89(7)^{B}$		
			3028,553 ^D			0,07101 ^D			$5,16(7)^{D}$		
$7s^{-2}S_{1/2}$	$8p^{2}P_{1/2}^{0}$	-	3007,076 ^{A,C}	3006,186°	-	0,00099 ^{A,C}	-	_	7,27(5) ^{A,C}	-	
			3007,074 ^в			0,00116 ^B			$8,57(5)^{B}$		
			3051,568 ^c			0,00097 ^D			6,96(5) ^D		
6d ² D _{3/2}	$8p^{2}P_{1/2}^{0}$	-	3010,108 ^{A,C}	3009,22 ^a	-	0,03969 ^{A,C}	0,038 ^a	-	2,92(7) ^{A,C}	$2,77(7)^{a}$	
			3010,097 ^B	3009,223°		0,04381 ^B			$3,23(7)^{B}$		
	-		3042,286 ^D			0,03927 ^D			2,83(7) ^D		
$6d^{2}D_{3/2}$	$6f^{-2}F_{5/2}^{0}$	-	3076,062 ^{A,C}	3075,17 ^a	-	0,79050 ^{A,C}	0,822 ^a	-	5,57(8) ^{A,C}	$5,80(8)^{a}$	
			3076,051 ^B	3075,173°		0,73353 ^B			$5,17(8)^{B}$		
2	2		3073,205 ^D			0,79124 ^D			5,59(8) ^D		
$5f^{2}F_{5/2}^{0}$	8d ² D _{5/2}	4256,65 ^A	3086,286 ^{A,C}	3085,38ª	0,00038 ^A	0,00400 ^{A,C}	$0,005^{a}$	$0,14(6)^{A}_{P}$	$2,80(6)^{A,C}$	$3,13(6)^{a}$	
		4577,50 ^B	3086,276 ^в	3085,379°	0,00 ^в	0,00425 ^B		$0,11(6)^{B}$	2,98(6) ^B		
	o 4 2 -		3181,893 ^D		o o o o A P	0,00388 ^D	0.0000	0.00 (T) A	2,56(6)		
$5f^{2}F_{7/2}^{0}$	8d ² D _{5/2}	4261,99 ^A	3093,940 ^{A,C}	3093,03ª	0,008 ^{A,b}	0,07983 ^{A,C}	0,089ª	$0,30(7)^{A}$	5,56(7) ^{A,C}	$6,21(7)^{a}$	
		4583,70 ⁵	3093,932 ^b	3093,028°		0,08476 ^b		$0,25(7)^{B}$	5,91(7) ^B		
- 2 2-0	o 4 2 -		3193,041		o o o o A P	0,07735	0.0	a	5,06(7) ^b		
$5f^{-2}F_{5/2}^{0}$	8d ² D _{3/2}	4258,01 ^A	3097,159 ^{A,C}	3096,26ª	0,005	0,05582 ^{A,C}	0,062ª	$0,29(7)^{A}$	3,88(7) ^{A,C}	$4,33(7)^{a}$	
		45/9,20	3097,149 ^b	3096,255		0,05937 ^b		$0,15(7)^{5}$	$4,13(7)^{B}$		
<1. ² D	cc 200		3191,040	2111.078		0,05418	1.1.618		3,55(7)	7.00(0)3	
6d $^{2}D_{5/2}$	6f $F_{7/2}$	-	3112,879 ^{14,0}	3111,97"	-	1,11593 ^{-1,0}	1,161"	_	7,68(8) ^{.1,0}	/,99(8)"	
			3112,877 ⁻	3111,969		1,03/30 ⁻			7,14(8) ⁻		
$(1^{2}D)$	CF 210		5102,994	2116 748		1,11949 0.05571AC	0.0593		7,70(8)	$2.09(7)^{3}$	
$D_{5/2}$	01 F 5/2	-	3117,033 2117,631 ^B	3110,74 2116 729°	_	0,055/1	0,058	-	$3,82(7)^{B}$	3,98(7)	
			2108 024 ^D	5110,758		0,03179 0.05599 ^D			3,33(7)		
6a ² S	$6n^{2}D^{0}$	2486 62A	2172 604 ^{A,C}	2171 60 ^a	1.050 ^A	0,03366 1.02515 ^{A,C}	1 527ª	1.07(0) ^A	5,00(7) 1,28(0) ^{A,C}	$1.01(0)^{a}$	
08 31/2	op r _{3/2}	1258 00 ^B	2172,004	2171,09 2171,725°	1,950 0.022 ^B	1,93313 1,67270 ^B	1,527	1,07(9) $1,02(8)^{B}$	1,20(9) 1,11(0) ^B	1,01(9) 0,40(8) ^b	
		1258,00	3172,005 3205 447 ^D	51/1,755	0,023	1,07270 1,86302 ^D		1,92(6)	1,11(9) 1 14(0) ^D	9,40(8)	
$7n^{2}P^{0}$	$8d^2D_{rr}$	_	3173 611 ^{A,C}	3172 69 ^a	_	0.28480 ^{A,C}	0.260ª	_	1,14(9) 1 80(8) ^{A,C}	$1.72(8)^{a}$	
7p 1 1/2	ou D _{3/2}		3173,011 3173,601 ^B	3172,09 3172 680°		0,28480 0,27303 ^B	0,200		1,09(0) 1.81(8) ^B	1,72(0)	
			3229 934 ^D	5172,007		0.27984 ^D			1 79(8) ^D		
$7n^{2}P^{0}$	$9s^{2}S_{12}$	_	3197 779 ^{A,C}	3196 85 ^a	_	0.08852 ^{A,C}	0.092^{a}	_	5 77(7) ^{A,B,C}	$5.98(7)^{a}$	
'P 1 1/2	78 B1/2		3197 774 ^B	3196 844°		0.08838 ^B	0,072		$5,77(7)^{D}$	5,70(7)	
			3260 682 ^D	5170,077		0.08681 ^D			5,-15(7)		
			5200,002			0,00001					

Tablo A.4. Devam

Geçişler		λ				gf		gA_{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	calışma	Diğer	Bu ç	Bu çalışma	
-		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6f ² F ^o _{7/2}	8g ² G _{7/2}	8273,08 ^A	4138,807 ^{A,C}	4137,64 ^a	0,057 ^A	0,01519 ^{A,C}	0,015 ^a	$5,52(6)^{A}$	$5,91(6)^{A,B}$	5,67(6) ^a
	0	9581,80 ^B	4138,804 ^B		$0,049^{B}$	0,01518 ^B		$3,55(6)^{B}$	$5,92(6)^{\rm C}$	
			4290,643 ^D			0,01465 ^D			$5,31(6)^{D}$	
7d ² D _{3/2}	$8f^{2}F_{5/2}^{0}$	-	4194,719 ^{A,C}	4193,51 ^a	-	0,28321 ^{A,C}	0,292 ^a	-	$1,07(8)^{A,C}$	$1,11(8)^{a}$
			4194,708 ^в			$0,26048^{B}$			$0,99(8)^{B}$	
			4218,353 ^D			0,28163 ^D			$1,06(8)^{D}$	
7d ² D _{5/2}	$8f^{2}F_{7/2}^{0}$	-	4226,292 ^{A,C}	4225,12 ^a	-	0,40157 ^{A,C}	0,414 ^a	-	$1,50(8)^{A,C}$	$1,54(8)^{a}$
			4226,326 ^B			$0,37028^{B}$			$1,38(8)^{B}$	
_	_		4244,496 ^D			0,39984 ^D			1,48(8) ^D	
7d ² D _{5/2}	$8f^{-2}F_{5/2}^{o}$	_	4230,924 ^{A,C}	4229,73 ^a	-	0,02006 ^{A,C}	0,021ª	-	7,47(6) ^{A,C}	$7,70(6)^{a}$
			4230,954 ^B			0,01849 ^в			$6,89(6)^{B}$	
- 2 3-0	- 2~		4247,831 ^b			0,01998			7,38(6) ^D	
$5f^{-2}F_{-5/2}^{0}$	5g ² G _{7/2}	-	4484,255 ^{A,C}	4482,98ª	-	8,88949 ^{A,C}	8,277ª	-	2,95(9) ^{A,B,C}	$2,75(9)^{a}$
			4484,214 ^b	4482,967*		8,88615 ^b			2,47(9)	
FC 2 F 0	5 20		4/55,603 ⁵	1 100 0 6		8,38227 ²	10 (00)		2 70(0)ABC	2 52(0)3
5I F [*] 7/2	5g G _{9/2}	-	4500,338 ^{-4,2}	4499,06"	-	11,48223 ^{4,6}	10,692*	-	$3,78(9)^{D}$	3,52(9)*
			4500,525 4780,180 ^D	4499,050		11,47788 10,81002 ^D			3,10(9)	
5f ² F ⁰	$5\sigma^2 G_{\pi\pi}$		4780,189 4500 420 ^{A,C}	4400 15 ^a		0.32806 ^{A,C}	0 306ª		1 08(8) ^{A,B,C}	$1.01(8)^{a}$
51 1 7/2	5g U _{7/2}	_	4500,429 4500 395 ^B	4499,15	_	0,32300 0,32703 ^B	0,300	_	$0.01(7)^{D}$	1,01(0)
			4300,393 4780 548 ^D			0,32793 0,30883 ^D			9,01(7)	
$5\sigma^2 G_{am}$	$8f^2F_{a}$	4205 64 ^A	5090 510 ^{A,C}	5089 12ª	0.001 ^{A,B}	0,00267 ^{A,C}	0.003ª	$4.06(5)^{A}$	6.86(5) ^{A,C}	$7.82(5)^{a}$
56 09/2	01 1 //2	3931.30 ^B	5090,5408 ^B	5009,12	0,001	0.00267^{B}	0,005	$4.78(5)^{B}$	$6.83(5)^{B}$	1,02(3)
		0,01,00	4995.323 ^D			0.00272 ^D		1,70(0)	$7.26(5)^{D}$	
$5g^{-2}G_{7/2}$	$8f^{2}F_{5/2}^{0}$	4207.14 ^A	5097.113 ^{A,C}	5095.70 ^a	0.001 ^{A,B}	0.00205 ^{A,C}	0.002^{a}	$2.62(5)^{A}$	5.27(5) ^{A,C}	$6.01(5)^{a}$
- 0 - 112	- 5/2	3932,60 ^B	5097,168 ^B	,	- ,	0,00204 ^B	- ,	$3,06(5)^{B}$	$5,25(5)^{B}$	
		,	4999,549 ^D			0,00209 ^D			5,59(5) ^D	
$7p^{-2}P_{3/2}^{o}$	8d ² D _{5/2}	-	3290,069 ^{A,C}	3289,11 ^a	-	0,49450 ^{A,C}	0,452 ^a	-	3,05(8) ^{A,C}	$2,79(8)^{a}$
-			3290,052 ^B	3289,110 ^c		0,47634 ^B			$2,94(8)^{B,D}$	
			3328,095 ^D			0,48885 ^D				
$7p^{-2}P_{3/2}^{o}$	8d ² D _{3/2}	-	3302,428 ^{A,C}	3301,47 ^a	-	0,05474 ^{A,C}	0,050 ^a	-	$3,35(7)^{A,C}$	$3,06(7)^{a}$
			3302,412 ^B	3301,481°		0,05266 ^B			$3,22(7)^{B}$	
2	2		3338,103 ^D			0,05415 ^D			3,24(7) ^D	
$7p^{-2}P_{-3/2}^{o}$	$9s^{-2}S_{1/2}$	-	3328,607 ^{A,C}	3327,64 ^a	-	0,17007 ^{A,C}	0,176 ^a	-	1,02(8) ^{А,в,С}	$1,06(8)^{a}$
			3328,596 ^B	3327,655°		0,16981 ^B			9,86(7) ^D	
c ² 0	200	27 60 104	3370,955 ^b		0.0004	0,16794	0.0003	1.25(0)		2 51 (0) 3
6s ² S _{1/2}	6p ² P ^o _{1/2}	3760,18 ⁻	3518,154 ^{A,C}	3517,16 ^a	0,900 ⁻¹	0,87254 ^{A,C}	0,689*	4,25(8) ^A	4,70(8) ^{A,C}	3,71(8) ^a
		1225,805	3518,157 ^b	3517,217	0,0245	0,75368 ^b		1,05(8)	4,06(8) ^B	3,45(8)°
			3590,651			0,854935			4,42(8)	

Tablo A.4. Devam

Geçişler			λ			gf				
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	alışma	Diğer
-		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6f ² F ^o _{5/2}	8g ² G _{7/2}	9565,00 ^в	4130,431 ^{A,B,C}	4129,24 ^a	1,320 ^B	0,41097 ^{A,C}	0,394 ^a	$0,96(8)^{B}$	$1,61(8)^{A,B,C}$	$1,54(8)^{a}$
			4281,043 ^D	4129,244 ^c		$0,41069^{B}$			$1,44(8)^{D}$	
2	2		10			0,39651 ^D			1.0.0	
$6f^{2}F_{7/2}^{0}$	8g ² G _{9/2}	8273,05 ^A	4138,576 ^{A,C}	4137,43 ^a	1,980 ^A	0,53169 ^{A,C}	$0,509^{a}$	$1,93(8)^{A}_{P}$	2,07(8) ^{A,B,C}	$1,98(8)^{a}$
		9581,80 ^b	4138,588 ^b	4137,428°	1,710 ^b	0,53127 ^b		$1,24(8)^{B}$	1,86(8)	
cc 200	7 20	12550 214	4290,586 ^b	5145 708	0.01A	0,51286 ^b	1 2203	2 00 (0) Å	2 22 (D) A B C	2 12(0)3
6f ² F ³ 5/2	/g ² G _{7/2}	13560,31 ¹¹	5147,170 ^{-4,0}	5145,72	8,21	1,282/5 ^{-1,0}	1,239"	2,98(8) ¹	3,23(8) ^{1,2,0}	3,12(8)"
		1/4/4,005	514/,168 ⁵	5145,729°	6,365	1,28237 ²		1,39(8)	2,82(8)	
$\epsilon f^{2} \Sigma^{0}$	$7 \sim 2C$	12504 01 ^A	5384,393 ⁻	5159 208	10 70 ^A	1,22623 ⁻	1 6028	1 06(5) ^A	4 16(0)A.C	$(1,0)^{a}$
OI F 7/2	/g G _{9/2}	15594,01 17524.75 ^B	5159,825 5150,845 ^B	5150,59 5150 410°	10,70 8 202 ^B	1,038/4 1,65917 ^B	1,002	4,00(3) 1,00(9) ^B	4,10(8)	4,01(8)
		17554,75	5300 446 ^D	5158,410	8,295	1,03017 1,58512 ^D		1,00(0)	4,13(6) 2,62(8) ^D	
6f ² F ^o re	$7 \sigma^2 G_{\pi\pi}$	1359/ 12 ^A	5160 185 ^{A,C}	5158 76 ^a	0.306 ^A	0.04739 ^{A,C}	0.046^{a}	$1 \ 10(7)^{A}$	1 19(7) ^{A,B,C}	$1.15(7)^{a}$
01 1 //2	/g 0//2	17530.20^{B}	5160,105	5156,70	0,300	0,04738 ^B	0,040	$0.51(7)^{B}$	1,19(7) 1 04(7) ^D	1,15(7)
		17550,20	5399,588 ^D		0,237	0.04529^{D}		0,51(7)	1,04(7)	
$5f^{2}F^{0}5/2$	7d $^{2}D_{5/2}$	5415.61 ^A	5469.353 ^{A,C}	5467.81ª	0.001 ^{A,B}	0.03482 ^{A,C}	0.035 ^a	$2.53(5)^{A}$	7.77(6) ^{A,C}	$7.89(6)^{a}$
		5945.90 ^B	5469.304 ^B	5467.812°	.,	0.03705 ^B	.,	$1.93(5)^{B}$	$8.26(6)^{B}$.,
			5718,141 ^D	, -		0,03331 ^D		, (- <i>)</i>	$6.80(6)^{D}$	
$5f^{2}F_{7/2}^{\circ}$	7d ² D _{5/2}	5424,25 ^A	5493,434 ^{A,C}	$5491,90^{a}$	0,023 ^A	0,69342 ^{A,C}	$0,704^{a}$	$5,27(6)^{A}$	1,53(8) ^{A,C}	$1,56(8)^{a}$
		5956,30 ^B	5493,395 ^B	5491,902°	0,021 ^B	0,73778 ^B		$4,01(6)^{B}$	$1,63(8)^{B}$	
			5754,244 ^D			0,66199 ^D			1,33(8) ^D	
6f ² F ^o _{5/2}	9d ² D _{5/2}	6624,63 ^A	5498,433 ^{A,C}	5496,88 ^a	0,007 ^A	0,00915 ^{A,C}	$0,009^{a}$	$1,00(6)^{A}$	$2,02(6)^{A,C}$	$2,06(6)^{a}$
			5498,447 ^в			0,00945 ^в			$2,08(6)^{B}$	
			5704,931 ^D			0,00882 ^D			1,81(6) ^D	
$6f^{2}F^{0}_{7/2}$	9d ² D _{5/2}	6632,69 ^A	5513,287 ^{A,C}	5511,76 ^a	0,136 ^A	0,18255 ^{A,C}	$0,186^{a}$	$2,07(7)^{A}$	$4,01(7)^{A,C}$	4,09(7) ^a
			5513,294 ^B	5511,721°		0,18844 ^B			$4,14(7)^{B}$	
- 2	2-		5721,991 ^b		4	0,17589 ^D			3,58(7) ^D	
$6f^{-2}F_{-5/2}^{0}$	9d ² D _{3/2}	6626,50 ^A	5519,754 ^{A,C}	5518,19 ^a	0,093 ^A	0,12764 ^{A,C}	0,130 ^a	$1,41(7)^{A}$	$2,79(7)^{A,C}$	2,85(7) ^a
			5519,773 ^b	5518,187		0,13189 ^b			2,89(7) ^b	
5 6 2 5 9	71 ² D	5410 40Å	5722,996 ⁵	5500 548	0.015Å	0,12310 ^D	0.4003	2.44(6)A	2,51(7) ^b	1.07/0)8
5I F [*] 5/2	$/d - D_{3/2}$	5419,48 ¹⁰	5531,060 ^{-9,0}	5529,54"	0,015 ¹⁰	0,48209 ⁴⁴	0,490*	$3,44(6)^{B}$	$1,05(8)^{B}$	1,07(8)*
		5950,70	5551,087 5772 441 ^D	5529,542	0,014	0,515/9 0.46102 ^D		2,02(0)	1,12(8)	
e ₀ ² c	$0n^{2}D^{0}$		5772,441 5641 621 ^{A,B,C}	5640 02ª		0,40195 0.00446 ^{A,C}	0.002a		0,95(8) 0.24(5) ^{A,C}	5 59(5) ^a
os 3 _{1/2}	9p r _{3/2}	—	5724 440 ^D	5040,05	-	0,00440 0.00484 ^B	0,005	-	9,34(3) 10,20(5) ^B	5,58(5)
			5724,449			0,00434 0,00439 ^D			8 94(5) ^D	
$8n^{2}P^{0}$	$9d^2D_{20}$	_	5745 657 ^{A,C}	5744 08 ^a	_	0.34671 ^{A,C}	0 334 ^a	_	$7.01(7)^{A,C}$	$6.75(7)^{a}$
op i 1/2	Ju D _{3/2}		5745.680 ^B	5744.088°		0.33725^{B}	0,004		$6.81(7)^{B}$	0,10(1)
			5833,397 ^D	27.1,000		0,34150 ^D			6,69(7) ^D	

Tablo A.4. Devam

Geçişler			λ			gf			$g \mathbf{A_{ki}}$		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	alışma	Diğer	
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
$7d^{-2}D_{3/2}$	$9p^{2}P_{3/2}^{\circ}$	_	5746,895 ^{A,C}	5745,26 ^a	_	0,00733 ^{A,C}	0.007^{a}	_	$1,48(6)^{A,C}$	$1,49(6)^{a}$	
	1		5746,852 ^B			0,00829 ^B			$1,67(6)^{B}$		
			5846,403 ^D			0,00721 ^D			$1,41(6)^{D}$		
$8s^{2}S_{1/2}$	$9p^{2}P_{1/2}^{0}$	-	5767,246 ^{A,C}	5765,63 ^a	-	0,00218 ^{A,C}	0,001 ^a	-	$4,37(5)^{A,C}$	$2,61(5)^{a}$	
	*		5767,242 ^B			0,00237 ^B			$4,76(5)^{B}$		
			5824,302 ^D			0,00216 ^D			$4,24(5)^{D}$		
$7p^{-2}P_{1/2}^{\circ}$	7d ² D _{3/2}	_	5779,712 ^{A,C}	5778,14 ^a	_	3,04534 ^{A,C}	2,967 ^a	-	6,08(8) ^{A,C}	5,92(8) ^a	
-			5779,737 ^в	5778,138°		3,09519 ^B			$6,18(8)^{B}$		
			5900,982 ^D			2,98276 ^D			$5,71(8)^{D}$		
$8p^{2}P_{1/2}^{0}$	$10s^{-2}S_{1/2}$	-	5801,070 ^{A,C}	5799,48ª	-	0,11289 ^{A,C}	0,115 ^a	-	2,24(7) ^{A,C}	$2,27(7)^{a}$	
			5801,061 ^в			0,11248 ^B			$2,23(7)^{B}$		
			5904,524 ^D			0,11091 ^D			$2,12(7)^{D}$		
7d $^{2}D_{5/2}$	$9p {}^{2}P^{o}_{3/2}$	11580,19 ^A	5815,070 ^{A,C}	5813,45 ^a	0,240 ^A	0,06523 ^{A,C}	0,066 ^a	$1,79(7)^{A}$	$1,29(7)^{A,C}$	$1,30(7)^{a}$	
		9718,50 ^в	5815,103 ^в	5813,447°	0,282 ^B	0,07346 ^B		$1,99(7)^{B}$	$1,45(7)^{B}$		
			5903,179 ^D			0,06426 ^D			1,23(7) ^D		
$7d^{-2}D_{3/2}$	$9p^{-2}P_{1/2}^{o}$	11816,43 ^A	5877,306 ^{A,C}	5875,63 ^a	0,063 ^A	0,03586 ^{A,C}	0,036 ^a	$6,00(6)^{A}$	$6,92(6)^{A,C}$	$6,98(6)^{a}$	
		9884,00 ^в	5877,256 ^B	5875,632°	$0,074^{B}$	0,04053 ^B		$5,04(6)^{B}$	$7,83(6)^{B}$		
	_		5950,595 ^D			0,03541 ^D			6,67(6) ^D		
$7p^{-2}P_{1/2}^{o}$	8s ${}^{2}S_{1/2}$	-	5890,253 ^{A,C}	5888,63ª	-	0,71378 ^{A,C}	0,718 ^a	-	$1,37(8)^{A,C}$	$1,38(8)^{a}$	
			5890,234 ^B	5888,620°		0,71646 ^B			$1,38(8)^{B}$		
			6030,659 ^D			0,69716 ^D			1,28(8) ^D		
$8p^{-2}P_{3/2}^{o}$	$9d^{-2}D_{5/2}$	-	5934,366 ^{A,C}	5932,73ª	_	0,60424 ^{A,C}	0,582 ^a	-	$1,14(8)^{A,C}$	$1,10(8)^{a}$	
			5934,368 ^B	5932,706°		0,58849 ^B			$1,12(8)^{B}$		
2	2		5993,659 ^D			0,59826 ^D			1,11(8) ^D		
$8p^{-2}P_{3/2}^{o}$	9d $^{2}D_{3/2}$	-	5959,209 ^{A,C}	5957,57ª	-	0,06686 ^{A,C}	0,064 ^a	-	$1,26(7)^{A,C}$	$1,21(7)^{a}$	
			5959,217 ^в			0,06504 ^B			$1,22(7)^{B,D}$		
- 2			6013,602 ^D			0,06625					
$8p^{-2}P_{-3/2}^{0}$	$10s^{-2}S_{1/2}$	-	6018,839 ^{A,C}	6017,18 ^a	-	0,21761 ^{A,C}	0,221ª	-	$4,01(7)^{A,C}$	$4,06(7)^{a}$	
			6018,813 ^b	6017,114°		0,21681			3,99(7) ^B		
	- 2 2-2		6089,220 ^b			0,21510	0		3,87(7) ^b		
7d ² D _{3/2}	$7f^{-2}F_{5/2}^{0}$	-	6057,559 ^{A,C}	6055,85°	-	0,57840 ^{A,C}	0,604ª	-	$1,05(8)^{A,C}$	$1,10(8)^{a}$	
			6057,507 ^B	6055,838°		0,51834 ^B			0,94(8) ^B		
- 1 ² -	- c ² - 2		6041,283 ^b	(110.00%)		0,57996	0.0543		1,06(8)	1 53 (0) 3	
7d ² D _{5/2}	$7f^{-2}F_{-7/2}^{0}$	-	6120,000 ^{A,C}	6119,27ª	-	0,81772 ^{A,C}	0,854ª	-	$1,46(8)^{A,C}$	$1,52(8)^{a}$	
			6121,041 ^B	6119,254°		0,73522 ^B			1,31(8) ^B		
71 ² D	a c 2 m 0		6090,915 ⁵	(101 (78		0,82176	0.0423		1,48(8) ⁵		
/d ² D _{5/2}	/f ² F ^o _{5/2}	-	6133,351 ^{A,C}	6131,67"	_	0,04080 ^{-5,C}	0,043"	-	/,24(6) ^{A,C}	/,55(6)"	
			6133,385 [°]			0,03669 ^b			$6,51(6)^{\text{D}}$		
			6101,927			0.041015			7,35(6)		

Tablo A.4. Devam

Geçişler			λ			gf			$g \mathrm{A_{ki}}$		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu ç	alışma	Diğer	
· ·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
$7p^{-2}P_{3/2}^{o}$	7d ² D _{5/2}	_	6143,713 ^{A,C}	6141,99 ^a	_	5,15684 ^{A,C}	5,024 ^a	_	$9,11(8)^{A,C}$	$8,88(8)^{a}$	
1			6143,636 ^B	6141,987 ^c		5,23849 ^B			$9,26(8)^{B}$,	
			6208,255 ^D			5,10323 ^D			8,83(8) ^D		
$7p^{2}P_{3/2}^{\circ}$	7d $^{2}D_{3/2}$	-	6221,691 ^{A,C}	6219,99 ^a	-	0,56580 ^{A,C}	0,551 ^a	-	9,75(7) ^{A,C}	$9,50(7)^{a}$	
			6221,701 ^B	6219,999°		0,57502 ^B			9,91(7) ^B		
			6272,315 ^D			0,56123 ^D			9,52(7) ^D		
$7p^{-2}P_{3/2}^{o}$	$8s^{-2}S_{1/2}$	-	6349,973 ^{A,C}	6348,21 ^a	-	1,32421 ^{A,C}	1,331 ^a	-	$2,19(8)^{A,C}$	$2,20(8)^{a}$	
			6349,930 ^B	6348,213 ^c		1,32901 ^B			$2,20(8)^{B}$		
	-		6419,029 ^D			1,30996 ^D			$2,12(8)^{D}$		
$5g^{-2}G_{9/2}$	$7f^{-2}F^{o}_{7/2}$	_	8116,752 ^{A,C}	8114,48 ^a	-	0,0177 ^{A,B,C}	0,021 ^a	-	$1,79(6)^{A,B,C}$	$2,11(6)^{a}$	
			8116,782 ^B	8114,415 ^c		0,0185 ^D			$2,05(6)^{D}$		
2	2		7765,966 ^b						ABC		
5g ² G _{7/2}	$7f^{-2}F_{5/2}^{0}$	-	8138,187 ^{A,C}	8136,00 ^a	-	0,01363 ^{A,C}	0,016 ^a	-	1,37(6) ^{A,B,C}	$1,62(6)^{a}$	
			8138,274 ^B	8135,964°		0,01362 ^B			1,57(6)		
7 20	7 200		7782,924	0050 503		0,01426	0.0703		2 27 (D) A B C	0.00/018	
/s ⁻ S _{1/2}	/p ² P ³ _{3/2}	_	8254,775 ^{n,e}	8252,53*	-	2,42400 ^{-1,0}	2,279"	_	$2,3/(8)^{n,2,c}$	2,23(8)"	
			8254,847 ⁻	8252,603		2,41802 ⁻			2,19(8)-		
$c d^{2}D$	$7 m^2 D^0$		84/4,2/0	0075 41ª		2,30122 0.24056 ^{A,C}	0.240a		2 42(7)A.C	$224(7)^{a}$	
60 D _{3/2}	7p P 3/2	—	8277,000 8277,670 ^B	0275,41 9275,299°	—	0,24950 ^B	0,240	—	$2,43(7)^{B}$	2,34(7)	
			8277,070 8402.075 ^D	8275,588		0,24559 0.24582 ^D			2,37(7)		
$6f^{2}F^{0}$	$6\sigma^2 G$	_	8200 155 ^{A,C}	8287 76ª		0,24383 8 0030 ^{A,C}	8 527ª	_	2,32(7) 8,64(8) ^{A,B,C}	8 28(8) ^a	
01 1 5/2	0g 0 _{7/2}		8290,155 8290,176 ^B	8287,70 8287,752°		8,9039 8,9030 ^B	0,527		6,02(8) ^D	0,20(0)	
			8928 245 ^D	0207,752		8,2676 ^D			0,72(0)		
$7f^2F^0r^2$	$8\sigma^2G_{70}$	_	8293 352 ^{A,C}	8291 04 ^a	_	1 51323 ^{A,C}	1 485 ^a	_	1 47(8) ^{A,B,C}	$1.44(8)^{a}$	
71 1 5 /2	05 G _{1/2}		8293,356 ^B	0291,01		1,51275 ^B	1,105		$1.27(8)^{D}$	1,11(0)	
			8694.247 ^D			1.44345 ^D			1,27(0)		
$7f^{2}F_{7/2}^{0}$	$8g^2G_{9/2}$	_	8315.109 ^{A,C}	8312.96 ^a	_	1.95646 ^{A,C}	1.919 ^a	_	1.89(8) ^{A,B,C}	$1.85(8)^{a}$	
	0 //2		8315,158 ^B	,		1,95577 ^B	,		$1,64(8)^{D}$	· · · ·	
			8716,464 ^D			1,86637 ^D					
$7f^{2}F_{7/2}^{\circ}$	$8g^{-2}G_{7/2}$	-	8316,043 ^{A,C}	8313,81 ^a	-	0,05589 ^{A,C}	0,055 ^a	-	5,39(6) ^{A,B,C}	$5,29(6)^{a}$	
	-		8316,031 ^в			0,05587 ^B			$4,68(6)^{D}$		
			8716,701 ^D			0,05332 ^D					
$6f^{2}F_{7/2}^{o}$	$6g^{2}G_{9/2}$	-	8323,345 ^{A,C}	8321,16 ^a	-	11,49607 ^{A,C}	11,009 ^a	-	$1,11(9)^{A,B,C}$	$1,06(9)^{a}$	
			8323,433 ^в	8321,107 ^c		11,49513 ^в			$8,84(8)^{D}$		
	_		8969,441 ^D			10,66797 ^D					
$6f^{2}F^{o}_{7/2}$	6g ² G _{7/2}	-	8323,969 ^{A,C}	8321,63 ^a	-	0,32843 ^{A,C}	0,315 ^a	-	$3,16(7)^{A,C}$	3,03(7) ^a	
			8323,975 ^в			0,32840 ^B			$3,16(7)^{B}$		
			8970,101 ^D			0,30478 ^D			$2,53(7)^{D}$		

Tablo A.4. Devam

Geçişler			λ			gf		$g \mathrm{A_{ki}}$		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu çalışma		Diğer
-	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6d ² D _{5/2}	$7p^{-2}P_{3/2}^{\circ}$	_	8585,755 ^{A,C}	8583,42 ^a	_	2,16541 ^{A,C}	2,081 ^a	_	$1,96(8)^{A,C}$	$1,88(8)^{a}$
	1		8585,810 ^B	8583,453°		2,11497 ^B			$1.91(8)^{B}$	
			8668,698 ^D			2,14469 ^D			$1.90(8)^{D}$	
$6d^{2}D_{3/2}$	$7p^{2}P_{3/2}^{0}$	-	8277,666 ^{A,C}	-	_	0,24956 ^{A,C}	-	_	$2,43(7)^{A,C}$	_
	1		8277,670 ^B			0,24359 ^B			$2,37(7)^{B}$	
			8403,075 ^D			0,24583 ^D			$2,32(7)^{D}$	
$7s^{-2}S_{1/2}$	$7p^{-2}P^{0}_{1/2}$	_	9186.870 ^{A,C}	9184.34 ^a	_	1,08903 ^{A,C}	1.024 ^a	_	8.61(7) ^{A,C}	$8.09(7)^{a}$
	1 1/2		9186.917 ^B	9184.380°		1.08632 ^B	,-		$8.59(7)^{B}$	
			9261.691 ^D	, ,		1.08023 ^D			$8.40(7)^{D}$	
$6d^{2}D_{3/2}$	$7p^{-2}P^{0}_{1/2}$	_	9215,232 ^{A,C}	9212.68 ^a	_	1,12083 ^{A,C}	1.077^{a}	_	8.80(7) ^{A,C}	$8.46(7)^{a}$
	1		9215,195 ^B	9212.628°		1.09396 ^B	·		8.59(7) ^B	
			9176,709 ^D	,		1,12554 ^D			8,92(7) ^D	
$6d^{2}D_{3/2}$	$5f^{2}F_{5/2}^{0}$	9560,48 ^A	9926,740 ^{A,C}	9924,04 ^a	0,204 ^A	2,57362 ^{A,C}	$2,370^{a}$	$2,23(7)^{A}$	1,74(8) ^{A,C}	$1,60(8)^{a}$
		11346,90 ^B	9926,703 ^B	9923,989°	0,172 ^B	2,54928 ^B		$1.33(7)^{B}$	$1.73(8)^{B}$	
			9505,892 ^D			2,68756 ^D		, , ,	1,98(8) ^D	
$6d^{-2}D_{5/2}$	$5f^{2}F_{7/2}^{0}$	9559.05 ^A	10287,588 ^{A,C}	10284,790 ^c	0,299 ^A	3,54764 ^{A,C}	-	$2,91(7)^{A}$	2,24(8) ^{A,C}	_
		11347,40 ^B	10287,589 ^B		0,252 ^B	3,51492 ^B		$1.74(7)^{B}$	$2,21(8)^{B}$	
			9741,969 ^D			3,74633 ^D		, , ,	2,63(8) ^D	
$6d^{-2}D_{5/2}$	$5f^{2}F_{5/2}^{0}$	9534.87 ^A	10373,120 ^{A,C}	10370,335°	0,015 ^A	0,17592 ^{A,C}	-	$1,07(6)^{A}$	$1.09(7)^{A,C}$	_
		11309,70 ^B	10373,154 ^B		0,012 ^B	0,17429 ^B		$0.64(6)^{B}$	$1.08(7)^{B}$	
			9847,227 ^D			0,18531 ^D			$1,28(7)^{D}$	
$8p^{-2}P_{1/2}^{0}$	$8d^{2}D_{3/2}$	_	10940,858 ^{A,C}	10937,898°	_	3,43882 ^{A,C}	-	_	$1,92(8)^{A,C}$	-
1			10940,827 ^B			3,50784 ^B			$1,95(8)^{B}$	
			11126,542 ^D			3,38143 ^D			$1,82(8)^{D}$	
5d ² D _{3/2}	$4f^{2}F_{5/2}^{0}$	8367,64 ^A	13898,056 ^{A,C}	13894,47 ^e	0,136 ^A	0,07360 ^{A,C}	-	$1,29(7)^{A}$	$2,54(6)^{A,C}$	-
		$8108, 10^{B}$	13898,496 ^B		0,141 ^B	0,07271 ^B		$1,43(7)^{B}$	$2,51(6)^{B}$	
			6928,846 ^D			0,14762 ^D			$2,05(7)^{D}$	
5d ² D _{5/2}	$4f^{2}F_{7/2}^{0}$	8352,25 ^A	14100,194 ^{A,C}	14096,18 ^e	0,196 ^A	0,10363 ^{A,C}	-	$1,87(7)^{A}$	$3,48(6)^{A,C}$	-
		8075,20 ^B	14099,972 ^B		0,203 ^B	0,10244 ^B		$2,08(7)^{B}$	$3,44(6)^{B}$	
			6923,764 ^D			0,21105 ^D			$2,94(7)^{D}$	
5d ² D _{5/2}	$4f^{2}F_{5/2}^{0}$	9710,33 ^A	17882,690 ^{A,C}	17878,09 ^e	$0,008^{A}$	0,00409 ^{A,C}	-	$5,93(5)^{A}$	8,52(4) ^{A,C}	-
		9337,80 ^B	17883,037 ^B		0,009 ^B	0,00403 ^B		$6,66(5)^{B}$	$8,41(4)^{B}$	
			7845,302 ^D			0,00931 ^D			$1,01(6)^{D}$	

^aBiémont ve çalışma arkadaşları [135], ^bMigdalek ve Wyrozumska [134], ^cOdabası [132], ^dLi ve Jiang [119], ^eJohansson ve Litzén [133]
Seviy	eler		Ε			g-çarpanı	
Konf.	Terim	Bu ça	alışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
Çift parite için 4f(² F ^o _{7/2})6d	$^{2}[9/2]^{0}_{4}$	-	91705,38 ^A	91735,87ª	-	1,056 ^A	1,083 ^b
	² [9/2] ^o ₅	_	91848,41 92189,92 ^A	92180,41 ^a	-	1,064 1,154 ^A	1,172 ^b
$4f(^{2}F^{o}_{7/2})6d$	² [11/2] ^o ₆	_	92047,72 92422,91 ^A	92526,56 ^a	-	1,181 1,167 ^{A,B}	1,167 ^b
	² [11/2] ^o ₅	_	92252,57 93017,00 ^A	93226,80ª	-	$1,042^{A}$	1,021 ^b
$4f(^{2}F^{o}_{7/2})6d$	² [3/2] ^o ₂	-	$92838,71^{A}$ 92417.66 ^B	92795,44ª	-	1,008 1,330 ^A 1,293 ^B	1,282 ^b
	² [3/2] ^o 1	_	93734,68 ^A 93429 61 ^B	93602,83 ^a	-	1,056 ^A 1,000 ^B	1,061 ^b
5d ²	$^{1}D_{2}$	_	43286,20 ^B 46353,59 ^A	46889,79ª	_	$1,246^{B}$ $1,014^{A}$	1,247 ^b 1,06 ^a
	${}^{3}P_{0}$	_	46835,73 ² 49576,42 ^A	48075,96ª	-	1,0675	1,061°
	${}^{3}P_{1}$	-	48045,90 50309,32 ^A 48639.61 ^B	48674,12ª	-	1,501 ^{A,B}	1,501 ^b
5d ²	${}^{3}P_{2}$	-	51599,16 ^A 49979,17 ^B	50043,85ª	-	1,461 ^A 1,395 ^B	1,401 ^b
$5d^2$	${}^{1}G_{4}$	-	49366,61 ^A 49134,51 ^B	-	-	1,024 ^A 1,025 ^B	_
5d ²	$^{1}S_{0}$	_	67656,90 ^A 67646,79 ^B	67730,30ª	-	0.400 ^{AB}	0.400 ^h
5068	³ D	_	63348,51 63498,83 ^B 64022.28 ^A	63335,40°	-	0,499 ⁵	0,499°
	$^{3}D_{3}$	_	64075,76 ^B 65587.20 ^A	65550.73ª	_	1,161 $1,162^{B}$ $1.334^{A,B}$	1,102
5d6s	$^{1}D_{2}$	_	65448,51 ^B 70498,60 ^A	70433,08ª	_	1,006 ^A	1,005 ^b
$4f(^2F^{o}_{5/2})7p_{1/2}$	(5/2,1/2)3	124028,73 ^A	70452,40 ^B 100803,80 ^A	100662,63ª	0,895 ^A	1,005 ^B 0,788 ^A	0,863 ^b
	(5/2,1/2)2	124032,34 ^A	101118,93 ^b 101075,11 ^A 101582.68 ^B	100734,04ª	0,746 ^A	$0,825^{B}$ $0,871^{A}$ 0.824^{B}	0,775 ^b
$4f(^2\!F^{o}_{7/2})7p_{1/2}$	(7/2,1/2) ₄	124597,29 ^A	101513,98 ^A 102510 37 ^B	103079,67ª	1,040 ^A	1,037 ^A 1,086 ^B	1,139 ^b
	(7/2,1/2) ₃	124406,53 ^A	102982,76 ^A 102622,52 ^B	102961,29 ^a	0,925 ^A	1,129 ^A 1,147 ^B	1,121 ^b
$4f(^2F^{o}_{5/2})7p_{3/2}$	(5/2,3/2)3	125708,27 ^A	101565,91 ^A 103007,50 ^B	101821,97ª	1,100 ^A	1,030 ^A 0,989 ^B	0,958 ^b
	$(5/2,3/2)_2$	124575,44 ^A	101552,60 ^A 103363,38 ^B	102173,68ª	1,036 ^A	0,990 ^A 0,970 ^B	1,011 ^b
	$(5/2,3/2)_4$	125741,76 ^A	103114,90 ^A 103434,71 ^B	102221,92ª	1,156 ^A	1,158 ^A 1,103 ^B	1,041°
$4f(^2\mathbf{E}^0)$)7p	$(5/2, 3/2)_1$	1246/1,88 ¹²	$1014/4,23^{B}$ $103542,21^{B}$ $102741/42^{A}$	102369,48 ^a	1,200 ^A	0,508 ^B 0,499 ^B 1,200 ^{A,B}	0,500°
41(1 [,] 7/2) / P3/2	$(7/2, 3/2)_{2}$	126249,09 126217.35^{A}	102/41,42 $104088,00^{B}$ 102420.49^{A}	104331,04 104293.20^{a}	1,200	1,200	1,200 1,224 ^b
	$(7/2,3/2)_{4}$	126163,79 ^A	102120,19 104384,31 ^B 102521,11 ^A	104289,06 ^a	1,103 ^A	1,206 ^B 1,089 ^A	1,114 ^b
	$(7/2,3/2)_2$	126413,56 ^A	104551,41 ^B 103199,31 ^A	104840,50 ^a	1,049 ^A	1,118 ^B 1,023 ^A	1,047 ^b
$4f(^{2}F^{o}_{5/2})6f$	² [7/2] ₄	_	104785,89 ^B 120554,52 ^B	122628,94ª	_	$1,050^{\text{B}}$ $0,802^{\text{B}}$	1,045 ^b
$4f(^2 \mathbf{E}^0) > cc$	${}^{2}[7/2]_{3}$	-	$122755,11^{B}$	122160,10 ^a	_	$0,826^{\text{B}}$	0,843 ^b
41(F 5/2)0I	${}^{2}[11/2]_{5}$	_	121153,39 [°] 122048.88 ^B	122289,31 122870.19 ^a	_	1,034 1.164^{B}	1.026 ^b
$4f(^{2}F^{o}_{5/2})6f$	² [9/2] ₅	_	123005,38 ^B	122611,07 ^a	_	0,872 ^B	1,016 ^b
$4f(^2E^0)$	${}^{2}[9/2]_{4}$	_	123467,83 ^B	123201,62 ^a	-	$1,074^{B}$	0,858 ^b
41(F 5/2)01	${}^{2}[3/2]_{2}$	_	123081,88 123300.87 ^B		_	0,798 0,757 ^B	_ 1.119 ^ь
$4f(^{2}F^{o}_{5/2})6f$	² [5/2] ₃ ² [5/2] ₂		123346,03 ^B 123967,51 ^B	122688,60 ^a 123555,41 ^a		1,092 ^в 1,111 ^в	1,087 ^b 0,862 ^b

Tablo A.5. Ce III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları (Tablo 3.15'in geniş hali)

Tablo A.5. Devam

Seviye	ler		Ε			g-çarpanı	
Konf.	Terim	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f({}^{2}F^{o}_{5/2})6f$	${}^{2}[1/2]_{1}$	_	124053,09 ^B	122980,12 ^a	-	1,500 ^B	1,515 ^b
(${}^{2}[1/2]_{0}$	-	133805,73 ^B	-	-		
4f(² F ^o _{7/2})6f	$^{2}[9/2]_{5}$	-	123864,17 ^B	124433,38 ^a	-	1,027 ^в	1,143 ^b
	$^{2}[9/2]_{4}$	_	124652,71 ^B	125091,24 ^a	_	1,217 ^в	1,047 ^b
4f(² F ^o _{7/2})6f	² [5/2] ₃	_	124507,15 ^в	124510,28 ^a	_	1,041 ^в	1,142 ^b
	$^{2}[5/2]_{2}$	-	125533,66 ^в	125399,50 ^a	_	0,967 ^в	1,112 ^b
4f(² F ^o _{7/2})6f	$^{2}[13/2]_{6}$	-	123986,28 ^B	125710,16 ^a	_	1,026 ^в	$1,060^{b}$
_	${}^{2}[13/2]_{7}$	-	124937,53 ^B	124609,73 ^a	-	1,143 ^B	1,143 ^b
$4f(^{2}F^{o}_{7/2})6f$	$^{2}[11/2]_{5}$	-	124611,06 ^B	125006,22 ^a	-	1,134 ^B	1,032 ^b
	${}^{2}[11/2]_{6}$	-	130755,04 ^B	125301,13 ^a	-	1,000 ^B	1,105 ^b
$4f(^{2}F^{o}_{7/2})6f$	${}^{2}[7/2]_{3}$	-	124816,91 ^B	125132,28 ^a	—	1,208 ^B	1,095
	$\frac{2}{7/2}_{4}$	-	127361,88 ^B	125615,94ª	-	1,006 ^в	1,151°
$4f({}^{2}F_{7/2})6f$	$\frac{2[1/2]_1}{2[1/2]_1}$	-	125016,32 ^B	_	-	1,203	_
10/270 > 50	${}^{2}[1/2]_{0}$	-	144120,59 ^B	_	-	1 10 5 B	
$4f({}^{2}F{}^{0}_{7/2})6f$	$\frac{2[3/2]_1}{2[3/2]_1}$	-	134026,29 ^B	-	—	1,497 ^B	-
5161	$[3/2]_2$	-	134380,98 ⁵	126052,62"	_	1,497 ⁸	1,241°
5d6d	¹ P ₁	-	$134665,77^{B}$	_	_	1,005	_
5060	⁻ P ₀ ³ D	-	$136531,77^{-1}$	_	-	1 402B	_
	⁻ P ₁ ³ D	-	130033,53 ⁻	-	-	1,483 ⁻	_
5464	P_2	-	13/3/0,81 127120.01 ^B	141104,05	-	1,4// 0.766 ^B	—
5000	^{3}C	-	13/130,91 127657 40 ^B	_	-	0,700 1.052 ^B	—
	^{3}C	_	13/03/,40 129562.06^{B}	-	—	1,032 1,200 ^B	-
5464		—	138303,00 128107 87 ^B	- 126447 67ª	—	1,200 1,024 ^B	_
5d6d	1 ⁻³	-	130107,07 120059 44 ^B	130447,07 128264 72ª	—	1,024 0.784 ^B	
5000	$^{1}2^{3}F$	—	139038,44 130760 34 ^B	130204,72 130477.67ª	—	0,784 1.120 ^B	_
	¹ '3 ³ E.	_	1/0325 60 ^B	-	_	1,129 1,230 ^B	_
5464	³ D.		139/3/ 88 ^B	_	_	0.524^{B}	_
5404	${}^{3}D_{2}$	_	139884 82 ^B	136321 39ª	_	1.066^{B}	_
	${}^{3}D_{2}$	_	$140372 \ 16^{\text{B}}$	137902 90 ^a	_	1,000 1.248^{B}	_
5d6d	${}^{1}G_{4}$	_	141676.18^{B}	-	_	$1,009^{B}$	_
5d6d	${}^{3}S_{1}$	_	142124.08^{B}	_	_	1,995 ^B	
5d6d	${}^{1}D_{2}$	_	144799.25 ^B	141803.07 ^a	_	1.001 ^B	_
5d6d	${}^{1}S_{0}$	_	154787.22 ^B	_	_	-,	-
$6p^2$	${}^{3}P_{0}$	_	123417,52 ^B	_	_		_
-1	${}^{3}P_{1}$	_	126910,28 ^B	130713,26 ^a	_	1,501 ^B	_
	${}^{3}P_{2}$	-	127792,37 ^B	-	_	1,297 ^в	-
6p ²	${}^{1}S_{0}$	-	131117,10 ^B	_	-		_
Tek parite için:							
5d6p	${}^{3}F_{2}^{0}$	_	91849,24 ^B	92635,13 ^a	_	1,046 ^B	$0,968^{b}$
	${}^{3}F^{0}{}_{3}$	-	95262,06 ^в	96022,31 ^a	_	1,119 ^в	$1,110^{b}$
	${}^{3}F_{4}^{0}$	-	99377,01 ^B	99168,82 ^a	-	1,251 ^B	1,251 ^b
5d6p	${}^{3}D_{1}^{0}$	-	94176,09 ^B	94508,68 ^a	-	0,653 ^B	0,590 ^b
	${}^{3}D_{2}^{0}$	-	96607,79 ^в	96375,66 ^a	-	1,078 ^B	1,144 ^b
	$^{3}D_{3}^{0}$	-	98338,19 ^B	97964,37 ^a	-	1,249 ^B	1,277
5d6p	${}^{1}D_{2}^{0}$	-	95470,14 ^B	95827,23 ^a	—	1,032 ^B	0,909
5d6p	${}^{3}P_{1}^{0}$	-	99890,61 [°]	99288,43 ^a	-	1,253	1,304
	${}^{3}P_{0}^{0}$	-	100671,80 ^B	99836,46°	-	P	h
	$^{3}P_{2}^{0}$	-	101606,90 ^B	100968,18 ^ª	-	1,435 ^B	1,453
5d6p	¹ F ⁰ ₃	-	102521,60 ^B	102369,16 ^a	-	1,053 ^b	1,031°
5d6p	$^{1}P_{1}^{0}$	-	103781,39 ⁸	102249,70	—	1,127 ^B	–
$4f(F_{5/2})8s_{1/2}$	$(5/2,1/2)^{\circ}_{2}$	-	11/949,40 ⁻	11/949,15	_	0,666 ⁻	0,666°
46/259 >0	$(5/2,1/2)^{\circ}_{3}$	-	11/986,89 ⁵	11/986,06"	_	1,049 ^B	1,049°
$4I(F_{7/2})8S_{1/2}$	$(7/2,1/2)^{\circ}_{4}$	-	120199,10 ⁻	120199,11"	-	1,251 ⁻	1,251°
$4f(^2E^0)$)74	$(1/2, 1/2)^3$	-	120249,20 119292 90 ^A	120249,22	-	1,034 0,780 ^A	1,034 0.764 ^b
4I(F 5/2)/U	$[3/2]_2$	_	110203,09 110200 79 ^B	118290,09	—	0,789 0.721 ^B	0,704
	² [5/2] ⁰		110329,70 119202 11 ^A	119219 07ª		0,731 0,780 ^A	0 777 ^b
	[3/2] 3	—	118423.61 ^B	116516,07	—	0,789 0,789 ^B	0,777
$4f(^{2}F^{0},)7d$	$2[0/2]^{\circ}$.		118305.00 ^A	118312 / 8ª		0,789 0,884 ^A	0.036 ^b
-1(1 ⁻ 5/2)/U	[2/ 4] 4	—	118480 58 ^B	110312,40	_	0,004 0,033 ^B	0,950
	² [9/2]°-	_	118828 92 ^A	11870/ 12 ^a	_	0,935 1.036 ^A	1.036 ^b
	[//2] 5		118787 50 ^B	110/94,12	_	1,030 1,035 ^B	1,050
$4f(^2F_{e_2})7d$	$2[7/2]^{\circ}$	_	118595 69 ^A	118588 24ª	_	1,035 1,076 ^A	1 089 ^b
1(1 5/2)/U	[112] 3		118556 99 ^B	110500,24		1.078^{B}	1,007
	${}^{2}[7/2.1^{\circ}]{}^{4}$	_	120464.02^{A}	118476.74ª	_	1.050 ^A	0.928 ^b
	L···#J 4		118278.32 ^B			0.928 ^B	-,-=0
$4f(^{2}F^{o}_{5/2})7d$	$^{2}[3/2]^{\circ}_{1}$	_	118685.07 ^A	118682,98 ^a	_	0,556 ^A	0,551 ^b
			118714,32 ^B	,		0,550 ^B	-

Tablo A.5. Devam

Sevi	yeler		Е			g-çarpanı	
Konf.	Terim	Bu ça	ılışma	Diğer	Bu çal	işma	Diğer
	2 [2/0]9	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	$[3/2]^{*}_{2}$	_	118685,75 ¹⁰ 118725.01 ^B	118665,91"	-	1,064 ¹ 1,121 ^B	1,092
$4f(^{2}F^{o}_{5/2})7d$	$^{2} [1/2]^{o}_{0}$	_	119113,92 ^A	-		1,121	
	2 51 (070		119182,48 ^B	110010 053		1.2.50	1 acab
	² [1/2] ⁰ 1	_	119107,59 ^A	119043,35"	-	1,368 ^A 1,370 ^B	1,383°
4f(² F ^o _{7/2})7d	2 [9/2] $^{\circ}_{4}$	_	118497,68 ^A	120467,78 ^a	_	0,979 ^A	1,045 ^b
	2		120481,14 ^B			1,020 ^B	
	² [9/2] ⁰ ₅	_	$120645,17^{A}$ 120718 61 ^B	120646,18ª	-	$1,164^{A}$ 1,162 ^B	1,168°
$4f({}^{2}F^{o}_{7/2})7d$	2 [7/2] $^{0}_{4}$	_	120718,01 120724,60 ^A	120685,11ª	_	1,102 1,186 ^A	1,192 ^b
			120626,76 ^B			1,219 ^B	
	$^{2} [7/2]^{0}_{3}$	_	120618,84 ^A 120647.61 ^B	120652,44ª	-	1,121 ^A 1,114 ^B	1,146°
$4f({}^{2}F^{o}_{7/2})7d$	$^{2}[5/2]^{\circ}_{2}$	_	120047,01 120710,30 ^A	120739,95ª	_	1,045 ^A	1,051 ^b
			120804,81 ^B			1,047 ^B	
	2 [5/2] $^{0}_{3}$	_	$120969,08^{\text{A}}$ 120062 78 ^B	121001,44ª	-	1,182 ^A 1,187 ^B	1,155°
$4f({}^{2}F^{o}_{7/2})7d$	$^{2} [11/2]^{\circ}_{6}$	_	120902,78 120833,20 ^A	120845,67ª	_	1,187 $1,167^{A,B}$	1,167 ^b
(112)			120783,19 ^B			·	,
	$^{2} [11/2]^{o}_{5}$	_	121098,71 ^A	121056,71ª	-	$1,034^{A}$ 1,037 ^B	1,030°
$4f({}^{2}F^{o}_{7/2})7d$	$^{2}[3/2]^{\circ}_{2}$	_	121089,71 121144,88 ^A	121095,78ª	_	1,037 1,436 ^A	1,427 ^b
(112)			121243,19 ^B			1,435 ^B	,
	$^{2} [3/2]^{\circ}_{1}$	_	121536,30 ^A	121559,51ª	-	$1,076^{A}$ 1,080 ^B	1,066°
$4f({}^{2}F^{o}{}_{5/2})5g$	2 [9/2] $^{\circ}_{5}$	_	121381,29 122907,69 ^A	122908,89ª	_	1,080 1,065 ^{A,B}	1,065 ^b
			122906,50 ^B			, , , , , , , , , , , , , , , , , , , ,	,
	² [9/2] ^o ₄	_	$122907,47^{\text{A}}$	122905,69ª	-	0,857 ^{A,B}	0,856
$4f(^{2}F^{o}_{5/2})5g$	$^{2} [11/2]^{\circ}_{6}$	_	122900,39 122915,44 ^A	122919,83ª	_	1,039 ^{A,B}	1,039 ^b
	2		122914,63 ^B			o o o A P	o o c ib
	² [11/2] ⁶ ₅	_	122915,42 ^A 122914 68 ^B	122922,37*	-	0,864	0,864°
$4f(^{2}F^{o}_{5/2})5g$	² [7/2] ^o ₄	_	122938,05 ^A	122932,21ª	_	1,105 ^{A,B}	1,106 ^b
	2 57 (019		122936,35 ^B	100000 003		0.05 (AB	0.051
	$-[1/2]_{3}$	_	122939,30 ⁴ 122937.84 ^B	122933,38	-	0,854	0,851
$4f(^{2}F^{o}_{5/2})5g$	² [5/2] ^o ₃	_	122984,48 ^A	122978,36ª	-	1,177 ^{A,B}	1,180 ^b
	2 15/019		122982,99 ^B	122076 208		0.000A.B	0.0520
	$[5/2]_{2}$	_	122988,47 122987,13 ^B	122976,50	-	0,880	0,855
$4f(^{2}F^{o}_{5/2})5g$	² [13/2]° ₇	-	122999,70 ^A	123017,02 ^a	-	1,021 ^{A,B}	1,021 ^b
	² [12/2] ⁰		$123000,70^{B}$ 122000,70 ^A	122010 20ª		0 870 ^{A,B}	0.870 ^b
	[13/2] 6	_	122999,70 123000,70 ^B	123010,29	—	0,870	0,870
$4f(^{2}F^{o}_{5/2})5g$	² [3/2] ^o ₂	_	123027,25 ^A	123028,39 ^a	-	1,329 ^{A,B}	1,356 ^b
	² [3/2] ⁰ .	_	123026,90 ^b 123046.92 ^A	123029.01ª	_	0 923 ^{A,B}	0.922 ^b
	[3/2]]	_	123046,08 ^B	123029,01	-	0,925	0,922
$4f(^{2}F^{o}_{7/2})5g$	$^{2} [11/2]^{\circ}_{6}$	_	125156,46 ^A	125155,89 ^a	-	1,141 ^{A,B}	1,141 ^b
	$2 [11/2]^{\circ}$		125156,43 ^b 125157,11 ^A	125158 07 ^a		0.085 ^{A,B}	0.991 ^b
	[11/2] 5		125157,08 ^B	125150,77		0,705	0,771
$4f(^{2}F^{o}_{7/2})5g$	² [9/2] ^o ₅	_	125169,52 ^A	125168,37 ^a	-	1,153 ^A	1,147 ^b
	² [9/2]°	_	125168,99 ⁵ 125171 41 ^A	125164 86 ^a	_	1,154 ⁵ 0,968 ^{A,B}	0.965 ^b
_	[<i>></i> , -] 4		125170,93 ^B	120101,00		5,200	0,205
$4f(^{2}F^{o}_{7/2})5g$	² [13/2] ^o ₇	-	125177,83 ^A	125186,61 ^a	-	1,131 ^{A,B}	1,131 ^b
	² [13/2] ⁰ .	_	125177,99 ⁸ 125177 91 ^A	125181 54 ^a	_	0.997 ^{A,B}	0.998 ^b
			125178,08 ^B	120101,04		5,221	
$4f(^{2}F^{0}_{7/2})5g$	² [7/2] ^o ₄	-	$125200,70^{A}$	125193,91 ^a	-	1,171 ^{A,B}	1,173 ^b
	2 [7/2] $^{\circ}_{3}$	_	125199,77 ^a 125205.39 ^A	125196.03ª	_	0.949 ^{A,B}	0.941 ^b
	[=] J		125204,62 ^B			.,,	~,~ · -

^aNIST Atomic Spectra Database [63], ^bQuinet ve Biémont [48]

		Geçişler			λ	l	og(gf)	gA	A _{ki}
	Alt seviye	Üst so	eviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
	·		·	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
4f5d	${}^{3}F^{0}_{3}$	$4f({}^{2}F_{5/2}^{0})6p_{1/2}$	$(5/2, 1/2)_3$	2359,591 ^A	2337,664 ^a	-0,847 ^A	-0,93 ^a	$1,70(8)^{A}$	$1,42(8)^{a}$
	-	(, 1		2327,994 ^B	,	-0.764^{B}	,	$2,12(8)^{B}$	<i>,</i> , , , , , , , , , , , , , , , , , ,
4f5d	${}^{3}F_{3}^{0}$	$4f({}^{2}F_{7/2}^{o})6p_{1/2}$	$(7/2, 1/2)_3$	2253,352 ^A	2227,837 ^a	-0,281 ^A	-0.32^{a}	6,87(8) ^A	$6,40(8)^{a}$
		· · · · · ·		2234,914 ^B		$-0,509^{B}$		$4,14(8)^{B}$	
4f5d	${}^{3}F_{3}^{\circ}$	4f(² F ^o _{5/2})6p _{3/2}	$(5/2, 3/2)_3$	2176,844 ^A	2184,639 ^a	-0,509 ^A	$-0,79^{a}$	$4,36(8)^{A}$	$2,26(8)^{a}$
				2108,931 ^B		-0,447 ^B		$5,36(8)^{B}$	
4f5d	${}^{3}F_{3}^{\circ}$	4f(² F ^o _{7/2})6p _{3/2}	$(7/2, 3/2)_3$	2107,351 ^A	2077,752 ^a	-1,787 ^A	-2,11 ^a	$2,45(7)^{A}$	$1,21(7)^{a}$
		· · · •		2064,174 ^B		-0,815 ^B		$2,40(8)^{B}$	
4f5d	${}^{3}F_{3}^{\circ}$	4f(² F ^o _{7/2})6p _{3/2}	$(7/2, 3/2)_4$	2056,794 ^A	2038,207 ^a	-1,632 ^A	-1,83 ^a	3,68(7) ^A	$2,40(7)^{a}$
				2042,571 ^B		-1,287 ^в		$8,25(7)^{B}$	
4f5d	${}^{3}F_{3}$	5d6s	${}^{3}D_{2}$	1709,906 ^A	1709,158 ^a	-1,809 ^A	-1,73 ^a	3,54(7) ^A	$4,30(7)^{a}$
				1706,583 ^B		-1,874 ^B		$3,06(7)^{B}$	
4f5d	${}^{3}\text{G}^{0}{}_{3}$	$5d^2$	${}^{3}F_{2}$	2924,589 ^A	2925,260 ^a	-0,677 ^A	-0,83 ^a	1,64(8) ^A	$1,14(8)^{a}$
				2915,231 ^в		-0,712 ^в		$1,52(8)^{B}$	
4f5d	${}^{3}\text{G}^{o}{}_{3}$	$5d^2$	${}^{3}F_{3}$	2779,824 ^A	2802,389 ^a	-1,063 ^A	-1,45 ^a	7,46(7) ^A	$3,00(7)^{a}$
				2796,770 ^в		-0,969 ^в		$9,16(7)^{B}$	
4f5d	${}^{3}\text{G}^{\circ}_{3}$	$5d^2$	${}^{3}F_{4}$	2650,213 ^A	2683,604 ^a	-2,449 ^A	-2,94 ^a	3,37(6) ^A	$1,05(6)^{a}$
				2682,165 ^B		-2,289 ^в		$4,77(6)^{B}$	
4f5d	${}^{3}\text{G}^{o}{}_{3}$	$5d^2$	${}^{1}D_{2}$	2480,252 ^A	2460,819 ^a	-2,098 ^A	-1,62 ^a	8,66(6) ^A	$2,67(7)^{a}$
	_	_		2449,009 ^B		-2,111 ^B		$8,62(6)^{B}$	
4f5d	${}^{3}G_{3}^{\circ}$	4f(² F° _{5/2})6p _{3/2}	$(5/2, 3/2)_3$	2200,584 ^A	2221,679 ^a	-0,792 ^A	-1,13 ^a	$2,22(8)^{A}$	$1,01(8)^{a}$
	_		_	2132,486 ^B		-1,307 ^B		$7,24(7)^{B}$	
4f5d	${}^{3}G_{3}^{\circ}$	5d6s	$^{3}D_{2}$	1724,520 ^A	1731,737 ^a	$-2,772^{A}$	-3,04 ^a	$3,80(6)^{A}$	$2,05(6)^{a}$
	2			1721,974 ^B		-2,303 ^B		$1,12(7)^{B}$	
4f5d	³ G ^o ₃	5d6s	$^{3}D_{3}$	1679,202 ^A	1686,753 ^a	-3,431 ^A	$-3,52^{a}$	8,76(5) ^A	$7,10(5)^{a}$
	2			1682,210 ^B		-3,487 ^в		$7,68(5)^{B}$	
4f5d	³ G ^o ₃	5d6s	$^{1}D_{2}$	1551,266 ^A	1558,412 ^a	-2,628 ^A	-2,91ª	$6,52(6)^{A}_{P}$	$3,41(6)^{a}$
	2	2		1551,601 ^B		-2,899 ^в		3,50(6) ^B	
4f5d	³ H ^o ₅	$4f^2$	$^{1}I_{6}$	8712,876 ^A	9039,657 ^a	-3,417 ^A	-3,71ª	$3,36(4)^{A}$	$1,59(4)^{a}$
	2			8752,491 ^в		-3,861 ^B		1,20(4) ^B	
4f5d	³ H ^o ₅	4f(² F ^o _{7/2})6p _{3/2}	$(7/2, 3/2)_5$	2094,041 ^A	2089,961 ^a	-1,017 ^A	-1,05 ^a	$1,46(8)^{A}_{P}$	$1,38(8)^{a}$
	1		2	2097,356 ^в		-0,959 ^в		1,67(8) ^B	
4f5d	${}^{1}D_{2}^{0}$	$5d^2$	${}^{5}F_{2}$	3017,111 ^A	2951,704 ^a	-2,217 ^A	-1,98 ^a	4,45(6) ^A	7,97(6) ^a
	1= 0	2	3	3009,265 ^B		-2,019 ^b		7,04(6) ^B	
4f5d	¹ D ⁰ ₂	5d ²	F_3	2863,283 ^A	2826,648ª	-2,057 ^A	$-2,29^{a}$	7,14(6) ^A	$4,27(6)^{a}$
	150		(5 (2, 1, (2))	2883,206°	2207 (02)	-2,119	1 603	6,10(6) ^b	
4f5d	¹ D ⁰ ₂	4f(² F ⁹ _{5/2})6p _{1/2}	$(5/2, 1/2)_3$	2448,813 ^A	2397,602ª	-1,529 ^A	$-1,68^{a}$	3,29(7) ^A	$2,45(7)^{a}$
				2417,807 ^s		-1,366°		4,91(7) ^b	

Tablo A.6. Ce III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹) (Tablo 3.16'nın geniş hali)

Tablo A.6. Devam

		Geçişler			λ		log(gf)	g	A _{ki}
A	Alt seviye	Üst se	eviye	Bu çalışma	Diğer	Bu çalışma	a Diğer	Bu çalışma	Diğer
	-		-	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
4f5d	${}^{1}D_{2}^{0}$	5d6s	³ D ₁	1777,309 ^A 1772 294 ^B	1761,679 ^a	$-2,207^{A}$ $-2,160^{B}$	-2,18 ^a	$1,31(7)^{A}$ 1 47(7) ^B	$1,42(7)^{a}$
$4f^2$	$^{1}G_{4}$	$4f({}^{2}F^{o}{}_{5/2})6d$	² [9/2] ^o ₅	1198,843 ^A	1197,047 ^a	$-3,406^{A}$	-3,56 ^a	$1,82(6)^{A}$ 1,10(6) ^B	1,28(6) ^a
$4f^2$	$^{1}G_{4}$	$4f(^{2}F^{o}_{7/2})6d$	² [7/2] ^o ₄	1176,116 ^A	1177,016 ^a	-2,593 ^A	-2,62 ^a	1,19(0) $1,23(7)^{A}$	1,17(7) ^a
4f5d	${}^3\mathrm{F}^{\mathrm{o}}_4$	$5d^2$	³ F ₃	2879,275 ^A	2873,671ª	-3,009 -0,819 ^A	-1,33ª	4,04(0) 1,22(8) ^A 1,50(0) ^B	3,75(7) ^a
4f5d	${}^{3}\mathrm{F}^{\mathrm{o}}_{4}$	5d ²	${}^{3}F_{4}$	2898,800 2740,456 ^A	2748,902ª	-0,724 -0,727 ^A	-0,85 ^a	1,50(8) $1,67(8)^{A}$	1,24(8) ^a
4f5d	${}^{3}\mathrm{F}^{\mathrm{o}}_{4}$	$4f(^2F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)3	2775,923 ⁵ 2187,474 ^A	2151,438ª	-0,934 ⁵ -0,749 ^A	-0,38 ^a	$1,01(8)^{5}$ 2,48(8) ^A	6,04(8) ^a
4f5d	${}^3\mathrm{Fo}_4$	$4f(^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)5	2143,048 ^b 2148,629 ^A	2125,007 ^a	-0,552 ^b -1,109 ^A	-0,89 ^a	$4,07(8)^{B}$ $1,12(8)^{A}$	1,93(8) ^a
4f5d	${}^3\mathrm{F}^{\mathrm{o}}_4$	$4f({}^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)4	2153,217 ^b 2133,049 ^A	2109,068 ^a	-0,936 ^B -0,732 ^A	-0,47 ^a	1,67(8) ^B 2,72(8) ^A	5,14(8) ^a
4f5d	${}^3\mathrm{F}^{\mathrm{o}}_4$	5d6s	$^{3}D_{3}$	2119,771 ^в 1714,985 ^А	1712,309ª	$-0,556^{B}$ $-1,961^{A}$	-1,69 ^a	$4,13(8)^{B}$ 2,48(7) ^A	4,65(7) ^a
4f5d	${}^3\mathrm{Go}_4$	$5d^2$	³ F ₃	1718,616 ^в 2916,422 ^A	2931,537ª	$-2,136^{\text{B}}$ $-0,670^{\text{A}}$	-0,73 ^a	$1,65(7)^{B}$ $1,68(8)^{A}$	1,45(8) ^a
4f5d	${}^{3}\mathrm{G}^{\mathrm{o}}{}_{4}$	$4f(^{2}F^{o}_{5/2})6p_{1/2}$	(5/2,1/2)3	2939,521 ^в 2487,577 ^а	2472,646 ^a	-0,704 ^B -1,490 ^A	-1,53ª	1,52(8) ^B 3,49(7) ^A	3,19(7) ^a
4f5d	${}^3\mathrm{Go}_4$	$4f(^{2}F^{o}_{7/2})6p_{1/2}$	(7/2,1/2)3	$2457,285^{B}$ $2369,789^{A}$	2350,104ª	$-1,717^{B}$ $-0,556^{A}$	-0,25 ^a	$2,12(7)^{B}$ $3,30(8)^{A}$	6,80(8) ^a
4f5d	${}^3G^{o}_{4}$	$4f(^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)5	2353,809 ^в 2169,248 ^A	2156,488ª	-1,381 ^B -2,123 ^A	-1,94ª	$5,00(7)^{B}$ 1,07(7) ^A	1,63(7) ^a
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{6}$	$4f(^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)5	2175,567 ^в 2189,023 ^А	2180,635ª	-3,319 ^в 0,427 ^A	0,39ª	$6,76(5)^{B}$ $3,72(9)^{A}$	3,45(9) ^a
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{6}$	$4f(^{2}F^{o}_{5/2})5f$	² [9/2] ₅	2195,646 ^в 1093,414 ^А	1095,839ª	0,438 ^B -2,344 ^A	-2,24 ^a	3,79(9) ^B 2,53(7) ^A	3,17(7) ^a
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{\mathrm{6}}$	$4f(^{2}F^{o}_{5/2})5f$	² [11/2] ₆	1088,291 ^B 1089,461 ^A	1090,920ª	$-2,721^{B}$ $-1,701^{A}$	-1,58 ^a	$1,07(7)^{B}$ $1,12(8)^{A}$	1,48(8) ^a
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}{}_{\mathrm{6}}$	$4f(^{2}F^{o}_{7/2})5f$	² [9/2] ₅	$1086,428^{B}$ $1069,175^{A}$	1077,256 ^a	-1,421 ^B -1,472 ^A	-1,34 ^a	$2,15(8)^{B}$ $1,97(8)^{A}$	2,61(8) ^a
4f5d	${}^{3}\mathrm{H}^{\mathrm{o}}_{\mathrm{6}}$	4f(² F ^o _{7/2})5f	² [13/2] ₇	1065,353 ^в 1065,182 ^а	1072,791 ^a	-1,163 ^B 0,635 ^A	0,62 ^a	$4,04(8)^{B}$ 2,54(10) ^A	2,40(10) ^a
4f5d	${}^{3}D_{1}^{0}$	5d ²	${}^{3}F_{2}$	1068,648 ^B 3187,128 ^A	3171,857 ^a	0,697 ^в -2,178 ^а	-2,59 ^a	$2,90(10)^{B}$ $4,36(6)^{A}$	1,69(6) ^a
4f5d	${}^{3}D_{1}^{0}$	$4f(^2\!F^{o}_{5/2})6p_{1/2}$	(5/2,1/2)2	3177,816 ^B 2544,001 ^A 2483,162 ^B	2531,987ª	-2,342 ^B -0,544 ^A -0,518 ^B	$-0,62^{a}$	3,01(6) ^B 2,95(8) ^A 3,28(8) ^B	2,53(8) ^a

Tablo A.6. Devam

		Geçişler			λ		log(gf)	g	A _{ki}
A	Alt seviye	Üst so	eviye	Bu çalışma	Diğer	Bu çalışma	a Diğer	Bu çalışma	Diğer
	-		-	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
4f5d	${}^{3}D_{1}^{0}$	$5d^2$	${}^{3}P_{1}$	2412,106 ^A 2512,419 ^B	2514,835 ^a	-1,228 ^A -1,287 ^B	-1,46 ^a	$6,78(7)^{A}$ 5 45(7) ^B	3,67(7) ^a
4f5d	${}^{3}D_{1}^{0}$	$5d^2$	${}^{3}P_{2}$	2339,323 ^A 2430,616 ^B	2431,062 ^a	-3,572 ^A	-3,47 ^a	$3,27(5)^{A}$ 7,57(6) ^B	3,85(5) ^a
4f5d	${}^{3}D_{1}^{0}$	$4f(^2F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)1	2492,005 ^A 2384 821 ^B	2324,311ª	-0.618^{A}	-0,66 ^a	$2,59(8)^{A}$ 2,73(8) ^B	2,70(8) ^a
4f5d	${}^{3}\mathrm{D}^{\mathrm{o}}{}_{1}$	5d6s	${}^{3}D_{1}$	1834,971 ^A 1829 441 ^B	1837,784ª	$-1,469^{A}$	-1,71 ^ª	$6,72(7)^{A}$	3,83(7) ^a
4f5d	${}^{3}\mathrm{D}^{\mathrm{o}}{}_{1}$	5d6s	$^{3}D_{2}$	1812,562 ^A 1810 333 ^B	1815,256ª	-1,804 ^A	-2,09 ^a	$3,19(7)^{A}$ 2,37(7) ^B	1,64(7) ^a
4f5d	${}^{3}D_{1}^{o}$	$5d^2$	${}^{1}\mathbf{S}_{0}$	1700,532 ^A 1700 405 ^B	1700,442 ^a	-2,685 ^A	-2,95 ^a	$4,77(6)^{A}$	2,59(6) ^a
4f5d	${}^3G^{o}{}_5$	$5d^2$	${}^{3}F_{4}$	2894,308 ^A	2923,809ª	-2,329 -0,386 ^A 0.245 ^B	-0,55 ^a	$3,28(8)^{A}$	2,18(8) ^a
4f5d	${}^3\text{G}{}^{ m o}{}_5$	$4f(^2F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)4	2410,457 ^A	2318,642ª	-0,343 -0,049 ^A	-0,09 ^a	$1,03(9)^{A}$	1,02(9) ^a
4f5d	${}^3\text{G}{}^{ m o}{}_5$	$4f(^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)5	2233,515 2242,072 ^A 2240,188 ^B	2228,051ª	-0,065 ^A	-0,13 ^a	1,00(9) $1,14(9)^{A}$ $1,12(0)^{B}$	1,01(9) ^a
4f5d	${}^{3}\mathrm{D}^{\mathrm{o}}{}_{2}$	5d ²	${}^{3}F_{2}$	2249,188 3301,920 ^A 2200,580 ^B	3273,482ª	-0,009 -2,862 ^A	-3,16 ^a	$8,41(5)^{A}$	4,26(5) ^a
4f5d	${}^{3}D_{2}^{o}$	5d ²	³ F ₃	3118,562 ^A	3120,384ª	-2,975 -2,253 ^A	-2,52ª	$3,83(6)^{A}$	2,08(6) ^a
4f5d	${}^{3}D_{2}^{o}$	5d ²	${}^{3}P_{1}$	2477,286 ^A	2578,300ª	-2,570 -0,652 ^A	-0,89 ^a	2,88(0) $2,42(8)^{A}$ $2,11(8)^{B}$	1,31(8) ^a
4f5d	${}^{3}D_{2}^{o}$	$5d^2$	${}^{3}P_{2}$	2382,385 $2400,580^{A}$ $2406,041^{B}$	2490,321ª	-0,077 -1,384 ^A 2,127 ^B	-1,45 ^a	$4,78(7)^{A}$	3,78(7) ^a
4f5d	${}^{3}D_{2}^{o}$	$4f(^2\!F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)2	2490,041 2475,777 ^A 2272,245 ^B	2395,043ª	-2,137 $-0,732^{A}$ $0,510^{B}$	-0,72 ^a	$2,02(8)^{A}$	2,23(8) ^a
4f5d	${}^{3}D_{2}^{o}$	$4f(^2\!F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)1	2561,638 ^A	2378,422 ^a	-0,519 $-1,150^{A}$ $1,127^{B}$	-1,17 ^a	7,19(7) ^A 8,12(7) ^B	7,96(7) ^a
4f5d	${}^{3}D_{2}^{o}$	$4f(^2\!F^{o}_{7/2})6p_{3/2}$	(7/2,3/2) ₂	2217,268 ^A 2280.014 ^B	2238,646 ^a	-1,137 -1,081 ^A	-0,71 ^a	$1,13(8)^{A}$ $1,05(7)^{B}$	2,58(8) ^a
4f5d	${}^{3}D_{2}^{o}$	5d6s	${}^{3}D_{1}$	1872,450 ^A	1871,436 ^a	$-1,979^{A}$	-2,22ª	$2,00(7)^{A}$ $1,80(7)^{B}$	1,16(7) ^a
4f5d	${}^{3}D_{2}^{o}$	5d6s	$^{3}D_{2}$	1800,239 1849,122 ^A 1846,270 ^B	1848,080 ^a	-2,005 $-1,398^{A}$ $1,426^{B}$	-1,55 ^a	$7,81(7)^{A}$	5,55(7) ^a
4f5d	${}^{3}D_{2}^{o}$	5d6s	³ D ₃	1797,118 ^A	1796,937ª	-1,450 -1,882 ^A	-2,14 ^a	$2,71(7)^{A}$	1,49(7) ^a
4f5d	³ D ^o ₃	5d ²	${}^{3}F_{4}$	2974,491 ^A 3009,837 ^B	2993,952ª	-2,008 -2,162 ^A -2,264 ^B	-2,44ª	$5,19(6)^{A}$ $4,01(6)^{B}$	2,68(6) ^a

Tablo A.6. Devam

		Geçişler			λ]	log(gf)	gA_{ki}	
А	lt seviye	Üst so	eviye	Bu çalışma	Diğer	Bu çalışma	<u>Diğ</u> er	Bu çalışma	Diğer
				HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
4f5d	$^{3}D_{3}^{0}$	$5d^2$	$^{1}D_{2}$	2762,060 ^A 2719 320 ^B	2719,301 ^a	-0,673 ^A -0,552 ^B	-0,77 ^a	$1,86(8)^{A}$ 2,53(8) ^B	1,52(8) ^a
4f5d	${}^{3}D_{3}^{o}$	$4f(^2F^{o}_{7/2})6p_{1/2}$	$(7/2, 1/2)_4$	2349,811 ^A 2446 755 ^B	2503,561ª	$-1,106^{A}$	-1,25 ^a	$9,47(7)^{A}$	6,03(7) ^a
4f5d	${}^{3}D_{3}^{o}$	$4f(^2\!F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)4	2440,755 2465,815 ^A 2207,706 ^B	2362,538 ^a	-0,833 -0,548 ^A	-0,85 ^a	$3,11(8)^{A}$	1,69(8) ^a
4f5d	$^{3}D_{3}^{o}$	$4f(^2F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)3	2297,706 ⁻ 2334,063 ^A	2298,700 ^a	-0,739 ⁻ -0,989 ^A	$-0,90^{a}$	$2,31(8)^{-1}$ $1,26(8)^{A}$	1,61(8) ^a
4f5d	$^{3}D_{3}^{o}$	5d6s	$^{3}D_{2}$	2279,834 ^b 1856,198 ^A	1855,833ª	-0,767 ⁸ -1,756 ^A	-2,12 ^a	2,20(8) ^b 3,39(7) ^A	1,46(7) ^a
4f5d	${}^{3}D_{3}^{o}$	5d6s	$^{1}D_{2}$	1851,373 ^в 1657,005 ^а	1658,195 ^a	-1,836 ^в -1,510 ^A	-1,85 ^a	2,84(7) ^в 7,52(7) ^A	3,44(7) ^a
4f5d	${}^{3}P_{0}^{0}$	$5d^2$	${}^{3}P_{1}$	$1655,886^{\rm B}$ $2583,252^{\rm A}$	2694,839ª	-1,640 ^B -1,243 ^A	-1,51 ^a	5,57(7) ^B 5,71(7) ^A	$2,82(7)^{a}$
4f5d	${}^{3}P_{0}^{0}$	$4f(^{2}F^{0}s_{2})6n_{2}$	$(5/2, 3/2)_1$	$2701,005^{B}$ $2675,108^{A}$	2477.248ª	-1,333 ^B -0,722 ^A	-0.79 ^a	$4,25(7)^{B}$ $1,77(8)^{A}$	$1.76(8)^{a}$
4f5d	³ D ⁰	5460	³ D	2554,093 ^B	1022.060ª	$-0,729^{B}$	1.00ª	$1,91(8)^{B}$	$2.24(7)^{a}$
4150	P 0	5005		1932,303 1927,433 ^B	1952,000	-1,720 ^B	-1,90	4,53(7) $3,42(7)^{B}$	2,24(7)
4f5d	³ P ⁰ 1	4f ²	$^{1}S_{0}$	4725,146 ^A 4694,083 ^B	4709,896°	-4,399 ^A -3,702 ^B	-3,88ª	$1,19(4)^{A}$ 6,01(4) ^B	3,98(4) ^a
4f5d	${}^{3}P_{1}^{0}$	$5d^2$	$^{1}D_{2}$	2878,713 ^A 2836,972 ^B	2833,865ª	-1,452 ^A -1,465 ^B	-1,64 ^a	2,85(7) ^A 2,84(7) ^B	1,89(7) ^a
4f5d	${}^{3}\mathrm{P}^{\mathrm{o}}{}_{1}$	$5d^2$	${}^{3}P_{0}$	2634,314 ^A 2742,806 ^B	2741,673 ^a	-1,375 ^A -1,531 ^B	-1,65 ^a	$4,05(7)^{A}$ 2,61(7) ^B	1,97(7) ^a
4f5d	${}^{3}P^{o}{}_{1}$	$5d^2$	${}^{3}P_{1}$	2584,416 ^A 2698 856 ^B	2697,421ª	$-1,265^{A}$	-1,53 ^a	$5,42(7)^{A}$	2,70(7) ^a
4f5d	${}^{3}P_{1}^{o}$	$5d^2$	${}^{3}P_{2}$	2501,044 ^A	2601,276 ^a	-1,198 ^A	-1,55 ^a	$6,76(7)^{A}$	2,79(7) ^a
4f5d	${}^{3}P^{o}{}_{1}$	$4f(^2\!F^{o}_{5/2})6p_{3/2}$	(5/2,3/2) ₂	2582,774 ^A	2497,498ª	-0,983 -0,952 ^A	-0,61 ^a	1,02(8) $1,12(8)^{A}$ $1,56(8)^{B}$	2,59(8) ^a
4f5d	${}^{3}P^{o}{}_{1}$	$4f(^2\!F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)1	2005,125 2736,422 ^A	2479,430ª	-0,780 -0,613 ^A	-0,80 ^a	$2,17(8)^{A}$	1,72(8) ^a
4f5d	${}^{3}P^{o}{}_{1}$	$4f(^2\!F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)2	2302,702 ^A	2327,910ª	-0,707 -2,089 ^A	-1,38 ^a	$1,02(7)^{A}$	5,12(7) ^a
4f5d	${}^{1}F^{o}_{3}$	$5d^2$	${}^{3}F_{3}$	2370,330 ³ 3411,976 ^A	3396,016 ^a	-1,/43 ^o -4,052 ^A	-3,87 ^a	$2,15(7)^{2}$ 5,08(4) ^A	7,79(4) ^a
4f5d	$^{1}\mathrm{F}^{\mathrm{o}}_{3}$	5d ²	${}^{3}F_{4}$	3432,533 ⁵ 3218,762 ^A	3223,135 ^a	-3,901 ^b -2,670 ^A	-2,80 ^a	7,12(4) ^b 1,38(6) ^A	1,02(6) ^a
4f5d	${}^{1}F^{o}_{3}$	$4f(^2\!F^{o}_{5/2})6p_{1/2}$	(5/2,1/2)3	3261,493 ^B 2839,320 ^A 2792,580 ^B	2795,105 ^a	-2,615 ^в -1,576 ^A -1,640 ^в	-1,32 ^a	$1,52(6)^{B}$ 2,20(7) ^A 1,96(7) ^B	4,07(7) ^a

Tablo A.6. Devam

		Geçişler			λ]	log(gf)	g	A _{ki}
А	lt seviye	Üst se	eviye	Bu çalışma	Diğer	Bu çalışma	<u>Diğer</u>	Bu çalışma	Diğer
				HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
4f5d	${}^{1}F_{3}^{0}$	$5d^2$	${}^{3}P_{2}$	2570,755 ^A 2677,106 ^B	2662,811 ^a	-0,653 ^A -0,539 ^B	-0,78 ^a	$2,24(8)^{\text{A}}$ 2,69(8)^{\text{B}}	$1,57(8)^{a}$
4f5d	${}^{1}F_{3}^{o}$	$4f({}^{2}F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)4	2631,359 ^A	2502,986 ^a	-1,755 ^A	-1,90 ^a	$1,69(7)^{A}$	1,34(7) ^a
4f5d	${}^{1}F^{o}_{3}$	$4f({}^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)3	2441,520 ⁻ 2481,858 ^A	2431,449 ^a	-1,111 ⁻ -0,151 ^A	-0,21 ^a	$8,6/(7)^{-}$ 7,64(8) ^A	6,90(8) ^a
4f5d	${}^{1}F^{o}_{3}$	4f(² F ^o _{7/2})6p _{3/2}	(7/2,3/2)4	2421,351 ^B 2412,032 ^A	2377,474 ^a	-0,356 ^в -0,871 ^А	-0,84 ^a	5,02(8) ^в 1,54(8) ^A	1,72(8) ^a
4f5d	¹ F ^o 2	$4f(^{2}F^{0}z_{2})6nz_{2}$	$(7/2 \ 3/2)_{2}$	2391,678 ^B 2361,665 ^A	2377 070ª	-0,936 ^B -0,730 ^A	-0 66 ^a	$1,35(8)^{B}$ 2,23(8)^{A}	2 59(8) ^a
407.1	1 3	F1(1 //2)0P3/2	30	2430,152 ^B	1005.01.43	-0,750 ^B	1,778	2,01(8) ^B	2,59(0)
415d	¹ F ⁵ ₃	566s	$^{5}D_{3}$	1890,820 ^A 1893,111 ^B	1885,014"	-1,623 ^A -1,654 ^B	-1,774	$4,44(7)^{A}$ $4,13(7)^{B}$	3,18(7)*
4f5d	${}^{1}F_{3}^{0}$	5d6s	$^{1}D_{2}$	1730,149 ^A 1729,295 ^B	1726,151 ^a	-0,846 ^A -1.059 ^B	-1,22 ^a	$3,18(8)^{A}$ $1.95(8)^{B}$	1,36(8) ^a
4f5d	${}^{3}P^{o}{}_{2}$	$5d^2$	${}^{3}P_{1}$	2661,393 ^A 2777 830 ^B	2774,448 ^a	-1,286 ^A	-1,55 ^a	$4,87(7)^{A}$	2,45(7) ^a
4f5d	${}^{3}P^{o}{}_{2}$	$5d^2$	${}^{3}P_{2}$	2573,065 ^A	2672,838 ^a	-0,692 ^A	-0,96 ^a	2,05(8) ^A	1,02(8) ^a
4f5d	${}^{3}P_{2}^{o}$	$4f(^{2}F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)1	2678,173 ⁻ 2758,996 ^A	2544,362 ^a	-0,986 ⁻ -1,952 ^A	-2,04 ^a	9,60(7) ⁻ 9,79(6) ^A	9,40(6) ^a
4f5d	${}^{3}P_{2}^{o}$	5d6s	$^{3}D_{1}$	2622,682 ^b 1975,757 ^A	1972,626 ^a	-1,914 ^b -2,774 ^A	-3,12 ^a	$1,18(7)^{B}$ 2,88(6) ^A	1,29(6) ^a
4f5d	${}^{3}P_{2}^{o}$	5d6s	$^{3}D_{2}$	1966,237 ^в 1949,801 ^A	1946,694 ^a	-2,833 ^в -1,750 ^A	-1,96 ^a	2,54(6) ^B 3,12(7) ^A	1,94(7) ^a
$4f^2$	$^{1}D_{2}$	$4f({}^{2}F^{o}{}_{5/2})6d$	² [5/2] ^o ₂	1944,183 ^B 1303,946 ^A	1306,934ª	-1,845 ^B -3,271 ^A	-2,90 ^a	$2,52(7)^{B}$ $2,10(6)^{A}$	4,97(6) ^a
$4f^2$	¹ D ₂	$4f(^2F^{\circ}_{cr})6d$	² [5/2] ^o	1315,155 ^B 1293 698 ^A	1294 468ª	$-2,146^{B}$	-3 32ª	$2,75(7)^{B}$ 3,92(6) ^A	1.92(6) ^a
41 ²		41(1 <u>5/2</u>)00	212/019	1296,341 ^B	1202 1708	-3,293 ^B	2,004	$2,02(6)^{B}$	1,92(0)
41-	$^{1}D_{2}$	4I(⁻ F [*] _{5/2})6d	-[3/2]* ₂	1290,034 ^B	1292,179*	-3,346 ¹ -1,997 ^B	-3,00"	$4,03(7)^{B}$	4,00(6)"
$4f^2$	$^{1}D_{2}$	$4f({}^{2}F^{o}{}_{5/2})6d$	${}^{2}[1/2]{}^{0}{}_{1}$	1281,704 ^A 1281,193 ^B	1281,334ª	-3,103 ^A -3,044 ^B	-3,04ª	3,20(6) ^A 3,67(6) ^B	$3,75(6)^{a}$
$4f^2$	${}^{3}P_{0}$	$4f(^{2}F^{o}_{5/2})6d$	² [3/2] ^o ₁	1348,271 ^A 1349 466 ^B	1350,029 ^a	$-2,695^{A}$ $-2,007^{B}$	-2,72 ^a	$7,41(6)^{A}$ 3,60(7) ^B	7,01(6) ^a
$4f^2$	${}^{3}P_{0}$	$4f(^{2}F^{o}_{5/2})6d$	${}^{2}[1/2]^{o}{}_{1}$	1335,747 ^A	1336,778 ^a	$-2,707^{A}$	-2,92 ^a	$7,34(6)^{A}$	4,52(6) ^a
4f5d	${}^{1}\mathrm{H}^{\mathrm{o}}{}_{5}$	$4f({}^{2}F^{o}_{7/2})6p_{1/2}$	(7/2,1/2) ₄	2730,462 ^A	2948,531ª	-2,902 -1,237 ^A	-1,57 ^a	5,18(7) ^A	2,06(7) ^a
4f5d	${}^{1}\mathrm{H}^{\mathrm{o}}{}_{5}$	$4f(^2F^{o}_{5/2})6p_{3/2}$	(5/2,3/2) ₄	2879,217 ³ 2888,357 ^A 2675,022 ^B	2754,869ª	-0,338 ⁻ -0,717 ^A -1,399 ^B	-0,66 ^a	$3,69(8)^{-1}$ 1,54(8) ^A 3,72(7) ^B	1,94(8) ^a

Tablo A.6. Devam

	Ge	eçişler			λ	1	og(gf)	g	A _{ki}
Alt se	eviye	Üst se	eviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
				HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
4f5d	¹ H ^o ₅	4f(² F ^o _{7/2})6p _{3/2}	(7/2,3/2)5	$2649,888^{\text{A}}$ 2666.406^{B}	2627,923 ^a	$-2,126^{A}$ -2.066^{B}	-2,20 ^a	$7,11(6)^{A}$ 8,05(6) ^B	6,06(6) ^a
4f5d	${}^{1}\mathrm{H}^{\mathrm{o}}{}_{5}$	$4f({}^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)4	2626,230 ^A 2615 306 ^B	2603,591 ^a	$0,504^{\rm A}$ $0.423^{\rm B}$	0,31 ^a	$3,08(9)^{A}$ 2,58(9)^{B}	$2,00(9)^{a}$
$4f^2$	${}^{3}\mathbf{P}_{1}$	$4f(^{2}F^{o}_{5/2})6d$	² [3/2] ^o ₁	1357,304 ^A 1258,472 ^B	1358,311ª	-3,081 ^A	-3,39ª	$3,00(6)^{A}$	1,48(6) ^a
$4f^2$	${}^{3}P_{1}$	4f(² F° _{5/2})6d	$^{2}[1/2]^{o}_{1}$	1344,612 ^A	1344,897 ^a	-2,704 ^A	-2,96 ^a	$7,29(6)^{A}$	4,09(6) ^a
$4f^2$	${}^{3}\mathbf{P}_{1}$	$4f(^{2}F^{o}_{5/2})6d$	$^{2}[1/2]^{o}_{0}$	1345,737 ² 1344,680 ^A	1344,470 ^a	-2,363 ⁻ -2,621 ^A	-2,88ª	$1,59(7)^{-}$ 8,82(6) ^A	4,91(6) ^a
$4f^2$	${}^{3}\mathbf{P}_{1}$	4f(² F ^o _{7/2})6d	² [3/2] ^o ₂	1347,605 ^b 1309,865 ^A	1311,101 ^a	-2,426 ^b -2,841 ^A	-2,92 ^a	1,38(7) ^b 5,61(6) ^A	4,64(6) ^a
$4f^2$	${}^{3}P_{2}$	4f(² F° _{5/2})6d	² [3/2] ^o ₂	1317,573 ^в 1336,575 ^а	1371,625 ^a	-2,643 ^в -3,481 ^A	-3,05ª	8,74(6) ^в 1,23(6) ^A	3,18(6) ^a
$4f^2$	${}^{3}P_{2}$	4f(² F ^o _{5/2})6d	$^{2}[1/2]^{o}_{1}$	1371,677 ^в 1360,673 ^а	1359,411ª	-2,692 ^B -2,702 ^A	-3,00 ^a	7,20(6) ^B 7,15(6) ^A	3,61(6) ^a
$4f^2$	${}^{3}P_{2}$	$4f(^{2}F^{0}_{7/2})6d$	${}^{2}[3/2]^{\circ}_{2}$	1361,687 ^B 1325,101 ^A	1324.890ª	$-2,466^{B}$ $-2,190^{A}$	-2.51ª	$1,23(7)^{B}$ 2.45(7) ^A	$1.17(7)^{a}$
$4f^2$	³ P ₂	$4f(^2F_{2}^0)6d$	² [3/2] ⁰	1332,858 ^B 1309 553 ^A	1310 868ª	-1,983 ^B	-3 19ª	$3,90(7)^{B}$ 3,36(6)^{A}	$2.51(6)^{a}$
4.62	1 2 1 1	4f(2T9))c1	210/219	1315,120 ^B	1265 4058	-3,010 ^B	2 408	3,77(6) ^B	1.20(0)
41-	-1 ₆	4I(⁻ F [*] _{5/2})6d	-[9/2]*5	1369,805 rd 1363,437 ^B	1365,405	-2,836 ¹ -3,340 ^B	-3,42"	5,19(6) ^B 1,64(6) ^B	1,36(6)"
4f ²	${}^{1}I_{6}$	$4f({}^{2}F{}^{0}_{7/2})6d$	$^{2}[9/2]^{0}_{5}$	1339,615 ^л 1340,532 ^в	1337,617ª	-3,018 ^A -4,102 ^B	-3,95ª	3,57(6) ^A 2,94(5) ^B	$4,18(5)^{a}$
$4f^2$	${}^{1}I_{6}$	4f(² F ^o _{7/2})6d	$^{2}[11/2]^{o}_{5}$	1324,935 ^A 1316,111 ^B	1319,153 ^a	-2,365 ^A -2,639 ^B	-2,94 ^a	1,64(7) ^A 8,85(6) ^B	$4,42(6)^{a}$
4f5d	${}^{1}P_{1}^{o}$	$4f^2$	${}^{1}S_{0}$	6961,863 ^A 6861,498 ^B	6944,945 ^a	-1,785 ^A -1,653 ^B	-1,80 ^a	$2,26(6)^{A}$ $3,15(6)^{B}$	2,21(6) ^a
4f5d	${}^{1}P_{1}^{0}$	5d ²	$^{1}D_{2}$	3579,310 ^A 3506 372 ^B	3514,408 ^a	$-1,418^{A}$	-1,65ª	$1,99(7)^{A}$ 1,73(7) ^B	1,22(7) ^a
4f5d	${}^{1}P_{1}^{o}$	$5d^2$	${}^{3}P_{0}$	3209,124 ^A	3373,723 ^a	-3,199 ^A	-3,16 ^a	$4,09(5)^{A}$	4,02(5) ^a
4f5d	${}^{1}P_{1}^{o}$	$4f(^{2}F^{o}_{7/2})6p_{3/2}$	(7/2,3/2) ₂	2730,164 ^A	2768,280ª	-2,855 -0,257 ^A	-0,43ª	$4,96(8)^{A}$	3,20(8) ^a
4f5d	$^{1}\mathbf{P}_{1}^{0}$	5d ²	${}^{1}S_{0}$	2030,802 ^A	2028,293ª	-0,402 ⁻ -0,566 ^A	-0,86 ^a	$3,32(8)^{-}$ 4,39(8) ^A	2,24(8) ^a
4f5d	$^{1}P_{1}^{o}$	5d6s	$^{1}D_{2}$	2027,139 ³ 1920,000 ^A	1923,467ª	-0,6478 -0,896 ^A	-1,52 ^a	3,66(8) ^B 2,30(8) ^A	5,46(7) ^a
$4f(^2F^{o}_{5/2})6s_{1/2}$	(5/2,1/2)° ₂	5d ²	${}^{3}F_{2}$	1918,052 ^a 4764,520 ^A 4732 065 ^B	4714,779 ^a	-1,306 ^b -2,045 ^A -1,919 ^B	-2,01 ^a	$8,96(7)^{B}$ 2,65(6) ^A 3,59(6) ^B	2,96(6) ^a

	Ge	eçişler			λ	lo	g(gf)	gA_{ki}	
Alt se	eviye	Üst se	eviye	Bu çalışma HFR	Diğer çalışmalar	Bu çalışma HFR	Diğer çalışmalar	Bu çalışma HFR	Diğer çalışmalar
$4f(^{2}F^{o}_{5/2})6s_{1/2}$	(5/2,1/2)° ₂	5d ²	³ F ₃	4391,912 ^A 4427.652 ^B	4403,601 ^a	$-3,053^{A}$ -3.015^{B}	-3,16 ^a	$3,06(5)^{A}$ $3,28(5)^{B}$	2,36(5) ^a
$4f(^{2}F^{o}_{5/2})6s_{1/2}$	(5/2,1/2)°2	$5d^2$	${}^{3}P_{2}$	3090,266 ^A 3246,110 ^B	3245,014 ^a	-2,216 ^A -3 371 ^B	-1,66 ^a	$4,25(6)^{A}$ 2,69(5) ^B	1,40(7) ^a
$4f(^{2}F^{0}_{5/2})6s_{1/2}$	$(5/2.1/2)^{\circ}_{2}$	$4f({}^{2}F^{0}_{5/2})6p_{3/2}$	$(5/2,3/2)_3$	3101.919 ^A	3121.560 ^a	0.261^{A}	0.19^{a}	$1.26(9)^{A}$	$1.06(9)^{a}$
$4f({}^{2}F_{5/2})6s_{1/2}$	$(5/2,1/2)^{\circ}_{2}$	5d6s	${}^{3}D_{1}$	2267,110 ^A 2256.023 ^B	2266,915 ^a	-0,166 ^A -0.210 ^B	$-0,40^{a}$	8,85(8) ^A 8,08(8) ^B	$5,14(8)^{a}$
$f({}^{2}F_{5/2})6s_{1/2}$	(5/2,1/2)°2	5d6s	$^{3}D_{2}$	2233,001 ^A 2227,037 ^B	2232,722ª	-0,851 ^A -0,860 ^B	-1,10 ^a	$1,88(8)^{A}$ $1.86(8)^{B}$	1,07(8) ^a
$4f(^{2}F^{o}_{5/2})6s_{1/2}$	(5/2,1/2)°2	5d6s	${}^{3}D_{3}$	2157,604 ^A 2160,973 ^B	2158,473 ^a	-2,381 ^A -2,365 ^B	-2,62 ^a	5,95(6) ^A 6,17(6) ^B	3,46(6) ^a
$f({}^{2}F_{5/2})6s_{1/2}$	(5/2,1/2)°2	5d6s	$^{1}D_{2}$	1950,873 ^A 1950.102 ^в	1953,245ª	-2,865 ^A -3,162 ^B	-3,03 ^a	$2,39(6)^{A}$ $1,21(6)^{B}$	1,63(6) ^a
$f({}^{2}F_{5/2})6s_{1/2}$	(5/2,1/2)° ₃	5d ²	${}^{3}F_{2}$	4815,176 ^A 4784,215 ^B	4766,079 ^a	-2,709 ^A -2.625 ^B	-2,67 ^a	$5,62(5)^{A}$ $6.91(5)^{B}$	6,35(5) ^a
$f({}^{2}F^{o}{}_{5/2})6s_{1/2}$	(5/2,1/2)° ₃	5d ²	³ F ₃	4434,919 ^A 4473.276 ^B	4448,322 ^a	-1,874 ^A -1.852 ^B	-1,90 ^a	$4,53(6)^{A}$ $4,68(6)^{B}$	4,26(6) ^a
$f({}^{2}F^{o}{}_{5/2})6s_{1/2}$	(5/2,1/2)° ₃	5d ²	${}^{3}F_{4}$	4113,933 ^A 4187,116 ^B	4156,314 ^a	-2,334 ^A -2,440 ^B	-2,55 ^a	$1,83(6)^{A}$ $1.38(6)^{B}$	1,10(6) ^a
$f({}^{2}F_{5/2})6s_{1/2}$	(5/2,1/2)° ₃	5d ²	$^{1}D_{2}$	3718,397 ^A 3645,337 ^B	3645,225 ^a	-1,391 ^A -1.574 ^B	-1,50 ^a	$1,96(7)^{A}$ $1.34(7)^{B}$	1,60(7) ^a
$f(^{2}F^{o}_{5/2})6s_{1/2}$	(5/2,1/2)° ₃	5d6s	$^{1}D_{2}$	1959,313 ^A 1958,901 ^B	1961,992 ^a	-0,667 ^A -0.836 ^B	-1,09 ^a	$3,74(8)^{A}$ 2,53(8) ^B	1,40(8) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₄	5d ²	³ F ₃	4869,911 ^A 4913,548 ^B	4885,724 ^a	-2,391 ^A -2,360 ^B	-2,68 ^a	$1,14(6)^{A}$ $1,20(6)^{B}$	5,91(5) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₄	5d ²	${}^{3}F_{4}$	4485,598 ^A 4570,446 ^B	4535,727 ^a	-1,359 ^A -1,371 ^B	-1,60 ^a	$1,45(7)^{A}$ $1,36(7)^{B}$	8,18(6) ^a
$f(^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₄	$4f(^2F^{o}_{7/2})6p_{1/2}$	(7/2,1/2) ₄	3201,948 ^A 3386.871 ^B	3497,810 ^a	-0,500 ^A 0.231 ^B	-0,39 ^a	2,03(8) ^A 9,89(8) ^B	2,24(8) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₄	$4f(^2F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)5	3091,707 ^A 3096,189 ^B	3055,591ª	$0,726^{A}$ $0,714^{B}$	0,63ª	$3,71(9)^{A}$ $3,60(9)^{B}$	3,03(9) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₄	$4f(^2F^{o}_{7/2})6p_{3/2}$	(7/2,3/2) ₄	3059,550 ^A 3027,501 ^B	3022,745ª	-0,528 ^A -0,335 ^B	-0,22 ^a	$2,11(8)^{A}$ $3,37(8)^{B}$	4,42(8) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	$5d^2$	³ F ₃	4961,008 ^A 5003,811 ^B	4976,443ª	-2,256 ^A -2,163 ^B	-2,45 ^a	$1,50(6)^{A}$ $1,83(6)^{B}$	9,49(5) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	5d ²	${}^{3}F_{4}$	4562,771 ^A 4648,444 ^B	4613,810 ^a	-2,558 ^A -2,573 ^B	-3,06 ^a	8,86(5) ^A 8,25(5) ^B	2,72(5) ^a
$f({}^{2}F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	$4f(^2F^{o}_{5/2})6p_{1/2}$	(5/2,1/2)3	3836,069 ^A 3750,804 ^B	3784,290ª	-1,006 ^A -0,783 ^B	-1,21 ^a	4,47(7) ^A 7,81(7) ^B	2,86(7) ^a

Tablo A.6. Devam

	G	eçişler			λ	lo	g(gf)	gA	ki
Alt se	eviye	Üst so	eviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
	-		-	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f(^{2}F^{o}_{7/2})6s_{1/2}$	$(7/2, 1/2)^{\circ}_{3}$	$4f(^{2}F^{o}_{5/2})6p_{3/2}$	(5/2,3/2)4	3465,983 ^A	3267,941ª	-0,775 ^A	-0,79 ^a	$9,32(7)^{A}$	1,00(8) ^a
$4f(^2\!F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	$4f(^2F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)3	3143,080 3211,196 ^A 3110 320 ^B	3147,058 ^a	-0,050 $0,328^{A}$ 0.066^{B}	0,14 ^a	0,02(8) 1,38(9) ^A 8,02(8) ^B	9,41(8) ^a
$4f(^2\!F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	$4f(^2\!F^{o}_{7/2})6p_{3/2}$	(7/2,3/2)4	3095,259 ^A 3061,529 ^B	3057,227 ^a	$0,214^{\text{A}}$ 0.027 ^B	0,30 ^a	$1,14(9)^{A}$ 7,56(8) ^B	1,42(9) ^a
$4f(^2F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	$4f(^2F^{o}_{7/2})6p_{3/2}$	$(7/2, 3/2)_2$	3012,804 ^A 3124,858 ^B	3056,560 ^a	$0,171^{A}$ 0.125^{B}	0,21 ^a	$1,09(9)^{A}$ 9.11(8) ^B	1,16(9) ^a
$4f(^2F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	5d6s	${}^{3}D_{2}$	2371,306 ^A 2363,946 ^B	2371,123 ^a	-0,943 ^A -0.931 ^B	-0,98 ^a	$1,35(8)^{A}$ $1,40(8)^{B}$	1,25(8) ^a
$4f(^2F^{o}_{7/2})6s_{1/2}$	(7/2,1/2)° ₃	5d6s	$^{3}D_{3}$	2286,458 ^A 2289.646 ^B	2287,558 ^a	-1,270 ^A -1,283 ^B	-1,44 ^a	$6,86(7)^{A}$ $6,63(7)^{B}$	4,61(7) ^a
$4f^2$	${}^{1}S_{0}$	$4f(^{2}F^{o}_{5/2})6d$	² [3/2] ^o ₁	1742,427 ^A 1746,956 ^B	1745,021ª	-2,432 ^A -1.875 ^B	-2,53ª	$8,13(6)^{A}$ 2.91(7) ^B	6,53(6) ^a
$4f^2$	${}^{1}S_{0}$	$4f(^{2}F^{o}_{5/2})6d$	$^{2}[1/2]^{o}_{1}$	1721,566 ^A 1725,953 ^B	1722,945 ^a	-2,251 ^A -2,661 ^B	-2,54 ^a	$1,26(7)^{A}$ $4,89(6)^{B}$	6,56(6) ^a
$4f^2$	${}^{1}S_{0}$	$4f(^{2}F^{o}_{7/2})6d$	² [3/2] ^o ₁	1640,540 ^A 1651,818 ^B	1645,706 ^a	-1,516 ^A -1,443 ^B	-1,86ª	7,55(7) ^A 8,81(7) ^B	3,41(7) ^a

^aDream Database [64]

Seviyel	er		Е			g- çarpanı	
Konf.	Terim	Bu ç	alışma	Diğer	Bu ça	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
Çift parite için:							
4f ¹⁴ 6s7d	${}^{3}D_{1}$	56843,28 ^{A,C}	44312,989 ^A	44311,38 ^a	0,498 ^{A,B,C,D}	0,499 ^{A,B}	$0,500^{b}$
		52760,91 ^B	44439,608 ^B	44316 ^b			$0,508^{\circ}$
		56267,91 ^D					
	$^{3}D_{2}$	56837,05 ^{A,C}	44313,811 ^A	44313,05 ^a	1,164 ^{A,D}	1,105 ^A	1,131 ^b
		52761,13 ^B	44441,300 ^B	44365 ^b	1,167 ^в	1,163 ^B	1,079°
		56311,72 ^D					
	$^{3}D_{3}$	56831,76 ^{A,C}	44373,007 ^A	44380,82 ^a	1,334 ^{A,B,C,D}	1,334 ^{A,B}	1,32 ^a
		52761,49 ^B	44444,968 ⁸	44386 ^b			1,333 ^b
		56355,86 ^D					1,338°
4f ¹⁴ 6s7d	$^{1}D_{2}$	57051,98 ^{A,C}	44372,793 ^A	44357,60 ^a	1,017 ^{A,C}	1,074 ^A	1,10 ^a
		52994,07 ^B	44454,197 ^в	44298 ^b	0,990 ^B	1,052 ^B	1,080 ^b
		56038,55 ^D			$1,002^{D}$	-	1,111 ^c
$4f^{13}(^{2}F^{o}_{5/2})6s^{2}6p_{3/2}$	$(5/2, 3/2)_1$	-	44624,702 ^C	44834,61 ^a	-	0,499 ^C	$0,66^{a}$
			44662,257 ^D	44797 ^⁵		0,561 ^D	0,610 ^b
	$(5/2, 3/2)_4$	-	45378,796 [°]	45497,62 ^a	-	1,037 ^C	1,033 ^b
			45118,924 ^D	45578°		1,036 ^D	,
	$(5/2,3/2)_2$	_	45854,916 ^C	45913,86ª	-	0,800 ^C	0,826°
			45619,503 ^D	45939 ^b		0,830 ^D	,
	$(5/2,3/2)_3$	_	46195,710 ^C	46262°	-	1,024 ^C	1,167°
14 2	2	1.5	45915,795 ^D		1.6	1,037 ^D	
$4f^{14}5d^2$	${}^{3}F_{2}$	53410,63 ^{A,C}	48528,773 ^в	47634,41ª?	0,713 ^{A,C}	0,666 ^в	-
		53431,27 ^B			0,720 ^B		
14 9	2	57675,25 ^D			0,666 ^D	P	
$4f^{14}5d^2$	⁵ F ₃	54258,23 ^{A,C}	48528,773 ^b	47860,28ª?	1,083 ^{д,с,в,р}	1,084 ^b	1,02ª?
		54260,26 ^B					
	2	57988,50 ^D				P	
	${}^{5}F_{4}$	55579,34 ^{A,C}	48528,773 ^b	-	1,247 ^{A,C}	1,251 ^b	-
		55599,91 ^b			1,248 ^B		
· al 4 = • 2	1~	58390,82	TALLO ALAP		1,249	t o o o P	
4f ¹⁴ 5d ²	$^{1}G_{4}$	61382,83 ^{A,C}	52118,913 ^b	-	1,014 ^{A,C}	1,000 ^b	-
		63161,0 ¹⁵			1,002 ^{B,D}		
4 cl4 = 12	300	62909,94 ^b					
4t 5d ²	$^{-}\mathbf{P}_{0}$	61232,57 ^{A,C}	52405,055"	-			
		61975,96 ^b					
	300	66154,92 ^D	70 17 6 100 ^B		1 50 (AC	1 FOIB	
	$^{\circ}P_{1}$	62085,04 ^{A,C}	524/6,490	-	1,504 ^{A,C}	1,5018	-
		62496,21 ^B			1,501°		
		66312,61 ^D			1,5005		

Tablo A.7. Yb I'in E seviye enerjileri (cm⁻¹) ve Landé *g*-çarpanları (Tablo 3.18'in geniş hali)

Tablo A.7. Devam

Seviyel	er		Ε		g- çarpanı		
Konf.	Terim	Bu ç	alışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BI	P HFR	çalışmalar
	${}^{3}P_{2}$	62423,09 ^{A,C} 63107,80 ^B 66643.02 ^D	52914,805 ^B	_	1,379 ^{A,C} 1,475 ^B 1,478 ^D	1,494 ^B	_
$4f^{14}5d^2$	$^{1}D_{2}$	64824,87 ^{A,C} 67568,86 ^B	56903,452 ^B	_	1,087 ^{A,C} 1,024 ^B	1,006 ^B	_
Tek parite için:							
$4f^{13}(^2F^{o}_{7/2})5d_{5/2}6s^2$	(7/2,5/2)° ₁	-	28873,201 ^C 28870,299 ^D	28857,014 ^a 28852 ^b	-	1,215 ^C 1,222 ^D	1,2635 ^a 1,242 ^b
	(7/2,5/2)° ₄	-	29814,776 ^C 29908,595 ^D	29774,958ª 29788 ^b	-	1,063 ^C 1.091 ^D	$1,09^{a}$ 1.087^{b}
	(7/2,5/2)° ₃	-	29854,112 ^C 30020 886 ^D	30207,380 ^a 30215 ^b	-	1,114 ^C 1,102 ^D	1,08 ^a 1,101 ^b
	(7/2,5/2)° ₅	-	30510,125 ^C 30545,679 ^D	30524,714 ^a 30621 ^b	-	1,175 ^C 1,174 ^D	1,18 ^a 1,174 ^b
$4f^{13}(^2F^{o}_{5/2})5d_{5/2}6s^2$	(5/2,5/2)° ₀	-	34574,884 ^C 34824 108 ^D	-		1,1/4	1,1/4
	(5/2,5/2)° ₄	-	36272,824 ^C 36026 986 ^D	-	-	0,830 ^{C,D}	-
	(5/2,5/2)° ₁	-	37223,407 ^C	-	_	1,109 ^C	-
	(5/2,5/2)°2	-	37651,594 ^C 37214 288 ^D	-	-	0,893 ^C	-
	(5/2,5/2)° ₅	-	38207,585 ^C 38203 284 ^D	-	_	1,038 ^C	-
	(5/2,5/2)° ₃	-	39384,583 ^C 39216 304 ^D	-	-	0,954 ^C	-
$4f^{13}(^2F_{5/2}\)5d_{3/2}6s^2$	(5/2,3/2)° ₁	-	38855,484 ^C 38550 804 ^D	-	-	$0,620^{\circ}$ $0,636^{\circ}$	-
	(5/2,3/2)° ₂	-	39281,239 ^C 39249 622 ^D	-	-	0,958 ^C 0,958 ^D	-
	(5/2,3/2)° ₃	-	40406,723 ^C 40422 239 ^D	-	-	0,900 ^C 0,955 ^D	-
	(5/2,3/2)° ₄	-	41120,079 ^C 41059 367 ^D	-	-	1,044 ^{C,D}	-
4f ¹⁴ 6s6f	³ F ^o ₂	47630,87 ^A 47110,44 ^B 47753,43 ^C 44519,06 ^D	45915,530 ^A 45887,198 ^B	$45956,27^{a}$ 45942^{b}	0,666 ^{A,B,C} 0,667 ^D	0,674 ^A 0,675 ^B	$0,72^{a}$ $0,682^{b}$

Tablo A.7. Devam

Seviy	yeler		Е		g- çarpanı		
Konf.	Terim	Bu ça	alışma	Diğer	Bu ça	lışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	³ F ^o ₃	47632,23 ^A 47111,81 ^B 47754,80 ^C	45944,761 ^A 45925,308 ^B	45942 ^b	1,083 ^{A,B,C,D}	1,079 ^A 1,077 ^B	1,084 ^b
	${}^{3}F_{4}^{0}$	47734,80 44525,71 ^D 47634,07 ^A 47113,68 ^B	46162,607 ^A 46046,993 ^B	46035 ^b	1,251 ^{A,B,C,D}	1,251 ^{A,B}	1,214 ^b
46146-66	150	47756,67 ^C 44550,67 ^D 48402 (0A	45720 802Å	45950b	1 000A.B.C.D	1 000Å	1.001
41 0501	F 3	48492,69 47992,20 ^B 48635,19 ^C 44430.22 ^D	45759,802 45866,199 ^B	43832	1,000	1,010 ^B	1,001
4f ¹⁴ 5d6p	${}^3F_2^{o}$	41693,28 ^D	42827,805 ^A 43003,005 ^B	42720 ^b	0,685 ^D	$0,695^{\rm A}$ $0,684^{\rm B}$	0,748 ^b
	${}^{3}F_{3}^{0}$	42385,60 ^D	44262,307 ^A 44387,591 ^B	44415 ^b	1,084 ^D	1,080 ^A 1,083 ^B	1,093 ^b
	${}^{3}F_{4}^{o}$	43153,30 ^D	45623,205 ^A 45482,101 ^B	45725 ^b	1,251 ^D	1,251 ^{A,B}	1,237 ^b
4f ¹⁴ 5d6p	${}^{3}P_{2}^{0}$	49529,97 ^D	46840,765 ^A 47279,026 ^B	48359 ^b	1,462 ^D	1,128 ^A 1,081 ^B	1,074 ^b
	${}^{3}P_{1}^{0}$	49353,89 ^D	47642,217 ^A 45891,904 ^B	47847 ^b	1,456 ^D	1,142 ^A 1,384 ^B	1,373 ^b
	${}^{3}P_{0}^{0}$	49288,53 ^D	47438,195 ^A 45848,693 ^B	47690 ^b			
4f ¹⁴ 5d6p	${}^{1}\mathrm{D}^{\mathrm{o}}{}_{2}$	43618,83 ^D	44980,704 ^A 45356,099 ^B	45158 ^b	0,982 ^D	1,199 ^A 1,051 ^B	0,992 ^b
4f ¹⁴ 5d6p	${}^{3}D_{1}^{0}$	48458,61 ^D	46090,191 ^A 46214,203 ^B	46281 ^b	0,544 ^D	0,863 ^A 0,787 ^B	1,00 ^b
	${}^{3}D_{2}^{0}$	48776,95 ^D	47883,425 ^A 46821,492 ^B	47028 ^b	1,203 ^D	1,284 ^A 1,294 ^B	1,113 ^b
	³ D ^o ₃	49357,19 ^D	47761,972 ^A 47681,701 ^B	48167 ^b	1,320 ^D	1,279 ^A 1,254 ^B	1,286 ^b
4f ¹⁴ 5d6p	${}^{1}F_{3}^{0}$	53428,16 ^D	49417,315 ^A 50600,200 ^в	-	1,002 ^D	1,042 ^A 1,006 ^B	-
4f ¹⁴ 5d6p	${}^{1}P_{1}^{0}$	64216,12 ^D	55353,600 ^A 55754,800 ^B	55396 ^b	1,000 ^D	0,998 ^A 1,001 ^B	0,973 ^b

^aNIST Atomic Spectra Database [63], ^bWyart ve Camus [185], ^cBaumann ve çalışma arkadaşları [226]

Sovivolor			F			a aanaan			
Konfigürasvon	Terim	Bu calis	E ma	Diğer	Вися	g-çarpanı lısma	Diğer		
		MCHF+BP H	FR	çalışmalar	MCHF+BP	HFR	çalışmalar		
Cift parite icin:									
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{4})$	$(7/2,4)_{15/2}$	- 647	′85,797 ^в	64891,30 ^a	_	$1,200^{B}$	1,19 ^a		
	$(7/2,4)_{3/2}$	- 655	502,770 ^B	65888,46 ^a	_	1,168 ^B	1,206 ^a		
	$(7/2,4)_{5/2}$	- 667	′64,179 ^в	66395,72ª	-	1,259 ^в	1,235 ^a		
	$(7/2,4)_{1/2}$	- 670)09,887 ^B	66462,86 ^a	-	1,050 ^B	1,11 ^a		
	$(7/2,4)_{11/2}$	- 683	891,663 ^в	68148,88 ^a	-	1,208 ^B	1,20 ^a		
	$(7/2,4)_{7/2}$	- 685	б9,867 ^в	68450,11 ^a	-	1,146 ^B	1,08 ^a		
	$(7/2,4)_{9/2}$	- 686	529,021 ^B	68549,23ª	-	1,132 ^B	1,157 ^a		
$4e^{13}/2E^{10} \rightarrow 54C_{10}/1E^{10}$	$(7/2,4)_{13/2}$	- 687	$(09,436)^{3}$	68/20,44 ^a	-	1,159 ⁵	1,15/"		
4I*("F* _{7/2})5d6p("F* ₃)	$(7/2,3)_{1/2}$	- 655	233,368 ⁻	65566,72"	-	1,454 ⁻ 1,217 ^B	1,43" 1,15 ^a		
	$(7/2, 3)_{3/2}$	- 098	201 755 ^B	09445,52 70136 24ª	_	1,217 1.145 ^B	1,13 1 12 ^a		
	$(7/2,3)_{13/2}$	- 702	70 342 ^B	70130,24 71468 70 ^a	_	0.967^{B}	1,12 1 02 ^a		
	$(7/2,3)_{5/2}$	- 730	170,542	72779 99 ^a	_	$1,105^{B}$	1,02 1 10 ^a		
	$(7/2,3)_{0/2}$	- 733	50.858 ^B	73283.35 ^a	_	0.975^{B}	1.04 ^a		
	$(7/2,3)_{11/2}$	- 734	69.637 ^B	73291.95 ^a	_	1.086 ^B	1.09 ^a		
$4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{1}D^{\circ}_{2})$	$(7/2,2)_{7/2}$	- 654	35,829 ^B	65577,11ª?	_	0,996 ^B	1,055ª		
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{2})$	$(7/2,2)_{9/2}$	- 652	23,082 ^B	65199,54ª?	-	$1,062^{B}$	$1,08^{a}$		
$4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{3}D^{\circ}_{3})$	$(7/2,3)_{13/2}$	- 658	345,362 ^в	65875,77ª	-	1,198 ^B	1,205 ^a		
	$(7/2,3)_{11/2}$	- 667	/02,989 ^в	66571,58 ^a	-	1,194 ^B	1,189 ^a		
	$(7/2,3)_{3/2}$	- 673	897,965 ^в	67204,97 ^a	-	1,054 ^B	1,04 ^a		
	(7/2,3)9/2	- 675	504,780 ^B	67416,03 ^a	-	1,261 ^B	1,26 ^a		
	$(7/2,3)_{1/2}$	- 685	530,001 ^в	67955,23 ^a	-	0,931 ^B	0,895 ^a		
$4f_{13}^{13}({}^{2}F_{5/2}^{\circ})5d6p({}^{3}P_{0}^{\circ})$	(7/2,0)7/2	- 689	018,833 ^B	68756,04ª?	_	1,335 ^B	1,32 ^a		
$4f_{13}^{13}({}^{2}F_{7/2}^{\circ})5d6p({}^{3}F_{4}^{\circ})$	(7/2,4)5/2	- 683	367,374 ^B	68135,00ª?	-	$1,078^{B}_{-}$	1,087 ^a		
$4f_{13}^{13}({}^{2}F_{7/2}^{\circ})5d6p({}^{3}P_{1}^{\circ})$	$(7/2,1)_{5/2}$	- 698	318,967 ^в	69607,54 ^a ?	-	1,249 ^B	1,210 ^a		
$4f_{7/2}^{13}({}^{2}F_{7/2}^{\circ})5d6p({}^{3}P_{0}^{\circ})$	$(7/2,0)_{7/2}$	- 695	596,403 ^B	69395,20ª?	-	0,940 ^B	0,94 ^a		
$4f_{13}^{13}({}^{2}F_{5/2}^{\circ})5d6p({}^{1}D_{2}^{\circ})$	$(5/2,2)_{9/2}$	- 739	903,408 ^в	73750,90°?	-	1,037 ^B	1,07 ^a		
$4f^{13}({}^{2}F^{\circ}_{5/2})5d6p({}^{3}F^{\circ}_{2})$	$(5/2,2)_{9/2}$	- 690)53,886 ^B	68943,65ª	-	0,895 ^B	0,89 ^a		
	$(5/2,2)_{5/2}$	- 711	70,342 ^B	71270,01ª	-	0,967 ^B	0,91ª		
	$(5/2,2)_{7/2}$	- 722	248,052 ^B	72202,03ª	-	0,861 ^B	0,86 ^ª		
	$(5/2,2)_{3/2}$	- /32	$260,725^{B}$	/3116,/1"	-	$0,736^{B}$	0,863		
$4e^{13}/2E^{10} \rightarrow 546e^{-3}/2E^{10}$	$(5/2,2)_{1/2}$	- /52	$262,392^{-1}$	/5905,//*	-	$0,519^{-1}$	1,28"		
$41^{(1+3)}(1+3)$	$(5/2,3)_{1/2}$	- 703	000,800	70029,04 72615 74ª	-	0,055 0,004 ^B	0,08		
	$(5/2,3)_{11/2}$	- 720	07 301 ^B	72013,74 73657 20ª	-	0,994 1 1/13 ^B	0,99 1.04 ^a		
	$(5/2,3)_{3/2}$	- 740	524 111 ^B	73037,29 74270.48ª	_	1,143 0.901 ^B	1,04 0.92 ^a		
	$(5/2,3)_{5/2}$	- 752	24,111 236 873 ^B	74270,48 75640.06ª	_	0.732^{B}	0,92 0.81 ^a		
	$(5/2,3)_{1/2}$	- 767	19 143 ^B	76516 11ª	_	0.999^{B}	1.01^{a}		
$4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{3}P^{\circ}_{7/2})$	$(7/2,2)_{11/2}$	- 709	74.951 ^B	70793.96ª	_	1.217 ^B	1,01 1,20 ^a		
(1 //2)edop(1 2)	$(7/2,2)_{0/2}$	- 710)82.009 ^B	70858.18 ^a	_	1.288 ^B	1.28 ^a		
	$(7/2.2)_{3/2}$	- 715	533.822 ^B	71113.84 ^a	_	0.952 ^B	0.967 ^a		
	$(7/2,2)_{7/2}$	- 714	32,711 ^B	71222,36 ^a	_	1,144 ^B	1,15 ^a		
$4f^{13}(^{2}F^{\circ}_{5/2})5d6p(^{3}D^{\circ}_{1})$	$(5/2,1)_{7/2}$	- 739	28,249 ^B	73966,81ª	-	$0,765^{B}$	0,763 ^a		
	$(5/2,1)_{5/2}$	- 752	236,873 ^B	75058,11 ^a	_	$0,732^{B}$	$0,76^{a}$		
	$(5/2,1)_{3/2}$	- 768	348,736 ^в	77284,02 ^a	-	0,852 ^B	0,90 ^a		
$4f^{13}(^{2}F^{\circ}_{5/2})5d6p(^{3}D^{\circ}_{2})$	(5/2,2)9/2	- 747	750,726 ^B	74568,58 ^a	-	1,029 ^B	1,04 ^a		
	(5/2,2)7/2	- 766	$510,509^{B}$	76323,49 ^a	-	$0,967^{B}$	1,00 ^a		
$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}F^{\circ}{}_{4})$	(5/2,4)5/2	- 763	354,735 ^B	76170,25 ^a	-	1,078 ^B	1,12 ^a		
	$(5/2,4)_{13/2}$	- 763	368,996 ^B	76233,60 ^a	-	1,108 ^B	1,07 ^a		
	$(5/2,4)_{7/2}$	- 776	0/4,799 ^B	77882,04 ^a	-	1,160 ^p	1,13		
	$(5/2,4)_{9/2}$	- 792	294,379 ^B	79126,83ª	-	1,142 ^B	1,15"?		
4 cl3/2pg > 5 16 (lpg >	$(5/2,4)_{11/2}$	- 795	599,724 ^B	-	-	1,094 ^B	-		
$4f^{13}(^{2}F^{0}_{5/2})5d6p(^{1}D^{0}_{2})$	$(5/2,2)_{5/2}$	- 757	21,581 ³	75550,94"	-	0,926 ³	0,91"		
$4f^{(2}F^{\circ}_{5/2})5d6p(^{2}D^{\circ}_{1})$	$(5/2,1)_{5/2}$	- 1/2	29,467 ⁻	76839,00**?	-	1,092 ⁻	1,11		
4f (F [*] _{5/2})5d6p(D [*] ₃)	$(5/2,3)_{11/2}$	- /0/	(14,539 74,700 ^B	76649,80 77440.20 ^a	-	1,080	1,08		
	$(5/2, 5)_{7/2}$	- //0	1/4, 199	77449,52	-	1,100 1,005 ^B	1,10 1.07 ^a		
	$(5/2, 5)_{9/2}$	- 700	01,174 07 775 ^B	77887 30 ^a	_	2 102 ^B	2.20^{a}		
	$(5/2,3)^{1/2}$	- 700	38 027 ^B	78814 86 ^a	_	2,102 1 198 ^B	$\frac{2}{20}$		
$4f^{13}(^{2}F^{\circ}_{7/2})5d6n(^{1}P^{\circ}_{1})$	$(7/2, 3)_{5/2}$	- 791 _ 702	994 370 ^B	78070 10 ^a	_	1,120 1 142 ^B	1,22 1 10 ^a		
$\pi (\Gamma 7/2) J(\Gamma 1)$	$(7/2, 1)_{9/2}$	- 792	.97,579 604 ^B	79628 71 ^a	_	0.981 ^B	1,10 1 11 ^a		
$4f^{13}(^{2}F^{\circ}_{5/2})5d6n(^{3}P^{\circ}_{1})$	$(7/2, 1)^{7/2}$	_ 702	28.043 ^B	79605 95 ^a ?	_	1.000^{B}	1.16^{a}		
$4f^{13}({}^{2}F^{\circ}{}_{52})5d6n({}^{1}F^{\circ}{}_{2})$	$(5/2, 3)_{1/2}$	- 800	20,049 075,498 ^B	80679.18 ^a	_	1.015 ^B	$1.00^{a_{9}}$		
(1 3/2/000P(1 3/	$(5/2.3)_{1/2}$	- 804	60.375 ^B	82091.32 ^a	_	0.261 ^B			
	$(5/2,3)_{3/2}$	- 817	49.748 ^B	82398.98ª	_	0.512 ^B	1.042^{a}		
	(5/2,3)5/2	- 826	516,716 ^B	82891.80 ^a	_	0,995 ^B	1,03ª?		
	(5/2,3)7/2	- 836	527,064 ^B	83363,88ª	_	$0,962^{B}$	0,97 ^a		
	(5/2,3)9/2	- 841	33,604 ^B	-	-	$0,965^{B}$	_		

Tablo A.8. Yb II'nin E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları(Tablo 3.27'nin geniş hali)

Tablo A.8. Devam

Seviyeler			Ε			g-çarpanı	l
Konfigürasvon	Terim	Bu	calisma	Diğer	Bu o	calisma	Diğer
		MCHF+BF	P HFR	calismalar	MCHF+BI	> HFR	calışmalar
$4f^{13}(^{2}E^{\circ}) 5d6p(^{3}D^{\circ})$	(5/2)		78076 080 ^B	,,		1 109 ^B	,,
41 ($\Gamma_{5/2}$)3dop(P_2)	$(3/2,2)_{1/2}$	_	76970,060 91501.009 ^B	- 91205 278	-	1,108 1,110 ^B	1_00 ^a
	$(3/2,2)_{9/2}$	_	61391,096	01203,27	_	1,119 0,001 ^B	1,09
	$(5/2,2)_{5/2}$	-	81/92,400	81312,05	-	0,991	1,11 /
4 cl3/2220 > 7 1 c /320 >	$(5/2,2)_{7/2}$	—	81/82,//6 ^B	81692,92	-	1,165 ^B	1,16"
$4f^{13}({}^{2}F^{0}_{5/2})5d6p({}^{3}P^{0}_{1})$	$(5/2,1)_{3/2}$	-	81749,748 ^b	81512,62ª	-	0,512	0,48ª
4f ¹⁴ 10d	$^{2}D_{3/2}$	-	90414,300 ^{A,C}	90414,35 ^a	-	0,800 ^{A,C}	-
			90414,303 ^в			0,799 ^в	
	${}^{2}D_{5/2}$	-	90519,500 ^{A,C}	90519,48 ^a	-	$1,200^{A,B,C}$	-
			90519,419 ^в				
4f ¹⁴ 11d	$^{2}D_{3/2}$	_	92243,000 ^{A,C}	_	_	$0,800^{A,B,C}$	_
			92263.074 ^B				
	$^{2}D_{5/2}$	_	92243.000 ^{A,C}	92219.53ª	_	$1.200^{A,B,C}$	_
	2 3/2		92254 850 ^B	,221,,00		1,200	
$4f^{14}12d$	$^{2}D_{r}$	_	92453 000 ^{A,C}	_	_	0 800 ^{A,B,C}	_
41 120	D _{3/2}		92458,000 ^B			0,000	
	² D		92408,008			1 200A.B.C	
	$D_{5/2}$	_	924/1,000	_	_	1,200	_
4 cl4=	20	04154.004	92480,072			0.000Å	
41 ^{.1} /g	² G _{7/2}	84154,23	-	-	-	0,889.	-
	${}^{2}G_{9/2}$	84154,24 ^A	-	-	-	1,111	-
4f ¹⁴ 8g	$^{2}G_{7/2}$	86253,95 ^A	-	-	-	0,889 ^{A,B,C}	-
		76258,90 ^в					
		83188,33 ^C					
	${}^{2}G_{9/2}$	86253,96 ^A	-	_	_	1,111 ^{A,B,C}	_
	212	76258,95 ^B					
		83188.38 ^C					
$4f^{14}9\sigma$	$^{2}G_{\pi\pi}$	87693 53 ^A	_	_	_	0 889 ^{A,B,C}	_
41)g	07/2	88572 38 ^B				0,007	
		05405.00 ^C					
Talan anita inin		93493,90					
Add 2 For 15 16 (ID)	112/010		24004.055B	24575 278		1 4 4 2 B	1 4248
$4I^{*}(^{4}F^{*}_{7/2})5d6s(^{4}D)$	$[3/2]_{3/2}$	_	34904,955	345/5,3/*	-	1,443-	1,434"
			36144,115°			1,413°	
$4f^{13}({}^{2}F^{0}_{7/2})5d6s({}^{1}D)$	$[11/2]_{11/2}^{0}$	-	34877,671 ^b	34784,95*	-	1,148	1,119ª
12.2			38067,949 [°]			1,101 [°]	
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{1}D)$	$^{1}[5/2]^{\circ}_{5/2}$	-	37431,388 ⁸	37077,59 ^a	-	$1,126^{B}$	1,113 ^a
			40131,641 ^C			1,149 ^C	
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{1}D)$	$^{1}[7/2]^{\circ}_{7/2}$	_	37781,840 ^B	37516,59 ^a	_	$1,128^{B}$	1,119 ^a
(41003.989 ^C	, i i i i i i i i i i i i i i i i i i i		1.120°	·
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{1}D)$	$1[9/2]^{\circ}$	_	38447 682 ^B	38342 02 ^a	_	1.092^{B}	1 093 ^a
II (I 1/2)0405(D)	[2/2] 9/2		41912 951 ^C	50512,02		1.083 ^C	1,095
$4f^{13}(^{2}F^{\circ}_{-1})5d6s(^{3}D)$	³ [1/2] ⁰ .		30478 020 ^B	30378 80 ^a		1,005 1.775^{B}	1.850 ^a
41 (1 ⁻ 5/2)3008(D)	[1/2] 1/2	—	20850 410 ^C	39370,09	—	1,775 1,672 ^C	1,850
4 cl ³ /2E0 >5 16 (3D)	310/010		39830,419	10025 008		1,072	0.7008
4I (F [*] _{5/2})5d6s([*] D)	[9/2] 7/2	-	39966,461	40035,82	-	0,711	0,720
	20		39964,345°			0,718°	0
	$[9/2]_{9/2}^{0}$	-	40885,426	40917,91"	-	0,979	0,967"
			41001,235 [°]			0,981 [°]	
	³ [9/2] ⁰ 11/2	-	42974,823 ^B	42915,13 ^a	-	1,125 ^B	1,115 ^a
			42897,473 ^C			1,126 ^C	
$4f^{13}(^{2}F^{\circ}_{5/2})5d6s(^{3}D)$	$^{3}[3/2]^{\circ}_{5/2}$	-	41794,680 ^в	41678,73 ^a	-	1,194 ^B	1,193 ^a
			42015,844 ^C			1,193 ^C	
	${}^{3}[3/2]^{\circ}_{3/2}$	_	41849,106 ^B	41688,45 ^a	-	0.820^{B}	0.784^{a}
	L] .//2		41916.665 ^C			0.781 ^C	-)
	³ [3/2] ⁰ 1/2	_	42936 343 ^B	43007 79 ^a	_	0.156^{B}	0.15^{a}
	[3/2] 1/2		12227 820 ^C	15007,75		0.173 ^C	0,15
$4f^{13}(^{2}F^{\circ}_{-1})5d6s(^{3}D)$	³ [5/2] ⁰	_	43174 236 ^B	43075 00 ^a	_	0.857 ^B	0.96 ^a
41 (1 5/2)5003(D)	[3/2] 3/2		42225 652 ^C	43073,07		0,876 ^C	0,70
	315/010		43223,032 42062 865 ^B	12056 11ª		0,870 0.081 ^B	0.008
	[3/2] 5/2	—	43903,803	43930,41	-	0,961	0,99
	315 (010		43999,837	44420.028		0,934	1 1 0 3
	[5/2] [*] 7/2	_	44496,864	44438,03"	-	1,088-	1,10
4 cl3/2 po > 5 + 5 /3 =>	317 (010		44099,986°	44407 513		1,0/1°	0.72.48
41 ¹⁰ (² F ^o _{5/2})5d6s(³ D)	$[1/2]_{5/2}^{6}$	-	44587,073°	44497,51ª	-	0,747°	0,734ª
	2		44553,428 [°]			0,769 [°]	
	³ [7/2]° _{7/2}	-	45520,191 ^в	45429,82 ^a	-	1,100 ^B	1,150 ^a
	-		45553,668 ^c			1,105 ^C	
	³ [7/2]° _{9/2}	_	46457,052 ^в	46169,78 ^a	-	1,001 ^в	1,10 ^a
			48738,396 ^c			0,943 ^C	
$4f^{13}(^{2}F^{\circ}_{5/2})5d6s(^{1}D)$	$^{1}[9/2]^{\circ}_{9/2}$	_	45849,146 ^B	45335.03 ^a	_	1,083 ^B	1,01 ^a
·			45997,982 ^C			1.145 ^C	
$4f^{13}(^{2}F^{\circ}_{5/2})5d6s(^{1}D)$	$1[7/2]^{\circ}_{7/2}$	_	48818,952 ^B	48556 57 ^a	_	0.911 ^{B,C}	0.941 ^a
Jul/()	L··· = J //2		52253.814 ^C	· · · · · · ·		- ,- ==	- ,- =

Tablo A.8. Devam

Seviyele	ſ		Ε		g-çarpanı		1
Konfigürasyon	Terim	Bu	çalışma	Diğer	Bu ç	alışma	Diğer
· ·		MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{13}(^{2}F^{\circ}_{5/2})5d6s(^{1}D)$	${}^{1}[3/2]^{0}_{3/2}$	_	46419.400^{B}	47005.46 ^a	_	1.059 ^B	0.990 ^a
(1 <u>3/2</u>)3005(D)	[3/2] 3/2		48188 424 ^C	17005,10		1,097 ^C	0,550
$4f^{13}(^{2}F^{\circ}_{co})5d6s(^{1}D)$	¹ [1/2] ⁰ 10	_	49439 691 ^B	47228 96 ^a	_	0.687^{B}	0.74^{a}
41 (1 <u>5/2</u>)5005(D)	[1/2] 1/2		51429.460 ^C	47220,70		0,671 ^C	0,74
$4f^{13}(^{2}E^{\circ}, r)5d^{2}(^{3}E)$	³ [1/2]°		57440 304 ^B	56077 71ª		$2,150^{B}$	2 10 ^a
41 (1 ⁻ 5/2)50 (1 ⁻)	³ [1/2] ^{1/2}	_	50015 807 ^B	50777.07ª	_	2,150 1,616 ^B	2,19 1,62 ^a
$4f^{13}(2E^{2}) > 5d^{2}(1C)$	[1/2] 3/2	—	57116 409 ^B	57102 028	-	1,010 1,216 ^B	1,03 1,10 ^a
41 ($\Gamma_{7/2}$)30 (G) 4 $f^{13}(2\Gamma_{2}) = f^{2}(3\Gamma)$	3[0/2]9	_	570(9,701 ^B	57105,02	_	1,510 0.972 ^B	1,10
41 (F ⁻ _{5/2})5d (F)	3[9/2] 7/2	-	5/908,/01	57554,45	-	0,872	0,87
	³ [9/2] ³ 9/2	_	59/40,722 ⁻	59046,89"	_	1,092 ⁻	1,08"
(d3/270)) = 12(1 c)	⁵ [9/2] ^o _{11/2}	—	61651,228 ⁵	61442,82	_	1,124 ^B	1,11"
4f ¹³ (² F ⁰ _{7/2})5d ² (¹ G)	$[[13/2]_{13/2}]$	-	58437,674 ^b	57561,62ª	_	1,042 ^b	1,04"
$4f^{13}({}^{2}F^{0}_{7/2})5d^{2}({}^{1}G)$	$[9/2]_{9/2}^{6}$	-	59254,629 ^B	58484,54ª	-	1,030 ^B	1,02ª
$4f^{13}({}^{2}F^{0}{}_{5/2})5d^{2}({}^{3}F)$	${}^{5}[7/2]^{6}_{5/2}$	-	58669,633 ^b	58661,13ª	-	0,827 ^B	0,86ª
	³ [7/2]° _{7/2}	-	59739,839 [°]	59624,66ª	_	0,976 ^b	
	³ [7/2]° _{9/2}	-	59740,722 ^в	60649,86 ^a	-	1,092 ^в	1,10 ^a
$4f^{13}(^{2}F^{\circ}_{5/2})5d^{2}(^{3}F)$	${}^{3}[3/2]^{\circ}_{1/2}$	-	59926,930 ⁸	58672,53ª	-	0,584 ^B	0,538 ^a
	${}^{3}[3/2]^{\circ}_{3/2}$	-	62380,984 ^в	60910,14 ^a ?	-	1,064 ^B	1,00 ^a ?
	${}^{3}[3/2]^{\circ}_{5/2}$	-	63266,688 ^B	62163,94ª?	_	1,036 ^B	_
$4f^{13}(^{2}F^{\circ}_{7/2})5d^{2}(^{1}G)$	$[11/2]^{\circ}_{11/2}$	_	$60887,655^{B}$	59753,84ª	_	1,091 ^в	1,11 ^a
$4f^{13}(^{2}F^{\circ}_{5/2})5d^{2}(^{3}F)$	³ [5/2]° _{7/2}	_	63102,654 ^B	62046,07 ^a	-	$1,167^{B}$	1,14 ^a
$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}P)$	${}^{3}[5/2]^{\circ}_{3/2}$	_	63298,253 ^B	63028,26 ^a	_	0,536 ^B	0,51 ^a
< 5/2/- ·· < /	³ [5/2]° _{5/2}	_	64700.778 ^B	63417.03 ^a	_	1.053 ^B	1.01 ^a
	³ [5/2]° _{7/2}	_	65583 459 ^B	64169.39 ^a	_	1.074^{B}	_
4f ¹⁴ 9n	${}^{2}P^{0}_{12}$	80572 09 ^A	83286 600 ^A	_	0 666 ^{A,B,C}	0.666 ^{A,B,C}	_
n op	▲ 1/2	94351 22 ^B	83348 847 ^B		0,000	0,000	
		87241 41 ^C	83324 000 ^C				
	$2\mathbf{p}^{0}$	80572 27 ^A	83542 100 ^A		1 334A,B,C	1 23/A,B,C	
	F 3/2	00372,27 04295 70 ^B	83342,100 82605 018 ^B	—	1,554	1,554	-
		94363,70	83003,918				
461410	200	87241,80	83577,800			O CCCABC	
41° 10p	$-P_{1/2}$	-	8/210,900 ⁻⁶	-	_	0,666,42,5	-
			8/242,5895				
	2-0		87230,400 ^e			A A A A A A	
	${}^{2}P_{3/2}^{0}$	-	87367,500 ^A	-	-	1,334 ^{д,в,с}	-
			87400,023 ^B				
			87386,400 ^C				
4f ¹⁴ 11p	${}^{2}\mathbf{P}_{1/2}^{0}$	-	89685,300 ^A	-	-	$0,666^{A,B,C}$	-
			89704,039 ^в				
			89697,100 ^C				
	${}^{2}P^{o}_{3/2}$	_	89788,400 ^A	-	-	1,334 ^{A,B,C}	-
			89807,562 ^B				
			89799,700 ^C				
4f ¹⁴ 12p	${}^{2}P^{0}_{1/2}$	_	91343.500 ^A	_	_	$0.666^{A,B,C}$	_
	- 1/2		91355.730 ^B			-,	
			91351 300 ^C				
	${}^{2}\mathbf{P}^{0}$	_	91414 700 ^A	_	_	1 334 ^{A,B,C}	_
	1 3/2		01427 283 ^B			1,554	
			91427,205				
4f ¹⁴ 10f	2 ₁₀ 0		91422,300 02764 500 ^A	02764 628		0 057A.B.C	
41 101	F 5/2	_	92704,300	92704,02	_	0,837	_
			92778,909				
	200		92/64,600*	00766.018		1 1 40A BC	
	~F [*] 7/2	_	92/6/,000 ⁻⁴	92766,91"	_	1,143	—
			92781,437 ^b				
14	2		92767,000 [°]			1.0.0	
$4f^{14}11f$	${}^{2}\text{F}^{o}_{5/2}$	-	93832,300 ^A	-	_	0,857 ^{A,B,C}	-
			93842,413 ^B				
			93832,396 ^C				
	${}^{2}F^{o}_{7/2}$	-	93832,300 ^A	93808,12 ^a	_	1,143 ^{A,B,C}	_
			93842,505 ^в				
			93832,404 [°]				
$4f^{14}12f$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	_	94579.000 ^A	-	-	0,857 ^{A,B,C}	_
	=		94586.480 ^B				
			94579.000 ^C				
	${}^{2}\mathrm{F}^{0}_{7/2}$	_	94609.100 ^A	94579.04 ^a	_	1.143 ^{A,B,C}	_
	- 112		94616 639 ^B			-,	
			94609 100 ^C				
$4f^{14}13f$	${}^{2}\mathbf{F}^{0}$	_	95108 785 ^B	_	_	0.857 ^B	_
1 1.51	² F ⁰	_	95190,705 95100 205 ^B	95163 35 ^a	_	1 1 / 2 ^B	_
/f ¹⁴ 1/f	² F ⁰	_	95652 169 ^B			0.857 ^B	_
71 171	¹ 5/2 ² E ⁰	-	05652 575 ^B	- 05610 70 ^a		0,037 1.142 ^B	_
	Γ 7/2	-	73033,373	93019,70	-	1,143	-

^aNIST Atomic Spectra Database [63]

	Geçişler	λ			gf					
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{13}6s^2 {}^2F^{0}_{7/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}F^{\circ}_{3})$	-	2010,036 ^B	1998,00 ^a	-	0,10428 ^B	0,01 ^a	-	$1,722(8)^{B}$	$1,72(7)^{a}$
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}F^{\circ}_{3})$	-	1925,637 ^B	1928,10 ^a	-	0,02896 ^B	0,112 ^a	-	5,210(7) ^B	2,01(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{1}D^{\circ}{}_{2})$	-	1905,363 ^B	1910,87 ^a	-	0,20842 ^B	0,192 ^a	-	3,829(8) ^B	3,50(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(5/2,2)_{9/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ D° ₁) (5/2,1)-	-	1904,462 ^B	1903,02 ^a	-	0,01027 ^B	0,012 ^a	-	1,888(7) ^B	2,21(7) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(5/2,1)_{1/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ F° ₃) (5/2 3)	-	1883,093 ^B	1892,09 ^a	_	0,01043 ^B	0,019 ^a	_	1,961(7) ^B	3,44(7) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{1}D^{\circ}{}_{2})$	-	1841,567 ^в	1847,33ª	_	0,02332 ^B	0,083ª	_	4,586(7) ^B	1,63(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}F^{\circ}{}_{4})$ (5/2 4)5/2	-	1820,341 ^B	1826,43ª	-	0,00699 ^B	0,083ª	-	1,406(7) ^B	1,66(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}D^{\circ}{}_{2})$ (5/2 2)7/2	-	1811,905 ^B	1821,34ª	-	0,00896 ^B	0,013 ^a	-	1,820(7) ^B	2,72(7) ^a
$4f^{13}6s^2 {}^2F^{0}_{7/2}$ $4f^{13}6s^2 {}^2F^{0}_{7/2}$	$4f^{14}7d^{-2}D_{5/2}$ $4f^{13}({}^{2}F^{\circ}s_{2})5d6p({}^{3}D^{\circ}_{1})$	-	1809,750 ^в 1791 810 ^в	1809,71 ^a 1804 39 ^a	-	$0,00254^{\text{B}}$ 0.05472^{B}	$0,263^{a}$ 0.103 ^a		$5,176(6)^{B}$ 1 137(8) ^B	$5,33(8)^{a}$ 2 12(8) ^a
$4f^{13}6s^2 {}^2F^0_{7/2}$	$(5/2,1)_{5/2}$? $(5/2,1)_{5/2}$? $4f^{13}(^2F^{\circ}_{5/2})5d6p(^3D^{\circ}_{3})$	_	1777,626 ^B	1784,74 ^a	_	0,00640 ^B	0,016 ^a	_	1,351(7) ^B	$3,40(7)^{a}$
4f ¹³ 6s ² ² F ^o _{7/2}	(5/2,3) _{7/2} 4f ¹³ (² F° _{5/2})5d6p(³ D° ₃)	_	1768,622 ^B	1775,30ª	_	0,00263 ^B	0,376 ^a	_	5,607(6) ^B	7,97(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(5/2,3)_{9/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ F° ₄)	_	1777,626 ^B	1771,06 ^a	_	0,00640 ^B	0,048 ^a	_	1,351(7) ^B	1,01(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(5/2,4)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(¹ P° ₁)	-	1727,880 ^B	1765,18 ^a	-	0,02681 ^B	1,592 ^a	-	5,988(7) ^B	3,40(9) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(7/2,1)_{9/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ D° ₃)	-	1732,560 ^B	1742,28 ^a	-	0,09338 ^B	0,012 ^a	_	2,075(8) ^B	2,60(7) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(5/2, 5)_{5/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ F° ₄)	-	1727,880 ^B	1732,86 ^a	-	0,02681 ^B	0,016 ^a	_	5,988(7) ^B	3,58(7) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$(3/2,4)_{9/2}$ 4f ¹³ (² F° _{7/2})5d6p(¹ P° ₁) (7/2,1)	-	1689,971 ^B	1717,92 ^a	-	0,00423 ^B	1,408 ^a	-	9,877(6) ^B	3,20(9) ^a
$4f^{13}6s^2\ ^2F^o_{7/2}$	$(1/2,1)_{7/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ P° ₂) (5/2.2)	-	1656,385 ^B	1669,62 ^a	-	0,04592 ^B	0,083 ^a	-	1,116(8) ^B	1,99(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}P^{\circ}{}_{2})$	-	1656,650 ^B	1659,09 ^a	-	0,35908 ^B	0,084 ^a	-	8,727(8) ^B	2,03(8) ^a
$4f^{13}6s^2\ ^2F^{o}_{7/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{1}F^{\circ}{}_{3})$ (5/2,3) _{5/2}	-	1634,074 ^B	1626,73 ^a	_	0,23956 ^B	0,046 ^a	-	5,984(8) ^B	1,16(8) ^a

Tablo A.9. Yb II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å), gf ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹) (Tablo 3.28'in geniş hali)

Tablo	A.9.	Devam
-------	------	-------

	Geçişler		λ			gf		gA_{ki}		
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}6p^{-2}P^{0}_{-1/2}$	52753,27 ^A	24383,708 ^A 24521,817 ^B 24685,565 ^C	24377,53 ^a 24384,18 ^d	0,06676 ^A	$0,15171^{A}$ $0,12082^{B}$ 0.13516^{C}	0,102 ^a	0,1599(6) ^A	$1,700(6)^{A}$ $1,340(6)^{B}$ $1,479(6)^{C}$	$1,13(6)^{a}$ $1,998(6)^{d}$ $1,436(6)^{e}$
$4f^{14}5d\ ^2D_{3/2}$	$4f^{14}6p^{-2}P^{o}_{3/2}$	26162,70 ^A	13456,143 ^A 13434,491 ^B 13345 671 ^C	13452,68 ^a 13456,36 ^d	0,02692 ^A	0,05498 ^A 0,03580 ^B 0,02883 ^C	0,031 ^a	0,2622(6) ^A	$2,030(6)^{A}$ $1,323(6)^{B}$ $1,080(6)^{C}$	$1,15(6)^{a}$ $1,988(6)^{d}$ $1,328(6)^{e}$
$4f^{14}5d\ ^2D_{3/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{1/2}$	-	9039,874 ^B 8804.670 ^C	9349,29 ^a	_	0,01815 ^B 0.02035 ^C	0,015 ^a	_	$1,482(6)^{B}$ $1.751(6)^{C}$	$1,11(6)^{a}$
$4f^{14}5d\ ^2D_{3/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{3}F)$ ${}^{3}[5/2]^{\circ}_{2/2}?$	-	3521,404 ^B	3586,83 ^a	_	0,01630 ^B	0,011 ^a	_	8,767(6) ^B	5,47(6) ^a
$4f^{14}5d\ ^2D_{3/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{1}G)$	-	3311,568 ^B	3434,61 ^a	-	0,03583 ^B	0,028 ^a	-	2,179(7) ^B	1,61(7) ^a
$4f^{14}5d\ ^2D_{3/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F)$	-	2705,177 ^B	2799,38ª	-	0,12032 ^B	0,059ª	-	1,097(8) ^B	5,13(7) ^a
$4f^{14}5d\ ^2D_{3/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F)$	-	2536,770 ^B	2634,31ª	-	0,18724 ^B	0,082 ^a	-	1,941(8) ^B	7,79(7) ^a
$4f^{14}5d^{-2}D_{3/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F)$	-	2481,025 ^B	2550,05 ^a	_	0,01006 ^B	0,058 ^a	_	1,090(7) ^B	5,89(7) ^a
$4f^{14}5d^{-2}D_{3/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}P)$	-	2395,783 ^B	2471,06 ^a	_	0,02407 ^B	0,022 ^a	_	2,797(7) ^B	2,38(7) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{20}$	-	22474,416 ^B 20862,282 ^C	22591,22ª	_	0,04143 ^B 0,12070 ^C	0,014 ^a	_	$5,470(5)^{B}$ 1.850(6) ^C	1,80(5) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{14}6p^{-2}P^{o}_{3/2}$	48482,84 ^A	16502,878 ^A 16469,848 ^B 16337.025 ^C	16498,40 ^a 16502,90 ^d	0,13053 ^A	$0,40349^{A}$ $0,26025^{B}$ 0.21198^{C}	0,23 ^a	0,3702(6) ^A	9,880(6) ^A 6,399(6) ^B 5,297(6) ^C	$5,64(6)^{a}$ 1,024(7) ^d 6,96(6) ^e
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{1}D)$	-	9458,637 ^B 8463 740 ^C	9760,39 ^a	-	$0,02436^{\text{B}}$ 0.01216^{C}	0,042 ^a	-	$1,816(6)^{B}$ 1,132(6) ^C	2,95(6) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6s({}^{1}D)$	-	4527,590 ^B 4192 164 ^C	4409,34 ^a	-	0,00987 ^B 0.06286 ^C	0,015 ^a	-	$3,211(6)^{B}$ 2,386(7) ^C	5,06(6) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d^{2}({}^{1}G)$	-	3375,561 ^B	3488,79 ^a	-	0,03515 ^B	0,028 ^a	-	$2,058(7)^{\text{B}}$	1,57(7) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F)$ ${}^{3}[5/2]^{\circ}{}_{-7}$	-	3266,785 ^B	3402,27 ^a	-	0,01625 ^B	0,012 ^a	-	1,016(7) ^B	6,63(6) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F)$	-	2628,233 ^B	2733,12 ^a	-	0,05617 ^B	0,02 ^a	-	5,424(7) ^B	1,73(7) ^a
$4f^{14}5d^{-2}D_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F)_{3[5/2]}$	-	2579,310 ^B	2650,79 ^a	_	0,01554 ^B	0,046 ^a	_	1,558(7) ^B	4,40(7) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{3}F) {}^{3}[3/2]^{\circ}{}_{5/2}?$	-	2568,443 ^B	2642,53 ^a	_	0,04904 ^B	0,054 ^a	_	4,958(7) ^B	5,05(7) ^a

Tablo	A.9.	Devam
-------	------	-------

Ge	çişler		λ			gf			$g \mathbf{A_{ki}}$	
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu çal	ışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 5d ² D _{5/2}	$4f^{13}({}^{2}F^{\circ}_{5/2})5d^{2}({}^{1}D)$	-	2354,050 ^B	2460,00 ^a	-	0,00190 ^B	0,125 ^a	-	2,293(6) ^B	$1,39(8)^{a}$
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}7p^{2}P^{0}_{3/2}$	_	2544,607 ^A	2422,84 ^a	_	0,00133 ^A	0,068 ^a	_	1,370(6) ^A	$7,71(7)^{a}$
	-		2429,015 ^B	2508,83 ^d		0,04168 ^B			$4,712(7)^{B}$	7,00(7) ^e
1 cl4 = 1 25			2423,332 ^C	0.44.4.00%		0,00489 ^c	0.0013		5,550(6) ^C	2.00(7)3
4f ¹⁴ 5d ⁻² D _{5/2}	$4f^{15}({}^{2}F^{\circ}_{5/2})5d^{2}({}^{1}G)$	_	2398,7595	2414,33"	_	0,00144	0,034"	_	1,665(6)	3,90(7)*
$4f^{14}5d^{-2}D_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d^{2}({}^{1}D)$	-	2331,610 ^B	2388,40 ^a	-	0,08514 ^B	0,044 ^a	-	1,045(8) ^B	5,19(7) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{5/2})5d^{2}({}^{3}P)$	-	2228,273 ^B	2292,83ª	-	0,14215 ^B	0,036 ^a	-	1,910(8) ^B	4,57(7) ^a
$4f^{13}(^{2}F^{\circ}_{22})5d6s(^{3}D)$	${}^{3}[3/2]^{\circ}_{5/2}$	_	4729 762 ^B	4726 07ª	_	0.26810 ^B	0 248ª	_	7 993(7) ^B	7 35(7) ^a
$^{3}[3/2]^{\circ}_{5/2}$	(7/2,0)7/2		4729,762	4720,07		0,20010	0,240		1,555(1)	1,55(1)
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{1})$	-	4540,225 ^B	4515,16 ^a	-	0,08979 ^B	0,099ª	_	2,905(7) ^B	3,21(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	(7/2,1)7/2 $4f^{13}(^{2}F^{\circ}_{7/2})6s6p(^{3}P^{\circ}_{2})$	_	3728,023 ^B	3708,66 ^a	-	0,03314 ^B	0,035ª	-	1,590(7) ^B	1,65(7) ^a
${}^{5}[3/2]^{\circ}_{5/2}$ 4f ¹³ (² F° _{7/2})5d6s(³ D)	$(7/2,2)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₂)	_	3425,738 ^B	3454,07 ^a	_	1,45174 ^B	1,288ª	_	8,251(8) ^B	$7,23(8)^{a}$
³ [3/2]° _{5/2}	(7/2,2) _{3/2}		, P			P			, (, ,	
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}P^{\circ}_{1})$ (7/2,1) _{5/2} ?	-	3550,999°	3375,48ª	_	0,21074 ^B	0,529 ^a	_	1,115(8) ^b	3,04(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})6s6p({}^{3}P^{\circ}{}_{0})$	-	3182,073 ^B	3171,18 ^a	-	0,14482 ^B	0,040 ^a	_	9,539(7) ^B	2,61(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(5/2,0)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₂)	-	3149,023 ^B	3117,80 ^a	_	1,22573 ^B	0,789ª	_	8,244(8) ^B	5,39(8) ^a
³ [3/2] ^o _{5/2}	(7/2,2) _{5/2}		and or B	205 6 0 13		0.0001 7 B	0.4053		5 500 (5) B	0.00(7)3
$4f^{-3}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$ $^{3}[3/2]^{\circ}_{5/2}$	$4\Gamma^{(2}\Gamma^{*}_{752})6s6p(^{2}\Gamma^{*}_{1})$ (5/2 1)	_	3091,9785	30/6,01"	_	0,080155	0,127	_	5,592(7)	8,88(7)"
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{752})6s6p({}^{3}P^{\circ}_{1})$	-	3061,720 ^B	3033,87 ^a	-	0,02090 ^B	0,012 ^a	-	1,487(7) ^B	8,83(6) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(5/2,1)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₃)	_	2936,222 ^в	2955,32ª	_	0,15960 ^B	0,142ª	_	1,235(8) ^B	$1,08(8)^{a}$
³ [3/2]° _{5/2}	(7/2,3) _{3/2}					· _			_	
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}c_{2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{2})$ (7/2 2) _{7/2}	-	2916,601 ^в	2915,28ª	_	0,37983 ^B	0,409 ^a	_	2,978(8) ^B	3,18(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}D^{\circ}_{2})$	-	2880,443 ^B	2888,03ª	_	0,94040 ^B	0,825 ^a	_	7,560(8) ^B	6,56(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(1/2,2)_{5/2}$? 4f ¹³ (² F° _{7/2})5d6p(³ D° ₂)	_	2828.041 ^B	2851.13ª	_	3.60252 ^B	3.079 ^a	_	3.004(9) ^B	$2.52(9)^{a}$
³ [3/2]° _{5/2}	(7/2,2)7/2?			, -		,			··· · · · ·	7- X- /
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{1})$	_	2735,765 ^в	2740,79 ^a	-	0,03168 ^B	0,022ª	-	2,823(7) ^B	1,95(7) ^a
[3/2] ^o _{5/2}	$(1/2,1)_{5/2}$									

Tablo A.9. Devam

Ge	Geçişler		λ			gf		gA _{ki}		
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	işma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}D^{\circ}_{2})$	-	2709,648 ^B	2710,05 ^a	-	0,01496 ^B	0,013 ^a	-	1,359(7) ^B	1,13(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{3})$	-	2674,053 ^B	2680,40 ^a	-	0,06979 ^B	0,057 ^a	-	6,510(7) ^B	5,28(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(7/2, 3)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ D° ₁) (7/2, 1)	-	2641,795 ^B	2641,97 ^a	-	0,06100 ^B	0,059 ^a	-	5,830(7) ^B	5,56(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(7/2, 1)_{7/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₃) (7/2, 3) _{7/2}	_	2603,152 ^B	2607,86 ^a	-	0,09694 ^B	0,054ª	_	9,541(7) ^B	5,24(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}c2$	$4f^{13}(^{2}F^{\circ}_{7/2})5d6p(^{1}D^{\circ}_{2})$ (7/2 2)	_	2592,948 ^B	2575,35ª	-	0,01458 ^B	0,029 ^a	-	1,446(7) ^B	2,93(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}c2$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{2})$ (7/2 2)	_	2526,839 ^B	2524,99ª	-	0,02985 ^B	0,033ª	-	3,118(7) ^B	3,43(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}c2$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{2})$ (7/2 2)	_	2505,804 ^B	2511,87 ^a	-	0,12013 ^B	0,078 ^a	-	1,276(8) ^B	8,24(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{4})$ (7/2 4)7/2	-	2398,071 ^B	2397,86ª	-	0,04161 ^в	0,041ª	-	4,826(7) ^B	4,67(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{5/2}$	$4f^{13}(^{2}F^{\circ}_{5/2})5d6p(^{3}P^{\circ}_{0})$ (7/2 0)202	-	2378,169 ^B	2380,40 ^a	-	0,22548 ^B	0,129 ^a	-	2,659(8) ^B	1,51(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$ $^{3}[3/2]^{\circ}_{5/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}F^{\circ}{}_{2})$ (5/2 2) _{5/2}	-	2257,303 ^B	-	-	0,00113 ^B	-	-	1,474(6) ^B	-
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$ $^{3}[3/2]^{\circ}_{5/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}P^{\circ}_{2})$ (7/2,2) _{7/2}	_	2244,013 ^B	-	-	0,00756 ^B	_	-	1,001(7) ^B	_
$4f^{14}6p^{-2}P^{0}_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{2})$ (7/2.2)22	_	3845,780 ^B	3863,46 ^a	-	0,03299 ^B	0,026 ^a	-	1,488(7) ^B	1,19(7) ^a
$4f^{14}6p\ ^2P^{o}_{1/2}$	$4f^{14}7s^{-2}S_{1/2}$	-	3670,735 ^A 3667,635 ^B 3663,990 ^C	3669,69 ^a 3670,74 ^d	-	0,48331 ^A 0,36892 ^B 0,39452 ^C	0,368 ^a	-	2,390(8) ^A 1,829(8) ^B 1,960(8) ^C	$1,82(8)^{a}$ 2,06(8) ^d 1,668(8) ^e 1,89(8) ^f
$4f^{14}6p\ ^2P^{o}_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{4})$	-	2599,834 ^B	2574,78ª	-	0,05043 ^B	0,045 ^a	-	4,976(7) ^B	$4,50(7)^{a}$
$4f^{14}6p \ ^2P^o_{1/2}$	$4f^{14}6d^{-2}D_{3/2}$	1645,36 ^A	2848,004 ^A 2846,139 ^B 2843 942 ^C	2847,17 ^a	0,1427 ^A	1,66791 ^A 1,26235 ^B 1,38813 ^C	1,272 ^a	0,3518(9) ^A	1,37(9) ^A 1,039(9) ^B 1,145(9) ^C	1,05(9) ^a
$4f^{14}6p\ ^2P^{o}_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{4})$	-	2501,807 ^B	2537,24ª	-	0,05287 ^B	0,048 ^a	-	5,634(7) ^B	5,04(7) ^a
$4f^{14}6p\ ^2P^{o}_{1/2}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{3})$ (7/2 3).	-	2410,148 ^B	2444,64ª	-	0,01376 ^B	0,011 ^a	-	1,580(7) ^B	1,19(7) ^a
$4f^{14}6p \ ^2P^o_{1/2}$	$4f^{14}8s^{-2}S_{1/2}$	1493,54 ^A	2174,962 ^A 2173,872 ^B 2172,593 ^C	2174,96 ^d	0,00026 ^A	0,05441 ^A 0,05722 ^B 0,04894 ^C	-	7,7944(5) ^A	7,670(7) ^A 8,076(7) ^B 6,916(7) ^C	7,60(7) ^d 1,198(8) ^e 7,36(7) ^f

Tablo	A.9.	Devam
-------	------	-------

Geçişler			λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6p \ ^{2}P^{o}_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}F^{\circ}{}_{2})$	-	2073,673 ^B	2046,68 ^a	-	0,00746 ^B	0,066 ^a	-	1,157(7) ^B	1,06(8) ^a
$4 f^{14} 6 p^{-2} P^{o}{}_{1/2}$	$4f^{14}7d^{-2}D_{3/2}$	1563,21 ^A	$2022,019^{\text{A}}$ $2021,083^{\text{B}}$ $2019,971^{\text{C}}$	2021,37 ^a	0,10387 ^A	$0,29926^{\text{A}}$ $0,19380^{\text{B}}$ 0.26760^{C}	0,135 ^a	2,8354(8) ^A	$4,880(8)^{A}$ $3,164(8)^{B}$ $4,374(8)^{C}$	2,19(8) ^a
$4f^{14}6p \ ^2P^o_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}D^{\circ}{}_{1})$	-	2007,630 ^B	1991,15ª	-	0,00052 ^B	0,197 ^a	-	8,564(5) ^B	3,33(8) ^a
$4f^{14}6p \ ^2P^{o}{}_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{3}P^{\circ}{}_{1})$	_	1916,103 ^B	1903,16 ^a	-	0,06411 ^B	0,017 ^a	-	1,165(8) ^B	3,03(7) ^a
$4f^{14}6p \ ^2P^{o}{}_{1/2}$	$4f^{13}({}^{2}F^{\circ}{}_{5/2})5d6p({}^{1}F^{\circ}{}_{3})$	_	1871,902 ^B	1817,21ª	-	0,00721 ^B	0,038 ^a	-	1,373(7) ^B	7,58(7) ^a
$4f^{14}6p\ ^2P^{o}{}_{1/2}$	$4f^{14}9s^{-2}S_{1/2}$	1353,51 ^A	1849,269 ^a 1848,072 ^b 1847 556 ^c	-	0,02229 ^A	$0,01847^{\rm A}$ $0,00092^{\rm B}$ 0.01709	_	8,1177(7) ^A	$3,600(7)^{A}$ $1,800(6)^{B}$ $3,339(7)^{C}$	-
$4 f^{14} 6 p^{-2} P^{o}{}_{1/2}$	$4f^{14}8d^{-2}D_{3/2}$	1513,77 ^A	1761,242 ^A 1760,953 ^B 1759,688 ^C	-	0,06257 ^A	$0,11234^{A}$ $0,15308^{B}$ $0,10240^{C}$	-	1,8213(8) ^A	$2,420(8)^{A}$ $3,293(8)^{B}$ $2,206(8)^{C}$	_
$4f^{14}6p\ ^2P^{o}{}_{1/2}$	$4f^{14}9d^{-2}D_{3/2}$	1481,50 ^A	1646,277 ^A 1645,656 ^B 1644,919 ^C	-	0,04114 ^A	0,05575 ^A 0,04989 ^B 0,05069 ^C	-	1,2504(8) ^A	$1,370(8)^{A}$ $1,229(8)^{B}$ $1,249(8)^{C}$	-
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{1})$ (7/2 1)	-	4881,511 ^B	4820,24 ^a	-	0,08616 ^B	0,104 ^a	-	$2,412(7)^{B}$	2,97(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})6s6p({}^{3}P^{\circ}_{2})$ (7/2.2)	_	4058,898 ^B	4056,15 ^a	-	0,04711 ^B	0,047 ^a	-	1,907(7) ^B	1,90(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$4f^{14}7s\ {}^{2}S_{1/2}$	-	3918,158 ^b 3971 680 ^c	3913,35ª	-	$0,09718^{\rm B}$ 0.28774 ^C	0,038 ^a	-	$4,222(7)^{B}$ 1,217(8) ^C	1,65(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{2})$	_	3665,908 ^B	3710,33 ^a	-	0,07902 ^B	0,084ª	-	$3,922(7)^{B}$	4,16(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}P^{\circ}_{1})$ (7/2 1)-2	_	3809,716 ^B	3619,80 ^a	-	0,37176 ^B	0,625 ^a	-	1,708(8) ^B	3,16(8) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{752})6s6p({}^{3}P^{\circ}_{1})$	_	3252,142 ^B	3229,81ª	-	0,03264 ^B	0,023ª	-	2,058(7) ^B	1,50(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{3})$	_	3110,908 ^B	3140,93ª	-	0,98130 ^B	1,043 ^a	-	6,763(8) ^B	7,13(8) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(7/2,3)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₃) (7/2,3)	_	3053,492 ^в	3089,10 ^a	-	0,57977 ^B	0,614 ^a	-	4,147(8) ^B	4,34(8) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(7/2,5)_{1/2}$ 4f ¹³ (² F° _{7/2})5d6p(¹ D° ₂) (7/2,2)	-	3048,365 ^B	3065,04 ^a	-	0,64348 ^B	0,622ª	-	4,619(8) ^B	4,43(8) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{3/2}$	$(1/2,2)_{5/2}?$ 4f ¹³ (² F° _{5/2})6s6p(³ P° ₂) (5/2,2) _{1/2}	-	2986,736 ^B	2995,03 ^a	_	0,10095 ^B	0,035 ^a	-	7,548(7) ^B	2,60(7) ^a

Tablo A.9. Devam

Ge	çişler		λ		_	gf			$gA_{ m ki}$	
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu çal	lışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$ ${}^{3}[3/2]^{\circ}_{3/2}$	$4f^{14}6d^{-2}D_{3/2}$	_	2994,730 ^B 3025.896 ^C	2991,70 ^a	_	$0,04902^{\text{B}}$ $0,10440^{\text{C}}$	0,022 ^a	_	$3,646(7)^{B}$ 7.605(7) ^C	1,62(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$ $^{3}[3/2]^{\circ}_{2/2}$	$4f^{14}6d\ ^2D_{5/2}$	-	2960,598 ^B 2991.051 ^C	2957,62 ^a	-	$0,46523^{B}$ 0,95055 ^C	0,259 ^a	-	$3,540(8)^{B}$ 7 087(8) ^C	1,97(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$ $^{3}[3/2]^{\circ}_{22}$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{1})$	_	2886,800 ^B	2899,71 ^a	-	0,45562 ^B	0,422 ^a	-	3,647(8) ^B	3,35(8) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{1}D^{\circ}_{2})$	-	2857,735 ^B	2865,33ª	_	0,04808 ^B	0,045 ^a	_	3,927(7) ^B	3,68(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}F^{\circ}_{3})$	-	2818,172 ^B	2832,20 ^a	-	0,02542 ^B	0,028 ^a	-	2,135(7) ^B	2,31(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{7/2})5d6p({}^{3}D^{\circ}_{2})$	-	2785,790 ^B	2800,05 ^a	-	0,10344 ^B	0,180 ^a	-	8,890(7) ^B	1,54(8) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(7/2,2)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6p(¹ F° ₃) (7/2,2)	-	2691,684 ^B	2715,94 ^a	-	0,03940 ^B	0,045 ^a	-	3,627(7) ^B	4,00(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(7/2,3)_{1/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₄) (7/2,4)	-	2723,262 ^B	2692,41 ^a	-	0,31630 ^B	0,106 ^a	-	2,845(8) ^B	9,68(7) ^a
$(5/2)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6s(³ D) ³ (2/2) ⁹	$(7/2,4)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ D° ₂) (7/2,2)	_	2655,145 ^B	2659,26 ^a	-	0,06017 ^B	0,190 ^a	-	5,692(7) ^B	1,79(8) ^a
4f ¹³ (² F° _{7/2})5d6s(³ D)	$(7/2,2)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ F° ₄) (7/2,4)	_	2632,821 ^B	2656,12ª	-	0,35307 ^B	0,195 ^a	_	3,397(8) ^B	1,85(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(7/2,4)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ D° ₃) (7/2,2)	_	2589,609 ^B	2600,21 ^a	-	0,00159 ^в	0,018 ^a	_	1,586(6) ^B	1,75(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(7/2, 5)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ P° ₁) (7/2, 4) = 2	_	2526,192 ^B	2538,79ª	-	0,11921 ^B	0,088 ^a	_	1,246(8) ^B	9,09(7) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(7/2,4)_{5/2}$ 4f ¹³ (² F° _{7/2})5d6p(³ P° ₁) (7/2,1) 2	_	2436,833 ^B	2447,27ª	-	0,23900 ^B	0,162 ^a	_	2,685(8) ^B	1,80(8) ^a
$4f^{13}(^{2}F^{\circ}_{7/2})5d6s(^{3}D)$	$(7/2,1)_{5/2}$ 4f ¹³ (² F° _{5/2})5d6p(³ F° ₄)	_	2102,049 ^B	2108,49 ^a	-	0,00383 ^B	0,014 ^a	_	5,780(6) ^B	2,12(7) ^a
$(5/2)_{3/2}$ 4f ¹³ (² F° _{7/2})5d6s(³ D) ³ [2/2] ⁹	$(5/2,4)_{5/2}$ 4f ¹⁴ 7d ² D _{5/2}	_	2087,938 ^B	2086,22 ^a	-	$0,07233^{\rm B}$	0,040 ^a	-	$1,107(8)^{B}$	6,15(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$4f^{13}({}^{2}F^{\circ}_{5/2})5d6p({}^{3}D^{\circ}_{1})$	-	2064,096 ^B	2079,16 ^a	-	0,00301 ^B	0,013 ^a	-	4,712(6) ^B	2,01(7) ^a
$4f^{13}({}^{2}F^{\circ}_{7/2})5d6s({}^{3}D)$	$(5/2,1)_{5/2}^{1/2}$ $4f^{13}({}^{2}F^{\circ}_{5/2})5d6p({}^{1}F^{\circ}_{3})$ (5/2,2)	-	1887,945 ^B	1864,25 ^a	-	0,00051 ^B	0,011 ^a	-	9,484(5) ^B	2,08(7) ^a
$4f^{14}6p^{-2}P_{3/2}$	$4f^{14}7s^{-2}S_{1/2}$	-	4181,992 ^A 4184,100 ^B 4192,778 ^C	4181.99 ^d	-	0,84846 ^A 0,50757 ^B 0,40725 ^C	-	-	$3,240(8)^{A}$ $1,934(8)^{B}$ $1,545(8)^{C}$	$3,80(8)^{d}$ 1,54(8) ^e 3,52(8) ^f
$4f^{14}6p \ ^2P_{3/2}$	$4f^{14}6d\ ^{2}D_{3/2}$	1699,21 ^A	3146,449 ^A 3147,644 ^B 3152,551 ^C	3146.45 ^d	0,02798 ^A	0,30194 ^A 0,18448 ^B 0,14725 ^C	-	6,465(7) ^A	$2,030(8)^{A}$ $1,242(8)^{B}$ $9,882(7)^{C}$	2,284(8) ^d 9,72(7) ^e 2,056(8) ^f

Tablo A	4.9. E	Devam
---------	--------	-------

Geçişler			λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 6p ² P _{3/2}	$4f^{14}6d^{-2}D_{5/2}$	1699,07 ^A	3108,790 ^A	3108.80 ^d	0,25416 ^A	2,75039 ^A	_	$0,5872(9)^{A}$	$1,900(9)^{A}$	$1,992(9)^{d}$
1			3109,960 ^B			1,52440 ^B			$1,051(9)^{B}$	$7,74(8)^{e}$
			3114,747 ^C			1,34135 ^c			$9,222(8)^{C}$	$1,824(9)^{\rm f}$
$4f^{14}6p^{-2}P_{3/2}$	$4f^{14}8s^{-2}S_{1/2}$	1537,77 ^A	2344,811 ^A	2344.81 ^d	0,00044 ^A	0,10093 ^A	-	0,1245(7) ^A	$1,220(8)^{A}$	$1,244(8)^{d}$
			2345,472 ^в			0,06983 ^в			8,466(7) ^B	$1,540(8)^{e}$
			2348,198 ^c			0,05176 ^c			6,261(7) ^C	$1,270(8)^{f}$
$4f^{14}6p^{-2}P_{3/2}$	$4f^{14}7d^{-2}D_{3/2}$	1611,74 ^A	2168,019 ^A	-	0,01849 ^A	0,05582 ^A	-	17,496(7) ^A	7,920(7) ^A	
			2168,591 ^B			$0,04449^{B}$			$6,310(7)^{B}$	
			2170,914 ^C			0,02862 ^C			$4,050(7)^{\circ}$	
$4f^{14}6p^{-2}P_{3/2}$	$4f^{14}7d^{-2}D_{5/2}$	1611,68 ^A	2160,571 ^A	-	0,16829 ^A	0,50413 ^A	-	4,3216(8) ^A	7,20(8) ^A	
			2161,137 ^в			0,26739 ^в			$3,819(8)^{B}$	
14 2	14 2		2163,446 ^C			0,25845 ^C			3,683(8) ^C	
4f ¹⁴ 6p ² P _{3/2}	$4f^{14}9s^{-2}S_{1/2}$	1389,74 ^A	1970,639 ^A	-	0,03700 ^A	0,03466 ^A	-	12,779(7) ^A	$5,950(7)^{A}$	-
			1970,641 ^в			0,04663 ^B			8,009(7) ^b	
			1973,031 [°]			0,01824 ^C		- · - · · · · · · · · · · · · · · · · ·	3,126(7) ^C	
4f ¹⁴ 6p ² P _{3/2}	$4f^{14}8d^{-2}D_{3/2}$	1559,23 ^A	1870,989 ^A	-	0,011611 ^A	0,02115 ^A	-	3,1856(7) ^A	4,030(7) ^A	-
			1871,891 ^b			0,08414 ^B			1,602(8) ^b	
(a)4 - 2=	(a)10 (2 -		1873,145°			0,01102 ^c		• • • • • • • •	2,095(7)	
4f ¹⁴ 6p ² P _{3/2}	$4f^{4}8d^{2}D_{5/2}$	1559,19 ^A	1864,848 ^A	-	0,105758 ^A	0,19097 ^A	-	2,9016(7)^	3,660(8) ^A	-
			1865,2985			0,100085			1,918(8)	
1 dl (2 D	4 6140 1 200	1525.024	1866,990 ^e		0.007664	0,09952		a 1000 (T) A	1,904(8)	
41. 6p P _{3/2}	$41^{-9}d^{-1}D_{3/2}$	1525,02**	1/41,//6 ¹⁴	-	0,007664	0,01054 ^A	-	2,1983(7)*	$2,320(7)^{11}$	-
			1742,1445			0,010865			$2,386(7)^{5}$	
4 cl4 c 2 p	4 cl40 1 2D	1525.004	1743,644		0.000002Å	0,00548		2.0046(0)A	$1,202(7)^{2}$	
41° 6p P _{3/2}	41 ⁻¹ 9d ⁻ D _{5/2}	1525,00*	1/36,453 ¹⁰	_	0,069893	0,09514 ¹⁰	_	2,0046(8)	$2,100(8)^{12}$	-
			1/30,823			0,08174			1,807(8)	
			1/38,310 ⁻			0,04948			$1,092(8)^{\circ}$	4 0 4 (7) ^e
			10610,000			1.06156 ^C			4,055(7) ^C	4,94(7)
$4f^{14}7n^{2}D$	$4f^{14}6d^{-2}D$	25200.06 ^A	10037,003 68615 200 ^A	_	0.20652A	1,00130 0.25445 ^A	_	$2,0004(6)^{A}$	0,230(7) 5 020(5) ^A	5,00(7)
41 /p r _{1/2}	41 0d $D_{3/2}$	23290,90	64520 660 ^B		0,29032	0,33443		3,0904(0)	3,020(3) $4,524(5)^{B}$	
			65204 480 ^C			0,26237			4,324(3) 5,526(5) ^C	
$4f^{14}7n^{2}D$	$4f^{14}Q_{0}$ ² S	0867 77 ^A	10620 120 ^A	10714 26 ^d	0 65424 ^A	0,33398 0.72164 ^A	_	4 4702(7) ^A	3,330(3)	2 56(7) ^d
41 /p r _{1/2}	41 88 $\mathbf{S}_{1/2}$	9007,77	10029,139	10/14,20	0,03424	0,73104 0.70050 ^B		4,4792(7)	4,320(7) 4,107(7) ^B	3,30(7)
			10734,029			0,70939			$4,107(7)^{C}$	3,04(7)
$4f^{14}7n^{2}P$	$4f^{14}7d^{-2}D$	_	7760 470 ^A	_	_	1,66028 ^A	_	_	4,402(7) 1.850(8) ^A	4,00(7)
т /р 1 _{1/2}	-1 /u D _{3/2}		7816 647 ^B			1,00928 1,46904 ^B			1,000(0) $1,604(8)^{B}$	
			7805 236 ^C			1,40904			1.004(8) ^C	
			1005,250			1,77510			1,745(0)	

Tablo	A.9.	Devam
-------	------	-------

	Geçişler λ gf				gA_{ki}					
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}7p^{-2}P_{1/2}$	$4f^{14}9s^{-2}S_{1/2}$	5860,77 ^A	5712,425 ^A	_	8,3423 ^A	0,07015 ^A	-	1,619(9) ^A	1,430(7) ^A	_
*			5738,811 ^B			0,04258 ^B			$8,624(6)^{B}$	
			5736,6387 ^C			$0,06692^{\circ}$			$1,356(7)^{C}$	
$4f^{14}7p^{-2}P_{1/2}$	$4f^{14}8d^{-2}D_{3/2}$	-	4948,437 ^A	-	-	0,33248 ^A	-	-	$9,060(7)^{A}$	-
-			4974,577 ^в			0,17465 ^в			$4,707(7)^{B}$	
			4966,596 ^C			0,33230 ^C			8,985(7) ^C	
$4f^{14}7p^{-2}P_{1/2}$	$4f^{14}9d^{-2}D_{3/2}$	9365,09 ^A	4136,778 ^A	-	0,79933 ^A	0,12873 ^A	-	60758(7) ^A	$5,020(7)^{A}$	-
*			4152,681 ^B			0,11464 ^B			$4,434(7)^{B}$	
			4149,461 ^C			0,12694 ^C			$4,917(7)^{C}$	
$4f^{14}7s \ ^{2}S_{1/2}$	$4f^{14}7p^{-2}P_{3/2}$	12309,84 ^A	10721,330 ^A	10113,61 ^d	35,357 ^A	2,22367 ^A	-	$3,12(9)^{A}$	$1,290(8)^{A}$	$1,368(8)^{d}$
	•		8930,770 ^в			$1,48067^{B}$			$1,238(8)^{B}$	$8,44(7)^{e}$
			8854,350 ^C			2,59159 ^C			$2,205(8)^{C}$	$1,392(8)^{f}$
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}6d^{2}D_{3/2}$	25298,91 ^A	68615,342 ^A	-	0,05925 ^A	$0,07089^{A}$	-	$6,1716(5)^{A}$	$1,000(5)^{A}$	-
1			30053,051 ^B			0,08742 ^B			$6,456(5)^{B}$	
			29204,904 ^C			$0,16082^{\circ}$			$1,258(6)^{C}$	
4f ¹⁴ 7p ² P _{3/2}	$4f^{14}6d^{-2}D_{5/2}$	25267,13 ^A	93248,875 ^A	-	0,54189 ^A	0,46947 ^A	-	5,6585(6) ^A	$3,600(5)^{A}$	-
1			33984,863 ^B			0,71131 ^B			$4,108(6)^{B}$	
			32904,679 ^C			1,28461 ^C			7,913(6) ^C	
4f ¹⁴ 7p ² P _{3/2}	$4f^{14}8s^{-2}S_{1/2}$	9868,98 ^A	10629,140 ^A	11302,45 ^d	1,30671 ^A	1,46328 ^A	-	8,9441(7) ^A	$8,640(7)^{A}$	$8,04(7)^{d}$
			13265,965 ^B			0,64041 ^B			$2,427(7)^{B}$	$4.04(7)^{e}$
			13438,301 ^C			1,22673 ^C			$4,531(7)^{C}$	$7,40(7)^{\rm f}$
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}7d^{-2}D_{3/2}$	13990,88 ^A	7760,480 ^A	-	7,13956 ^A	0,33386 ^A	-	2,4315(8) ^A	$3,700(7)^{A}$	_
1 0.1			9077,993 ^B			0,17019 ^B			$1,377(7)^{B}$	
			9158,249 ^C			0,30279 ^C			$2,408(7)^{C}$	
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}7d^{-2}D_{5/2}$	13985,94 ^A	7665,889 ^A	-	6,4305(1) ^A	3,04178 ^A	-	$2,1916(9)^{A}$	$3,45(8)^{A}$	-
1 0.1			8948,791 ^B			1,33398 ^B			$1,111(8)^{B}$	
			9026,803 ^C			2,76480 ^C			$2,263(8)^{C}$	
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}9s^{-2}S_{1/2}$	5861,20 ^A	5712,425 ^A	-	$1,6664(1)^{A}$	0,14031 ^A	-	$3,233(9)^{A}$	$2,870(7)^{A}$	-
1 0.1			6390,734 ^B			0,03354 ^B			$5,477(6)^{B}$	
			6435,413 ^C			0,11986 ^C			$1,930(7)^{C}$	
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}8d^{-2}D_{3/2}$	10825,25 ^A	4948,437 ^A	-	0,98419 ^A	0,06650 ^A	-	5,598(7) ^A	$1,810(7)^{A}$	-
1 0.1			5457,129 ^B			$0,08006^{B}$			$1,793(7)^{B}$	
			5481,939 ^C			0,06035 ^C			$1,339(7)^{C}$	
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}8d^{-2}D_{5/2}$	10823,60 ^A	4905,712 ^A	-	8,80857 ^A	0,60367 ^A	-	5,0126(8) ^A	$1,670(8)^{A}$	-
1 0.1			5401,467 ^B			0,22746 ^B			$5,200(7)^{B}$	
			5429,554 [°]			0,54837 ^C			$1,241(8)^{C}$	
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}9d^{-2}D_{3/2}$	9366,18 ^A	4136,778 ^A	_	0,16005 ^A	0,02575 ^A	_	1,2163(6) ^A	$1,000(7)^{A}$	_
L			4483,647 ^B			0,00936 ^B			$3,106(6)^{B}$	
			4503,141 [°]			0,02347 ^C			7,718(6) ^C	

Ta	abl	lo	A.9	9	De	eva	m
13	aD	ю	A.;	9	De	eva	m

	Geçişler λ gf				gA_{ki}					
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}7p^{-2}P_{3/2}$	$4f^{14}9d^{-2}D_{5/2}$	9365,44 ^A	4106,877 ^A	_	1,43757 ^A	0,2334 ^A	_	1,0926(8) ^A	9,230(7) ^A	-
•			4448,557 ^в			0,14287 ^в			$4,815(7)^{B}$	
			4467,732 ^c			0,21287 ^C			$7,113(7)^{C}$	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}5f^{-2}F_{5/2}$	1993,63 ^A	2103,394 ^A	-	0,45208 ^A	1,41370 ^A	_	$0,7587(9)^{A}$	$2,130(9)^{A}$	-
		5094,24 ^B	2102,543 ^B		7,37227 ^в	1,31238 ^в		$1,8938(9)^{B}$	$1,980(9)^{B}$	
		4103,94 ^c	2103,332 ^C		2,12968 ^C	1,41338 ^c		$0,8429(9)^{C}$	$2,131(9)^{C}$	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}5f^{-2}F_{5/2}$	2065,43 ^A	2165,899 ^A	-	0,03134 ^A	0,09806 ^A	_	4,8969(7) ^A	$1,390(8)^{A}$	-
		5843,39 [°]	2164,988 ^B		0,056719 ^C	0,22103 ^B		$1,1073(7)^{C}$	$3,145(8)^{B}$	
			2165,833 ^C			0,09804 ^C			$1,394(8)^{C}$	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}5f^{-2}F_{5/2}$	7989,91 ^A	12006,530 ^A	-	0,24164 ^A	3,92255 ^A	_	$3,7851(7)^{A}$	$1,820(8)^{A}$	-
			11978,725 ^B			$2,86748^{B}$			$1,333(8)^{B}$	
			12004,523 ^C			3,92324 ^C			$1,816(8)^{C}$	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}5f^{-2}F_{5/2}$	7986,74 ^A	12588,434 ^A	-	0,01722 ^A	0,26723 ^A	_	$1,7992(6)^{A}$	$1,130(7)^{A}$	-
			12557,811 ^B			0,19719 ^B			$8,340(6)^{B}$	
			12586,228 ^C			0,26728 ^C			$1,125(7)^{C}$	
$4f^{14}5f^{-2}F_{5/2}$	$4f^{14}7d^{-2}D_{3/2}$	6365,14 ^A	16626,765 ^A	_	0,02945 ^A	0,64694 ^A	-	$4.8464(6)^{A}$	$1,560(7)^{A}$	-
			$16680,660^{B}$			0,72409 ^B		· · · · · ·	$1,736(7)^{B}$	
			16630,614 ^C			0,64719 ^C			$1.561(7)^{C}$	
$4f^{14}5f^{-2}F_{5/2}$	$4f^{14}7d^{-2}D_{5/2}$	6364,11 ^A	16198,529 ^A	_	0,00211 ^A	0,04743 ^A	-	$3,469(5)^{A}$	$1,210(6)^{A}$	-
		,	16249.571 ^B		<i>.</i>	0.05214 ^B			$1.317(6)^{B}$	
			$16202,182^{\circ}$			0,04745 ^c			$1,206(6)^{C}$	
$4f^{14}5f^{-2}F_{5/2}$	$4f^{14}8d^{-2}D_{3/2}$	5617,74 ^A	7497,938 ^A	_	$0,00685^{A}$	0,06136 ^A	-	$1,4482(6)^{A}$	$7,280(6)^{A}$	-
0.2	512	,	7516,554 ^B		,	0,14036 ^B		· · · · · ·	$1.657(7)^{B}$	
			7498,721 ^C			0,06140 ^C			$7,283(6)^{C}$	
$4f^{14}5f^{-2}F_{5/2}$	$4f^{14}8d^{-2}D_{5/2}$	5617,30 ^A	7400,281 ^A	_	$0,00049^{A}$	0,00444 ^A	-	$1.0380(5)^{A}$	$5,410(5)^{A}$	-
0.2	572	,	7411,357 ^в		,	0,00456 ^B		· · · · · ·	5,533(5) ^B	
			7401,043 ^c			0,00444 ^c			$5,411(5)^{C}$	
$4f^{14}5f^{-2}F_{5/2}$	$4f^{14}9d^{-2}D_{3/2}$	5197,56 ^A	5779,679 ^A	_	0,00140 ^A	0,01893 ^A	-	$3,4537(5)^{A}$	3,780(6) ^A	-
0.2	512		5786,171 ^B			0,01884 ^B		· · · · · ·	$3,754(6)^{B}$	
			5780,144 ^C			0,01895 ^C			3,783(6) ^C	
$4f^{14}5f^{-2}F_{5/2}$	$4f^{14}9d^{-2}D_{5/2}$	5197,33 ^A	5721,478 ^A	_	0,00010 ^A	0,00137 ^{A,B}	-	$0.2479(5)^{A}$	$2,780(5)^{A}$	-
0.2	572		5727,865 ^B			0,00134 ^B		· · · · · ·	$2,724(5)^{B}$	
			5721,934 ^c			,			$2,786(5)^{C}$	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}5f^{-2}F_{7/2}$	2065,35 ^A	2162,276 ^A	_	0,62636 ^A	1,96457 ^A	-	9,79(8) ^A	$2,800(9)^{A}$	-
5/2	- 772	5834.39 ^C	2161.718 ^B		1.13613 ^C	1.82754 ^B		$2.23(8)^{\rm C}$	$2.608(9)^{B}$	
		,	2162,223 ^c		,	1,96425 ^c		/ - \-/	$2,802(9)^{C}$	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}5f^{-2}F_{7/2}$	7988,01 ^A	12467,039 ^A	_	0,34621 ^A	5,39666 ^A	_	$4,82(7)^{A}$	$2,320(8)^{A}$	_
	- 112		12448,575 ^B		,	3,83870 ^B		/- \ -/	$1,652(8)^{B}$	
			12465,279 ^c			5,39751 ^C			2,317(8) ^C	

Tablo	A.9.	Devam
-------	------	-------

	Geçişler		λ			gf		gA _{ki}		
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 5f ² F _{7/2}	$4f^{14}7d^{-2}D_{5/2}$	6364,92 ^A	16404,068 ^A	_	0,04253 ^A	0,93675 ^A	-	7,00(6) ^A	2,320(7) ^A	_
			16436,199 ^в			0,92279 ^в			$2,278(7)^{B}$	
			16407,114 ^C			0,93703 ^c			$2,322(7)^{C}$	
$4f^{14}5f^{-2}F_{7/2}$	$4f^{14}8d^{-2}D_{5/2}$	5617,92 ^A	7442,885 ^A	-	$0,01002^{A}$	0,08831 ^A	-	$2,12(6)^{A}$	$1,060(7)^{A}$	-
			7449,939 ^в			0,12765 ^в			1,534(7) ^B	
			7443,512 ^C			0,08835 ^C			1,064(7) ^C	
$4f^{14}5f^{-2}F_{7/2}$	$4f^{14}9d^{-2}D_{5/2}$	5197,87 ^A	5746,912 ^A	-	0,00214 ^A	0,02720 ^A	-	$5,30(5)^{A}$	5,490(6) ^A	-
			5750,882 ^в			0,01358 ^B			$2,739(6)^{B}$	
			5747,286 ^C			0,02722 ^C			5,497(6) ^c	
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}8p^{-2}P_{1/2}$	1263,89 ^A	1307,418 ^A	-	0,04958 ^A	0,00111 ^A	-	2,07(8) ^A	4,340(6) ^A	-
			1304,538 ^B			0,00656 ^B			$2,571(7)^{B}$	
			1305,850 [°]			0,00541 ^C			2,115(7) ^C	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}8p^{-2}P_{1/2}$	1643,77 ^A	1868,254 ^A	-	$0,00002^{A}$	0,00069 ^A	-	$0,479(5)^{A}$	1,310(6) ^A	-
			1862,378 ^B			0,00310 ^B			$5,965(6)^{B}$	
			1865,053 ^C			0,00119 ^C			2,277(6) ^C	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}8p^{-2}P_{1/2}$	54439,79 ^A	6986,900 ^A	-	0,01272 ^A	0,01089 ^A	-	$0,143(5)^{A}$	1,490(6) ^A	-
			6905,380 ^B			0,00475 ^B			$6,641(5)^{B}$	
			6942,345 [°]			$0,00832^{\circ}$			$1,152(6)^{C}$	
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}8p^{-2}P_{3/2}$	1263,88 ^A	1299,611 ^A	-	0,09847 ^A	0,00224 ^A	-	$4,11(8)^{A}$	8,830(6) ^A	-
			1296,700 ^B			0,01218 ^B			$4,830(7)^{B}$	
			1298,164 ^C			0,01042 ^C			4,123(7) ^C	
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}8p^{-2}P_{3/2}$	1692,71 ^A	1900,658 ^A	-	$0,00002^{A}$	0,00121 ^A	-	$5,43(4)^{A}$	$2,240(6)^{A}$	-
			1894,431 ^B			0,00873 ^B			$1,623(7)^{B}$	
			1897,564 ^C			0,00209 ^C			3,881(6) ^C	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}8p^{-2}P_{3/2}$	-	6950,744 ^A	-	-	0,01970 ^A	-	-	$2,720(6)^{A}$	-
			6868,206 ^в			0,00733 ^B			$1,036(6)^{B}$	
			6909,547 ^C			0,01472 ^C			2,056(6)	
$4f^{14}8s^{-2}S_{1/2}$	$4f^{14}8p^{-2}P_{3/2}$	-	25598,683 ^A	-	-	2,54518 ^A	-	-	$2,590(7)^{A}$	-
			24514,198 ^в			2,48500 ^B			2,758(7) ^B	
			25048,652 ^C			2,56245 ^C			2,724(7)	
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}6f^{-2}F_{5/2}$	1800,67 ^A	1739,184 ^A	-	0,26776 ^A	0,54806 ^A	-	$5,51(8)^{A}$	$1,210(9)^{A}$	-
			1737,254 ^B			0,58770 ^в			1,299(9) ^B	
			1739,164 ^C			0,54807 ^C			1,209(9)	
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}6f^{-2}F_{5/2}$	1859,58 ^A	1781,699 ^A	-	0,01708 ^A	0,03821 ^A	-	$3,30(7)^{A}$	8,030(7) ^A	-
			1779,667 ^в			0,04344 ^B			9,149(7) ^в	
14 2	14 2		1781,678 [°]			0,03821 ^C			8,029(7) ^C	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}6f^{-2}F_{5/2}$	-	5469,023 ^A	-	-	0,27380 ^A	-	-	$6,110(7)^{A}$	-
			5449,951 ^в			0,22958 ^B			5,155(7) ^в	
			5468,824 ^{°°}			0,27354 ^C			$6,100(7)^{\circ}$	

Ta	abl	lo	A.9	9	De	eva	m
13	aD	ю	A.;	9	De	eva	m

Geçişler			λ		gf					
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}6f^{-2}F_{5/2}$	2910,81 ^B	5586,654 ^A	-	0,19482 ^B	0,01915 ^A	_	$1,53(8)^{B}$	4,090(6) ^A	-
			5566,743 ^в			0,01605 ^в			$3,454(6)^{B}$	
			5586,447 ^C			0,01913 ^C			$4,088(6)^{C}$	
$4f^{14}7d^{-2}D_{3/2}$	$4f^{14}6f^{-2}F_{5/2}$	9676,79 ^A	25370,402 ^A	-	0,55296 ^A	$5,87890^{A}$	-	5,91(7) ^A	6,090(7) ^A	-
			24964,505 ^в			5,36722 ^в			5,744(7) ^B	
			25366,135 ^C			5,87971 ^C			6,095(7) ^C	
$4f^{14}7d^{-2}D_{5/2}$	$4f^{14}6f^{-2}F_{5/2}$	9674,43 ^A	26436,843 ^A	-	0,03869 ^A	$0,40298^{A}$	-	$2,76(6)^{A}$	3,850(6) ^A	-
			25996,678 ^в			0,37362 ^в			$3,687(6)^{B}$	
			26432,210 ^C			0,40304 ^c			3,848(6) ^C	
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}6f^{-2}F_{7/2}$	1859,53 ^A	1781,288 ^A	-	0,34178 ^A	0,76443 ^A	-	6,59(8) ^A	1,610(9) ^A	-
			1776,978 ^B			0,91000 ^B			$1,922(9)^{B}$	
			1781,269 ^c			0,76446 ^C			1,607(9) ^C	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}6f^{-2}F_{7/2}$	-	5582,615 ^A	-	-	0,38319 ^A	-	-	8,200(7) ^A	-
			5540,524 ^B			0,29255 ^B			$6,356(7)^{B}$	
			5582,436 [°]			0,38288 ^C			8,195(7) ^C	
$4f^{14}7d^{-2}D_{5/2}$	$4f^{14}6f^{-2}F_{7/2}$	9675,68 ^A	26346,636 ^A	-	0,778642 ^A	8,08723 ^A	-	7,39(7) ^A	7,77(7) ^A _	-
			25434,583 ^B			7,84984 ^B			8,093(7) ^B	
			26342,652 ^C			8,08827 ^C			7,774(7) ^C	
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}9p^{-2}P_{1/2}$	1241,08 ^A	1200,673 ^A	-	0,063943 ^A	0,00035 ^A	-	$2,77(8)^{A}$	$1,620(6)^{A}$	-
			1199,777 ^B			0,00203 ^B			$9,385(6)^{B}$	
			1200,134 ^C			0,00177 ^C			8,197(6) ^C	
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}9p^{-2}P_{1/2}$	1605,40 ^A	1657,662 ^A	-	$0,00016^{A}$	0,00046 ^A	-	$4,08(5)^{A}$	$1,110(6)^{A}$	-
			1655,956 ^в			0,00123 ^в			$2,985(6)^{B}$	
14 2	14 2		1656,635 [°]			0,00067 ^C			1,634(6)	
$4f^{14}8s^{-2}S_{1/2}$	$4f^{14}9p^{-2}P_{1/2}$	-	9758,953 ^A	-	-	0,01961 ^A	-	-	$1,370(6)^{A}$	-
			9700,064 ^B			0,02589 ^в			$1,836(6)^{B}$	
14 2	14 2		9723,471 [°]			0,02201 ^C			1,553(6)	
$4f^{14}7d^{-2}D_{3/2}$	$4f^{14}9p^{-2}P_{1/2}$	27955,53 ^A	14772,578 ^A	-	0,06688 ^A	0,03081 ^A	-	$2,85(5)^{A}$	$9,420(5)^{A}$	-
			14637,760 ^в			0,01583 ^в			4,928(5) ^B	
14 2			14691,423 ^c		- · · - · · · A	0,02693 ^c			8,322(5)	
$4f^{14}6s^{-2}S_{1/2}$	$4f^{14}9p^{-2}P_{3/2}$	1241,08 ^A	1197,002 ^A	_	0,12743 ^A	0,00070 ^A	-	5,52(8) ^A	$3,260(6)^{A}$	_
			1196,088 ^b			0,00392 ^B			1,827(7) ^b	
14			1196,490 [°]			0,00345 [°]			1,609(7) ^C	
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}9p^{-2}P_{3/2}$	1605,40 ^A	1650,673 ^A	_	0,00003 ^A	0,00009 ^A	-	0,877(5) ^A	$2,250(5)^{A}$	_
			1648,936 ^b			0,00021 ^B			5,108(5) ^b	
14			1649,699 [°]			0,00014 ^C			3,319(5) ^C	
$4f^{+}5d^{-2}D_{5/2}$	$4f^{14}9p^{-2}P_{3/2}$	-	1688,922 ^A	-	-	0,00081 ^A	-	-	1,890(6) ^A	-
			1687,099 ^B			0,00286 ^B			6,694(6) [™]	
			1687,903 [°]			0,00119 ^C			2,789(6) ^C	

Ta	abl	lo	A.9	9	De	eva	m
13	aD	ю	A.;	9	De	eva	m

	Geçişler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}7s^{-2}S_{1/2}$	$4f^{14}9p^{-2}P_{3/2}$	21963,56 ^A	3420,235 ^A	-	1,04694 ^A	0,00428 ^A	_	$2,89(7)^{A}$	$2,44(6)^{A}$	-
	•		3412,781 ^в			$0,00668^{B}$			$3,828(6)^{B}$	
			3416,060 [°]			$0,00536^{\circ}$			$3,064(6)^{C}$	
$4f^{14}8s^{2}S_{1/2}$	$4f^{14}9p^{-2}P_{3/2}$	-	9521,586 ^A	-	-	0,04019 ^A	-	-	$2,960(6)^{A}$	-
	•		9464,066 ^в			0,05300 ^B			$3,946(6)^{B}$	
			9489,297 ^c			0,04491 ^C			$3,326(6)^{C}$	
$4f^{14}7d^{-2}D_{3/2}$	$4f^{14}9p^{-2}P_{3/2}$	27956,97 ^A	14235,382 ^A	-	0,01333 ^A	0,00639 ^A	-	$1,14(5)^{A}$	$2,11(5)^{A}$	-
	-		14106,922 ^в			0,00321 ^в			$1,076(5)^{B}$	
			14163,330 [°]			$0,00562^{\circ}$			$1,867(5)^{C}$	
$4f^{14}9s^{-2}S_{1/2}$	$4f^{14}9p^{-2}P_{3/2}$	-	41582,618 ^A	-	-	3,47516 ^A	-	-	$1,340(7)^{A}$	-
	-		40704,762 ^в			3,28877 ^в			$1,324(7)^{B}$	
			40973,741 ^c			3,49133 ^c			1,387(7) ^C	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}9p^{-2}P_{3/2}$	27937,23 ^A	14565,053 ^A	-	0,12202 ^A	0,05625 ^A	-	6,95(5) ^A	$1,770(6)^{A}$	-
			14430,688 ^B			0,03226 ^в			$1,033(6)^{B}$	
			14489,634 ^c			0,04941 ^c			$1,570(6)^{C}$	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}7f^{-2}F_{5/2}$	1701,36 ^A	1588,880 ^A	-	0,14424 ^A	0,27334 ^A	-	3,32(8) ^A	7,22(8) ^A	-
		1491,97 ^в	1587,238 ^в		0,01272 ^в	0,32567 ^в		$5,72(7)^{B}$	$8,620(8)^{B}$	
		1437,99 ^c	1588,870 ^C		0,02961 ^C	0,27338 ^c		9,55(7) ^C	7,223(8) ^C	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}7f^{-2}F_{5/2}$	1753,85 ^A	1624,289 ^A	-	0,00960 ^A	0,01910 ^A	-	$2,08(7)^{A}$	4,830(7) ^A	-
		1490,31 ^B	1622,568 ^в		0,00900 ^B	0,02372 ^B		$2,70(6)^{B}$	$6,008(7)^{B}$	
		1605,39 ^C	1624,278 ^c		0,45392 ^c	0,01910 ^C		$1,76(9)^{C}$	$4,829(7)^{C}$	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}7f^{-2}F_{5/2}$	8612,30 ^B	4215,140 ^A	-	7,02048 ^B	0,17986 ^A	-	$6,31(8)^{B}$	6,750(7) ^A	-
			4203,590 ^в			0,15947 ^в			$6,019(7)^{B}$	
			4215,067 ^C			0,17978 ^C			6,749(7) ^C	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}7f^{-2}F_{5/2}$	8622,45 ^B	4284,673 ^A	-	0,50134 ^B	0,01264 ^A	-	$4,50(7)^{B}$	4,590(6) ^A	-
			4272,732 ^в			0,01120 ^в			$4,090(6)^{B}$	
			4284,598 ^c			0,01263 ^C			4,590(6) ^C	
4f ¹⁴ 7d ² D _{3/2}	$4f^{14}7f^{-2}F_{5/2}$	-	10660,071 ^A	-	-	0,07788 ^A	-	-	4,570(6) ^A	-
			10586,393 ^в			0,03533 ^B			$2,102(6)^{B}$	
			10659,603 ^c			0,07774 ^C			4,563(6) ^C	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}7f^{-2}F_{5/2}$	14096,93 ^A	10843,870 ^A	-	4,05630 ^A	0,00547 ^A	-	1,36(8) ^A	$3,100(5)^{A}$	-
		35113,14 ^C	10767,687 ^в		0,15175 ^c	0,00275 ^в		$8,21(5)^{C}$	$1,583(5)^{B}$	
			10843,386 ^C			$0,00546^{\circ}$			$3,096(5)^{C}$	
4f ¹⁴ 8d ² D _{3/2}	$4f^{14}7f^{-2}F_{5/2}$	10891,62 ^A	48586,120 ^A	-	1,42962 ^A	7,02565 ^A	_	$1,21(8)^{A}$	$1,990(7)^{A}$	-
		32033,83 ^B	46792,687 ^в		0,57395 ^в	4,62629 ^B		$5,59(6)^{B}$	$1,409(7)^{B}$	
			48576,423 [°]			7,02671 ^C			1,986(7) ^C	
4f ¹⁴ 8d ² D _{5/2}	$4f^{14}7f^{-2}F_{5/2}$	10889,95 ^A	53129,317 ^A	-	0,10101 ^A	0,45892 ^A	_	$5,68(6)^{A}$	$1,080(6)^{A}$	-
		31939,82 ^B	51328,129 ^в		0,04099 ^B	0,40265 ^B		$2,68(5)^{B}$	$1,019(6)^{B}$	
			53117,723 ^c			0,45900 ^C			$1,085(6)^{C}$	

Ta	abl	o A	9. 1	Dev	am
13	adi	0 A		Dev	am

Geçişler			λ			gf				
Alt seviye	Üst seviye	Bu ç	alışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}7f^{-2}F_{7/2}$	1753,82 ^A	1624,076 ^A	-	0,192206 ^A	0,38202 ^A	_	4,17(8)	9,660(8) ^A	-
		1490,36 ^в	1622,469 ^в		0,017976 ^в	0,45601 ^в		7,20(7)	$1,155(9)^{B}$	
		1438,03 ^C	1624,066 ^C		0,591416 ^C	0,38207 ^C		2,54(9)	$9,662(8)^{C}$	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}7f^{2}F_{7/2}$	-	4283,196 ^A	-	-	0,25287 ^A	-	-	$9,190(7)^{A}$	-
			4272,047 ^в			0,22542 ^в			$8,238(7)^{B}$	
			4283,128 ^C			0,25276 ^C			9,190(7) ^C	
4f ¹⁴ 8d ² D _{5/2}	$4f^{14}7f^{-2}F_{7/2}$	10891,02 ^A	52903,027 ^A	-	2,03150 ^A	9,21765 ^A	-	$1,52(8)^{A}$	$2,200(7)^{A}$	-
		31960,44 ^B	51229,428 ^B		0,81994 ^B	8,08527 ^B		$7,14(6)^{B}$	$2,055(7)^{B}$	
			52892,731 ^C			9,21906 ^C			$2,198(7)^{C}$	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}8f^{-2}F_{5/2}$	1642,55 ^A	1510,227 ^A	-	0.09000^{A}	0,15776 ^A	-	$2,23(8)^{A}$	$4,610(8)^{A}$	-
		1804,67 ^B	1509,441 ^B		0,01352 ^B	0,18871 ^B		$4,15(6)^{B}$	$5,524(8)^{B}$	
		1973,31 ^C	1510,222 ^c		0,21252 ^c	0,15780 ^C		$5,46(8)^{C}$	4,615(8) ^C	
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}8f^{-2}F_{5/2}$	1691.43 ^A	1542.181 ^A	_	0.00604 ^A	0.01103 ^A	_	$1.41(7)^{A}$	$3.100(7)^{A}$	-
		1726.29 ^C	1541.358 ^B		0.01486 ^C	0.01363 ^B		$3.33(7)^{C}$	$3.826(7)^{B}$	
			1542.177 ^c		- ,	0.01104 ^c		(-)	3.095(7) ^C	
$4f^{14}6d^{-2}D_{3/2}$	$4f^{14}8f^{-2}F_{5/2}$	4305.05 ^B	3703.456 ^A	-	0.00537 ^B	0.10754^{A}	-	$1.93(6)^{B}$	$5.230(7)^{A}$	-
		,	3698.722 ^B		- ,	0.10018 ^B			$4.884(7)^{B}$	
			3703.430 [°]			0.10751 ^C			5.228(7) ^C	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}8f^{-2}F_{5/2}$	4307.58 ^B	3757.025 ^A	_	0.00041 ^B	0.00757 ^A	_	$1.49(5)^{B}$	$3.580(6)^{A}$	_
			3752.148 ^B		.,	0.00705 ^B		-,(-)	$3.340(6)^{B}$	
			3756.998 ^C			0.00757 ^C			3.577(6) ^C	
$4f^{14}7d^{-2}D_{3/2}$	$4f^{14}8f^{-2}F_{5/2}$	20054.19 ^A	7899.767 ^A	_	7.93722 ^A	0.08395 ^A	_	$1.97(8)^{A}$	8.970(6) ^A	_
		11400.92 ^C	7878.195 ^B		2.71053 ^C	0.05806 ^B		1.39(8) ^C	$6.239(6)^{B}$	
			7899.648 ^C		_,	0.08388 ^C		-,-,(-)	8.965(6) ^C	
$4f^{14}7d^{-2}D_{5/2}$	$4f^{14}8f^{-2}F_{5/2}$	20044.03 ^A	8000.256 ^A	_	0.57044^{A}	0.00592 ^A	_	$9.47(6)^{A}$	$6.170(5)^{A}$	_
		11403.61 ^C	7978.159 ^B		0.19352 ^C	0.00434 ^B		9.92(6) ^C	$4.546(5)^{B}$	
			8000.134 ^C		-,	0.00592°		,,,=(0)	6.165(5) ^C	
$4f^{14}9d^{-2}D_{3/2}$	$4f^{14}8f^{-2}F_{5/2}$	11743.04 ^A	72939.408 ^A	_	2.75716 ^A	9.09953 ^A	_	$2.00(8)^{A}$	$1.140(7)^{A}$	_
		11447.46 ^B	71141.845 ^B		1.28107 ^B	9.22173 ^B		$9.78(7)^{B}$	$1.215(7)^{B}$	
		18752.29 ^C	72929.295 [°]		5.39888 ^C	9.10022 ^c		$1.54(8)^{\rm C}$	$1.141(7)^{C}$	
$4f^{14}9d^{-2}D_{5/2}$	$4f^{14}8f^{-2}F_{5/2}$	11741.88 ^A	83682.009 ^A	_	0.19540 ^A	0.56653 ^A	_	$9.45(6)^{A}$	$5.400(5)^{A}$	_
		11406.18^{B}	81319.556 ^B		0.09131 ^B	0.57749 ^B		$4.68(6)^{B}$	$5.825(5)^{B}$	
		18750.93 ^C	83668.698 ^C		0.38568 ^C	0.56658 ^C		7.31(6) ^C	5,398(5) ^C	
$4f^{14}5d^{-2}D_{5/2}$	$4f^{14}8f^{-2}F_{7/2}$	1691.41 ^A	1541.957 ^A	_	0.12110 ^A	0.22073 ^A	_	$2.82(8)^{A}$	$6.190(8)^{A}$	_
		1802.32 ^B	1541.145 ^B		0.00187 ^B	0.26546^{B}		$5.13(6)^{B}$	$7.455(8)^{B}$	
		1002,02	1541.953 ^C		-,00107	0.22078°		-,,,,,,,,,,,,,,,,,,,	6.193(8) ^C	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}8f^{-2}F_{7/2}$	4307.21 ^B	3755.692 ^A	_	0.0081 ^B	0.15149^{A}	_	$2.91(6)^{B}$	$7.160(7)^{A}$	_
			3750.891 ^B		-,0001	0.14085 ^B		_,, 1(0)	$6.677(7)^{B}$	
			3755.668 ^C			0.15145 ^C			$7.162(7)^{\rm C}$	

Tablo	A.9.	Devam
-------	------	-------

Geçişler			λ			gf				
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	lışma	Diğer	Bu ç	Bu çalışma	
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}8f^{2}F_{7/2}$	11401,00 ^C	7994,211 ^A	_	3,8687 ^C	0,11851 ^A	_	$1,98(8)^{C}$	$1,240(7)^{A}$	-
			7972,478 ^B			0,08637 ^B			$9,063(6)^{B}$	
			$7994,105^{\circ}$			$0,11842^{C}$			$1,236(7)^{C}$	
4f ¹⁴ 9d ² D _{5/2}	$4f^{14}8f^{-2}F_{7/2}$	-	83025,379 ^A	_	-	11,4201 ^A	_	_	$1,110(7)^{A}$	-
			80733,198 ^B			11,6426 ^B			$1,191(7)^{B}$	
			83013,957 ^C			11,4211 ^C			$1,105(7)^{C}$	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}9f^{-2}F_{5/2}$	1604,54 ^A	1463,042 ^A	_	$0,06258^{A}$	0,09900 ^A	_	$1,62(8)^{A}$	$3,120(8)^{A}$	-
		2837,34 ^B	1462,586 ^B		1,02548 ^B	0,12080 ^B		$1,27(9)^{B}$	$3,766(8)^{B}$	
		3277,90 [°]	1463,040 ^C		3,43290 ^C	$0,10002^{\circ}$		$3,19(9)^{C}$	3,117(8) ^C	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}9f^{-2}F_{5/2}$	1651,14 ^A	1493,012 ^A	_	0,00412 ^A	$0,00700^{A}$	_	$1,01(7)^{A}$	$2,090(7)^{A}$	-
		2831,36 ^B	1492,532 ^B		0,07271 ^B	0,00869 ^B		$6,05(7)^{B}$	$2,603(7)^{B}$	
		2648,23 ^C	1493,009 ^C		$0,16325^{\circ}$	$0,00700^{\circ}$		$1,55(8)^{\rm C}$	$2,095(7)^{C}$	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}9f^{-2}F_{5/2}$	2303,45 ^A	3432,026 ^A	_	0,12276 ^A	0,06837 ^A	_	$1,54(8)^{A}$	$3,870(7)^{A}$	-
			3429,506 ^B			0,06486 ^B			$3,678(7)^{B}$	
			3432,012 ^C			0,06836 ^C			$3,871(7)^{C}$	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}9f^{-2}F_{5/2}$	2304,17 ^B	3477,982 ^A	_	$0,0089^{B}$	0,00482 ^A	_	$1,12(7)^{B}$	$2,660(6)^{A}$	-
			3475,389 ^B			0,00458 ^B			$2,526(6)^{B}$	
			3477,967 ^C			$0,00482^{\circ}$			$2,657(6)^{\rm C}$	
4f ¹⁴ 7d ² D _{3/2}	$4f^{14}9f^{-2}F_{5/2}$	3453,65 ^C	6759,450 ^A	_	0,51674 ^C	0,05842 ^A	_	$2,89(8)^{C}$	8,530(6) ^A	-
			6749,634 ^B			0,04352 ^B			$6,372(6)^{B}$	
			6759,393 ^C			0,05838 ^C			8,523(6) ^C	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}9f^{-2}F_{5/2}$	3453,89 [°]	6832,888 ^A	_	0,03698 ^C	0,00413 ^A	_	$2,07(7)^{C}$	$5,900(5)^{A}$	-
			6822,875 ^B			0,00325 ^B			$4,652(5)^{B}$	
			6832,829 ^C			0,00413 ^C			5,894(5) ^C	
4f ¹⁴ 8d ² D _{3/2}	$4f^{14}9f^{-2}F_{5/2}$	-	13384,192 ^A	_	-	0,04107 ^A	-	-	$1,530(6)^{A}$	-
			13321,580 ^B			0,00922 ^в			$3,466(5)^{B}$	
			13383,967 ^C			$0,04102^{\circ}$			$1,527(6)^{\rm C}$	
4f ¹⁴ 8d ² D _{5/2}	$4f^{14}9f^{-2}F_{5/2}$	17745,74 ^A	13707,080 ^A	_	0,91816 ^A	0,00286 ^A	-	$1,94(7)^{A}$	$1,020(5)^{A}$	-
			13665,346 ^B			0,00071 ^B			$2,531(4)^{B}$	
			13706,845 [°]			$0,00286^{\circ}$			$1,016(5)^{C}$	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}9f^{-2}F_{7/2}$	1651,13 ^A	1492,933 ^A	_	$0,08252^{A}$	0,13998 ^A	-	$2,02(8)^{A}$	$4,190(8)^{A}$	-
		$2649,10^{\circ}$	1492,454 ^B		3,26529 ^c	0,17020 ^B		$4,14(9)^{C}$	$5,096(8)^{B}$	
			1492,931 ^C			$0,14002^{\circ}$			$4,190(8)^{C}$	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}9f^{-2}F_{7/2}$	2303,52 ^B	3477,559 ^A	_	0,17734 ^B	0,09640 ^A	_	$2,23(8)^{B}$	$5,320(7)^{A}$	-
··-			3474,967 ^в			0,09133 ^в			$5,045(7)^{B}$	
			3477,545 ^c			0,09639 ^c			5,316(7) ^C	

^aDream Databese [64], ^bNIST Periodictable [62], ^cMigdalek [306, *f*'den çevrildi], ^dU.I. Safronova ve M.S. Safronova [335, A_{ki}'den çevrildi], ^eFacwett and Wilson [305, A_{ki}'den çevrildi], ^fMigdalek [308, A_{ki}'den çevrildi]

Seviyel	er]	E	g-ç	arpanı
Konfigürasyon	Terim	<u>Bu çalışma</u> HFR	_ Diğer çalışmalar	Bu çalışma HFR	<u>ı</u> Diğer çalışmalar
Cift parite için:					
$4f^{13}(^{2}F^{0})5f$	${}^{3}S_{1}$	138359,537 ^A	-	1,731 ^A	-
		138367.588 ^B		1,728 ^B	
$4f^{13}(^{2}F^{0})5f$	${}^{1}P_{1}$	138639.741 ^A	_	0.928 ^A	_
	- 1	138624.513 ^B		0.930 ^B	
$4f^{13}(^{2}F^{0})5f$	${}^{3}\mathbf{P}_{2}$	138657 798 ^A	_	1 334 ^A	_
11 (1)51	• 2	138647 007 ^B		1,350 ^B	
	³ D .	1/1/96 228 ^A	_	1,550	
	10	141490,228	-		
	³ D	140969,500 140701 224 ^A		1 605A	
	\mathbf{P}_1	140/91,224 140774.000 ^B	_	1,005	_
4 cl3/2 = 0) = c	lr.	148/74,909		1,009 0.075 ^{A,B}	
4I (⁻ F ⁻)5I	$^{-}\mathbf{F}_{3}$	138994,984 ¹⁰	-	0,975	-
4 el 3 /2 == 0	3-	139001,095		1 201	
4f ¹³ (² F ⁵)5f	$^{3}F_{4}$	139000,556 ^A	-	1,201	-
	2	139003,689		1,204 ^B	
	${}^{3}F_{3}$	149237,609 ^A	-	1,126 ^{A,B}	-
		149248,371 ^B			
	${}^{3}F_{2}$	149340,025 ^A	-	0,814 ^A	-
		149329,681 ^B		0,801 ^B	
$4f^{13}(^{2}F^{0})5f$	${}^{1}H_{5}$	139036.617 ^A	_	1.001 ^{A,B}	_
< /-	5	139051.933 ^B		,	
$4f^{13}(^{2}F^{0})6f$	³ S.	161690 502 ^B	_	1 738 ^B	_
$4f^{13}(^{2}F^{0})6f$	¹ P .	161817 801 ^B	_	0.914 ^B	_
$4f^{13}(^{2}F^{0})6f$	¹ 1 3 D	161821 044 ^B		1.340^{B}	
41 (1)01	¹ 2 ³ D	164022 701 ^B	-	1,540	—
	P ₀ 3D	104022,701	-	1 50CB	
4 cl3/2000 c c	$^{-}P_{1}$	1/2063,/6/ ⁻	-	1,580 ⁻	—
41 ⁻⁵ (² F ⁵)61	³ I ₇	161850,581 ⁵	-	1,143 ⁵	-
	³ I ₆	161841,508 ^b	-	1,012 ^B	-
	°I5	172182,933 ^B	-	0,846 ^B	-
$4f^{13}(^{2}F^{0})6f$	$^{3}D_{3}$	161905,929 ^в	-	1,254 ^B	-
	${}^{3}D_{1}$	172175,563 ^B	-	$0,765^{B}$	-
	$^{3}D_{2}$	172224,117 ^в	_	$1,228^{B}$	_
$4f^{13}(^{2}F^{0})6f$	$^{1}D_{2}$	161992.804 ^B	_	0.974^{B}	_
$4f^{13}(^{2}F^{0})6f$	${}^{1}F_{3}$	161993.274 ^B	_	0.975^{B}	_
$4f^{13}(^{2}F^{0})6f$	³ F4	161997 890 ^B	_	$1,176^{B}$	_
11 (1)01	³ E ₂	172302 095 ^B	_	1,170 1,110 ^B	_
	¹ '3 ³ E	172302,095		1,110 0.702 ^B	
1f ¹³ (2E0) ff	1'2 11	172324,001 172204 129 ^B	-	0,792 1.044 ^B	—
41 (Γ)01 $Ac^{13}(2T^{0}) < C$	п ₅ 30	1/2594,128	-	1,044	-
4I (F)6I	G5	162042,093	-	1,140	-
	³ G ₃	172354,928 ^s	-	0,829 ⁵	-
12.2	${}^{3}G_{4}$	172386,334	-	1,073	-
$4f^{15}(^{2}F^{0})6f$	³ H ₅	162015,006 ^b	-	1,030 ^B	-
	$^{3}H_{6}$	162040,177 ^в	-	1,155 ^B	-
	${}^{3}H_{4}$	172376,362 ^B	_	0,833 ^B	_
$4f^{13}(^{2}F^{0})6f$	${}^{1}G_{4}$	162052,791 ^B	_	1,018 ^B	-
$4f^{13}(^{2}F^{0})6f$	${}^{1}I_{6}$	172219,593 ^B	_	1,024 ^B	_
$4f^{13}(^{2}F^{0})6f$	$^{1}S_{0}$	173061.900 ^B	_		
$4f^{13}(^{2}F^{0})7f$	³ S1	$174221 402^{B}$	_	1.737 ^B	_
$4f^{13}(^{2}F^{0})7f$	¹ P ,	174291 687 ^B	_	0.912^{B}	_
$(1^{13})^{2}F^{0}$	³ D-	17/203 708 ^B	_	1 337 ^B	_
	¹ 2 3 D	177407 000 ^B	_	1,337	_
	P ₀	1//40/,900	-	1 cooB	-
(a) 3 (2=0) = 0	$^{3}P_{1}$	184580,100 ⁵	-	1,5835	-
4f ¹³ (² F ⁰)7f	³ I ₇	174312,192	-	1,143 ^b	-
	°I6	174306,382 ^B	-	1,012 ^B	-
	${}^{3}I_{5}$	184647,489 ^в	-	$0,846^{B}$	-
$4f^{13}(^{2}F^{0})7f$	$^{3}D_{3}$	174346,508 ^B	-	1,252 ^B	-
	${}^{3}D_{1}$	184644,417 ^B	-	$0,771^{B}$	-
	${}^{3}D_{2}$	184675,496 ^B	_	1,224 ^B	_
$4f^{13}(^{2}F^{0})7f$	$^{1}D_{2}$	174402.485 ^B	_	0,975 ^B	_
$4f^{13}(^{2}F^{0})7f$	${}^{1}F_{2}$	174393 971 ^B	_	0.976 ^B	_
$4f^{13}(^{2}F^{0})7f$	³ F.	174396 348 ^B	_	$1,172^{B}$	_
TI (I)/I	3E	184718 200 ^B	_	1,1/2 1 10/ ^B	_
	Г ₃ 3гг	104/18,390 19/722 c20 ^B	-	1,104 0,707 ^B	_
4 (13/2	"F ₂	184/32,630°	-	U, /9/2	-
41 ⁻³ (² F ⁵)/f	'H5	184/72,763 ^b	-	1,044°	-
4t ¹³ (² F ⁹)7f	G_5	174423,578 ^B	-	1,139	-
	${}^{3}G_{3}$	184747,219 ^в	-	0,835 ^B	-
	${}^{3}G_{4}$	184767,510 ^B	_	1,074 ^B	_
$4f^{13}(^{2}F^{0})7f$	${}^{3}H_{5}$	174407,685 ^B	-	1,037 ^в	_
	$^{3}H_{6}$	174424,354 ^B	_	1,155 ^B	_
	0	y		· · ·	

Tablo A.10. Yb III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları (Tablo 3.30'un geniş hali)

Tablo A.10. Devam

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{4f^{13}({}^{2}F^{0})7f}{\text{Tek parite için:}} - \frac{12007}{1000} = -\frac{12010}{1000}$
Tek parite için:
$4 c^{13/2} \overline{r}_{9} \rightarrow 0_{-} (7/2, 1/2)^{9} = 152007, 259 Å$ 1, 251 Å
41 $(\Gamma_{7/2})\delta_{1/2}$ $(//2,1/2)^{-4}$ 15390/,558 - 1,251 -
$(7/2,1/2)^{\circ}_{3}$ 153960,741 ^A – 1,036 ^A –
$4f^{13}(^2F_{5/2})8s_{1/2}$ (5/2,1/2)° ₂ 164248,820 ^A - 0,666 ^A -
$(5/2,1/2)^{\circ}_{3}$ 164287,980 ^A – 1,047 ^A –
$4f^{13}(^2F^{\circ})7d$ $^{1}F^{\circ}_{3}$ $156569,820^{B}$ - $1,098^{B}$ -
$4f^{13}(^2F^{\circ})7d$ $^{3}F^{\circ}_{4}$ $156585,172^{B}$ - $1,105^{B}$ -
${}^{3}\mathrm{F}_{2}^{\circ}$ 166872,313 ^B - 0,793 ^B -
${}^{3}\mathrm{F}_{3}^{\circ}$ 167394,867 ^B – 1,009 ^B –
$4f^{13}(^2F^{\circ})7d$ $^{1}H^{\circ}_{5}$ $156578,884^{B}$ - $1,035^{B}$ -
$4f^{13}(^2F^{\circ})7d$ $^{3}P^{\circ}_{2}$ $156618,286^{B}$ - $1,356^{B}$ -
${}^{3}P_{1}^{o}$ 158305,689 ^B - 1,093 ^B -
$^{3}P_{0}^{0}$ 167399,326 ^B -
$4f^{13}(^2F^{\circ})7d$ $^{1}G^{\circ}_{4}$ $157075,905^{B}$ - $1,132^{B}$ -
$4f^{13}(^2F^{\circ})7d$ $^{3}H^{\circ}_{6}$ $157122,502^{B}$ - $1,167^{B}$ -
$^{3}\text{H}^{\circ}_{4}$ 166894,101 ^B – 0,832 ^B –
$^{3}\text{H}^{\circ}_{5}$ 167426,761 ^B – 1,029 ^B –
$4f^{13}(^2F^{\circ})7d$ $^{3}G^{\circ}_{5}$ $157171,526^{B}$ - $1,170^{B}$ -
${}^{3}\text{G}_{3}^{\circ}$ 166913,917 ^B - 0,861 ^B -
${}^{3}\text{G}_{4}^{\circ}$ 167469,507 ^B – 1,031 ^B –
$4f^{13}(^2F^{\circ})7d$ $^{3}D_{3}^{\circ}$ $157196,487^{B}$ - $1,199^{B}$ -
${}^{3}D_{0_{1}}^{0}$ 167489,393 ^B - 0,749 ^B -
${}^{3}D_{2}^{\circ}$ 167512,006 ^B - 1,089 ^B -
$4f^{13}(^2F^{\circ})7d$ $^1D_{\circ 2}^{\circ}$ $157211,929^B$ - $1,097^B$ -
$4f^{13}({}^{2}F^{0})7d$ ${}^{1}P^{0}{}_{1}$ $167955,210^{B}$ - $1,158^{B}$ -

^aNIST Atomic Spectra Database [63], ^bQuinet ve Biémont [48], ^cU.I. Safronova ve M.S. Safronova [346], ^dÖberg ve Lundberg [345]

G	Jeçişler	λ		log	g(gf)	gA _{ki}		
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer	
		HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2582,4518 ^A	2588,607 ^a	-1,101 ^A	-1,38 ^a	7,921(7) ^A	$4,16(7)^{a}$	
	· · · · ·	2543,1594 ^в		-3,636 ^B		$2,383(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2548,8851 ^A	2555,283ª	-0,556 ^A	-0,67 ^a	$2,855(8)^{A}$	$2,20(8)^{a}$	
	-	2510,5921 ^B		-0,333 ^B		$4,916(8)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2354,5596 ^A	2358,532ª	-2,092 ^A	-2,08 ^a	9,726(6) ^A	$1,01(7)^{a}$	
	· · · · ·	2321,7594 ^B		-2,240 ^B		$7,119(6)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{4}$	4f ¹³ (² F° _{5/2})6p _{3/2} (5/2,3/2) ₄	2064,2382 ^A	2068,111 ^a	-3,437 ^A	-3,42 ^a	5,729(5) ^A	$5,90(5)^{a}$	
	· · · · ·	2039,0253 ^B		-2,453 ^B		$5,651(6)^{B}$		
$4f^{13}({}^{2}F^{o}_{7/2})5d_{3/2}(7/2,3/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2026,3624 ^A	2030,324 ^a	-2,439 ^A	-2,38 ^a	5,913(6) ^A	$6,74(6)^{a}$	
	· · · · ·	2002,0597 ^B		-2,077 ^B		$1,394(7)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3166,8971 ^A	3138,573 ^a	-1,066 ^A	-1,21 ^a	$5,712(7)^{A}$	$4,11(7)^{a}$	
		3237,2419 ^B		$-1,026^{B}$		$5,988(7)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2660,1017 ^A	2638,059 ^a	-0,249 ^A	-0,37 ^a	5,311(8) ^A	$4,05(8)^{a}$	
		2709,4667 ^B		-0,250 ^B	-0,31 ^d	$5,112(8)^{B}$	$4,62(8)^{d}$	
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2619,3752 ^A	2597,219 ^a	-0,693 ^A	$-0,80^{a}$	$1,972(8)^{A}$	$1,54(8)^{a}$	
	· · • • · ·	2667,2707 ^B		$-0,701^{B}$		$1,868(8)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2385,2151 ^A	2365,678 ^a	-3,228 ^A	-3,06 ^a	$6,934(5)^{A}$	$1,01(6)^{a}$	
		2424,7641 ^B		-3,728 ^B		$2,121(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2364,4113 ^A	2345,634 ^a	-2,656 ^A	-2,92 ^a	$2,637(6)^{A}$	$1,43(6)^{a}$	
	· · · · · · ·	2403,3421 ^B		-3,286 ^B		$5,977(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	2126,3871 ^A	2112,400 ^a	-4,456 ^A	-3,76 ^a	$5,162(4)^{A}$	$2,55(5)^{a}$	
		2157,8741 ^B		-3,495 ^B		$4,585(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2049,026 ^A	2035,618 ^a	-3,961 ^A	-3,51 ^a	$1,736(5)^{A}$	$4,96(5)^{a}$	
		2078,1856 ^B		$-2,699^{B}$		$3,091(6)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3377,2210 ^A	3364,295ª	-2,936 ^A	-2,98 ^a	6,769(5) ^A	$6,15(5)^{a}$	
		3306,4069 ^B		$-1,561^{B}$		$1,677(7)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	3342,8284 ^A	3325,514 ^a	-1,311 ^A	-1,35 ^a	$2,916(7)^{A}$	$2,68(7)^{a}$	
		3273,3326 ^B		-0,800 ^B		$9,871(7)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	2824,3434 ^A	2808,527 ^a	-1,497 ^A	-1,59 ^a	$2,664(7)^{A}$	$2,18(7)^{a}$	
		2774,4231 ^B		$-1,926^{B}$		$1,027(7)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2761,6271 ^A	2749,900 ^a	-0,074 ^A	-0,20 ^a	$7,367(8)^{A}$	$5,58(8)^{a}$	
		2714,0485 ^B		$-0,064^{B}$		$7,819(8)^{B}$		
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{0}_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2723,2755 ^A	2712,324 ^a	-0,195 ^A	-0,36 ^a	$5,743(8)^{A}$	$3,94(8)^{a}$	
		2676,9893 ^B		-0,433 ^B		$3,431(8)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2502,6006 ^A	2491,693 ^a	-1,751 ^A	$-1,70^{a}$	$1,888(7)^{A}$	$2,14(7)^{a}$	
		2463,3611 ^B	•	-1,574 ^B	•	2,933(7) ^B		
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2177,1471 ^A	2169,796 ^a	-2,137 ^A	-2,16 ^a	$1,026(7)^{A}$	9,70(6) ^a	
		2147.4344 ^B		-2.100 ^B		$1.150(7)^{B}$		

Tablo A.11. Yb III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹) (Tablo 3.31'in geniş hali)

Tablo A.11. Devam

	Jeçişler	2	l	la	g(gf)		gA _{ki}
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
·	·	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^{13}(^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2135,0568 ^A	2128,241 ^a	-2,533 ^A	-2,54 ^a	$4,284(6)^{A}$	$4,19(6)^{a}$
		2106,4731 ^B		$-2,470^{B}$		$5,091(6)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3424,9851 ^A	3432,930 ^a	-1,755 ^A	-2,09 ^a	9,999(6) ^A	$4,65(6)^{a}$
		3404,4040 ^B		$-1,697^{B}$		$1,157(7)^{B}$,
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{\circ}_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	3389,6179 ^A	3392,560 ^a	-3,989 ^A	$-2,17^{a}$	$5,954(4)^{A}$	$3,90(6)^{a}$
		3369,3505 ^B		-1,844 ^B		$8,416(6)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2839,8519 ^A	2842,959ª	-0,819 ^A	-0,72 ^a	$1,254(8)^{A}$	$1,56(8)^{a}$
		2825,5886 ^B		$-0,464^{B}$	$-0,66^{d}$	$2,871(8)^{B}$	$1,78(8)^{d}$
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2793,4833 ^A	2795,586 ^a	-0,006 ^A	-0,20 ^a	8,438(8) ^A	5,33(8) ^a
	· · · · ·	2779,7289 ^в		-0,310 ^B		$4,227(8)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2754,2482 ^A	2756,761ª	-1,323 ^A	-1,20 ^a	4,179(7) ^A	$5,47(7)^{a}$
	· · · · ·	2740,8672 ^B		-0,626 ^B		$2,098(8)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2528,7329 ^A	2529,145 ^a	-1,163 ^A	-2,17 ^a	$7,169(7)^{A}$	$7,00(6)^{a}$
	· · · · ·	2517,3478 ^B		-1,251 ^B		$5,899(7)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2505,3626 ^A	2506,248 ^a	-0,797 ^A	-1,81 ^a	$1,697(8)^{A}$	$1,64(7)^{a}$
	· · · · ·	2494,2665 ^B		-1,214 ^B	-1,87 ^d	$6,548(7)^{B}$	$1,44(7)^{d}$
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	4f ¹³ (² F° _{5/2})6p _{3/2} (5/2,3/2) ₄	2196,8978 ^A	2198,143 ^a	-0,441 ^A	-1,48 ^a	5,002(8) ^A	$4,61(7)^{a}$
	-	2188,3465 ^B		-0,743 ^в		$2,517(8)^{B}$	
$4f^{13}({}^{2}F^{0}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2173,7476 ^A	2175,221ª	-1,666 ^A	-3,13 ^a	$3,044(7)^{A}$	$1,05(6)^{a}$
		2165,4116 ^в		-1,790 ^в		$2,306(7)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2154,0479 ^A	2155,505ª	-0,536 ^A	-1,16 ^a	$4,188(8)^{A}$	9,91(7) ^a
		2145,8250 ^B		-1,357 ^в		$6,361(7)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{5}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	3448,5000 ^A	3463,505ª	-1,859 ^A	-2,04 ^a	7,760(6) ^A	$5,11(6)^{a}$
		3405,1228 ^B		-1,793 ^в		$9,266(6)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{5}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	2899,4090 ^A	2906,320 ^a	-0,195 ^A	-0,34 ^a	5,066(8) ^A	$3,61(8)^{a}$
		2868,5235 ^B		-0,251 ^B		$4,547(8)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{5}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2792,9986 ^A	2803,425ª	0,116 ^A	-0,02 ^a	1,117(9) ^A	$8,06(8)^{a}$
		2764,4921 ^в		$0,052^{B}$		9,845(8) ^B	
$4f^{13}({}^{2}F^{o}_{7/2})5d_{5/2}(7/2,5/2)^{o}_{5}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2221,4819 ^A	2227,712 ^a	-1,773 ^A	-1,76 ^a	$2,277(7)^{A}$	$2,33(7)^{a}$
		2203,3805 ^B		-1,436 ^в		5,030(7) ^B	
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3655,2795 ^A	3663,724 ^a	-3,345 ^A	-3,47 ^a	$2,255(5)^{A}$	$1,66(5)^{a}$
		3660,6510 ^B		-3,428 ^B		$1,859(5)^{B}$	
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	2996,3816 ^A	2999,439ª	-2,837 ^A	-2,93ª	$1,082(6)^{A}$	$8,74(5)^{a}$
		2999,8785 ^B		-2,836 ^B		$1,081(6)^{B}$	
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2944,8070 ^A	2946,756 ^a	-1,966 ^A	-2,08 ^a	8,321(6) ^A	$6,34(6)^{a}$
		2948,2384 ^B		-1,966 ^B		8,290(6) ^B	
$4f^{15}(^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2652,0993 ^A	2652,241ª	0,279 ^A	0,15 ^a	$1,801(9)^{A}$	1,34(9) ^a
12.0	12.2	2654,7609 ^B		0,267 ^в		1,749(9) ^в	$1,464(9)^{c}$
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2626,4046 ^A	2627,073 ^a	-0,616 ^A	-0,71 ^a	$2,340(8)^{A}$	$1,89(8)^{a}$
		$2629,1038^{B}$		-0,547 ^в	-0,77 ^d	$2,738(8)^{B}$	$1,66(8)^{d}$

Tablo A.11. Devam

	Jeçişler	λ		log	g(gf)	ţ	A_{ki}
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
-	·	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	2335,9483 ^A	2337,971 ^a	0,166 ^A	0,04 ^a	1,789(9) ^A	$1,32(9)^{a}$
		2338,1444 ^B		0,144 ^B		$1,700(9)^{B}$	$1,492(9)^{c}$
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2264,2885 ^A	2265,665 ^a	0,317 ^A	$0,20^{a}$	$2,697(9)^{A}$	$2,07(9)^{a}$
	· · · · ·	2266,3185 ^в		0,337 ^B		$2,822(9)^{B}$	$2,057(9)^{c}$
$4f^{13}(^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2242,9216 ^A	2244,284 ^a	0,085 ^A	-0,03 ^a	$1,611(9)^{A}$	$1,22(9)^{a}$
		2244,8730 ^B		0,093 ^B		$1,641(9)^{B}$	
$4f^{13}(^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3713,6076 ^A	3711,887 ^a	-1,942 ^A	-2,43 ^a	$5,524(6)^{A}$	$1,78(6)^{a}$
		3707,9094 ^B		-2,733 ^B		$8,977(5)^{B}$	
$4f^{13}(^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	3035,4642 ^A	3031,644 ^a	-1,374 ^A	$-1,88^{a}$	$3,058(7)^{A}$	$9,62(6)^{a}$
		3031,5420 ^B		-2,917 ^B		$8,792(5)^{B}$	
$4f^{13}({}^{2}F^{o}_{5/2})6s_{1/2}(5/2,1/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	2982,5473 ^A	2977,835 ^a	-1,298 ^A	-2,68 ^a	3,777(7) ^A	$1,56(6)^{a}$
		2978,8157 ^B	<i>,</i>	-1,422 ^B	,	$2,845(7)^{B}$	
$4f^{13}({}^{2}F^{0}{}_{5/2})6s_{1/2}(5/2,1/2)^{0}{}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	2937.8640 ^A	2933.822ª	-4.684 ^A	-3.15 ^a	$0.160(5)^{A}$	$5.51(5)^{a}$
	(2934.2326 ^B) -	-1.847 ^B	- / -	$1.101(7)^{B}$	- /- (- /
$4f^{13}({}^{2}F^{0}_{5/2})6s_{1/2}(5/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2682,6709 ^A	2677.392ª	-0.095 ^A	-0.14 ^a	$7.441(8)^{A}$	$6.75(8)^{a}$
	(5,2) · F 52 (···) ·)5	2679,5280 ^B	,	0.022^{B}	- 1	9,773(8) ^B	- , - (-)
$4f^{13}({}^{2}F^{0}_{5/2})6s_{1/2}(5/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2312.1645 ^A	2309.278ª	0.615 ^A	0.52^{a}	5.139(9) ^A	$4.11(9)^{a}$
	(5/2) · F 5/2 (· · · · · ·) ·	2309.8818 ^B	,	0.599 ^B	- /-	$4.962(9)^{B}$	$4.460(9)^{\circ}$
$4f^{13}({}^{2}F^{0}_{5/2})68_{1/2}(5/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	2656.3833 ^A	2651.746 ^a	0.269 ^A	0.15 ^a	$1.757(9)^{A}$	$1.35(9)^{a}$
(- 5,2) = 1,2 (-, -, -, -, 5	(= 5,2) • F 1,2 (= , = , = , = , 2)	2653.3923 ^B		0.209 ^B	0.09 ^d	$1.534(9)^{B}$	$1.489(9)^{\circ}$
				•,_ •,	-,	-,,	$1.18(9)^{d}$
$4f^{13}({}^{2}F^{0}_{5/2})68_{1/2}(5/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2286.5355 ^A	2283.994 ^a	-0.498 ^A	-0.62^{a}	$4.050(8)^{A}$	$3.09(8)^{a}$
(- 3/2) - 1/2 (,, -) 3	(- 5/2/°F 5/2 (- , - , - , - /2	2284.3435 ^B		-0.593 ^B	-,	$3.265(8)^{B}$	0,07(0)
$4f^{13}({}^{2}F^{0}_{5/2})68_{1/2}(5/2,1/2)^{0}_{3}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2264.7487 ^A	2262.267 ^a	0.204 ^A	0.18 ^a	$2.079(9)^{A}$	$1.97(9)^{a}$
(5)2) - 1)2 ((5)2) · F 5)2 (···)··)5	2262.5571 ^B	- ,	0.375 ^B	- / -	$3.087(9)^{B}$	1.931(9) ^c
$4f^{13}(^{2}F^{0}_{5/2})5d_{5/2}(5/2.5/2)^{0}_{0}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	2360.2840 ^A	2361.347ª	-0.809 ^A	-0.87 ^a	$1.861(8)^{A}$	$1.61(8)^{a}$
(5)2)	())2) · F))2 (···)··)1	2359,5745 ^B		-0.627 ^B	- /	$2.828(8)^{B}$,- (- <i>)</i>
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	3966,7956 ^A	3985.552ª	-2.221 ^A	-2.39 ^a	$2.549(6)^{A}$	$1.74(6)^{a}$
(5)2) - · 5)2 (-·) -) -	(<i>n2</i>) • F <i>n2</i> (··· <i>i</i> ·· <i>i</i>)5	4088.8758 ^B		-2.694 ^B	y	$8.080(5)^{B}$	·· (-/
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	3919.4309 ^A	3931.242ª	-1.741 ^A	-1.90 ^a	$7.887(6)^{A}$	$5.48(6)^{a}$
(<i>312)</i> - <i>312</i> (- · · · · · · · · · · · · ·	(<i>n2</i>) · F <i>n2</i> (···) ·) +	4038,4145 ^B	,	-2.186 ^B	· · ·	$2.662(6)^{B}$	- , - (- ,
$4f^{13}(^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{0}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	3143.6993 ^A	3151.437ª	-1.713 ^A	-1.88^{a}	$1.307(7)^{A}$	$8.92(6)^{a}$
(5)2)	(<i>n2</i>) • F 5/2 (· · · · · ·) 5	3219.8224 ^B	,	-2.645 ^B	y	$1.458(6)^{B}$	()
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	3094.0971 ^A	3102.186 ^a	-1.937 ^A	-2.08^{a}	8.054(6) ^A	$5.85(6)^{a}$
(- 3/2) - 3/2 ((- //2/°F 3/2 () - , - , - , - , 4	3167.7963 ^B		-2.367 ^B	_,	$2.855(6)^{B}$	0,00(0)
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2.3/2)^{\circ}{}_{4}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2812,3419 ^A	2816.912 ^a	0.066 ^A	-0.04 ^a	9.824(8) ^A	$7.66(8)^{a}$
512/512 ((- 5/2/~r 1/2 (,-,-)))	2872,9663 ^B		0.114 ^B		$1.050(9)^{B}$	$2.047(9)^{\circ}$
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2.3/2)^{\circ}{}_{4}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2407.8521 ^A	2412.337 ^a	-1.013 ^A	-1.14 ^a	$1.116(8)^{A}$	$8.31(7)^{a}$
5127-512 (x 5127 - F 512 X	2452.2134 ^B	y ·	-1.017^{B}	7	$1.067(8)^{B}$	· · · ·
Tablo A.11. Devam

Geçişler		λ	L	lo	g(gf)	gA_{ki}		
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Bu calışma Diğer		Diğer	
·	·	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^{13}({}^{2}F^{o}_{5/2})5d_{3/2}(5/2.3/2)^{o}_{4}$	$4f^{13}(^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2356.4741 ^A	2361.084 ^a	-0.886 ^A	-0.97 ^a	$1.562(8)^{A}$	$1.30(8)^{a}$	
	(5,2) • 1 5,2 (••)••)5	2398,9442 ^B	,	-0,757 ^B	- ,	$2,027(8)^{B}$		
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{2}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	4244,5605 ^A	4213.638 ^a	-2.262^{A}	-2.50 ^a	$2.026(6)^{A}$	$1.16(6)^{a}$	
	(4390.0190 ^B	- ,	-3,777 ^B	y	$5,788(4)^{B}$, -(-)	
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{2}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	3381.1813 ^A	3358.26 ^a	-3.252 ^A	-3.34 ^a	$3.267(5)^{A}$	$2.65(5)^{a}$	
(= 5,2)= =5,2 (=,=,=,=, =, 2	(= <i>n2</i>) • F <i>n2</i> (<i>n</i> = <i>n</i> = <i>n2</i>	3472.6945 ^B		-2.939 ^B	-,	$6.363(5)^{B}$	_,(.)	
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{2}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	3315.6544 ^A	3292.358ª	-3.197 ^A	-3.54 ^a	$3.854(5)^{A}$	$1.76(5)^{a}$	
(-),2)3,2 (,,, 2	(= <i>n2</i> / eF <i>3</i> /2 (<i>n</i> = <i>ie</i>) = <i>j</i> /3	3403.6808 ^B		-3.022 ^B	-,	$5.479(5)^{B}$	-,, (,)	
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{0}{}_{2}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	2949 1692 ^A	2928.974 ^a	-0.973 ^A	-1.04^{a}	$8.160(7)^{A}$	$7.02(7)^{a}$	
(1 5/2)003/2 (0, 2, 0, 2) 2	(1),2)op1/2 (0, 2, 1, 2)	3018,4510 ^B	2)20,) / .	-0.858 ^B	1,01	$1.016(8)^{B}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{2/2}(5/2)^{0}{}_{2}$	$4f^{13}({}^{2}F^{0}_{5/2})6n_{1/2}(5/2 1/2)_{2}$	2917 4302 ^A	2898 31 ^a	-0.282 ^A	-0 41 ^a	$4.094(8)^{A}$	$3.05(8)^{a}$	
II (1 3/2)003/2 (0/2,0/2) 2	$(1^{-})^{-})^{-}$	2985 3264 ^B	2070,31	-0.329 ^B	-0.47^{d}	$3,508(8)^{B}$	$2.68(8)^{d}$	
$4f^{13}(^{2}F^{0}_{5})5d_{2}=(5/2,3/2)^{0}_{2}$	$4f^{13}(^{2}F^{0}_{5/2})6p_{2/2}(5/2)$	2563 3768 ^A	2550 389ª	-1 747 ^A	-1 73 ^a	$1.818(7)^{A}$	$1.89(7)^{a}$	
H (I 5/2)5 G _{3/2} (5/2,5/2) 2	41 (1 3/2)0p3/2 (3/2,3/2)1	2615 7223 ^B	2550,507	-0.961 ^B	1,75	1,010(7) 1,065(8) ^B	1,0)(7)	
$4f^{13}(^{2}F^{0}_{5})5d_{2}=(5/2,3/2)^{0}_{2}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{2/2}(5/2)$	2013,7223 $2477,3410^{A}$	2464 591ª	-2 427 ^A	-2 39 ^a	$4.062(6)^{A}$	$447(6)^{a}$	
H (I 5/2)5 G 3/2 (5/2,5/2) 2	H (I 5/2)0 P 3/2 (5/ 2 ,5/ 2)2	2576 1568 ^B	2404,571	-1 693 ^B	2,39	$2,117(7)^{B}$	4,47(0)	
$(f^{13})^2 F^0_{cro}(5/2)^2 (5/2)^{0}_{cro}$	$(1f^{13})^2 F^0_{(2)}(5p_{2,2})(5p_{2,2})(5/2,3/2)_{2}$	2320,1300 2451 7867 ^A	2/130 312ª	-0.773 ^A	-0 93 ^a	$1.871(8)^{A}$	$1.30(8)^{a}$	
H (1 5/2)5 U _{3/2} (5/2,5/2) 2	-1 (1 $5/2$) 0 $p_{3/2}$ (3/2,3/2)3	2491,7007 2499 5407 ^B	2439,312	-1,136 ^B	-0,75	$7,807(7)^{B}$	1,50(0)	
$4f^{13}(^{2}F^{0}, r) 5d_{rr} (5/2, 5/2)^{0}$	$(f^{13})^{2} F^{0}_{-1}$ (7/2 3/2)	2477,5407 3522,0001 ^A	3550 876 ^a	-1,150 1.464 ^A	1 68 ^a	$1.847(7)^{A}$	$1 \ 12(7)^{a}$	
41 (1 5/2)505/2 (5/2,5/2) 1	$(1 //2)0p_{3/2} (1/2, 3/2)_2$	3808 7683 ^B	5550,070	-1,404 -2,979 ^B	-1,60 ^d	1,0+7(7) $1,828(5)^{B}$	$1,12(7)^{d}$	
$4f^{13}(^{2}E^{0}) > 5d = (5/2) (5/2)^{0}$	$(f^{13})^2 F^0$ (5/2 1/2)	3022 4005 ^A	3040 663ª	-2,979 1.661 ^A	-1,02 1 78 ^a	4,828(3) 1 595(7) ^A	$1,20(7)^{a}$	
41 $(1^{-}5/2)^{-5}$ $(5/2, 5/2)^{-1}$	41 (1 $\frac{5}{2}$)0 $p_{1/2}$ (3/2,1/2)2	3022,4095 3230 3603 ^B	5040,005	-1,001 0.713 ^B	-1,78 1 84 ^d	1,335(7) 1,236(8) ^B	1,20(7) 1.05(7) ^d	
$4f^{13}(^{2}E^{0}) > 54 (5/2 5/2)^{0}$	$4f^{13}(^{2}E^{0})$ (5) (5/2 2/2)	2644.0607 ^A	2650 072ª	-0,715 0.458 ^A	-1,04 0.56 ^a	1,230(8)	1,03(7) $2,60(8)^{a}$	
41 $(1^{-}5/2)^{-5}$ $(5/2, 5/2)^{-1}$	41 $(1^{-}5/2)0p_{3/2}(3/2,3/2)$	2044,0097 2801.0460 ^B	2039,973	-0,438 0,622 ^B	-0,50	$3,320(8)^{B}$	2,00(8)	
$4f^{13}(^{2}E^{0}) > 54 (5/2 5/2)^{0}$	$(f^{13}/2E^{0}) = (5/2)/2$	2601,9400 2552,6286 ^A	2566 779ª	-0,023	1 10 ^a	2,023(8) 1.024(8) ^A	0,130(0) 8 17(7) ^a	
41 $(1, \frac{5}{2})3u_{5/2}(3/2, 3/2)_1$	41 ($\Gamma_{5/2}$)0 $p_{3/2}$ (3/2,3/2) ₂	2552,0260	2300,778	-0,995 1 797 ^B	-1,10	1,034(6) $1,406(7)^{B}$	0,17(7)	
$4f^{13}(^{2}E^{0}) > 54 (5/2 5/2)^{0}$	$(4f^{13})^2 E^0$ (7/2 1/2)	2099,4234 4524.0111 ^A	1517 596ª	-1,767 2,102 ^A	2 21ª	1,490(7) 2,570(6) ^A	$1.62(6)^{a}$	
41 $(1, \frac{5}{2})3u_{5/2}(3/2, 3/2) 5$	41 ($\Gamma_{7/2}$)0 $p_{1/2}$ ($7/2$, $1/2$)4	4524,0111 4554 7072 ^B	4517,580	-2,102 2,097 ^B	-2,31	2,379(0) 2,620(5) ^B	1,02(0)	
$4f^{13}(2r^{0}) > 54$ (5/2 5/2) ⁰	$(f^{13}/2E^{0}) = (7/2)/(2)$	4554,7975 2622 7201 ^A	2612 0078	-5,087 1 800 ^A	1.008	2,030(3)	5 24(c)a	
41 ($\Gamma_{5/2}$) $3u_{5/2}$ ($3/2, 3/2$) 5	41 ($\Gamma_{7/2}$)0 $P_{3/2}$ (7/2,3/2)5	3023,7201 2642,1966 ^B	5015,907	-1,000 2,170 ^B	-1,99	0,030(0)	3,24(0)	
4513/259)51 (5/25/2)9	$4f^{13}/2E^{9}$)(= (7/2.2/2)	3043,1800 2450.0125Å	2456 1748	-2,179 2,097Å	2 208	5,551(0)	$2.05(C)^{3}$	
41 $(F_{5/2})50_{5/2}(5/2,5/2)_5$	41 ($F_{7/2}$)op _{3/2} (7/2,3/2) ₄	3439,0135	5450,174	-2,087	-2,28	4,501(0)	2,95(6)	
4613/259 >51 (5/2 5/2)9	$4 c^{13/2} T^{0} \rightarrow c = (5/2, 2/2)$	3477,0071	0.001 1078	-2,303	0.1.68	$2,748(6)^{-1}$	1 20/03	
$4I^{-6}(^{-}F^{-}_{5/2})5d_{5/2}(5/2,5/2)^{-5}$	$41^{-6}(-F_{5/2})6p_{3/2}(5/2,3/2)_4$	2623,2150 rd	2621,107	0,264 ¹⁴	0,16"	1,781(9) ¹	1,39(9)*	
4 (3)250) 51 (50 50)	4613/200	2633,5080	4005 0 413	0,306	2 003	1,945(9)	3,248(9)	
$4\Gamma^{(-F_{5/2})} 5d_{5/2} (5/2, 5/2)^{\circ}_{2}$	$4I^{-5}(^{2}F^{0}_{7/2})6p_{1/2}(1/2,1/2)_{3}$	4822,0680 ^A	4835,041"	-2,689"	-2,89"	$5,8/1(5)^{-1}$	3,72(5)"	
		5007,0786 ^b	2	-2,419	2 (0)	1,015(6)	1.00(0)	
$41^{15}({}^{2}\mathrm{F}^{3}_{5/2})5d_{5/2}(5/2,5/2)^{6}_{2}$	$41^{-5}({}^{2}F_{7/2})6p_{3/2}(7/2,3/2)_{3}$	3657,8607 ^A	3659,895*	-2,472 ^A	-2,69ª	1,680(6) ^A	$1,03(6)^{a}$	
		3763,2552 ^b		-2,905		5,860(5)		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{0}_{2}$	$4f^{13}({}^{2}F^{0}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	3216,8532 ^A	3216,321ª	-2,155 ^A	$-2,22^{a}$	4,512(6) ^A	$3,89(6)^{a}$	
		3297,8968 ^B		-3,299 ^в		3,080(5) ^B		

Tablo A.11. Devam

G	Geçişler		L.	lo	g(gf)	gA_{ki}		
Alt sevive	Üst sevive	Bu calısma	Diğer	Bu calisma	Diğer	Bu calisma	Diğer	
·	•	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{2}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	3179,1280 ^A	3179,384 ^a	-2,281 ^A	-2.69^{a}	3,455(6) ^A	$1,36(6)^{a}$	
		3258,3951 ^B		-1,473 ^B		$2,115(7)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{\circ}_{2}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	2763,2349 ^A	2765,532 ^a	-0,577 ^A	-0,69 ^a	$2,312(8)^{A}$	$1.81(8)^{a}$	
		2823,0136 ^B		-0.701^{B}		$1,668(8)^{B}$, (<i>)</i>	
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{\circ}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2663,5212 ^A	2664,935 ^a	-0,279 ^A	$-0,41^{a}$	$4,941(8)^{A}$	$3,63(8)^{a}$	
		2718,9721 ^B		-0,320 ^B		$4,321(8)^{B}$, (<i>)</i>	
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{\circ}_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2634,0045 ^A	2635,405 ^a	-1,249 ^A	-1,30 ^a	$5,414(7)^{A}$	$4,86(7)^{a}$	
		2688,1626 ^B		-0,848 ^B		$1,311(8)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	4843,0647 ^A	4862,769 ^a	-2,903 ^A	-3,52 ^a	$3,557(5)^{A}$	$8,61(4)^{a}$	
	· · · · ·	4909,8276 ^B		-3,937 ^в		$3,197(4)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	4772,6487 ^A	4782,164 ^a	-2,685 ^A	-3,80 ^a	$6,048(5)^{A}$	$4,64(4)^{a}$	
	· · · · ·	4837,2491 ^B		-2,628 ^B		$6,712(5)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	3669,9300 ^A	3675,760 ^a	-2,153 ^A	-2,88 ^a	$3,484(6)^{A}$	$6,59(5)^{a}$	
	· · · · ·	3708,0534 ^B		-2,424 ^B		$1,827(6)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	3602,5099 ^A	3608,933ª	-3,981 ^A	-3,70 ^a	5,373(4) ^A	$1,04(5)^{a}$	
	· · · · ·	3639,2220 ^B		-2,777 ^B		$8,417(5)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	3226,1840 ^A	3228,567 ^a	-0,197 ^A	-0,41 ^a	$4,075(8)^{A}$	$2,49(8)^{a}$	
	· · · · ·	3255,4262 ^B		-0,571 ^B		$1,690(8)^{B}$		
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{o}{}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	3188,2409 ^A	3191,350 ^a	-0,646 ^A	-0,65 ^a	$1,484(8)^{A}$	$1,48(8)^{a}$	
	-	3216,9294 ^в		-0,372 ^в	-0,71 ^d	$2,736(8)^{B}$	$1,30(8)^{d}$	
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{o}{}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2704,9246 ^A	2708,041ª	-2,378 ^A	-1,56 ^a	3,822(6) ^A	$2,54(7)^{a}$	
		2725,5236 ^B		-0,721 ^в		$1,705(8)^{B}$		
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{3/2}(5/2,3/2)^{o}{}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2669,9149 ^A	2673,337 ^a	-0,668 ^A	-1,00 ^a	$2,008(8)^{A}$	9,33(7) ^a	
		2690,0382 ^B		-2,041 ^в		$8,381(6)^{B}$		
$4f^{13}({}^{2}F^{o}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2640,2571 ^A	2643,622ª	-0,721 ^A	-0,91 ^a	1,817(8) ^A	$1,17(8)^{a}$	
		2659,8773 ^в		-0,867 ^в		$1,282(8)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	5285,1174 ^A	5256,807ª	-2,445 ^A	-2,82 ^a	8,574(5) ^A	$3,64(5)^{a}$	
		5218,3322 ^B		-2,741 ^в		$4,445(5)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	4010,1130 ^A	3989,191 ^a	-4,835 ^A	-3,75 ^a	$0,606(4)^{A}$	$7,48(4)^{a}$	
		3971,3508 ^в		-3,489 ^в		$1,373(5)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	3918,2728 ^A	3896,544 ^a	-1,578 ^A	-1,97 ^a	$1,148(7)^{A}$	$4,69(6)^{a}$	
		3881,3510 ^в		-2,868 ^B		$6,005(5)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	3806,0009 ^в	3821,529 ^a	-3,967 ^в	-3,67 ^a	4,968(4) ^B	$9,70(4)^{a}$	
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	3416,5438 ^A	3397,664 ^a	-3,154 ^A	-2,51 ^a	$4,007(5)^{A}$	$1,79(6)^{a}$	
12.2	10.0	3388,2407 ^B		-1,189 ^B		$3,761(7)^{B}$		
$4f_{5/2}^{13}({}^{2}F_{5/2}^{o})5d_{5/2}(5/2,5/2)_{3}^{o}$	$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	3346,5588 ^в	3356,472 ^a	-3,467 ^B	-3,26 ^a	$2,034(5)^{B}$	3,25(5) ^a	
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2837,4767 ^A	2826,015 ^a	-2,409 ^A	-1,81 ^a	3,232(6) ^A	1,30(7) ^a	
12.2	10.0	2818,0052 ^B		-1,416 ^B		$3,223(7)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2798,9761 ^A	2788,243 ^a	-0,256 ^A	-0,33 ^a	4,726(8) ^A	$3,99(8)^{a}$	
		2780,0876 ^B		-0,153 ^в		$6,064(8)^{B}$		

Tablo A.11. Devam

G	leçişler)	l	lo	g(gf)	gA_{ki}		
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer	
•	•	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^{13}(^{2}F^{o}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{3}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2766,3992 ^A	2755,934 ^a	-0,147 ^A	-0,38 ^a	$6,211(8)^{A}$	$3,68(8)^{a}$	
		2747,8857 ^B	,	-0,514 ^B	,	$2,704(8)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{1}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	4028,8667 ^A	4028,155 ^a	-0,824 ^A	-1,11 ^a	$6,168(7)^{A}$	$3,20(7)^{a}$	
		3520,4806 ^B		$-1,508^{B}$	$-1,05^{d}$	$1,672(7)^{B}$	$3,65(7)^{d}$	
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{1}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	3387,2867 ^A	3384,013 ^a	-0,395 ^A	-0,58 ^a	$2,338(8)^{A}$	$1.54(8)^{a}$	
		3020,5727 ^B		-0,954 ^B	-0,64 ^d	$8,134(7)^{B}$	$1,35(8)^{d}$	
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{o}_{1}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	2919,1578 ^A	2919,073 ^a	-2,573 ^A	$-2,79^{a}$	$2,091(6)^{A}$	$1,27(6)^{a}$	
		2642,7420 ^B		-0,865 ^B		$1,304(8)^{B}$,	
$4f^{13}({}^{2}F^{0}_{5/2})5d_{3/2}(5/2,3/2)^{\circ}_{1}$	$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	2808,0995 ^A	2807,223 ^a	-1,216 ^A	-1.40^{a}	$5,144(7)^{A}$	$3,36(7)^{a}$	
		2551,3489 ^B		-0,845 ^B		$1,465(8)^{B}$		
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{5/2}(5/2,5/2)^{o}{}_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	5347,8922 ^A	5331,534ª	-2,918 ^A	-3,08 ^a	$2,814(5)^{A}$	$1,91(5)^{a}$	
		5414,0931 ^B		-3,097 ^B		$1,821(5)^{B}$,	
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{o}_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	4133,8323 ^A	4116,676 ^a	-3,310 ^A	$-3,62^{a}$	$1,911(5)^{A}$	$9,26(4)^{a}$	
		4172,9368 ^B		-3,643 ^B		$8,708(4)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{\circ}_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	3920,8530 ^A	3913,239 ^a	-2,574 ^A	-2,72 ^a	$1,156(6)^{A}$	$8,28(5)^{a}$	
		3956,3524 ^B		-2,612 ^B		$1,041(6)^{B}$,	
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{5/2}(5/2,5/2)^{o}{}_{4}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	3479,1561 ^A	3469,967 ^a	-1,677 ^A	-1,84 ^a	$1,158(7)^{A}$	$7,99(6)^{a}$	
		3506,8829 ^B		-1,826 ^B		$8,103(6)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})5d_{5/2}(5/2,5/2)^{\circ}_{4}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	2880,5297 ^A	2875,857ª	-0,296 ^A	-0,44 ^a	$4,068(8)^{A}$	$2,89(8)^{a}$	
		2899,5924 ^B		-0,375 ^B		$3,346(8)^{B}$		
$4f^{13}({}^{2}F^{0}{}_{5/2})5d_{5/2}(5/2,5/2)^{o}{}_{4}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	2807,3068 ^A	2803,314 ^a	0,039 ^A	-0.10^{a}	9,262(8) ^A	$6.65(8)^{a}$	
		2825,4074 ^B		-0,030 ^B		$7,804(8)^{B}$	$1,496(9)^{c}$	
$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{\circ}_{4}$	2080,2339 ^A	2078,056 ^a	0,163 ^A	0.16^{a}	$2,246(9)^{A}$	$2,21(9)^{a}$	
		2081,0628 ^B		0.160^{B}		$2,224(9)^{B}$		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{\circ}_{4}$	2093,5010 ^A	2093,135 ^a	-0,109 ^A	-0.10^{a}	$1,184(9)^{A}$	$1,20(9)^{a}$	
		2094,3821 ^B	,	$-0,126^{B}$	<i>,</i>	$1,138(9)^{B}$		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{\circ}_{4}$	2365,4529 ^A	2367,454ª	0,370 ^A	0,37 ^a	$2,794(9)^{A}$	$2,76(9)^{a}$	
(), 152 () 75		2366,6872 ^B		0,363 ^B		$2,747(9)^{B}$		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{\circ}_{4}$	2411,3164 ^A	2410,781 ^a	-0,739 ^A	-0,77 ^a	$2,090(8)^{A}$	$1.97(8)^{a}$	
(), 152 () 75		2412,4662 ^B		$-0,746^{B}$		$2,059(8)^{B}$		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{\circ}_{4}$	2441,3362 ^A	2440,421 ^a	0,113 ^A	0,13 ^a	$1,452(9)^{A}$	$1.50(9)^{a}$	
		2442,5223 ^B		0,097 ^B		$1,398(9)^{B}$		
$4f^{13}({}^{2}F^{0}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{0}_{4}$	2650,8866 ^A	2651,682 ^a	-2,826 ^A	$-2,78^{a}$	$1,418(6)^{A}$	$1,57(6)^{a}$	
		2652,3974 ^B		-2,791 ^B		$1,535(6)^{B}$		
$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2}(7/2,1/2)^{0}_{4}$	3149,6070 ^A	3148,782 ^a	-3,052 ^A	-2,81 ^a	$5,970(5)^{A}$	$1,04(6)^{a}$	
		3151,6425 ^B		-2,900 ^B		$8,455(5)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})7s_{1/2}(7/2,1/2)^{o}_{4}$	3242,0690 ^A	3240,597 ^a	-3,010 ^A	-2,73 ^a	$6,205(5)^{A}$	$1,17(6)^{a}$	
		3244,2288 ^B		-2,808 ^B		$9,865(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}(^{2}F^{o}_{7/2})7s_{1/2}(7/2,1/2)^{o}_{3}$	2075,3374 ^A	2072,979ª	-0,680 ^A	-0,61 ^a	3,238(8) ^A	$3,76(8)^{a}$	
		2074,0030 ^B		-0,600 ^B		3,893(8) ^B		

Tablo A.11. Devam

	Geçişler	λ	L	lo	g(gf)	gA_{ki}		
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer	
		HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})7s_{1/2}(7/2,1/2)^{o}_{3}$	2088,5419 ^A	2087,985 ^a	0,160 ^A	0,16 ^a	2,211(9) ^A	2,18(9) ^a	
12.0	12.2	2087,2319 ^B		0,147 ^B		$2,148(9)^{B}$		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2} (7/2,1/2)^{0}_{3}$	2371,4081 ^A	2369,991 ^a	0,048 ^A	0,03 ^a	$1,324(9)^{A}_{B}$	$1,28(9)^{a}$	
12.2	12.2	2369,7356 ^b		0,008 ^b		1,210(9) ^b		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2} (7/2,1/2)^{0}_{3}$	2404,7397 ^A	2403,952ª	0,062 ^A	0,11 ^a	1,331(9) ^A	$1,50(9)^{a}$	
12.0	12.2	2402,9841 ^B		0,143 ^в		1,607(9) ^B		
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2} (7/2,1/2)^{0}_{3}$	2434,5949 ^A	2433,423ª	-0,181 ^A	-0,18 ^a	7,416(8) ^A	$7,43(8)^{a}$	
12.0	12.2	2432,8028 ^B		-0,196 ^B		7,170(8) ^B		
$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2} (7/2,1/2)^{0}_{3}$	2642,9403 ^A	2643,422ª	-2,392 ^A	-2,08 ^a	3,873(6) ^A	$7,85(6)^{a}$	
12.2	12.2	2640,9398 ^B		-1,914 ^B		$1,167(7)^{B}$		
$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2} (7/2,1/2)^{0}_{3}$	2668,9612 ^A	2668,907 ^a	-2,375 ^A	-2,31 ^a	3,947(6) ^A	$4,55(6)^{a}$	
12.2	12.2	2666,8297 ^B		-2,463 ^B		3,229(6) ^B		
$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{13}({}^{2}F^{0}_{7/2})7s_{1/2} (7/2,1/2)^{0}_{3}$	3186,8811 ^A	3185,038 ^a	-2,571 ^A	-2,38 ^a	$1,765(6)^{A}$	$2,74(6)^{a}$	
12.2	12.2	3183,7948 ^B		-2,491 ^в		$2,122(6)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})7s_{1/2} (7/2,1/2)^{o}_{3}$	3230,1912 ^A	3228,270 ^a	-2,967 ^A	-3,48 ^a	$6,892(5)^{A}$	$2,10(5)^{a}$	
		3227,1042 ^B		$-4,548^{B}$		$1,815(4)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{3/2}(7/2,3/2)^{o}_{5}$	1883,4964 ^A	1898,249 ^a	0,846 ^A	0,79 ^a	$1,318(10)^{A}$	$1,15(10)^{a}$	
		1886,2649 ^B		0,823 ^B		$1,247(10)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{3/2}(7/2,3/2)^{o}_{5}$	2100,7929 ^A	2120,371 ^a	-0,299 ^A	-0,41 ^a	7,597(8) ^A	$5,85(8)^{a}$	
		2104,3240 ^B		$-0,376^{B}$		$6,337(8)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{3/2}(7/2,3/2)^{o}_{5}$	2160,4315 ^A	2178,717 ^a	-0,274 ^A	-0,27 ^a	7,598(8) ^A	$7,52(8)^{a}$	
		2164,0651 ^B		-0,237 ^B		8,248(8) ^B		
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	1868,1390 ^A	1871,998 ^a	0,471 ^A	0,45 ^a	$5,654(9)^{A}$	5,33(9) ^a	
		1863,5082 ^B		0,481 ^B		5,810(9) ^B		
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	1878,8317 ^A	1884,221 ^a	-0,050 ^A	-0,11 ^a	$1,683(9)^{A}$	$1,47(9)^{a}$	
		1874,1812 ^B		-0,073 ^B		$1,603(9)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2104,6734 ^A	2110,111 ^a	-0,377 ^A	-1,16 ^a	6,314(8) ^A	1,03(8) ^a	
		2098,8522 ^в		-1,330 ^B		$7,081(7)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2130,8870 ^A	2136,991 ^a	-0,658 ^A	-1,51 ^a	3,231(8) ^A	$4,51(7)^{a}$	
		2124,8921 ^B		-1,041 ^B		1,345(8) ^B		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2154,2964 ^A	2160,250 ^a	-0,396 ^A	-0,09 ^a	5,781(8) ^A	$1,16(9)^{a}$	
		2148,1751 ^B		-0,019 ^в		1,385(9) ^B		
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2315,8377 ^A	2324,166 ^a	-4,421 ^A	-3,59 ^a	4,714(4) ^A	$3,15(5)^{a}$	
		2308,8505 ^B		-5,071 ^в		$1,062(4)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2335,7919 ^A	2343,844 ^a	-2,285 ^A	-3,05 ^a	6,347(6) ^A	$1,10(6)^{a}$	
		2328,6142 ^B		-3,912 ^в		$1,506(5)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2687,6169 ^A	2697,425 ^a	-2,361 ^A	-2,74 ^a	4,023(6) ^A	$1,68(6)^{a}$	
		2678,1404 ^B		-3,429 ^в		$3,463(5)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2723,0955 ^A	2732,760 ^a	-3,791 ^A	-3,70 ^a	1,455(5) ^A	1,77(5) ^a	
		2713,3105 ^B		-3,467 ^в		$3,089(5)^{B}$		

Tablo	A.11.	Devam
-------	-------	-------

	Geçişler	λ		log	g(gf)	f) gA	
Alt seviye	Üst seviye	Bu çalışma HFR	Diğer çalışmalar	Bu çalışma HFR	Diğer çalışmalar	Bu çalışma HFR	Diğer çalışmalar
$4f^{13}({}^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2754,6546 ^A 2744,7024 ^B	2764,525ª	-1,965 ^A 3 011 ^B	-2,56 ^a	$9,537(6)^{A}$ 1.087(5) ^B	2,42(6) ^a
$4f^{13}(^2F^{o}_{7/2})6p_{3/2}\ (7/2,3/2)_5$	$4f^{13}(^2F^{o}_{7/2})6d_{5/2}~(7/2,5/2)^{o}_{6}$	2082,8781 ^A 2078,0200 ^B	2095,310 ^a	0,948 ^A	0,89 ^a	$1,363(10)^{A}$ $1,263(10)^{B}$	1,18(10) ^a
$4f^{13}(^2F^{o}_{7/2})6p_{1/2}\ (7/2,1/2)_3$	$4f^{13}(^2F^{o}_{7/2})6d_{3/2}\;(7/2,3/2)^{o}_{4}$	1867,7914 ^A	1863,253 ^a	0,256 ^A	0,26 ^a	$3,449(9)^{A}$	3,49(9) ^a
$4f^{13}(^2F^{o}_{7/2})6p_{1/2}\ (7/2,1/2)_4$	$4f^{13}(^2F^{o}_{7/2})6d_{3/2}\ (7/2,3/2)^{o}_{4}$	1825,8904 1878,4801 ^A 1826,1255 ^B	1875,361ª	-1,900 0,332 ^A	0,40 ^a	$4,058(9)^{A}$	4,80(9) ^a
$4f^{13}(^2F^{o}_{7/2})6p_{3/2}\ (7/2,3/2)_5$	$4f^{13}(^2F^{o}_{7/2})6d_{3/2}\ (7/2,3/2)^{o}_4$	1836,1356 ^b 2094,5543 ^A	2091,841ª	-1,032 ^b -0,245 ^A	-0,38 ^a	1,839(8) ^B 8,640(8) ^A	6,34(8) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}(^2F^{o}_{7/2})6d_{3/2}\ (7/2,3/2)^{o}_4$	2042,1256 ^b 2130,4348 ^A	2125,597ª	-0,624 ^B -3,688 ^A	-0,58ª	3,800(8) ^b 3,016(5) ^A	3,93(8) ^a
$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	4f ¹³ (² F° _{7/2})6d _{3/2} (7/2,3/2)° ₄	2076,1194 ^B 2153,8343 ^A	2148,607ª	$0,476^{\rm B}$ $0,216^{\rm A}$	-0,12 ^a	4,625(9) ^B 2,365(9) ^A	1,11(9) ^a
$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2.3/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{3/2}(7/2.3/2)^{o}_{4}$	2098,3402 ^B 2686.8976 ^A	2679.297ª	0,435 ^B -2.448 ^A	-2.55ª	$4,127(9)^{B}$ $3,292(6)^{A}$	$2.62(6)^{a}$
$4f^{13}(^2F^{\circ}_{22})6p_{12}(7/2,1/2)_{2}$	$4f^{13}(^2F^{\circ}_{aa})6d_{aa}(7/2,5/2)^{\circ}_{aa}$	2601,1241 ^B 1848 1296 ^A	1857 130ª	-3,253 ^B	-0.63ª	$5,500(5)^{B}$ 2,834(8)^{A}	$(4,50(8))^{a}$
$4f^{13}(^{2}\Gamma^{0}) = (7/2, 2/2)$	$4f^{13/2}_{17/2} = 0.64 + (7/2.5/2)^{2}$	1850,4278 ^B	2001.2208	-0,769 ^B	-0,05	3,313(8) ^B	1 ,50(0) ⁸
41 $(F_{7/2})op_{3/2}(7/2,3/2)_2$	41 $(F_{7/2})0d_{5/2}(7/2,5/2)_2$	2079,3108 2082,2740 ^B	2091,250	0,342 0,327 ^B	0,29	3,264(9) ^B	2,96(9)
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^{2}F^{0}_{7/2})6d_{5/2}(7/2,5/2)^{0}_{2}$	2104,8924 ^A 2107,9016 ^B	2117,629ª	-0,013 ^A -0,018 ^B	-0,09 ^a	$1,462(9)^{A}$ $1,440(9)^{B}$	1,22(9) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{2}$	2285,1674 ^A 2288,8047 ^B	2301,283ª	-2,144 ^A -2,156 ^B	-2,14 ^a	9,166(6) ^A 8,900(6) ^B	9,07(6) ^a
$4f^{13}(^2\!F^{o}_{5/2})6p_{1/2}\;(5/2,1/2)_2$	$4f^{13}(^2\!F^{o}_{7/2})6d_{5/2}(7/2,\!5/2)^{o}_2$	2304,5944 ^A 2308 2253 ^B	2320,574 ^a	-2,382 ^A -1.833 ^B	-2,05 ^a	5,208(6) ^A 1,839(7) ^B	1,11(7) ^a
$4f^{13}(^2\!F^{o}_{5/2})6p_{3/2}~(5/2,\!3/2)_1$	$4f^{13}(^2\!F^{o}_{7/2})6d_{5/2}\left(7/2,\!5/2\right)^{o}_2$	2586,8347 ^A 2501,2251 ^B	2605,128ª	-4,959 ^A	-3,69 ^a	$1,096(4)^{A}$ 2,577(4) ^B	2,00(5) ^a
$4f^{13}(^2\!F^{o}_{5/2})6p_{3/2}\;(5/2,3/2)_2$	$4f^{13}(^2F^{o}_{7/2})6d_{5/2}\left(7/2,5/2\right)^{o}_2$	2680,7880 ^A	2701,179 ^a	-2,121 ^A	-2,37 ^a	$7,026(6)^{A}$	3,93(6) ^a
$4f^{13}(^2F^{o}_{5/2})6p_{3/2}\ (5/2,3/2)_3$	$4f^{13}(^2F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_2$	2085,0084 2711,3686 ^A	2732,210ª	-2,526 -3,476 ^A	-3,92ª	2,752(6) $3,031(5)^{A}$	1,08(5) ^a
$4f^{13}(^2F^{o}_{7/2})6p_{1/2}\ (7/2,1/2)_3$	$4f^{13}(^2F^{o}_{7/2})6d_{5/2}\ (7/2,5/2)^{o}_{4}$	2716,4204 ^B 1850,6774 ^A	1841,091ª	-4,001 ^B -0,792 ^A	-2,96 ^a	$9,020(4)^{B}$ $3,147(8)^{A}$	2,16(6) ^a
$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}$ (7/2,1/2) ₄	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{4}$	1848,8827 ^B 1861,1706 ^A	1852,912ª	0,315 ^в -0,083 ^A	-0,70 ^a	4,026(9) ^в 1,589(9) ^A	3,85(8) ^a
$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{4}$	1859,3883 ^B 2073,0564 ^A	2063,937ª	0,483 ^B -1,395 ^A	-0,82 ^a	5,863(9) ^B 6,245(7) ^A	2,40(8) ^a
$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{4}$	2070,9292 ^B 2108,1979 ^A 2105,8969 ^B	2096,791ª	-0,389 ^B 0,516 ^A -0,253 ^B	0,45ª	6,355(8) ^B 4,918(9) ^A 8,400(8) ^B	4,30(9) ^a

(Geçişler		λ	lo	$\log(gf)$	إ	zA _{ki}
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer
·	·	HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{4}$	2131,1089 ^A	2119,179 ^a	0,171 ^A	0,33 ^a	$2,177(9)^{A}$	$3,21(9)^{a}$
	(,,2) - (,),2 (, - (, - (, - (, - (, - (, - (, - (2128,7632 ^B	- ,	-0,247 ^B	- ,	8,336(8) ^B	- , (- ,
$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{4}$	2289,0639 ^A	2276,696 ^a	-1,908 ^A	$-1,98^{a}$	$1,572(7)^{A}$	$1,35(7)^{a}$
		2286,4413 ^B		$-2,906^{B}$		$1,583(6)^{B}$	
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6d_{5/2}(7/2,5/2)^{0}_{4}$	2651,6235 ^A	2633,694 ^a	-3,607 ^A	-3,05 ^a	$2,345(5)^{A}$	$8,59(5)^{a}$
· · · · ·		2648,0361 ^B		-2,630 ^B		$2,232(6)^{B}$	
4f ¹³ (² F ^o _{5/2})6p _{3/2} (5/2,3/2) ₃	4f ¹³ (² F° _{7/2})6d _{5/2} (7/2,5/2)° ₄	2716,8559 ^A	2697,624 ^a	-4,182 ^A	-3,33ª	5,940(4) ^A	$4,34(5)^{a}$
-		2713,0920 ^B		-3,594 ^B		$2,308(5)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	1843,4474 ^A	1837,605 ^a	-0,617 ^A	-1,30 ^a	$4,740(8)^{A}$	9,93(7) ^a
		1833,7039 ^в		-0,880 ^B		$2,612(8)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	1853,8586 ^A	1849,381ª	-2,008 ^A	-1,05 ^a	1,904(7) ^A	1,73(8) ^a
		1844,0373 ^в		-0,721 ^в		$3,727(8)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2073,3857 ^A	2066,495 ^a	-0,126 ^A	0,03 ^a	$1,160(9)^{A}$	1,67(9) ^a
		2061,1208 ^B		0,135 ^B		$2,142(9)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2098,8210 ^A	2092,269 ^a	0,426 ^A	0,41 ^a	$4,040(9)^{A}$	3,92(9) ^a
		2086,2272 ^в		0,437 ^в		$4,188(9)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2121,5275 ^A	2114,559 ^a	-0,078 ^A	-0,45 ^a	$1,239(9)^{A}$	5,30(8) ^a
		2108,6661 ^B		-0,456 ^B		5,253(8) ^B	
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2278,0133 ^A	2271,365 ^a	-1,939 ^A	-1,89 ^a	$1,480(7)^{A}$	1,66(7) ^a
		2263,2729 ^в		-1,496 ^B		$4,158(7)^{B}$	
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2297,3183 ^A	2290,156 ^a	-2,120 ^A	-2,30 ^a	9,585(6) ^A	$6,36(6)^{a}$
		$2282,2608^{B}$		-2,544 ^B		3,658(6) ^B	
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2636,8064 ^A	2626,563 ^a	-2,950 ^A	-3,89 ^a	1,077(6) ^A	$1,23(5)^{a}$
		2617,0100 ^в		-2,842 ^B		$1,402(6)^{B}$	
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2670,9476 ^A	2660,055 ^a	-2,724 ^A	-2,77 ^a	$1,763(6)^{A}$	1,59(6) ^a
		2650,5828 ^B		-2,599 ^B		$2,388(6)^{B}$	
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{3}$	2701,3029 ^A	2690,144 ^a	-3,162 ^A	-2,59 ^a	$6,299(5)^{A}$	2,39(6) ^a
12.2	12.2	2680,5320 ^B		-2,937 ^B		$1,073(6)^{B}$	
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}(^{2}F^{o}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{5}$	1853,8739 ^A	1845,549 ^a	-1,421 ^A	-1,12 ^a	7,359(7) ^A	$1,50(8)^{a}$
12.2	12.2	1833,9878 ^B		-0,972 ^B		$2,117(8)^{B}$	
$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{5}$	$4f^{13}({}^{2}F^{0}_{7/2})6d_{5/2}(7/2,5/2)^{o}_{5}$	2064,0078 ^A	2054,801 ^a	0,363 ^A	0,33 ^a	$3,612(9)^{A}$	$3,40(9)^{a}$
12.2	12.0	2039,4692 ^B		0,400 ^в		4,032(9) ^B	
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6d_{5/2}(7/2,5/2)^{0}_{5}$	2121,5476 ^A	2109,549 ^a	0,663 ^A	0,63 ^a	6,825(9) ^A	$6,42(9)^{a}$
12.2	12.0	2095,5356 ^B		0,692 ^в		7,466(9) ^B	
$4f^{13}({}^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}_{7/2})6d_{5/2}(7/2,5/2)^{0}_{5}$	2636,8374 ^A	2618,838 ^a	-3,908 ^A	-3,31ª	$1,186(5)^{A}$	$4,75(5)^{a}$
12 2		2596,8158 ^B		-4,960 ^в		1,085(4) ^B	
$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4t^{13}({}^{2}F^{o}_{5/2})7s_{1/2}(5/2,1/2)^{o}_{2}$	1715,9429 ^A	1714,766 ^ª	-3,133 ^A	-3,62ª	1,669(6) ^A	5,40(5) ^a
		1715,7063 ^в		-4,092 ^b		1,833(5) ^b	
$4f^{13}({}^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})7s_{1/2}(5/2,1/2)^{o}_{2}$	1913,4691 ^A	1912,997 ^a	-2,717 ^A	-3,22ª	$3,492(6)^{\text{A}}_{\text{B}}$	$1,11(6)^{a}$
		1913,2204 ^B		-3,685 ^в		3,767(5) ^в	

Tat	olo A	A .11.	Devam
Tat	olo A	A.11.	Devam

(Geçişler	λ	L	log	g(gf)	{	A_{ki}
Alt seviye	Üst seviye	Bu çalışma HFR	Diğer calısmalar	Bu çalışma HFR	Diğer calısmalar	Bu çalışma HFR	Diğer calısmalar
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^2F^{o}_{5/2})7s_{1/2}(5/2,1/2)^{o}_2$	1935,1117 ^A 1934 8340 ^B	1935,053ª	$-2,065^{\text{A}}$ $-2,238^{\text{B}}$	-2,17 ^a	$1,532(7)^{A}$ 1,030(7) ^B	1,20(7) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}({}^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_2$	2086,4322 ^A 2086,1843 ^B	2086,534 ^a	$0,032^{A}$ 0.029^{B}	0,03 ^a	$1,651(9)^{A}$ 1,651(9) ^B	1,64(9) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}({}^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_2$	$2102,6151^{A}$ $2102,3065^{B}$	2102,381 ^a	-0,775 ^A -0.806 ^B	-0,75 ^a	$2,535(8)^{A}$ 2,356(8) ^B	2,69(8) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_2$	2335,0563 ^A 2334 6147 ^B	2333,288ª	-0,196 ^A -0,201 ^B	-0,21 ^a	$7,785(8)^{A}$ 7,709(8) ^B	7,61(8) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_2$	2411,3409 ^A 2410,9077 ^B	2410,046 ^a	-0,023 ^A -0.034 ^B	-0,01 ^a	$1,087(9)^{A}$ 1,062(9)^{B}	1,12(9) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_2$	2436,0548 ^A 2435,6603 ^B	2434,719 ^a	$-0,278^{A}$	-0,28 ^a	$5,921(8)^{A}$ 5,770(8) ^B	5,98(8) ^a
$4f^{13}({}^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	1713,0377 ^A 1711,8538 ^B	1712,017 ^a	-2,388 ^A	-2,82 ^a	$9,300(6)^{A}$ 3,616(4) ^B	3,48(6) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	1722,0243 ^A 1720,8561 ^B	1722,234 ^a	-2,410 ^A	-3,12 ^a	$8,760(6)^{A}$	1,73(6) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	1909,8572 ^A	1909,576 ^a	-1,650 ^A	-2,04 ^a	$4,090(7)^{A}$	1,68(7) ^a
$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	1908,4510 1931,4177 ^A 1920,9360 ^B	1931,554 ^a	-4,186 ^A	-2,80 ^a	$0,117(6)^{A}$ 1,826(7) ^B	2,82(6) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	1929,9300 1950,6299 ^A 1949,1233 ^B	1950,528 ^a	-1,989 -4,887 ^A 2,828 ^B	-3,65 ^a	$2,274(4)^{A}$	3,91(5) ^a
$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	2082,1386 ^A	2082,464 ^a	-2,858 $-0,248^{A}$ $0,105^{B}$	-0,21 ^a	2,531(0) 8,690(8) ^A 0.824(8) ^B	9,46(8) ^a
$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	2080,4911 2098,2547 ^A 2006,5251 ^B	2098,249 ^a	-0,195 0,034 ^A	0,03 ^a	$1,640(9)^{A}$	1,63(9) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	2096,5251 2377,8777 ^A	2377,216 ^a	0,010 0,286 ^A	0,29 ^a	$2,278(9)^{A}$	2,29(9) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	2373,0739 2405,6077 ^A 2402,2074 ^B	2404,618 ^a	-0,889 ^A	-0,92 ^a	$1,489(8)^{A}$	1,40(8) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})7s_{1/2}\ (5/2,1/2)^{o}_{3}$	2403,3074 2430,2036 ^A 2427,0024 ^B	2429,180ª	-0,903 -0,054 ^A	0,00 ^a	$9,965(8)^{A}$	1,12(9) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})6d_{5/2}\ (5/2,5/2)^{o}_{\ 2}$	1557,1045 ^A	1557,377ª	-3,173 ^A	-3,96 ^a	1,154(9) $1,847(6)^{A}$	3,05(5) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}(^2F^{o}_{5/2})6d_{5/2}\ (5/2,5/2)^{o}_{\ 2}$	1545,8596 [°] 1718,0399 ^A 1704,2066 ^B	1719,172ª	-4,/1/- -2,699 ^A	-2,81 ^a	$5,353(4)^{-}$ 4,518(6) ^A	3,48(6) ^a
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}(^2F^{o}_{5/2})6d_{5/2}\ (5/2,5/2)^{o}_{\ 2}$	1704,3966° 1735,4672 ^A	1736,965ª	-5,889 ² -2,535 ^A	-2,94 ^a	2,964(3) ² 6,458(6) ^A	2,56(6) ^a
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4 f^{13} (^2 F^{o}_{5/2}) 6 d_{5/2} \ (5/2, 5/2)^{o}_2$	1721,5285 ³ 1856,2010 ^A 1840,3227 ^B	1858,575ª	-2,448 ⁵ -0,239 ^A 0.877 ^B	-1,25 ^a	$(8,018(6)^{B})^{A}$ 1,115(9) ^A 2,612(8) ^B	1,09(8) ^a

Tablo	A.11.	. Devam
-------	-------	---------

	Geçişler	2	λ	le	$\log(gf)$	gA_{ki}		
Alt seviye	Üst seviye	Bu çalışma	Diğer	Bu çalışma	Diğer	Bu çalışma	Diğer	
		HFR	çalışmalar	HFR	çalışmalar	HFR	çalışmalar	
$4f^{13}({}^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{2}$	1868,9986 ^A	1871,133 ^a	0,314 ^A	$-1,39^{a}$	3,937(9) ^A	$7,87(7)^{a}$	
12.0	12.0	1852,8573 ^B		-0,693 ^B		3,941(8) ^B		
$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{1}$	$4f^{15}({}^{2}F^{0}{}_{5/2})6d_{5/2}(5/2,5/2)^{0}{}_{2}$	2050,4287 ^A	2051,114 ^a	-0,293 ^A	$-0,01^{a}$	$8,083(8)^{A}_{p}$	$1,57(9)^{a}$	
12.2	12.0	2030,9717 ^B		0,060 ^B		1,858(9) ^B		
$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{15}({}^{2}F^{0}{}_{5/2})6d_{5/2}(5/2,5/2)^{0}{}_{2}$	2109,0163 ^A	2110,199 ^a	-0,671 ^A	0,23 ^a	$3,196(8)^{A}$	$2,58(9)^{a}$	
		2088,4654 ^B		0,244 ^B		2,681(9) ^B		
$4f^{13}({}^{2}F^{0}{}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{2}$	2127,8974 ^A	2129,091 ^a	-0,714 ^A	-0,71 ^a	$2,848(8)^{A}$	$2,86(8)^{a}$	
		2107,0143 ^B		$-0,946^{B}$		$1,702(8)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{3}$	1549,2703 ^A	1548,965 ^a	-2,612 ^A	-3,61 ^a	$6,786(6)^{A}$	$6,78(5)^{a}$	
		1551,9754 ^в		-4,336 ^в		$1,277(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{1/2}(7/2,1/2)_{4}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{3}$	1556,6171 ^A	1557,324ª	-3,686 ^A	-3,94 ^a	$5,672(5)^{A}$	$3,11(5)^{a}$	
		1559,3710 ^в		-4,018 ^B		$2,634(5)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{3}$	1708,5074 ^A	1708,927 ^a	-2,147 ^A	-2,68 ^a	$1,631(7)^{A}$	$4,73(6)^{a}$	
_		1711,8342 ^B		-2,573 ^B		$6,083(6)^{B}$		
$4f^{13}(^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{3}$	1725,7410 ^A	1726,507 ^a	-1,712 ^A	-1,98 ^a	$4,346(7)^{A}$	$2,32(7)^{a}$	
		1729,1166 ^B		-1,820 ^B		$3,375(7)^{B}$		
$4f^{13}({}^{2}F^{o}_{7/2})6p_{3/2}(7/2,3/2)_{4}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{3}$	1741,0630 ^A	1741,651 ^a	-3,788 ^A	$-3,70^{a}$	$3,588(5)^{A}$	$4,31(5)^{a}$	
· · · · ·		1744,5027 ^B		-2,934 ^B		$2,551(6)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{3}$	$4f^{13}({}^{2}F^{o}_{5/2})6d_{5/2}(5/2,5/2)^{o}_{3}$	1845,0788 ^A	1846,607 ^a	0,287 ^A	0,28 ^a	$3,793(9)^{A}$	$3,73(9)^{a}$	
		1848,9968 ^B		0,321 ^B		$4,082(9)^{B}$		
$4f^{13}(^{2}F^{o}_{5/2})6p_{1/2}(5/2,1/2)_{2}$	$4f^{13}({}^{2}F^{0}_{5/2})6d_{5/2}(5/2,5/2)^{0}_{3}$	1857,7229 ^A	1859,003 ^a	0,196 ^A	$0,18^{a}$	$3,033(9)^{A}$	$2,90(9)^{a}$	
		1861,6503 ^B		0,264 ^B		3,538(9) ^B		
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{4}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6d_{5/2}(5/2,5/2)^{\circ}{}_{3}$	2073,6136 ^A	2073,950 ^a	-0,522 ^A	-0,61 ^a	$4,662(8)^{A}$	$3,77(8)^{a}$	
1 32 1 32 1 3		2078,5212 ^B		-0,444 ^B		5,557(8) ^B		
$4f^{13}(^{2}F^{0}_{5/2})6p_{3/2}(5/2,3/2)_{2}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6d_{5/2}(5/2,5/2)^{\circ}{}_{3}$	2094,6697 ^A	2094.778^{a}	-1.104 ^A	-0.53 ^a	1.195(8) ^A	$4.47(8)^{a}$	
(5)27 · 1 5)2 (· · · · · · · · · · · · · · · · · ·	(5/2) - 5/2 () -) 5	2099.6435 ^B	,	-0.702 ^B		$3.008(8)^{B}$,	
$4f^{13}(^{2}F^{o}_{5/2})6p_{3/2}(5/2,3/2)_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6d_{5/2}(5/2,5/2)^{\circ}{}_{3}$	2113.2937 ^A	2113.394 ^a	-0.036 ^A	-0.30 ^a	$1.373(9)^{A}$	$7.40(8)^{a}$	
(5)27 · 1 5)2 (· · · · · · · · · · · · · · · ·	(5/2) - 5/2 () -) 5	2118.3924 ^B		-0.146^{B}	- ,	$1.062(9)^{B}$.,	
$4f^{13}({}^{2}F^{0}_{7/2})6p_{1/2}(7/2,1/2)_{3}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6d_{3/2}(5/2,3/2)^{\circ}{}_{3}$	1542.5263 ^A	1545.380 ^a	-2.372 ^A	-2.91^{a}	$1.191(7)^{A}$	$3.42(6)^{a}$	
(= 1/2) °F 1/2 (·· = + = - + 5		1537.2726 ^B		-3.483 ^B	_,, _	$9.274(5)^{B}$	-,(-)	
$4f^{13}(^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}({}^{2}F^{0}{}_{5/2})6d_{3/2}(5/2,3/2)^{\circ}{}_{3}$	1700.3096 ^A	1704.565 ^a	-2.201 ^A	-2.37 ^a	$1.451(7)^{A}$	$9.80(6)^{a}$	
(1 (1 //2)op3/2 (//=,0/=/2		1693,9640 ^B	1101,000	-2.395 ^B	2,01	$9.351(6)^{B}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$4f^{13}(^{2}F^{0}_{7/2})6p_{3/2}(7/2,3/2)_{2}$	$4f^{13}({}^{2}F^{0}_{5/2})6d_{3/2}(5/2,3/2)^{\circ}_{2}$	1717.3773 ^A	1722.055ª	-2.948 ^A	-2.75 ^a	$2.550(6)^{A}$	$4.03(6)^{a}$	
- (- //2/°P3/2 (// =,0/ =)3	(1 3/2/003/2 (0, 2, 0/2) 3	1710.8857 ^B		-2.417 ^B	-,	8.733(6) ^B	.,00(0)	
$4f^{13}(^{2}F^{0}_{7/2})6n_{2/2}(7/2,3/2)$	$4f^{13}({}^{2}F^{0}_{5/2})6d_{2/2}(5/2,3/2)^{\circ}_{2}$	1732,5505 ^A	1737.120^{a}	-3.771 ^A	-3.98 ^a	$3.768(5)^{A}$	$2.32(5)^{a}$	
······································	(1 5/2/005/2 (5/2,5/2) 3	1725 9476 ^B	1.07,120	-3.269^{B}	5,70	$1.204(6)^{B}$	-,52(5)	
$4f^{13}(^{2}F^{0}_{5/2})6n_{1/2}(5/2,1/2)_{2}$	$4f^{13}(^{2}F^{0}_{c}) + 6d_{22}(5/2)^{0}_{2}$	1835 5216 ^A	1841 515 ^a	-0.569 ^A	-1 18 ^a	5 335(8) ^A	$1.30(8)^{a}$	
······································	··· (1 5/2/00/5/2 (5/ 2,5/ 2) 3	1828 1656 ^B	1011,010	-0.761 ^B	1,10	$3.456(8)^{B}$	1,50(0)	

^aDream Database [64], ^bZhang ve çalışma arkadaşları [341], ^cU.I. Safronova ve M.S. Safronova [346], ^dBiémont ve çalışma arkadaşları [342]

Seviy	eler		Е		<i>g</i> -çarpanı			
Konf.	Terim	Bu ça	lışma	Diğer	Bu çalı	şma	Diğer	
C'E	••	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
Cift parite	IÇIN: ⁴ D	33715 68 ^A		32086 75ª	2 651 ^A		2 62ª	
Usop (F)	F 1/2	33733 13 ^B	-	32980,75	2,031 2 543 ^B	-	2,02	
	${}^{4}\mathbf{P}_{3/2}$	34998.26 ^A	_	33831.54ª	1.728 ^A	_	1.75^{a}	
	- 3/2	34753,77 ^B		00001,01	1,725 ^B		1,70	
		34061,64 ^C			1,726 ^C			
	${}^{4}\mathbf{P}_{5/2}$	36808,81 ^A	-	35274,55 ^a	1,583 ^A	_	1,51 ^a	
		36744,32 ^B			1,573 ^B			
0.2	2-	36243,71 [°]			1,567 ^C			
6s6p ² ('P)	${}^{2}\mathbf{P}_{1/2}$	44306,96 ^B	-	_	0,837 ^B	-	-	
		43071,62°			1,034			
5.13	4 E	12201 57A			0 647A			
30	1°3/2	43364,37 43825 18 ^B	-	-	0,047 0.471^{B}	-	_	
		43599 64 ^C			0.708°			
	4 Fs/2	45029.15 ^A	_	_	1.064 ^A	_	_	
	- 5/2	45390,90 ^B			1,041 ^B			
		44215,39 [°]			1,057 ^C			
	${}^{4}F_{7/2}$	46679,80 ^A	-	-	1,232 ^A	_	-	
		47015,67 ^в			1,231 ^B			
		46031,68 ^C			1,229 ^C			
	${}^{4}F_{9/2}$	48171,18 ^A	-	-	1,319 ^A	-	-	
		48517,68 ^B			1,318 ^B			
- 2- 1	25	47577,40 [°]	21515 000B	2151221	1,316 [°]	o oo tBC	0.003	
6s-6d	${}^{2}D_{3/2}$	-	31545,000 ⁵	31542,24"	-	0,801 ^{D,C}	0,80"	
			316/0,864° 21528 200 ^D			0,800-		
	² D		31338,300 31723.000 ^B	31713 60ª		1 200 ^{B,C,D}	1 7 3ª	
	D 5/2		31670 136 ^C	51715,00		1,200	1,25	
			31872.200 ^D					
6s ² 8s	${}^{2}S_{1/2}$	_	34610.800 ^B	34610.38 ^a	_	2,002 ^{B,C,D}	_	
	~ 1/2		34604.300 [°]			_,		
			34739,500 ^D					
6s ² 5g	${}^{2}G_{7/2}$	_	36716,000 ^B	39336,15 ^b	-	0,889 ^{B,C,E}	_	
-			36715,400 [°]					
			36715,424 ^E			DGD		
	${}^{2}G_{9/2}$	-	36716,000 ^в	39336,15°	-	1,111 ^{B,C,E}	-	
			36715,400 ^C					
c ² 7 1	20		36715,424 ^E	26760.018		O OOBCD		
6s² /d	${}^{2}D_{3/2}$	-	36/69,500 ^s	36/68,81"	-	0,80 ^{5,0,0}	_	
	² D		30/08,000 ^{°°}	26052 028		1 20 ^{B,C,D}		
	$D_{5/2}$	-	36952 800 ^C	30932,93	-	1,20	_	
			36968 500 ^D					
$6s^26\sigma$	$^{2}G_{\pi}$	_	38066 100 ^B	_	_	0 889 ^{B,C,E}	_	
05 05	0//2		38064.700 [°]			0,007		
			38064,523 ^E					
	${}^{2}G_{9/2}$	-	38066,100 ^B	_	-	1,111 ^{B,C,E}	_	
	<i></i>		38064,700 ^C					
			38064,523 ^E					
5d6s(³ D)7s	${}^{4}D_{1/2}$	48445,85 ^A	-	36899,72 ^a	0,008 ^A	-	$0,00^{a}$	
		47062,19 ^B			0,156 ^B			
		50487,09 [°]			0,471 [°]			
	4-	36162,11 ^D			-0,002			
	$^{4}D_{3/2}$	48862,92 ^A	-	37193,98ª	1,186 ^A	_	1,27ª	
		47803,02 ⁵			1,189 ⁵			
		$50882,40^{\circ}$			1,132 1,104 ^D			
	${}^{4}D_{r/2}$	20274,27 29581 08 ^A	_	37742 56 ^a	1,194 1 360 ^A	_	1 29 ^a	
	D5/2	49581,08 48155.04 ^B	-	57742,50	1,300 $1,327^{B}$	_	1,29	
		51616 58 ^C			1.333 ^C			
		37364.27 ^D			1.366 ^D			
	${}^{4}D_{7/2}$	51165.39 ^A	_	39279.48^{a}	1.427 ^{A,B}	_	1.39 ^a	
		50098,30 ^B		- , -	1,420 ^C			
		53145,07 ^C			1,429 ^D			
_		38897,62 ^D						
5d6s(³ D)7s	${}^{2}D_{3/2}$	55444,97 ^A	_	42576,69 ^a ?	0,847 ^A	-	-	
		53656,21 ^B			0,860 ^B			
		60222,47 ^C			0,854			
		44386,18 ^D			0,804			

Tablo A.12. Lu I'in E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları (Tablo 3.33'ün geniş hali)

Tablo A.12. Devam

Sevi	yeler		Ε			g-çarpanı	
Konf.	Terim	Bu ça	alışma	Diğer	Bu ç	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+B	P HFR	çalışmalar
	$^{2}D_{5/2}$	60153,89 ^A	-	44075,53 ^a ?	1,197 ^A	-	-
		54269,02 ^B			1,244 ^B		
		62306,91 ^C			1,203 ^C		
_	_	44410,95 ^D	_		1,206 ^D	_	
6s²7g	${}^{2}G_{7/2}$	-	38881,800 ^C	-	-	$0,889^{\circ}_{-}$	-
	${}^{2}G_{9/2}$	-	38881,800 ^C	-	-	1,111 ^C	-
$6s^2 9s$	${}^{2}S_{1/2}$	-	38457,900 ^C	38458,36 ^a	-	2,002 ^{C,D}	-
			38605,500 ^D			a b	
6s ² 8d	${}^{2}D_{3/2}$	-	38828,700 ^C	38828,77 ^a	-	0,80 ^{C,D}	-
			38828,500 ^D			a b	
	${}^{2}D_{5/2}$	-	38964,200 ^C	-	-	$1,20^{C,D}$	-
_	_		38962,900 ^D				
$6s^2 10s$	${}^{2}S_{1/2}$	-	40281,800 ^C	40282,01 ^a	-	2,002 ^{C,D}	-
			40324,000 ^D			a b	
$6s^2 9d$	${}^{2}D_{3/2}$	-	40900,900 ^C	40901,01 ^a	-	0,80 ^{C,D}	-
			40901,100 ^D			a b	
	${}^{2}D_{5/2}$	-	40921,400 ^C	-	-	$1,20^{C,D}$	-
_	_		40920,800 ^D				
6s ² 11s	${}^{2}S_{1/2}$	-	41120,100 ^C	41120,27 ^a	-	2,002 ^{C,D}	-
_	_		41141,300 ^D				
6s ² 10d	${}^{2}D_{3/2}$	-	41605,500 ^{C,D}	41605,46 ^a	-	0,80 ^{C,D}	-
	${}^{2}D_{5/2}$	-	41983,500 [°]	-	-	$1,20^{C,D}$	-
			41983,000 ^D				
6s ² 12s	${}^{2}S_{1/2}$	-	41798,100 ^C	41798,10 ^a	-	2,002 ^{C,D}	-
			41810,000 ^D				
6s ² 11d	${}^{2}D_{3/2}$	-	42092,300 ^{C,D}	42092,30 ^a	-	$0,80^{C,D}$	-
	${}^{2}D_{5/2}$	-	42483,300 ^C	-	-	$1,20^{C,D}$	-
			42483,100 ^D				
6s ² 13s	${}^{2}S_{1/2}$	-	42359,500 [°]	42359,48 ^a	-	2,002 ^{C,D}	-
			42366,600 ^D				
6s ² 12d	${}^{2}D_{3/2}$	-	42430,100 ^C	42430,16 ^a	-	$0,80^{C,D}$	-
			42430,200 ^D				
	${}^{2}D_{5/2}$	-	42825,900 [°]	_	_	1,20 ^{C,D}	-
			42825,700 ^D				
6s ² 14s	${}^{2}S_{1/2}$	-	42649,100 ^C	42649,05 ^a	_	$2,002^{C,D}$	-
			42654,200 ^D				
6s ² 13d	${}^{2}D_{3/2}$	-	42722,500 ^C	42722,50 ^a	_	$0,80^{C,D}$	-
			42722,400 ^D				
	${}^{2}D_{5/2}$	-	42871,000 ^C	_	_	1,20 ^{C,D}	-
			42870,900 ^D				
6s ² 14d	${}^{2}D_{3/2}$	-	42873,200 ^D	42873,15 ^a	-	$0,80^{C,D}$	-
			42873,200 ^C				
	${}^{2}D_{5/2}$	-	42955,400 [°]	-	-	1,20 ^{C,D}	-
			42955,200 ^D				
6s ² 15d	${}^{2}D_{3/2}$	-	43008,500 [°]	43008,42 ^a	_	$0,80^{C,D}$	-
			43008,400 ^D				
	${}^{2}D_{5/2}$	-	43396,700 ^{C,D}	_	_	1,20 ^{C,D}	-
6s ² 16d	${}^{2}D_{3/2}$	-	43112,800 ^C	43112,80 ^a	_	$0,80^{C,D}$	-
			43112,900 ^D				
	${}^{2}D_{5/2}$	-	43504,300 [°]	_	_	1,20 ^{C,D}	-
			43504,400 ^D				
6s ² 17d	${}^{2}D_{3/2}$	-	43236,600 ^{C,D}	43236,65 ^a	_	$0,80^{C,D}$	-
	${}^{2}D_{5/2}$	_	43589,600 ^{C,D}	-	-	1,20 ^{C,D}	_
6s ² 18d	${}^{2}D_{3/2}$	_	43291,100 ^{C,D}	43291,10 ^a	-	$0,80^{C,D}$	_
	${}^{2}D_{5/2}$	_	43661,600 ^{C,D}	-	-	1,20 ^{C,D}	_
6s ² 19d	${}^{2}D_{3/2}$	_	43344,200 ^{C,D}	43344,18 ^a	-	$0,80^{C,D}$	_
	${}^{2}D_{5/2}$	_	43720,700 ^{C,D}	-	_	1,20 ^{C,D}	_
6s ² 20d	${}^{2}D_{3/2}$	-	43390,200 ^C	43390,24 ^a	-	$0,80^{C,D}$	-
			43390,300 ^D				
	${}^{2}D_{5/2}$	-	43764,700 ^C	-	-	$1,20^{C,D}$	-
			43764,800 ^D				
6s ² 21d	${}^{2}D_{3/2}$	_	43429,600 ^{C,D}	43429,54 ^a	-	$0,80^{C,D}$	-
	$^{2}D_{5/2}$	_	43807,300 ^{C,D}	-	_	1,20 ^{C,D}	_
6s ² 22d	${}^{2}D_{3/2}$	_	43463,100 ^{C,D}	43463,10 ^a	_	$0,80^{C,D}$	_
-	${}^{2}D_{5/2}$	_	43845,100 ^{C,D}	_	_	$1,20^{C,D}$	_
6s ² 23d	${}^{2}D_{3/2}$	_	43491,900 ^C	43491,88 ^a	-	$0,80^{C,D}$	-
			43492,000 ^D	,			
	${}^{2}D_{5/2}$	_	43877,600 [°]	_	_	1,20 ^{C,D}	_
			43877,700 ^D				

Tablo A.12. Devam

Sevi	veler		F			g_carnani	
Konf.	Terim	Bu ca	lisma	Diğer	Bu calı	sma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6s ² 24d	$^{2}D_{3/2}$	_	43516,800 ^{C,D}	43516,76 ^a	_	0,80 ^{C,D}	_
	${}^{2}D_{5/2}$	-	43898,000 ^{C,D}	-	-	1,20 ^{C,D}	-
6s ² 25d	${}^{2}D_{3/2}$	_	43538,500 ^{C,D}	43538,42 ^a	_	0,80 ^{C,D}	-
Talanait	² D _{5/2}	_	43922,700 ^{c,b}	-	-	1,20 ^{c,b}	
6s ² 5f	${}^{2}F^{0}co$	_	36632 600 ^B	36633 31ª	_	0 857 ^{B,C,D}	_
03 51	1 5/2		36632,321 [°]	50055,51		0,057	
			36636,400 ^D				
	${}^{2}F^{o}_{7/2}$	-	36644,700 ^B	36644,12 ^a	-	1,143 ^{B,C,D}	-
			36644,852 ^e				
6s ² 8n	$^{2}\mathbf{P}^{0}$	_	36812 456 ^C	36808 76ª	_	0 666 ^{C,D}	_
03 OP	1 1/2		36917,094 ^D	50000,70		0,000	
	${}^{2}P^{o}_{3/2}$	_	37099,998 ^c	37131,38 ^a	-	1,334 ^{C,D}	-
2 -	2		36799,107 ^D			C D	
6s²6f	${}^{2}F_{5/2}^{o}$	-	39212,400 ^в	39212,61ª	-	0,857 ^{C,D}	-
			39212,276° 39213.000 ^D				
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	_	39220.300 ^B	39220.17ª	_	1.143 ^{C,D}	_
	- 112		39220,401 [°]			-,	
			39220,400 ^D			G D	
6s ² 9p	${}^{2}\mathbf{P}^{0}_{1/2}$	-	39322,521 ^C	39321,96 ^a	-	0,666 ^{C,D}	-
	$2\mathbf{p}^{0}$		39350,900 [°] 39422.072 [°]	30/2/ 68ª		1 334C,D	
	F 3/2	-	39422,072 39470,400 ^D	39424,08	—	1,554	-
5d ² (³ F)6p	${}^{4}G^{o}{}_{5/2}$	37068,98 ^A	-	40558,92 ^b	0,585 ^{A,B}	_	_
1		37711,97 ^B			0,580 ^C		
	1~~	31262,46 ^C			o com A P		
	${}^{4}G_{7/2}^{0}$	38409,85 ^A	-	41968,00°	$0,987^{A,B}$	-	-
		39052,84 32397 31 ^C			0,980		
	${}^{4}G^{0}{}_{9/2}$	40058.22 ^A	_	43599.65 ^b	1.171 ^{A,B}	_	_
	- 7/2	40701,21 ^B			1,172 ^C		
	4	33806,51 [°]			A D		
	${}^{4}G^{0}_{11/2}$	42020,18 ^A	-	45492,60°	1,271 ^{A,B}	-	-
		$42663,18^{-1}$			1,272*		
$5d^{2}(^{3}F)6p$	${}^{4}\text{F}^{0}_{3/2}$	39700.75 ^A	_	_	$0.420^{A,B}$	_	_
5 u (1)0p	- 3/2	40343,74 ^B			0,443 ^C		
	4	34265,98 [°]			A D		
	⁴ F ⁰ _{5/2}	40540,95 ^A	-	-	1,021 ^{A,b}	-	-
		41183,94 ⁻ 35052.22 ^C			1,019-		
	${}^{4}\text{F}^{0}_{7/2}$	41697.93 ^A	_	_	1.183 ^{A,B}	_	_
		42340,92 ^B			,		
		36059,85 [°]			1,216 ^C		
	4-0	42250 10Å			1.20.4Å		
	F 9/2	43259,10 43902.00 ^B	_	_	1,294 1.295 ^B	-	-
		37413.98 [°]			1,295 1.309 ^C		
6s ² 7f	${}^{2}F^{o}_{5/2}$	_	40622,777 ^C	40626,82 ^a	_	0,857 ^{C,D}	_
	2		40623,526 ^D			CD	
	${}^{2}\mathrm{F}^{\mathrm{o}}_{\mathrm{7/2}}$	-	40623,002 ^C	40619,01 ^a	-	1,143 ^{C,D}	-
$6s^210n$	$^{2}\mathbf{P}^{0}$		40623,674 ⁵ 40661,230 ^C	40661 02ª		0 666 ^{C,D}	
os top	F 1/2	—	40001,230 $40675,400^{D}$	40001,02	—	0,000	—
	${}^{2}\mathbf{P}^{0}_{3/2}$	_	40734,463 [°]	40735,33 ^a	_	1,334 ^{C,D}	_
_	_		40755,300 ^D				
6s ² 8f	${}^{2}F^{o}_{5/2}$	-	41456,168 ^C	41456,26 ^a	_	0,857 ^{C,D}	_
	2 E 0		41458,713 ^b	41460 00a		1 142 ^{C,D}	
	F 7/2	_	41400,142° 41458 787 ^D	41400,08"	-	1,143	_
6s ² 11p	${}^{2}\mathrm{P}^{\mathrm{o}}{}_{1/2}$	_	41487.124 ^c	41487,02 ^a	_	0,666 ^{C,D}	_
r			41495,700 ^D	,			
	${}^{2}P^{o}_{3/2}$	-	41532,892 ^C	41533,30 ^a	-	1,334 ^{C,D}	-
6a ² 0£	2 °		41545,100 ^D	42000 72ª		0.857C.D	
08 91	Г 5/2	_	42000,062 ⁻ 42003 778 ^D	42000,72"	-	0,037	_
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	_	42006,039 [°]	42006,00 ^a	_	1,143 ^{C,D}	_
			42003,822 ^D				

Tablo A.12. Devam

Sevi	veler		Е			g-carpani	
Konf.	Terim	Bu ça	lışma	Diğer	Bu çalı	şma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6s ² 12p	${}^{2}P^{0}{}_{1/2}$	_	42021,901 ^C	42021,84 ^a	-	0,666 ^{C,D}	-
	${}^{2}P^{o}_{3/2}$	-	42027,700 42052,658 ^C	42052,89ª	-	1,334 ^{C,D}	-
6s ² 10f	${}^{2}F^{o}_{5/2}$	_	42060,800 ⁵ 42372,901 [°]	42372,94ª	_	0,857 ^{C,D}	_
	${}^{2}F^{0}_{7/2}$	_	42375,186 ^D 42376.686 ^C	42376.66ª	_	1.143 ^{C,D}	_
6s ² 13n	² P ⁰	_	42375,214 ^D 42386 799 ^C	12386 76ª	_	0.666 ^{C,D}	_
08 150	1 1/2 200		42391,000 ^D	42380,70		0,000	
	² P ³ /2	-	42414,644° 42420,700 ^D	42414,79"	-	1,334°,5	_
6s²11f	${}^{2}F_{5/2}^{o}$	_	42638,452 [°] 42640,590 ^{°D}	42638,48ª	-	0,857 ^{C,D}	-
	${}^{2}F^{o}_{7/2}$	-	42642,069 ^c 42640.610 ^D	42642,05ª	-	1,143 ^{C,D}	-
6s²14p	${}^{2}P^{o}{}_{1/2}$	-	42657,717 ^C 42661,000 ^D	42657,69ª	-	0,666 ^{C,D}	-
	${}^{2}P^{o}_{3/2}$	-	42666,961 ^C	42667,06 ^a	-	1,334 ^{C,D}	-
6s ² 12f	${}^{2}F^{o}_{5/2}$	-	42671,700 ⁻ 42834,410 ^C	42834,43ª	-	0,857 ^{C,D}	_
	${}^{2}F^{o}_{7/2}$	_	42836,393 ^b 42837,674 ^c	42837,99ª	-	1,143 ^{C,D}	_
6s ² 15p	${}^{2}P_{1/2}^{0}$	_	42836,407 ^D 42848,329 ^C	42848,31ª	_	0,666 ^{C,D}	_
	² P ⁰	_	42851,000 ^D 42855 840 ^C	12855 Q1ª	_	1 33/ ^{C,D}	_
c ² 120	200		42860,000 ^D	42000 703		1,554	
65-131	² F ^o _{5/2}	-	42982,775° 42984,895 ^D	42982,79"	-	0,8570,5	_
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	42986,700 ^C 42984,905 ^D	42986,69ª	-	1,143 ^{C,D}	-
6s ² 16p	${}^{2}P^{o}_{1/2}$ ${}^{2}P^{o}_{0}$	-	42995,314 ^C 43002 498 ^C	- 43002 55ª	_	$0,666^{\circ}$	-
6s ² 14f	${}^{1}_{2}F^{0}_{5/2}$	_	43098,138 ^C	43098,15 ^a	-	0,857 ^{C,D}	-
	${}^{2}F^{o}_{7/2}$	_	43100,396 ⁵ 43102,318 ^C	43120,31ª	-	1,143 ^{C,D}	-
6s ² 17p	${}^{2}P^{o}{}_{1/2}$	_	43100,404 ^b 43109,211 ^c	_	_	0,666 ^C	_
	${}^{2}P^{o}_{3/2}$	-	43111,650 ^C	43111,69 ^a	-	1,334 ^C	-
6s ² 15f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	43188,271 ^C 43191,297 ^D	43188,28ª	-	0,857 ^{C,D}	-
	${}^{2}F_{7/2}^{o}$	-	43193,856 ^C 43191,303 ^D	43193,35ª	-	1,143 ^{C,D}	-
6s ² 18p	${}^{2}P^{0}{}_{1/2}$	-	43198,113 ^c	_	_	0,666 ^C	-
2	${}^{2}P_{3/2}^{o}$	-	43198,435 [°]	43197,07 ^a	-	1,334 ^c	-
6s²19p	${}^{2}P^{0}_{1/2}$	-	43258,717 ^C	43258,71ª	-	0,666 ^C	-
c 21.cc	² P ⁰ _{3/2}	-	43276,875 ^c	-	-	1,334 ^c	-
6s-16f	² F ⁰ _{5/2} 2 F ⁰	_	43268,477°	-	-	0,857	-
C-217£	F 7/2 2009	-	43208,490°	43207,57	-	1,145 0.957 ^C	-
08 171	Γ 5/2 ² Γ ⁰	_	43327,634 42222 574 ^C	43327,04 42222 57ª	_	0,837 1.142 ^C	_
$(-2)^{2}$	Γ 7/2 ² D ⁰	_	43332,374	43332,37 42228 46 ^a	_	1,145	_
0s 20p	P 1/2 2D0	_	43326,400	43326,40	_	0,000 1.224 ^C	_
$6a^{2}18f$	P 3/2 200	_	43330,840 42278 520 ^C	43330,60 42270 21 ^a	_	1,554 0.857 ^C	_
08 101	¹ , 5/2 ² E ⁰	-	43378,320 42278 520 ^C	43379,31 42277 74ª	-	0,857 1.142 ^C	-
$6a^2 21n$	¹ , 7/2 ² D ⁰	-	43376,329 42284 466 ^C	45577,74	-	1,145 0.666 ^C	-
08 21p	$P_{1/2}^{2}$	_	43384,400 42284 642 ^C	- 12284 56 ^a	_	0,000 1.224 ^C	_
$6s^2 19f$	${}^{2}F_{5/2}^{0}$	_	43384,042 43419 846 ^C	43384,30 43420 16 ^a	_	1,334 0.857 ^C	_
05 171	${}^{2}F^{0}7/2$	_	43419.853 ^C	43419.54 ^a	_	1.143 ^c	_
6s ² 22p	${}^{2}\mathbf{P}^{0}_{1/2}$ ${}^{2}\mathbf{P}^{0}_{2/2}$	_	43423,771 [°] 43423 010 [°]	43423,85 ^a 43425.08 ^a	-	$0,666^{\rm C}$	_
6s ² 20f	² F ⁰ =2	_	43423,919 43454 071 ^C	43455 08 ^a	_	0.857 ^C	_
03 201	${}^{2}F_{7/2}^{0}$	_	43454,977 ^C	43454.87 ^a	_	1.143 ^C	_
6s ² 23p	${}^{2}\mathbf{P}^{0}_{1/2}$	_	43457.653 [°]	43457.65 ^a	_	0,666 ^C	_
- 1	${}^{2}P_{3/2}^{0}$	-	43459,458 ^C	43459,47 ^a	_	1,334 ^C	-
6s ² 21f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	_	43485,007 ^C	43485,01 ^a	_	0,857 ^C	_
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	43485,012 ^C	43485,01 ^a	-	1,143 ^C	-

Tablo A.12. Devam

Sevi	Seviyeler		E			g-çarpanı		
Konf.	Terim	Bu ça	Bu çalışma		Bu çalı	Bu çalışma		
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	
6s ² 24p	${}^{2}P^{o}{}_{1/2}$	-	43487,153 ^C	43487,15 ^a	-	0,666 ^C	-	
-	${}^{2}P^{o}_{3/2}$	-	43488,900 ^c	43488,91ª	-	1,334 ^c	-	
6s ² 22f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	43510,867 ^C	43510,81ª	-	0,857 ^C	-	
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	43510,872 ^c	43510,93 ^a	-	1,143 ^c	-	
6s ² 25p	${}^{2}P^{0}{}_{1/2}$	-	43512,652 ^c	43512,65 ^a	-	0,666 ^C	-	
-	${}^{2}P^{o}_{3/2}$	-	43514,281 [°]	43514,29 ^a	-	1,334 ^c	-	
6s ² 23f	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	43533,178 ^c	43533,18 ^a	-	0,857 ^C	-	
	${}^{2}F^{o}_{7/2}$		43533,382 ^c	43533,38ª	-	1,143 ^c	_	

^a NIST Atomic Spectra Database [63], ^bVergés ve Wyart [355]

Tablo A.13. Lu II'nin E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları (Tablo 3.41'in geniş hali)

Seviy	veler		E			g-carnan	1
Konf	Terim	Buc	alisma	Diğer	Bu	calisma	Diğer
iioini.	101111	MCHF+BP	HFR	calismalar	MCHF+RI	yanyma P HFR	calismalar
Cift nori	to ising	MCIII +DI	III K	çanşınanı	MCIII+BI	mĸ	şunşınunı
Citt pari	³ D	60726 27A	60822 100 ^B				
ор	\mathbf{P}_0	09/20,3/	60852,100	-			-
		00201,00					
	30	69175,29°	60270 000B		1 501AB	1 501B	
	$^{-}P_{1}$	/1//1,56 ¹⁰	69270,800-	_	1,501	1,501-	—
		68303,54 ⁻			1,502*		
	30	70750,95°	01 c20 200B		1 47 4A	1 000B	
	$^{-}P_{2}$	74461,77 ¹⁰	81630,300-	_	1,4/4 ¹	1,238-	—
		70991,62			1,4/3		
c 2	lD.	/309/,33*	71242 000B		1,479°	1 170B	
6p-	D_2	84121,23 ¹²	/1342,800-	_	1,026 ⁻¹	1,1/9-	—
		80594,695			1,0275		
c 2	la	82018,55*	0.000 400B		1,021*		
6p-	S_0	101594,86	86998,4005	-			
		98109,915					
5161	30	99971,02°	60.400 500B			1.00 cB	
5d6d	S_1	_	63408,500 ⁸	-	-	1,986 ⁵	-
5d6d	³ G ₃	_	/0966, /00 ⁸	-	-	$0,763^{B}$	-
	$^{3}G_{4}$	_	72196,900 ⁸	-	-	1,058 ⁵	-
	³ G ₅	_	75347,100 ^B	-	_	1,200 ^B	-
5d6d	$^{3}D_{1}$	_	71575,600 ^B	-	_	0,583 ^B	-
	$^{3}D_{2}$	_	71944,300 ^B	-	_	1,120 ^B	-
	$^{3}D_{3}$	_	72817,200 ^B	-	_	1,190 ^B	-
5d6d	$^{3}F_{2}$	_	73772,100 ^B	-	_	0,820 ^B	-
	³ F ₃	_	76349,000 ⁸	-	-	1,203 ²	-
	$^{3}F_{4}$	_	7/338,600 ^B	-	_	1,231	-
5d6d	$^{3}P_{0}$	_	74655,300 ^B	-		1 10 cB	
	$^{3}P_{1}$	_	75695,800 ^B	-	_	1,426 ^b	-
	$^{3}P_{2}$	_	7/066,700 ^B	-	_	1,383 ^b	-
5d6d	P_1	_	/8104,400 ⁸	-	-	1,003 ^B	-
5d6d	·F ₃	_	/8/36,200 ⁸	-	-	1,012 ⁵	-
5060	G ₄	_	80626,200 ⁻	_	_	1,011 ⁻	—
5000	D_2	—	80/00,700	-	-	1,024	-
5000 T.I.	S ₀	_	90387,300	_			
Tek pari	$\frac{1}{3}$	00212 40A	(01(C 001 ^B				
0s/p	r 0	00313,40 07842 21 ^B	60346 261 ^C	-			—
	³ D ⁰	97642,31 81450 55 ^A	60471 812 ^B	_	1 207 ^A	1 494 ^{B,C}	_
	r 1	01439,33	696/3 0/8 ^C		1,397 1.462^{B}	1,404	
	³ D ⁰	97040,99 91071 71 ^A	70261 808 ^B	_	1,402 1.404 ^A	1 501 ^{B,C}	_
	1 2	07875 02 ^B	70555 702 ^C		1,494 1.501 ^B	1,501	
607n	$^{1}\mathbf{p}^{0}$.	97873,02 02073 51 ^A	70333,793	_	1,501 1,005 ^A	1.010 ^B	_
0874	1 1	92075,51 97905.02 ^B	72136 707 ^C		1,005 1,038 ^B	1,010 1,016 ^C	
5d7n	³ D ⁰ .	75661.96 ^A	75092 880 ^B	_	0.594 ^A	0.537 ^B	_
Jurp		03781 87 ^B	75251 012 ^C		0,594 0.564 ^B	0,537 0,534 ^C	
	³ D ⁰ -	77030 40 ^A	75438 505 ^B	_	0,504 1.115 ^A	1.038 ^B	_
	D_2	11039,49	75567 190 ^C	-	1,115	1,038 1.034 ^C	—
	³ D ⁰	78850 87A	78224 216 ^B	_	1 204 ^A	1,034 1,261 ^B	_
	D_3	10030,81	10324,210 78487 200 ^C		1,294 1.270 ^B	1,201 1.242 ^C	-
5.47-	³ E ⁰	90027,39 74850 64A	74200 205 ^B	_	1,2/U 0.919 ^A	1,242 0.769 ^B	_
Ju/p	Г 2	74030,04	14299,293 71286 610 ^C		0,018	0,708 0.772°	-
	${}^{3}\mathbf{F}^{0}$	77649 05 ^A	74300,012 75517 112 ^B	_	1.094 ^A	0,772 1.069 ^B	_
	Γ3	1/040,93	75910 400 ^C	_	1,064 1.067 ^B	1,008 1.078 ^C	_
		93607,03	13019,499		1,007	1,078	

Tablo A.13. Devam

Sevi	veler		E			g-carnan	1
Konf.	Terim	Bu ç	alışma	Diğer	Bu ça	alışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	${}^{3}F_{4}^{o}$	80098,72 ^A	79407,709 ^в	-	1,250 ^{A,B}	1,249 ^{B,C}	-
		96669,37 ^B	79381,005 ^C				
5d7p	${}^{3}P_{0}^{0}$	79297,71 ^A	76421,195 ^B	-			
		93846,99 ⁸	76519,487 ^C				
	${}^{3}P_{1}^{o}$	78809,49 ^A	76745,218 ^B	-	1,146 ^A	1,420 ^B	-
	2	93843,34 ^B	76830,203 ^C		1,333 ^B	1,422 ^C	
	${}^{3}P_{2}^{0}$	81075,84 ^A	79300,082 ^B	-	1,442 ^A	1,371 ^в	-
		96674,64 ⁸	79439,614 ^e		1,420 ^s	1,387°	
5.17.		06618 04 ^B	77056 002 ^B		1 001 ^B	1.002 ^B	
Su/p	D_2	90018,94	77930,902 78106 460 ^C		1,081	1,095 1.097 ^C	
5d7n	¹ F°	82504 86 ^A	79903 802 ^B	_	1 038 ^A	1,034 1.052^{B}	_
Jurp	1 3	96671 33 ^B	79929 305 ^C		1,030	1,052 1,068 ^C	
5d7p	${}^{1}\mathbf{P}^{0}$	96696.12 ^B	80832,586 ^B	_	1.099^{B}	1.027^{B}	_
ourp	- 1	, 00, 0,12	81177.299 ^C		1,000	1.032°	
6s5f	${}^{3}\mathrm{F}^{\mathrm{o}}_{2}$	96848.80 ^A	77170.715 ^B	_	0.665 ^A	0.729 ^B	-
	- 2	89574.95 ^B	77480.506 ^C		0.668 ^B	0.724°	
	${}^{3}\mathrm{F}^{\mathrm{o}}{}_{3}$	96850,39 ^A	76717,712 ^в	_	1,083 ^{A,B}	1,052 ^B	-
	2	89580,61 ^B	77340,602 ^C			1,073 ^C	
	${}^{3}F_{4}^{0}$	96852,80 ^A	76818,887 ^B	-	1,250 ^{A,B}	1,251 ^B	-
		89586,99 ^B	77150,197 ^C			1,250 [°]	
6s5f	${}^{1}F_{3}^{o}$	97239,09 ^A	77737,676 ^в	-	$1,000^{A,B}$	1,068 ^B	-
		89859,16 ^в	78031,196 ^C		_	1,040 ^C	
5d5f	${}^{1}G_{4}^{0}$	85504,75 ^в	81404,308 ^B	-	1,006 ^B	$1,028^{B}$	-
		_	81442,817 ^C		_	1,018 ^C	
5d5f	${}^{3}\mathrm{F}_{2}^{0}$	85581,71 ^в	81502,378 ^B	-	$0,808^{B}$	0,803 ^B	-
	2	D	81713,319 ^C		P	0,799 [°]	
	${}^{3}\mathrm{F}{}^{0}{}_{3}$	88411,41 ^в	85048,440 ^в	-	1,000 ^в	1,079 ^B	-
	3-0		85187,816 [°]		. . P	1,067 ^C	
	${}^{3}\mathrm{F}_{4}^{0}$	88287,365	84720,188 ^b	_	1,121	1,098 ^b	-
5 150	300	05 (12 02 ^B	84///,5/8 ^e		0.0408	1,065 ^e	
5d5f	G ₃	85613,025	81659,485	-	0,9485	0,963	_
	300	99407 01 ^B	81/30,303 85011.000 ^B		1.040 ^B	$0,907^{\circ}$ 1.002 ^B	
	G 4	88407,91	85011,990	-	1,009	1,092 1,128 ^C	-
	${}^{3}\mathbf{G}^{0}$	88/179 09 ^B	85193 695 ^B	_	1 158 ^B	1,120 1,164 ^B	_
	05	00479,09	85175,095 85174 430 ^C		1,156	1,104 1,165 ^C	
5d5f	³ H ^o	85588 85 ^B	81686 898 ^B	_	0.904^{B}	0.884 ^B	_
5451	•• 4	00000,00	81694,122 ^C		0,901	0.891 ^C	
	${}^{3}\mathrm{H}^{0}$	85740.34 ^B	82047.825 ^B	_	1.043 ^B	1.047^{B}	_
	5		82054,000 ^C		,	1,048 ^C	
	${}^{3}\mathrm{H}^{\mathrm{o}}_{\mathrm{6}}$	88418,80 ^B	85149,896 ^B	-	1,167 ^B	1,167 ^{B,C}	-
	0		85142,388 ^C				
5d5f	${}^{3}D_{1}^{0}$	85988,76 ^в	82812,305 ^B	-	0,876 ^B	0,850 ^B	-
			83019,890 ^C			0,826 ^C	
	${}^{3}D_{2}^{o}$	88690,38 ^в	82203,390 ^B	-	1,279 ^B	1,306 ^B	-
	2_		82479,489 [°]			1,297 ^C	
	³ D ^o ₃	88563,20 ^в	82066,418 ^B	-	1,190 ^в	1,011 ^в	-
- 1- 2	350	DORD C TOP	82216,893 ^C			1,060 [°]	
5d5f	$^{\circ}P_{0}^{\circ}$	88790,59"	85748,722 ^B	-			
	300	00720 04B	86146,901°		1.05 cB	1.14cB	
	\mathbf{P}_{1}	88/39,945	85021,056	-	1,056	1,146 ²	-
	3 D 0	05072 40B	85522 71 6B		1 207 ^B	$1,154^{-1}$	
	P 2	838/3,43-	85552,/16 ⁻	_	1,327	1,299 1.209 ^C	-
5.45f	$^{1}\mathbf{F}^{0}$	85704 70 ^B	03022,027 85422 890 ^B	_	1.027 ^B	1,508 1,114 ^B	_
JUJI	ГЗ	83704,70	03432,889 85605 612 ^C		1,027	1,114 1,132 ^C	_
5d5f	¹ D ⁰ -	88/63 80 ^B	85038 500 ^B	_	0.915 ^B	1,132 0.926 ^B	_
3031	D_2	88403,80	85036,309 85226 578 ^C		0,915	0,920 0,920 ^C	
5d5f	${}^{1}\mathbf{P}^{0}$	88922 38 ^B	86573 101 ^B	_	1.066^{B}	1.027^{B}	_
5451	• 1	00722,30	86911 100 ^C		1,000	1.036°	
5d5f	¹ H ^o _c	88682 73 ^B	85791 995 ^B	_	1 031 ^B	1,030 $1,022^{B}$	_
5451		00002,75	85807 196 [°]		1,001	1.021 ^C	
6s6f	${}^{3}F^{o}$	109956.69 ^A	88559.626 ^B	_	0.665^{A}	0.666 ^{B,C}	_
	- 2		88660.106 ^C		-,500	-,-00	
	${}^{3}F_{3}^{0}$	109967 . 89 ^A	88576,052 ^B	_	1,083 ^A	1,084 ^{B,C}	_
		,	88667,790 ^C			-	
	${}^{3}F_{4}^{0}$	109983,59 ^A	88596,722 ^в	-	1,250 ^A	1,251 ^B	-
			88678,305 ^C			1,250 ^C	

Tablo A.13. Devam

Seviy	veler		Е		g-çarpanı		
Konf.	Terim	Bu ça	alışma	Diğer	Bu ça	ılışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
6s6f	${}^{1}F_{3}^{0}$	112550,97 ^A	89140,300 ^B	-	1,000 ^A	$1,000^{B,C}$	_
			89395,799 ^C				
5d6f	${}^{1}G^{0}_{4}$	-	92287,796 ^B	-	_	0,993 ^в	-
			92293,305 ^c			$0,972^{\circ}$	
5d6f	${}^{3}F_{2}^{o}$	_	92324,501 ^в	-	-	0,814 ^B	-
			92403,385 [°]			0,811 ^C	
	${}^{3}F_{3}$	-	95848,930 ^в	-	-	1,093 ^в	-
			95907,066 ^c			1,098 ^c	
	${}^{3}F_{4}^{o}$	_	95665,198 ^в	-	-	1,111 ^B	-
			95688,714 ^C			1,083 ^C	
5d6f	${}^{3}G^{o}_{3}$	_	92415,220 ^в	-	-	$0,989^{B}$	-
			92450,511 ^C			0,941 [°]	
	${}^{3}\text{G}^{0}_{4}$	-	95817,257 ^в	-	-	1,079 ^в	-
	2		95834,654 ^C			1,108 [°]	
	${}^{3}\text{G}^{\circ}_{5}$	-	95907,015 ^в	-	-	1,161 ^в	-
	2		95907,118 ^C			1,160 ^C	
5d6f	${}^{3}\mathrm{H}^{0}_{4}$	-	92394,411 ^в	-	-	0,917 ^в	-
	2		92396,932 [°]			0,938 [°]	
	³ H ^o ₅	-	92645,665 ^в	-	-	1,045 ^{B,C}	-
	2		92639,158 [°]			B C	
	${}^{\circ}\mathrm{H}^{\circ}{}_{6}$	-	95820,310 ^в	-	-	1,167 ^{в,С}	-
	2		95816,494 [°]			B	
5d6f	${}^{5}D_{1}^{0}$	_	92882,576 ^b	-	_	0,876 ^b	-
	2		93077,710 [°]			0,862 ^C	
	$^{3}D_{2}^{0}$	_	96075,184 ^B	-	_	1,275	-
	300		92788,697 ^e			1,323 ^C	
	$^{5}D_{3}^{6}$	-	92616,314 ⁵	-	_	0,9895	-
5166	300		92/0/,503°			1,035°	
5061	$^{\circ}P_{0}^{\circ}$	_	96160,470°	_	_		
	300		96336,618°			1 102B	
	\mathbf{P}_{1}	—	96123,540	-	_	1,125 1,125 ^C	-
	300		96264,124			1,125 1,225 ^B	
	\mathbf{P}_2	-	92030,910	-	—	1,323 1,322	-
5.16f	100		90189,549			1,285 1,007 ^B	
3001	Гз	-	90105,070	-	-	1,097 1,002 ^C	-
5.16f			90201,028			1,095 0.010 ^B	
3001	D_2		93820,090			0,919 0.019 ^C	
5d6f	1 D ₀	_	95695,559	_	_	0,918 1.028 ^B	_
5001	r i		90505,919			1,028 1,013 ^C	
5d6f	1 11 0	_	96772 511 ^B	_	_	1,015 1,001 ^B	_
5001	11 5		96261 502 ^C			1,001	
6n6d	${}^{3}\mathbf{F}^{0}$	_	101681 412 ^B	_	_	0.802^{B}	_
opou	${}^{3}F^{0}$	_	101001,412 $103593,205^{B}$	_	_	1 1 29 ^B	_
	${}^{3}F^{0}$	_	106915 377 ^B	_	_	1,12) 1,251 ^B	_
6n6d		_	$103471 \ 806^{\text{B}}$	_	_	1,251 $1,102^{B}$	_
6p6d	${}^{3}D^{0}$	_	104036.674^{B}	_	_	0.642^{B}	_
opou	${}^{3}D_{2}^{0}$	_	106351.004^{B}	_	_	1.022^{B}	_
	${}^{3}\overline{D}^{0_{3}}$	_	107341 313 ^B	_	_	1.271 ^B	_
6p6d	${}^{3}\overline{P}_{0}^{0}$	_	109277.296^{B}	_		-,	
°F ° °	${}^{3}P^{0}$	_	108932.608^{B}	_	_	1.343 ^B	_
	${}^{3}P^{0}$	_	108757.305^{B}	_	_	1.408 ^B	_
6p6d	${}^{1}F^{o_{3}}$	_	111662.198^{B}	_	_	1.017 ^B	_
6p6d	$^{1}P_{1}^{o}$	_	112173,403 ^B	-	_	1,015 ^B	_

	Geçişler		λ		log(gf)				gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ³ D ₂	$5d6p^{-3}D_{1}^{\circ}$	3854,89 ^A	3028,0222 ^A	3020,541 ^a	-0,962 ^A	-0,239 ^A	-0,34 ^a	$4,90(7)^{A}$	$4,192(8)^{A}$	$3,31(8)^{a}$
	Ĩ	3990,25 ^B	3029,4177 ^B	3020,54 ^b	-0,968 ^B	-0,219 ^в		$4,50(7)^{B}$	$4,388(8)^{B}$	
		3486,21 ^C	$3028,5670^{\circ}$		-0,695 [°]	$-0,238^{\circ}$		$1,11(8)^{C}$	$4,206(8)^{C}$	
5d6s ¹ D ₂	$5d6p^{-3}D_{1}^{\circ}$	4570,66 ^A	3549,7042 ^A	3545,118 ^a	-2,945 ^A	-2,894 ^A	-3,23 ^a	$3,62(5)^{A}$	$6,760(5)^{A}$	$3,09(5)^{a}$
	Ĩ	4665,30 ^B	3555,7367 ^B		-2,695 ^B	-2,363 ^B		$6,17(5)^{B}$	$2,285(6)^{B}$	
		4057,19 ^C	3551,0987 ^C		$-3,082^{\circ}$	-3,457 ^C		$3,35(5)^{C}$	$1,848(5)^{C}$	
$5d^{2} {}^{3}F_{2}$	5d6p ³ D ^o 1	8486,93 ^A	6166,5766 ^A	6199,593 ^a	-0,403 ^A	-0,196 ^A	-0,33 ^a	$3,66(7)^{A}$	$1,117(8)^{A}$	$7,99(7)^{a}$
	•	8296,36 ^B	6390,6908 ^B		-0,388 ^B	-0,279 ^в		$3,96(7)^{B}$	$8,581(7)^{B}$	
		6898,66 ^C	6206,6823 ^C		-0,211 ^C	-0,210 ^C		$8,61(7)^{C}$	$1,068(8)^{C}$	
5d6s ³ D ₁	$5d6p^{-3}D_{2}^{\circ}$	3106,06 ^A	2842,3934 ^A	2847,505 ^a	-1,377 ^A	-0,145 ^A	-0,23 ^a	$2,90(7)^{A}$	$5,915(8)^{A}$	$4,88(8)^{a}$
	1	3787,16 ^B	2846,1000 ^B		-0,788 ^B	-0,119 ^B		$7,57(7)^{B}$	$6,264(8)^{B}$	
		3320,26 ^C	2844,1241 ^C		-0,630 ^C	$-0,136^{\circ}$		$1,42(8)^{C}$	$6,032(8)^{C}$	
5d6s ³ D ₂	$5d6p^{-3}D_{2}^{\circ}$	3781,16 ^A	2900,4203 ^A	2900,303 ^a	-0,140 ^A	-0,030 ^A	-0,11 ^a	$3,38(8)^{A}$	$7,398(8)^{A}$	$6,11(8)^{a}$
	1	3861,03 ^B	2900,5897 ^B	2900,30 ^b	-0,131 ^B	-0,041 ^B		$3,30(8)^{B}$	$7,215(8)^{B}$	
		3378,56 ^C	2901,9765 ^C		$-0,084^{\circ}$	-0,030 ^C		$4,82(8)^{C}$	$7,385(8)^{C}$	
5d6s ³ D ₃	$5d6p^{-3}D_{2}^{\circ}$	3954,56 ^A	3052,8867 ^A	3056,72 ^a	-0,307 ^A	-0,148 ^A	-0,27 ^a	$2,10(8)^{A}$	$5,088(8)^{A}$	$3,88(8)^{a}$
	1	4046,34 ^B	3055,7398 ^B		-0,320 ^B	-0.188^{B}		$1.95(8)^{B}$	$4,628(8)^{B}$	
		3516,29 ^C	3054,8367 ^C		-0.280°	-0.162°		$2,83(8)^{C}$	$4.918(8)^{C}$	
5d6s ¹ D ₂	$5d6p^{-3}D_{2}^{\circ}$	4467,38 ^A	3375,6110 ^A	3380,629 ^a	-0,869 ^A	-2,054 ^A	-1.80^{a}	$4.51(7)^{A}$	$5,173(6)^{A}$	9,35(6) ^a
-	1 -	4489,62 ^B	3379,5577 ^B		-0,437 ^A	-2.070^{B}		$1,21(8)^{B}$	$4,972(6)^{B}$	
		3912,12 ^C	3378,3036 ^C		-0,698 ^B	-1,798 ^C		$8,74(7)^{C}$	$9,297(6)^{C}$	
$5d^2 {}^3F_2$	$5d6p^{-3}D_{2}^{\circ}$	8137,61 ^A	5659,5150 ^A	5713,458 ^a	-0,984 ^C	-1,352 ^A	-1,52 ^a	$1,04(7)^{A}$	$9,268(6)^{A}$	$6,16(6)^{a}$
-	1 2	7756,61 ^B	5843,2156 ^B		-0,896 ^A	-1,279 ^B		$1.41(7)^{B}$	$1.028(7)^{B}$	· · · · ·
		6489,50 ^C	5697,3487 ^C		-0,850 ^B	-1,410 ^C		$2,24(7)^{c}$	7,997(6) ^c	
$5d^{2} {}^{3}F_{3}$	$5d6p^{-3}D_{2}^{\circ}$	8956,00 ^A	6161,0182 ^A	6242,306 ^a	-0,077 ^A	0,005 ^A	-0,12 ^a	$6.96(7)^{A}$	$1,778(8)^{A}$	$1,30(8)^{a}$
5	1 2	8499,81 ^B	6537,5114 ^B		-0,128 ^B	-0,035 ^B		$6.86(7)^{B}$	$1,440(8)^{B}$	· · · · ·
		6999,83 ^C	6239,5588 ^C		0.022°	-0,009 ^C		$1,43(8)^{C}$	$1.677(8)^{C}$	
$5d^{2} D_{2}$	$5d6p^{-3}D_{2}^{\circ}$	25221,21 ^A	9291,3505 ^A	9251,408 ^a	-2,433 ^A	-2,823 ^A	-3,28 ^a	$3.86(4)^{A}$	$1,162(5)^{A}$	$4,09(4)^{a}$
2	1 2	22275,72 ^B	7689,4977 ^B		-2,199 ^B	-2,025 ^B		$8,49(4)^{B}$	$1.064(6)^{B}$	· · · · ·
		14043.15°	9281,1685 ^C		-2,174 ^C	-2,748 ^C		$2,26(5)^{C}$	$1,382(5)^{C}$	
$5d^{2} {}^{3}P_{1}$	$5d6p^{-3}D_{2}^{\circ}$	8961,60 ^A	9584,4081 ^A	9661,679 ^a	-1,096 ^A	-0,886 ^A	-1,29 ^a	$6.65(6)^{A}$	$9,434(6)^{A}$	$3,66(6)^{a}$
•	1 2	15370,12 ^B	9952,1714 ^B		-1,547 ^B	-1,007 ^B		$8.00(5)^{B}$	$6,627(6)^{B}$	· · · · ·
		11012,13 ^C	9667,2487 ^C		-1,290 ^C	-0,963 ^C		$2,81(6)^{C}$	7,777(6) ^C	
5d6s ³ D ₃	$5d6p^{-3}F_{4}^{\circ}$	3936.09 ^A	2910,4753 ^A	2911,394 ^a	0,426 ^A	0,621 ^A	0,51 ^a	$1,15(9)^{A}$	$3,290(9)^{A}$	$2,51(9)^{a}$
2	1 .	3972,86 ^B	2911,8005 ^B	2911,39 ^b	0.469^{B}	$0,602^{B}$		$1,24(9)^{B}$	$3,148(9)^{B}$	$2,178(9)^{b}$
		3509,22 ^C	2910,6505 ^C	*	0,489 ^c	0,607 ^C		$1,67(9)^{C}$	$3,182(9)^{C}$	
$5d^{2} {}^{3}F_{3}$	$5d6p^{-3}F_{4}^{\circ}$	8861,83 ^A	5607,3144 ^A	5664,876 ^a	-1,394 ^A	-1,287 ^A	-1,40 ^a	$3,43(6)^{A}$	$1,096(7)^{A}$	$8,27(6)^{a}$
~	1 .	8181,92 ^B	5912,2432 ^B	*	-1,390 ^B	$-1,306^{B}$	<i>.</i>	$4,05(6)^{B}$	$9,442(6)^{B}$	
		6971.86 ^C	5666,2421 ^C		-1,291 ^c	-1,285 ^C		$7.02(6)^{\rm C}$	$1.079(7)^{C}$	

Tablo A.14. Lu II'nin elektrik dipol (E1) geçişleri için λ dalga boyları (Å), $\log(gf)$ logaritmik ağırlıklı salınıcı şiddetleri ve gA_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹) (Tablo 3.42'nin geniş hali)

Tablo	A.14	1. De	vam
-------	------	-------	-----

(Geçişler		λ		$\log(gf)$		gA_{ki}			
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	 çalışmalar
$5d^{2} F_{4}$	5d6p ³ F ⁹ ₄	10004,81 ^A	6133,2582 ^A	6235,329 ^a	-0,274 ^A	-0,166 ^A	-0,28 ^a	$3,55(7)^{A}$	$1,209(8)^{A}$	$9,01(7)^{a}$
	1	9151,72 ^B	6495,1333 ^B		$-0,266^{B}$	$-0,204^{B}$		$4,32(7)^{B}$	$9,875(7)^{B}$	
		7659,15 ^C	6226,7481 [°]		$-0,158^{\circ}$	$-0,169^{\circ}$		$7,89(7)^{\rm C}$	$1,165(8)^{C}$	
5d6s ³ D ₂	$5d6p^{3}D_{3}^{\circ}$	3559,22 ^A	2756,4237 ^A	2754,168 ^a	-0,375 ^A	0,090 ^A	-0.02^{a}	$2,22(8)^{A}$	$1,081(9)^{A}$	$8,37(8)^{a}$
	1	3666,87 ^B	2755,4419 ^B	2754,17 ^b	$-0,447^{B}$	$0,106^{B}$		$1,77(8)^{B}$	$1,120(9)^{B}$	$6.44(8)^{b}$
		3207,38 ^C	2756,5316 ^C		-0,374 ^C	0,083 ^C		$2,74(8)^{\rm C}$	$1,062(9)^{C}$	
5d6s ³ D ₃	$5d6p^{-3}D_{3}^{\circ}$	3712,45 ^A	2893,7685 ^A	2894,839 ^a	0,251 ^A	0,270 ^A	$0,18^{a}$	$8,62(8)^{A}$	$1,482(9)^{A}$	$1,21(9)^{a}$
	*	3833,61 ^B	2895,0791 ^в	2894,84 ^b	0,311 ^B	$0,268^{B}$		$9,29(8)^{B}$	$1,477(9)^{B}$	$1,162(9)^{b}$
		3331,25 [°]	2894,0901 ^c		0,316 ^C	0,271 ^C		$1,24(9)^{C}$	$1,487(9)^{C}$	
5d6s ¹ D ₂	$5d6p^{-3}D_{3}^{\circ}$	4160,84 ^A	3182,1395 ^A	3183,731 ^a	-2,909 ^A	-1,102 ^A	-1,45 ^a	$4,74(5)^{A}$	$5,214(7)^{A}$	$2,35(7)^{a}$
	*	4229,23 ^B	3184,1311 ^B		-2,470 ^B	$-1,048^{B}$		$1,26(6)^{B}$	$5,893(7)^{B}$	
		3684,43 ^C	3182,8021 ^C		-3,169 ^C	-1,252 ^C		$3,33(5)^{C}$	$3,681(7)^{C}$	
$5d^{2} {}^{3}F_{2}$	$5d6p^{-3}D_{3}^{\circ}$	7010,87 ^B	5135,9776 ^A	5172,804 ^a	-2,859 ^B	-2,285 ^A	$-2,72^{a}$	$1,87(5)^{B}$	$1,311(6)^{A}$	$4,72(5)^{a}$
	1	5886,11 ^C	5282,6380 ^B		-2,916 ^C	$-2,422^{B}$		$2,33(5)^{\rm C}$	$9,045(5)^{B}$	
			5162,5630 ^C			-2,351 ^C			$1,114(6)^{C}$	
$5d^{2} {}^{3}F_{3}$	$5d6p^{-3}D_{3}^{\circ}$	7803,48 ^A	5545,6306 ^A	5602,538 ^a	-1,104 ^A	-1,658 ^A	-1,82 ^a	$8,62(6)^{A}$	$4,768(6)^{A}$	$3,25(6)^{a}$
	1	7612,49 ^B	5843,7116 ^B		-0,994 ^B	$-1,766^{B}$		$1,17(7)^{B}$	$3,349(6)^{B}$	
		6302,91 ^C	5603,8187 ^C		-0,945 [°]	-1,717 ^C		$1,90(7)^{C}$	$4,077(6)^{C}$	
$5d^{2} {}^{3}F_{4}$	$5d6p^{-3}D_{3}^{\circ}$	8676,31 ^A	6059,5364 ^A	6159,888ª	0,117 ^A	0,191 ^A	0.07^{a}	$1.16(8)^{A}$	$2,819(8)^{A}$	$2.05(8)^{a}$
	1 -	8445,13 ^B	6412,5168 ^B		0.091 ^B	0.172^{B}		$1.15(8)^{B}$	$2,409(8)^{B}$	· · · ·
		6859,37 ^C	6151,4460 ^C		0,223 ^c	0,179 ^C		$2.37(8)^{C}$	$2,665(8)^{C}$	
$5d^{2} D_{2}$	$5d6p^{-3}D_{3}^{\circ}$	17812,60 ^A	7959,3568 ^A	7912,34 ^a	-1,932 ^A	-0,694 ^A	-1,21 ^a	$2,45(5)^{A}$	$2,130(7)^{A}$	$6.56(6)^{a}$
-	1 5	17063,34 ^B	6747,2640 ^B	*	-2,005 ^B	-1,438 ^B	<i>,</i>	$2,26(5)^{B}$	$5,345(6)^{B}$	· · · ·
		11493,57 ^C	7941,1054 ^C		-1,684 ^C	-0,818 ^C		$1.04(6)^{C}$	$1,607(7)^{C}$	
$5d^{2} {}^{3}P_{2}$	$5d6p^{-3}D_{3}^{\circ}$	13115,93 ^A	9679,5371 ^A	9841,516 ^a	-1,345 ^A	-1,803 ^A	-1,96 ^a	$1.75(6)^{A}$	$1,122(6)^{A}$	$7.58(5)^{a}$
-	1	12665,47 ^B	9452,7260 ^B		-1,401 ^B	$-1,049^{B}$		$1,65(6)^{B}$	$6,668(6)^{B}$	
		9328,11 ^C	9777,6294 [°]		-1,200 ^C	-1,690 ^C		$4.83(6)^{C}$	$1,423(6)^{C}$	
5d6s ³ D ₁	$5d6p^{-3}P_0^{\circ}$	3265,87 ^A	2617,5649 ^A	2619,259 ^a	-0,220 ^A	-0,212 ^A	-0,31 ^a	3,77(8) ^A	$5,970(8)^{A}$	$4,76(8)^{a}$
•	1 0	3441.82 ^B	2618,1957 ^B		-0,222 ^B	-0,206 ^B		3,38(8) ^B	$6.049(8)^{B}$	· · · ·
		3003,11 ^C	2617,6435 [°]		-0,203 ^C	-0,208 ^C		$4.63(8)^{C}$	$6,027(8)^{C}$	
$5d^{2} {}^{3}P_{1}$	$5d6p^{-3}P_0^{\circ}$	$10434,72^{A}$	7431,9386 ^A	7456,998ª	-1,149 ^A	-0,812 ^A	-1.02^{a}	$4,34(6)^{A}$	$1,860(7)^{A}$	$1,14(7)^{a}$
1	I I I	10922.55 ^B	7629.8020 ^B	,	-1.169 ^B	-0.856 ^B	,-	$3.79(6)^{B}$	$1.597(7)^{B}$, (,,
		8155.64 ^C	7470.3278 ^C		-0.990 ^C	-0.840 ^C		$1.02(7)^{\rm C}$	$1.728(7)^{\rm C}$	
$6s^{2} S_0$	$5d6p^{-3}P^{\circ}$	2260.10^{A}	1999.9876 ^A	1998.034 ^a	-1.368 ^A	-1.212 ^A	-1.51 ^a	$5.59(7)^{A}$	$1.023(8)^{A}$	$5.10(7)^{a}$
0	1 .	2476.12 ^B	1999.6751 ^B	*	-1.150 ^B	-1.265 ^B		$7.69(7)^{B}$	$9.053(7)^{B}$	
		2122,97 ^c	1999,7722 ^c		-1,368 ^C	-1,280 ^C		$6.33(7)^{c}$	8,749(7) ^C	
5d6s ${}^{3}D_{1}$	$5d6p^{-3}P_{1}^{\circ}$	3215,00 ^A	2615,5643 ^A	2613,396 ^a	-0,307 ^A	-0,095 ^A	-0,19 ^a	$3.18(8)^{A}$	7,833(8) ^A	$6,32(8)^{a}$
	- · · I ·	3376,33 ^B	2616,3511 ^B	/	-0,345 ^B	-0,086 ^B	- , -	$2,64(8)^{B}$	$8,000(8)^{B}$	·- 、- ·
		2962,40 [°]	2615,2195 ^c		-0,283 ^C	-0,091 ^C		3,96(8) ^C	7,903(8) ^C	

Tablo	A.14	1. De	vam
-------	------	-------	-----

	Geçişler		λ			$\log(gf)$			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
-	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s 3D2	5d6p ³ P ^o 1	3270,04 ^A	2664,6195 ^A	2657,802 ^a	0,099 ^A	-0,009 ^A	-0,12 ^a	7,83(8) ^A	$9,192(8)^{A}$	$7,20(8)^{a}$
	•	3434,92 ^в	2662,3276 ^B		0,095 ^B	0,003 ^B		$7,04(8)^{B}$	$9,477(8)^{B}$	
		$3008,72^{\circ}$	2664,0544 ^C		0,114 ^C	-0,004 ^C		$9,57(8)^{\rm C}$	$9,301(8)^{C}$	
5d6s ¹ D ₂	$5d6p^{-3}P_{1}^{\circ}$	3771,00 ^A	3060,4143 ^A	3055,662 ^a	-1,650 ^A	-3,326 ^A	-2,55 ^a	$1,05(7)^{A}$	$3,364(5)^{A}$	$2,03(6)^{a}$
	•	3923,65 ^в	3060,4400 ^B		-1,561 ^B	-3,817 ^в		$1,19(7)^{B}$	$1,085(5)^{B}$	
		3424,68 ^C	3060,1485 [°]		-1,721 ^C	-2,766 ^C		$1,08(7)^{C}$	$1,220(6)^{C}$	
$5d^{2} {}^{3}F_{2}$	5d6p ³ P ^o 1	6089,31 ^A	4826,1602 ^A	4843,021 ^a	-2,839 ^A	-1,480 ^A	-1,56 ^a	$2,60(5)^{A}$	9,473(6) ^A	7,77(6) ^a
	-	6209,24 ^в	4950,6829 ^в		-3,712 ^B	-1,623 ^в		$3,36(4)^{B}$	$6,478(6)^{B}$	
		5249,98 ^c	4847,4221 [°]		-2,732 ^C	-1,495 ^c		$4,48(5)^{C}$	9,084(6) ^C	
$5d^{2} {}^{3}P_{0}$	5d6p ³ P ^o ₁	9249,91 ^A	6947,8876 ^A	6943,928 ^a	-1,176 ^A	-0,922 ^A	-1,14 ^a	$5,19(6)^{A}$	$1,655(7)^{A}$	9,98(6) ^a
	-	9567,26 ^в	6828,9320 ^в		-1,181 ^B	-1,021 ^в		$4,80(6)^{B}$	$1,364(7)^{B}$	
		7420,61 ^C	6943,9819 ^c		-1,019 ^C	-0,945 ^c		$1,16(7)^{C}$	$1,570(7)^{C}$	
$5d^{2} D_{2}^{1}$	5d6p ³ P ^o 1	12347,98 ^A	7239,1660 ^A	7165,959 ^a	-1,299 ^A	-0,786 ^A	-1,05 ^a	$2,20(6)^{A}$	$2,082(7)^{A}$	$1,14(7)^{a}$
	-	12983,71 ^в	6214,9941 ^в		-1,321 ^B	-1,186 ^в		$1,89(6)^{B}$	$1,124(7)^{B}$	
		9294,50 ^C	7219,1725 ^c		-1,182 ^C	-0,842 ^C		$5,07(6)^{C}$	1,839(7) ^C	
$5d^{2} {}^{3}P_{1}$	5d6p ³ P ^o 1	9932,63 ^A	7415,8339 ^A	7409,676 ^a	-1,245 ^A	-0,859 ^A	-1,09 ^a	$3,84(6)^{A}$	$1,677(7)^{A}$	9,78(6) ^a
	-	10289,23 ^в	7614,1585 ^в		-1,272 ^B	-0,907 ^в		$3,36(6)^{B}$	$1,425(7)^{B}$	
		7862,23 ^C	7450,6195 ^c		-1,090 ^C	-0,891 ^C		$8,76(6)^{C}$	1,544(7) ^C	
$5d^{2} {}^{3}P_{2}$	5d6p ³ P ^o 1	9892,36 ^A	8634,8411 ^A	8712,766 ^a	-1,420 ^A	-1,361 ^A	-1,46 ^a	$2,59(6)^{A}$	3,899(6) ^A	3,03(6) ^a
		10270,18 ^B	8440,0604 ^B		-1,442 ^B	-0,915 ^в		$2,28(6)^{B}$	$1,137(7)^{B}$	
		7825,45 ^C	8705,7009 ^C		-1,210 ^C	-1,320 ^C		$6,71(6)^{C}$	$4,209(6)^{C}$	
$5d6s^{-3}D_1$	5d6p ³ P ^o ₂	3106,06 ^A	2533,1581 ^A	2536,96 ^a	-1,377 ^A	-1,166 ^A	-1,26 ^a	$2,90(7)^{A}$	7,093(7) ^A	5,73(7) ^a
		3249,35 ^в	2534,8064 ^в		-1,461 ^B	-1,157 ^в		$2,18(7)^{B}$	$7,231(7)^{B}$	
		2869,52 ^C	2533,4643 ^c		-1,372 ^C	-1,158 ^C		$3,44(7)^{C}$	7,214(7) ^C	
5d6s ³ D ₂	5d6p ³ P ^o ₂	3157,40 ^A	2579,1437 ^A	2578,785 ^a	-0,253 ^A	-0,133 ^A	-0,24 ^a	3,73(8) ^A	7,381(8) ^A	5,79(8) ^a
		3303,58 ^в	2577,9380 ^в		-0,311 ^B	-0,127 ^в		$2,98(8)^{B}$	7,495(8) ^B	
		2912,96 ^C	2579,2669 ^c		$-0,248^{\circ}$	-0,131 ^C		$4,43(8)^{C}$	$7,420(8)^{C}$	
5d6s ³ D ₃	5d6p ³ P ^o ₂	3954,56 ^A	2699,0058 ^A	2701,713 ^a	-0,307 ^A	$0,228^{A}$	0,13 ^a	$2,10(8)^{A}$	$1,546(9)^{A}$	$1,23(9)^{a}$
		3438,31 ^B	2699,7663 ^в	2701,71 ^b	0,359 ^B	0,232 ^B		$1,29(9)^{B}$	$1,561(9)^{B}$	
		3014,78 ^C	2699,3170 ^C		0,377 ^C	0,233 ^C		$1,75(9)^{C}$	1,567(9) ^C	
5d6s ¹ D ₂	5d6p ³ P ^o ₂	3621,99 ^A	2948,1947 ^A	2951,683 ^a	-0,766 ^A	-0,257 ^A	-0,32 ^a	8,71(7) ^A	$4,241(8)^{A}$	3,70(8) ^a
		3753,20 ^B	2949,4510 ^в		-0,692 ^в	-0,298 ^в		$9,62(7)^{B}$	3,857(8) ^B	
		3301,15 ^C	2948,8009 ^C		-0,716 ^C	-0,253 ^C		$1,18(8)^{C}$	$4,287(8)^{C}$	
$5d^2 {}^3F_2$	5d6p ³ P ^o ₂	5710,00 ^A	4552,8728 ^A	4586,931ª	-2,296 ^A	-1,565 ^A	-1,72 ^a	$1,03(6)^{A}$	$8,752(6)^{A}$	$6,15(6)^{a}$
		5792,91 ^в	4666,6149 ^в		-2,397 ^в	$-2,150^{B}$		$7,97(5)^{B}$	$2,170(6)^{B}$	
		4965,18 ^C	4573,8420 [°]		-2,218 ^C	-1,575 ^C		$1,64(6)^{C}$	8,480(6) ^C	
$5d^{2} {}^{3}F_{3}$	5d6p ³ P ^o ₂	8956,00 ^A	4871,8985 ^A	4921,686 ^a	-0,077 ^A	-1,077 ^A	-1,20 ^a	6,96(7) ^A	$2,352(7)^{A}$	$1,75(7)^{a}$
		6197,63 ^B	5099,1050 ^B		-2,205 ^B	$-1,096^{B}$		$1,08(6)^{B}$	$2,057(7)^{B}$	
		5258,51 ^C	4916,8540 [°]		-1,842 ^C	-1,088 ^C		3,47(6) ^C	$2,254(7)^{C}$	

Tablo	A.14	1. De	vam
-------	------	-------	-----

(Geçişler		λ			log(gf)			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	ılışma	Diğer	Bu ç	alışma	Diğer
	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d^{2}D_{2}$	5d6p ³ P ^o ₂	10882,13 ^A	6641,2114 ^A	6619,162 ^a	-0,870 ^A	-0,674 ^A	-0,99 ^a	7,60(6) ^A	$3,202(7)^{A}$	$1,57(7)^{a}$
	1	11287,44 ^B	5773,7737 ^B		-0,886 ^B	$-2,792^{B}$		$6,80(6)^{B}$	$3,228(5)^{B}$	
		8437,68 ^C	6628,6891 ^C		-0,693 [°]	$-0,763^{\circ}$		$1,90(7)^{\rm C}$	$2,619(7)^{\rm C}$	
$5d^{2} {}^{3}P_{1}$	$5d6p^{-3}P_{2}^{0}$	8961,60 ^A	6789,6000 ^A	6826,567 ^a	-1,096 ^A	$-0,977^{A}$	-1,15 ^a	$6,65(6)^{A}$	$1,525(7)^{A}$	$1,02(7)^{a}$
	*	9194,26 ^в	6962,3324 ^в		-1,067 ^B	-1,017 ^в		$6,75(6)^{B}$	$1,323(7)^{B}$	
		7240,29 ^C	6823,3124 ^c		-0,929 ^c	-0,997 ^C		$1,50(7)^{C}$	$1,441(7)^{C}$	
$5d^{2} {}^{3}P_{2}$	5d6p ³ P ^o ₂	8928,81 ^A	7797,4308 ^A	7917,535ª	-0,822 ^A	-0,432 ^A	-0,62 ^a	$1,26(7)^{A}$	$4,053(7)^{A}$	$2,58(7)^{a}$
		9179,05 ^в	7646,5275 ^в		-0,813 ^B	-0,258 ^B		$1,22(7)^{B}$	$6,295(7)^{B}$	
		7209,09 ^C	7861,2263 ^C		-0,674 ^C	-0,439 ^c		$2,71(7)^{C}$	3,925(7) ^C	
5d6s ³ D ₂	5d6p ¹ F ^o ₃	2886,99 ^A	2463,3177 ^A	2459,643 ^a	-2,442 ^A	-1,770 ^A	-2,15 ^a	$2,89(6)^{A}$	$1,867(7)^{A}$	$7,86(6)^{a}$
		3045,86 ^в	2458,6673 ^в		-2,428 ^B	-1,446 ^B		$2,68(6)^{B}$	$3,948(7)^{B}$	
		2569,80 ^C	2461,8586 ^C		-1,946 ^C	-1,872 ^C		$1,14(7)^{C}$	1,476(7) ^C	
5d6s ³ D ₃	5d6p ¹ F ^o ₃	2987,00 ^A	2572,4281 ^A	2571,23 ^a	-1,136 ^A	-0,303 ^A	-0,41 ^a	$5,46(7)^{A}$	$5,020(8)^{A}$	$3,94(8)^{a}$
		3160,03 ^B	2569,2416 ^в		-1,045 ^B	-0,330 ^в		$6,01(7)^{B}$	$4,727(8)^{B}$	
		2648,71 ^C	2570,9969 ^c		-1,217 ^C	-0,324 ^C		5,76(7) ^C	$4,786(8)^{C}$	
5d6s ¹ D ₂	5d6p ¹ F ^o ₃	3270,58 ^A	2797,8162 ^A	2796,633ª	-0,033 ^A	0,295 ^A	$0,09^{a}$	$5,77(8)^{A}$	$1,680(9)^{A}$	$1,05(9)^{a}$
		3424,05 ^B	2794,3605 ^в		$0,056^{B}$	0,361 ^в		$6,48(8)^{B}$	$1,962(9)^{B}$	
		2867,26 ^C	2796,3346 ^c		$0,102^{\circ}$	0,234 ^C		$1,03(9)^{C}$	1,461(9) ^C	
$5d^2 {}^3F_2$	5d6p ¹ F ^o ₃	4882,92 ^A	4203,9322 ^A	4223,098 ^a	-2,039 ^A	-1,361 ^A	-1,79 ^a	$2,55(6)^{A}$	$1,645(7)^{A}$	$6,11(6)^{a}$
		5044,48 ^B	4289,9019 ^в		-2,138 ^B	-1,912 ^в		$1,91(6)^{B}$	$4,434(6)^{B}$	
		4044,61 ^C	4217,1908 ^C		-1,917 ^C	-1,451 ^C		$4,93(6)^{C}$	$1,329(7)^{C}$	
$5d^2 {}^3F_3$	5d6p ¹ F ^o ₃	5166,19 ^A	4474,4775 ^A	4505,222ª	-2,521 ^A	-1,538 ^A	-1,66 ^a	$7,52(5)^{A}$	9,643(6) ^A	$7,18(6)^{a}$
		5348,63 ^в	4652,6706 ^в		-2,798 ^B	-1,564 ^в		$3,71(5)^{B}$	$8,409(6)^{B}$	
		4237,15 ^C	4507,0995 [°]		-2,587 ^C	-1,554 ^C		9,61(5) ^C	9,172(6) ^C	
$5d^{2} {}^{3}F_{4}$	5d6p ¹ F ^o ₃	5534,82 ^A	4803,1486 ^A	4858,742 ^a	-1,869 ^A	-1,296 ^A	-1,41 ^a	$2,94(6)^{A}$	$1,462(7)^{A}$	$1,09(7)^{a}$
		5746,73 ^в	5006,2274 ^в		-1,745 ^B	-2,263 ^B		$3,63(6)^{B}$	$1,451(6)^{B}$	
		4481,56 ^C	4854,7026 ^c		-2,177 ^C	-1,445 ^C		$2,21(6)^{C}$	$1,016(7)^{C}$	
$5d^{2} D_{2}$	5d6p ¹ F ^o ₃	8226,55 ^A	5923,9626 ^A	5887,251ª	-1,089 ^A	-0,821 ^A	-1,48 ^a	8,03(6) ^A	$2,872(7)^{A}$	6,37(6) ^a
		8756,16 ^в	5207,9420 ^в		-1,263 ^B	-1,614 ^в		$4,75(6)^{B}$	5,974(6) ^B	
		6084,39 ^C	5904,9483 ^c		-0,952 ^C	-0,966 ^C		$2,01(7)^{C}$	$2,067(7)^{C}$	
$5d^{2}G_{4}$	5d6p ¹ F ^o ₃	9513,04 ^A	6123,2263 ^A	-	0,205 ^A	0,325 ^A	-	$1,18(8)^{A}$	3,763(8) ^A	-
		10178,49 ^B	6023,9601 ^в		0,163 ^B	0,316 ^B		9,38(7) ^B	$3,803(8)^{B}$	
		6765,74 ^C	6169,2825 ^C		0,383 ^C	0,299 ^C		$3,52(8)^{C}$	$3,486(8)^{C}$	
$5d^{2} {}^{3}P_{2}$	5d6p ¹ F ^o ₃	7059,11 ^A	6826,9470 ^A	6892,563ª	-1,492 ^A	-0,487 ^A	-1,07 ^a	$4,31(6)^{A}$	$4,666(7)^{A}$	$1,20(7)^{a}$
		7431,90 ^B	6684,6800 ^в		-1,741 ^в	-1,307 ^в		$2,19(6)^{B}$	7,366(6) ^B	
		5418,50 ^C	6863,5725 ^C		-1,287 ^C	-0,657 ^C		$1,17(7)^{C}$	3,116(7) ^C	
$6s^{2} S_{0}^{1}$	5d6p ¹ P ^o ₁	2755,84 ^A	1691,2339 ^A	1691,406 ^a	-0,099 ^A	-0,003 ^A	-0,32 ^a	6,98(8) ^A	$2,314(9)^{A}$	$1,11(9)^{a}$
			1693,0636 ^B			-0,044 ^B			$2,104(9)^{B}$	
			1692,0655 ^C			-0,070 ^C			1,983(9) ^C	

Tablo A.14. Dev	Tał	A.14. D) evam
-----------------	-----	---------	---------------

	Geçişler		λ			$\log(gf)$			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
•	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
5d6s ³ D ₂	$5d6p^{-1}P^{\circ}_{1}$	4420,48 ^A	2143,3045 ^A	2141,245 ^a	-0,652 ^A	-2,446 ^A	-2,27 ^a	$7,61(7)^{A}$	$5,199(6)^{A}$	$7.83(6)^{a}$
	1	4515,70 ^B	2145,1163 ^B		$-0,680^{B}$	-3,461 ^B		$6,83(7)^{B}$	$5,015(5)^{B}$	
		4044,57 ^C	2144,5218 ^C		$-0,847^{\rm C}$	$-2,264^{\circ}$		$5,80(7)^{\rm C}$	$7,896(6)^{C}$	
5d6s ¹ D ₂	$5d6p^{-1}P_{1}^{\circ}$	5388,04 ^A	2392,1481 ^A	2392,198 ^a	-1,783 ^A	$0,178^{A}$	-0.02^{a}	$3,78(6)^{A}$	$1,757(9)^{A}$	$1,11(9)^{a}$
	1	5399,92 ^B	2396,2747 ^B		$-1,749^{B}$	$0,326^{B}$		$4,08(6)^{B}$	$2,458(9)^{B}$	
		4833,79 ^C	2393,9582 ^C		-1,454 ^C	0,090 ^C		$1,00(7)^{C}$	$1,433(9)^{C}$	
$5d^{2} {}^{3}F_{2}$	$5d6p^{-1}P^{\circ}_{1}$	_	3350,2496 ^A	3364,258 ^a	_	-2,160 ^A	-2,84 ^a	_	$4,113(6)^{A}$	$8,60(5)^{a}$
	I.		3418,1448 ^B			$-2,177^{B}$			$3,795(6)^{B}$,
			3364,3761 ^C			-2,241 ^C			$3,381(6)^{C}$	
$5d^{2} {}^{3}P_{0}$	$5d6p^{-1}P^{\circ}_{1}$	-	4251,5235 ^A	4259,505 ^a	_	-3,180 ^A	-2,99 ^a	_	$2,438(5)^{A}$	$3,77(5)^{a}$
	1 -		4219,4128 ^B			$-2,616^{B}$			$9.061(5)^{B}$	· · · ·
			4256,2917 ^C			-3,281 ^C			$1,928(5)^{C}$	
$5d^{2} D_2$	$5d6p^{-1}P^{\circ}_{1}$	-	4358,8441 ^A	4342,032 ^a	_	-0,261 ^A	-0.60^{a}	_	$1,923(8)^{A}$	$8,94(7)^{a}$
_	1 -		3976,6931 ^B	<i>,</i>		-0,515 ^B	,		$1,288(8)^{B}$	· · · ·
			4358,1199 ^C			-0,354 ^c			$1,553(8)^{C}$	
$5d^{2} {}^{3}P_{1}$	$5d6p^{-1}P^{\circ}_{1}$	-	4422,2787 ^A	4430,329 ^a	_	-2,589 ^A	-2.78^{a}	_	$8,789(5)^{A}$	$5.58(5)^{a}$
-	1 -		4506.5691 ^B	<i>,</i>		-2.651 ^B			$7.336(5)^{B}$	
			4441,4097 ^C			-2.639 ^c			$7.766(5)^{\rm C}$	
$5d^{2} {}^{3}P_{2}$	$5d6p^{-1}P^{\circ}_{1}$	-	4828,7938 ^A	4865,422 ^a	_	-0,234 ^A	-0,59 ^a	_	$1,667(8)^{A}$	$7,22(7)^{a}$
-	1 -		4783,6228 ^B	<i>,</i>		$-1,187^{B}$,		$1.893(7)^{B}$	· · · ·
			4858,9928 ^c			-0.372°			$1,200(8)^{C}$	
$6s6p^{-3}P_0^{\circ}$	$6s7s^{-3}S_{1}$	1901,51 ^A	2740,5743 ^A	2738,173 ^a	-0,913 ^A	-0,574 ^A	-0,66 ^a	$2,25(8)^{A}$	$2,367(8)^{A}$	$1.93(8)^{a}$
1 0		2063,28 ^C	2739,2721 ^B	<i>,</i>	-0,539 ^C	-0,697 ^в	,	$4.53(8)^{C}$	$1,784(8)^{B}$	· · · ·
		, ,	2740,9581 [°]		,	-0,658 ^C			$1.951(8)^{C}$	
$6s6p^{-3}P^{\circ}_{1}$	$6s7s^{-3}S_{1}$	1931,82 ^A	2833,1059 ^A	2834,345 ^a	-0,444 ^A	-0,136 ^A	-0,23 ^a	$6,43(8)^{A}$	$6.079(8)^{A}$	$4,93(8)^{a}$
1 .		2091.76°	2830,4450 ^B	<i>,</i>	-0,046 ^C	-0,252 ^B	,	$1.37(9)^{C}$	$4,665(8)^{B}$	· · · ·
		, ,	2832,8087 ^C		,	-0,223 ^c			4,969(8) ^C	
$6s6p^{-3}P_{2}^{\circ}$	$6s7s^{-3}S_{1}$	2032,29 ^A	3193,0419 ^A	3191,819 ^a	-0,173 ^A	0,055 ^A	-0,04 ^a	$1.08(9)^{A}$	$7,417(8)^{A}$	$5,99(8)^{a}$
1 -		2178,02 ^C	3189,9909 ^B		0.255 ^c	-0,056 ^B		$2,42(9)^{C}$	5,758(8) ^B	· · · ·
			3192,7735 ^C			-0,043 ^C			$5,921(8)^{C}$	
6s6p ¹ P ^o 1	$6s7s^{-3}S_{1}$	5890,64 ^A	3914,8490 ^A	3912,662 ^a	-2,631 ^A	-1,527 ^A	-1,50 ^a	$4,50(5)^{A}$	$1,292(7)^{A}$	$1.39(7)^{a}$
1 .		9012,78 ^c	3913,8823 ^B		-3,588 ^C	-1,799 ^B			$6.912(6)^{B}$	· · · ·
			3916,1996 ^C			-1,579 ^C		$2,12(4)^{C}$	$1,145(7)^{C}$	
$5d6p^{-3}F_{2}^{\circ}$	$6s7s^{-3}S_{1}$	2149,10 ^A	4444,4285 ^A	4433,475 ^a	-1,935 ^A	-3,248 ^A	-2,66 ^a	$1.67(7)^{A}$	$1,909(5)^{A}$	$7,33(5)^{a}$
1 - 2		2423,10 ^C	4442,2778 ^B		-2,250 ^C	-4,584 ^B		6,38(6) ^C	$0.879(4)^{B}$	· · · ·
			4445,3282 ^c			-2,931 ^c			3,957(5) ^C	
5d6p ¹ D ^o ₂	$687s^{-3}S_{1}$	2324,17 ^A	5441,5625 ^A	5458,268ª	-1,913 ^A	-2,547 ^A	-1,74 ^a	$1,50(7)^{A}$	$6,394(5)^{A}$	$4,09(6)^{a}$
1 2	•	2613,47 ^C	5451,0820 ^C	,	-2,078 ^C	-2,041 ^c	<i>.</i>	$8,15(6)^{C}$	$2,045(6)^{C}$	

Tablo	A.14	1. De	vam
-------	------	-------	-----

G	leçişler		λ			$\log(gf)$			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu ça	lışma	Diğer	Bu ç	alışma	Diğer
	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$5d6p^{-3}D_{1}^{\circ}$	$6s7s^{-3}S_1$	2439,33 ^A	5471,0792 ^A	5480,341 ^a	-2,521 ^A	-4,116 ^A	-2,97 ^a	3,38(6) ^A	$1,706(4)^{A}$	$2,41(5)^{a}$
-		2734,19 ^C	5451,4806 ^в		-4,377 ^C	-3,269 ^в		$3,74(4)^{C}$	$1,208(5)^{B}$	
			5468,7770 [°]			-3,617 ^C			$5,392(4)^{C}$	
$5d6p^{-3}D_{2}^{o}$	$6s7s^{-3}S_{1}$	2469,80 ^A	5943,5279 ^A	5926,068 ^a	-2,171 ^A	-3,126 ^A	-2,38 ^a	$7,36(6)^{A}$	$1,413(5)^{A}$	$7,97(5)^{a}$
-		2804,27 ^C	5925,0353 ^в		-1,742 ^C	-4,306 ^в		$1,53(7)^{C}$	$0,938(4)^{B}$	
			5936,3855 ^C			$-2,608^{\circ}$			$4,670(5)^{\rm C}$	
$5d6p^{-3}P_0^{\circ}$	$6s7s^{-3}S_{1}$	2714,47 ^A	7244,6985 ^A	7238,757 ^a	-1,760 ^A	-2,920 ^A	-1,78 ^a	$1,57(7)^{A}$	$1,527(5)^{A}$	$2,12(6)^{a}$
-		3078,90 ^C	7236,3638 ^в		-2,029 [°]	-3,245 ^в		$6,58(6)^{\rm C}$	$7,238(4)^{B}$	
			7244,7080 [°]			-2,063 ^C			$1,099(6)^{C}$	
5d6p ³ P ^o 1	$6s7s^{-3}S_{1}$	2750,65 ^A	7260,0677 ^A	7283,914 ^a	-1,279 ^A	-2,553 ^A	-1,34 ^a	$4,63(7)^{A}$	$3,540(5)^{A}$	5,73(6) ^a
-		3122,90 ^C	7250,4920 ^в		-1,433 ^C	-3,371 ^в		$2,52(7)^{C}$	$5,405(4)^{B}$	
			7263,3407 ^C			-1,638 ^C			$2,913(6)^{C}$	
5d6p ³ P ^o ₂	$6s7s^{-3}S_{1}$	2835,74 ^A	7980,7006 ^A	7951,592 ^a	-0,901 ^A	-2,174 ^A	-1,17 ^a	$1,04(8)^{A}$	$7,013(5)^{A}$	$7,04(6)^{a}$
-		3233,22 ^C	7960,1405 ^в		-0,926 ^C	-3,712 ^в		7,55(7) ^C	$2,045(4)^{B}$	
			7978,4049 ^c			-1,420 ^C			$3,982(6)^{C}$	
6s6p ³ P ^o 1	$6s7s^{-1}S_0$	1638,78 ^A	2468,3841 ^A	2469,265 ^a	-1,473 ^A	-1,490 ^A	-1,48 ^a	8,36(7) ^A	3,543(7) ^A	$3,60(7)^{a}$
-		1841,65 ^C	2467,9999 ^в		-1,578 ^C	-1,293 ^в		$5,19(7)^{C}$	$5,579(7)^{B}$	
			2468,1927 ^C			-1,390 ^c			$4,461(7)^{C}$	
6s6p ¹ P ^o 1	$6s7s^{-1}S_0$	3811,70 ^A	3251,0648 ^A	3249,477 ^a	-0,351 ^A	-0,440 ^A	-0,25 ^a	$2,04(8)^{A}$	$2,290(8)^{A}$	$3,58(8)^{a}$
		2125,65 ^C	3253,2402 ^в		-0,265 ^C	-0,331 ^в		$8,01(8)^{C}$	$2,939(8)^{B}$	
			3252,0557 ^C			-0,372 ^C			$2,675(8)^{C}$	
5d6p ³ D ^o 1	$6s7s^{-1}S_0$	1990,50 ^A	4256,5303 ^A	4262,016 ^a	-0,664 ^A	-1,490 ^A	-1,36 ^a	$3,64(8)^{A}$	$1,192(7)^{A}$	$1,62(7)^{a}$
-		2321,05 ^C	4249,5061 ^в		-1,043 ^c	-1,131 ^в		$1,12(8)^{C}$	$2,731(7)^{B}$	
			4255,2385 ^c			-1,222 ^C			$2,211(7)^{C}$	
$5d6p^{-3}P_{1}^{\circ}$	$6s7s^{-1}S_0$	2192,27 ^A	5266,1070 ^A	5278,474 ^a	-1,560 ^A	-2,218 ^A	-2,00 ^a	$3,82(7)^{A}$	$1,454(6)^{A}$	$2,43(6)^{a}$
-		2595,28 ^c	5268,5170 ^B		-1,825 [°]	-1,671 ^в		$1,48(7)^{C}$	$5,123(6)^{B}$	
			5267,9849 ^c			-1,747 ^C			$4,305(6)^{C}$	

^aDream Database [64], ^bNIST Periodictable [62]

Carl			Б				
Seviy	reler	n	E .	D ''		g-çarpan	l D''
Konf.	Terim	Bu	çalışma	Diğer	Bu çal	ışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
Çift pari	te için:						
$4f^{14}11s$	${}^{2}S_{1/2}$	_	$150261,20^{\circ}$	-	_	$2,002^{C,D}$	-
			148261,20 ^D				
$4f^{14}12s$	${}^{2}S_{1/2}$	_	154127.30 ^C	_	_	$2.002^{C,D}$	_
	~ 1/2		152127.30 ^D			_,	
$4f^{14}13s$	$^{2}S_{1/2}$	_	$156844 \ 10^{\circ}$	_	_	$2.002^{C,D}$	_
41 155	D 1/2		15/18/1/ 10 ^D			2,002	
$4f^{14}14c$	² S		158817 70 ^C			2 002 ^{C,D}	
41 145	3 1/2		156817,70 ^D			2,002	
1fl415a	2 c		150617,70			2 002C,D	
41 158	S _{1/2}	-	150295,80 [°]	-	_	2,002	-
1041	20		158295,80 ⁻			a 000 D	
4f ⁻¹ 16s	² S _{1/2}	-	159438,10 ⁵	-	—	2,002	_
4f ¹⁴ 1/s	${}^{2}S_{1/2}$	-	160333,60 ^b	-	-	2,002	-
$4f^{14}18s$	${}^{2}S_{1/2}$	-	161062,90 ^D	-	-	$2,002^{D}$	-
4f ¹⁴ 19s	${}^{2}S_{1/2}$	-	161646,70 ^D	_	_	2,002 ^D	-
$4f^{14}20s$	${}^{2}S_{1/2}$	-	162117.10^{D}	_	_	2.002 ^D	_
$4f^{14}8d$	${}^{2}D_{2}$	_	136774 90 ^{B,C}	_	_	0.800 ^{B,C,D}	_
	2 3/2		134774 10 ^D			0,000	
	² D		126052 70 ^{B,C}			1 200 ^{B,C,D}	
	$D_{5/2}$	_	130932,70 ⁻¹	_	_	1,200	_
10140.1	2-		134951,90 ⁵			o o o o P C D	
4f ¹⁴ 9d	$^{2}D_{3/2}$	-	145432,70 ^{B,C}	-	-	0,800 ^{B,C,D}	-
			143432,70 ^D				
	$^{2}D_{5/2}$	-	145540,50 ^{B,C}	-	-	$1,200^{B,C,D}$	-
	5/2		$143540^{\circ}50^{\circ}$				
$4f^{14}10d$	$^{2}D_{a}$	_	150895 50 ^{B,C}	_	_	0.800 ^{B,C,D}	_
41 100	D 3/2		140005 50 ^D			0,000	
	20		148895,50			1 200BCD	
	$^{2}D_{5/2}$	-	150965,90 ^{b,e}	-	-	1,200 ^{b,c,b}	-
			148965,90 ^D				
4f ¹⁴ 11d	${}^{2}D_{3/2}$	-	154568,10 ^C	-	-	0,800 ^{C,D}	-
			152568,10 ^D				
	$^{2}D_{5/2}$	_	154616.60 ^C	_	_	1.200 ^{C,D}	_
	2 3/2		152616.60 ^D			1,200	
4614124	² D		152010,00			0 800 ^{C,D}	
41 120	$D_{3/2}$	-	15/101,50°	-	-	0,800	-
	2-		155161,50				
	$^{2}D_{5/2}$	-	157196,40 [°]	-	-	1,200 ^{C,D}	-
			155196,40 ^D				
4f ¹⁴ 13d	$^{2}D_{3/2}$	_	159055,40 [°]	-	_	0,800 ^{C,D}	-
			157055.40^{D}				
	$^{2}D_{cr}$	_	159081 40 ^C	_	_	1 200 ^{C,D}	_
	D 5/2		157081.40 ^D			1,200	
404141	20		15/081,40			0.000CD	
4f. 14d	$^{2}D_{3/2}$	-	1604//,90°	—	_	0,800	-
			158477,90 ^D				
	${}^{2}D_{5/2}$	-	160497,70 ^C	-	-	$1,200^{C,D}$	-
			158497,70 ^D				
$4f^{14}15d$	${}^{2}D_{3/2}$	_	161581.20 ^C	_	_	0.800 ^{C,D}	_
	- 3/2		159581 20 ^D			-,	
	² D		161596 70 ^C			1 200 ^{C,D}	
	$D_{5/2}$	-	15050C 70 ^D	-	—	1,200	-
10/11 5 1	25		159596,/0 ⁻			0.000D	
4t 16d	² D _{3/2}	-	160443,10	-	-	0,800	-
	$^{2}D_{5/2}$	-	160455,40 ^D	-	-	1,200 ^D	-
4f ¹⁴ 17d	$^{2}D_{3/2}$	-	161151,60 ^D	-	-	$0,800^{D}$	-
	$^{2}D_{5/2}$	_	161161.60^{D}	_	_	1.200 ^D	_
$4f^{14}18d$	${}^{2}D_{2}$		161723 10 ^D			0.800 ^D	
41 10u	² D ^{3/2}		101723,10 101721 20 ^D			1,200 ^D	
104101	D5/2	-	101/31,30	-	-	1,200	_
4f ⁻¹ 9d	$^{-}D_{3/2}$	-	162182,50 ⁻	—	_	0,800	-
	$^{2}D_{5/2}$	-	162189,30 ^D	-	-	1,200	-
$4f^{14}20d$	$^{2}D_{3/2}$	-	162574,50 ^D	-	-	$0,800^{D}$	-
	$^{2}D_{5/2}$	-	162580.20^{D}	-	-	$1,200^{D}$	-
$4f^{14}6\sigma$	$^{2}G_{7/2}$	_	140121.80 ^{B,C}	_	_	0.889 ^{B,C,D}	_
	01/2		138121.00			5,007	
	^{2}C		140122 00 ^{B,C}			1 1 1 1 B,C,D	
	G 9/2	_	140122,80	_	-	1,111	-
. al4-	2~		138122,80				
4f⁺⁴7g	$^{2}G_{7/2}$	-	147454,40 ^{в,С}	-	-	0,889 ^{в.с.D}	-
			145454,40 ^D				
	$^{2}G_{9/2}$	_	147455.00 ^{B,C}	-	-	1,111 ^{B,C,D}	-
			145455.00^{D}			,	
$4f^{14}8\sigma$	$^{2}G_{\pi\pi}$	147175 03 ^D	152214 40 ^{B,C}	_	0 880D	0 880 ^{B,C,D}	_
+1 og	07/2	14/1/5,05	150214,40 ^D	-	0,009	0,009	_
	^{2}C	147176 + D	150214,40		1 1 1 1 D	1 1 1 1 B.C.D	
	G _{9/2}	14/1/5,44	152214,80	-	1,111	1,111,0,0,0	-
			150214,80°				

Tablo A.15. Lu III'ün E seviye enerjileri (cm⁻¹) ve Landé g-çarpanları (Tablo 3.44'ün geniş hali)

Tablo A.15. Devam

Sevi	veler		Е			g-carnan	
Konf.	Terim	Bu ç	alışma	Diğer	Bu çal	işma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 9g	${}^{2}G_{7/2}$	-	155476,60 ^{B,C}	-	_	0,889 ^{B,C,D}	-
	${}^{2}G_{9/2}$	_	155476,80 ^{B,C}	_	_	1,111 ^{B,C,D}	_
14	2		153476,80 ^D			, DCD	
4f ¹⁴ 10g	${}^{2}G_{7/2}$	_	157813,20 ^{B,C}	-	-	0,889 ^{B,C,D}	-
	2 G _{9/2}	_	155813,20 157813.40 ^{B,C}	_	_	1.111 ^{B,C,D}	_
	- ,,2		155813,40 ^D			-,	
4f ¹⁴ 11g	${}^{2}G_{7/2}$	-	157540,50 ^D	-	-	0,889 ^D	-
4f ¹⁴ 12g	$^{2}G_{7/2}$	_	157540,70 158848.90 ^D	_	_	0.889 ^D	_
	${}^{2}G_{9/2}$	_	158849,00 ^D	_	_	1,111 ^D	_
4f ¹⁴ 13g	${}^{2}G_{7/2}$	-	159871,00 ^D	-	_	0,889 ^D	-
$4f^{14}14g$	$^{2}G_{7/2}$	_	160673.60 ^D	_	_	0.889 ^D	_
	${}^{2}G_{9/2}$	_	160673,60 ^D	-	_	1,111 ^D	-
4f ¹⁴ 15g	${}^{2}G_{7/2}$	-	161333,40 ^D	-	-	0,889 ^D	-
Tek nari	G _{9/2}	_	101333,40	_	_	1,111	
4f ¹⁴ 9p	${}^{2}P^{0}_{1/2}$	_	138903,50 ^{B,C}	-	-	0,666 ^{B,C,D}	-
	200		136903,50 ^D			1.224BCD	
	$-P_{3/2}$	_	1394/3,50 ^{-,-} 137473.50 ^D	-	-	1,334-,-,-	-
4f ¹⁴ 10p	${}^{2}P^{o}_{1/2}$	_	146734,30 ^{B,C}	-	-	0,666 ^{B,C,D}	-
	200		144734,30 ^D			1.224BCD	
	$-P_{3/2}$	_	147090,60 ^{-,*} 145090,60 ^D	-	-	1,334-,-,-	-
4f ¹⁴ 11p	${}^{2}P^{o}_{1/2}$	_	151750,00 [°]	-	-	0,666 ^{C,D}	-
	200		149750,00 ^D			1 224C.D	
	P 3/2	_	151987,60 ^D	_	_	1,334	_
4f ¹⁴ 12p	${}^{2}P^{o}_{1/2}$	_	155157,20 ^C	-	_	0,666 ^{C,D}	-
	² D ⁰		153157,20 ^D			1 224C,D	
	P 3/2	_	155323,40 153323.40 ^D	_	_	1,334	_
4f ¹⁴ 13p	${}^{2}P^{o}_{1/2}$	_	157582,40 ^C	-	_	0,666 ^{C,D}	-
	$2\mathbf{p}^{0}$		$155582,40^{\text{D}}$			1 224 ^{C,D}	
	P 3/2	-	157703,30 ^D	_	-	1,554	_
$4f^{14}14p$	${}^{2}P^{o}{}_{1/2}$	-	159373,10 ^C	-	_	0,666 ^{C,D}	-
	$2\mathbf{p}^{0}$		157373,10 [°]			1 334 ^{C,D}	
	F 3/2	-	157463,70 ^D	—	—	1,554	_
4f ¹⁴ 15p	${}^{2}P^{o}{}_{1/2}$	-	160721,70 ^C	-	-	0,666 ^{C,D}	-
	$2\mathbf{p}^{0}$		158721,70 [°]			1 334 ^{C,D}	
	1 3/2		158791,40 ^D			1,554	
4f ¹⁴ 16p	${}^{2}P^{o}{}_{1/2}$	-	161775,40 ^C	-	-	0,666 ^{C,D}	-
	${}^{2}\mathbf{P}^{0}_{2}$	_	159775,40 [°] 161830.20 [°]	_	_	1 334 ^{C,D}	_
	1 3/2		159830,20 ^D			1,554	
4f ¹⁴ 17p	${}^{2}P^{o}{}_{1/2}$	_	162595,90 ^C	-	-	0,666 ^{C,D}	-
	$^{2}\mathbf{P}^{0}_{2}$	_	160595,90 ⁵ 162639 70 ^C	_	_	1 334 ^{C,D}	_
	1 3/2		160639,70 ^D			1,554	
4f ¹⁴ 18p	${}^{2}P^{o}{}_{1/2}$	_	163264,10 ^C	-	-	0,666 ^{C,D}	-
	$^{2}\mathbf{P}^{0}_{2}$	_	161264,10 ⁵ 163299 70 ^C	_	_	1 334 ^{C,D}	_
	► 3/2		161299,70 ^D			1,00 r	
4f ¹⁴ 19p	${}^{2}P^{o}{}_{1/2}$	-	163818,90 ^C	-	-	0,666 ^{C,D}	-
	${}^{2}P^{0}_{2/2}$	_	161818,90° 163848.20 ^C	_	_	1.334 ^{C,D}	_
	- 3/2		161848,20 ^D			1,001	
4f ¹⁴ 20p	${}^{2}P^{o}{}_{1/2}$	-	164270,90 ^C	-	-	0,666 ^{C,D}	-
	${}^{2}P^{0}_{2/2}$	_	162270,90° 164295.30°	_	_	1.334 ^{C,D}	_
	- 3/2		162295,30 ^D			, ·	
4f ¹⁴ 10f	${}^{2}F_{5/2}^{o}$	-	156390,80 ^{B,C}	-	_	0,857 ^{B,C,D}	-
			100000				

Tablo A.15. Devam

Seviy	eler		Е			g-çarpan	1
Konf.	Terim	Bu ç	alışma	Diğer	Bu ça	Bu çalışma	
		MCHF+BP	HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	_	156396,20 ^{B,C}	_	_	1,143 ^{B,C,D}	_
			153396,20 ^D				
$4f^{14}11f$	${}^{2}F^{o}_{5/2}$	-	158751,50 ^C	-	-	0,857 ^{C,D}	-
			155751,50 ^D				
	${}^{2}F^{o}_{7/2}$	_	158755,50 [°]	-	_	1,143 ^{C,D}	-
			155755,50 ^D				
$4f^{14}12f$	${}^{2}F_{5/2}^{o}$	_	160496,80 [°]	-	_	0,857 ^{C,D}	-
			157496,80 ^D				
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	160499,80 ^C	-	-	1,143 ^{C,D}	-
			157499,80 ^D				
$4f^{14}13f$	${}^{2}F_{5/2}^{o}$	-	161816,10 ^C	-	-	0,857 ^{C,D}	-
			158816,10 ^D				
	${}^{2}\mathrm{F}^{\mathrm{o}}_{7/2}$	-	161818,50 ^C	-	-	1,143 ^{C,D}	-
14			158818,50 ^D			(D)	
$4f^{14}14f$	${}^{2}\mathrm{F}^{\mathrm{o}}_{5/2}$	-	162846,20 ^C	-	-	0,857 ^{C,D}	-
	2-0		159846,20 ^D				
	${}^{2}F_{7/2}^{0}$	-	162848,10 ^c	-	-	1,143°,5	-
4 014 4 7 0	2-0		159848,10 ⁵			0.0 CD	
414151	${}^{2}F_{5/2}^{0}$	-	163652,60 ^e	-	—	0,8570,0	-
	200		160652,60 ⁵			1.1.42C.D	
	$-\mathbf{F}_{7/2}$	-	163654,10 [°]	-	_	1,143	-
1514165	200		160654,10 ⁻			0.957D	
41 101	Γ 5/2 ² Γ ⁰	-	101313,70 161214 00 ^D	-	_	0,857 1.142 ^D	-
1fl417f	Γ _{7/2} ² Γ ⁰	_	161314,90	_	—	1,145 0.957 ^D	_
41 1/1	¹ 5/2 ² E ⁰	-	161861 40 ^D	-	-	0,657 1.142 ^D	-
1f ¹⁴ 19f	¹ ^{7/2} ² E ⁰	-	162202.20 ^D	-	-	1,145 0.857 ^D	-
41 101	² E ⁰	-	162302,20	-	-	0,857 1.143 ^D	-
∕1f ¹⁴ 10f	${}^{2}F^{0}$	_	162678 20 ^D	_	_	0.857 ^D	_
41 171	² F ⁰	_	162678.90 ^D	_	_	0,857 1.1/3 ^D	_
$4f^{14}20f$	${}^{2}F_{50}^{0}$	_	162974 00 ^D	_	_	0.857 ^D	_
11 201	${}^{2}F_{7/2}^{0}$	_	162974.60 ^D	_	_	1.143 ^D	_

G	eçişler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
-		MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}7p^{-2}P^{0}_{-3/2}$	_	10305,879 ^{A,B,C}	_	-	1,78937 ^{A,B,C}	-	-	$1,12(8)^{A,B,C}$	_
	1		10215,910 ^D			1,80513 ^D			$1,15(8)^{D}$	
$4f^{14}7p^{-2}P^{0}_{3/2}$	$4f^{14}8s^{-2}S_{1/2}$	5491,77 ^в	5891,363 ^{A,B,C}	5889,76 ^a	0,45963 ^B	1,34016 ^{A,B,C}	1,340 ^a	$1,02(8)^{B}$	$2,58(8)^{A,B,C}$	$2,53(8)^{a}$
-			5964,987 ^D			1,32362 ^D			$2,48(8)^{D}$	
$4f^{14}7p^{-2}P^{0}_{3/2}$	$4f^{14}7d^{-2}D_{3/2}$	8030,59 ^B	5047,522 ^{A,B,C}	5046,12 ^a	5,5446 ^B	0,48199 ^{A,B,C}	0,476 ^a	$5,73(8)^{B}$	$1,26(8)^{A,B,C}$	$1,25(8)^{a}$
		1438,00 ^C	5138,164 ^D		0,3590 [°]	0,47348 ^D		$1,16(9)^{C}$	$1,20(8)^{D}$	
$4f^{14}7p^{-2}P^{0}_{3/2}$	$4f^{14}7d^{-2}D_{5/2}$	1440,85 ^C	4957,808 ^{A,B,C}	4956,43 ^a	3,2270 ^C	4,41638 ^{A,B,C}	4,364 ^a	$1,56(10)^{\circ}$	$1,20(9)^{A,B,C}$	$1,18(9)^{a}$
14 2 4	14 2	D	5052,965 ^D		D	4,33321 ^D		D	1,13(9) ^D	
$4f^{14}7p^{-2}P^{0}_{3/2}$	$4f^{14}9s^{-2}S_{1/2}$	4663,27 ^в	2994,092 ^{A,B,C}	2993,23ª	0,6503 ^в	0,15720 ^{A,B,C}	0,162 ^a	1,99(8) ^в	$1,17(8)^{A,B,C}$	$1,20(8)^{a}$
· -14- 2- n			3038,147 ^D			0,15492 ^D			1,12(8) ^D	
$4f^{4}7p^{-2}P^{0}_{3/2}$	$4f^{14}10s^{-2}S_{1/2}$	-	2337,732 ^{A,B,C}	2337,02ª	-	0,05472 ^{A,B,C}	0,057ª	-	6,68(7) ^{A,B,C}	$6,98(7)^{a}$
4 0147 200	4 cl40 1 2D		23/1,9/3 ^b			0,05393 ^B			6,39(7) ^B	
$4f^{1/p} P^{3/2}$	4f ¹ /8d ⁻² D _{3/2}	—	2944,281 ^{b,e}	_	-	$0,06043^{D,C}$	_	_	$4,65(7)^{D}$	-
4cl47. 2D0	4 cl40 1 2D		2901,925 ⁻			0,06131 ⁻			$4,86(7)^{-1}$	
41 /p P _{3/2}	41 80 D _{5/2}	_	2928,952	-	-	0,54672	-	-	$4,25(8)^{D}$	-
$4f^{147}n^{2}D^{0}$	4f ¹⁴ 0d ² D		2007,024 2246 209 ^{B,C}			0,33400 0,02057 ^{B,C}			4,44(8) 2,40(7) ^{B,C}	
41 /p F _{3/2}	41 90 D _{3/2}	—	2340,208 2310,100 ^D	-	-	0,02037 0,02081 ^D	—	—	2,49(7) 2,58(7) ^D	-
$4f^{14}7n^{2}P^{0}an$	$4f^{14}Qd^{-2}D_{co}$	_	2319,190 2340 292 ^{B,C}	_	_	0,02081 0,18556 ^{B,C}	_	_	2,36(7) 2,26(8) ^{B,C}	_
41 / p 1 3/2	41 Ju 125/2		2313 404 ^D			0,18550 0,18772 ^D			2,20(8) 2 34(8) ^D	
$4f^{14}7n^{2}P^{0}_{22}$	$4f^{14}10d^{-2}D_{2/2}$	_	2079.667 ^{B,C}	_	_	$0.00983^{B,C}$	_	_	$1.52(7)^{B,C}$	_
11 /P 1 3/2	11 100 D _{3/2}		2058.406 ^D			$0.00993^{\rm D}$			$1.56(7)^{\rm D}$	
$4f^{14}7p^{-2}P^{0}_{3/2}$	$4f^{14}10d^{-2}D_{5/2}$	_	2076.623 ^{B,C}	_	_	0.08857 ^{B,C}	_	_	$1.37(8)^{B,C}$	_
1 5/2	5/2		2055,428 ^D			0,08948 ^D			$1,41(8)^{D}$	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}5f^{2}F^{0}_{5/2}$	865,00 ^B	1001,169 ^{A,B,C}	$1001, 17^{a}$	0,60253 ^B	1,87338 ^{A,B,C}	1,283 ^a	$5,37(9)^{B}$	$1,25(10)^{A,B,C}$	$8,53(9)^{a}$
			1010,889 ^D			1,85537 ^D			$1,21(10)^{D}$	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}5f^{2}F^{0}_{5/2}$	891,88 ^B	1031,535 ^{A,B,C}	1031,54 ^a	0,04170 ^B	0,12987 ^{A,B,C}	0,089 ^a	$3,50(8)^{B}$	$8,14(8)^{A,B,C}$	$5,57(8)^{a}$
			1047,652 ^D			0,12788 ^D			7,77(8) ^D	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}5f^{2}F^{0}_{5/2}$	4160,53 ^B	7536,305 ^{A,B,C}	7534,29 ^a	0,13356 ^B	2,91531 ^{A,B,C}	2,736 ^a	$7,72(7)^{B}$	$3,42(8)^{A,B,C}$	$3,21(8)^{a}$
			7946,985 ^D			2,76466 ^D			2,92(8) ^D	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}5f^{-2}F^{0}_{5/2}$	4160,42 ^B	8010,830 ^{A,B,C}	8008,69 ^a	0,00954 ^B	0,19590 ^{A,B,C}	0,184 ^a	$3,68(6)^{B}$	$2,04(7)^{A,B,C}$	$1,91(7)^{a}$
· - 14 · 2			8445,759 ^D		P	0,18581 ^D			1,74(7) ^D	
$4f^{14}5f^{-2}F^{0}_{5/2}$	4f ¹⁴ 7d ² D _{3/2}	3157,80 ^в	5871,370 ^{A,B,C}	5869,71ª	0,02228 ^B	0,47554 ^{A,B,C}	0,485ª	$1,49(7)^{B}$	$9,20(7)^{A,B,C}$	$9,38(7)^{a}$
(a) (= a 2=a	(a) 4 - () -		5743,629 ^b		o o o t e o P	0,48612 ^D		A A T A A A	9,83(7) ^b	
4f ¹⁴ 5f ⁻² F ⁶ _{5/2}	4f ¹⁴ 7d ² D _{5/2}	3157,73*	5750,332 ^{A,B,C}	5748,71°	0,00159 ^b	0,03468 ^{A,B,C}	0,035ª	1,07(6) ⁵	7,00(6) ^{A,B,C}	7,13(6) ^a
4 cl 4 = c 2 = 0	1014= 200	TOLD TOB	5637,375 ^b	1051 113	a ta co aB	0,03538 ^b		o de co B	7,42(6) ^b	a (0)(0)3
41 ¹⁴ 51 ² F ⁵ _{5/2}	41 5g ⁻ G _{7/2}	7812,598	4252,658 ^{A,B,C}	4251,44"	7,47685	7,/52/0 ^{A,B,C}	1,253"	8,17(8)	2,86(9) ^{A,B,C}	2,68(9)"
AC1455 200	46140 1 20		4233,998 ²			/,/868/~			2,90(9) ²	
41 JI F 5/2	41° 80 °D _{3/2}	_	3206, /4 / ^{2,0}	_	-	0,051/0 ^{-,2}	-	-	$3,33(7)^{-7}$	_
			3083,032			0,05575			5,70(7)	

Tablo A.16. Lu III'ün elektrik dipol (E1) geçişleri için λ dalga boyları (Å), *gf* ağırlıklı salınıcı şiddetleri ve *g*A_{ki} ağırlıklı geçiş olasılıkları (sn⁻¹) (Tablo 3.45'in geniş hali)

Tablo	A.16	. Devam
-------	------	---------

G	eçişler	λ			gf			$g \mathbf{A_{ki}}$		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
•	·	MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}5f^{2}F^{0}_{5/2}$	4f ¹⁴ 8d ² D _{5/2}	_	3188,572 ^{B,C}	-	-	0,00371 ^{B,C}	-	-	$2,44(6)^{B,C}$	_
			3068,789 ^D			0,00386 ^D			2,73(6) ^D	
$4f^{14}5f^{2}F^{0}_{5/2}$	$4f^{14}9d^{-2}D_{3/2}$	_	2509,911 ^{B,C}	-	-	$0,01662^{B,C}$	-	_	$1,76(7)^{B,C}$	_
			2435,051 ^D			0,01713 ^D			1,93(7) ^D	
$4f^{14}5f^{2}F^{0}_{5/2}$	$4f^{14}9d^{-2}D_{5/2}$	-	2503,141 ^{B,C}	-	-	0,00119 ^{B,C}	-	-	$1,27(6)^{B,C}$	-
			2428,674 ^D			0,00123 ^D			1,39(6) ^D	
$4f^{14}5f^{-2}F^{0}_{5/2}$	$4f^{14}10d^{-2}D_{3/2}$	-	2207,276 ^{B,C}	-	-	0,00767 ^{B,C}	-	-	$1,05(7)^{B,C}$	-
(al 4 = a 2 = a	1 21/1 - 0 - 1 - 2-		2149,166 ^D			0,00788 ^D			1,14(7) ^D	
$4f^{14}5f^{-2}F^{0}_{5/2}$	4f ¹⁴ 10d ² D _{5/2}	-	2203,847 ^{b,c}	-	-	0,00055 ^{B,C}	-	-	7,54(5) ^{B,C}	-
4 cl4 = c 2 = 0	4014 c 20		2145,920 ^B			0,00056 ^B			8,16(5) ^B	
41. 51 F ^o _{5/2}	41°6g G _{7/2}	_	2895,931 ^{b,e}	-	-	1,14316 ^{5,0}	-	-	$9,09(8)^{D}$	-
4f145f 2D0	$4f^{147} \approx 2C$		2/90,/30 2288 701 ^{B,C}			1,185/1 0.28407 ^{B,C}			1,01(9)	
41 J1 F 5/2	41 /g G _{7/2}	-	2300,701 2220,801 ^D	-	-	0,36407	-	—	4,49(8) ^D	-
$4f^{14}5d^{-2}D_{co}$	$4f^{14}5f^{2}F^{0}r^{2}$	801 70 ^B	1030 320 ^{A,B,C}	1030 33 ^a	0.83338 ^B	2 60052 ^{A,B,C}	1 780 ^a	6 99(9) ^B	$1.63(10)^{A,B,C}$	$1.12(10)^{a}$
41 Ju D _{5/2}	41 J1 1 1/2	071,77	1030,329 1047 239 ^D	1050,55	0,05550	2,55853 ^D	1,700	0,77(7)	1,05(10) 1,56(10) ^D	1,12(10)
$4f^{14}6d^{-2}D_{52}$	$4f^{14}5f^{2}F^{0}72$	$4162~35^{B}$	7938 712 ^{A,B,C}	7936 53 ^a	0 19573 ^B	3 95363 ^{A,B,C}	3 711 ^a	$1.00(8)^{B}$	$4 18(8)^{A,B,C}$	$3.93(8)^{a}$
11 00 203/2	1 01 1 1/2	1102,00	8419.020 ^D	1900,00	0,17070	3.72807 ^D	0,711	1,00(0)	3.51(8) ^D	0,00(0)
$4f^{14}5f^{2}F^{0}7/2$	$4f^{14}7d^{-2}D_{5/2}$	3158.84 ^B	5788,075 ^{A,B,C}	5786.47 ^a	0.03141 ^B	0.68912 ^{A,B,C}	0.703 ^a	$2.10(7)^{B}$	$1.37(8)^{A,B,C}$	$1.40(8)^{a}$
- //2		, -	5649,351 ^D	, -	- ,	0,70604 ^D	- ,	,,	$1,48(8)^{D}$, - (- /
$4f^{14}5f^{2}F^{0}_{7/2}$	$4f^{14}5g^{-2}G_{7/2}$	7819,38 ^B	4273,266 ^{A,B,C}	4272,07 ^a	0,27672 ^B	0,28575 ^{A,B,C}	$0,267^{a}$	$3,02(7)^{B}$	$10,40(7)^{A,B,C}$	$9,77(7)^{a}$
	0		4240,750 ^D			0,28794 ^D			$10,70(7)^{D}$	
$4f^{14}5f^{2}F^{0}_{7/2}$	$4f^{14}5g^{-2}G_{9/2}$	7819,26 ^в	4273,102 ^{A,B,C}	4271,90 ^a	9,68541 ^в	10,0017 ^{A,B,C}	9,358ª	$1,06(9)^{B}$	3,65(9) ^{A,B,C}	$3,42(9)^{a}$
			4240,442 ^D			10,0787 ^D			3,74(9) ^D	
$4f^{14}5f^{2}F^{0}_{7/2}$	4f ¹⁴ 8d ² D _{5/2}	-	3200,143 ^{B,C}	-	-	0,07401 ^{B,C}	-	-	$4,82(7)^{B,C}$	-
			3072,335 ^D			0,07709 ^D			5,45(7) ^D	
$4f^{14}5f^{-2}F^{0}_{7/2}$	4f ¹⁴ 6g ² G _{7/2}	-	2905,473 ^{b,C}	-	-	0,04220 ^{B,C}	-	-	3,33(7) ^{B,C}	-
4 cl 4 = c 2 = 0	1 cl/1 c 2 c		2799,675 ^b			0,04379 ^b			$3,73(7)^{\text{B}}$	
$4f^{14}5f^{2}F^{0}_{7/2}$	4f ¹⁴ 6g ⁻² G _{9/2}	-	2905,397 ^{b,c}	_	-	1,47705 ^{b,c}	-	-	$1,17(9)^{\text{B,C}}$	-
4f145f 2E0	4f ¹⁴ 0.1 ² D		2/99,59/ ⁻ 2510.267 ^{B,C}			1,5328/ ⁻			$1,30(9)^{-1}$	
41 51 F _{7/2}	41 90 D _{5/2}	-	2510,207 2420 804 ^D	-	_	0,02374	_	_	$2,51(7)^{D}$	-
$4f^{14}5f^{2}F^{0}$	$4f^{14}7a^2G$		2450,894 2305 180 ^{B,C}			0,02432 0.01410 ^{B,C}			2,77(7) 1.65(7) ^{B,C}	
41 J1 1 7/2	41 /g U _{7/2}	_	2393,189 2322 828 ^D	_	_	0,01419 0,01463 ^D	_	_	1,03(7) 1.81(7) ^D	_
$4f^{14}5f^{2}F^{0}\pi^{2}$	$4f^{14}7\sigma^2G_{0,2}$	_	2322,828 2395 163 ^{B,C}	_	_	$0.49652^{B,C}$	_	_	5 77(8) ^{B,C}	_
	11 / 5 09/2		2322.796 ^D			0.51199 ^D			6.33(8) ^D	
$4f^{14}5f^{2}F^{0}_{7/2}$	$4f^{14}10d^{-2}D_{5/2}$	_	2209,368 ^{B,C}	_	_	0.01095 ^{B,C}	_	_	$1.50(7)^{B,C}$	_
112			2091,569 ^D			0,00680 ^D			$1.04(7)^{D}$	
$4f^{14}6s^{2}S_{1/2}$	4f ¹⁴ 8p ² P ^o _{1/2}	705,28 ^A	795,833 ^{B,C}	_	0,0010 ^A	0,00016 ^{B,C}	_	1,35(7) ^A	$1,69(6)^{B,C}$	_
	× ··-	678,34 ^B	808,704 ^D		1,1676 ^B	0,00016 ^D		$1,69(10)^{B}$	$1,61(6)^{D}$	

G	eçişler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}5d^{-2}D_{3/2}$	$4f^{14}8p^{-2}P^{o}_{1/2}$	716,39 ^в	833,701 ^{B,C} 831,867 ^D	_	0,0009 ^B	0,01207 ^{B,C} 0.01209 ^D	_	1,24(7) ^B	1,16(8) ^{B,C,D}	-
$4f^{14}7s\ ^2S_{1/2}$	$4f^{14}8p\ ^2P^o_{\ 1/2}$	_	2565,859 ^{B,C} 2563,725 ^D	_	-	$0,00534^{B,C}$ $0,00535^{D}$	_	-	$5,41(6)^{B,C}$ 5,43(6) ^D	-
$4f^{14}6d\ ^2D_{3/2}$	$4f^{14}8p\ ^2P^{o}_{1/2}$	-	3000,039 ^{B,C} 2952 280 ^D	-	-	0,01100 ^{B,C}	_	_	8,15(6) ^{B,C} 8,55(6) ^D	-
$4f^{14}8s\ ^2S_{1/2}$	$4f^{14}8p\ ^2P^o_{1/2}$	-	17036,645 ^{B,C} 15207 175 ^D	-	-	1,14946 ^{B,C} 1,28774 ^D	_	_	$2,64(7)^{B,C}$ 3,71(7) ^D	-
$4f^{14}7d\ ^2D_{3/2}$	$4f^{14}8p\ ^2P^{o}{}_{1/2}$	13021,46 ^B	32981,541 ^{B,C}	-	1,22798 ^B	0,98188 ^{B,C}	_	2,41(7) ^B	$6,02(6)^{B,C}$	_
$4f^{14}8p\ ^2P^{o}_{1/2}$	$4f^{14}9s\ ^2S_{1/2}$	5998,31 ^B	9473,823 ^{B,C}	_	0,04824 ^B	1,10664 ^{B,C} 1,00380 ^D	_	8,94(6) ^B	$8,22(7)^{B,C}$ $6,14(7)^{D}$	_
$4f^{14}8p\ ^2P^{o}_{1/2}$	$4f^{14}8d\ ^2D_{3/2}$	-	8992,441 ^{B,C}	_	-	2,92449 ^{B,C} 2,92425 ^D	_	-	$2,41(8)^{B,C,D}$	_
$4f^{14}8p\ ^2P^o_{1/2}$	$4f^{14}9d\ ^2D_{3/2}$	-	5056,058 ^{B,C}	-	-	0,38525 ^{B,C} 0.38525 ^D	_	_	$1,01(8)^{B,C}$ 1,00(8) ^D	-
$4f^{14}8p\ ^2P^o_{1/2}$	$4f^{14}10s\ ^2S_{1/2}$	-	5016,856 ^{B,C} 5313 875 ^D	-	_	0,11165 ^{B,C} 0,10541 ^D	_	_	$2,96(7)^{B,C}$	_
$4f^{14}8p\ ^2P^o_{1/2}$	$4f^{14}10d\ ^2D_{3/2}$	_	3961,823 ^{B,C}	-	_	0,13236 ^{B,C,D}	_	_	$5,63(7)^{B,C}$	_
$4f^{14}6s\ ^2S_{1/2}$	$4f^{14}8p\ ^2P^o_{\ 3/2}$	677,76 ^B	789,557 ^{B,C}	-	2,26307 ^B	0,00032 ^{B,C,D}	_	3,29(10) ^B	$3,47(6)^{B,C}$ 3,31(6) ^D	_
$4f^{14}5d\ ^2D_{3/2}$	$4f^{14}8p\ ^2P^o_{\ 3/2}$	715,75 ^B	826,817 ^{B,C} 825,013 ^D	_	0,00036 ^B	$0,00243^{B,C}$ 0,00244 ^D	_	4,70(6) ^B	$2,37(7)^{B,C}$ 2,39(7) ^D	_
$4f^{14}5d\ ^2D_{5/2}$	$4f^{14}8p\ ^2P^{o}_{\ 3/2}$	734,05 ^в	847,418 ^{B,C} 849 337 ^D	-	0,00342 ^B	$0,02137^{B,C}$ $0,02132^{D}$	-	4,23(7) ^B	$1,98(8)^{B,C}$ 1 97(8) ^D	-
$4f^{14}7s\ ^2S_{1/2}$	$4f^{14}8p\ ^2P^o_{\ 3/2}$	_	2501,751 ^{B,C} 2499,726 ^D	_	-	$0,01096^{B,C}$ 0.01097^{D}	_	_	$1,17(7)^{B,C,D}$	-
$4f^{14}6d\ ^2D_{3/2}$	$4f^{14}8p\ ^2P^{o}_{\ 3/2}$	-	2912,768 ^{B,C} 2867,732 ^D	-	-	$0,00227^{B,C}$ 0.00230^{D}	-	_	$1,78(6)^{B,C}$ $1.87(6)^{D}$	-
$4f^{14}6d\ ^2D_{5/2}$	$4f^{14}8p\ ^2P^{o}_{\ 3/2}$	_	2981,017 ^{B,C} 2930,177 ^D	_	-	$0,01993^{B,C}$ $0,02027^{D}$	_	_	$1,50(7)^{B,C}$ 1,57(7) ^D	-
$4f^{14}8s\ ^2S_{1/2}$	$4f^{14}8p\ ^2P^{o}_{\ 3/2}$	_	14559,429 ^{B,C} 13202 227 ^D	_	-	2,69007 ^{B,C} 2,96660 ^D	_	_	$8,46(7)^{B,C}$ 1,13(8) ^D	-
$4f^{14}7d\ ^2D_{3/2}$	$4f^{14}8p\ ^2P^{o}_{\ 3/2}$	13239,46 ^B	24809,586 ^{B,C} 20505 362 ^D	_	0,1808 ^B	$0,26106^{B,C}$ 0.31586 ^D	_	6,88(6) ^B	$2,83(6)^{B,C}$ 5,01(6) ^D	-
$4f^{14}7d\ ^2D_{5/2}$	$4f^{14}8p\ ^2P^{o}_{\ 3/2}$	13238,24 ^B	27231,639 ^{B,C} 21984,716 ^D	-	1,6274 ^B	2,14057 ^{B,C} 2,65144 ^D	-	4,13(7) ^B	$1,93(7)^{B,C}$ 3,66(7) ^D	-
$4f^{14}8p\ ^2P^o_{\ 3/2}$	$4f^{14}9s^{-2}S_{1/2}$	-	10463,864 ^{B,C} 11660,691 ^D	-	-	2,00388 ^{B,C} 1,79820 ^D	-	-	1,22(8) ^{B,C} 8,82(7) ^D	-

Tablo	A.16	. Devam
-------	------	---------

G	eçişler	λ			gf			gA_{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}8p^{-2}P^{o}_{-3/2}$	4f ¹⁴ 8d ² D _{3/2}	-	9879,714 ^{B,C} 9880,543 ^D	-	-	0,53237 ^{B,C} 0,53232 ^D	-	-	3,64(7) ^{B,C,D}	-
$4f^{14}8p\ ^2P^o_{\ 3/2}$	$4f^{14}8d\ ^2D_{5/2}$	-	9709,208 ^{B,C} 9709,897 ^D	-	-	4,87546 ^{B,C} 4,87512 ^D	_	-	3,45(8) ^{B,C,D}	-
$4f^{14}8p\ ^2P^o_{3/2}$	$4f^{14}9d\ ^2D_{3/2}$	_	5324,941 ^{B,C} 5324,949 ^D	-	_	$0,07316^{B,C}$ 0.07316 ^D	_	-	1,72(7) ^{B,C,D}	_
$4f^{14}8p\ ^2P^o_{3/2}$	$4f^{14}9d\ ^2D_{5/2}$	-	5294,562 ^{B,C} 5294,547 ^D	-	-	0,66222 ^{B,C,D}	_	-	1,58(8) ^{B,C,D}	-
$4f^{14}8p\ ^2P^{o}_{3/2}$	$4f^{14}10s\ ^2S_{1/2}$	_	5281,476 ^{B,C}	-	_	$0,21210^{B,C}$ 0,19962 ^D	_	-	$5,07(7)^{B,C}$ 4 23(7) ^D	_
$4f^{14}8p\ ^2P^o_{3/2}$	$4f^{14}10d\ ^2D_{3/2}$	-	4125,038 ^{B,C} 4125,022 ^D	-	-	0,02543 ^{B,C,D}	-	-	9,97(6) ^{B,C,D}	-
$4f^{14}8p\ ^2P^o_{3/2}$	$4f^{14}10d\ ^2D_{5/2}$	-	4113,076 ^{B,C} 4113,080 ^D	-	_	0,22949 ^{B,C,D}	_	-	9,05(7) ^{B,C,D}	-
$4f^{14}5d\ ^2D_{3/2}$	$4f^{14}6f^{-2}F^{o}_{5/2}$	782,64 ^B	815,224 ^{A,B,C} 820,035 ^D	810,73 ^a	0,27584 ^B	0,67575 ^{A,B,C}	0,411 ^a	3,00(9) ^B	$6,78(9)^{A,B,C}$	4,16(9) ^a
$4f^{14}5d\ ^2D_{5/2}$	$4f^{14}6f^{-2}F^{o}_{5/2} \\$	804,58 ^B	835,244 ^{A,B,C} 844,061 ^D	830,53ª	0,01943 ^B	0,04711 ^{A,B,C}	0,029 ^a	2,00(8) ^B	$4,50(8)^{A,B,C}$	2,76(8) ^a
$4f^{14}6d\ ^2D_{3/2}$	$4f^{14}6f^{-2}F^{o}_{5/2}$	_	2773,801 ^{A,B,C}	2771,65 ^a	-	0,73013 ^{A,B,C}	0,706 ^a	-	$6,33(8)^{A,B,C}$	6,30(8) ^a
$4f^{14}6d\ ^2D_{5/2}$	$4f^{14}6f^{-2}F^{o}_{5/2} \\$	8426,51 ^B	2835,624 ^{A,B,C}	2781,16 ^a	1,49486 ^B	0,05102 ^{A,B,C} 0,05043 ^D	0,049 ^a	1,40(8) ^B	$4,23(7)^{A,B,C}$	$4,22(7)^{a}$
$4f^{14}6f^{-2}F^{o}_{5/2} \\$	$4f^{14}7d\ ^2D_{3/2}$	-	17389,184 ^{A,B,C}	-	_	4,14235 ^{A,B,C}	_	_	$9,14(7)^{A,B,C}$	_
$4f^{14}6f^{-2}F^{o}_{5/2} \\$	$4f^{14}7d\ ^2D_{5/2}$	-	18545,306 ^{A,B,C}	-	_	$0,27744^{A,B,C}$	_	_	$5,38(6)^{A,B,C}$	_
$4f^{14}6f^{-2}F^{o}_{5/2}$	$4f^{14}8d^{-2}D_{3/2}$	_	12538,950 ^{B,C}	-	_	0,88721 ^{B,C}	_	_	$3,76(7)^{B,C}$	-
$4f^{14}6f^{-2}F^{o}_{5/2} \\$	$4f^{14}8d^{-2}D_{5/2} \\$	-	12265,574 ^{B,C}	-	_	0,06478 ^{B,C}	_	_	$2,87(6)^{B,C}$	_
$4f^{14}6f^{-2}F^{o}_{5/2}$	$4f^{14}9d\ ^2D_{3/2}$	_	6012,163 ^{B,C}	-	_	0,11628 ^{B,C}	_	_	$2,15(7)^{B,C}$	-
$4f^{14}6f^{-2}F^{o}_{5/2}$	$4f^{14}9d^{-2}D_{5/2}$	_	5973,465 ^{B,C}	-	_	0,00836 ^{B,C}	_	_	$1,56(6)^{B,C}$	-
$4f^{14}6f^{-2}F^{o}_{5/2} \\$	$4f^{14}10d\ ^2D_{3/2}$	-	4525,788 ^{B,C}	-	_	0,03921 ^{B,C}	_	_	$1,28(7)^{B,C}$ 1,24(7) ^D	_
$4f^{14}6f^{-2}F^{o}_{5/2} \\$	$4f^{14}10d\ ^2D_{5/2}$	_	4511,393 ^{B,C}	-	_	$0,00281^{B,C}$	_	_	$9,21(5)^{B,C}$	_
$4f^{14}6f^{-2}F^{0}_{5/2}$	$4f^{14}6g\ ^2G_{7/2}$	_	8832,283 ^{B,C} 7853,734 ^D	_	_	5,83674 ^{B,C} 6,56398 ^D	_	_	$4,99(8)^{B,C}$ $7,10(8)^{D}$	_

Tablo	A.16	. Devam
-------	------	---------

Ge	eçişler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}6f^{2}F^{0}_{5/2}$	$4f^{14}7g^{-2}G_{7/2}$	_	5360,593 ^{B,C}	-	_	1,29282 ^{B,C}	-	-	$3,00(8)^{B,C}$	_
	0		4983,722 ^D			1,39058 ^D			3,73(8) ^D	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}6f^{2}F^{o}_{7/2}$	804,54 ^B	835,244 ^{А,В,С}	832,28 ^a	0,38954 ^B	0,94222 ^{A,B,C}	0,573 ^a	$4,01(9)^{B}$	$9,01(9)^{A,B,C}$	$5,53(9)^{a}$
			843,881 ^D			0,93258 ^D			8,73(9) ^D	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}6f^{2}F^{0}_{7/2}$	-	2835,624 ^{A,B,C}	2800,91 ^a	-	1,02030 ^{A,B,C}	$0,987^{a}$	-	$8,46(8)^{A,B,C}$	$8,43(8)^{a}$
14 2	14 2 .		2866,250 ^D			1,00940 ^D			8,19(8) ^D	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}6f^{-2}F^{0}_{7/2}$	_	18545,302 ^{A,B,C}	-	-	5,54874 ^{A,B,C}	-	-	1,08(8) ^{A,B,C}	_
40466 200	4 6 4 9 1 2 5		18833,193 ^b			5,46392 ^B			1,03(8) ^B	
4f ¹⁴ 6f ² F ⁶ _{7/2}	4f ¹⁴ 8d ² D _{5/2}	-	12659,030 ^{b,c}	-	-	1,25543 ^{b,c}	-	-	$5,23(7)^{\text{B},\text{C}}$	-
Ac14cc 200	$4f^{14} = 2C$		10484,807 ⁻			1,515/6 ⁻			$9,20(7)^{-1}$	
41 01 F 7/2	41 0g 0 _{7/2}	-	9034,464 7860 261 ^D	-	_	0,21134 0.24262 ^D	-	-	$1,75(7)^{D}$	—
$4f^{14}6f^{2}F^{0}r^{2}$	$4f^{14}6g^{-2}G_{0,0}$	_	9033 7/19 ^{B,C}	_	_	0,24203 7 397/1 ^{B,C}	_	_	2,01(7) 6.05(8) ^{B,C}	_
41 OI 1 //2	41 0g 09/2		7868 744 ^D			8 49264 ^D			9,15(8) ^D	
$4f^{14}6f^{2}F^{0}7/2$	$4f^{14}9d^{-2}D_{5/2}$	_	6065.274 ^{B,C}	_	_	$0.16467^{B,C}$	_	_	$2.99(7)^{B,C}$	_
11 01 1 1/2	11 94 253/2		5516.877 ^D			0.18103 ^D			$3.97(7)^{D}$	
$4f^{14}6f^{2}F^{0}7/2$	$4f^{14}7g^{-2}G_{7/2}$	_	5434,413 ^{B,C}	_	_	0.04723 ^{B,C}	_	_	$1.07(7)^{B,C}$	_
	0		4990,010 ^D			0,05144 ^D			$1,38(7)^{D}$	
$4f^{14}6f^{2}F^{0}_{7/2}$	$4f^{14}7g^{-2}G_{9/2}$	_	5434,280 ^{B,C}	_	-	1,65315 ^{B,C}	-	-	3,73(8) ^{B,C}	-
	-		4989,863 ^D			1,80038 ^D			4,82(8) ^D	
$4f^{14}6f^{2}F^{0}_{7/2}$	4f ¹⁴ 10d ² D _{5/2}	_	4563,563 ^{B,C}	-	-	0,05555 ^{B,C}	_	-	$1,78(7)^{B,C}$	_
			4246,011 ^D			0,05971 ^D			2,21(7) ^D	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}7f^{-2}F^{0}_{5/2}$	-	738,760 ^{A,B,C}	738,76 ^a	-	0,32849 ^{A,B,C}	0,184 ^a	-	$4,01(9)^{A,B,C}$	$2,24(9)^{a}$
(a) (= , 2 =	(a)4= a 2=0		744,243 ^D			0,32607 ^D			3,93(9) ^D	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}7f^{-2}F^{0}_{5/2}$	-	755,163 ^{д,в,с}	755,16 ^a	-	0,02295 ^{A,b,C}	0,013 ^a	-	2,69(8) ^{A,b,C}	$1,50(8)^{a}$
461461 2D	4 01477 0 2000		763,980 ^B	2050 718		0,02269 ⁵	0.2228		2,59(8) ^B	5 11(0)3
41°60 D _{3/2}	$4I^{-7}/I^{-7}F_{5/2}^{-7}$	-	2051,370 ^{-4,2}	2050,71*	-	0,34334 ^{-1,2}	0,323*	_	5,44(8) ^{-1,2,2}	5,11(8)"
$4f^{14}6d^{-2}D$	4f ¹⁴ 7f ² E ⁰		2082,234 2084 088 ^{A,B,C}	2084 22ª		0,33825 0.02412 ^{A,B,C}	0.022a		5,20 (8) 2 70(7) ^{A,B,C}	$2 \sqrt{9}(7)^{a}$
41 OU D _{5/2}	41 /1 I [*] 5/2	-	2084,988 2114,960 ^D	2084,32	—	0,02413 0,02370 ^D	0,023	-	3,70(7) 3,55(7) ^D	3,40(7)
$4f^{14}7d^{-2}D_{22}$	$4f^{14}7f^{2}F^{0}r^{2}$	_	5420 935 ^{A,B,C}	5419 40 ^a	_	0,02379 0,4729 ^{A,B,C}	0 459 ^a	_	$1.07(8)^{A,B,C}$	$1.04(8)^{a}$
41 / U D 3/2	41 /1 1 5/2		5545.894 ^D	5419,40		0.46225^{D}	0,459		$1.00(8)^{D}$	1,04(0)
$4f^{14}7d^{-2}D_{5/2}$	$4f^{14}7f^{-2}F^{0}_{5/2}$	_	5528.374 ^{A,B,C}	5526.81ª	_	0.03312 ^{A,B,C}	0.032^{a}	_	$7.23(6)^{A,B,C}$	$7.01(6)^{a}$
	5/2		5648,696 ^D			0,03242 ^D	-,		6,78(6) ^D	.,(.)
$4f^{14}5g^{-2}G_{7/2}$	$4f^{14}7f^{2}F^{0}_{5/2}$	_	8358,339 ^{A,B,C}	8355,97ª	_	0,08978 ^{A,B,C}	0,101 ^a	_	8,57(6) ^{A,B,C}	$9,60(6)^{a}$
			8457,653 ^D			0,08873 ^D			8,27(6) ^D	
$4f^{14}8d^{-2}D_{3/2}$	$4f^{14}7f^{-2}F^{o}_{5/2}$	-	23285,321 ^{B,C}	-	-	7,22874 ^{B,C}	-	-	8,89(7) ^{B,C}	-
			32963,227 ^D			5,10640 ^D			3,13(7) ^D	
4f ¹⁴ 8d ² D _{5/2}	$4f^{14}7f^{2}F^{0}_{5/2}$	-	24290,711 ^{B,C}	-	-	0,49497 ^{B,C}	-	-	$5,60(6)^{B,C}$	_
			35016,273 ^D			0,34336 ^D			1,87(6) ^D	

Tablo	A.16	. Devam
-------	------	---------

Ge	eçişler		λ			gf			gA_{ki}	
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
·	·	MCHF+BP	HFR	çalışmalar	MCHF+BP	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 6g ² G _{7/2}	$4f^{14}7f^{2}F^{0}_{5/2}$	_	105529,870 ^{B,C}	-	-	1,79733 ^{B,C}	-	-	$1,08(6)^{B,C}$	_
$4f^{14}7f^{2}F^{0}_{5/2}$	$4f^{14}9d^{-2}D_{3/2}$	_	22918,701 ^{B,C}	_	_	$1,26270^{B,C}$	_	_	$1,60(7)^{B,C}$	_
			17777,980 ^D			1,62782 ^D			$3,43(7)^{D}$	
$4f^{14}7f^{2}F^{0}_{5/2}$	$4f^{14}9d^{-2}D_{5/2}$	-	22366,360 ^{B,C}	-	-	0,09242 ^{B,C}	-	-	$1,23(6)^{B,C}$	-
			17443,568 ^D			0,11850 ^D			$2,60(6)^{D}$	
$4f^{14}7f^{2}F^{0}_{5/2}$	$4f^{14}7g^{-2}G_{7/2}$	-	15661,827 ^{B,C}	-	-	5,01320 ^{B,C}	-	-	$1,36(8)^{B,C}$	_
			13077,688 ^D			6,00381 ^D			$2,34(8)^{D}$	
$4f^{14}7f^{2}F^{0}_{5/2}$	4f ¹⁴ 10d ² D _{3/2}	-	10177,185 ^{B,C}	-	-	0,18263 ^{B,C}	-	-	$1,18(7)^{B,C}$	_
			9018,996 ^D			0,20608 ^D			$1,69(7)^{D}$	
$4f^{14}7f^{2}F^{0}_{5/2}$	4f ¹⁴ 10d ² D _{5/2}	-	10104,684 ^{B,C}	-	-	0,01314 ^{B,C}	-	-	$8,58(5)^{B,C}_{-}$	-
			8962,106 ^D			0,01481 ^D			1,23(6) ^D	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}7f^{-2}F^{0}_{7/2}$	-	755,033 ^{A,B,C}	755,03 ^a	-	0,45915 ^{A,B,C}	0,257 ^a	-	$5,37(9)^{A,B,C}$	$3,00(9)^{a}$
			763,884 ^D			0,45383 ^D			5,19(9) ^D	
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}7f^{-2}F^{0}_{7/2}$	-	2083,999 ^{A,B,C}	2083,34 ^a	-	0,48281 ^{A,B,C}	0,454 ^a	-	$7,42(8)^{A,B,C}$	$6,97(8)^{a}$
14 2	14 2		2114,229 ^D			0,47591 ^D			7,10(8) ^D	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}7f^{-2}F^{0}_{7/2}$	-	5521,429 ^{A,B,C}	5519,91ª	-	0,66328 ^{A,B,C}	0,643ª	-	$1,45(8)^{A,B,C}$	$1,41(8)^{a}$
· -14 · - 2	· -14		5643,486 ^D			0,64894 ^D			1,36(8) ^D	
4f ¹⁴ 5g ² G _{7/2}	$4f^{14}7f^{-2}F^{0}_{7/2}$	-	8342,475 ^{д,в,с}	8340,22ª	-	0,00333 ^{д,в,с}	$0,004^{a}$	-	3,19(5) ^{д,в,с}	$3,57(5)^{a}$
(a) (= 2 ~	(a)/= a 2=0		8445,979 ^D			0,00329 ^b			3,08(5) ^D	
$4f^{4}5g^{2}G_{9/2}$	$4f^{4}7f^{-2}F_{7/2}^{0}$	-	8343,102 ^{A,B,C}	8340,84ª	-	0,11660 ^{A,B,C}	0,131ª	-	1,12(7) ^{A,B,C}	$1,25(7)^{a}$
4 cl 4 = c 2 = 0	4 1/0 1 20		8447,199 ^b			0,11516 ^b			$1,08(7)^{\text{B}}$	
$4f^{1+}/f^{2}F^{0}_{7/2}$	4f ¹⁴ 8d ² D _{5/2}	-	24157,209 ^{b,c}	-	-	9,95405 ^{b,e}	-	-	$1,14(8)^{\rm D,c}$	_
46146 20	4 01477 0 2000		34817,032 ⁵			6,90645 ⁵			$3,80(7)^{B}$	
$4\Gamma^{0}6g^{-}G_{9/2}$	$4I^{1/7}/I^{-}F^{*}_{7/2}$	-	103151,377 ^{-,-}	-	-	2,38359 ^{2,0}	-	-	$1,49(6)^{-5}$	-
$4I^{-7}/I^{-7}F_{7/2}$	41°90 D _{5/2}	_	22480,755 ^{-,-}	_	_	1,83899 ^{2,2}	_	_	$2,43(7)^{-1,-2}$	-
$4f^{147} \approx 2C$	4fl47f 2E0		1/495,45/ 15717 022 ^{B,C}			2,30328 0 19501 ^{B,C}			5,15(7) 5,00(c) ^{B,C}	
41 /g G _{7/2}	41 /1 F _{7/2}	-	13/1/,655 12105 607 ^D	-	-	0,18501 0,22180 ^D	-	-	3,00(0) 8,62(6) ^D	—
$4f^{14}7a^{2}C$	4f ¹⁴ 7f ² E ⁰		15105,097 15716 710 ^{B,C}			6.47500 ^{B,C}			0,02(0) 1,75(8) ^{B,C}	
41 /g O _{9/2}	41 /1 1 7/2	_	13104 683 ^D	_	_	7,47590 7,76668 ^D	_	_	1,75(8) 3 02(8) ^D	_
$4f^{14}7f^{2}F^{0}$	$4f^{14}10d^{-2}D_{14}$	_	10127 967 ^{B,C}	_	_	0.26217 ^{B,C}	_	_	1,71(7) ^{B,C}	_
41 /1 1 7/2	41 100 D _{5/2}		8975 251 ^D			0,20217 0,29584 ^D			$2.45(7)^{D}$	
$4f^{14}5d^{-2}D_{22}$	$4f^{14}8f^{2}F^{0}r^{2}$	_	700 249 ^{A,B,C}	700 25 ^a	_	0.18670 ^{A,B,C}	0 099 ^a	_	2,43(7) 2 54(9) ^{A,B,C}	$1.35(9)^{a}$
41 50 D _{3/2}	41 01 1 5/2		705,249 705,098 ^D	700,25		0.18542 ^D	0,077		$2,34(9)^{D}$	1,55())
$4f^{14}5d^{-2}D_{c2}$	$4f^{14}8f^{-2}F^{0}c_{2}$	_	714 969 ^{A,B,C}	714 97 ^a	_	0.01306 ^{A,B,C}	0.007^{a}	_	$1.70(8)^{A,B,C}$	$9.03(7)^{a}$
11 54 D _{3/2}	11 01 1 5/2		722,789 ^D	/11,5/		0.01292^{D}	0,007		$1,65(8)^{D}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$4f^{14}6d^{-2}D_{3/2}$	$4f^{14}8f^{2}F^{0}5/2$	_	1779.603 ^{A,B,C}	1779.61 ^a	_	0.18272 ^{A,B,C}	0.169^{a}	_	3.85(8) ^{A,B,C}	$3.56(8)^{a}$
	J/2		1802.297 ^D	,		0.18042 ^D	.,		3.70(8) ^D	- , (- /
$4f^{14}6d^{-2}D_{5/2}$	$4f^{14}8f^{2}F^{0}_{5/2}$	_	1804,848 ^{A,B,C}	$1804,85^{a}$	_	0,01287 ^{A,B,C}	0,012 ^a	_	$2,64(7)^{A,B,C}$	$2,44(7)^{a}$
JI 2	- 312		1826,763 ^D	- ,		0,01271 ^D	7 -		$2,54(7)^{D}$	· 、· /

Tablo	A.16	. Devam
-------	------	---------

G	eçişler	λ			gf			gA_{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
		MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 7d ² D _{3/2}	$4f^{14}8f^{2}F^{o}_{5/2}$	_	3862,286 ^{A,B,C}	3861,21 ^a	_	0,24921 ^{A,B,C}	0,244 ^a	-	$1,11(8)^{A,B,C}$	$1,09(8)^{a}$
			3922,990 ^D			0,24535 ^D			$1,06(8)^{D}$	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}8f^{2}F^{o}_{5/2}$	_	3916,515 ^{A,B,C}	3915,42 ^a	_	0,01755 ^{A,B,C}	$0,017^{a}$	_	7,63(6) ^{A,B,C}	$7,46(6)^{a}$
			3974,152 ^D			0,01730 ^D			7,31(6) ^D	
$4f^{14}5g^{-2}G_{7/2}$	$4f^{14}8f^{2}F^{0}_{5/2}$	-	5152,381 ^{A,B,C}	5150,97 ^a	-	0,01369 ^{A,B,C}	$0,015^{a}$	-	$3,44(6)^{A,B,C}$	$3,78(6)^{a}$
14 2	14 2 .		5185,912 ^D			0,01360 ^D			3,37(6) ^D	
4f ¹⁴ 8d ² D _{3/2}	$4f^{14}8f^{-2}F^{0}_{5/2}$	-	8518,648 ^{B,C}	-	-	0,38077 ^{B,C}	-	-	3,50(7) ^{B,C}	-
101401 20	teldo e 270		9530,087 ^b			0,34036 ^b			$2,50(7)^{B}$	
4f ¹⁴ 8d ² D _{5/2}	4f ¹⁴ 8f ² F ⁶ _{5/2}	-	8649,621 ^{b,c}	-	-	0,026/9 ^{b,c}	-	-	2,39(6) ^{B,C}	-
$4 c c^{2}$	1 cl40 c 200		9694,417 ⁻			$0,02390^{-1}$			$1,70(6)^{-1}$	
41 og G _{7/2}	41 81 F 5/2	-	11910,112 12005 187 ^D	-	-	0,20320	_	_	1,24(7)	_
4f ¹⁴ 0d ² D	4f ¹⁴ 8f ² F ⁰		32455 403 ^{B,C}	_		10.22413	_	_	7,03(0) 6,48(7) ^{B,C}	_
41 90 D _{3/2}	41 01 1 5/2		54511 835 ^D			6 09019 ^D			$1,37(7)^{D}$	
$4f^{14}9d^{-2}D_{5/2}$	$4f^{14}8f^{2}F^{0}_{5/2}$	_	33631 533 ^{B,C}	_	_	0,70509 ^{B,C}	_	_	$4.16(6)^{B,C}$	_
II) U D 3/2	11 01 1 3/2		57916.355 ^D			0.40944 ^D			8.14(5) ^D	
$4f^{14}7g^{-2}G_{7/2}$	$4f^{14}8f^{2}F^{0}{}_{5/2}$	_	94388.686 ^{B,C}	_	_	4,49584 ^{B,C}	_	_	$3.37(6)^{B,C}$	_
0 - 112			20213,325 ^D			5,72083 ^D			9,34(7) ^D	
$4f^{14}8f^{2}F^{0}_{5/2}$	4f1410d 2D3/2	-	41990,359 ^{B,C}	_	-	1,45981 ^{B,C}	_	-	$5,52(6)^{B,C}$	-
			27561,059 ^D			2,22408 ^D			1,95(7) ^D	
$4f^{14}8f^{2}F^{0}_{5/2}$	4f ¹⁴ 10d ² D _{5/2}	-	40783,033 ^{B,C}	-	-	0,10736 ^{B,C}	-	_	$4,31(5)^{B,C}$	-
14 2	14 2 .		27036,592 ^D			0,16194 ^D			1,48(6) ^D	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}8f^{-2}F^{0}_{7/2}$	-	714,887 ^{A,B,C}	714,89 ^a	-	0,26125 ^{A,B,C}	0,138 ^a	-	$3,41(9)^{A,B,C}$	$1,81(9)^{a}$
4 cl 4 c 1 2 D			722,732 ^D	1001.003		0,25842 ^D	0.0003		3,30(9) ^D	1.00(0)3
4f ¹⁴ 6d ² D _{5/2}	4f ¹⁴ 8f ⁻² F ⁰ _{7/2}	-	1804,324 ^{A,B,C}	1804,33ª	_	0,25745 ^{A,B,C}	0,238ª	_	5,28(8) ^{A,B,C}	$4,88(8)^{a}$
4£147.1 2D	1 cl40 c 200		1826,399 ⁵	2012 048		0,25434 ²	0.2428		5,09(8) ⁵	1 50(0)8
41 / d D _{5/2}	41 81 F _{7/2}	-	3914,047	3912,94	-	0,35130	0,345	_	1,55(8) 1,46(8) ^D	1,50(8)
$4f^{14}5g^{-2}G_{-3}$	4f ¹⁴ 8f ² F ⁰	_	51/8 111 ^{A,B,C}	_	_	0,04014 0,00051 ^{A,B,C}	_	_	1,40(8) 1,28(5) ^{A,B,C}	_
41 Jg 0 _{7/2}	41 01 1 7/2		5182 977 ^D			0,00051 0,00050 ^D			$1,25(5)^{D}$	
$4f^{14}5g^{-2}G_{0/2}$	$4f^{14}8f^{2}F^{0}_{7/2}$	_	5148,350 ^{A,B,C}	5146.92 ^a	_	0.01775 ^{A,B,C}	0.020^{a}	_	$447(6)^{A,B,C}$	$4.91(6)^{a}$
11 06 09/2	11 01 1 1/2		5183.437 ^D	0110,72		0.01763 ^D	0,020		$4.38(6)^{D}$.,,, 1(0)
4f ¹⁴ 8d ² D _{5/2}	$4f^{14}8f^{2}F^{0}_{7/2}$	_	8637,591 ^{B,C}	_	_	0,53646 ^{B,C}	_	_	$4.80(7)^{B,C}$	_
0/2	112		9684,167 ^D			0,47849 ^D			$3,40(7)^{D}$	
4f146g 2G7/2	$4f^{14}8f^{2}F^{o}_{7/2}$	-	11893,293 ^{B,C}	-	-	0,00977 ^{B,C}	_	_	$4,61(5)^{B,C}$	-
-			13973,836 ^D			0,00831 ^D			$2,84(5)^{D}$	
$4f^{14}6g^{-2}G_{9/2}$	$4f^{14}8f^{-2}F^{0}_{7/2}$	-	11894,567 ^{B,C}	_	-	0,34188 ^{B,C}	-	-	$1,61(7)^{B,C}$	_
14 2	14 2 .		13975,780 ^D			0,29097 ^D			9,94(6) ^D	
4f ¹⁴ 9d ² D _{5/2}	$4f^{14}8f^{-2}F^{0}_{7/2}$	-	33450,398 ^{B,C}	-	-	14,1782 ^{B,C}	-	-	8,45(7) ^{B,C}	-
			57552,450 ⁰			8,24062 ^D			$1,66(7)^{D}$	

Tablo	A.16.	Devam
-------	-------	-------

Geçişler		λ				gf		gA_{ki}		
Alt seviye	Üst seviye	Bu	çalışma	Diğer	Bu	çalışma	Diğer	Bu	çalışma	Diğer
	·	MCHF+BP	HFR	çalışmalar	MCHF+BF	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
$4f^{14}7g^{-2}G_{7/2}$	$4f^{14}8f^{2}F^{o}_{7/2}$	_	92975,686 ^{B,C}	_	-	0,16904 ^{B,C}	_	_	$1,30(5)^{B,C}$	_
$4f^{14}7g^{-2}G_{9/2}$	$4f^{14}8f^{2}F^{o}_{7/2}$	-	93014,688 ^{B,C}	-	-	5,91403 ^{B,C}	-	-	$4,56(6)^{B,C}$	-
$4f^{14}8f^{2}F^{0}_{7/2}$	4f ¹⁴ 10d ² D _{5/2}	-	41052,604 ^{B,C}	-	-	2,13308 ^{B,C}	-	-	$8,44(6)^{B,C}$	-
			27116,632 ^D			3,22933 ^D			$2,93(7)^{D}$	
4f ¹⁴ 5d ² D _{3/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	-	677,341 ^{A,B,C}	677,34 ^a	_	0,11720 ^{A,B,C}	$0,060^{a}$	-	$1,70(9)^{A,B,C}$	$8,71(8)^{a}$
			681,901 ^D			0,11642 ^D			$1,67(9)^{D}$	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}9f^{2}F^{o}_{5/2}$	-	691,105 ^{A,B,C}	691,11 ^a	_	$0,0082^{A,B,C}$	0,004 ^a	-	$1,15(8)^{A,B,C}$	$5,85(7)^{a}$
			698,433 ^D			0,00812 ^D			$1,11(8)^{D}$	
4f ¹⁴ 6d ² D _{3/2}	$4f^{14}9f^{2}F^{o}_{5/2}$	-	1638,753 ^{A,B,C}	1638,75 ^a	_	0,10952 ^{A,B,C}	0,100 ^a	-	$2,72(8)^{A,B,C}$	$2,49(8)^{a}$
			1658,114 ^D			0,10825 ^D			$2,63(8)^{D}$	
4f146d 2D5/2	$4f^{14}9f^{2}F^{0}_{5/2}$	-	1660,136 ^{A,B,C}	1660,14 ^a	-	0,00772 ^{A,B,C}	$0,007^{a}$	-	$1,87(7)^{A,B,C}$	$1,71(7)^{a}$
			1678,800 ^D			0,00764 ^D			$1,81(7)^{D}$	
4f ¹⁴ 7d ² D _{3/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	-	3255,091 ^{A,B,C}	3254,15 ^a	-	0,14082 ^{A,B,C}	0,138 ^a	-	$8,86(7)^{A,B,C}$	$8,66(7)^{a}$
			3298,645 ^D			0,13896 ^D			$8,52(7)^{D}$	
4f ¹⁴ 7d ² D _{5/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	-	3293,525 ^{A,B,C}	3292,58ª	-	0,00994 ^{A,B,C}	0,010 ^a	-	$6,11(6)^{A,B,C}$	$5,97(6)^{a}$
			3334,743 ^D			$0,00982^{D}$			5,89(6) ^D	
$4f^{14}5g^{-2}G_{7/2}$	$4f^{14}9f^{2}F^{0}_{5/2}$	_	4125,719 ^{A,B,C}	4124,56 ^a	_	0,0045 ^{A,B,C}	$0,005^{a}$	_	$1,76(6)^{A,B,C}$	$1,92(6)^{a}$
0			4148,047 ^D			$0,00448^{D}$			$1,74(6)^{D}$,
4f ¹⁴ 8d ² D _{3/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	_	6035,494 ^{B,C}	_	_	0,21124 ^{B,C}	_	_	$3,87(7)^{B,C}$	-
			6528,352 ^D			0,19529 ^D			$3,06(7)^{D}$	
4f ¹⁴ 8d ² D _{5/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	_	6100,946 ^{B,C}	_	_	0,01493 ^{B,C}	_	_	$2,68(6)^{B,C}$	_
5/2	0.2		6605,049 ^D			0,01379 ^D			$2,11(6)^{D}$	
$4f^{14}6g^{-2}G_{7/2}$	$4f^{14}9f^{2}F^{0}_{5/2}$	_	7563,324 ^{B,C}	_	_	0,04157 ^{B,C}	_	_	$4,85(6)^{B,C}$	_
0 112	0.2		8354,196 ^D			0,03764 ^D			$3,60(6)^{D}$	
4f ¹⁴ 9d ² D _{3/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	_	12640,865 ^{B,C}	_	_	0,31921 ^{B,C}	_	_	$1,33(7)^{B,C}$	-
			15016,859 ^D			0,26871 ^D			7,95(6) ^D	
4f ¹⁴ 9d ² D _{5/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	_	12815,419 ^{B,C}	_	_	0,02249 ^{B,C}	_	_	$9,13(5)^{B,C}$	-
			15264,038 ^D			0,01888 ^D			$5,40(5)^{D}$	
$4f^{14}7g^{-2}G_{7/2}$	$4f^{14}9f^{2}F^{0}_{5/2}$	_	16980,382 ^{B,C}	_	_	0,49764 ^{B,C}	_	_	$1,15(7)^{B,C}$	-
0			21563,312 ^D			0,39188 ^D			$5,62(6)^{D}$	
4f ¹⁴ 10d ² D _{3/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	_	40846,319 ^{B,C}	_	_	14,3879 ^{B,C}	_	_	$5,75(7)^{B,C}$	-
			83583,352 ^D			7,03122 ^D			$6,71(6)^{D}$	
4f ¹⁴ 10d ² D _{5/2}	$4f^{14}9f^{2}F^{0}_{5/2}$	_	42057,450 ^{B,C}	_	_	0,99811 ^{B,C}	_	_	$3,76(6)^{B,C}$	-
			88807,818 ^D			0,47268 ^D			$4,00(5)^{D}$	
4f ¹⁴ 5d ² D _{5/2}	$4f^{14}9f^{2}F^{0}_{7/2}$	_	691,053 ^{A,B,C}	691,05 ^a	_	0,16411 ^{A,B,C}	0.084^{a}	_	$2,29(9)^{A,B,C}$	$1,17(9)^{a}$
5/2			698,396 ^D			0,16238 ^D			$2,22(9)^{D}$	
4f ¹⁴ 6d ² D _{5/2}	$4f^{14}9f^{2}F^{0}_{7/2}$	_	1659,837 ^{A,B,C}	1659,84 ^a	_	0,15448 ^{A,B,C}	0,141 ^a	_	3,74(8) ^{A,B,C}	$3,42(8)^{a}$
<i></i>			1678,587 ^D	<i>*</i>		0,15275 ^D	*		$3,62(8)^{D}$	· · · ·
4f ¹⁴ 7d ² D _{3/2}	$4f^{14}9f^{2}F^{0}_{7/2}$	_	3292,349 ^{A,B,C}	3291,40 ^a	_	0,19889 ^{A,B,C}	0,194 ^a	_	$1,22(8)^{A,B,C}$	$1,20(8)^{a}$
			3333,902 ^D			0,19641 ^D			$1,18(8)^{D}$	

Tablo A.16. Devam

Geçişler		λ			gf			gA_{ki}		
Alt seviye	Üst seviye	Bu çalışma		Diğer	Bu çalışma		Diğer	Bu çalışma		Diğer
	-	MCHF+BP	HFR	çalışmalar	MCHF+BP	P HFR	çalışmalar	MCHF+BP	HFR	çalışmalar
4f ¹⁴ 5g ² G _{9/2}	$4f^{14}9f^{2}F^{0}_{7/2}$	-	4124,026 ^{A,B,C}	4122,85 ^a	_	0,00584 ^{A,B,C}	0,006 ^a	_	$2,29(6)^{A,B,C}$	$2,50(6)^{a}$
			4147,041 ^D			0,00581 ^D			$2,25(6)^{D}$	
$4f^{14}8d^{-2}D_{3/2}$	$4f^{14}9f^{2}F^{0}_{7/2}$	_	6096,910 ^{B,C}	-	-	0,29873 ^{B,C}	-	-	$5,36(7)^{B,C}$	_
			6601,752 ^D			0,27588 ^D			$4,22(7)^{D}$	
$4f^{14}6g^{-2}G_{7/2}$	$4f^{14}9f^{2}F^{0}_{7/2}$	-	7557,122 ^{B,C}	-	-	0,00154 ^{B,C}	-	-	$1,80(5)^{B,C}$	-
			8348,923 ^D			0,00139 ^D			1,33(5) ^D	
$4f^{14}6g^{-2}G_{9/2}$	$4f^{14}9f^{-2}F^{0}_{7/2}$	-	7557,637 ^{B,C}	-	-	0,05393 ^{B,C}	_	-	$6,30(6)^{B,C}$	-
14 2	14 2 .		8349,617 ^D			0,04882 ^D			4,67(6) ^D	
$4f^{14}9d^{-2}D_{3/2}$	$4f^{14}9f^{-2}F^{0}_{7/2}$	_	12797,623 ^{в,с}	-	-	0,45043 ^{B,C}	-	-	$1,83(7)^{B,C}$	_
			15246,442 ^D			0,37809 ^D			$1,08(7)^{D}$	
$4f^{14}7g^{-2}G_{7/2}$	$4f^{14}9f^{-2}F^{0}_{7/2}$	-	16949,152 ^{в,с}	-	-	0,01847 ^{в,с}	-	-	4,29(5) ^{B,C}	-
(a)4= 2~	valda a 2-0		21528,212 ^D			0,01454 ^D			2,09(5) ^D	
$4f^{14}7g^{-2}G_{9/2}$	$4f^{14}9f^{-2}F^{0}_{7/2}$	-	16950,448 ^{в,с}	-	-	0,64623 ^{B,C}	-	-	1,50(7) ^{B,C}	-
1 al 4 a 1 2 -	valda a 2-0		21530,949 ^b			0,50875 ^D			7,32(6) ^D	
4f ¹⁴ 10d ² D _{3/2}	$4f^{4}9f^{2}F_{7/2}^{0}$	_	41866,387 ^{B,C}	-	-	20,0534 ^{B,C}	_	-	7,63(7) ^{B,C}	_
			88215,472 ^D			9,51717 ⁰			$8,16(6)^{D}$	

^aBiémont ve çalışma arkadaşları [135]

ÖZGEÇMİŞ

Betül KARAÇOBAN, 25.03.1982 yılında Trabzon'da doğdu. İlk ve orta öğrenimini Şanlıurfa'da, lise öğrenimini Sakarya'da tamamladı. 2000'de Sakarya Üniversitesi Fen-Edebiyat Fakültesi Fizik Bölümü'nü kazandı. 2001'de çift anadal olarak Sakarya Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü'nde öğrenim görmeye başladı. 2003–2004 öğretim yılında Sakarya Üniversitesi Lisans Birincisi olarak mezun oldu. 2004–2006'da Sakarya Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim dalında Yüksek Lisansı bitirdi. 2005 yılında Sakarya Üniversitesi Yen Araştırma Görevlisi olarak çalışmaya başladı. 2006'da Sakarya Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim dalında Doktora çalışmasına başladı. Halen aynı üniversitede Doktora öğrenimine ve görevine devam etmektedir.