T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İKİLİ VE ÜÇLÜ İYONLAŞMIŞ BAZI ASAL GAZLAR (Kr, Xe VE Rn) İÇİN ATOMİK YAPI HESAPLAMALARI

DOKTORA TEZİ

Selda ESER

Enstitü Anabilim Dalı

: FİZİK

Tez Danışmanı

: Prof. Dr. Leyla ÖZDEMİR

Ocak 2018

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İKİLİ VE ÜÇLÜ İYONLAŞMIŞ BAZI ASAL GAZLAR (Kr, Xe VE Rn) İÇİN ATOMİK YAPI HESAPLAMALARI

DOKTORA TEZİ

Selda ESER

: FİZİK Enstitü Anabilim Dalı

......

Bu tez 12/ 01 /2018 tarihinde aşağıdaki jüri tarafından oybirliği/oyçokluğu-ile kabul edilmiştir.

Prof. Dr.

Cabir TERZIOĞLU Jüri Başkanı

Prof. Dr. Yusuf ATALAY Üye

Prof. Dr Leyla ÖZDEMİR

Üye

Üye rd. Doc. Dr. Güldem ÜRER

Erdoğan TARCAN

Üye

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Selda ESER 27.12.2017

TEŞEKKÜR

Bu tez çalışmasında ve tüm lisansüstü eğitimim boyunca bilgi ve deneyimleri ile mesleki bakış açımın gelişmesinde emeği geçen, bilgi ve desteğini esirgemeyen, kişiliğini ve mesleğine olan hakimiyetini örnek aldığım değerli hocam Prof. Dr. Leyla ÖZDEMİR'e saygı ve teşekkürlerimi sunarım.

Bu süreçte bilgi ve deneyimlerini esirgemeyen, motivasyonumu hep yüksek tutmamı sağlayan ve destek olan değerli hocalarım Yrd. Doç. Dr. Betül USTA'ya, Yrd. Doç. Dr. Güldem ÜRER'e ve değerli arkadaşım Arş. Gör. Dr. Gülay GÜNDAY KONAN'a teşekkür ederim.

Doktora öğrenimim süresince 2211-Yurt İçi Doktora Burs Programı kapsamında sağladığı destekten ötürü TÜBİTAK Bilim İnsanı Destekleme Dairesi Başkanlığı'na teşekkür ederim.

Bir insan, başka biri için bu kadar fedakarlığı nasıl yapar diye beni düşündüren ve bunun cevabının 'Annelik' olduğunu düşündüğüm, içinde bulunduğu her müşkül durumda yine önceliği biz olan annem Sacide KABAKÇI'ya, her zaman arkamda dimdik duran, varlığını ve desteğini hep hissettiren, varlığının bana güç verdiği babam Hamit KABAKÇI'ya, bazen benim için ikinci bir baba olan abim Serdar KABAKÇI'ya her sıkıntılı anımda yanımda oldukları, beni sevgiyle, şefkatle, sabırla bugünlere getirdikleri, maddi ve manevi olarak hep yanımda oldukları için teşekkür ederim. Bu süreçte bana olan inancıyla, desteğiyle ve sabrıyla hep yanımda olan, sevgi dolu yüreğiyle beni saran, varlığından güç aldığım ve varlığıyla hayata daha güzel baktığım, hayat arkadaşım, can yoldaşım ve hep iyikilerimde olan eşim Ahmet Turan ESER'e teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
KISALTMALAR LİSTESİ	iv
ŞEKİLLER LİSTESİ	v
TABLOLAR LİSTESİ	vi
ÖZET	x
SUMMARY	xi

BÖLÜM 1.

GİRİŞ	1

BÖLÜM 2.

HESAPLAN	1A YÖNTEMİ	5	
2.1.	N-Elektronlu Sistem İçin Relativistik Olmayan Atomik		
	Hamiltonyen	5	
2.2.	Korelasyon Etkileri ve Konfigürasyon Etkileşimleri	6	
2.3.	Radyal Fonksiyonlar		
2.4.	Hamiltonyen Matris Elemanları		
2.5.	N-elektronlu Sistem için Relativistik Atomik Hamiltonyen (Dirac		
	Hamiltonyeni ve Çok Konfigürasyonlu Dirac-Fock Yöntemi)	11	
	2.5.1. Relativistik yörüngeler ve relativistik dalga fonksiyonları	13	
	2.5.2. Konfigürasyon hal fonksiyonları (CSF)	14	
	2.5.3. Atomik hal fonksiyonları (ASF)	15	
2.6.	Breit ve QED Düzeltmeleri	16	
	2.6.1. Breit etkileşimi	16	
	2.6.2. QED etkileri	17	

2.7.	Işımalı Geçişler		19
BOLUM 3.			
HESAPLAN	IA SON	UÇLARI VE TARTIŞMA	25
3.1.	İkili İyonlaşmış Kripton (Kr III), Ksenon (Xe III) ve Radon (Rn		
	III) İçi	n Enerji Seviyeleri ve Işımalı Geçiş Hesaplamaları	26
	3.1.1.	Enerji seviye hesaplamaları	26
	3.1.2.	Elektrik dipol (E1) geçiş hesaplamaları	38
	3.1.3.	Elektrik kuadrupol (E2) ve manyetik dipol (M1) geçiş	
		hesaplamaları	46
3.2.	Üçlü İy	yonlaşmış Kripton (Kr IV), Ksenon (Xe IV) ve Radon (Rn	
	IV) İçi	n Enerji Seviye ve Işımalı Geçiş Hesaplamaları	56
	3.2.1.	Enerji seviye hesaplamaları	56
	3.2.2.	Elektrik dipol (E1) geçiş hesaplamaları	68
	3.2.3.	Elektrik kuadrupol (E2) ve manyetik dipol (M1) geçiş	
		hesaplamaları	74
BÖLÜM 4.			
SONUÇ VE ÖNERİLER			86
KAYNAKL	AR		89
EKLER			95
ÖZGEÇMİŞ	5		115

KISALTMALAR LİSTESİ

ASF	:	Atomik hal foksiyonu (Atomic State Function)
CC	:	Öz-öz (Core-core)
CI	:	Konfigürasyon etkileşimi (Configuration Interaction)
CSF	:	Konfigürasyon hal fonksiyonu (Configuration State Function)
CV	:	Öz-valans (Core-valans)
E1	:	Elektrik dipol
E2	:	Elektrik kuadrupol
EAL	:	Genişletilmiş ortalama seviye (Extended Average Level)
GRASP	:	Genel amaçlı relativistik atomik yapı paketi (General-purpose
		Relativistic Atomic Structure Program)
HFR	:	Relativistik Hartree-Fock (Relativistic Hartree-Fock)
HXR	:	Relativistik istatistiksel takas (Relativistic-Hartree-plus-statistical-
		exchange)
NIST	:	National Institute of Standards and Technology's web site
MCDF	:	Çok Konfigürasyonlu Dirac-Fock (Multiconfiguration Dirac-Fock)
M1	:	Manyetik dipol
QED	:	Kuantum elektrodinamik (Quantum Electrodynamic)
Ry	:	Rydberg
SOC	:	Konfigürasyonların süperpozisyonları (Superposition of
		configurations)
STO	:	Slater tipi yörüngemsi (Slater-type orbital)
VV	:	Valans-valans (valance-valance)

ŞEKİLLER LİSTESİ

Şekil 3.1.	Kr III iyonuna ait enerji seviyelerinin diğer çalışmalar ile	
	karşılaştırılması	30
Şekil 3.2.	Xe III iyonuna ait enerji seviyelerinin diğer çalışmalar ile	
	karşılaştırılması	35
Şekil 3.3.	Rn III iyonuna ait enerji seviyelerinin diğer çalışmalar ile	
	karşılaştırılması	38
Şekil 3.4.	Kr III iyonu için E1 geçişlerine ait dalga boyu değerlerinin diğer	
	çalışmalar ile karşılaştırılması	41
Şekil 3.5.	Xe III iyonu için M1 geçişlerine ait geçiş olasılığı değerlerinin	
	diğer çalışmalar ile karşılaştırılması	53
Şekil 3.6.	Kr IV iyonuna ait enerji seviyelerinin diğer çalışmalar ile	
	karşılaştırılması	60
Şekil 3.7.	Xe IV iyonuna ait enerji seviyelerinin diğer çalışmalar ile	
	karşılaştırılması	65
Şekil 3.8.	Rn IV iyonuna ait enerji seviyelerinin diğer çalışmalar ile	
	karşılaştırılması	68
Şekil 3.9.	Kr IV iyonu için M1 geçişlerine ait geçiş olasılığı değerlerinin	
	diğer çalışmalar ile karşılaştırılması	79
Şekil 3.10.	Rn IV iyonu için M1 geçişlerine ait geçiş olasılığı değerlerinin	
	diğer çalışmalar ile karşılaştırılması	85

TABLOLAR LİSTESİ

Tablo 1.1.	Kripton, ksenon ve radon atomlarının ikili ve üçlü iyonlaşmış halleri	
	için enerji ve ışımalı geçiş parametrelerine ait literatürdeki mevcut	
	çalışmalar	4
Tablo 3.1.	Kr III iyonu için yapılan hesaplamalarda kullanılan konfigürasyon	
	setleri	26
Tablo 3.2.	Kr III'ün enerji seviyeleri (Rydberg). E ⁰ : MCDF enerjisi, E ¹ : Breit	
	katkıları, E ² : QED katkıları, E _T = $E^0+E^1+E^2$	28
Tablo 3.3.	Xe III iyonu için yapılan hesaplamalarda kullanılan konfigürasyon	
	setleri	31
Tablo 3.4.	Xe III'ün enerji seviyeleri (Rydberg). E ⁰ : MCDF enerjisi, E ¹ : Breit	
	katkıları, E ² : QED katkıları, E _T = $E^0+E^1+E^2$.	32
Tablo 3.5.	Rn III iyonu için yapılan hesaplamalarda kullanılan konfigürasyon	
	setleri	36
Tablo 3.6.	Rn III'ün enerji seviyeleri (Rydberg). E ⁰ : MCDF enerjisi, E ¹ : Breit	
	katkıları, E ² : QED katkıları, E _T = $E^0+E^1+E^2$	36
Tablo 3.7.	Kr III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ),	
	geçiş olasılığı (A _{ji}), logaritmik ağırlıklı salınıcı şiddeti (Log (gf)),	
	çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının oranı	
	ve karşılaştrıma değerleri	39
Tablo 3.8.	Kr III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu, (λ) ,	
	geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı	
	şiddetinin uzunluk-hız formlarının oranı	39
Tablo 3.9.	Xe III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ),	
	geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı	
	şiddetinin uzunluk-hız formlarının oranı	42

Tablo 3.10.	Rn III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ),	
	geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı	
	şiddetinin uzunluk-hız formlarının oranı	45
Tablo 3.11.	Kr III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(fij), çizgi şiddeti (Sij) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı ve karşılaştırma değerleri	47
Tablo 3.12.	Kr III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(fij), çizgi şiddeti (Sij) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı	48
Tablo 3.13.	Xe III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(fij), çizgi şiddeti (Sij) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı ve karşılaştırma değerleri	50
Tablo 3.14.	Xe III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı	51
Tablo 3.15.	Rn III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının	
	oranı ve karşılaştırma değerleri	54
Tablo 3.16.	Rn III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(fij), çizgi şiddeti (Sij) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı	54
Tablo 3.17.	Kr IV iyonu için yapılan hesaplamalarda kullanılan konfigürasyon	
	setleri	57
Tablo 3.18.	Kr IV'ün enerji seviyeleri (Rydberg) E ⁰ : MCDF enerjisi, E ¹ : Breit	
	katkıları, E ² : QED katkıları, $E_T = E^0 + E^1 + E^2$.	58

Tablo 3.19.	Xe IV iyonu için yapılan hesaplamalarda kullanılan konfigürasyon setleri
Tablo 3.20.	Xe IV'ün enerji seviyeleri (Rydberg). E^0 : MCDF enerjisi, E^1 : Breit katkıları, E^2 : QED katkıları, $E_T = E^0 + E^1 + E^2$.
Tablo 3.21.	Rn IV iyonu için yapılan hesaplamalarda kullanılan konfigürasyon setleri
Tablo 3.22.	Rn IV'ün enerji seviyeleri (Rydberg). E^0 : MCDF enerjisi, E^1 : Breit katkıları, E^2 : QED katkıları, $E_T = E^0 + E^1 + E^2$.
Tablo 3.23.	Kr IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), ağırlıklı salınıcı şiddeti (gfx10), çizgi şiddeti (S _{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının oranı ve karşılaştrıma değerleri
Tablo 3.24.	Kr IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının oranı
Tablo 3.25.	Xe IV iyonu için elektrik dipol geçişlerine (E1) ait dalga boyu (λ), geçiş olasılığı (A _{ji}), logaritmik ağırlıklı salınıcı şiddeti (Log (gf)), çizgi şiddeti (S _{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının oranı ve karsılastırma değerleri.
Tablo 3.26.	Xe IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı siddetinin uzunluk-hız formlarının oranı
Tablo 3.27.	Rn IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı siddetinin uzunluk-hız formlarının oranı
Tablo 3.28.	Kr IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti (f _{ij}), çizgi şiddeti (S _{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının
	oranı ve karşılaştırma değerleri

Tablo 3.29.	Kr IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı	77
Tablo 3.30.	Xe IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı ve karşılaştırma değerleri	80
Tablo 3.31.	Xe IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı	80
Tablo 3.32.	Rn IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı ve karşılaştırma değerleri	83
Tablo 3.33.	Rn IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1)	
	geçişlerine ait dalga boyu (λ), geçiş olasılığı (A _{ji}), salınıcı şiddeti	
	(f_{ij}) , çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hız formlarının	
	oranı	83

ÖZET

Anahtar kelimeler: MCDF yöntemi, korelasyon, Breit etkileşmeleri, kuantum elektrodinamik (QED), geçişler

Bu çalışmada, ikili ve üçlü iyonlaşmış kripton (Z=36), ksenon (Z=54) ve radon (Z=86) iyonlarına ait enerji seviyeleri ve bu seviyeler arasındaki elektrik dipol (E1), elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyları, geçiş olasılıkları, salınıcı şiddetleri ve çizgi şiddetleri gibi ışımalı geçiş parametreleri hesaplanmaktadır. Bu hesaplamalar tamamen relativistik çok konfigürasyonlu Dirac-Fock (MCDF) yöntemini temel alan genel amaçlı relativistik atomik yapı paketi (GRASP) kullanılarak yapılmaktadır. Yapılan hesaplamalarda valans-valans (VV), öz-valans (CV) ve öz-öz (CC) korelasyon etkilerinin yanısıra kuantum elektrodinamik (QED) katkılar (öz-enerji ve vakum polarizasyonu) ve relativistik Breit etkileşimleri (elektronlar arası manyetik etkileşim ve elektron-elektron etkileşiminin gecikme etkileri) de dikkate alınmaktadır.

İlk bölümde incelenen iyonların, asal gazların ve atomik yapı hesaplamalarının özellikleri ile bu iyonlar ile ilgili yapılmış mevcut çalışmalar; ikinci bölümde MCDF yöntemi ile ilgili teorik bilgiler; üçüncü bölümde yapılan hesaplamalar sonucunda elde edilen atomik veriler sunulmaktadır. Bu sonuçlar daha önce sunulmuş olan deneysel ve teorik verilerle karşılaştırılmış ve aralarında iyi bir uyum olduğu görülmektedir. Özellikle öz-öz (CC) korelasyonu, Breit düzeltmeleri ve QED katkıları hesaba katıldığında, sonuçların çok daha iyi uyumlu hale geldiği görülmektedir.

ATOMIC STRUCTURE CALCULATIONS FOR DOUBLY AND TRIPLY IONIZED SOME NOBLE GASES (Kr, Xe AND Rn)

SUMMARY

Keywords: MCDF method, correlation, Breit interactions, quantum electrodynamic (QED), transitions

In this study, energy levels and radiative transition parameters such as wavelengths, transition rates (or probabilities), oscillator strengths and line strengths for the electric dipole (E1), electric kuadrupole (E2) and magnetic dipole (M1) transitions between energy levels have been calculated for doubly and triply ionized krypton (Z=36), xenon (Z=54) and radon (Z=85) atoms. These calculations have been performed using the general-purpose relativistic atomic structure package (GRASP) based on fully relativistic multiconfiguration Dirac-Fock (MCDF) method. In the calculations, Breit corrections (magnetic interaction between the electrons and retardation effects of the electron-electron interaction), and QED (self-energy and vacuum polarization), and various correlation (valence-valence, core-valence, and core-core) contributions have been considered.

In the first chapter, the properties of ions, inert gases and atomic structure calculations, and current studies on these ions have been reported. In the second chapter, theoretical information have been given about multiconfiguration Dirac-Fock (MCDF) method. In the third chapter, the atomic data obtained as a result of calculations are presented. These results are compared with the experimental and theoretical data presented earlier and it seems that there is a good agreement between them. Particularly, when the corecore, CC, correlation, Breit corrections and QED contributions are taken into account, the results seem to be much better.

BÖLÜM 1. GİRİŞ

Asal gazlar, periyodik tablonun en son grubunda bulunan elementlerdir. Bu grubu oluşturmaları diğer element gruplarında olduğu gibi birbirleriyle benzer özelliklere sahip olmalarından kaynaklanmaktadır. Asal gazların tümü renksiz, kokusuz ve tek atomlu gaz halinde bulunan elementlerdir. Elektron konfigürasyonlarında en dış yörüngelerinin tamamen dolu olmasından dolayı çok kararlı bir yapıya sahiptirler ve tepkimelere eğilimleri de çok düşüktür. Altıncı asal gaz olan radon çekirdeği ise dayanıksız olan radyoaktif bir elementtir ve tüm izotopları radyoaktiftir (maksimum yarı ömrü birkaç gündür ve U-Th bozunma zincirinde yeni ürün olarak doğada mevcuttur). Asal gazlardan daha çok iyonlaşmış neon, argon, kripton ve ksenon ile ilgili çalışmalar, bazı lazer geçişleri için uyarılma mekanizmalarının analizinde ve yayınlanan ışınımın spektroskopik çalışmalarını oluşturmaktadır. İyonize olmuş asal gazlar (pozitif yüklü iyonlar), birçok astronomik spektrumda tespit edilmektedir. İyonize olmuş asal gazlara ait atomik veriler, astrofiziksel ve laboratuvar plazmaların spektroskopilerinde, elementlerin bolluğunun hesaplanmasında, yıldız atmosferlerinin modellenmesinde, lazer fiziğinde, endüstriyel araştırmalarda, gezegen bilimi ve daha genel olarak tüm laboratuvar plazma uygulamalarında büyük öneme sahiptir. Maliyetlerinin yüksek olmasına rağmen, elektronik ve cam elyaftan aydınlatmaya, otomotive kadar birçok alanda endüstrinin de bu gazlara olan ilgisi artmaktadır (Peláez ve ark., 2006; Peláez ve ark., 2012).

İki kez iyonlaşmış atomlar, reaksiyona girme özelliklerinin yüksek olmasından dolayı önemli bir role sahiptir ve bu özelliklerinden dolayı büyük ilgi çekmektedirler. Bu tür iyonların özelliklerinin araştırılması için, biçok deneysel teknik mevcuttur. Çeşitli yöntemlerin yanı sıra, Auger, optik, ikili yük geçişi ve yük ayrılma spektroskopileri bu teknikler arasındadır. İki kez iyonize olmuş atomik katyonlar, birçok deneysel ve teoriksel çalışmada incelenmiştir. Yoğunluk dağılımındaki bazı anormallikler dışında, en dıştaki iki p elektronunun atomdan ayrılmasıyla oluşan bu iyonların düşük enerjili spektrum bölgelerindeki temel halleri iyi anlaşılmaktadır. Bu durumda yeni yöntemlerin test edilmesi ve kalibrasyonu için bu iyonları ideal kılar. Kuvvetli konfigürasyon etkisi çoğunlukla elektronik hallerin belirlenmesinde etkilidir (Pernpointner ve ark., 2012).

Atomik veriler, doğru plazma modellemesi yapabilmek için astrofizik ve plazmalarda taşımaktadır. Spektrum çizgilerinin şiddetlerini ve seviye büyük önem popülasyonlarını hesaplayabilmek için birçok ışımalı geçiş ve elektron çarpışma şiddetlerine gereksinim duyulmaktadır. Bu parametreler yayılmakta olan bir plazmanın yoğunluk ile sıcaklığının ve plazmadaki elementlerin bolluğunun tesbitine olanak sağlamaktadır (Elabidi, 2012). Enerji seviyeleri, salınıcı şiddetleri, geçiş olasılıkları ve yarı ömür gibi değişik atomik parametreler astrofiziksel uygulamalarda çok önemlidir. Hem izinli hem yasaklı geçişlere ait geçiş olasılıklarının doğru olarak biliniyor olması, yıldızların ve bulutsuların fiziksel şartlarının ve kimyasal bileşenlerinin doğru tahmin edilmesi için önemlidir (Charro ve ark., 2000). Manyetik dipol çizgileri ve bunlara ait veriler genellikle sıcaklık ya da yoğunluğun belirlenebilmesi için kullanılmaktadır (Biémont ve Hansen, 1986). Temel hal konfigürasyonları arasındaki yasaklı geçişler, uzun dalga boylarına sahip olması nedeniyle spektroskopik çalışmalara uygun hale geldiği için özellikle önemlidir (Saloman ve Kim., 1989). İyonize olmuş asal gazların salınıcı şiddetlerinin biliniyor olması, plazma tanılamalarında, yıldız bolluğunun belirlenmesinde, atmosfer modellemede ve lazer fiziği gibi alanlarda çok önemlidir (Bredice ve ark., 2000).

Kripton (Z=36) enerji tasarrufu sağlayan pencerelerde önemli bir kullanım alanına sahiptir. Düşük ısı iletkenliğine sahip olması yalıtım etkinliğini artırdığı için yalıtılmış cam levhalar arasında dolgu gazı olarak kullanılır. Gezegen bulutsuların spektrumlarının araştırmasına dayanarak, Z>32 olan elementlerden evrende bolluğu en fazla olan kriptondur. Ayrıca kripton yıldızlar arası spektrumlarda da tespit edilmiştir. Fotoğraf makinelerinin flaş lambalarında, florasan ampullerde ve deşarj tüplerinde kullanılır. Ayrıca kripton birçok ışık kaynağında ve lazerlerde çalışma gazı olarak kullanılır. Tekli iyonlaşmış kripton (Kr II) ve ikili iyonlaşmış kripton (Kr III)

iyonlarına ait spektrum çizgileri, plazma teşhisi için oldukça önemlidir (Djeniže ve ark., 2003). Ksenon (Z=54), lazer gelişiminin başlangıcından beri lazerlerin ve lazer tekniklerinin gelişmesinde önemli bir role sahiptir. Zengin emisyon spektrumundan dolayı ksenon, yalnızca lazer arastırmalarında önemli bir unsur olmakla kalmayıp aynı zamanda ısık kaynakları ve lamba gelişimi gibi daha geniş alanlarda da büyük önem taşır. İkili iyonlaşmış ksenon (Xe III) astrofizikte de önemli bir yere sahiptir. Örneğin, bulutumsu gezegen NGC 7027'de var olduğu belirlenmiştir (Seidel ve ark., 2001; Peláez ve ark., 2006; Peláez ve ark., 2009). Diğer tüm asal gazlar atmosferde bulunuyorken radon (Z=86), radyumun radyoaktif parçalanmasıyla elde edilen radyoaktif özelliğe sahip bir asal gaz elementidir. İkili ve üçlü iyonlaşmış radon için enerji seviyeleri, yarı ömür ya da geçiş parametreleri ile ilgili veriler çok azdır. Radon, bazı kanser hastalıklarında ve ışın tedavilerinde kullanılmaktadır (Biémont ve Quinet, 1996). Asal gazların bazı çoklu iyonlaşmış hallerinin seviye enerjileri hala belirsizdir ve teorik çalışmalar da oldukça dağınıktır. Özellikle radon için bu çalışmalar oldukça azdır (Pernpointner ve ark., 2012). Tablo 1.1.'de ikili ve üçlü iyonlaşmış kripton, ksenon ve radon için daha önce yapılan ve literatürde mevcut çalışmalar verilmektedir.

Bu çalışmada, tamamen relativistik çok konfigürasyonlu Dirac-Fock (MCDF) yöntemini temel alan genel amaçlı relativistik atomik yapı paketi (GRASP) kullanılarak, asal gazların son üç üyesi olan Kr (Z=36), Xe (Z=54) ve Rn (Z=86) atomlarının ikili ve üçlü iyonlaşmış hallerinin (Kr III-IV, Xe III-IV ve Rn III-IV) atomik yapı hesaplamaları incelendi. İki kez ve üç kez iyonlaşmış kripton, ksenon ve radon atomlarına ait iyonlar (Kr III-IV, Xe III-IV ve Rn III-IV) için enerji seviyeleri, bu seviyeler arasındaki elektrik dipol (E1), elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı gibi geçiş parametreleri incelendi. Bu hesaplamalarda öncelikle çeşitli korelasyon etkilerinin (valans-valans, öz-valans ve öz-öz) hesaplama sonuçlarına etkisi çalışıldı. Daha sonra kuantum elektrodinamik etkileri (QED- öz enerjisi ve vakum polarizasyonu) ve Breit düzeltmeleri (elektronlar arasındaki manyetik etkileşim ve elektron-elektron etkileşiminin geciktirme etkileri) bir katkı olarak hesaba katıldı.

İyon	Enerji Seviyeleri	Işıma Parametreleri
Kr III	NIST	Boyce, 1935
	Garstang, 1964	Humphreys, 1935
	Biémont ve Hansen, 1986	Osterbrock, 1951
	Bredice ve ark., 1988	Garstang, 1963
	Sugar ve Musgrove, 1991	Fink ve ark., 1970
	Kilin ve ark., 1995	Coetzer ve ark., 1982
	Reyna Almandos ve ark., 1996	Biémont ve Hansen, 1986
	Saloman, 2007	Kernahan ve ark., 1987
	Sterling ve ark., 2011	Bredice ve ark., 1988
		Calamai ve Johnson, 1992
		Ehresmann ve ark., 1995
		Raineri ve ark., 1998
		Djeniže ve ark., 2003
		Sterling, 2011
17 117	NHOT	Eser ve Ozdemir, 2018
KrIV	NISI Demographics Dettemographics 1084	Boyce, 1935 Balankaawara Baa ya Krishnamurtu, 1020
	Persson ve Pettersson, 1984	Livingston 1076
	Sugar va Muagrava, 1001	Elvingston, 1970
	Davna Almandos va ark 1008	O'Sullivan 1088
	Saloman 2007	Bradica va ark 2000
	Sterling 2011	Biémont ve Hansen 1986
	Andersson ve ark 2012	Luve ark 2006
	Rauch ve ark 2016	Sterling 2011
Xe III	NIST	Humpreys 1939
At III	Gallardo ve ark 1979	Osterbrock 1951
	Persson ve ark. 1988	Garstang, 1964
	Walch and Knight, 1988	Gallardo ve ark., 1979
	Biémont ve ark., 1995	Coetzer ve Westhuizen, 1980
	Bolognesi ve ark., 2000	Hansen ve Persson, 1982
	Saloman, 2003	Hansen ve ark., 1983
	Dzuba ve Flambaum, 2007	Persson ve ark., 1988
	Pernpointner ve ark., 2012	Calamai ve Johnson, 1992
	Schippers ve ark., 2014	Biémont ve ark., 1995
	Eser ve Özdemir, 2017	Ehresmann ve ark., 1998
		Bertuccelli ve ark., 2000
		Reyna Almandos ve ark., 2009
		Eser ve Özdemir, 2017
		Eser ve Ozdemir, 2018
Xe IV	NIST	Di Rocco ve ark., 1986
	Tauheed ve ark., 1993	Reyna Almandos ve ark., 1990
	Gallardo ve ark., 1995	Calamai ve Johnson, 1992
	Biémont ve ark., 1995	Biemont ve ark., 1995
	Dzuba ve Flambaum, 2007	Gallardo ve ark. 1995
	Schipper ve ark., 2014	Bertuccelli ve ark., 2000
		Kaineri ve ark., 2008
D _m III	Diámont vo Quinat 1000	Reyna Almandos ve ark., 2009
KII 111	Bernpointner ve ark 2012	Eser ve Özdemir 2018
Dn IV	Riémont ve Quinet 1006	Riémont ve Ouinet 1006
	Diemonit ve Quinet, 1990	Diemonit ve Quinet, 1990

Tablo 1.1. Kripton, ksenon ve radon atomlarının ikili ve üçlü iyonlaşmış halleri için enerji ve ışımalı geçiş parametrelerine ait literatürdeki mevcut çalışmalar

BÖLÜM 2. HESAPLAMA YÖNTEMİ

2.1. N-Elektronlu Sistem İçin Relativistik Olmayan Atomik Hamiltonyen

Kuantum mekaniğine göre, N-elektronlu kararlı haldeki bir atom $\psi(q_1,...,q_N)$ dalga fonksiyonu ile tanımlanır. Burada, $q_i = (r_i, \sigma_i)$ bir *i*. elektronun uzay ve spin koordinatlarını temsil eder. Dalga fonksiyonu uzay değişkenlerine göre sürekli kabul edilir ve

$$H\psi(q_1,...,q_N) = E\psi(q_1,...,q_N)$$
(2.1)

denkleminin çözümünden elde edilir. Burada H, atomik sistemin Hamiltonyen işlemcisidir. Dalga denklemi, sadece belirli E değerleri için çözümleri olan bir özdeğer problemidir. Bu değerler, sistemin toplam enerjisinin mümkün değerlerini temsil ederler ve Hamiltonyen işlemcisinin özdeğerleri olarak bilinirler. H Hamiltonyen işlemcisi kuantum mekaniksel yapıya bağlı olduğu kadar atomik sistemlere de bağlıdır. Relativistik olmayan hesaplamalarda normal başlangıç noktası Schrödinger denklemidir ve atomik birimlerde

$$H = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right) + \sum_{i>j}^{N} \frac{1}{r_{ij}}.$$
(2.2)

olarak ifade edilmektedir. Burada Z atomun çekirdek yükü, r_i , *i*. elektronunun çekirdeğe olan uzaklığı ve r_{ij} , *i* ve *j* elektronları arasındaki mesafedir. Hamiltonyen, atomik çekirdeğin sonsuz kütleli bir nokta yük gibi davrandığı ve relativistik etkilerin ihmal edildiği varsayımları çerçevesinde geçerlidir (Fischer ve ark., 1997).

2.2. Korelasyon Etkileri ve Konfigürasyon Etkileşimleri

Salınıcı şiddeti, geçiş olasılığı ve ince yapı etkileri gibi hesaplamaların doğru yapılabilmesi için elektron korelasyonlarının dikkate alınması çok önemlidir. Elde edilen veriler relativistik etkiler, çekirdeğin sonlu kütlesi ve hacmi gibi önemli etkileri içeriyor olmasına rağmen bunlar hafif atomlar için çok küçük katkılardır. Böyle sistemlerde Schrödinger denklemine kesin çözüm için yapılan yaklaşımlarda tutarsızlıklar ortaya çıkmaktadır. Bu tutarsızlıkların asıl nedeni, elektronların birbirleriyle karşılıklı etkileşmeleridir (korelasyon). Her elektronun, diğer elektronlar tarafından oluşturulan alanda bağımsız olarak hareket ettiği kabul edilir. Bu nedenle, Löwdin (1955)'in tanımladığı enerjideki hata, korelasyon enerjisidir (Fischer ve ark., 1997).

Genellikle farklı seviyeler arasındaki enerji ayrılmalarının belirlenmesi için çalışılmaktadır. Böyle bir durumda ilk yaklaşım, içteki kapalı altkabukları etkisiz olarak tanımlar ve sadece dıştaki ya da valans (değerlik) elektronları arasındaki korelasyon düsünülür. Bu valans korelasyonu olarak isimlendirilir. Bunun için gerekçe özdeki korelasyon enerjisidir bu enerji mutlak anlamda büyük olsa da, aynı elementin farklı iyonlarındaki terimler için ya da verilen bir iyondaki farklı terimler için büyük oranda iptal olur. Fakat öz dışında kalan elektronların varlığı öz üzerinde bir etkiye sahiptir. İlk elektron, çekirdeği oldukça kutuplaştırılabilir fakat bu kutuplaşma, iki elektronun birbirinden kaçmayı deneyeceği ve özün birbirine zıt taraflarında olmayı tercih edecekleri için ikinci elektron tarafından azaltılır. Bu da dielektronik polarizasyon olarak isimlendirilir. Polarizasyon etkisi, dışarıdaki elektronlar ile öz arasındaki korelasyonu yani öz-valans korelasyonunu temsil etmektedir. Genellikle birkaç valans elektronu için eğer öz-valans korelasyonu içeriliyorsa enerji yarılmaları oldukça iyileştirilir. Öz-valans korelasyonu, a ve b öz valans yörüngeleri için $ab \rightarrow vv'$ değişiminin sıfırıncı dereceden dalga fonksiyonunundan yörünge değişimleri ile elde edilen CSF'ler ile temsil edilmektedir. Bu korelasyonların varlığı özün sabit olması ile birlikte enerjiyi azaltmaktadır. Fakat öze kabuktaki elektronların bağlanmasını artırmaktadır.

Çok elektronlu bir sistemde sıfırıncı dereceden dalga fonksiyonu genel olarak ψ_0 ile gösterilir. Fakat birçok atomik özellik için birinci dereceden düzeltme daha önemli olabilmektedir. Genel olarak birinci dereceden düzeltme, birinci dereceden düzeltmelerin lineer kombinasyonu olarak alınır. Bu dejenere olmayan durumların detaylıca incelenmesi için yeterlidir. $\psi_0 = |\gamma LS\rangle$ şeklindedir ve burada $\gamma LS = (nl)\upsilon LS$ 'dir. Konfigürasyon hal fonksiyonlarının γLS ile etkileşimi iki türlüdür: Biri tek bir elektron tarafından oluşan farklılık diğeri ise iki elektron tarafından oluşturulan farklılıktır. Birincisi daha alt bölümlere ayrılabilir. İki elektronun farklılığından dolayı oluşan CSF'ler üzerinden toplamlar sınıflandırılabilir. $(nl)\upsilon LS$ durumundaki dolu yörüngeler $\{a, b, c, ...\}$ olsun ve $\{\upsilon, \upsilon'...\}$ 'da dolu olmayan ya da sanal yörüngeler olsun. $ab \rightarrow \upsilon \upsilon'$ çift değişimi ψ_1 için olan açılımda bir CSF oluşturur ve bu durum farklı korelasyon etkilerine göre sınıflandırılır (Fischer ve ark., 1997):

- a. ab en dış yörüngedeki elektronlar ise valans korelasyonunu temsil eder.
- b. a iç yörüngeye ait, b dış yörüngeye ait elektronlar ise öz–valans korelasyonunu temsil eder.
- c. Her iki elektron da öz yörüngelerinden ise öz-öz korelasyonunu temsil eder.

Korelasyon etkisinin dahil edilebilmesi için konfigürasyon etkileşimi (CI) yöntemi, spin yörüngemsilerden oluşturulmuş konfigürasyon durum fonksiyonlarının (CSF'ler) lineer bileşimi olan bir varyasyonel dalga fonksiyonu kullanır. Tam CI açılımı, tek parçacıklı temel setin kapsadığı uzayda Schrödinger denkleminin çözümü olan uygun simetrili tüm CSF'leri içerir. LS çiftlenim modelinde CI dalga fonksiyonu

$$\Psi(LSJ) = \sum_{i=1}^{M} a_i \Phi_i(\alpha_i LSJ)$$
(2.3)

ya da LSJ çiftlenimine göre

$$\Psi(J\Pi) = \sum_{i=1}^{M} a_i \Phi_i(\alpha_i L_i S_i J\Pi)$$
(2.4)

şeklindedir. Burada Π durumların paritesidir.

2.3. Radyal Fonksiyonlar

Radyal fonsiyonlar Slater-tipi yörüngemsilerin (STO) bir lineer kombinasyonu olarak verilmektedir:

$$P_{nl}(r) = \sum_{j=1}^{k} C_{jnl} \chi_{jnl}(r).$$
(2.5)

Burada χ_{jnl} 'nin açılımı

$$\chi_{jnl}(r) = \frac{(2\xi_{jnl})^{I_{jnl+1/2}}}{[(2I_{jnl})!]^{1/2}} r^{I_{jnl}} \exp(-\xi_{jnl}.r)$$
(2.6)

şeklindedir. Ayrıca STO'ler ortonormallik koşulunu sağlayacak şekilde seçilirler:

$$\int_{0}^{\infty} P_{nl}(r) P_{n'l}(r) dr = \delta_{nn'} \,. \qquad (l < n' \le n)$$
(2.7)

 I_{jnl} ve ξ_{jnl} verilen değerleri için k = n - l ise C_{jnl} katsayıları tek olarak belirlidir. Eğer k > n - l ise bazı katsayılar varyasyonel parametre gibi davranabilmektedir diğerleri ise serbestçe değişebilmektedir. Genel olarak, I_{jnl} 'ler sabit tamsayılar olarak seçilirler. Böylece varyasyonel parametreler ξ_{jnl} 'lerin ve bazı C_{jnl} 'lerin kuvveti şeklindedir. Böyle radyal dalga fonksiyonlarını kullanarak hamiltonyen matrisindeki radyal integraller hesaplanabilir (Mohan ve ark., 2013).

2.4. Hamiltonyen Matris Elemanları

Konfigürasyon etkileşim dalga fonksiyonu, Hamiltonyen matrislerinin oluşumundaki önemli aşamalardan biridir ve genel olarak

$$H_{rs}^{DC} = \left\langle \gamma_r P J M \left| \hat{H}^{DC} \right| \gamma_s P J M \right\rangle$$
(2.8)

şeklinde yazılmaktadır. Bu denklemdeki matris elemanları, radyal integraller ve açısal katsayılar cinsinden ifade edilebilir. Tek-cisim etkileşimleri, I(ab) integrallerini verir:

$$I(ab) = \delta_{\kappa_{a}\kappa_{b}} \int_{0}^{\infty} dr \Big[c(Q_{n_{a}\kappa_{a}}(r)P_{n_{b}\kappa_{b}}'(r) - P_{n_{a}\kappa_{a}}(r)Q_{n_{b}\kappa_{b}}'(r)) - 2c^{2}Q_{n_{a}\kappa_{a}}Q_{n_{b}\kappa_{b}}(r) + \frac{c\kappa_{b}}{r} (P_{n_{a}\kappa_{a}}(r)Q_{n_{b}\kappa_{b}}(r) + Q_{n_{a}\kappa_{a}}(r)P_{n_{b}\kappa_{b}}(r))$$

$$(2.9)$$

$$+V_{nuc}(r)(P_{n_a\kappa_a}(r)P_{n_b\kappa_b}(r)+Q_{n_a\kappa_a}(r)Q_{n_b\kappa_b}(r)\rfloor.$$

İki-cisim etkileşimleri ise relativistik Slater integrallerini üretir:

$$R^{k}(abcd) = r \int_{0}^{\infty} dr \left[(P_{n_{a}\kappa_{a}}(r)P_{n_{c}\kappa_{c}}(r) + Q_{n_{a}\kappa_{a}}(r)Q_{n_{c}\kappa_{c}}(r)) \frac{1}{r}Y^{k}(bd;r) \right]$$
(2.10)

Relativistik Hartree Y-fonksiyonları

$$Y^{k}(ab;r) = r \int_{0}^{\infty} ds \frac{r_{<}^{k}}{r_{>}^{k+1}} (P_{n_{a}\kappa_{a}}(s)P_{n_{b}\kappa_{b}}(s) + Q_{n_{a}\kappa_{a}}(s)Q_{n_{b}\kappa_{b}}(s))$$
(2.11)

denkleminden elde edilir. Burada $r_> (r_<)$, r ve s'nin daha büyük (küçük) olanını ifade eder.

Hamiltonyen matrisine köşegen bir katkı şu şekilde ifade edilir:

$$H_{rr}^{DC} = \sum_{a=1}^{n_{w}} \left(q_{r}(a)I(aa) + \sum_{b\geq a}^{n_{w}} \sum_{k=0,2...}^{k_{0}} f_{r}^{k}(ab)F^{k}(ab) + \sum_{b\geq a}^{n_{w}} \sum_{k=k_{1}+2,...}^{k_{2}} g_{r}^{k}(ab)G^{k}(ab) \right).$$
(2.12)

Bu açılımdaki $q_r(a)$, CSF'deki bir a yörüngesinin doluluk sayısıdır. $F^k(ab)$ ve $G^k(ab)$, (16). denklemin özel halleridir:

$$F^{k}(ab) = R^{k}(abab), \ G^{k}(ab) = R^{k}(abba).$$

$$(2.13)$$

 k_0 , k_1 ve k_2 sınırları

$$k_{0} = (2j_{a} - 1)\delta_{ab};$$

$$k_{1} = \begin{cases} |j_{a} - j_{b}|; \kappa_{a}\kappa_{b} > 0, \\ |j_{a} - j_{b}| + 1; \kappa_{a}\kappa_{b} < 0; \\ k_{2} = \begin{cases} j_{a} + j_{b}; & j_{a} + j_{b} - k_{1} \text{ cift} \\ j_{a} + j_{b} - 1; & \text{diger durumlar} \end{cases}$$
(2.14)

şeklinde verilmektedir. k = 0 olması durumunda $f_r^k(ab)$ ve $g_r^k(ab)$ açısal katsayıları

$$f_r^0(aa) = \frac{1}{2}q_r(a)(q_r(a)-1), \ f_r^0(ab) = q_r(a)q_r(b)$$
(2.15)

halini alır. Buna karşılık k < 0 ve $q_r(a) = 2j_a + 1$ ya da $q_r(b) = 2j_b + 1$ olması durumunda

$$f_{r}^{k}(ab) = -\frac{1}{2}(q_{r}(a)C(a,k,a))^{2}\delta_{ab}, \quad g_{r}^{k}(ab) = -q_{r}(a)q_{r}(b)C^{2}(a,k,b),$$

$$C(a,k,b) = \begin{pmatrix} j_{a} & k & j_{b} \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix}$$
(2.16)

olur. Eğer k > 0 ve $q_r(a) < 2j_a + 1$ ve $q_r(b) < 2j_b + 1$ ise

$$f_{r}^{k}(ab) = V_{rr}^{k}(abab), \quad g_{r}^{k}(ab) = V_{rr}^{k}(abba)$$
 (2.17)

şeklindedir. Köşegen dışı matris elemanları $(r \neq s)$ da

$$H_{rs}^{DC} = \sum_{abcd} \sum_{k} V_{rs}^{k} (abcd) R^{k} (abcd) + \sum_{ab} T_{rs} (ab) I(ab)$$

$$(2.18)$$

olarak elde edilir (Dyall ve ark., 1989).

2.5. N-elektronlu Sistem için Relativistik Atomik Hamiltonyen (Dirac Hamiltonyeni ve Çok Konfigürasyonlu Dirac-Fock Yöntemi)

Çok elektronlu, büyük çekirdek kütleli sistemlerde (atom ya da iyon) elektronlar arasındaki karşılıklı etkileşimlerle birlikte bir relativistik hamiltonyene ihtiyaç duyulmaktadır. Bir N-elektronlu atomda Dirac-Coulomb Hamiltonyeni

$$\hat{H}^{DC} = \sum_{i=1}^{3} \left(\boldsymbol{\alpha}_{i} \cdot \hat{\boldsymbol{p}}_{i} c + (\beta - 1)c^{2} - \frac{Z}{r_{i}} \right) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left| \hat{\boldsymbol{r}}_{i} - \hat{\boldsymbol{r}}_{j} \right|^{-1} , \qquad (2.19)$$

$$\hat{H}^{DC} = \sum_{i=1}^{N} \hat{H}_{i} + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left| \hat{r}_{i} - \hat{r}_{j} \right|^{-1}$$
(2.20)

şeklindedir. (2.20) eşitliğinin ilk terimi

$$\hat{H}_{i} = c \sum_{i=1}^{3} \alpha_{i} \cdot \hat{p}_{i} + (\beta - 1)c^{2} + V_{cek}(\hat{r}) \quad ,$$
(2.21)

olarak ifade edilir ve elektronun kinetik enerjisi ile çekirdekle etkileşiminden dolayı oluşan tek cisim katkısıdır. $V_{cek}(r)$ çekirdek potansiyeli, çekirdek hacim etkileri ihmal

edildiğinde -Z/r Coulomb şeklini alır (Atomik birimler e=h/2 π =m_e=1, α =1/c olarak alındı). Standart gösterimde α_i ve β Dirac matrisleri

$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}, \ i = 1, \dots, 3, \ \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
(2.22)

şeklinde tanımlıdır. Burada σ_i , genel Pauli matrisleridir. Elektronlar arasındaki anlık iki cisim etkileşimi (2.20) denkleminin ikinci teriminde içerilmektedir. Tersinir elektromanyetik etkileşim ve ışımalı düzeltmelerden dolayı (2.20) ve (2.21) denklemlerine yüksek dereceden QED değişiklikleri bir pertürbasyon katkısı olarak alınır.

Temel CSF'ler ile ilgili olarak (2.19) denklemindeki Hamiltonyen matrisi, relativistik atomik yapı hesaplamalarında önemli bir rol oynar. Γ atomik haline karşılık gelen yaklaşık enerji

$$E_{\Gamma}^{DC} = \left\langle \Gamma P J M \left| \hat{H}^{DC} \right| \Gamma P J M \right\rangle \equiv (c_{\Gamma}^{DC})^{\dagger} H^{DC} c_{\Gamma}^{DC}$$

$$(2.23)$$

olarak ifade edilir. Burada H^{DC} Hamiltonyeni

$$H_{rs}^{DC} = \left\langle \gamma_r P J M \left| \hat{H}^{DC} \right| \gamma_s P J M \right\rangle$$
(2.24)

şeklindedir. $(\boldsymbol{c}_{\Gamma_i})^{\dagger} \boldsymbol{c}_{\Gamma_j} = \delta_{ij}$ karışım katsayılarının değişimine karşılık (2.23)'deki E_{Γ}^{DC} 'nin sabit olması gerekliliği, karışım katsayıları için bir özdeğer problemini vermektedir:

$$(\boldsymbol{H}^{DC} - \boldsymbol{E}_{\Gamma}^{DC} \mathbf{1}) \boldsymbol{c}_{\Gamma}^{DC} = 0.$$
(2.25)

Burada **1**, $n_c \times n_c$ birim matrisidir (Dyall ve ark., 1989).

2.5.1. Relativistik yörüngeler ve relativistik dalga fonksiyonları

 $|n\kappa m\rangle$ ile gösterilen relativistik bir yörünge (ya da Dirac yörüngesi), $\hat{j}^2(\hat{j} = \hat{l} + \hat{s})$ ve \hat{j}_z açısal momentum işlemcilerinin ve relativistik parite işlemcisinin ($\hat{p} = \beta \hat{\pi}$) bir öz fonksiyonudur. Burada $\hat{\pi}$ genel parite operatörü ve $\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Dirac matrisidir. nbaşkuantum sayısı ve κ relativistik açısal kuantum sayısı olmak üzere bu öz fonksiyonlara ait özdeğer denklemleri

$$\hat{\boldsymbol{j}}^2 | \boldsymbol{n}\boldsymbol{\kappa}\boldsymbol{m} \rangle = j(j+1) | \boldsymbol{n}\boldsymbol{\kappa}\boldsymbol{m} \rangle, \quad j_z | \boldsymbol{n}\boldsymbol{\kappa}\boldsymbol{m} \rangle = \boldsymbol{m} | \boldsymbol{n}\boldsymbol{\kappa}\boldsymbol{m} \rangle \quad \boldsymbol{m} = -j,...,j$$
(2.26)

ve

$$\hat{p} \left| n\kappa m \right\rangle = (-1)^l \left| n\kappa m \right\rangle \tag{2.27}$$

şeklindedir. Burada, yörüngeler bir ortonormal set oluşturacak şekilde seçildiğinde açısal momentum cebiri en basit halini alır:

$$\left\langle n_a \kappa_a m_a \left| n_b \kappa_b m_b \right\rangle = \delta_{ab} \,. \tag{2.28}$$

Ayrıca,
$$l = j \pm \frac{1}{2}$$
 için $\kappa = \pm \left(j + \frac{1}{2}\right)$ olur. Böylece $j = |\kappa| - \frac{1}{2}$ olarak elde edilir. Ayrı

($n\kappa$) ve farklı m kuantum sayılı 2j+1'den küçük ve eşit (aynı kabuğa denk gelen) her bir yörüngenin aynı radyal şekle sahip olduğu kabul edilmektedir:

$$\langle \boldsymbol{r} | \boldsymbol{n}\boldsymbol{\kappa}\boldsymbol{m} \rangle = \frac{1}{r} \begin{pmatrix} P_{\boldsymbol{n}\boldsymbol{\kappa}}(r) & \chi_{\boldsymbol{\kappa}\boldsymbol{m}}(\boldsymbol{r}/r) \\ iQ_{\boldsymbol{n}\boldsymbol{\kappa}}(r) & \chi_{-\boldsymbol{\kappa}\boldsymbol{m}}(\boldsymbol{r}/r) \end{pmatrix}.$$
(2.29)

Burada $P_{n\kappa}(r)$ ve $Q_{n\kappa}(r)$, sırasıyla büyük ve küçük radyal dalga fonksiyonları bileşenidir. $\chi_{\kappa m}(r / r)$ fonksiyonları ise spinör küresel harmoniklerdir:

$$\chi_{\kappa m}(\mathbf{r}/r) = \sum_{\sigma=\pm\frac{1}{2}} \left\langle lm - \sigma \frac{1}{2} \sigma \left| l \frac{1}{2} jm \right\rangle Y_l^{m-\sigma}(\mathbf{r}/r) \phi^{\sigma} \right.$$
(2.30)

Burada $\left\langle lm - \sigma \frac{1}{2} \sigma \left| l \frac{1}{2} jm \right\rangle$ Clebsch-Gordan katsayıları, $Y_l^{m-\sigma}(\mathbf{r} / r)$ küresel harmonikler ve ϕ^{σ} temel spinör fonksiyonudur. Parite işlemcisi $\hat{\Pi} = \pi_1 ... \pi_N$, toplam açısal momentum işlemcisi $\hat{J} = \hat{J}_1 + ... + \hat{J}_N$ olmak üzere

$$\hat{J}^{2}\chi_{\kappa m}(\boldsymbol{r}/r) = j(j+1)\chi_{\kappa m}(\boldsymbol{r}/r),$$

$$\hat{j}_{z}\chi_{\kappa m}(\boldsymbol{r}/r) = m\chi_{\kappa m}(\boldsymbol{r}/r),$$

$$\hat{l}^{2}\chi_{\kappa m}(\boldsymbol{r}/r) = l(l+1)\chi_{\kappa m}(\boldsymbol{r}/r),$$

$$\hat{s}^{2}\chi_{\kappa m}(\boldsymbol{r}/r) = \frac{3}{4}\chi_{\kappa m}(\boldsymbol{r}/r),$$

$$\hat{\Pi}^{2}\chi_{\kappa m}(\boldsymbol{r}/r) = P\chi_{\kappa m}(\boldsymbol{r}/r), \quad P = (-1)^{l_{1}+...+l_{N}}$$
(2.31)

şeklindedir.

2.5.2. Konfigürasyon hal fonksiyonları (CSF)

N elektronlu bir sistemin $|\gamma PJM\rangle$ konfigürasyon hal fonksiyonu (CSF), \hat{J}^2 ve \hat{J}_z toplam açısal momentum işlemcileri ve \hat{P} parite işlemcisinin normalize edilmiş $(\langle \gamma PJM | \gamma PJM \rangle = 1)$ özfonksiyonlarını elde etmek için yörüngemsiler, (2.29) denkleminden oluşturulan N. dereceden Slater determinantlarının lineer birleşiminden oluşur:

$$\hat{P}|\gamma PJM\rangle = P|\gamma PJM\rangle,$$

$$\hat{J}^{2}|\gamma PJM\rangle = J(J+1)|\gamma PJM\rangle,$$
(2.32)

$$\hat{J}_{z} | \gamma P J M \rangle = M | \gamma P J M \rangle, \qquad M = -J, ..., J.$$

 γ , CSF'nin tam olarak tanımlanması için gerekli olan, yörünge doluluk sayısı, çiftlenimi gibi tüm bilgileri temsil eder. Bir CSF için standart çiftlenim şeması şöyledir: Öncelikle elektronlar, yörünge doluluk sayısı $q(a) \le 2j_a + 1$ olacak şekilde belirlenerek alt kabukları doldururlar. Her a alt kabuğuna ait elektronlar jj – çiftlenimine göre şu şekilde ifade edilir:

$$\left| (J_a)^{q(a)} \upsilon_a J_a M_a \right\rangle. \tag{2.33}$$

Daha sonra altkabuğa ait J_1 ve J_2 açısal momentumları bir X_1 ara açısal momentum oluşturmak için çiftlenirler. Sonra X_2 ara açısal momentum oluşması için J_3 ile çiftlenirler ve bu döngü bir J toplam açısal momentum elde etmek için altkabukların tümü için işlem devam eder (Dyall ve ark., 1989):

$$(...((J_1J_2)X_1J_3)X_2...)J. (2.34)$$

2.5.3. Atomik hal fonksiyonları (ASF)

Bir atomik hal fonksiyonu (ASF), ortak P, J ve M kuantum sayılarına sahip farklı konfigürasyon hal fonksiyonlarının (CSF) bir sonlu lineer kombinasyonudur:

$$\left|\Gamma PJM\right\rangle = \sum_{r=1}^{n_c} c_{r\Gamma} \left|\gamma_r PJM\right\rangle.$$
(2.35)

Buradaki n_c , hesaplamada kullanılan CSF'lerin sayısıdır. $c_{r\Gamma}$, karışım katsayıları bir $c_{\Gamma} \equiv \{c_{\Gamma}r, r = 1, ..., n_c\}$ sütun vektöründe birleştirilebilir. Bu durumda, $|\Gamma PJM\rangle$ atomik hali CSF temel setindeki $|\gamma_r PJM\rangle_{r\in\{1,...,n_c\}}$ haline karşılık gelir. Burada ASF'ler ortonormal olarak seçilirler (Dyall ve ark., 1989; Stasinopoulos, 2011):

$$\left\langle \Gamma_{i} P J M \middle| \Gamma_{j} P J M \right\rangle = \delta_{ij} \qquad i, j \in \{1, \dots, n_{c}\}$$

$$(2.36)$$

$$\Leftrightarrow \sum_{r=1}^{n_c} c_{\Gamma r_i}^* c_{\Gamma r_j} \underbrace{\langle \gamma_r P J M | \gamma_r P J M \rangle}_{1} = \delta_{ij}$$
(2.37)

$$\Rightarrow \sum_{r=1}^{n_c} c^*_{\Gamma r_i} c_{\Gamma r_j} = (\boldsymbol{c}_{\Gamma_i})^{\dagger} \boldsymbol{c}_{\Gamma_j} = \delta_{ij}.$$
(2.38)

2.6. Breit ve QED Düzeltmeleri

Seviye enerjilerinin değerleri hesaplanırken enerjiye gelen düzeltmeler hem çok-cisim etkilerinden hem de kuantum elektrodinamik (QED) etkilerden kaynaklanmaktadır. Çok-cisim etkileri arasında, elektrostatik Coulomb etkileşimine en düşük dereceden gelen düzeltme Breit etkileşimidir (Di Rocco ve Lanzini, 2016).

2.6.1. Breit etkileşimi

Nötral sistemlerin enerji seviyeleri ile ilgili olarak Mann ve Johnson (1971) tarafından yapılan detaylı hesaplamalar göstermektedir ki, Breit etkileşimi temel hal seviye enerjisine %1 katkıda bulunmuştur. Sistemin çeşitli hallerinin enerji seviyeleri arasındaki farklılıklar karşılaştırıldığında bu katkı değeri daha önemlidir. Ayrıca bu çalışmalarda gecikme terimlerinin manyetik terimlerden aldığı katkının yaklaşık %10 civarında olduğu hesaplanmıştır (Stasinopoulos, 2011). Çok elektronlu sistemlerde, elektronlar arasındaki $\frac{1}{r_{AB}}$ Coulomb etkileşimine gelen düşük dereceden düzeltme

Breit etkileşimidir. A ve B elektron çifti için Breit etkileşimi

$$H_{Br} = H_{G} + H_{ret} = -\frac{\vec{\alpha}_{A} \cdot \vec{\alpha}_{B}}{r_{AB}} + \frac{1}{2} \left\{ \frac{\vec{\alpha}_{A} \cdot \vec{\alpha}_{B}}{r_{AB}} - \frac{(\vec{r}_{AB} \cdot \vec{\alpha}_{A})(\vec{r}_{AB} \cdot \vec{\alpha}_{B})}{r_{AB}^{3}} \right\}$$
(2.39)

şeklinde ifade edilir. Burada, $\vec{\alpha}_A$ Dirac matrisleri ve $r_{AB} = |\vec{r}_A - \vec{r}_B|$ elektronlar arasındaki uzaklıktır. İlk terim H_G , Gaunt (manyetik) terimi olarak isimlendirilir ve iki Dirac akımı arasındaki gecikmeyen etkileşimi temsil eder. Ayrıca bu terim spinyörünge, spin-diğer yörünge ve spin-spin etkileşimini içerir. İkinci terim H_{ret} , gecikme etkilerini içerir. Gecikme düzeltmeleri, Gaunt teriminden küçüktür. Breit etkileşim işlemcisi, elektron-elektron saçılmasının S-matris elemanlarından türetilebilir:

$$V^{B}(r_{AB},\omega) = -\vec{\alpha}_{A}\vec{\alpha}_{B}\frac{\cos(\omega r_{AB})}{r_{AB}} + (\vec{\alpha}_{A}\vec{\nabla}_{A})(\vec{\alpha}_{B}\vec{\nabla}_{B})\frac{\cos(\omega r_{AB}) - 1}{\omega^{2}r_{AB}} .$$
(2.40)

Burada ω , değiş tokuş fotonunun frekansıdır. Bu işlemci MCDF teorisinde matris elemanlarına katkıda bulunur:

$$H_{rs}^{B} = \left\langle \gamma_{r} P J M \left| V^{B}(\omega) \right| \gamma_{s} P J M \right\rangle .$$
(2.41)

Bunlardan köşegen olanlar MCDF enerjisine eklenebilmektedir. Diğer bir yol da (2.41) denklemindeki tüm matris elemanları Dirac-Coulomb Hamiltonyeninin matris elemanlarına eklenir ve elde edilen yeni matris köşegenleştirilir (Stasinopoulos, 2011; Di Rocco ve Lanzini, 2016).

2.6.2. QED etkileri

Kuantum elektrodinamik (QED) teorisi Einstein'ın özel görelilik ve kuantum mekaniği teorisini birleştirmeye yönelik bir girişiminden doğdu. Einstein'ın enerji-kütle eşdeğerliği ile birlikte Heisenberg'in belirsizlik ilkesi, parçacık çiftlerinin kendiliğinden oluşmasına ve vakumda yok edilmesine olanak tanır. Kendiliğinden oluşan bu dalgalanmalar, doğrusal olmayan bir ortamın kuantum vakum özelliklerine benzerdir. Genel olarak bu dalgalanmaların kaydedilememesine rağmen, varlıklarına bağlı etkiler sınır koşulları veya elektromanyetik alanlar gibi dış etkilerle uyarılabilir veya arttırılabilir (Lundin, 2010).

Ağır atomlarda Dirac denkleminin çözülmesiyle elde edilen bazı dejenere seviyelerin ayrılmasına neden olan kuantum elektrodinamik (QED) etkisinden veya Lamb kaymasından dolayı oluşan başka bir düzeltme etkisi mevcuttur. QED düzeltmesini Hamiltoniyende etkili bir işlemci olarak ifade etmek zordur. QED düzeltmeleri, dalga fonksiyonları daha önce açıklanan yöntemlerle belirlendikten sonra toplam enerjiye eklenir. Aslında tüm relativistik düzeltmeler QED düzeltmelerinin bir parçasıdır. Fakat sadece Dirac ve Breit hamiltonyenlerinin dışında kalan düzeltmeleri bunun içine dahil etmek alışkanlık olmuştur. İlk önemli QED düzeltmesi, sanal bir foton yayan ve çekirdeğin alanında onu tekrar soğuran bağlı elektrondan kaynaklanmaktadır. Bu özenerji düzeltmesi olarak isimlendirilir. İkinci ve en önemli QED düzeltmesi vakum polarizasyonu olarak isimlendirilir ve çekirdeğin alanında sanal elektron-pozitron çiftlerinin oluşturulması ve yok edilmesinden kaynaklanmaktadır. Tam relativistik GRASP kodu Breit etkileşimini ve QED düzeltmelerini hesaplayabilir. Sadece tek bir elektron için yapılan relativistik düzeltmelerin aksine, bağlı elektronların karşılıklı taranması ve bağlı elektronlar arasındaki Coulomb iticiliğinin önde gelen relativistik düzeltmesi bilinmemektedir (Kim, 1997; Mohan ve ark., 2013).

Öz-enerji düzeltmesi, GRASP'da

$$H_{rr}^{SE} = \sum_{A=1}^{n_w} q_r(A) E_A^{SE}$$
(2.42)

şeklinde ifade edilir. Burada E_A^{SE} , A altkabuğundaki bir elektronun öz enerjisidir. Atom numarası Z olan hidrojen benzeri bir sistemin pertürbasyon teorisine göre en düşük dereceden öz enerjisi

$$\Delta E_{n\kappa}^{SE} = \frac{Z^4}{\pi c^3 n^3} F_{n\kappa}(Z) \tag{2.43}$$

şeklindedir. $F_{n\kappa}(Z)$ fonksiyonu Z atom numarasına göre yavaş yavaş değişir. GRASP paketinde, $n_a \kappa_a$ kuantum sayılı tek parçacıklı hallerin öz-enerjileri için

$$\Delta E_{n_a \kappa_a}^{SE} = \frac{(Z^{eff})^4}{\pi c^3 n_a^3} \begin{cases} F_{n_a \kappa_a}(Z_a^{eff}) & 1s, 2s, 2\overline{p}, 2p \text{ yörüngeleri için} \\ F_{2\kappa_a}(Z_a^{eff}) & n > 2 \text{ durumları için} \\ 0 & \text{diğer durumlar} \end{cases}$$
(2.44)

olarak verilmektedir. Çok parçacıklı haller için bu tek elektron katkıları toplanır. Etkin atom numarası Z'nin kullanılmasıyla, elektron perdeleme etkileri kabaca dahil edilir. İlk yaklaşımdaki kuantum sayısı n arttıkça, ikinci yaklaşımın giderek daha gerçekçi olmayacağı düşünülmektedir.

Bir diğer etki olan vakum polarizasyon etkisi, en düşük dereceden sanal elektronpozitron çiftinin perdelemesinden dolayı çekirdek alanının kısa aralıklı değişimidir. Ayrıca burada, $n_a \kappa_a$ yörüngelerine gelen düzeltme pertürbasyon teorisi ile hesaplanmaktadır:

$$\Delta E^{u}_{n_{a}\kappa_{a}} = \left\langle n_{a}\kappa_{a} \left| V^{U} \left| n_{a}\kappa_{a} \right\rangle \right\rangle = \int_{0}^{\infty} dr V^{U}(r) \left(P^{2}_{n_{a}\kappa_{a}}(r) + Q^{2}_{n_{a}\kappa_{a}}(r) \right) \right\rangle$$
(2.45)

Burada $V^{U}(r)$, Uehling potansiyelidir. Öz enerjiye benzer olarak, bireysel elektronların katkıları ilave olarak üst üste bindirilir (Mohr, 1992; Grant, 2007; Stasinopoulos, 2011).

2.7. Işımalı Geçişler

Tüm mümkün dalga sayısı **k** ve polarizasyonları λ olan bir fotonun yayınlanmasıyla bir *i* halinden *j* haline geçişte elektromanyetik geçiş olasılığı

$$A_{r}^{i \to j} = \frac{2\pi}{2J_{i}+1} \sum_{M_{i}} \sum_{M_{j}\lambda} \int d\Omega_{k} \left| \left\langle \Gamma_{j} J_{j} M_{j}; \boldsymbol{k}, \lambda \right| H_{er} \left| \Gamma_{i} J_{i} M_{i}; 0 \right\rangle \right|^{2} \rho_{j}$$
(2.46)

şeklindedir. Burada H_{er} , foton ile elektronlar arasındaki etkileşimi tanımlayan Hamiltonyendir. *i* ve *j* iki atomik hal fonksiyonları arasındaki matris elemanları

$$\left\langle \Gamma_{j} J_{j} M_{j}; \boldsymbol{k}, \lambda \right| H_{er} \left| \Gamma_{i} J_{i} M_{i}; 0 \right\rangle = \sum_{r,s=1}^{n_{c}} c_{s\Gamma_{i}}^{*} c_{s\Gamma_{i}} \left\langle \gamma_{r} J_{r} M_{r}; \boldsymbol{k}, \lambda \right| H_{er} \left| \gamma_{s} J_{s} M_{s}; 0 \right\rangle$$
(2.47)

dır. Matris elemanları $\langle \gamma_r J_r M_r; \mathbf{k}, \lambda | H_{er} | \gamma_s J_s M_s; 0 \rangle$, CSF'lerdeki r ve s değerlendirilir. Böylece yayınlama işlemcisi, elektrik çok kutuplu ışınım için (1) ve manyetik çok kutuplu ışınım için (0) ile tanımlanan $a_{LM}^{(0)}(r)$ ve $a_{LM}^{(1)}(r)$ çok kutuplu işlemcilerin toplamında ayrıştırılır:

$$\left\langle \gamma_{r}J_{r}M_{r};\boldsymbol{k},\lambda\left|H_{er}\right|\gamma_{s}J_{s}M_{s};0\right\rangle = \sqrt{\frac{2\pi c^{2}}{\omega_{k}V}}\sum_{L}\sum_{M}\sqrt{2\pi}(-i)^{L}\sqrt{2L+1}D_{M,-\lambda}^{L}(\hat{k})$$

$$\times \left[\left\langle \gamma_{r}J_{r}M_{r}\right|\boldsymbol{\alpha}\boldsymbol{a}_{LM}^{(0)}(r)+i\lambda\boldsymbol{\alpha}\boldsymbol{a}_{LM}^{(1)}(r)\right|\gamma_{s}J_{s}M_{s}\right\rangle\right]$$

$$(2.48)$$

Burada, $D_{M,-\lambda}^{L}(\hat{k})$, (Rose, 1967)'de tanımlandığı gibi bir dönme matrisidir. Konfigürasyon hal fonksiyonları arasındaki indirgenmiş matris elemanları tekelektron indirgenmiş matris elemanlarının bir toplamı olarak açıklanabilir:

$$\left\langle \gamma_r J_r M_r \left| \left| O^{(L)} \right| \right| \gamma_s J_s M_s \right\rangle = \sum_{ab} d^L_{ab}(rs) \left\langle n_a \kappa_a \left| \left| O^{(L)} \right| \right| n_b \kappa_b \right\rangle.$$
(2.49)

Burada, (Pyper ve ark., 1967)'de verilen $d_{ab}^{L}(rs)$ yeniden çiftlenim katsayılarıdır. $O^{(L)}$, L seviyesinin küresel tensör işlemcisidir ve daha sonra kullanılacak olan M, manyetik kuantum sayısına karşılık gelir. Manyetik ve elektrik tek parçacıklı matris elemanları Grant (2007) tarafından şöyle verilmektedir:

$$\langle f | | \boldsymbol{a} \boldsymbol{a}_{LM}^{(0)} | | i \rangle = i(-1)^{j_i + L + 1/2} \sqrt{\frac{(2j_i + 1)(2L + 1)}{4\pi L(L + 1)}}$$
 (2.50)

$$\times \begin{pmatrix} j_j & j_i & L \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix} (\kappa_j + \kappa_i) \left[\int dr (F_j(r)G_i(r) + F_i(r)G_j(r)) j_L(kr) \right]$$

$$\langle f || \boldsymbol{\alpha} \boldsymbol{\alpha}_{LM}^{(1)} || i \rangle = i(-1)^{j_i + L + 1/2} \sqrt{\frac{(2j_i + 1)}{4\pi}} \begin{pmatrix} j_j & j_i & L \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

$$\times \left[\sqrt{\frac{L+1}{L(2L+1)}} (LI_{L-1}^- - (\kappa_j - \kappa_i)I_{L-1}^+ \right]$$

$$+ \left[\sqrt{\frac{L}{(L+1)(2L+1)}} ((L+1)I_{L+1}^- + (\kappa_j - \kappa_i)I_{L+1}^+ \right].$$

$$(2.51)$$

Radyal integraller de

$$I^{\pm} = \int dr (F_j(r)G_i(r) \pm F_i(r)G_j(r)) j_L(kr)$$
(2.52)

şeklindedir. $F_i(r)$, $G_i(r)$, $F_j(r)$ ve $G_j(r)$ radyal yörünge fonksiyonları ile bu integrallerin hesaplanması MCDF ile yapılmaktadır. Γ_i durumundan Γ_j durumuna geçiş için salınıcı şiddeti L seviyesinin $\hat{O}_M^{(L)}$ çok kutuplu ışımalı alan işlemcisi tarafından indüklenir (Grant, 1974):

$$f_{i \to j} = \frac{\pi c}{(2L+1)\omega^2} \left| \left\langle \Gamma_i P_i J_i \right| \left| \hat{\boldsymbol{O}}^{(L)} \right| \left| \Gamma_j P_j J_j \right\rangle \right|^2.$$
(2.53)

(2.53)'deki matris elemanı

$$\left\langle \Gamma_{i} P_{i} J_{i} \left\| \hat{\boldsymbol{O}}^{(L)} \right\| \left| \Gamma_{j} P_{j} J_{j} \right\rangle = \sum_{r,s} c_{r \Gamma_{i}} c_{s \Gamma_{j}} \left\langle \gamma_{r} \operatorname{P}_{r} J_{r} \right\| \hat{\boldsymbol{O}}^{(L)} \left\| \gamma_{s} P_{s} J_{s} \right\rangle$$

$$(2.54)$$

şeklinde ifade edilir. Bu, sırayla tek-elektron geçiş integrallerinin bir toplamı olarak kullanılır ve

$$\left\langle \gamma_{r} \mathbf{P}_{r} J_{r} \left| \left| \hat{\boldsymbol{O}}^{(L)} \right| \left| \gamma_{s} P_{s} J_{s} \right\rangle = \sum_{a,b} d_{ab}^{L}(rs) \left\langle n_{a} \kappa_{a} \right| \left| \hat{\boldsymbol{O}}^{(L)} \right| \left| n_{b} \kappa_{b} \right\rangle$$
(2.55)

elde edilir. Brink ve Satchler (2002) tipi indirgenmiş matris elemanları kullanıldığında

$$\langle n_a \kappa_a | | \hat{\boldsymbol{O}}^{(L)} | | n_b \kappa_b \rangle = \left(\frac{(2j_b + 1)\omega}{\pi c} \right)^{1/2} (-1)^{j_a - 1/2} \begin{pmatrix} j_a & L & j_b \\ \frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix} \bar{\boldsymbol{M}}_{ab}$$
 (2.56)

elde edilir. Burada \overline{M}_{ab} , Grant (1974) tarafından tanımlanan ışımalı geçiş integrallerinden biridir:

$$\bar{M}_{ab} = \begin{cases} \bar{M}_{ab}^{e} + G\bar{M}_{ab}^{l}, & \text{elektrik multipol geçişleri için} \\ \bar{M}_{ab}^{m}, & \text{manyetik multipol geçişler için} \end{cases}$$
(2.57)

$$\bar{M}_{ab}^{e} = -i^{L} \left[\left(\frac{L}{L+1} \right)^{1/2} \left[(\kappa_{a} - \kappa_{b}) I_{L+1}^{+} + (L+1) I_{L+1}^{-} \right] - \left(\frac{L+1}{L} \right)^{1/2} \left[(\kappa_{a} - \kappa_{b}) I_{L-1}^{+} - L I_{L-1}^{-} \right] \right]$$

$$\bar{M}_{ab}^{l} = -i^{L} \left\{ \left[(\kappa_{a} - \kappa_{b}) I_{L+1}^{+} + (L+1) I_{L+1}^{-} \right] + \left[(\kappa_{a} - \kappa_{b}) I_{L-1}^{+} - L I_{L-1}^{-} \right] - (2L+1) J_{L} \right\}$$

$$\overline{M}_{ab}^{m} = -i^{L+1} \frac{(2L+1)}{\left[L(L+1)\right]^{1/2}} (\kappa_{a} + \kappa_{b}) I_{L}^{+}$$
$$I_{L}^{\pm} = \int_{0}^{\infty} dr j_{L} (\omega r / c) (G_{n_{a}\kappa_{a}}(r) F_{n_{b}\kappa_{b}}(r) \pm F_{n_{a}\kappa_{a}}(r) G_{n_{b}\kappa_{b}}(r))$$

$$J_{L} = \int_{0}^{\infty} dr j_{L}(\omega r / c) (G_{n_{a}\kappa_{a}}(r)G_{n_{b}\kappa_{b}}(r) \pm F_{n_{a}\kappa_{a}}(r)F_{n_{b}\kappa_{b}}(r)) \,.$$

Burada G, ölçü parametresidir ve Coulomb ölçeklendirmesinde 0 değerini alırken Babushkin ölçeklendirmesinde $[(L+1)/L]^{1/2}$ değerini alır. Relativistik olmayan
sınırda G = 0, ışımalı matris elemanlarının hız formunu verirken, $G = [(L+1)/L]^{1/2}$ uzunluk formunu verir (Grant, 1974; Postavaru, 2010).

Matris ve integral çözümlemeleri yapıldığında, salınıcı şiddeti uzunluk (l) ve hız (v) formlarında hesaplanabilmektedir. Ağırlıklı salınıcı şiddeti *gf*, uzunluk formunda

$$g_i f_l = \frac{2}{3} \Delta E_{ij} \left| \left\langle \psi_i \right| \sum_{k=1}^N r_k \left| \psi_j \right\rangle \right|^2, \qquad (2.58)$$

ve hız formunda

$$g_{i}f_{v} = \frac{2}{3} (\Delta E_{ij})^{-1} \left| \left\langle \psi_{i} \right| \sum_{k=1}^{N} \nabla_{k} \left| \psi_{j} \right\rangle \right|^{2}$$
(2.59)

olarak verilmektedir. Burada, ψ_i ve ψ_j sırasıyla ilk ve son durumlara ait dalga fonksiyonları; g_i ve g_f ağırlıklı salınıcı şiddetleri ve ΔE_{ij} atomik birimlerdeki geçiş enerjisidir. Çizgi şiddeti uzunluk formunda (atomik birimlerde)

$$S = \left| \left\langle \psi_i \left| \sum_{k=1}^N r_k \left| \psi_j \right\rangle \right|^2 \right|$$
(2.60)

olarak verilmektedir. Son olarak bir *i* durumundan *j* durumuna geçişi için en basit haliyle yayınlama salınıcı şiddeti (f_{ij}), ışıma oranı (A_{ji}) (s⁻¹) cinsinden

$$f_{ij} = \frac{mc}{8\pi^2 e^2} \lambda_{ji}^2 \frac{\omega_j}{\omega_i} A_{ji} = 1,49 \times 10^{-16} \lambda_{ji}^2 (\omega_j / \omega_i) A_{ji}$$
(2.61)

şeklindedir. Burada *m* ve *e* sırasıyla elektron kütlesi ve doluluğu, *c* ışığın hızı, λ_{ji} geçiş enerjisi/dalga boyu (Å), ω_i ve ω_j sırasıyla düşük *i* ve yüksek *j* seviyelerinin istatiksel ağırlığı ve *S* (atomik birimlerde) çizgi şiddetidir.

(2.60) ve (2.61) elektrik dipol (E1) geçişleri için

$$A_{ji} = \frac{2,0261 \times 10^{18}}{\omega_j \lambda_{ji}^3} S \quad \text{ve} \quad f_{ij} = \frac{303,75}{\lambda_{ji} \omega_i} S , \qquad (2.62)$$

manyetik dipol (M1) geçişler için

$$A_{ji} = \frac{2,6974 \times 10^{13}}{\omega_j \lambda_{ji}^3} S \quad \text{ve} \quad f_{ij} = \frac{4,044 \times 10^{-3}}{\lambda_{ji} \omega_i} S , \qquad (2.63)$$

ve elektrik kuadrupol (E2) geçişleri için

$$A_{ji} = \frac{1,1199 \times 10^{18}}{\omega_j \lambda_{ji}^5} S \quad \text{ve} \quad f_{ij} = \frac{167,89}{\lambda_{ji}^3 \omega_i} S \tag{2.64}$$

şeklinde verilmektedir (Aggarwal ve ark., 2004).

BÖLÜM 3. HESAPLAMA SONUÇLARI VE TARTIŞMA

Bu çalışmada, ikili ve üçlü iyonlaşmış kripton (Z=36), ksenon (Z=54) ve radon (Z=86) için atomik yapı özellikleri (enerji seviyeleri ve ışımalı geçişler) tamamen relativistik çok konfigürasyonlu Dirac-Fock (MCDF) yöntemi (Grant, 2007) ile incelendi. Hesaplamalar genel amaçlı relativistik atomik yapı paketi (GRASP) (Dyall ve ark., 1989) kullanılarak yapıldı. Breit düzeltmeleri (elektronlar arasındaki manyetik etkileşim ve elektron-elektron etkileşiminin geciktirme etkileri), QED katkıları (öz enerjisi ve vakum polarizasyonu) ve çeşitli korelasyon etkileri dikkate alınarak enerji seviyelerine ve geçişlere etkileri incelendi. Bu katkılar, çok elektronlu sistemlerin spektroskopik özelliklerini ve elektronik yapılarını içeren araştırmalarda önemlidir. Hesaplamalarda dikkate alınan konfigürasyon setleri, değerlik (valans) ve özden (kapalı alt kabuklardan) olan uyarılmalara göre seçildi. Bu korelasyonlara göre elde edilen enerji seviyeleri için geniş sonuçlar Ek A kısmında tablolar (Tablo A.1.-A.6.) halinde verilmektedir. Bu bölümde daha çok, daha iyi sonuçların elde edildiği görülen öz-öz korelasyonuna göre, karşılaştırma değeri olan seviyeler ya da düşük seviyeleri kapsayan daha kısıtlı tablolar sunulmaktadır. Ayrıca tablolarda tek pariteli haller "o" üst indisiyle gösterilmektedir.

Bu iyonlar için elde edilen enerji seviyeleri arasındaki elektrik dipol (E1), elektrik kuadrupol (E2) ve manyetik dipol (M1) ışımalı geçişler için dalga boyu (λ (Å)), geçiş olasılığı (A_{ji} (s⁻¹)), salınıcı şiddeti (f_{ij}) ve çizgi şiddeti (S_{ij} (a.b)) geçiş parametreleri elde edildi (İkili iyonlaşmış Kr, Xe ve Rn için Tablo 3.7.-3.16. ve üçlü iyonlaşmış Kr, Xe ve Rn için Tablo 3.23.-3.33.). Bu geçişlere ait tablolarda uzunluk ve hız formunda hesaplanan salınıcı şiddeti değerlerinin bir oranı da verilmektedir. Bu oran hesaplanan salınıcı şiddeti değerlerinin bir göstergedir (Kingston ve ark., 2002).

3.1. İkili İyonlaşmış Kripton (Kr III), Ksenon (Xe III) ve Radon (Rn III) İçin Enerji Seviyeleri ve Işımalı Geçiş Hesaplamaları

İki kez iyonlaşmış kripton (Kr III), ksenon (Xe III) ve radon (Rn III) atomları sırasıyla nötral selenyum (Se I), tellür (Te I) ve polonyum (Po I) ile aynı elektron dizilişine sahiptir. Bu iyonların temel elektron konfigürasyonu ns²np⁴ (Kr III için n= 4, Xe III için n= 5 ve Rn için n= 6) şeklindedir. Her üç iyonun temel hali (ilk enerji seviyesi) ns²np⁴ ³P₂'dir ve bunu aynı konfigürasyonun ³P₁, ³P₀, ¹D₂ ve ¹S₀ seviyeleri takip eder. Kr III ve Xe III özellikle plazma teşhisi çalışmalarında ve astrofizikte önemli bir yere sahiptir. Bu nedenle Kr III ve Xe III iyonlarına ait teorik ve deneysel çalışmalar mevcuttur (Djeniže ve ark., 2003; Saloman, 2004; Dzuba ve Flambaum, 2007; Saloman, 2007; Pernpointner, 2010; Sterling ve ark., 2011; Schippers ve ark., 2014, Eser ve Özdemir, 2017; Eser ve Özdemir, 2018). Radon bazı hastalıklarda ışın tedavisi alanında uygulama alanı bulmaktadır. Radon III için yapılan çalışmalar (Biémont ve Quinet, 1996; Pernpointner ve ark., 2012; Eser ve Özdemir, 2018) Kr III ve Xe III'e göre daha azdır.

3.1.1. Enerji seviye hesaplamaları

Kr III, [Ni]4s²4p⁴ elektron dizilimine sahiptir ve temel hali 4s²4p⁴ ³P₂'dir. Tablo 3.1.'de Kr III için enerji seviye hesaplamalarında kullanılan konfigürasyon setleri üç korelasyon tipine göre verilmektedir. Ayrıca EAL (genişletilmiş ortalama seviye) ve CI (konfigürasyon etkileşimi) hesabına göre de farklı konfigürasyon seti alınmaktadır. Bu hesaplara ait sonuçlar enerji seviyelerini içeren tablolarda A ve B üst indisiyle belirtilmektedir.

Tablo 3.1. Kr III iyonu için yapılan hesaplamalarda kullanılan konfigürasyon setleri

	A (EAL)	B (CI)
VV	$4s^24p^4$, $4s^24p^35s$, $4s^24p^25s^2$, $4s^24p^25d^2$,	$A + (4s^24p^34d, 4s^24p^24d^2)$
• •	$4s^24p^35d$, $4s^24p^36s$, $4s^24p^25p^2$, $4s^24p^35p$	
CV	$VV(A) + (4s4p^5, 4s4p^35s^2, 4s4p^36s^2)$	$A + 4s^2 4p^3 4d$
CC	4s ² 4p ⁴ , 4s4p ⁵ , 4p ⁶ , 4s ² 4p ³ 5s, 4p ⁵ 5s,	$4s^{2}4p^{4}, 4p^{6}, 4s4p^{4}4d, 4s^{2}4p^{2}4d^{2}, 4p^{4}4d^{2},$
cc	4s ² 4p ³ 6s, 4s ² 4p ³ 5p	$4s4p^5, 4s^24p^34d, 4p^55d, 4s^24p4d^3, 4s^24p^35s$

EAL (A üst indisli) seçeneği kullanılarak yapılan VV, CV ve CC hesaplamalarında sırasıyla 258, 282 ve 62 seviye elde edildi. CI (B üst indisli) seçeneği kullanılarak yapılan VV, CV ve CC hesaplamalarında ise sırasıyla 407, 320 ve 458 seviye elde edildi. Çok fazla enerji seviyesi olması nedeniyle enerji seviyesi tabloları, NIST'ten alınan verilerle karşılaştırılacak kadar sınırlı tutulmaktadır. EAL hesabında; 4s²4p⁴, 4s²4p³5s, 4s²4p³5p ve 4s²4p³6s konfigürasyonlarına ait seviyeler incelendiğinde VV hesabına özden (4s alt kabuğundan) de elektron uyarıldığı konfigürasyon (CV) eklendiğinde sonuçlar biraz daha iyileşirken özden (4s alt kabuğundan) iki elektron uyarılan konfigürasyonlar (CC) eklendiğinde sonuçların karşılaştırma değerleri ile çok daha iyi uyum içerisinde olduğu görülmektedir. Örneğin, taban halinden sonraki ilk uyarılma seviyesi olan 4s²4p⁴ ³P₁ için VV ve CV sonuçları 0,04022 Ry ve 0,04020 Ry iken CC hesabı sonucu 0,04051 Ry olarak elde edildi. Bu seviye için karşılaştırma değerleri de 0,04144 Ry, 0,04128 Ry, 0,04123 Ry, 0,03860 Ry, 0,03940 Ry ve 0,03850 Ry olarak verilmektedir (NIST; Garstang, 1963; Biémont ve Hansen, 1986; Sterling ve ark., 2011). Bu durumda CC sonuçlarının daha iyi uyumlu olduğu görülmektedir. Bu durum üst seviyelere doğru gidildikçe aynı şekilde devam etmektedir. CI hesabında; 4s²4p³4d konfigürasyonuna ait seviyeler dışında diğer tüm enerji seviyeleri, VV, CV ve CC hesaplamalarının tümünde karşılaştırma değerleri ile zayıf uyuma sahiptir. Ancak $4s^24p^34d$ seviyeleri incelendiğinde yine VV ve CV hesaplama sonuçlarının karşılaştırma değerleri ile uyumu zayıf iken özden uyarılma yapılan CC hesaplama sonuçlarının oldukça iyi uyumlu olduğu görülmektedir. Örneğin, $4s^24p^3(^4S_0)4d {}^5D_0^{\circ}$ seviyesi incelendiğinde VV ve CV hesaplama sonuçları sırasıyla 5,31977 Ry ve 5,29766 Ry iken CC hesaplama sonucu 1,19475 Ry olarak elde edildi. Burada CC sonuçlarının karşılaştırma değerlerine (1,26161 Ry, 1,20890 Ry ve 1,28400 Ry) (NIST; Sterling ve ark., 2011) yakın olduğu sonucuna varılmaktadır. Bu verilere ait tablo Ek A'da verilmektedir (Tablo A.1.).

Tablo 3.2. yalnızca öz-öz korelasyonu (CC) hesaplama sonuçları ile sınırlı tutulmaktadır ve Breit ve QED katkılarının etkisi bu hesaplamadan elde edilen enerji seviyeleri için incelenmektedir. Bu katkılar, enerji değerlerinde bir azalmaya neden olurken özellikle 4s²4p³4d seviyeleri için karşılaştırma değerleri ile daha iyi uyumlu hale gelmektedir. Elde edilen sonuçların diğer mevcut sonuçlarla (NIST; Garstang,

1963; Biémont ve Hansen, 1986; Sterling ve ark., 2011) karşılaştırması daha açık bir şekilde Şekil 3.1.'de görülmektedir.

Sovivolor	\mathbf{F}^0	F1	F ²	F	Diğar calışmalar
$4s^24n^4$ ³ P ₂	0.0000	0.0000	0.0000	0.0000	
$4s^2 4n^4 {}^3\mathbf{P}_1$	0,0000 0,04051 ^A	$-8.62(-4)^{A}$	2,76(-5) ^A	0,0000 0,03968 ^A	0.04144^{a}
	0,04051 0,01656 ^B	-0,02(-4) -1.62(-3) ^B	$6.40(-5)^{B}$	0,03500	0,04128 ^b
	0,01050	1,02(5)	0,40(3)	0,01501	0,04123°
					0,04125 0,03860d
					0,03940 ^{d*}
					0,03940 0,03850d**
$4s^24n^4 {}^3P_0$	0.04740A	-7.70(-4)A	2 29(-5)A	0.04666 ^A	0,03850
43 4p 10	0,04740 0,02200 ^B	-7,70(-4) 2 10(3) ^B	2,29(-5) 8 11(5) ^B	0,04000	0,04857b
	0,02299	-2,10(-3)	8,11(-5)	0,02090	0,04837
					0,04870 0.04570d
					0,04570 0.04640 ^{d*}
					0,04040 0.04620d**
$4s^24n^4$ ¹ Da	0 16016A	7 13(1)A	$2.11(.5)^{A}$	0 15044A	0,04030
48 4p D ₂	0,10010 0,16787 ^B	-7,43(-4) 1 00(2) ^B	2,11(-5) 2,50(-5) ^B	0,13944 0,16682B	0,13344
	0,10787	-1,09(-3)	3,30(-3)	0,10082	0,13345
					0,15500d
					0,15500 [*]
					0,13380 0 14080d**
$4c^{2}4r^{4}1Sc$	0 20152A	1 10(2)A	1 19(5)A	0 20041A	0,14960
48 4p - 30	0,29132 0.34881 ^B	(-1,10(-3))	-1,10(-3) 8 08(5) ^B	0,29041 0.34751 ^B	0,30144 0 30130 ^b
	0,34881	-1,22(-3)	-8,08(-5)	0,54751	0,30139
					0,30287
					0,28500° 0,28620d*
					0,28020 0 30100 ^{d**}
$4 c 4 p^{5} 3 \mathbf{D}^{\circ}$	1 24338A	$1.00(.4)^{A}$	7 00(4)A	1 24238A	0,50190 1.05644a
454p 1 2	1,24558 1,00523 ^B	-1,99(-4) $-1,48(-3)^{B}$	-7,99(-4)	1,24238 1,00281 ^B	1,03044 1,22540 ^d
	1,00525	-1,40(-3)	-9,40(-4)	1,00201	1,22340 1,02380 ^{d*}
					1,02500 1,09510 ^{d**}
$4s4n^{5}3P^{\circ}$	1 27700 ^A	$-8.96(-4)^{A}$	-775(-4) ^A	1 27533 ^A	1,09310 1,08787ª
	1,01988 ^B	$-2.74(-3)^{B}$	$-8.92(-4)^{B}$	1,27555 $1,01624^{B}$	1,00707 1,25880 ^d
	1,01900	2,71(3)	0,92(1)	1,01021	1,05430 ^{d*}
					1,00,100 1,12550 ^{d**}
$4s4n^{5} {}^{3}P^{\circ}_{0}$	1.29616 ^A	-1.30(-3) ^A	-7.65(-4) ^A	1.29409 ^A	1,10758 ^a
.s.p 1 0	1.02789 ^B	$-3.39(-3)^{B}$	$-8.61(-4)^{B}$	1.02364^{B}	1.27730 ^d
	-,	-,, (-)	0,000	-,	1.07230 ^{d*}
					1,14340 ^{d**}
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{0}$	1.19475 ^B	$-4.42(-3)^{B}$	$7.39(-5)^{B}$	1.19040 ^B	1.26161ª
F () b b	, - · -	, (-)	.,	,	1,20890 ^{d*}
					1.28400 ^{d**}
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}1$	1.19500 ^B	$-4.52(-3)^{B}$	7.39(-5) ^B	1.19056 ^B	1.26184 ^a
r () i -	,	y- (-)	.,	,	1,20910 ^{d*}
					1,28420 ^{d**}
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{2}$	1,19554 ^B	$-4,70(-3)^{B}$	7,35(-5) ^B	1,19092 ^B	1,26192 ^a
• • •					1,20930 ^{d*}
					1,28430 ^{d**}
4s ² 4p ³ (⁴ S°)4d ⁵ D° ₃	1,19642 ^B	-4,97(-3) ^B	$7,25(-5)^{B}$	1,19153 ^B	1,26203 ^a
					1,20970 ^{d*}
					1,28460 ^{d**}
4s ² 4p ³ (⁴ S°)4d ⁵ D° ₄	1,19777 ^B	-5,33(-3) ^B	7,14(-5) ^B	1,19251 ^B	1,26346 ^a
— ·					1,21100 ^{d*}
					1,28570 ^{d**}
4s4p ⁵ ¹ P° ₁	1,77595 ^A	-6,07(-4) ^A	-7,74(-4) ^A	1,77456 ^A	1,29287 ^a
					1,28340 ^{d*}
					1,35210 ^{d**}

Tablo 3.2. Kr III'ün enerji seviyeleri (Rydberg). E^0 : MCDF enerjisi, E^1 : Breit katkıları, E^2 : QED katkıları, $E_T = E^0 + E^1 + E^2$.

		Tablo 5.2. (De	evami)		
Seviyeler	E ⁰	\mathbf{E}^{1}	\mathbf{E}^2	ET	Diğer çalışmalar
$4s^24p^3(4S^\circ)5s^5S^\circ_2$	1.24746 ^A	-2.69(-3) ^A	$7.09(-5)^{A}$	1.24484 ^A	1.32788ª
····F(~)····2	0.02491 ^B	$-6.04(-3)^{B}$	$2.78(-4)^{B}$	0.01914^{B}	-,
$4s^2 4n^3 (4S^\circ) 4d^3 D^\circ$	2.00623 ^B	$-5.59(-3)^{B}$	$5,60(-5)^{B}$	$2,00060^{B}$	1 3/680 ^a
$43 + p (3) + d D_2$	2,09023 2,09527B	-5,57(-5)	3,00(-5) 3,44(-5)B	2,09000	1,54007
$48^{-4}p^{-}(^{-5})40^{-}D^{-3}$	2,06337- 2,10299B	$-4,80(-3)^{-1}$	$2,44(-3)^{-1}$	2,08039 ⁻	1,55557"
4s ² 4p ³ (⁴ S ²)4d ³ D ² ₁	2,10388	$-6,23(-3)^{10}$	8,02(-5)	2,097735	1,35844 ^a
$4s^{2}4p^{3}(^{4}S^{0})5s^{3}S^{0}_{1}$	1,31258 ^A	$-2,70(-3)^{A}$	$6,58(-5)^{A}$	1,30994 ^A	1,38130 ^a
	0,11547 ^в	$-6,06(-3)^{B}$	2,77(-4) ^в	0,10969 ^в	
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}F^{\circ}_{2}$	1,40143 ^B	$-4,32(-3)^{B}$	$4,11(-5)^{B}$	1,39715 ^в	1,39937ª
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}F^{\circ}_{3}$	1,40837 ^B	-5,07(-3) ^B	$5,44(-5)^{B}$	1,40336 ^B	1,40972 ^a
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}F^{\circ}_{4}$	1,41661 ^B	-5,97(-3) ^B	$6,82(-5)^{B}$	$1,41072^{B}$	1,42232ª
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{1}S^{\circ}_{0}$	1.48741 ^B	$-4.81(-3)^{B}$	$7.35(-5)^{B}$	1.48267 ^B	1.40699ª
$4s^{2}4n^{3}(^{2}D^{\circ})4d^{3}G^{\circ}_{3}$	1 53520 ^B	$-4.53(-3)^{B}$	$7.06(-5)^{B}$	1.53074^{B}	1 45799 ^a
$4s^24n^3(^2D^\circ)4d^3G^\circ$	1,53710 ^B	$-5.02(-3)^{B}$	7,33(-5) ^B	1,53215 ^B	$1,46180^{a}$
$4s^24n^3(^2D^\circ)^2$ d^3G°	1,53056 ^B	$5,62(3)^{B}$	$7,33(5)^{B}$	1,53215 1,53400 ^B	1,46912a
43 4p (D) 4d 0 5 $4s^2 4p^3 (2D^2) 4d 1C^2$	1,55950 1,60220B	-3,04(-3)	7,80(-3) 5,50(-5)B	1,55400 1,50979B	1,40812
48 4p ⁻ (D)40 0 4	1,00559	-4,07(-3)	5,50(-5)	1,39070	1,40391
4s ² 4p ³ (² D ²)5s ³ D ² 1	1,45908 ¹⁴	-2,41(-3) ¹⁴	$0,00(-5)^{-1}$	1,450/5 ¹	1,48/81"
	0,30614 ^B	-5,74(-3) ^b	2,68(-4) ^B	0,300675	
$4s^{2}4p^{3}(^{2}D^{6})5s^{3}D^{6}{}_{2}$	1,46075 ^A	$-2,42(-3)^{A}$	$5,99(-5)^{A}$	1,45839 ^A	1,49115 ^a
	0,30688 ^B	-5,89(-3) ^B	$2,72(-4)^{B}$	$0,30126^{B}$	
4s ² 4p ³ (² D°)5s ³ D° ₃	1,47394 ^A	-2,94(-3) ^A	7,73(-5) ^A	1,47108 ^A	1,50407ª
	0,30894 ^B	$-6,29(-3)^{B}$	$2,84(-4)^{B}$	0,30294 ^B	
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{1}D^{\circ}_{2}$	1.58289 ^B	-5.17(-3) ^B	$1.83(-5)^{B}$	1.57774 ^B	1.50781 ^a
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}D^{\circ}_{1}$	1.38604 ^B	$-5.02(-3)^{B}$	$7.61(-5)^{B}$	1.38109 ^B	1.55099ª
$4s^24n^3(^2D^\circ)4d^3D^\circ_2$	1 38173 ^B	$-4.32(-3)^{B}$	$4.18(-5)^{B}$	1 37745 ^B	1 57162ª
$4s^2/n^3(^2D^\circ)/d^3D^\circ_2$	1,30175 1 38288 ^B	$-4.75(-3)^{B}$	$5,57(-5)^{B}$	1 37818 ^B	1,57102
$4s^24r^3(^2D^9)5s^1D^9$	1,50200 1,50026A	-4,75(-5)	7,37(-5)	1,37818 1.40750A	1,55724a
48 4p (D)38 D 2	1,30020 0,25266B	-2,03(-3)	7,21(-3)	1,49730	1,55754
4 24 3(200) 41 300	0,35200 ²	$-0,03(-3)^{B}$	$2,75(-4)^{2}$	0,34090 ²	1 5 6 7 2 4 3
4s ² 4p ³ (² P ³)4d ³ P ³ ₀	1,69258 ^b	$-3,53(-3)^{\rm B}$	-6,38(-5) ^B	1,68899 ^b	1,56/34"
$4s^{2}4p^{3}(^{2}P^{3})4d^{3}P^{3}$	1,69853 ^b	-4,15(-3) ^в	-5,32(-5) ^в	1,69432 ^b	1,57633ª
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}P^{\circ}_{2}$	1,71271 ^B	$-5,64(-3)^{B}$	$-1,55(-5)^{B}$	$1,70706^{B}$	1,61103 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}F^{\circ}_{3}$	1,64346 ^B	$-5,34(-3)^{B}$	$2,83(-5)^{B}$	1,63815 ^B	1,59317 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}F^{\circ}_{4}$	1,64180 ^B	-5,84(-3) ^B	3,33(-5) ^B	1,63599 ^B	1,59510ª
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}F^{\circ}_{2}$	1,64803 ^B	-5,52(-3) ^B	$4,77(-5)^{B}$	1,64255 ^B	1,59664 ^a
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{1}$	1.50849^{A}	-2,77(-3) ^A	$4,13(-6)^{A}$	1,50572 ^A	1,59967ª
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{2}$	1.51093 ^A	$-2.80(-3)^{A}$	$4.30(-6)^{A}$	1.50814 ^A	1.60181 ^a
$4s^24n^3(4S^\circ)5n^5P_3$	1.51672 ^A	-2.92(-3) ^A	6.39(-6) ^A	1.51381 ^A	1.60856 ^a
$4s^24n^3(^2P^\circ)5s^{-3}P^\circ_0$	1 56328 ^A	$-2.86(-3)^{A}$	$4.70(-5)^{A}$	1 56046 ^A	1.62427^{a}
45 4p (1)55 1 0	0.48145 ^B	$-6.09(-3)^{B}$	$283(-4)^{B}$	0.47564 ^B	1,02427
$4e^{2}/(2p^{2})5e^{3}p^{2}$	1 56843A	$-0,09(-3)^{A}$	2,03(-4)	1,56550A	1 62441a
48 4p (1)38 1 1	1,50045 0.49217B	-2,98(-3)	3,04(-3)	1,30330 0.47716B	1,02441
4 24 3(2D0)5 3D0	0,46517-	$-0,50(-5)^{-1}$	2,90(-4) ⁻	0,47710 ⁻	1 (4052)
4s ² 4p ³ (² P ³)5s ³ P ³ ₂	1,58//3	$-3,65(-3)^{-3}$	7,35(-5) ⁴	1,58415 ¹¹	1,64253"
	0,48/208	-6,80(-3) ^b	3,09(-4) ^b	4,807065	
$4s^{2}4p^{3}(^{4}S^{0})5p^{3}P_{1}$	1,55853 ^A	$-2,69(-3)^{A}$	2,74(-6) ^A	1,55584 ^A	1,63689ª
$4s^{2}4p^{3}(^{4}S^{6})5p^{3}P_{2}$	1,56179 ^A	$-2,80(-3)^{A}$	7,05(-6) ^A	1,55899 ^A	1,64103ª
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{-3}P_{0}$	1,56308 ^A	-2,85(-3) ^A	7,64(-6) ^A	1,56024 ^A	1,64244ª
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}S^{\circ}_{1}$	1,91233 ^B	-5,32(-3) ^B	$7,85(-5)^{B}$	1,90709 ^в	1,65179 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{1}P^{\circ}_{1}$	$1,60760^{A}$	-3,53(-3) ^A	5,34(-5) ^A	1,60412 ^A	1,66092ª
	0,53027 ^B	-6,53(-3) ^B	$2,99(-4)^{B}$	$0,52404^{B}$	
4s ² 4p ³ (² D°)4d ¹ F° ₃	1,88971 ^B	-5,23(-3) ^B	$5,34(-6)^{B}$	$1,88448^{B}$	1,66731ª
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}D^{\circ}_{3}$	1.73259 ^B	$-6.12(-3)^{B}$	$4.93(-5)^{B}$	1.72652^{B}	1.68485 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}D^{\circ}_{2}$	1.71826^{B}	$-4.70(-3)^{B}$	$8.92(-6)^{B}$	1,71357 ^B	1.69211ª
$4s^24n^3(^2P^\circ)4d^3D^{\circ}$	1 70757 ^B	$-3.46(-3)^{B}$	$-2.48(-5)^{B}$	1.70408^{B}	1 71530ª
$4s^2/n^3(^2D^\circ)/d^{3}P^\circ_2$	2 22000B	$-2.95(-3)^{B}$	$-5.41(-4)^{B}$	2 22640 ^B	1,71836ª
$4s^24n^3(^2D^{\circ})/d^3D^{\circ}.$	2,22770 2 24005 ^B	-2,75(-3)	-5, -1(-4)	2,22040 2 22578 ^B	1,71050 1 73346a
$4s^2/m^3(2D^0)/J = 3D^0$	2,24005 2.24005	-3,73(-3)	-3,13(-4) 1 00(1)A	2,23370 2 24192B	1,75540
$45 4p^{-1}$ (D) $40^{-1}P^{-1}$	2,24072-	$-4,41(-3)^{-1}$	-4,00(-4)	$2,24103^{-1}$	-
48-4p ⁻ (-D ⁻)5p ⁻³ D ₁	1,09305	-2,50(-5)*	-5,26(-6)	1,09055	1,/3800"
4s ² 4p ³ (² D ²)5p ³ D ₂	1,/090/A	-2,66(-3) ^A	/,16(-/)^	1,/0641	1,/6654ª
4s ² 4p ³ (² D ⁹)5p ³ D ₃	1,72836 ^A	$-2,92(-3)^{A}$	$6,65(-6)^{A}$	1,72545 ^A	1,78132 ^a
4s ² 4p ³ (² D°)5p ³ F ₂	1,71890 ^A	-2,69(-3) ^A	9,57(-7) ^A	1,71621 ^A	1,75602 ^a
4s ² 4p ³ (² D°)5p ³ F ₃	1,71870 ^A	-2,87(-3) ^A	5,54(-6) ^A	1,71583 ^A	1,76626 ^a
4s ² 4p ³ (² D°)5p ³ F ₄	1,73434 ^A	-3,14(-3) ^A	1,19(-5) ^A	1,73122 ^A	1,78311ª
$4s^{2}4p^{3}(^{2}D^{\circ})4d \ ^{1}D^{\circ}_{2}$	2,15220 ^B	-5,56(-3) ^B	6,00(-5) ^B	2,14671 ^B	1,76468 ^a

Tablo 3.2. (Devamı)

Tablo 3.2. (Devamı)							
Seviyeler	E ⁰	E1	\mathbf{E}^2	ET	Diğer çalışmalar		
4s ² 4p ³ (² D°)5p ¹ P ₁	1,72253 ^A	-3,06(-3) ^A	1,07(-5) ^A	1,71947 ^A	1,76895 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{1}F_{3}$	1,73477 ^A	-3,02(-3) ^A	9,43(-6) ^A	1,73176 ^A	1,77663 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{1}F^{\circ}_{3}$	1,88970 ^B	-5,23(-3) ^B	$5,34(-6)^{B}$	1,88447 ^B	1,78869 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{2}$	1,76874 ^A	-2,54(-3) ^A	5,99(-6) ^A	1,76620 ^A	1,80529 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{0}$	1,77315 ^A	-2,49(-3) ^A	2,68(-7) ^A	1,77066 ^A	1,81149 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{1}$	1,77300 ^A	-2,59(-3) ^A	4,36(-6) ^A	1,77041 ^A	1,81182 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{-1}D_{2}$	1,81800 ^A	-2,65(-3) ^A	7,08(-6) ^A	1,81535 ^A	1,84892 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{1}$	1,86542 ^A	-2,93(-3) ^A	9,77(-6) ^A	1,86250 ^A	1,88857 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	1,87581 ^A	-3,20(-3) ^A	1,63(-5) ^A	1,87263 ^A	1,90008 ^a		
4s ² 4p ³ (² P°)5p ³ D ₃	1,88734 ^A	-3,66(-3) ^A	2,90(-5) ^A	1,88372 ^A	1,91246 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	1,91159 ^A	-3,62(-3) ^A	3,03(-5) ^A	1,90800 ^A	1,90713 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{0}$	1,89255 ^A	-2,96(-3) ^A	1,42(-5) ^A	1,88960 ^A	1,91171 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{2}$	1,91789 ^A	-3,63(-3) ^A	2,95(-5) ^A	1,91429 ^A	1,94152 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-1}D_{2}$	1,91645 ^A	-3,29(-3) ^A	2,52(-5) ^A	1,91319 ^A	1,93301 ^a		
4s ² 4p ³ (⁴ S°)6s ⁵ S° ₂	1,85804 ^A	-3,10(-3) ^A	1,57(-5) ^A	1,85495 ^A	1,96397 ^a		
4s ² 4p ³ (⁴ S°)6s ³ S° ₁	1,87823 ^A	-3,06(-3) ^A	1,55(-5) ^A	1,87519 ^A	1,98087 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})6s^{3}D^{\circ}_{2}$	2,06089 ^A	-2,85(-3) ^A	9,12(-6) ^A	2,05805 ^A	2,12640 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})6s$	2,07220 ^A	-3,32(-3) ^A	2,13(-5) ^A	$2,06890^{A}$	2,13753 ^a		
$4s^{2}4p^{3}(^{2}D^{\circ})6s$	2,07967 ^A	-3,26(-3) ^A	2,03(-5) ^A	2,07643 ^A	2,14313 ^a		
$4s^{2}4p^{3}(^{2}P^{\circ})6s$	2,21013 ^A	-3,27(-3) ^A	2,20(-5) ^A	$2,20688^{A}$	2,27057ª		
4s ² 4p ³ (² P°)6s	2,22765 ^A	-3,89(-3) ^A	4,00(-5) ^A	2,22380 ^A	2,27235ª		
$4s^{2}4p^{3}(^{2}P^{\circ})6s$	2,23465 ^A	-3,83(-3) ^A	3,87(-5) ^A	2,23086 ^A	2,27659ª		

^a NIST; ^b Garstang, 1963; ^c Biémont ve Hansen, 1986; ^d Sterling ve ark., 2011

Şekil 3.1. Kr III iyonuna ait enerji seviyelerinin diğer çalışmalar ile karşılaştırılması

Xe III, [Pd] $5s^25p^4$ şeklinde elektron dizilimine sahiptir. Taban hal durumu $5s^25p^4$ ³P₂'dir. Kr III iyonunda olduğu gibi Xe III için de öncelikle korelasyon etkileri incelendi. Hesaplama sonuçlarına ait detaylı bir tablo yine Ek A'da verilmektedir

(Tablo A.2). Hesaplamalarda kullanılan konfigürasyon setleri Tablo 3.3.'de gösterilmektedir. Xe III için valans ve öz-valans korelasyonu hesaplamaları yanısıra iki ayrı öz-öz korelasyon hesabı yapıldı. Bunlar Tablo 3.3.'de sırasıyla CC-A ve CC-B ile gösterilmektedir. VV, CV, CC-A ve CC-B hesaplamalarından sırasıyla 301, 325, 453 ve 483 enerji seviyesi elde edildi.

	radio 5.5. Ae in ryonu nesapramatarinda kunannan konngutasyon senem
VV	5s ² 5p ⁴ , 5s ² 5p ³ 5d, 5s ² 5p ³ 6s, 5s ² 5p ³ 6p, 5s ² 5p ² 5d ² , 5s ² 5p ² 6s ² , 5s ² 5p ² 5d6s, 5s ² 5p ³ 6d,
	5s ² 5p ³ 7s
CV	$VV + (5s5p^5, 5s5p^36s^2, 5s5p^37s^2)$
СС-А	$5s^25p^4$, $5p^6$, $5s5p^45d$, $5s^25p^25d^2$, $5p^45d^2$, $5s5p^5$, $5s^25p^35d$, $5p^55d$, $5s^25p^36s$, $5s^25p^36p$,
	5s ² 5p ³ 6d, 5s5p ³ 6s ² , 5s5p ³ 7s ² , 5p ⁴ 6s ² , 5p ⁵ 6s, 5s ² 5p ³ 7s
СС-В	$5s^25p^4$, $5p^6$, $5s5p^45d$, $5s^25p^25d^2$, $5p^45d^2$, $5s5p^5$, $5s^25p^35d$, $5p^55d$, $5s^25p^36s$, $5s^25p^36p$,
	$5s^25p^36d$, $5s5p^36s^2$, $5s5p^37s^2$, $5p^46s^2$, $5p^56s$, $5s^25p^34f$

Tablo 3.3. Xe III iyonu hesaplamalarında kullanılan konfigürasyon setleri

Ek A kısmındaki Tablo A.2.'de Xe III için korelasyon etkilerinin incelendiği VV, CV ve CC hesaplama sonuçları verilmektedir. Yapılan hesaplamalarda çok fazla enerji seviyesi elde edildiği için tabloda, öz-öz korelasyonu A hesabı (CC-A) sonucuna göre elde edilen ilk yüz enerji seviyesi sunulmaktadır. VV ve CV hesaplama sonuçları karşılaştırma değerleri ile oldukça iyi uyum içerisindedir ve bu iki hesaplama sonuçları birbirine çok yakın değerlere sahiptir. CC hesabı için iki farklı konfigürasyon seti ile yapılan hesaplama sonuçları A ve B üst indisleri ile gösterilmektedir. İki çalışma sonucunun da tabloya eklenmesinin sebebi, bazı seviyelerde A hesabı sonuçları karşılaştırma değerleri ile uyumluyken bazı seviyelerde B hesabı sonuçlarının daha iyi uyumlu olmasıdır. Xe III enerji spektrumu için mevcut çalışma sonuçları arasında da özellikle düşük seviyeler için dikkate değer farklılıklar vardır. Örneğin, 5s²5p⁴ ³P₀ seviyesi için VV, CV, CC-A ve CC-B konfigürasyon setleri ile yapılan hesaplamalardan elde edilen değerler sırasıyla (0,07536, 0,07534, 0,07345 ve 0,07490) Ry'dir ve karşılaştırma değerleri (0,07408 Ry, 0,07246 Ry, 0,07739 Ry, 0,07575 Ry ve 0,08136 Ry) (NIST; Bolognesi ve ark., 2000; Pernpointner, 2010; Dzuba ve Flambaum, 2007; Schippers ve ark., 2014) ile oldukça yakındır. CC hesabına bakıldığında A ve B hesabı sonucları arasında B hesabı sonucu (0.07490 Ry) mevcut veriler ile karşılaştırıldığında ve ortalamaları düşünüldüğünde daha iyi uyumlu olduğu söylenebilir. Daha üst seviyelerden $5s^25p^3(^4S^\circ)5d\ ^5D^\circ_4$ seviyesi incelendiğinde VV ve CV hesaplama sonuçları sırasıyla 0,98236 Ry ve 0,98167 Ry iken CC hesabına ait A ve B hesaplama sonuçları sırasıyla 1,02422 Ry ve 1,03210 Ry olarak elde edildi. Bu seviye için karşılaştırma değerleri ise 1,02309 Ry, 1,02312 Ry ve 1,01484 Ry şeklindedir. Tablo 3.4.'de Breit ve QED katkılarının enerji seviye değerlerine olan etkisi CC-A hesaplamaları üzerinden araştırıldı.

Seviyeler	E ⁰	E ¹	E ²	$E_T = E^0 + E^1 + E^2$	Diğer çalışmalar
$5s^{2}5p^{4}{}^{3}P_{2}$	-	-	-	-	0,0000
$5s^{2}5p^{4}{}^{3}P_{0}$	0,07345	-0,00070	0,00002	0,07277	0,07408 ^a
					0,07246 ^b
					0,07739°
					0,07575 ^d
					0,08136 ^e
$5s^{2}5p^{4}{}^{3}P_{1}$	0,08299	-0,00146	0,00005	0,08158	0,08925ª
					0,08884 ^b
					0,08772°
					0,08782 ^d
					0,08797 ^e
$5s^25p^{4\ 1}D_2$	0,17238	-0,00140	0,00005	0,17103	0,15581ª
					0,15638 ^b
					0,15805°
					0,17392 ^d
					0,17941 ^e
$5s^25p^{4}S_0$	0,33138	-0,00244	0,00005	0,32899	0,32899ª
					0,32769 ^b
					0,34482°
					0,33972 ^d
					0,37410 ^e
5s5p ^{5 3} P° ₂	0,89987	-0,00121	-0,00057	0,89809	0,89543ª
					0,89584 ^b
					0,90076 ^d
5s5p ^{5 3} P° ₁	0,94841	-0,00185	-0,00049	0,94606	0,94378 ^a
					0,94317
5.0					0,95076ª
$5s5p^{5}P^{\circ}_{0}$	0,98476	-0,00259	-0,00037	0,98181	0,98720 ^a
					0,99365°
- 2- 2400 - 1500		0.0000	0.0000		0,98928ª
$5s^{2}5p^{3}(^{4}S^{0})5d^{3}D^{0}_{3}$	1,02061	-0,00286	0,00002	1,01777	1,01702 ^a
					1,01783
= 2= 3(400) = 15D0	1 02 40 5	0.00000	0.00001	1.02110	1,01484ª
$5s^{2}5p^{3}(4S^{\circ})5d^{3}D^{\circ}_{2}$	1,02405	-0,00288	0,00001	1,02118	1,01931 ^a
5 25 3(400) 5 1 5D0	1 02 422	0.00207	0.00002	1.02110	1,01210
5s ² 5p ³ (*S [*])5d ⁵ D [*] 4	1,02423	-0,00307	0,00002	1,02118	1,02309 ^a
					1,02312
E-2E-3(400)E15D0	1.02008	0.00202	0.00002	1.02/04	1,01484
5s ² 5p ³ (*S [*])5d ⁵ D [*] 1	1,02998	-0,00302	-0,00002	1,02694	1,024/1ª
5 25 3(400) 5 1 5D0	1 02550	0.00204	0.00012	1.02241	1,016114
5s ² 5p ³ (*S [*])5d ⁵ D [*] ₀	1,03558	-0,00304	-0,00013	1,03241	1,02694"
					1,02003°
5-25-3(400)51300	1 00972	0.00229	0.00001	1 00624	1,02191"
58 5p ⁻ (*8)50 ⁻ D ⁻ 2	1,09873	-0,00238	-0,00001	1,09034	1,0000/~ 1,06910b
					1,00010° 1,08053d
					1,08055"

Tablo 3.4. Xe'ün III enerji seviyeleri (Rydberg). E^0 : MCDF enerjisi, E^1 : Breit katkıları, E^2 : QED katkıları, $E_T = E^0 + E^1 + E^2$.

		Table	o 3.4. (Devamı)		
Seviyeler	E ⁰	E ¹	\mathbf{E}^2	ET	Diğer çalışmalar
5s ² 5p ³ (⁴ S°)6s ⁵ S° ₂	1,11416	-0,00290	0,00007	1,11133	1,10697 ^a
					1,08442 ^d
5s ² 5p ³ (² D°)5d ¹ P° ₁	1,11688	-0,00283	-0,00020	1,11385	1,08464ª
					1,48934 ^b
					$1,08442^{d}$
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{3}D^{\circ}_{3}$	1.13337	-0.00328	0.00003	1.13012	1.10472^{a}
	-,	.,	.,	-,	1,10462 ^b
					1 11613 ^d
$5s^{2}5n^{3}(4S^{\circ})5d^{3}D^{\circ}1$	1 14337	-0.00331	0.00000	1 14006	$1,1104^{a}$
53 5P (5)54 D 1	1,14337	-0,00551	0,00000	1,14000	1 10911 ^b
					1,10911 1,1231/d
5 25 n 3 (4 S °) 6 n 3 S °.	1 16049	0.00280	0.00006	1 16665	1,12514
58 5p (5)08 5 1	1,10946	-0,00289	0,00000	1,10005	1,14470 1,14242b
					1,14545 ⁻
5 25 3/2D0) 5 1 3E0	1 17447	0.00225	0.00002	1 17105	1,13135"
5s ² 5p ³ (² D ²)5d ³ F ² ₂	1,1/44/	-0,00325	0,00003	1,1/125	1,13627ª
					1,135276
					1,16029 ^d
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}F^{\circ}_{3}$	1,18930	-0,00341	0,00004	1,18593	1,14928 ^a
					1,14776 ^b
					1,17594 ^d
$5s^{2}5p^{3}(^{2}D^{\circ})5d ^{1}S^{\circ}_{0}$	1,19810	-0,00305	0,00003	1,19508	1,15504 ^b
5s ² 5p ³ (² D°)5d ³ F° ₄	1,20561	-0,00348	0,00003	1,20216	1,18623ª
- · ·					1,18399 ^b
					1,22082 ^d
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}G^{\circ}_{3}$	1.22762	-0.00276	0.00002	1.22488	1.16960 ^a
05 0p (2)0u 0 5	1,22702	0,00270	0,00002	1,22.000	1,16812 ^b
					1 21127 ^d
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{3}F^{\circ}$	1 23992	-0.00335	0.00003	1 23660	1,21127 1,16443a
53 5P (D)5u 1 4	1,25772	-0,00555	0,00005	1,23000	1,16207b
					1,10297 1,10655d
5-25-3/2D9)5-13C9	1 25029	0.00275	0.00005	1 255(9	1,19633-
5s-5p ⁻ (-D ⁻)5d ⁻ G ⁺ 5	1,25958	-0,00375	0,00005	1,25508	1,20432"
					1,20332
- 0- 0.0-0.0					1,24316 ^a
$5s^{2}5p^{3}(^{2}D^{6})6s^{3}D^{6}1$	1,26593	-0,00297	0,00004	1,26300	1,21411ª
$5s^{2}5p^{3}(^{2}D^{\circ})6s^{-3}D^{\circ}_{2}$	1,26952	-0,00313	0,00006	1,26644	1,29458ª
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}G^{\circ}_{4}$	1,27348	-0,00344	0,00004	1,27008	1,20935ª
					1,20854 ^b
5s ² 5p ³ (² D°)6s ³ D° ₂	1,29099	-0,00355	0,00005	1,28750	1,29458 ^a
5s ² 5p ³ (² D°)6s ³ D° ₃	1,31444	-0,00372	0,00009	1,31081	1,30453ª
					1,26307 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})6s^{3}D^{\circ}1$	1.31847	-0.00281	0.00003	1.31569	1.21411 ^a
$5s^25p^3(^2P^\circ)5d^{^3}P^\circ_0$	1.32811	-0.00354	0.00002	1.32459	1.27976 ^a
$5s^25n^3(^4S^\circ)6n^5P_1$	1 33260	-0.00317	0,00002	1 32945	1,33757ª
55 5p (5)op 11	1,55200	0,00017	0,00002	1,52515	1 33788 ^b
$5s^25n^3(4S^\circ)6n^5P_2$	1 33538	-0.00315	0.00002	1 33224	1 33022ª
58 5P (5)0P 12	1,55556	-0,00315	0,00002	1,33224	1,33922 1,22021b
5-25-3(2D0)513D0	1 22572	0.00225	0.00001	1 22220	1,33921
58-5p ⁻ (-P ⁻)5d ⁻ P ⁻ 1	1,335/5	-0,00335	0,00001	1,33239	1,28245"
= 2= 3(2D0) = 1 2D0	1 25054	0.00050	0.0000.4	1.2.1500	1,281810
$5s^{2}5p^{3}(^{2}P^{0})5d^{3}D^{0}_{2}$	1,35054	-0,00358	0,00004	1,34700	1,40237ª
					1,40145°
5s ² 5p ³ (⁴ S°)6p ⁵ P ₃	1,35130	-0,00341	0,00002	1,34791	1,35834ª
5s ² 5p ³ (² D°)6s ¹ D° ₂	1,36101	-0,00360	0,00006	1,35747	1,30355ª
5s ² 5p ³ (² P°)5d ³ F° ₃	1,36855	-0,00403	0,00004	1,36455	1,32444 ^a
5s ² 5p ³ (⁴ S°)6p ³ P ₁	1,37599	-0,00304	0,00001	1,37297	1,36964ª
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{3}F^{\circ}_{2}$	1,38131	-0,00390	0,00004	1,37745	1,32407ª
1 1 7	,	,		, -	1.32392 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}D^{\circ}_{3}$	1.38762	-0.00377	0.00004	1.38389	1.30453ª
	1,00702	0,00077	0,00004	.,	1,25954b
$5s^{2}5n^{3}(4S^{\circ})6n^{3}P_{2}$	1 380//	-0.00330	0.00002	1 38617	1,23754 1 38565ª
$5_{0}^{2}5_{0}^{2}(2D^{0}) = 3 \frac{1}{2} \frac{1}{$	1,00744	-0,00330	0,00002	1,30017	1,36305
$5s 3p^{-}(-r_{-})5u^{-}r_{-}^{-4}$	1,39338	-0,00300	0,00000	1,30044	1,53555"
38-3h-(18-)ob 36	1,39317	-0,00349	0,00003	1,39172	1,39249"
					1,39138

	-	1 a010	5.4. (Devailii)		
Seviyeler	E ⁰	E ¹	\mathbf{E}^2	Ет	Diğer çalışmalar
$5s^{2}5p^{3}(^{2}P^{\circ})6s^{3}P^{\circ}_{0}$	1,41046	-0,00371	0,00006	1,40682	1,37150 ^a
$5s^{2}5p^{3}(^{2}P^{\circ})6s^{3}P^{\circ}_{1}$	1.41279	-0.00370	0.00006	1.40914	1.38040^{a}
r ()	,	- ,	- ,	,	1 37970 ^b
$5s^{2}5n^{3}(^{2}P^{\circ})5d^{3}P^{\circ}_{2}$	1 /13/6	-0.00486	0.00007	1 /0867	1 37058ª
$5s^{2}5p^{3}(2P^{\circ})5d^{3}D^{\circ}$	1,41340	-0,00480	0,00007	1,40007	1,37038
38-3p ² (-P)30 ² D ₃	1,44954	-0,00554	0,00002	1,44382	1,42313"
- 2- 2.2- 0 - 4.2-0					1,42416
$5s^{2}5p^{3}(^{2}D^{0})5d^{3}S^{0}_{1}$	1,45500	-0,00394	0,00005	1,45111	1,34682ª
					1,34604 ^b
$5s^{2}5p^{3}(^{2}P^{\circ})6s^{3}P^{\circ}_{2}$	1,46925	-0,00456	0,00003	1,46472	1,44825ª
					1.44834 ^b
$5s^{2}5n^{3}(^{2}D^{\circ})6n^{3}D_{1}$	1 48040	-0.00327	0.00002	1 47715	1 44888ª
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{3}D^{\circ}_{2}$	1,48500	-0.00397	0,00004	1 48107	1 40237ª
58 5p (1)5u D 2	1,40500	-0,00377	0,00004	1,40107	1,40257
5 25 3(2D0) (1D0	1 49705	0.00404	0.00000	1 40010	1,40145*
5s ² 5p ³ (² P ³)6s ⁴ P ³ ₁	1,48705	-0,00494	0,00008	1,48219	1,45245ª
					1,45186°
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}F^{\circ}_{3}$	1,48783	-0,00495	0,00006	1,48294	1,48497 ^a
					1,48427 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})6p^{3}F_{2}$	1.49815	-0.00328	0.00002	1,49490	1.46432 ^a
r / / r	,	- ,	- ,	,	1 46370 ^b
$5e^{2}5n^{3}(^{2}D^{0})6n^{3}D_{0}$	1 51278	0.00333	0.00002	1 50047	1 47862ª
58 5p (D)op D ₂	1,51276	-0,00555	0,00002	1,50947	1,47802
5 25 3(2D0) 5 1 3D0	1 51 500	0.00401	0.00004	1 51105	1,47744°
$5s^{2}5p^{3}(^{2}P^{2})5d^{3}D^{2}_{1}$	1,51523	-0,00421	0,00004	1,51105	1,41611ª
					1,41512 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})6p^{-3}F_{3}$	1,51607	-0,00342	0,00002	1,51267	1,48167 ^a
					1,48126 ^b
5s ² 5p ³ (² D°)6p ¹ P ₁	1.53355	-0.00375	0.00004	1.52984	1.49914 ^a
	,	- ,	- ,	<i>y</i>	1 49897 ^b
$5s^{2}5n^{3}(^{2}D^{\circ})6n^{3}D_{2}$	1 53/83	-0.00383	0.00004	1 53104	1 51907
$5s 5p (D) 6p D_3$ $5s^2 5n^3 (2D^2) 6n ^3D_2$	1,55405	-0,00385	0,00004	1,55104	1,51007
58-5p ² (-D)6p ² D3	1,55105	-0,00411	0,00003	1,54099	1,51907-
5s ² 5p ³ (² D ^o)6p ³ F ₄	1,55274	-0,00411	0,00005	1,54867	1,51775ª
					1,51800 ^b
5s ² 5p ³ (² D°)6p ³ P ₀	1,55542	-0,00297	0,00001	1,55246	1,51217 ^a
					1,51257 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}P^{\circ}_{2}$	1,56104	-0,00358	-0,00010	1,55735	1,35204ª
1 ()	,	,	,	,	1.35192 ^b
$5s^{2}5n^{3}(^{2}D^{\circ})6n^{3}P_{2}$	1 56272	-0.00335	0.00004	1 55940	1 52242ª
55 5p (D)op 12	1,50272	0,00555	0,00004	1,55740	1,52168b
5 - 25 - 3(2DQ)(-3DQ)	1 57050	0.00261	0.00004	1 5(702	1,52108
5s-5p ⁵ (2D ²)op ³ P ₁	1,57059	-0,00301	0,00004	1,50705	1,531/1"
- 2- 2-2- 0 1 2- 0					1,530578
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}P^{\circ}_{1}$	1,58430	-0,00326	-0,00018	1,58086	1,40917ª
					1,40733 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{1}D^{\circ}_{2}$	1,58591	-0,00445	0,00003	1,58150	1,47452ª
					1,47384 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{1}F^{\circ}_{3}$	1.60956	-0.00456	0.00005	1.60505	1.35243ª
$5s^25n^3(^2D^\circ)6n^1D_2$	1 61562	-0.00365	0,00004	1 61201	1 56728ª
$5s^{2}5p^{3}(^{2}D^{9})5d^{3}P^{9}$	1,61362	-0.00412	-0.00015	1,62330	1,56726
535p(D)5010	1,02750	-0,00412	-0,00013	1,02330	1,40471
$58^{-}59^{-}(-5)00^{-}D^{-3}$	1,04478	-0,00576	0,00002	1,04104	1,00275"
5s ² 5p ³ (4S ²)6d ⁵ D ⁶ ₁	1,64491	-0,00374	0,00001	1,64118	1,66353"
$5s^25p^3(^4S^0)6d^{-5}D_2^{-6}$	1,64519	-0,00375	0,00002	1,64146	1,66158ª
$5s^{2}5p^{3}(^{4}S^{\circ})6d ^{5}D^{0}_{0}$	1,64532	-0,00375	0,00001	1,64158	1,66326ª
5s ² 5p ³ (⁴ S°)6d ⁵ D ^o ₄	1,64601	-0,00377	0,00002	1,64225	1,66503ª
5s ² 5p ³ (⁴ S°)7s ⁵ S ^o ₂	1,64869	-0,00343	0,00002	1,64528	1,66290ª
$5s^{2}5p^{3}(^{2}P^{\circ})6p^{3}D_{1}$	1.65293	-0.00385	0.00004	1.64912	1.59682 ^a
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{1}P^{\circ}$	1 66434	-0.00373	-0.00015	1 66046	1.08464^{a}
55 5p (b)5u i i	1,00151	0,00575	0,00015	1,00010	1 48034b
5 25 3(2D0) (3D	1 (772)	0.00414	0.00005	1 (7220)	1,40954
58-5p-(-P-)6p -D2	1,07729	-0,00414	0,00005	1,0/320	1,02105"
5s ² 5p ³ (² P ²)6p ³ P ₁	1,67805	-0,00400	0,00005	1,6/410	1,62255ª
$5s^{2}5p^{3}(^{4}S^{\circ})7s^{3}S^{\circ}1$	1,67805	-0,00326	0,00002	1,67481	1,67478ª
5s ² 5p ³ (² P°)6p ³ P ₀	1,68268	-0,00375	0,00004	1,67897	1,62255 ^a
5s ² 5p ³ (⁴ S°)6d ³ D ^o ₂	1,70316	-0,00331	0,00001	1,69986	1,68694ª
5s ² 5p ³ (² P°)6p ³ S ₁	1,70861	-0,00521	0,00009	1,70349	1,65972 ^a
$5s^25p^3(^2P^\circ)6p^3D_3$	1.71663	-0.00356	0.00002	1.71309	1.68214 ^a

Tablo 3.4. (Devamı)

Tablo 3.4. (Devamı)						
Seviyeler	E ⁰	\mathbf{E}^{1}	\mathbf{E}^2	ET	Diğer çalışmalar	
5s ² 5p ³ (² P°)5d ¹ P° ₁	1,72152	-0,00418	-0,00012	1,71722	1,59519ª	
5s ² 5p ³ (² P°)6p ³ D ₃	1,72704	-0,00546	0,00009	1,72167	1,68214ª	
5s ² 5p ³ (⁴ S°)6d ³ D ^o 1	1,72904	-0,00422	0,00002	1,72484	1,70032ª	
5s ² 5p ³ (² P°)6p ¹ D ₂	1,73531	-0,00492	0,00009	1,73048	1,67681ª	
5s ² 5p ³ (² P°)6p ¹ P ₁	1,74738	-0,00535	0,00009	1,74213	1,69393ª	
5s ² 5p ³ (² P°)6p ³ P ₂	1,75600	-0,00545	0,00009	1,75065	1,69788ª	
5s5p ⁴ (³ P)5d ⁵ D ₄	1,78410	-0,00423	-0,00075	1,77912	-	
5s5p4(3P)5d 5D3	1,78529	-0,00408	-0,00075	1,78045	-	
5s5p ⁴ (³ P)5d ⁵ D ₂	1,79223	-0,00410	-0,00075	1,78738	-	
5s5p ⁴ (³ P)5d ⁵ D ₁	1,80207	-0,00426	-0,00074	1,79707	-	
5s ² 5p ³ (² P°)6p ¹ S ₀	1,80388	-0,00478	-0,00004	1,79906	1,73588ª	
5s ² 5p ³ (² D°)6d ³ F ⁰ ₂	1,80651	-0,00386	0,00003	1,80268	1,78587ª	

^a NIST; ^b Bolognesi ve ark., 2000; ^c Pernpointner, 2010; ^d Dzuba ve Flambaum, 2007; ^e Schippers ve ark., 2014

Breit ve QED katkıları, özelllikle düşük enerji seviyelerinde enerji değerlerinin bir miktar azalmasına neden olurken üst seviyelere gidildikçe bu fark azalmaktadır. Örneğin, 5s²5p⁴ ¹S₀ seviyesi incelendiğinde MCDF enerjisi 0,33138 Ry idi. Breit ve QED katkıları bu enerjiye eklendikten sonra bu seviyeye ait toplam enerji 0,32899 Ry oldu. Şekil 3.2.'de Xe III iyonuna ait toplam enerji (E^T) değerlerinin mevcut ulaşılabilir literatürdeki veriler ile karşılaştırılması yapılmaktadır. Şekil 3.2.'den de bu çalışmadan elde edilen sonuçların karşılaştırma değerleri (NIST; Bolognesi ve ark., 2000; Dzuba ve Flambaum, 2007; Pernpointner, 2010; Schippers ve ark., 2014) ile uyumu görülmektedir.

Şekil 3.2. Xe III iyonuna ait enerji seviyelerinin diğer çalışmalar ile karşılaştırılması

Rn III, [Pt]6s²6p⁴ elektronik dizilime sahiptir. Taban hal durumu 6s²6p⁴ ³P₂'dir. Kr III ve Xe III iyonlarında olduğu gibi öncelikle korelasyon etkileri incelendi. Karşılaştırma değerleri (Biémont ve Quinet, 1996; Pernpointner ve ark., 2012) ile uyumlu olan korelasyon hesabına Breit ve QED katkıları eklendi. VV, CV ve CC hesaplamalarında kullanılan konfigürasyon setleri Tablo 3.5.'de verilmekedir. Bu konfigürasyon setleri seçilerek yapılan VV, CV ve CC hesaplamaları sonucunda sırasıyla 190, 214 ve 403 enerji seviyesi elde edildi.

Tablo 3.5. Rn III iyonu hesaplamalarında kullanılan konfigürasyon setleri

VV	6s ² 6p ⁴ , 6s ² 6p ³ 7s, 6s ² 6p ³ 7p, 6s ² 6p ³ 6d, 6s ² 6p ² 6d7s, 6s ² 6p ² 7s ² , 6s ² 6p ³ 7d, 6s ² 6p ³ 8s, 6s ² 6p ² 6d ²
CV	6s ² 6p ⁴ , 6s ² 6p ³ 7s, 6s ² 6p ³ 7p, 6s ² 6p ³ 6d, 6s ² 6p ² 6d7s, 6s ² 6p ² 7s ² , 6s ² 6p ³ 7d, 6s6p ⁵ , 6s6p ³ 7s ² , 6s6p ³ 8s ² ,
	6s ² 6p ³ 8s
CC	$CV + (6p^6, 6p^46d^2, 6p^56d, 6p^47s^2, 6p^57s, 6p^46d7s)$

Ek A'daki Tablo A.3.'de Rn III için korelasyon etkilerinin incelendiği VV, CV ve CC hesaplama sonuçları sunulmaktadır. Tabloda CC hesabı sonucuna göre elde edilen ilk yüz enerji seviyesine göre sıralama yapıldı. Rn III iyonu ile ilgili çok fazla karşılaştırma değeri olmadığından sadece en düşük beş seviyeye ait enerji değerleri mevcut çalışmalar (Biémont ve Quinet, 1996; Pernpointner ve ark., 2012) ile karşılaştırıldı. VV ve CV sonuçları yine birbirine çok yakınken özden uyarılmış elektronları içeren konfigürasyonlar hesaba katıldığında, CC hesaplamaları sonuçlarının bu karşılaştırma değerleri ile iyi uyumlu olduğu görüldü. Örneğin, 6s²6p⁴ ³P₀ seviyesi incelendiğinde VV, CV ve CC hesaplama sonuçları sırasıyla 0,11577 Ry, 0,11576 Ry ve 0,10064 Ry olarak elde edildi. Bu seviye için karşılaştırma değerleri ise 0,10241 Ry ve 0,10877 Ry şeklindedir. Tablo 3.6.'da, Rn III iyonuna ait MCDF enerjilerine Breit ve QED katkılarının etkisi verilmektedir.

Tablo 3.6. Rn III'ün enerji seviyeleri (Rydberg). E^0 : MCDF enerjisi, E^1 : Breit katkıları, E^2 : QED katkıları, $E_T = E^0 + E^1 + E^2$.

Seviyeler	E ⁰	\mathbf{E}^{1}	\mathbf{E}^2	$E_T = E^0 + E^1 + E^2$	Diğer çalışmalar
6s ² 6p ⁴ ³ P ₂	-	0,00	0,00	-	0,00000ª
$6s^{2}6p^{4} {}^{3}P_{0}$	0,10064	-3,77(-4)	3,65(-6)	0,10027	0,10241 ^a
					0,10877 ^b
$6s^26p^4 {}^3P_1$	0,28126	-4,65(-3)	2,78(-4)	0,27689	0,28552ª
					0,28149 ^b
6s ² 6p ⁴ ¹ D ₂	0,35768	-4,69(-3)	2,73(-4)	0,35326	0,34202ª
					0 34103 ^b

Seviveler	E ₀	E ¹	E ²	$E_{T} = E^{0} + E^{1} + E^{2}$	Diğer çalışmalar
$6s^26p^{4}$ 1So	0.68363	-9.35(-3)	5.18(-4)	0.67480	
08 00 50	0,00505	-7,55(-5)	5,10(-4)	0,07400	0,00130 0,60529 ^b
$6s^{2}6n^{3}(4S^{\circ})7s^{-5}S^{\circ}2$	0 87338	-3 13(-3)	-8 84(-5)	0.87016	-
$6s^{2}6p^{3}(^{4}S^{\circ})7s^{-3}S^{\circ}1$	0.89251	-2.99(-3)	-9.00(-5)	0.88943	_
$6s^{2}6p^{3}(4S^{\circ})6d^{5}D^{\circ}_{2}$	0.89354	-2,77(-3)	-4.22(-5)	0,80040	
$6s^{2}6p^{3}(4S^{\circ})6d^{5}D^{\circ}_{2}$	0,00567	-2,71(-3)	-4,22(-5)	0,00000	-
$6s^{2}6p^{3}(4S^{\circ})6d^{5}D^{\circ}$	0,90307	-3,20(-3)	-1, +7(-5)	0,00203	-
$6s^{2}6p^{3}(4S^{\circ})6d^{5}D^{\circ}$	0,91230	-3,32(-3)	-4, +3(-5)	0,00000	-
$6s^{2}6p^{3}(4S^{\circ})6d^{5}D^{\circ}4$	0,91472	-3,51(-3)	-3,20(-0) 1 31(5)	0,01501	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}P^{\circ}_{2}$	0,91870	-3,07(-3)	-1,31(-3) 1 16(4)	0,91301	-
$6s^{2}6p^{3}(^{2}D^{0})6d^{3}G^{0}$	1,05581	-3,30(-3)	-1,10(-4)	1.05188	-
$6s^{2}6p^{3}(48^{\circ})6d^{3}D^{\circ}$	1,05561	-3,94(-3)	3,13(-0)	1,05100	-
$6^{\circ}6^{\circ}5^{\circ}3^{\circ}D^{\circ}$	1,00233	-4,30(-3)	-1,30(-3)	1,03603	-
$6_{2}^{2} c_{2}^{3} (4S^{2}) 7 m 5 D$	1,09110	-3,92(-3)	-1,44(-4)	1,06512	-
$6s^{2}6p^{3}(4S^{2})7p^{5}P_{1}$	1,09479	-3,00(-3)	-3,00(-3)	1,09114	-
$(-2)^{-3}(452)(-15D2)$	1,09082	-3,03(-3)	-4,9/(-3)	1,09514	-
63^{2} 63^{2} (3^{2}) 63^{2} (3^{2}) 7^{2} 50^{2}	1,13020	-0,75(-3)	5,81(-5)	1,12350	-
$6s^{2}6p^{3}(+S^{2})/s^{-3}S^{2}_{2}$	1,14601	-7,39(-3)	1,60(-4)	1,138/8	-
$6s^{2}6p^{3}(^{4}S^{2})/p^{-3}P_{3}$	1,15247	-4,24(-3)	-1,/5(-5)	1,14822	-
$6s^{2}6p^{3}(^{+}S^{\circ})/p^{-3}P_{1}$	1,15899	-4,13(-3)	-2,09(-5)	1,15484	-
$6s^{2}6p^{3}(^{2}D^{0})/s^{3}D^{0}_{1}$	1,17331	-7,43(-3)	1,48(-4)	1,16603	-
$6s^{2}6p^{3}(^{2}D^{0})6d^{3}F^{0}_{3}$	1,17678	-7,52(-3)	2,09(-4)	1,16946	-
$6s^{2}6p^{3}(^{2}D^{2})6d^{4}S^{0}$	1,17/10	-6,96(-3)	1,83(-4)	1,17032	-
$6s^{2}6p^{3}(^{4}S^{\circ})/p^{-3}P_{2}$	1,18221	-3,73(-3)	-2,07(-5)	1,17845	-
6s ² 6p ³ (² D ^o)6d ³ F ^o ₂	1,18338	-7,09(-3)	1,85(-4)	1,17648	-
6s ² 6p ³ (² D ⁶)6d ³ G ⁶ 4	1,19380	-7,56(-3)	2,09(-4)	1,18645	-
$6s^{2}6p^{3}(^{2}D^{6})6d^{3}G^{6}_{3}$	1,20926	-7,57(-3)	2,28(-4)	1,20191	-
$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-3}P_{0}$	1,21891	-3,90(-3)	-4,29(-6)	1,21501	-
$6s^{2}6p^{3}(^{2}D^{0})6d^{3}P^{0}_{1}$	1,22244	-6,83(-3)	2,22(-5)	1,21563	-
$6s^{2}6p^{3}(^{2}D^{\circ})7s^{-3}D^{\circ}_{3}$	1,22950	-7,72(-3)	1,83(-4)	1,22196	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{-3}D^{\circ}_{1}$	1,23380	-7,17(-3)	1,54(-4)	1,22679	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{-3}P^{\circ}_{0}$	1,23430	-7,89(-3)	8,58(-5)	1,22649	-
$6s^{2}6p^{3}(^{2}D^{\circ})7s^{-1}D^{\circ}_{2}$	1,23551	-7,76(-3)	1,82(-4)	1,22793	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}F^{\circ}_{4}$	1,25381	-7,92(-3)	2,35(-4)	1,24613	-
6s ² 6p ³ (² D°)6d ³ G° ₅	1,27786	-8,06(-3)	2,35(-4)	1,27003	-
6s ² 6p ³ (² D°)6d ¹ G° ₄	1,28599	-7,69(-3)	2,36(-4)	1,27853	-
6s ² 6p ³ (² D°)6d ³ D° ₃	1,33025	-7,21(-3)	1,72(-4)	1,32321	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{-3}F^{\circ}_{2}$	1,33445	-7,43(-3)	1,69(-4)	1,32719	-
$6s^{2}6p^{3}(^{2}P^{\circ})7s^{-3}P^{\circ}_{0}$	1,33767	-8,00(-3)	1,34(-4)	1,32981	-
6s ² 6p ³ (² P°)7s ³ P° ₁	1,33893	-7,62(-3)	1,59(-4)	1,33147	-
6s ² 6p ³ (² D°)6d ³ D° ₂	1,35356	-7,74(-3)	1,93(-4)	1,34602	-
6s ² 6p ³ (² D°)6d ³ S° ₁	1,35863	-7,90(-3)	1,40(-4)	1,35087	-
$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-5}P_{1}$	1,36254	-7,93(-3)	1,91(-4)	1,35480	-
6s ² 6p ³ (² D°)7p ³ F ₂	1,37755	-7,77(-3)	1,92(-4)	1,36997	-
6 s ² 6p ³ (⁴ S°)7d ³ D° ₂	1,39007	-6,22(-3)	6,97(-5)	1,38392	-
6s ² 6p ³ (² P°)6d ³ D° ₃	1,39599	-7,50(-3)	1,75(-4)	1,38866	-
6s ² 6p ³ (⁴ S°)8s ⁵ S° ₂	1,40268	-6,19(-3)	6,18(-5)	1,39656	-
6s ² 6p ³ (⁴ S°)8s ⁵ S° ₂	1,42009	-5,66(-3)	4,08(-5)	1,41448	-

Tablo 3.6. (Devamı)

^a Biémont ve Quinet, 1996; ^b Pernpointner ve ark., 2012

Tablo 3.6.'da Breit ve QED katkılarının, seviye enerji değerlerinde bir azalmaya neden olduğu gözlenmektedir. Bu katkılar enerjiye eklenip mevcut kaynaklar (Biémont ve Quinet, 1996; Pernpointner ve ark., 2012) ile karşılaştırıldığında uyumlu olduğu görülmektedir. Bu uyum, bu çalışmadan elde edilen veriler ile mevcut çalışmalarda var olan verilerin karşılaştırıldığı Şekil 3.3'de de görülmektedir.

Şekil 3.3. Rn III iyonuna ait enerji seviyelerinin diğer çalışmalar ile karşılaştırılması

3.1.2. Elektrik dipol (E1) geçiş hesaplamaları

İkili iyonlasmış kripton (Kr III) için öz-öz korelasyonu için A konfigürasyon seti (CC-A) ile yapılan hesaplama sonucunda elde edilen enerji seviyeleri arasındaki E1 geçişleri hesaplandı ve 670 geçiş elde edildi. Bazı mevcut çalışmalarda (Fink ve ark., 1970; Kernahan ve ark., 1987; Raineri ve ark., 1998; Djeniže ve ark., 2003) geçiş olasılığı için az sayıda 5s-5p seviyeleri arasındaki geçişler için karşılaştırma değerlerine rastlandı. Bu geçişler için MCDF sonuçları ve karşılaştırma değerleri Tablo 3.7.'de verilmektedir. Tabloda verilen geçişler için dalga boyu, geçiş olasılığı ve logaritmik salınıcı şiddeti değerlerinin birbirleri ile oldukça iyi uyum içinde olduğu görülmektedir. Örneğin, $4s^24p^3(^4S^\circ)5s^5S^\circ_2 - 4s^24p^3(^4S^\circ)5p^5P_2$ geçişinde, bu çalışmadaki dalga boyu değeri 3461,10 Å iken karşılaştırma değerleri (3325,76, 3325,70 ve 3326,00) Å'dur (Raineri ve ark., 1998; Fink ve ark., 1970; Kernahan ve ark., 1987). Geçiş olasılığı ise 2,341(8) (s⁻¹) iken karşılaştırma değerleri (2,80(8), 1,59(8), 3,33(8) ve 0,98(8)) s⁻¹'dir (Fink ve ark., 1970; Kernahan ve ark., 1987; Raineri ve ark., 1998; Djeniže ve ark., 2003). Logaritmik ağırlıklı salınıcı siddeti değeri de 0,323 iken karşılaştırma değeri 0,313'tür (Raineri ve ark., 1998). E1 geçişlerine ait dalga boyu değerleri için karşılaştırma değerleri (Fink ve ark., 1970; Kernahan ve ark., 1987; Raineri ve ark., 1998) ve bu çalışma sonucunda elde edilen verilerin bir karşılaştırması Şekil 3.4.'de verilmektedir. Elektrik dipol geçişlerinin fazla sayıda olması nedeniyle 10⁸ ve daha büyük geçiş olasılığına sahip geçişler Tablo 3.8.'de ilk defa sunulmaktadır.

Tablo 3.7. Kr III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), logaritmik ağırlıklı salınıcı şiddeti (Log (gf)), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk ve hız formlarının oranı ve karşılaştırma değerleri

Geç	rişler	λ (Å)		A _{ji}	(s ⁻¹)	Log (gf)		S. (a b) Oran
Alt Seviye	Üst Seviye	Bu çal.	Diğ. çal.	Bu çal.	Diğ. çal.	Bu çal.	Diğ. çal.	S_{ij} (a.b) (V/L)
4s ² 4p ³ (⁴ S°)5s ³ S° ₁	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{2}$	3659,1	3507,43ª	1,933(8)	$0,75(8)^{a}$	0,288	0,289ª	23,372 1,0
			3507,80 ^b		1,16(8) ^b			
			3507,00 ^c		0,85(8) ^c			
					$1,22(8)^{d}$			
4s ² 4p ³ (² D°)5s ³ D° ₁	4s ² 4p ³ (² D°)5p ³ F ₂	3511,9	3396,72 ^a	2,105(8)	$0,08(8)^{a}$	0,289	0,202ª	22,504 0,90
			3268,00 ^c		$1,10(8)^{b}$			
					0,97(8) ^c			
					$1,59(8)^{d}$			
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{1}$	3493,1	3351,94 ^a	2,311(8)	0,89(8) ^a	-0,118	0,099ª	14,587 0,89
			3352,30 ^b		$0,86(8)^{b}$			
			3352,00°		$1,11(8)^{c}$			
					$0,94(8)^{d}$			
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{2}$	3461,1	3325,76 ^a	2,341(8)	$2,80(8)^{a}$	0,323	0,313 ^a	23,959 0,89
• • •	• • • •		3325,70 ^b		1,59(8) ^b			
			3326,00 ^c		3,33(8) ^c			
					$0,98(8)^{d}$			
4s ² 4p ³ (² D°)5s ³ D° ₂	4s ² 4p ³ (² D°)5p ³ D ₂	3674,2	3308,22 ^a	1,581(8)	$1,13(8)^{a}$	0,204	0,157 ^a	19,355 0,98
			3439,00°		1,34(8) ^b			
					0,86(8) ^c			
					$1,68(8)^{d}$			
4s ² 4p ³ (² D°)5s ³ D° ₃	4s ² 4p ³ (² D°)5p ³ F ₄	3503,1	3253,80 ^a	2,349(8)	$0,88(8)^{a}$	0,590	0,549ª	44,860 0,92
			3265,00 ^c		0,92(8) ^b			
					0,92(8) ^c			
					$1,60(8)^{d}$			
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{3}$	3388,0	3245,69 ^a	2,548(8)	$1,00(8)^{a}$	0,487	0,490ª	34,238 0,89
			3245,80 ^b					
			3246,00 ^c					
4s ² 4p ³ (² D°)5s ³ D° ₃	4s ² 4p ³ (² D°)5p ³ P ₂	3087,8	3024,40 ^a	2,591(8)	$0,80(8)^{a}$	0,121	0,186 ^a	18,822 0,86
			3024,40 ^c		1,32(8) ^c			
					$1,02(8)^{d}$			

^a Raineri ve ark., 1998; ^b Fink ve ark., 1970; ^c Kernahan ve ark., 1987; ^d Djeniže ve ark., 2003

Tablo 3.8. Kr III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti f_{ij}, çizgi şiddeti S_{ij} (a.b) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

lıj, çizgi şiu									
Alt seviye	Üst seviye	λ (Å)	A _{ji} (s ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)			
$4s4p^{5} P^{0}$	$4p^{6}$ $^{1}S_{0}$	757,570	2,622(10)	0,752	5,625	0,560			
$4s^{2}4p^{4}$ ¹ D ₂	4s4p ⁵ ¹ P° ₁	564,210	2,604(10)	0,746	6,924	0,490			
$4s^{2}4p^{4} {}^{3}P_{1}$	$4s4p^5 {}^{3}P^{\circ}_{0}$	726,450	8,819(9)	0,233	1,669	0,850			
$4s^24p^4$ 3P_2	4s4p ⁵ ³ P° ₂	733,490	6,269(9)	0,506	6,105	0,840			
$4s^24p^{4-1}D_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	630,780	4,887(9)	0,175	1,816	0,720			
4s ² 4p ³ (² P°)5p ³ D ₁	$4p^{5}5s^{-3}P^{\circ}_{0}$	371,180	4,652(9)	0,032	0,117	0,010			
$4s^24p^{4-1}D_2$	4s ² 4p ³ (² D°)5s ¹ D° ₂	681,040	4,605(9)	0,320	3,590	0,740			
$4s^24p^4 {}^3P_2$	4s4p ⁵ ³ P° ₁	714,540	4,384(9)	0,201	2,368	0,840			
4s ² 4p ³ (² P°)5p ³ D ₃	$4p^55s^{-3}P^{\circ}_2$	383,610	4,238(9)	0,067	0,590	0,011			
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	$4p^55s^{-3}P^{\circ}_0$	374,380	3,707(9)	0,026	0,096	0,011			
$4s^24p^4 \ ^3P_2$	$4s^{2}4p^{3}(^{4}S^{\circ})5s^{-3}S^{\circ}_{1}$	695,650	3,640(9)	0,158	1,814	0,720			
$4s^24p^{4-1}S_0$	4s4p ⁵ ¹ P° ₁	614,000	2,895(9)	0,491	0,992	1,700			
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	$4p^55s$ ¹ P° ₁	370,240	2,539(9)	0,031	0,191	0,010			
$4s^24p^4 {}^3P_0$	4s4p ⁵ ³ P° ₁	741,670	2,471(9)	0,611	1,493	0,860			
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	$4p^{5}5s^{-3}P^{\circ}_{1}$	378,960	2,442(9)	0,032	0,197	0,010			

Alt seviye	Üst seviye	λ (Å)	A _{ji} (s ⁻¹)	fij	S _{ij} (a.b)	Oran (V/L)
$4s^{2}4p^{4} D_{2}$	$4p^{5}5s^{1}P^{0}1$	218,290	2,295(9)	0,010	0,035	0,085
$4s^24p^4$ $^{3}P_1$	$4s^{2}4p^{3}(^{4}S^{\circ})5s^{-3}S^{\circ}_{1}$	717,390	2,255(9)	0,174	1,233	0,730
$4s^{2}4p^{3}(^{2}P^{2})5p^{3}P_{2}$ $4s^{2}4r^{3}(^{2}P^{2})5r^{3}P_{2}$	$4p^{5}5s^{-3}P^{*}1$	385,640	2,052(9)	0,027	0,172	0,012
$4s^{2}4p^{3}(^{2}P^{*})5p^{3}P_{1}$	$4p^{2}Ss^{3}P^{2}1$ $4s^{2}4r^{3}(2D^{2})5s^{3}D^{2}s$	384,610	2,038(9)	0,045	0,172	0,011
$48 4p^{-1}r_2$ $4s^24p^3(^2P^9)5p^{-1}D_2$	$484p^{-1}(D)58^{-1}D^{-3}$	376 440	2,010(9) 1,073(0)	0,102	0.156	0,730
$4s^{2}4n^{4}$ ³ P ₁	4p 58 1 1 $4s4n^5 3P^{\circ}_{2}$	757 690	1,973(9) 1 919(9)	0,023	2,060	0,014
$4s^{2}4n^{4}$ ³ P ₁	$4s4p^5 3P^{\circ}$	737,490	1,919(9) 1.848(9)	0,275	2,000	0,840
$4s^24n^4$ $1S_0$	$4s^24n^3(^2P^\circ)5s^{-1}P^\circ_1$	693 660	1,0+0(9) 1,777(9)	0,151	0.878	0,630
$4s^{2}4n^{3}(^{2}P^{\circ})5n^{3}D_{1}$	$4n^{5}5s^{-1}P^{\circ}_{1}$	368.720	1.516(9)	0.031	0.113	0.009
$4s^24n^4$ ³ P ₁	$4p^{5}5s^{-3}P^{\circ}0$	213.020	1,493(9)	0.003	0.007	0.090
$4s^24p^4$ ³ P ₁	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{0}$	599.210	1,466(9)	0.026	0.156	0.810
$4s^24p^3(^2P^\circ)5p^3P_1$	$4p^{5}5s^{-1}P^{\circ}1$	371.880	1.322(9)	0.027	0.101	0.011
$4s^24p^4$ ³ P ₁	$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}1$	643.080	1.277(9)	0.079	0.503	0.760
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{1}D_{2}$	$4p^55s^{-3}P^{\circ}_2$	388,430	1,236(9)	0,028	0,179	0,011
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{2}$	$4p^55s^{3}P^{\circ}_2$	388,610	1,208(9)	0,027	0,175	0,011
$4p^{6} {}^{1}S_{0}$	$4p^{5}5s^{1}P^{\circ}1$	671,780	1,195(9)	0,242	0,536	1,700
$4s^{2}4p^{4}$ $^{3}P_{2}$	4s ² 4p ³ (² D°)5s ³ D° ₂	624,850	1,143(9)	0,067	0,688	0,760
$4p^{5}5s^{-3}P^{\circ}_{2}$	$4p^55s^{-3}P^{\circ}_2$	381,460	1,128(9)	0,041	0,154	0,011
$4p^{5}5s^{3}P^{\circ}_{0}$	$4p^55s^{-3}P^{\circ}_0$	372,370	1,113(9)	0,008	0,028	0,010
$4s^24p^4$ 3P_2	4p ⁵ 5s ³ P° ₂	213,950	1,110(9)	0,008	0,027	0,091
$4s^24p^{4-1}D_2$	4p ⁵ 5s ³ P° ₁	221,300	9,376(8)	0,004	0,015	0,087
$4s^24p^4 {}^3P_0$	$4s^{2}4p^{3}(^{4}S^{\circ})5s^{-3}S^{\circ}_{1}$	721,350	9,343(8)	0,219	0,519	0,740
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	$4p^{6}$ $^{1}S_{0}$	663,550	9,107(8)	0,020	0,131	0,340
$4s^{2}4p^{4} {}^{3}P_{0}$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	599,980	8,819(8)	0,143	0,282	0,770
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{2}$	642,330	8,636(8)	0,089	0,565	0,750
$4s^24p^4$ ³ P ₁	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{2}$	590,020	7,950(8)	0,069	0,403	0,790
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-3}P_{2}$	$4p^{5}5s^{-1}P^{\circ}_{1}$	376,610	7,902(8)	0,010	0,062	0,013
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{0})5p^{-1}S_{0}$	2288,200	7,390(8)	0,193	4,370	0,560
$4s^24p^{4-1}D_2$	$4s^{2}4p^{3}(^{2}P^{0})5s^{-3}P^{0}_{2}$	639,620	7,337(8)	0,045	0,474	0,740
$4s^{2}4p^{4}$ P ₀	$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}1$	646,260	/,016(8)	0,132	0,280	0,750
$4p^{\circ}$ $^{1}S_{0}$	$4p^{2}5s^{-3}P^{*}1$	701,060	6,994(8)	0,155	0,357	1,700
$4s^{2}4p^{3}(^{2}P^{*})5p^{-1}S_{0}$	$4p^{2}Ss^{-1}P^{2}l$	390,840 512,520	6, 787(8)	0,047	0,060	0,000
$48 4p^{-1}F_2$ $4s^24p^4 3P_2$	$484p^{\circ}$ F 1 $4p^{5}5e^{-3}p^{\circ}$	213,520	0,782(8)	0,010	0,150	0,480
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{0}$	$4p_{55} s_{1}^{3} P_{1}^{0}$	215,050	5,347(8)	0,003	0,009	0,087
$4s^{2}4n^{4}$ ¹ D ₂	$4s^2 4n^3 (^2D^{\circ}) 6s^1D^{\circ}$	475 370	5,410(8) 5,312(8)	0,035	0,045	2 600
$4s^24n^3(^2P^\circ)5n^3S_1$	43 + p (D) (03 D) 2 $4n^5 5s^{3} P^{\circ}_{1}$	378 600	5,312(0) 5,281(8)	0,010	0,141 0.042	0.010
$4s^24n^3(^2P^\circ)5n^1S_0$	$4p^{5}5s^{3}P^{\circ}1$	400 570	5,201(0) 5,241(8)	0.038	0,042	0,010
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-3}P_{0}$	$4p^{5}5s^{-1}P^{\circ}1$	372.810	5.169(8)	0.032	0.040	0.008
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-1}D_{2}$	$4p^55s^{-3}P^{\circ}1$	385.460	4.901(8)	0.007	0.042	0.014
$4s^24p^{4-1}D_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	648,110	4,901(8)	0,019	0,198	0,740
$4s^24p^4$ ³ P ₂	$4s^{2}4p^{3}(^{4}S^{\circ})6s^{-3}S^{\circ}_{1}$	485,960	4,360(8)	0,009	0,074	2,900
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{\circ}_{0}$	420,960	4,230(8)	0,004	0,016	1,400
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	4s ² 4p ³ (² P°)5p ³ P ₀	2811,600	4,163(8)	0,164	4,567	0,630
$4s^24p^3(^2D^\circ)5s^{-1}D^\circ_2$	4s ² 4p ³ (² D°)5p ¹ D ₂	2867,000	3,940(8)	0,486	22,914	0,780
$4s^24p^4$ 3P_2	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{2}$	575,240	3,881(8)	0,019	0,182	0,860
$4s^{2}4p^{4}$ ³ P ₁	$4p^55s^{3}P^{\circ}_{2}$	215,960	3,685(8)	0,004	0,009	0,095
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{0}$	2902,800	3,667(8)	0,154	4,427	0,750
$4s^24p^4$ ³ P ₀	$4p^{5}5s^{-3}P^{\circ}_{1}$	215,400	3,560(8)	0,007	0,005	0,120
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	4p ⁵ 5s ³ P ⁶ ₂	387,570	3,461(8)	0,013	0,050	0,011
4s ² 4p ³ (² P ⁰)5p ³ P ₁	4p ³ 5s ³ P ³ 2	383,580	3,386(8)	0,012	0,047	0,012
$4s^{2}4p^{3}(^{2}P^{2})5s^{-3}P^{2}2$	$4s^{2}4p^{3}(^{2}P^{2})5p^{3}D_{3}$	3042,000	3,3/3(8)	0,655	32,800	0,690
48-4p ⁻ (-P ⁻)58 - P ⁻ ₁	$4s^{2}4p^{3}(^{2}P^{*})5p^{3}D_{2}$	2967,100	5,515(8)	0,729	21,370	0,650
$48^{-4}p^{-1}D_2$	$48^{2}4p^{3}(^{2}P^{2})68^{-1}P^{0}1$	439,930	5,292(8) 2,212(8)	0,006	0,042	2,000
$45^{-}4p^{-}(-5^{-})5p^{-}P_{3}$ $4s^{2}4p^{3}(2D^{0})5p^{-}3E_{2}$	$48^{-}4p^{-}(-5^{-})08^{-}5^{-}2$ $4s^{2}4p^{3}(2p^{0})6s^{-}3p^{0}$	20/1,300	3,213(8)	0,245	15,112	0,700
48 4p (-D) J3p F2 $4s^2 4p^3 (2p \circ) 5p 3D.$	$48 4 \mu (-D) 08 ^{-}D^{-1}$	2079,700 278 100	3,201(8) 3,101(8)	0,207	9,121	0,000
$4s^{2}4n^{3}(^{2}D^{\circ})5n^{3}D_{2}$	$4p^{3}S^{2}D^{0}$	2670 500	3,191(8) 2 080(8)	0,002	14 107	0,013
$4s^24n^3(^2P^\circ)5n^3D_1$	$4s^24n^3(^2P^\circ)6s^{-3}P^{\circ}_0$	2675,300	2,202(0) 2,816(8)	0,230	2 631	0,850
$4s^24n^3(^2P^\circ)5n^{-3}S_1$	$4n^{5}5s^{1}P^{\circ_{1}}$	369 890	2,813(8)	0,100	0.021	0,009
$4s^24p^3(^2P^\circ)5p^{-3}D_2$	$4s^24p^3(^2P^\circ)6s^{-3}P^{\circ_1}$	2726.300	2,797(8)	0.187	8.392	0.870
······································	F (F) S F 1	0,000	=,(0)	-,,	-,-/-	-,

Tablo 3.8. (Devamı)

Tablo 3.8. (Devami)										
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)				
4s ² 4p ³ (² D°)5p ¹ F ₃	4s ² 4p ³ (² D°)6s ¹ D° ₂	2643,900	2,779(8)	0,208	12,672	0,960				
4s ² 4p ³ (² D°)5p ³ F ₄	4s ² 4p ³ (² D°)6s ³ D° ₃	2698,600	2,742(8)	0,233	18,618	0,840				
$4s^24p^4 \ ^3P_1$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	597,240	2,681(8)	0,014	0,085	0,810				
$4s^24p^4 {}^3P_2$	4s ² 4p ³ (² D°)6s ³ D° ₃	440,460	2,654(8)	0,011	0,078	2,000				
$4s^24p^{4-1}S_0$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-1}P^{o}_{1}$	469,620	2,593(8)	0,026	0,040	2,600				
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{3}$	4s ² 4p ³ (² D°)5p ³ P ₂	3087,800	2,591(8)	0,265	18,822	0,860				
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{-5}P_{3}$	3388,000	2,548(8)	0,614	34,238	0,890				
4s ² 4p ³ (² D°)5p ³ D ₁	$4p^{5}5s^{-3}P^{\circ}_{1}$	352,280	2,523(8)	0,005	0,016	0,010				
$4s^24p^4 {}^3P_1$	4s ² 4p ³ (² D°)5s ¹ D° ₂	625,090	2,511(8)	0,025	0,151	0,780				
$4s^24p^4 {}^3P_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	582,100	2,480(8)	0,008	0,072	0,860				
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{2}$	4s ² 4p ³ (² D°)5p ³ P ₁	2920,500	2,475(8)	0,190	9,129	0,740				
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}F_{3}$	$4p^55s^{-3}P^{\circ}_2$	358,290	2,436(8)	0,003	0,028	0,010				
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{3}$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}F_{4}$	3503,100	2,349(8)	0,556	44,860	0,920				
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	4s ² 4p ³ (⁴ S°)5p ⁵ P ₂	3461,100	2,342(8)	0,421	23,959	0,890				
$4s^24p^4 {}^3P_1$	$4p^{5}5s^{3}P^{\circ}_{1}$	215,040	2,319(8)	0,002	0,003	0,093				
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	4s ² 4p ³ (⁴ S°)5p ⁵ P ₁	3493,100	2,312(8)	0,254	14,587	0,890				
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{2}$	4s ² 4p ³ (² P°)5p ¹ D ₂	2769,500	2,311(8)	0,266	12,114	0,620				
4s ² 4p ³ (⁴ S°)5p ⁵ P ₂	4s ² 4p ³ (⁴ S°)6s ⁵ S° ₂	2627,600	2,253(8)	0,233	10,085	0,760				
4s ² 4p ³ (⁴ S°)5p ³ P ₂	$4s^{2}4p^{3}(^{4}S^{\circ})6s^{-3}S^{\circ}_{1}$	2882,000	2,242(8)	0,167	7,945	1,400				
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	2998,800	2,193(8)	0,296	8,757	0,620				
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{2}$	2938,000	2,173(8)	0,469	13,596	0,650				
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{4}S^{\circ})6s^{-3}S^{\circ}_{1}$	496,470	2,139(8)	0,008	0,039	3,100				
$4s4p^{5} {}^{3}P^{\circ}_{1}$	$4p^{6} {}^{1}S_{0}$	535,370	2,131(8)	0,003	0,016	0,660				
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{-3}F_{2}$	3511,900	2,105(8)	0,649	22,504	0,900				
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	$4p^55s^{-3}P^{\circ}_2$	381,820	2,100(8)	0,005	0,029	0,010				
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{\circ}_{0}$	2839,700	2,086(8)	0,084	2,357	0,950				

Şekil 3.4. Kr III iyonu için E1 geçişlerine ait dalga boyu değerlerinin diğer çalışmalar ile karşılaştırılması

İkili iyonlaşmış ksenon (Xe III) için öz-öz korelasyonu B konfigürasyon seti (CC-B) ile yapılan hesaplama sonucunda elde edilen enerjiler arasında 24265 E1 geçişi elde edildi. Elde edilen verilerden, geçiş olasılığı 10¹⁰ ve daha büyük olan geçişler Tablo

3.9.'da ilk defa sunulmaktadır. Bu iyona ait mevcut kaynaklarda (özellikle geçiş olasılığı değerleri için) (Sobral ve ark., 1999) sınırlı sayıda geçiş parametresine ulaşıldı. 5s²5p³(²P)6s ¹P^o₁-5s²5p³(²P)6p ¹D₂ seviyeleri arasındaki geçişte Sobral ve arkadaşları (1999) yaptıkları çalışmada geçiş olasılığı ve dalga boyu değerlerini sırasıyla 10,00(7) s⁻¹, 4065,45 Å olarak vermektedir. Bu çalışmadaki CC-B hesaplama sonucuna göre elde edilen geçiş olasılığı ve dalga boyu değerleri sırasıyla 11,723(7) s⁻¹, 3692,9 (Å)'dur. Ayrıca bu geçişteki salınıcı şiddeti, çizgi şiddeti ve salınıcı şiddetinin hız ve uzunluk formunun oranı sırasıyla 0,399, 14,57 (a.b) ve 0,810 olarak elde edildi. Dalga boyu ve geçiş olasılığı değerleri karşılaştırıldığında iki çalışma arasında iyi bir uyum olduğu görülmektedir.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	Sij(a.b)	Oran (V/L)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5p ⁵ 5d ¹ P ^o 1	$5p^45d^2$ 1S_0	576,090	17,81(10)	2,954	16,805	0,160
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$5p^{5}5d^{-1}P^{0}1$	$5p^45d^2$ 1D_2	666,520	6,406(10)	7,111	46,811	0,520
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5s ² 5p ³ (² D°)5d ¹ F° ₃	$5s^{2}5p^{2}(^{3}P)5d^{2}$ ¹ G ₄	637,300	6,346(10)	4,968	72,963	0,520
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}P^{\circ}_{1}$	$5s^{2}5p^{2}(^{3}P)5d^{2}$ $^{1}S_{0}$	607,200	5,272(10)	0,971	5,825	0,310
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$5p^{5}5d^{-3}P^{0}_{1}$	$5p^45d^2$ $^{3}P_0$	586,350	5,003(10)	0,860	4,978	0,420
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{3}$	$5s^25p^2(^{3}P)5d^2 {}^{3}F_4$	637,890	4,652(10)	3,649	53,633	0,540
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5s ² 5p ³ (² D°)5d ¹ F° ₃	$5s5p^{4}(^{3}P)5d^{-1}D_{2}$	591,210	4,542(10)	1,700	23,162	0,210
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5p ⁵ 5d ¹ F ^o ₃	$5p^{4}5d^{2}$ ¹ F ₃	607,450	4,309(10)	2,384	33,367	0,460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{1}$	$5s^25p^2(^{3}P)5d^2 {}^{3}P_0$	607,790	4,243(10)	0,783	4,702	0,380
$5s^{2}5n^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}_{1}$ $5s^{2}5n^{2}(^{3}P)5d^{2-5}D_{0}$ 604490 $3,764(10)$ $0,687$ $4,103$ $0,580$	$5p^{5}5d^{-3}D^{0}2$	$5p^45d^2$ 3P_1	601,610	3,873(10)	1,261	12,485	0,440
5550 (5)50 (5)50 (1)50	5s ² 5p ³ (⁴ S°)5d ⁵ D° ₁	$5s^25p^2(^{3}P)5d^2$ $^{5}D_0$	604,490	3,764(10)	0,687	4,103	0,580
$5s^25p^3(^2D^\circ)5d^{-1}D^\circ_2 = 5s^25p^2(^{-1}D)5d^{-1}D_2 = 634,480 = 3,643(10) = 2,199 = 22,963 = 0,440$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}D^{\circ}_{2}$	$5s^25p^2(^1D)5d^2 {}^1D_2$	634,480	3,643(10)	2,199	22,963	0,440
$5s^25p^3(^4S^\circ)5d^{-5}D^\circ_4 = 5s^25p^2(^3P)5d^{-2}5D_4 = 613,590 = 3,491(10) = 1,971 = 35,823 = 0,580$	$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}4$	$5s^{2}5p^{2}(^{3}P)5d^{2}$ ⁵ D ₄	613,590	3,491(10)	1,971	35,823	0,580
$5p^{5}5d^{-1}D^{\circ}_{2}$ $5p^{4}5d^{2-1}P_{1}$ $618,750$ $3,267(10)$ $1,125$ $11,457$ $0,400$	$5p^{5}5d^{-1}D^{0}2$	$5p^45d^2$ ¹ P ₁	618,750	3,267(10)	1,125	11,457	0,400
$5s^25p^3(^2P^\circ)5d^{-3}D^\circ_3 = 5s^25p^2(^1D)5d^{-2}P_2 = 572,430 = 3,154(10) = 1,107 = 14,598 = 0,260$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{3}$	$5s^25p^2(^1D)5d^2 {}^3P_2$	572,430	3,154(10)	1,107	14,598	0,260
$5s^25p^3(^2D^\circ)5d^{-1}P^\circ_1 = 5s5p^4(^{-1}D)5d^{-1}S_0 = 648,970 = 3,147(10) = 0,662 = 4,246 = 0,660$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}P^{\circ}_{1}$	$5s5p^{4}(^{1}D)5d^{-1}S_{0}$	648,970	3,147(10)	0,662	4,246	0,660
$5p^55d^{-3}F^{0_4}$ $5p^45d^{2-3}F_4$ $587,880$ $3,106(10)$ $1,609$ $28,029$ $0,440$	$5p^55d^{3}F^{0}_4$	$5p^{4}5d^{2}$ ${}^{3}F_{4}$	587,880	3,106(10)	1,609	28,029	0,440
$5s^25p^3(^2D^\circ)5d^{-3}P^\circ_2$ $5s^25p^2(^1D)5d^{-3}D_3$ $654,350$ $2,903(10)$ $2,609$ $28,099$ $0,560$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{2}$	$5s^25p^2(^1D)5d^2 {}^3D_3$	654,350	2,903(10)	2,609	28,099	0,560
$5p^{5}5d^{-1}D^{6}2$ $5p^{4}5d^{2-3}F_2$ 603,210 2,858(10) 1,559 15,481 0,470	$5p^55d^{1}D^{\circ}_2$	$5p^45d^2$ 3F_2	603,210	2,858(10)	1,559	15,481	0,470
$5s^25p^3(^2P^\circ)5d^{-3}D^\circ_1$ $5s^25p^2(^{3}P)5d^{2-3}F_2$ 638,800 2,800(10) 2,855 18,012 0,510	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{1}$	$5s^25p^2(^{3}P)5d^2 {}^{3}F_2$	638,800	2,800(10)	2,855	18,012	0,510
$5p^{5}5d^{-3}P_{02}$ $5p^{4}5d^{2-3}P_{1}$ $594,650$ $2,789(10)$ $0,887$ $8,682$ $0,420$	$5p^{5}5d^{3}P_{2}^{0}$	$5p^45d^2$ $^{3}P_1$	594,650	2,789(10)	0,887	8,682	0,420
$5s^25p^3(^4S^\circ)5d^{-5}D^\circ_2 = 5s^25p^2(^{3}P)5d^{2-5}D_1 = 603,780 = 2,757(10) = 0,904 = 8,983 = 0,580$	$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}_{2}$	$5s^25p^2(^{3}P)5d^2$ $^{5}D_1$	603,780	2,757(10)	0,904	8,983	0,580
$5s^25p^3(^2D^\circ)5d \ ^3F^\circ_4 \ 5s^25p^2(^1D)5d^2 \ ^3F_4 \ 618,590 \ 2,708(10) \ 1,553 \ 28,468 \ 0,570$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}F^{\circ}_{4}$	$5s^25p^2(^1D)5d^2 {}^3F_4$	618,590	2,708(10)	1,553	28,468	0,570
$5s^25p^3(^2D^\circ)5d \ ^3G^\circ_5 \ 5s^25p^2(^1D)5d^2 \ ^3G_5 \ 623,330 \ 2,701(10) \ 1,573 \ 35,508 \ 0,560$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}G^{\circ}5$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ ³ G ₅	623,330	2,701(10)	1,573	35,508	0,560
$5s^25p^3(^2D^\circ)5d^{-3}S^\circ_1 = 5s^25p^2(^1D)5d^{-3}P_0 = 655,440 = 2,643(10) = 0,567 = 3,673 = 0,550$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}S^{\circ}_{1}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ ³ P ₀	655,440	2,643(10)	0,567	3,673	0,550
$5s^25p^{4-3}P_1$ $5s^25p^{3}(^2D^{\circ})5d^{-3}P_0$ $588,080$ $2,635(10)$ $0,455$ $2,645$ $0,770$	$5s^25p^4$ $^{3}P_1$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{0}$	588,080	2,635(10)	0,455	2,645	0,770
$5s^25p^3(^4S^\circ)5d^5D^\circ_4$ $5s^25p^2(^3P)5d^2^5P_3$ 607,100 2,633(10) 1,132 20,355 0,550	$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}_{4}$	$5s^25p^2(^{3}P)5d^2 {}^{5}P_3$	607,100	2,633(10)	1,132	20,355	0,550
$5s^25p^3(^{2}P^{\circ})5d^{-3}D^{\circ}_1$ $5s^25p^2(^{3}P)5d^{-2}P_0$ $580,820$ $2,603(10)$ $0,439$ $2,518$ $0,250$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{1}$	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}P_{0}$	580,820	2,603(10)	0,439	2,518	0,250
$5s^25p^3(^2D^\circ)5d^{-3}P^\circ_2 = 5s^25p^2(^1D)5d^{-3}P_1 = 597,860 = 2,573(10) = 0,827 = 8,141 = 0,300$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{2}$	$5s^25p^2(^1D)5d^2 {}^3P_1$	597,860	2,573(10)	0,827	8,141	0,300
$5s^25p^3(^4S^\circ)5d^5D^\circ_3 = 5s^25p^2(^3P)5d^2 = 5P_3 = 613,600 = 2,567(10) = 1,449 = 20,485 = 0,570$	$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}_{3}$	$5s^{2}5p^{2}(^{3}P)5d^{2}5P_{3}$	613,600	2,567(10)	1,449	20,485	0,570
$5s^25p^3(^2P^\circ)5d^{-3}D^\circ_2 = 5s^25p^2(^{3}P)5d^{-2}F_3 = 638,470 = 2,565(10) = 2,195 = 23,064 = 0,520$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{3}P)5d^{2}{}^{3}F_{3}$	638,470	2,565(10)	2,195	23,064	0,520
$5s^25p^3(^2D^\circ)5d^{-1}D^\circ_2 = 5s^25p^2(^1D)5d^{-1}F_3 = 655,080 = 2,548(10) = 2,295 = 24,741 = 0,530$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ ¹ F ₃	655,080	2,548(10)	2,295	24,741	0,530
$5s^25p^3(^2D^\circ)5d^{-1}P^\circ_1 = 5s5p^4(^3P)5d^{-1}P_1 = 651,700 = 2,464(10) = 1,569 = 10,099 = 0,520$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}P^{\circ}_{1}$	$5s5p^4({}^{3}P)5d {}^{1}P_1$	651,700	2,464(10)	1,569	10,099	0,520
$5s^25p^3(^2D^\circ)5d^{-3}F^\circ_2 = 5s5p^4(^3P)5d^{-3}D_1 = 620,870 = 2,454(10) = 0,851 = 8,696 = 0,510$	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}F^{\circ}_{2}$	$5s5p^{4}(^{3}P)5d^{-3}D_{1}$	620,870	2,454(10)	0,851	8,696	0,510
$5s^25p^3(^4S^{\circ})6d^{-3}D^{\circ}_1 = 5s^25p^2(^{3}P)5d^{2-1}S_0 = 610.250 = 2.426(10) = 0.451 = 2.721 = 0.270$	$5s^{2}5p^{3}(^{4}S^{\circ})6d^{-3}D^{\circ}1$	$5s^{2}5p^{2}(^{3}P)5d^{2}$ ¹ S ₀	610,250	2,426(10)	0,451	2,721	0,270
$5s^25p^{4-1}D_2$ $5s^25p^{3/2}D^{0}5d^{-1}F^{0}_{3}$ $629,460$ $2,403(10)$ $1,998$ $20,705$ 0.800	$5s^25p^4$ 1D_2	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}F^{\circ}_{3}$	629,460	2,403(10)	1,998	20,705	0,800
$5p^{5}5d^{-3}D^{0}_{1}$ $5p^{4}5d^{2}_{-}^{-3}P_{0}$ $593,890$ $2,398(10)$ $0,423$ $2,479$ $0,410$	$5p^{5}5d^{3}D^{0}_{1}$	$5p^{4}5d^{2}$ $^{3}P_{0}$	593,890	2,398(10)	0,423	2,479	0,410
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}_{3}$ $5s^{2}5p^{2}(^{3}P)5d^{2-3}D_{3}$ $617,140$ $2,301(10)$ $1,314$ $18,686$ $0,560$	$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}_{3}$	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}D_{3}$	617,140	2,301(10)	1,314	18,686	0,560
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{2}$ $5s^{2}5p^{2}(^{1}D)5d^{2-3}P_{1}$ $569,470$ $2,279(10)$ $0,665$ $6,231$ $0,230$	$5s^25p^3(^2P^\circ)5d^{-3}D^{\circ}_2$	$5s^{2}5p^{2}(^{1}D)5d^{2} ^{3}P_{1}$	569,470	2,279(10)	0,665	6,231	0,230

Tablo 3.9. Xe III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

		Tablo 3.9. (Dev	allii)			
Alt seviye	Ust seviye	λ(A)	Aji (s ⁻¹)	fij	Sij(a.b)	Oran (V/L)
$5p^{5}5d^{3}D^{0}2$	$5p^45d^2$ 1D_2	603,740	2,264(10)	1,237	12,297	0,510
$5p^{5}5d^{3}F^{0}_{4}$	$5p^45d^2$ 3G_5	668.390	2.255(10)	1.846	36.559	0.650
$5s^25n^3(^2P^\circ)5d^{-1}F^{\circ}_2$	$5s^25n^2(^3P)5d^2$ ¹ F ₂	647 230	2 232(10)	1 402	20,909	0.630
$5^{2}5^{2}5^{3}(2D^{0})5d^{3}D^{0}d^{3}$	$5s^{2}5p^{2}(1)5d^{2}3D$	642.050	2,232(10)	1,402	20,909	0,000
58 5P (D)50 1 1	58.5p(D)50 D1	502.860	2,227(10)	1,380	11 202	0,490
5p-5d 5D-3	$5P_{2}$	592,800	2,209(10)	0,832	11,362	0,340
$5s^{2}5p^{3}(^{2}D^{0})5d^{-3}S^{0}1$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{3}P_{1}$	652,120	2,209(10)	1,408	9,069	0,560
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}_{3}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{3}P_{2}$	618,730	2,201(10)	0,902	12,868	0,540
$5p^{5}5d^{3}F^{0}_{3}$	$5p^45d^2$ 1F_3	584,320	2,193(10)	1,123	15,115	0,440
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}1$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{1}S_{0}$	632.850	2.174(10)	0.435	2.719	0.570
$5n^{5}5d^{3}F_{3}$	$5p^{4}5d^{2}$ ${}^{3}G_{4}$	685,500	2,156(10)	1.953	30.855	0.640
$5_{8}5_{10}5_{10}^{5}$ $3_{10}P_{10}^{0}$	$5_{\rm P} 5_{\rm U} = 0.4$ $5_{\rm S} 5_{\rm D}^4 ({}^{3}{\rm P}) 5_{\rm U} = {}^{3}{\rm D}_{2}$	644 380	2,130(10) 2,143(10)	1,955	10.812	0,730
535P 12	5,550 (1)50 D3	(11,010	2,143(10)	1,000	16,012	0,750
5p-5d 5D-3	5p ⁻ 5d ² ⁻ F ₃	611,010	2,122(10)	1,188	16,725	0,490
$5p^{3}5d^{-3}D^{0}1$	$5p^{2}Sd^{2}$ $^{3}D_{1}$	616,310	2,113(10)	1,203	7,324	0,470
$5p^{5}5d^{-3}P^{0}2$	$5p^45d^2$ 3P_2	602,480	2,015(10)	1,097	10,875	0,480
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}P^{\circ}_{1}$	$5s^25p^2(^1S)5d^2 ^3P_0$	633,070	2,015(10)	0,404	2,523	0,610
$5p^{5}5d^{3}P^{0}1$	$5p^45d^2$ 3S_1	619,970	1,975(10)	1,138	6,970	0,530
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}P^{\circ}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{1}S_{0}$	634,110	1.966(10)	0.395	2.474	0.640
$5s^25n^3(^2D^\circ)5d^{-3}S^\circ$	$5s^25p^2(^1D)5d^2$ ³ P ₂	645 750	1,959(10)	2 041	13 014	0,590
555d 3E%	53 5p(D)50 12 $5n^{4}5d^{2} 3D$	640,150	1,999(10) 1,020(10)	0.721	7 912	0,370
5p-5d - F-2	$5p 5d + D_1$	049,130	1,929(10)	0,731	1,015	0,470
5p ³ 5d ³ D ³ 3	$5p^{2}5d^{2}$ $^{3}D_{3}$	622,760	1,894(10)	1,101	15,806	0,520
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{1}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{3}P_{2}$	625,520	1,841(10)	1,800	11,117	0,390
$5s5p^{5}$ $^{3}P^{0}1$	$5s^{2}5p^{2}(^{1}D)5d^{2} ^{3}P_{0}$	659,610	1,812(10)	0,394	2,567	0,670
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}P^{\circ}_{1}$	$5s^25p^2(^1D)5d^2 ^1D_2$	660,500	1,806(10)	1,969	12,842	0,570
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}1$	$5s^25p^2(^1D)5d^2 ^3D_2$	657,930	1.801(10)	1.948	12.657	0.620
$5n^{5}5d^{-1}F^{0}{}_{2}$	$5n^{4}5d^{2}$ ¹ D ₂	607,190	1,795(10)	0,709	9.914	0.410
$5p^{2}5n^{3}(2D^{0})5d^{3}C^{0}c$	$5p^{2}5u^{2}$ D_{2}^{2}	674 500	1,793(10) 1,784(10)	1 420	25 144	0,410
58 5p ⁻ (D)50 ⁻ C 5	58 5p (F)5u H6	074,390	1,784(10)	1,439	55,144	0,030
SSSp ³ SP ³ ₂	5s5p ⁺ (¹ D)5d ⁻⁵ S ₁	613,300	1,782(10)	0,603	6,085	0,620
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}G^{\circ}_{4}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{3}F_{4}$	619,290	1,732(10)	0,996	18,274	0,550
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}F^{\circ}_{4}$	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}D_{3}$	638,000	1,724(10)	0,818	15,469	0,540
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}P^{\circ}_{1}$	$5s5p^4(^{3}P)5d^{-1}D_2$	637,820	1,722(10)	1,750	11,024	0,600
$5s^25p^4$ ¹ D ₂	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}D^{\circ}_{2}$	639.690	1.711(10)	1.050	11.051	0.810
$5n^{5}5d^{-1}F^{0}_{2}$	$5n^45d^2$ ¹ G ₄	634 920	1 710(10)	1 329	19 443	0 590
$5r^{2}5r^{3}(^{2}D^{\circ})5d^{-3}D^{\circ}$	$5_{\rm S}^{2} 5_{\rm S}^{2} (^{1}{\rm D}) 5d^{2} {}^{3}{\rm D}_{1}$	612 940	1,710(10) 1,608(10)	0.056	5 788	0,440
5350(1)5001	$535p(D)5d^{2}D$	642,940	1,098(10)	0,930	5,788	0,440
5s-5p ³ (-P ³)5d ³ P ³ 2	58-5p-(-5)5d- 5P1	642,980	1,007(10)	0,620	0,501	0,620
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{3}P)5d^{2}$ $^{1}P_{1}$	625,910	1,660(10)	0,585	6,025	0,560
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}F^{\circ}_{3}$	$5s^{2}5p^{2}(^{1}D)5d^{2} ^{3}D_{3}$	646,760	1,652(10)	1,036	15,438	0,610
$5s^25p^4$ ³ P ₂	5s ² 5p ³ (² P°)5d ³ D° ₃	626,680	1,646(10)	1,357	13,997	0,820
$5s^25p^4$ ¹ D ₂	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}P^{\circ}_{1}$	606,320	1,637(10)	0,541	5,403	0,690
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}1$	$5s^25n^2(^{3}P)5d^2 ^{3}P_1$	637,780	1.626(10)	0.991	6.245	0.550
$5s^25n^3(^2D^\circ)5d^{-3}G^{\circ}_2$	$5s^25n^2(^1D)5d^2$ ³ F ₂	616 920	1,619(10)	0,660	9 382	0,500
$5^{2} 5^{2} 5^{2} 5^{2} (20) 5^{2} 5^{3} (20)$	$5s^{2}5p^{2}(1D)5d^{2}3D$	647.450	1,019(10) 1,610(10)	0,000	5,502	0,500
58 5P (P)50 F 2	$58 \text{ Sp} (D) \text{ Su}^{-1} \text{D}_1$	647,430	1,019(10)	0,610	0,304	0,500
5s ² 5p ³ (² D ²)5d ³ F ³	5s ² 5p ² (³ P)5d ² ³ G ₄	699,510	1,606(10)	1,515	24,422	0,640
$5s5p^{5}$ $^{3}P^{0}_{2}$	$5s5p^{4}(^{3}P)5d^{-3}P_{2}$	648,380	1,605(10)	1,011	10,795	0,690
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}D^{\circ}_{3}$	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}D_{3}$	634,570	1,601(10)	0,967	14,134	0,550
$5p^{5}5d^{3}F^{0}_{4}$	$5p^45d^2$ 3F_4	622,690	1,576(10)	0,916	16,900	0,390
$5s5p^5$ $^{3}P^{0}_{1}$	$5s5p^4(^{1}D)5d^{-3}S_1$	633,810	1.571(10)	0,946	5,924	0,630
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{-1}D^{\circ}_{2}$	$5s5n^{4}(^{3}P)5d^{-1}P_{1}$	617 100	1 568(10)	0 537	5 455	0 470
$5s^{2}5p^{3}(^{2}D^{0})5d^{-3}D^{0}$	$5s^25n^2(1D)5d^2$ ³ D	624 020	1,566(10) 1,563(10)	2 746	5,640	0,320
535p(D)5d 10 $5c^{2}5n^{3}(2D^{2})5d 3E^{2}$	$535p(D)5d^{2}3p$	642 750	1,505(10) 1,518(10)	2,740	12 097	0,520
58-5p ⁻ (-P)50 ⁻ F 4	58-5p-(-D)50D3	045,750	1,518(10)	0,755	15,987	0,510
5s ² 5p ³ (² P ^o)5d ³ F ^o ₄	5s ² 5p ² (1S)5d ² 1G ₄	637,210	1,511(10)	0,920	1/,36/	0,630
$5s^{2}5p^{3}(^{2}D^{\circ})6s^{-3}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{1}S)5d^{2}$ $^{1}D_{2}$	617,450	1,511(10)	0,864	8,777	0,540
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}G^{\circ}_{4}$	5s5p ⁴ (³ P)5d ¹ F ₃	649,700	1,495(10)	0,736	14,161	0,460
5s ² 5p ³ (⁴ S°)5d ⁵ D° ₄	5s ² 5p ² (³ P)5d ² ⁵ F ₅	677,070	1,476(10)	1,240	24,867	0,570
5s ² 5p ³ (⁴ S°)5d ⁵ D° ₁	$5s^{2}5p^{2}(^{3}P)5d^{2}5P_{1}$	632.710	1,473(10)	0,884	5,523	0,540
$5s5n^4(^1D)5d^{-1}S_0$	$5n^{5}5d^{-1}P^{0}$	422,930	1.469(10)	1 182	1 645	0.460
5e ² 5n ³ (4C ⁰)5A 5D ⁰ -	$5r^{2}5n^{2}(3D)5d^{2}5D$	605 200	1,462(10)	0.574	7 009	0,560
5°25°3(40°)5° 5°0	$5_{0}25_{0}2(3D)5_{1}2(5D)$	632 000	1,402(10)	0,374	1,770	0,500
58-5p-(-8-)50 °D*2	58-5p-(°P)50 ² °P2	023,990	1,442(10)	0,842	0,043	0,330
5s ² 5p ³ (² D ⁶)5d ³ G ⁶ 3	Ss5p ⁺ (³ P)5d ³ F ₃	613,090	1,441(10)	0,812	11,471	0,570
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-3}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{3}P)5d^{2}$ $^{3}D_{2}$	617,080	1,429(10)	0,816	8,284	0,560
$5s^25p^4$ ¹ S ₀	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}P^{\circ}_{1}$	654,900	1,394(10)	2,690	5,799	0,820
5s ² 5p ³ (² D°)5d ¹ G° ₄	5s ² 5p ² (¹ D)5d ² ¹ H ₅	698,970	1,390(10)	1,244	25,764	0,630
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}F^{\circ}_{3}$	$5s^25p^2(^1S)5d^2 \ ^1G_4$	682,440	1,371(10)	1,231	19,358	0,620

Tablo 3.9. (Devamı)

Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	fij	Sij(a.b)	Oran (V/L)
5s ² 5p ³ (² D°)5d ³ P° ₀	$5s^{2}5p^{2}(^{1}D)5d^{2} ^{3}D_{1}$	662,820	1,365(10)	2,697	5,886	0,610
5s ² 5p ³ (² P°)5d ¹ F° ₃	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}P_{2}$	670,350	1,364(10)	0,656	10,138	0,600
5s ² 5p ³ (² D°)5d ¹ P° ₁	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{1}D_{2}$	634,120	1,341(10)	1,347	8,435	0,440
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}P^{\circ}_{2}$	$5s^{2}5p^{2}(^{1}S)5d^{2}$ $^{3}P_{2}$	648,170	1,311(10)	0,826	8,809	0,620
5s ² 5p ³ (² D°)6s ³ D° ₁	5s5p ⁴ (³ P)5d ³ P ₀	638,810	1,307(10)	0,267	1,682	0,600
5s ² 5p ³ (² D°)5d ³ P° ₂	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{3}P_{2}$	615,490	1,305(10)	0,741	7,508	0,320
5p ⁵ 6s ¹ P ^o 1	$5p^45d^2$ 3P_0	597,390	1,301(10)	0,232	1,368	0,410
5p ⁵ 5d ³ P ^o ₂	$5p^45d^2$ 3S_1	615,150	1,299(10)	0,442	4,478	0,530
5s ² 5p ³ (² D°)5d ³ G° ₃	5s ² 5p ² (¹ D)5d ² ³ H ₄	708,870	1,290(10)	1,250	20,412	0,630
5s ² 5p ³ (² D°)6s ³ D° ₂	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{1}P_{1}$	648,870	1,250(10)	0,473	5,057	0,630
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}P^{\circ}_{0}$	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}S_{1}$	645,640	1,242(10)	2,328	4,947	0,590
5s ² 5p ³ (⁴ S°)6d ³ D° ₁	$5s^{2}5p^{2}(^{1}D)5d^{2}$ $^{1}D_{2}$	664,120	1,239(10)	1,365	8,954	0,530
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{1}D)5d^{2} ^{3}D_{2}$	613,740	1,230(10)	0,695	7,017	0,460
5s ² 5p ³ (² D°)5d ³ F° ₃	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}D_{2}$	638,870	1,230(10)	0,537	7,912	0,510
$5p^{5}5d^{-3}F_{2}^{0}$	$5p^45d^2$ 3G_3	686,110	1,219(10)	1,204	13,598	0,630
$5p^55d^{-3}F^{\circ}_4$	$5p^45d^2$ 3D_3	637,530	1,217(10)	0,577	10,895	0,470
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}F^{\circ}_{4}$	$5s^25p^2(^1D)5d^2$ 1H_5	719,580	1,211(10)	1,149	24,488	0,640
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}G^{\circ}_{5}$	$5s5p^{4}(^{3}P)5d^{-3}F_{4}$	644,940	1,206(10)	0,615	14,372	0,470
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}G^{\circ}_{3}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ ³ G ₃	610,410	1,200(10)	0,670	9,429	0,600
$5p^{5}5d^{-3}D^{0}_{3}$	$5p^45d^2$ 3F_4	623,030	1,199(10)	0,897	12,879	0,600
$5p^55d^{-3}P_0^{\circ}$	$5p^45d^2$ 3P_1	579,860	1,193(10)	1,804	3,444	0,450
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{1}$	$5s^{2}5p^{2}(^{1}D)5d^{2}^{3}D_{2}$	626,440	1,177(10)	1,154	7,140	0,520
$5p^{5}5d^{-1}F^{0}_{3}$	$5p^45d^2$ $^{3}P_2$	626,440	1,165(10)	0,490	7,068	0,390
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}G^{\circ}5$	$5s5p^{4}(^{3}P)5d^{-3}F_{4}$	617,530	1,155(10)	0,540	12,080	0,430
$5p^55d^{-3}P_2^{0}$	$5p^{4}5d^{2}$ $^{3}D_{3}$	630,780	1,153(10)	0,963	10,000	0,370
$5p^55d^3F^{\circ}_3$	$5p^45d^2$ 1D_2	630,120	1,153(10)	0,490	7,118	0,460
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}D^{\circ}_{3}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ ³ F ₄	671,360	1,149(10)	0,998	15,444	0,610
$5p^55d^{3}F_{3}$	$5p^{4}5d^{2}$ $^{3}D_{3}$	595,060	1,147(10)	0,609	8,353	0,460
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}P^{\circ}_{1}$	$5s^{2}5p^{2}(^{3}P)5d^{2}{}^{3}S_{1}$	649,390	1,142(10)	0,722	4,631	0,620
$5s^{2}5p^{4}$ ³ P ₂	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}S^{\circ}_{1}$	623,350	1,131(10)	0,395	4,056	0,820
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{2}$	$5s^{2}5p^{2}(^{1}D)5d^{2}$ ¹ F ₃	643,560	1,122(10)	0,976	10,335	0,540
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-1}P^{\circ}_{1}$	$5s5p^{4}(^{3}P)5d^{-1}D_{2}$	613,190	1,120(10)	1,053	6,375	0,350
$5p^55d^{-3}P_0^{0}$	$5p^45d^2$ 3S_1	614,410	1,111(10)	1,887	3,816	0,540
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}P^{\circ}_{1}$	$5s5p^4(^{3}P)5d^{-3}P_2$	646,340	1,092(10)	1,139	7,273	0,540
5s ² 5p ³ (⁴ S°)5d ⁵ D° ₃	5s ² 5p ² (³ P)5d ² ⁵ F ₄	690,270	1,089(10)	1,000	15,906	0,580
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{2}$	$5s^{2}5p^{2}(^{3}P)5d^{2}{}^{3}F_{2}$	625,590	1,088(10)	0,639	6,576	0,500
5p ⁵ 5d ³ D ^o ₃	$5p^45d^2$ 3F_4	662,270	1,079(10)	0,912	13,924	0,540
$5s^{2}5p^{3}(^{2}D^{\circ})6s^{-3}D^{\circ}_{1}$	$5s^25p^2(^{3}P)5d^2 {}^{3}D_1$	612,650	1,079(10)	0,607	3,674	0,580
$5p^55d^{-3}P^{0_1}$	$5p^45d^2$ 3P_2	577,750	1,068(10)	0,891	5,083	0,500
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}F^{\circ}_{2}$	$5s5p^4(^{3}P)5d^{-3}F_2$	642,640	1,062(10)	0,658	6,957	0,640
$5p^{5}5d^{-3}F^{0}_{2}$	$5p^{4}5d^{2}$ $^{3}F_{2}$	568,340	1,054(10)	0,510	4,775	0,390
$5p^{5}5d^{3}D^{0}_{3}$	$5p^46s^2$ 1D_2	608,360	1,048(10)	0,416	5,825	0,440
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{2}$	$5s5p^4(^{3}P)5d^{-3}P_1$	641,540	1,044(10)	0,386	4,081	0,650
$5s^25p^4$ ¹ S ₀	$5s^{2}5p^{3}(^{2}P^{\circ})6d^{-1}P^{\circ}_{1}$	512,230	1,043(10)	1,231	2,076	0,910
5p ⁵ 5d ¹ D ^o ₂	$5p^45d^2$ 1F_3	696,140	1,042(10)	1,060	12,149	0,540
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}_{3}$	$5s^{2}5p^{2}(^{3}P)5d^{2}5P_{2}$	622,540	1,040(10)	0,432	6,191	0,530
$5s^25p^4$ ³ P ₁	5s ² 5p ³ (² D°)5d ³ P° ₂	614,240	1,037(10)	0,977	5,930	0,770
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}F^{\circ}_{3}$	$5s^{2}5p^{2}(^{1}D)5d^{2}^{3}D_{2}$	612,200	1,037(10)	0,416	5,870	0,510
$5s^{2}5p^{3}(^{2}P^{\circ})6s^{-1}P^{\circ}_{1}$	$5s^{2}5p^{2}(^{3}P)5d^{2} ^{3}P_{0}$	570,360	1,021(10)	0,166	0,935	0,210
$5p^55d^{-3}P^{0}_{0}$	$5p^{4}5d^{2}$ $^{3}D_{1}$	606,270	1,016(10)	1,680	3,353	0,350
$5s^25p^4$ ³ P ₁	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}D^{\circ}_{2}$	647,410	1,012(10)	1,060	6,779	0,800
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}F^{\circ}_{4}$	5s5p ⁴ (³ P)5d ³ F ₄	621,380	1,009(10)	0,584	10,750	0,600
$5p^55d^{-3}P^{\circ_1}$	$5p^{4}5d^{2}$ $^{3}D_{2}$	623,010	1,006(10)	0,975	6,000	0,360
$5s^25p^4$ 3P_2	$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}P^{\circ}_{1}$	573,410	1,004(10)	0,297	2,803	0,750

Tablo 3.9. (Devamı)

İkili iyonlaşmış radon için öz-öz korelasyonu (CC) konfigürasyon seti ile yapılan hesaplama sonucunda elde edilen enerjiler arasında 20597 E1 geçişi elde edildi. Elektrik dipol geçişlerinin çok fazla olması nedeniyle sadece geçiş olasılığı 10¹⁰ ve

daha büyük olan geçişler Tablo 3.10.'da ilk kez sunulmaktadır. Rn III için elektrik dipol geçişleri ile ilgili literatürde veri bulunamamıştır.

Alt sevive	Üst sevive	λ (Å)	A :: (s ⁻¹)	fu	S:: (a h)	Oran (V/L)
6n ⁵ 6d ¹ P° ₁	$6n^46d^2$ ¹ So	603 970	8 357(10)	1 523	9.087	0.330
$6p^{6}$ $1S_{0}$	$6p^{5}6d^{-1}P^{\circ}_{1}$	608 230	3,337(10)	6 310	12 635	0,550
$6p^{5}6d^{3}P^{\circ}$	$6p^46d^2$ ³ P _o	617 530	3,755(10) 3,367(10)	0,510	3 01/	0,310
$6s^26n^4 3P_1$	$6_{\rm s}6n^5 {}^{\rm 3}{\rm P}^{\rm o}_{\rm o}$	573.080	3,307(10)	0,042	2 853	0,720
$6^{5}6^{4}$ 3^{10}	$6n^{4}6d^{2}$ ³ D ₂	507 610	3,037(10) 2,712(10)	0,303	2,855	0,370
$6p^56d^{-3}D^{\circ}$	$6p^46d^2$ ³ P_4	597,010 605 110	2,712(10) 2,655(10)	0,404	2,830	0,490
$6r^{2}6r^{4}$ ¹ D ₂	$6_{1}6_{1}5_{1}10^{\circ}$	560,400	2,055(10) 2,651(10)	0,875	0,711 7.245	0,080
$6n^56d^{3}E^{\circ}$	$6n^46d^2$ ³ E ₂	509,400	2,031(10) 2,452(10)	1 422	7,245	0,310
$6p56d$ $1E^{\circ}a$	$6p^{4}6d^{2}$ $^{3}E_{2}$	625,020	2,432(10) 2,221(10)	1,422	20,364	0,750
$6^{2}(3D)^{7}a^{2} 3D$	6_{2} 6_{2} 6_{2} $(2D_{0})$ 7_{2} $(2D_{0})$ 7_{2} $(2D_{0})$ 7_{2} $(2D_{0})$ $(2D_{$	623,410 546 750	2,321(10)	1,501	5 404	0,000
$6s^{2}(r^{3}(2D^{2})7r^{3}D^{2})$	$(-P^{*})/S^{*} - P^{*}$	540,750	2,255(10)	1,560	3,404	0,480
$6s^{-}0p^{-}(^{-}D^{-})/s^{-}D^{-}3$	$6s^{-}0p^{-}(^{2}P)0u/s^{-}r_{4}$	718 220	2,100(10) 2.061(10)	1,300	21,909	0,050
$Op^{*}/S = P^{*}$	$op ou(-D)/s P_0$	718,520	2,001(10)	0,351	5,771	0,700
$OP^{2}/S ^{3}P^{0}$	$op^{1}od(^{2}D)/s^{-3}D_{1}$	594,990	1,981(10)	3,133	0,179	0,050
$Op^{2}Od^{-2}D^{2}$	$Op^{1}Od^{2} \ ^{3}D_{1}$	035,200	1,948(10)	1,179	7,394	0,080
$6p^{5}6d^{-5}D^{*}3$	$6p^{+}6d^{2} {}^{-3}D_{3}$	631,870	1,912(10)	1,145	16,665	0,770
$6p^{5}6d^{-1}P^{5}l$	$6p^{-7}/s^{-1}S_0$	668,670	1,858(10)	0,415	2,742	0,430
$6s^{2}6p^{3}(^{2}D^{2})/s^{-1}D^{2}2$	6s ² 6p ² (³ P)6d/s ¹ F ₃	612,540	1,788(10)	1,408	14,198	0,600
$6s^{2}6p^{4}$ ³ P ₂	$6s^{2}6p^{3}(^{2}D^{\circ})6d^{-3}S^{\circ}_{1}$	608,950	1,681(10)	0,561	5,622	0,690
$6s^{2}6p^{3}(^{4}S^{\circ})/s^{-3}S^{\circ}_{2}$	$6s^{2}6p^{2}(^{3}P)6d^{7}s^{-3}P_{1}$	625,190	1,659(10)	0,583	6,003	0,740
$6s^{2}6p^{2}(^{1}D)/s^{2}$ $^{3}P_{2}$	$6s6p^{3}(^{4}S_{0})^{7}s^{2} ^{-3}S^{0}_{1}$	570,780	1,629(10)	0,478	4,486	0,490
$6p^{5}6d^{-1}P^{5}l$	$6p^{+}6d^{2}$ $^{1}D_{2}$	687,180	1,611(10)	1,901	12,901	0,790
6p ⁵ 6d ⁵ F ⁶ ₂	$6p^46d^2$ 1P_1	718,080	1,562(10)	0,724	8,562	0,730
$6s^{2}6p^{3}(^{4}S^{\circ})/s^{-3}S^{\circ}_{1}$	6s ² 6p ² (³ P)6d7s ³ P ₀	602,350	1,548(10)	0,281	1,669	0,730
$6s^{2}6p^{4}$ ³ P ₀	6s ² 6p ³ (² P ³)6d ⁻¹ P ³	623,910	1,544(10)	2,704	5,553	0,720
$6s^{2}6p^{3}(^{2}P^{\circ})7s^{-1}P^{\circ}_{1}$	$6s^{2}6p^{2}(^{1}S)6d7s^{-1}D_{2}$	710,740	1,507(10)	1,902	13,354	0,590
$6s6p^{3}(^{2}P^{0})7s^{2}$ $^{1}P^{0}1$	$6p^47s^2$ $^{1}S_0$	630,660	1,495(10)	0,297	1,851	0,460
$6s6p^{3}(^{2}P^{0})7s^{2} {}^{1}P^{0}{}_{1}$	$6p^47s^2$ $^{1}S_0$	692,720	1,486(10)	0,356	2,438	0,550
6p ⁵ 6d ¹ P ^o 1	$6p^{4}6d(^{2}D)7s^{-1}D_{2}$	661,550	1,399(10)	1,530	9,994	0,830
6p ⁵ 6d ³ D ^o ₂	$6p^46d^2$ 3P_2	608,510	1,392(10)	0,773	7,739	0,670
6p ⁵ 6d ³ F ⁶ 4	$6p^46d^2$ ${}^{3}F_4$	614,550	1,357(10)	0,768	13,986	0,680
6p ⁵ 6d ¹ D ^o ₂	$6p^46d^2$ ¹ P ₁	650,310	1,348(10)	0,513	5,489	0,800
$6s^{2}6p^{2}(^{3}P)7s^{2} {}^{3}P_{2}$	$6s6p^{3}(^{2}D)7s^{2}$ $^{1}D^{o}_{2}$	625,500	1,326(10)	0,778	8,008	0,680
$6p^{5}6d^{-1}F^{\circ}_{3}$	$6p^{4}6d^{2}$ $^{1}G_{4}$	619,880	1,324(10)	0,980	14,005	0,790
$6p^57s$ $^{1}P_1$	$6p^{4}6d(^{2}D)7s^{-3}D_{2}$	615,890	1,298(10)	1,230	7,483	0,680
$6p^{5}6d^{-3}F^{\circ}_{2}$	$6p^46d^2$ 1D_2	581,680	1,269(10)	0,644	6,162	0,680
$6s^{2}6p^{4} {}^{3}P_{2}$	$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}D^{\circ}_{3}$	688,680	1,260(10)	1,254	14,219	0,610
$6s^{2}6p^{4}$ ¹ S ₀	$6s^{2}6p^{3}(^{2}P)7d^{-1}P^{0}1$	585,160	1,209(10)	1,862	3,588	0,780
$6s^{2}6p^{4} {}^{3}P_{1}$	$6s^{2}6p^{3}(^{4}S^{\circ})7d^{-3}D^{\circ}_{2}$	603,260	1,194(10)	1,086	6,471	0,740
$6s^{2}6p^{4} {}^{3}P_{2}$	$6s^{2}6p^{3}(^{4}S^{\circ})7d^{3}D^{\circ}_{3}$	606,660	1,147(10)	0,886	8,847	0,780
$6p^56d^{-1}P^{\circ}_1$	$6p^46d^2$ 1D_2	810,310	1,138(10)	1,867	14,939	0,920
$6s^{2}6p^{3}(^{4}S^{\circ})7s^{-5}S^{\circ}_{2}$	6s ² 6p ² (³ P)6d7s ³ D ₃	696,350	1,114(10)	1,134	12,994	0,600
$6s^{2}6p^{4} {}^{3}P_{1}$	$6s^{2}6p^{3}(^{2}D^{\circ})6d ^{3}P^{\circ}_{2}$	724,600	1,105(10)	1,450	10,374	0,570
$6p^57s^{-3}P^{0}_{2}$	6p ⁴ 6d(² D)7s ³ P ₂	620,040	1,101(10)	0,635	6,479	0,700
$6p^57s^{-3}P^{0}_{1}$	$6p^{4}6d(^{2}D)7s^{-3}P_{1}$	708,650	1,101(10)	0,829	5,799	0,690
$6s^{2}6p^{4} {}^{3}P_{2}$	6s ² 6p ³ (² D°)6d ¹ D° ₂	610,270	1,094(10)	0,611	6,135	0,690
6s ² 6p ³ (² D°)7s ³ D° ₁	6s ² 6p ² (³ P)6d7s ¹ D ₂	709,950	1,091(10)	1,373	9,630	0,610
6p ⁵ 6d ¹ F° ₃	$6p^46d^2 \ ^1D_2$	719,840	1,085(10)	0,602	9,990	0,710
6p ⁵ 6d ³ P° ₁	$6p^46d^2$ 3S_1	636,300	1,077(10)	0,654	4,110	0,730
6p ⁵ 6d ³ P° ₀	$6p^46d^2 \ ^3P_1$	611,370	1,064(10)	1,789	3,601	0,690
6p ⁵ 6d ¹ P° ₁	$6p^46d^2 {}^3P_0$	780,880	1,058(10)	0,322	2,486	0,190
$6s^{2}6p^{3}(^{4}S^{\circ})7s^{-5}S^{\circ}_{2}$	6s ² 6p ² (¹ D)6d7s ³ D ₂	624,360	1,055(10)	0,616	6,336	0,710
6p ⁵ 6d ³ D° ₁	6p ⁴ 6d(² D)7s ³ P ₁	642,250	1,051(10)	0,650	4,123	0,790
6s ² 6p ³ (² D°)6d ³ P° ₂	6s ² 6p ² (³ P)6d7s ³ D ₃	688,420	1,016(10)	1,010	11,446	0,640

Tablo 3.10. Rn III iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

•

Tablo 3.10. (Devamı)								
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	Sij(a.b)	Oran (V/L)		
6p ⁵ 6d ³ D° ₂	6p ⁴ 6d ² ³ F ₃	619,900	1,012(10)	0,817	8,332	0,710		
$6s^{2}6p^{2}(^{3}P)7s^{2} {}^{3}P_{1}$	6s6p ³ (² P°)7s ² ³ P° ₁	613,280	1,004(10)	0,566	3,429	0,690		
6p ⁵ 7s ³ P ^o 1	6p ⁴ 6d(² D)7s ³ D ₁	598,100	1,000(10)	0,536	3,168	0,650		

3.1.3. Elektrik kuadrupol (E2) ve manyetik dipol (M1) geçiş hesaplamaları

İkili iyonlaşmış kripton için öz-öz korelasyonuna ait (CC-A) konfigürasyon seti ile yapılan hesaplamada aynı pariteye sahip enerji seviyeleri arasındaki elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişleri hesaplandı ve 734 E2 ve 650 M1 geçişi elde edildi. Kr III iyonuna ait yasaklı geçiş parametreleri için daha önce yapılan çalışmalar incelendiğinde sadece temel hal konfigürasyonunun (4s²4p⁴) farklı terimlerinin (seviyelerinin) kendi aralarında yapmış olduğu geçiş parametrelerine ulaşılabildi (Osterbrock 1951; Garstang, 1963; Biémont ve Hansen 1986; Calamai ve Johnson, 1992; Sterling ve ark., 2011). Karşılaştırma değerleri ile birlikte bu çalışmadan elde edilen veriler Tablo 3.11.'de sunulmaktadır. Tablo incelendiğinde M1 gecislerinin geçiş olasılığı değerlerinin çok iyi uyumlu olduğu görülmektedir. Örneğin, 4s²4p⁴ ³P₂ - ³P₁ geçişinde karşılaştırma değerleri sırasıyla (2,00, 2,012, 1,660, 1,760 ve 1,770) s⁻ ¹ iken CC-A hesabı sonucunda bu seviye için geçiş olasılığı değeri 1,807 s⁻¹ olarak bulundu. $4s^24p^4 {}^{3}P_1 - {}^{1}S_0$ geçişinde karşılaştırma değerleri sırasıyla (53,00, 53,02, 45,40 ve 47,20) s⁻¹ iken CC-A hesabı sonucunda bu seviye için geçiş olasılığı değeri 49,856 s⁻¹ olarak elde edildi. Ayrıca bu geçişteki dalga boyu karşılaştıma değerinde 3500 Å iken CC-A hesabı sonucunda 3634,50 Å olarak elde edildi. E2 geçişleri için (Osterbrock 1951; Garstang, 1963; Biémont ve Hansen 1986; Sterling ve ark., 2011) calışmaları ile karşılaştırma yapıldığında M1 geçişlerindeki kadar iyi bir uyum elde edilemedi. Örneğin, $4s^24p^{4} {}^{3}P_2 - {}^{3}P_1$ gecisinde karsılastırma değerleri 7,600(-4) s⁻¹ ve 6,883(-4) s⁻¹ iken CC-A hesabı sonucunda bu seviye için geçiş olasılığı değeri 6,688(-4) s⁻¹ olarak oldukça iyi uyumlu olarak elde edildi. $4s^24p^4 {}^{3}P_2 - {}^{3}P_0$ geçişinde ise çok iyi uyum sağlanamadı.

Geçi	işler	λ(.	Å)	Aj	ji (S ⁻¹)	C	Sij	Oran
Alt Seviye	Üst Seviye	Bu çal.	Diğ. Çal.	Bu çal.	Diğ. Çal.	Iij	(a.b)	(V/L)
E2 Geçişler	i							
$4s^24p^4 \ ^3P_2$	$4s^24p^4 \ ^3P_1$	22963,00		6,688(-4)	7,600(-4) ^a	3,172(-11)	11,439	0,92
4-24-43D	4-24-43D	10520.00		7 920(5)	6,883(-4) ^b	9.052(12)	0.100	10.00
4s-4p+ P ₂	4s-4p+ P0	19529,00		7,830(-3)	$2,500(-3)^{a}$ 2 382(-3) ^b	8,955(-15)	0,199	19,00
					$1.870(-3)^{\circ}$			
					2,010(-3) ^{c*}			
					2,280(-3) ^{c**}			
$4s^24p^4 {}^3P_2$	$4s^24p^{4}D_2$	5715,20	6826,9 ^d	0,072	0,043 ^a	3,523(-10)	1,958	0,950
$4s^24n^4$ 3D	$4s^2 4n^4 1 S_2$	3137.80		8 400	$0,038^{\circ}$	2.482(0)	2 281	1.7(4)
48 4p · F ₂	48 4p - S ₀	5157,60		0,409	0,690° 0,637 ^b	2,402(-9)	2,204	1,/(-4)
					0,185°			
					0,188 ^{c*}			
					0,328 ^{c**}			
$4s^24p^4 {}^{3}P_1$	$4s^24p^{4}D_2$	7609,00	9902,2ª	2,857(-3)	$1,000(-3)^{a}$	4,134(-11)	0,32	0,890
$4s^24n^4$ 3D	$4s^2 4n^4 {}^1D_2$	8070 80		0.123(1)	$(0,921(-3)^{6})$	4 611(11)	0.144	14.00
48 4p F	48 4p D ₂	8079,80		9,423(-4)	2,900(-4) ^b	4,011(-11)	0,144	14,00
					$0,167(-4)^{\circ}$			
					0,173(-4) ^{c*}			
					8,950(-4) ^{c**}			
$4s^24p^{41}D_2$	$4s^24p^{41}S_0$	6958,10		0,789	4,500 ^a	1,145(-9)	11,494	0,065
					4,121° 1 240°			
					1,240 1.240^{c^*}			
					2,790 ^{c**}			
M1 Geçişler	ri							
$4s^24p^4 {}^3P_2$	$4s^24p^4 {}^3P_1$	22963,00		1,807	2,000 ^a	8,571(-8)	2,433	
					2,012 ^b			
					1,000° 1,760°*			
					1,700 1.770 ^{c**}			
$4s^24p^4 {}^3P_1$	$4s^24p^4 {}^3P_0$	130590,00		0,023	0,023 ^a	1,971(-8)	1,909	
	•				0,029 ^b			
					0,024°			
					0,023 ^{c*}			
$4s^24n^4 {}^3P_2$	$4s^24n^{4}D_2$	5715 20	6826 9 ^d	5 467	0,032° 4 700ª	2 677(-8)	0 189	
43 4p 12	43 - p D2	5715,20	0020,7	5,407	4,700 4.690 ^b	2,077(-0)	0,109	
					5,030°			
					5,420 ^{c*}			
4 24 4 20	4.24.415	5 (00.00		0.504	4,820 ^{c**}	1 1 5 9 (0)	0.065	
$4s^{2}4p^{4}$ ³ P ₁	$4s^24p^{4-1}D_2$	7609,00	9902,2ª	0,796	$0,530^{a}$	1,152(-8)	0,065	
					0,538° 0,722°			
					0,743 ^{c*}			
					0,671 ^{c**}			
$4s^24p^4 {}^3P_1$	$4s^24p^{41}S_0$	3634,50	3500,0 ^e	49,856	53,000 ^a	3,291(-8)	0,088	
					53,020 ^p			
					43,400° 47 200°*			
					48,200 ^{c**}			

Tablo 3.11. Kr III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı ve karşılaştırma değerleri

^a Garstang, 1963; ^b Biémont ve Hansen 1986; ^c Sterling ve ark., 2011; ^d Osterbrock 1951; ^e Calamai ve Johnson, 1992

Geçiş olasılığı, A_{ji} (s⁻¹), en yüksek olan ilk 50 geçiş Tablo 3.12.'de sunulmaktadır.

Alt and a				pludetiliii iiiz-	S (. l.)	
Alt seviye	Ust seviye	λ (A)	Aji (S ⁻¹)	Iij	Sij (a.D)	Oran (V/L)
E2 Geçişleri						
$4s^24p^4$ ¹ D ₂	$4s^{2}4p^{3}(^{2}P^{0})5p^{-1}S_{0}$	494,470	91673,0	6,721(-7)	2,420	0,520
$4s^{2}4p^{4}$ $^{3}P_{2}$	$4s^{2}4p^{3}(4S^{\circ})5p^{3}P_{0}$	584,060	81035,0	8,288(-7)	4,918	0,490
$4s^24p^4$ ¹ D ₂	$4p^{6}$ $^{1}S_{0}$	323,370	68377,0	2,144(-7)	0,216	0,005
$4s^24p^4$ ¹ D ₂	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{-1}D_{2}$	550,310	66166,0	3,004(-6)	14,910	0,570
$4s^24p^{4-1}D_2$	4s ² 4p ³ (² D°)5p ¹ F ₃	579,570	55950,0	3,945(-6)	22,869	0,550
$4s^24p^4$ 3P_2	4s ² 4p ³ (⁴ S°)5p ³ P ₁	585,710	54191,0	1,672(-6)	10,006	0,560
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-1}D^{\circ}_{2}$	4p ⁵ 5s ³ P° ₁	327,820	46448,0	4,490(-7)	0,471	0,000
$4s^24p^4$ 3P_2	4s ² 4p ³ (² D°)5p ³ F ₄	526,380	40902,0	3,058(-6)	13,282	0,570
4s ² 4p ³ (² D°)5s ³ D° ₃	4p ⁵ 5s ³ P° ₂	326,830	38712,0	4,428(-7)	0,645	0,000
4s ² 4p ³ (² P°)5s ³ P° ₂	4p ⁵ 5s ³ P° ₀	333,380	33587,0	1,119(-7)	0,124	0,000
4s ² 4p ³ (² D°)5s ³ D° ₂	4p ⁵ 5s ³ P° ₂	325,350	29960,0	4,755(-7)	0,488	0,000
$4s^24p^4 {}^3P_2$	4s ² 4p ³ (² D°)5p ³ F ₃	531,100	28830,0	1,707(-6)	7,614	0,610
$4s^24p^{4-1}S_0$	4s ² 4p ³ (² P°)5p ³ P ₂	561,170	28268,0	6,673(-6)	7,023	0,500
$4s^24p^4$ ³ P ₂	$4p^{6}$ $^{1}S_{0}$	306,060	26861,0	7,544(-8)	0,064	0,000
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{2}$	599,790	26466,0	2,379(-6)	9,173	0,550
$4s^24p^4$ ³ P ₂	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{2}$	584,530	26260,0	1,345(-6)	8,000	0,560
$4s^24p^4$ ¹ S ₀	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-1}D_{2}$	561,550	24539,0	5,800(-6)	6,118	0,500
$4s^24p^4$ ³ P ₂	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{0}$	514,650	19411,0	1,542(-7)	0,626	0,380
$4s^24p^4 {}^{3}P_0$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{-3}F_{2}$	545,820	18589,0	4,151(-6)	4,021	0,560
$4s^24p^{4-1}D_2$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{1}$	595,170	18219,0	5,805(-7)	3,645	0,630
$4s^{2}4p^{4}$ ¹ D ₂	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{1}P_{1}$	584,140	18065,0	5,545(-7)	3,291	0,590
$4s^{2}4p^{4}$ ³ P ₀	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	499,060	17982.0	3.357(-6)	2,485	0.660
$4s^24p^{4-1}D_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{2}$	519,290	17772,0	7,185(-7)	2,996	0,610
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}1$	$4p^55s^{1}P^{\circ}1$	333.820	17738.0	2.963(-7)	0.197	0.000
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{1}$	499,930	17611.0	6,599(-7)	1,473	0,690
$4s^{2}4p^{4}$ ³ P ₁	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{3}$	494,170	17534.0	1,498(-6)	3.230	0.630
$4s^24p^{4-1}D_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	528,560	16001.0	4.021(-7)	1.768	0.580
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}1$	$4p^55s^{3}P^{\circ}_{1}$	323.080	15260.0	2.388(-7)	0.144	0.000
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{3}P^{\circ}_{2}$	$4p^{5}5s^{1}P^{\circ}1$	331,400	14856.0	1.468(-7)	0.159	0.000
$4s^{2}4p^{4} {}^{3}P_{2}$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{2}$	534,030	14689,0	6,280(-7)	2,848	0,640
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{1}$	601,040	13492,0	7,307(-7)	2,835	0,550
$4s^24p^4 {}^{3}P_0$	$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{2}$	602,560	13397,0	3,646(-6)	4,751	0,510
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{3}$	540,570	13316,0	1,361(-6)	3,842	0,560
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{2}$	546,740	13108,0	9,790(-7)	2,859	0,610
$4s^{2}4p^{3}(^{4}S^{\circ})5s^{5}S^{\circ}_{2}$	$4p^{5}5s^{3}P^{\circ}_{0}$	296,570	11356,0	2,995(-8)	0,023	0,000
$4s^24p^{4}^{3}P_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{3}$	483,760	10627,0	5,220(-7)	1,760	0,690
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{3}$	$4p^{5}5s^{3}P^{\circ}1$	324,730	10106,0	6,847(-8)	0,098	0,000
$4s^24p^{4^3}P_1$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{-3}F_{2}$	543,550	10057,0	7,424(-7)	2,130	0,600
$4s^24p^4$ ³ P ₂	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{1}$	514,720	9879,10	2,354(-7)	0,956	0,520
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{1}$	$4p^{5}5s^{3}P^{\circ}2$	325,160	9300,20	2,457(-7)	0,151	0.000
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	$4p^55s^{-3}P^{\circ}_1$	336,040	8909,10	1,508(-7)	0,102	0,000
$4s^{2}4p^{4}$ ³ P ₂	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{0}$	482,250	8038.50	5.605(-8)	0.187	0.650
$4s^{2}4p^{4} {}^{3}P_{1}$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{1}$	552,000	7904,40	3,611(-7)	1,085	0,620
$4s^{2}4p^{4}$ ¹ D ₂	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{3}$	581,910	7854,20	5,582(-7)	3,276	0,570
$4s^{2}4p^{4}$ ³ P ₁	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	494,220	7338.00	2.687(-7)	0.580	0.540
$4s^24p^4 {}^3P_2$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	486,630	6710,20	2,382(-7)	0,818	0,590
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{1}P_{1}$	542,490	6709,40	2,960(-7)	0,844	0,620
$4s^{2}4p^{4}$ ¹ D ₂	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	521,160	6453.80	1.577(-7)	0.665	0.700
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}D^{\circ})5p^{1}F_{3}$	538,550	6339,40	6,432(-7)	1,795	0,610
$4s^{2}4p^{3}(^{4}S^{\circ})5s^{5}S^{\circ}2$	$4p^55s$ ¹ P° ₁	295,000	5934.80	4,646(-8)	0.036	0.000
M1 Gecisleri		,	- ,•••		,	, -
$4s^24p^4$ ³ P ₁	$4s^24p^{4-1}S_0$	3634.500	49.856	3,291(-8)	0,089	
$4s^24p^4 {}^{3}P_1$	$4p^{6}$ 1S ₀	310.190	32,968	1.585(-10)	0.000	
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}P_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-1}S_{0}$	3928.600	31.524	2.431(-8)	0.071	
$4s^24p^3(^4S^\circ)6s^5S^\circ_2$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{\circ}$	2470,500	26.728	2,446(-8)	0.075	
$4s^24p^3(^4S^\circ)6s^{-3}S^{\circ}1$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-1}P^{0}1$	2562.100	25.981	2,557(-8)	0,049	
$4s^24p^3(^4S^\circ)5p^{-5}P_3$	$4s^24p^3(^2P^\circ)5n^3D_3$	2463,500	23.575	2,145(-8)	0.091	
$4s^{2}4p^{3}(^{4}S^{\circ})5s^{5}S^{\circ}_{2}$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{3}P^{\circ}_{2}$	2685.700	20.017	2,165(-8)	0,072	
$4s^{2}4p^{3}(^{4}S^{\circ})5s^{-3}S^{\circ}1$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	3097.700	18.478	2,658(-8)	0,061	
4s ² 4p ³ (⁴ S°)5p ⁵ P ₁	4s ² 4p ³ (² P°)5p ³ P ₀	2373,800	17,356	4,888(-9)	0,009	

Tablo 3.12. Kr III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}) çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-formlarının oranı

Alt seviye	Üst seviye	λ (Å)	A _{ji} (s ⁻¹)	fij	S _{ij} (a.b)
4s ² 4p ³ (⁴ S°)5p ³ P ₁	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{1}S_{0}$	2040,800	14,689	3,057(-9)	0,005
$4s^{2}4p^{3}(^{4}S^{\circ})6s^{5}S^{\circ}_{2}$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{o}_{1}$	2589,300	14,402	8,686(-9)	0,028
$4s^{2}4p^{3}(^{4}S^{\circ})6s^{-3}S^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{\circ}_{0}$	2767,800	13,349	5,111(-9)	0,010
$4s^{2}4p^{3}(^{4}S^{\circ})5s^{5}S^{\circ}_{2}$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{1}$	2841,900	13,305	9,666(-9)	0,034
$4s4p^5 {}^{3}P^{\circ}_2$	$4s4p^{5} P^{\circ}_{1}$	1712,300	12,153	3,205(-9)	0,007
4s ² 4p ³ (⁴ S°)5p ⁵ P ₂	$4p^{5}5s^{-3}P^{\circ}_{2}$	2515,800	11,207	6,380(-9)	0,020
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	2265,300	11,197	8,614(-9)	0,014
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	$4p^{5}5s^{-3}P^{\circ}_{0}$	335,840	10,247	5,775(-11)	0,000
$4s^24p^4$ ³ P ₂	4s ² 4p ³ (² D°)5p ¹ D ₂	501,980	10,246	3,871(-10)	0,000
$4s^{2}4p^{3}(^{2}D^{\circ})6s^{-3}D^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-1}P^{o}_{1}$	5219,600	10,135	4,140(-8)	0,160
4s ² 4p ³ (² D°)6s ³ D° ₂	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{\circ}_{2}$	5497,700	10,097	4,575(-8)	0,311
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{3}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{2}$	4825,500	10,057	2,508(-8)	0,209
$4s^24p^4 {}^3P_1$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{-1}S_{0}$	464,300	10,033	1,081(-10)	0,000
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{3}P^{\circ}_{2}$	$4p^{5}5s^{-1}P^{\circ}_{1}$	331,400	9,969	9,848(-11)	0,000
$4s^{2}4p^{3}(^{4}S^{\circ})5s^{-3}S^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-3}P^{\circ}_{0}$	3637,600	9,722	6,428(-9)	0,017
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{2}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	2611,000	9,700	5,949(-9)	0,019
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{3}P_{2}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{2}$	2564,800	9,697	9,563(-9)	0,030
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{-5}P_{3}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}D_{2}$	2539,700	9,360	6,465(-9)	0,028
4s ² 4p ³ (⁴ S°)5p ⁵ P ₂	4s ² 4p ³ (² P°)5p ¹ D ₂	2249,700	9,303	7,059(-9)	0,020
$4s^{2}4p^{3}(^{2}D^{\circ})5p^{3}D_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{0}$	4577,900	9,220	9,656(-9)	0,033
4s ² 4p ³ (² D°)5p ³ D ₂	4s ² 4p ³ (² P°)5p ¹ D ₂	4406,900	8,975	2,613(-8)	0,142
$4s^24p^4 {}^3P_1$	4s ² 4p ³ (⁴ S°)5p ⁵ P ₁	621,590	8,420	4,877(-10)	0,000
$4s^24p^4 \ ^3P_2$	4s ² 4p ³ (² D°)5p ³ P ₁	514,720	8,220	1,959(-10)	0,000
4s ² 4p ³ (⁴ S°)5s ⁵ S° ₂	4p ⁵ 5s ³ P° ₂	302,310	8,153	1,117(-10)	0,000
4s ² 4p ³ (² D°)5p ³ D ₁	4s ² 4p ³ (² P°)5p ³ P ₁	4190,700	7,951	2,093(-8)	0,065
$4s^24p^{4-1}D_2$	4s ² 4p ³ (² P°)5p ³ D ₃	528,500	7,655	4,487(-10)	0,000
4s ² 4p ³ (⁴ S°)5p ³ P ₀	4s ² 4p ³ (² P°)5p ³ P ₁	2818,800	7,422	2,652(-8)	0,018
$4s4p^5 {}^{3}P^{\circ}_{0}$	$4s4p^{5} P^{\circ}_{1}$	1896,600	7,288	1,179(-8)	0,006
4s ² 4p ³ (⁴ S°)5p ⁵ P ₂	4s ² 4p ³ (² P°)5p ³ D ₂	2500,100	7,207	6,753(-9)	0,021
4s ² 4p ³ (² D°)5s ³ D° ₂	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	6252,800	6,984	2,456(-8)	0,190
$4s^24p^{4-1}D_2$	4s ² 4p ³ (² P°)5p ³ D ₁	535,080	6,832	1,760(-10)	0,000
$4s^24p^4 {}^3P_0$	4s ² 4p ³ (² P°)5p ³ P ₁	496,100	6,815	7,544(-10)	0,000
$4s^24p^4 {}^3P_1$	4s ² 4p ³ (² P°)5p ³ P ₂	486,110	6,787	4,008(-10)	0,000
4s ² 4p ³ (² D°)5s ³ D° ₁	4p ⁵ 5s ³ P° ₁	323,080	6,727	1,053(-10)	0,000
4s ² 4p ³ (² D°)6s ³ D° ₂	$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-1}P^{o}_{1}$	5273,300	6,710	1,678(-8)	0,109
$4s^24p^{4-1}S_0$	4s ² 4p ³ (² P°)5p ³ P ₁	563,350	6,671	9,522(-10)	0,000
$4s^24p^{4-1}D_2$	4s ² 4p ³ (² P°)5p ³ P ₂	519,290	6,595	2,666(-10)	0,000
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{-3}D^{\circ}_{1}$	$4s^{2}4p^{3}(^{2}P^{\circ})5s^{-1}P^{\circ}_{1}$	6182,600	6,535	3,745(-8)	0,172
4s ² 4p ³ (⁴ S°)5p ³ P ₁	4s ² 4p ³ (² P°)5p ³ P ₂	2542,200	6,498	1,049(-8)	0,020
4s ² 4p ³ (⁴ S°)5p ⁵ P ₁	4p ⁵ 5s ³ P° ₂	2499,200	6,496	6,083(-9)	0,011
4s ² 4p ³ (⁴ S°)5p ³ P ₂	4s ² 4p ³ (² P°)5p ¹ D ₂	2572,700	6,392	6,343(-9)	0,020

Tablo 3.12. (Devamı)

İkili iyonlaşmış ksenon için elektrik kuadrupol ve manyetik dipol geçiş parametrelerini hesaplamada öz-öz korelasyonu B konfigürasyon seti (CC-B) kullanılarak 51408 E2 ve 636782 M1 geçişi elde edildi. Bu iyona ait önceki mevcut çalışmalarda sadece temel hal konfigürasyonunun ($4s^24p^4$) farklı terimlerinin (seviyelerinin) kendi arasında yapmış olduğu geçiş verilerine ulaşılabildi (Humpreys, 1939; Garstang, 1963; Hansen ve Persson, 1982; Calamai ve Johnson, 1992; Biémont ve ark., 1995). Bu karşılaştırma değerleri ve bu çalışmadan elde edilen sonuçlar Tablo 3.13.'te verilmektedir. Tabloya bakıldığında M1 geçişlerine ait veriler karşılaştırma değerleri ile iyi uyumluyken E2 geçişlerine ait verilerdeki uyumun biraz daha zayıf olduğu görülmektedir. Örneğin, M1 geçişleri için $4s^24p^4$ ³P₂ – ¹D₂ geçişinde karşılaştırma değerleri sırasıyla 21,52 s⁻¹, 20,80 s⁻¹ ve 21,00 s⁻¹ iken CC-B hesabı sonucunda bu seviye için geçiş olasılığı değeri 20,048 s⁻¹ olarak bulundu. Ayrıca bu geçişteki dalga boyuna ait karşılaştırma değeri 5846,69 Å iken CC-B hesabı sonucu 5495,50 Å olarak elde edildi. Bu uyum, M1 geçişlerine ait geçiş olasılığı değerlerinin karşılaştırma değerleri ile karşılaştırıldığı Şekil 3.5.'de de görülmektedir. E2 geçişlerinden örnek verilecek olursa, $4s^24p^4 {}^{3}P_2 {}^{3}P_1$ geçişinde karşılaştırma değerleri (5,023(-2), 6,880(-2) ve 6,800)(-2)) s⁻¹ (Garstang, 1963; Hansen ve Persson, 1982; Biémont ve ark., 1995) iken CC-B hesabı sonucunda bu seviye için geçiş olasılığı değeri 3,501(-2) s⁻¹ olarak ve dalga boyu karşılaştıma değeri 10206,9 Å (Humpreys, 1939) iken CC-B hesabı sonucunda 11124,0 Å'dur. $4s^24p^4 {}^{3}P_2 - {}^{3}P_0$ geçişinde ise karşılaştırma değerleri sırasıyla (4,451(-2), 5,390(-2) ve 5,200(-2)) s⁻¹ iken CC-B hesabı sonucunda bu seviye için geçiş olasılığı değeri 0,00828(-2) s⁻¹ olarak oldukça uzak bir değer bulundu. Tablo 3.14.'de E2 ve M1 geçişlerine ait sonuçların bir kısmı (geçiş olasılığı A_{ji} (s⁻¹) en yüksek olan ilk 50 geçiş) verilmektedir.

Geç	eişler	λ	(Å)	Aji	(s ⁻¹)	f _{ij}	Sij (a.b)	Oran (V/L)
Alt seviye	Üst seviye	Bu çal.	Diğ. çal.	Bu çal.	Diğ. çal.	Bu çal.	Bu çal.	Bu çal.
E2 Geçişler	i							
5s ² 5p ⁴ ³ P ₂	$5s^25p^4 {}^3P_1$	11124,0	10206,9 ^e	3,501(-2)	5,023(-2) ^a 6,880(-2) ^b 6,800(-2) ^c	3,897(-10)	15,970	1,100
5s ² 5p ⁴ ³ P ₂	5s ² 5p ⁴ ³ P ₀	12283,0		8,28(-5)	4,451(-2) ^a 5,390(-2) ^b 5,200(-2) ^c	3,747(-13)	0,021	390
5s ² 5p ⁴ ³ P ₂	$5s^25p^{4\ 1}D_2$	5495,5	5846,69 ^e	0,426	4,078 ^a 5,520 ^b 0,520 ^c	1,929(-9)	9,534	1,100
5s ² 5p ⁴ ³ P ₂	$5s^25p^{4\ 1}S_0$	2,722		16,310	2,770 ^a 2,790 ^b 3,900 ^c	3,625(-9)	2,179	0,032
5s ² 5p ⁴ ³ P ₁	$5s^25p^{4\ 1}D_2$	10861,0		2,447(-3)	9,040(-4) ^a 1,270(-3) ^b 1,200(-3) ^c	7,211(-11)	1,651	1,200
5s ² 5p ⁴ ³ P ₀	$5s^25p^{4\ 1}D_2$	9944,9		0,207(-3)	2,730(-3) ^a 3,700(-3) ^b 3,100(-3) ^c	1,533(-11)	0,089	77,00
$5s^25p^{41}D_2$	$5s^25p^{41}S_0$	5396,20		4,951	7,216 ^a 9,640 ^b 13,00 ^c	4,323(-9)	20,228	0,650
M1 Geçişler	ri							
5s ² 5p ⁴ ³ P ₂	$5s^25p^4 {}^3P_1$	11124,0	10206,9 ^e	14,790	19,170 ^a 18,500 ^b 19,000 ^c	1,646(-7)	2,264	

Tablo 3.13. Xe III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}) çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk oranı ve karsılastırma değerleri

		1 2010 .	5.15. (Deval	III)		
Geçişler	λ (Å)		A _{ji} (s ⁻¹)		f _{ij}	S _{ij} (a.b) Oran (V/L)
Alt seviye Üst seviye	Bu çal.	Diğ. çal.	Bu çal.	Diğ. çal.	Bu çal.	Bu çal. Bu çal.
$5s^25p^4 {}^3P_1 {}^5s^25p^4 {}^3P_0$	117910,0		1,000(-2)	5,083(-2) ^a	5,747(-8)	1,676
				6,590(-2) ^b 6,700(-2) ^c		
$5s^25p^4 {}^3P_2 {}^5s^25p^4 {}^1D_2$	5495,50	5846,69 ^e	20,048	21,520 ^a	9,077(-8)	0,617
				20,800° 21,000°		
$5s^25p^4 {}^3P_1 {}^5s^25p^4 {}^1D_2$	10861,0		0,961	0,630 ^a	2,535(-8)	0,228
				0,613 ^b		
5 25 4 3D 5 25 410	0.005.0	accord	101 470	0,620°	1.150/ 5	0.015
$5s^{2}5p^{4}$ ³ P ₁ $5s^{2}5p^{4}$ ¹ S ₀	3605,0	3800 ^a	181,470	192,0 ^a	1,179(-7)	0,315
				210 0°		
				210,0		

Tablo 3.13. (Devamı)

^a Biémont ve ark., 1995; ^b Hansen ve Persson, 1982; ^c Garstang, 1963; ^d Calamai ve Johnson, 1992; ^e Humpreys, 1939

Tablo 3.14. 2	Xe III iyon	u içir	n elektri	k kuadr	upol	(E2)	ve many	yetik	dipol	(M1)	geçişlerine	e ait dalga	boyı	ι (λ),	geçiş
	olasılığı(.	Aji), s	salınıcı	şiddeti	(f _{ij}),	çizgi	şiddeti	(S_{ij})	ve sa	lınıcı	şiddetinin	hız-uzun	luk f	ormla	ırının
	oranı														

Uralli		<u>^</u>				
Alt seviye	Ust seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	Sij (a.b)	Oran (V/L)
E2 Geçişi						
5s5p4(3P)5d 5D2	$5p^45d^2$ 5D_0	351,130	8,53(5)	3,15(-6)	4,065	0,600
5s5p4(3P)5d 5D4	$5p^45d^2$ 5F_4	350,120	6,69(5)	1,23(-5)	28,272	0,660
5s5p4(3P)5d 3P2	$5p^45d^2$ 3P_0	366,410	6,44(5)	2,59(-6)	3,799	0,480
5s5p4(3P)5d 5D3	$5p^45d^2$ 5S_2	351,310	6,33(5)	8,37(-6)	15,130	0,580
5s5p ⁵ ³ P ^o ₂	5p ⁵ 5d ³ P ^o 0	356,570	5,85(5)	2,23(-6)	3,013	0,460
5s5p4(3P)5d 5F2	$5p^45d^2$ 5D_0	347,000	5,72(5)	2,07(-6)	2,570	0,720
5s5p ⁴ (³ P)5d ³ P ₂	$5p^45d^2$ 3P_0	335,310	5,41(5)	1,82(-6)	2,047	0,510
5s5p ⁵ ³ P ^o ₂	5p ⁵ 5d ³ P ^o ₁	354,720	5,10(5)	5,77(-6)	7,672	0,460
5s5p4(3P)5d 3F4	$5p^45d^2 \ ^3H_6$	354,230	4,47(5)	1,21(-5)	28,912	0,780
5s5p4(3P)5d 3F2	$5p^45d^2$ 3P_0	333,720	4,26(5)	1,42(-6)	1,573	0,480
$5s^25p^4$ ³ P ₂	5s5p4(3P)5d 3F4	453,410	4,21(5)	2,33(-5)	64,796	0,880
5s5p ⁴ (³ P)5d ³ F ₃	$5p^45d^2$ ³ H ₅	348,210	4,18(5)	1,19(-5)	20,995	0,780
5s5p4(1D)5d 1G4	$5p^45d^2$ 1I_6	357,520	4,12(5)	1,14(-5)	27,939	0,820
$5s5p^5 {}^{3}P^{0}_{2}$	$5p^{5}5d^{-3}F^{0}_{4}$	349,140	4,01(5)	1,32(-5)	16,737	0,710
5s5p4(3P)5d 5D2	$5p^45d^2$ 5D_1	351,060	3,96(5)	4,39(-6)	5,654	0,620
$5s^25p^4$ 1D_2	5s5p4(1D)5d 1G4	455,370	3,85(5)	2,16(-5)	60,642	0,900
5s5p ⁴ (³ P)5d ⁵ D ₄	$5p^45d^2$ 5D_3	350,340	3,85(5)	5,51(-6)	12,693	0,620
5s5p4(3P)5d 3F4	$5p^45d^2 \ ^3F_4$	360,840	3,59(5)	7,01(-6)	17,656	0,600
5s ² 5p ² (³ P)5d ² ⁵ D ₂	$5p^45d^2$ 1S_0	293,000	3,29(5)	8,47(-7)	0,635	0,430
5s5p ⁴ (³ P)5d ⁵ D ₃	$5p^45d^2$ 5D_1	350,240	3,27(5)	2,58(-6)	4,622	0,610
5s5p ⁵ ³ P ^o ₂	5p ⁵ 5d ³ P ^o ₂	351,190	3,22(5)	5,96(-6)	7,690	0,500
5s5p4(3P)5d 3F3	$5p^45d^2$ 3G_4	367,480	3,22(5)	8,39(-6)	17,351	0,610
5s5p4(3P)5d 5P3	$5p^45d^2$ 5D_4	348,630	3,09(5)	7,23(-6)	12,778	0,710
5s5p ⁵ ³ P ^o ₁	$5p^{5}5d^{-3}D^{0}1$	337,990	3,07(5)	5,27(-6)	3,633	0,550
5s5p ⁴ (³ P)5d ⁵ D ₁	$5p^45d^2$ 5F_3	347,080	3,06(5)	1,29(-5)	9,634	0,730
5s5p4(3P)5d 5D2	$5p^45d^2$ 5F_4	346,860	3,00(5)	9,73(-6)	12,093	0,750
$5s^25p^4$ ¹ D ₂	5s5p4(1D)5d 1F3	439,350	2,96(5)	1,20(-5)	30,275	0,840
5s5p4(3P)5d 5D1	$5p^45d^2$ 5F_1	345,350	2,94(5)	5,26(-6)	3,872	0,710
5s5p ⁴ (³ P)5d ⁵ F ₃	$5p^45d^2$ 5D_1	346,470	2,89(5)	2,23(-6)	3,869	0,700
5s5p ⁴ (³ P)5d ⁵ F ₅	$5p^45d^2$ 5G_6	364,770	2,89(5)	6,82(-6)	21,679	0,810
5s5p4(3P)5d 5D4	$5p^45d^2$ 5S_2	351,380	2,89(5)	2,97(-6)	6,914	0,560
5s5p4(3P)5d 3F2	$5p^45d^2$ $^{3}H_4$	346,730	2,88(5)	9,34(-6)	11,596	0,740
5s5p4(3P)5d 5F4	5p ⁴ 5d ² ⁵ G ₅	362,360	2,80(5)	6,74(-6)	17,199	0,740
$5s^25p^4$ 1D_2	$5s^25p^3(^2D^\circ)4f^{-1}G_4$	552,070	2,79(5)	2,29(-5)	114,950	0,630
5s5p ⁴ (³ P)5d ⁵ D ₄	$5p^45d^2$ 5D_2	350,200	2,71(5)	2,76(-6)	6,365	0,600
5s5p4(1D)5d 3D3	$5p^45d^2$ 3P_2	351,980	2,71(5)	3,59(-6)	6,527	0,670

]	Tablo 3.14. (1	Devamı)			
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	fij	S _{ij} (a.b)	Oran (V/L)
$5s5p^4(^1D)5d^{-1}D_2$	$5p^45d^2$ 1S_0	332,730	2,68(5)	8,88(-7)	0,974	0,540
$5s5p^{4}(^{3}P)5d^{-5}D_{3}$	$5p^45d^2$ 5F_5	347,690	2,64(5)	7,51(-6)	13,166	0,820
$5s^{2}5p^{4}$ ³ P ₂	5s5p ⁴ (³ P)5d ³ F ₃	446,350	2,60(5)	1,09(-5)	28,815	0,930
$5s5p^4(^{3}P)5d^{-5}F_2$	$5p^{4}5d^{2}$ ${}^{5}G_{2}$	359,180	2,55(5)	4,93(-6)	6,808	0,750
$5s5p^{4}(^{3}P)5d^{-5}F_{3}$	$5p^45d^2$ 5P_3	345,620	2,53(5)	4,54(-6)	7,807	0,670
$5s5p^4(^{3}P)5d^{-5}F_5$	$5p^45d^2$ 5G_6	362,480	2,53(5)	5,89(-6)	18,393	0,780
$5s5p^{4}(^{3}P)5d^{-5}D_{3}$	$5p^45d^2$ 5D_2	350,130	2,53(5)	3,32(-6)	5,939	0,650
$s^2 5 p^4$ $i D_2$	$5s5p^4(^1D)5d^{-1}S_0$	313,460	2.52(5)	7.43(-7)	0.682	1.300
$55p^4(^{3}P)5d^{-3}P_2$	$5p^45d^2$ 3F_4	352,440	2.50(5)	8.37(-6)	10.908	0.720
$5s^25p^2(^{3}P)5d^2$ $^{5}D_2$	$5p^45d^2$ ¹ S ₀	292.900	2.47(5)	6.35(-7)	0.475	0.390
$s5p^4(^{3}P)5d^{-3}D_2$	$5n^45d^2$ ³ D ₁	346.310	2.45(5)	2.64(-6)	3.264	0.680
$55p^{4}(^{3}P)5d^{-5}D_{3}$	$5p^{4}5d^{2}$ $^{5}D_{3}$	350,260	2,43(5)	4 48(-6)	8.018	0.670
$(^{3}P)5d^{-5}P_{2}$	$5n^45d^2$ 5D_1	342,050	2.40(5)	2.53(-6)	3.009	0.690
$5s5p^4(^1D)5d^{-3}G_5$	$5p^45d^2$ 3H_6	367,480	2,39(5)	5,73(-6)	18,629	0,910
M1 Gecisleri						
$5p^45d^2$ 3P_1	$5p^45d^2$ 1S_0	2592,800	239,040	8,03(-8)	0,154	
$5s^25p^4$ ³ P ₁	$5s^25p^4$ 1S_0	3605.000	181,470	1,18(-7)	0,315	
$5p^46s^2$ 3P_1	$5p^46s^2$ ¹ S ₀	3063.500	164.390	7,71(-8)	0,175	
$55p^{3}(^{4}S^{o})7s^{2}$ $^{5}S^{o}_{2}$	$5s5p^{3}(^{2}P^{0})7s^{2} {}^{3}P^{0}{}_{2}$	1655.700	154.630	6,35(-8)	0,130	
$55p^{3}(^{4}S^{\circ})6s^{2}$ $5S^{\circ}_{2}$	$5s5p^{3}(^{2}P^{0})6s^{2}$ $^{3}P^{0}_{2}$	1659.700	149.930	6.19(-8)	0.127	
$55p^{3}(^{2}D^{0})7s^{2} ^{3}D^{0}$	$5s5p^{3}(^{2}P^{0})7s^{2}$ $^{1}P^{0}$	1463.600	101.840	1.96(-8)	0.036	
$5p^45d^2$ ³ S ₁	$5p^46s^2$ ¹ S ₀	2884.600	101.550	4.22(-8)	0.090	
5^{0} 5^{0} 5^{1	$5s5n^{3}(^{2}P^{0})6s^{2}$ $^{1}P^{0}$	1468 500	98 089	1,90(-8)	0.035	
$5s^25n^3(^2D^\circ)6n^{-3}P^\circ_1$	$5s^{2}5n^{3}(^{2}P^{\circ})6n^{-1}S^{\circ}o$	3903.000	88 142	671(-8)	0,055	
$s^{3} 5p^{2} (4S^{0})7s^{2} 5S^{0}$	$5s5p^{3}(^{2}P^{0})7s^{2}$ $^{3}P^{0}_{1}$	1734 200	86 669	234(-8)	0,050	
$s_{5}^{3}(4S^{0})6s^{2} = 5S^{0}s^{2}$	5s5p(1)/s 11 $5s5n^{3}(2p_{0})6s^{2} 3p_{0}$	1736 500	83 257	2,34(-8)	0,030	
$n^{4}5d^{2}$ $^{5}D_{1}$	5s5p(1)0s 11 $5p^45d^2 {}^3P_0$	1551 400	76 021	2,20(-8) 9 14(-9)	0,048	
$p 5d^2 D_1$	$5p^{4}5d^{2}$ $^{1}S_{0}$	2020 200	74 380	1,14(-7)	0,011	
$s_{2}^{2} s_{2}^{2} (1D) s_{2}^{2} 1D_{1}$	$5p^{4}5d^{2}$ $^{1}S_{0}$	2020,200	73 820	1,32(-8)	0,023	
s 5p (D)5u 11	5p 5d = 50 $5p 45 d^2 = 1D_2$	2072.000	75,820	4,70(-10)	0,000	
$p_{3}u_{73}$	$5p 5d D_2$ $5p 45 d^2 3D_2$	2072,900	(2016	5,27(-6)	0,117	
$p^{2}Su^{2} = {}^{2}D_{1}$	5°5°4(1D)5d 18°	1455,500	62,910	0,40(-9)	0,007	
s-3p ² - P1 (-252(3p)5-12, 5p	$5s_{2}p_{-2}(10) = 30$	499,340	02,904	7,84(-10)	0,000	
s^{2} Sp ² (³ P)Sd ² ³ D ₁	$5s^{2}5p^{2}(^{1}S)5d^{2} ^{3}P_{0}$	1744,200	62,766	9,54(-9)	0,012	
$s^{2}5p^{3}(^{2}D^{2})6d^{-3}D^{2}2$	$5s^{2}5p^{3}(^{2}P^{*})6d^{-1}P^{*}_{1}$	3524,000	58,555 58,410	6,54(-8)	0,285	
s-5p ⁻ (-D ⁻)6p ⁻ F ⁻ 2	$5s^{2}5p^{3}(2P^{2})6p^{-1}D^{2}2$	3866,300	58,419	1,31(-7)	0,626	
os-5p ³ (*S ^o)6p ⁻³ P ^o 1	5s ² 5p ³ (² P ⁶)6p ³ P ⁶ 0	2616,600	58,192	1,99(-8)	0,039	
$3s5p^{3}(^{2}D^{0})^{7}s^{2} 3D^{0}2$	$5s5p^{3}(^{4}S^{0})7s^{2} ^{3}S^{0}1$	1975,600	56,903	2,00(-8)	0,049	
5s ² 5p ³ (⁴ S [°])6d ⁵ D [°] 1	$5s^{2}5p^{3}(^{2}P^{\circ})6d^{-3}P^{\circ}_{0}$	2350,700	56,157	1,55(-8)	0,027	
5s ² 5p ³ (² D°)6d ³ G° ₄	$5s^{2}5p^{3}(^{2}P^{\circ})6d^{-3}F^{\circ}_{4}$	4369,700	55,986	1,60(-7)	1,559	
$5s5p^{3}(^{4}S^{o})7s^{2} \ ^{3}S^{o}_{1}$	$5s5p^{3}(^{2}P^{0})7s^{2} {}^{1}P^{0}{}_{1}$	5648,300	55,791	2,67(-7)	1,118	
$s^{2}5p^{2}(^{3}P)5d^{2} ^{3}P_{1}$	$5s^{2}5p^{2}(^{1}S)5d^{2}$ $^{1}S_{0}$	3563,400	53,298	3,38(-8)	0,089	
$s5p^{3}(^{2}D^{0})6s^{2} \ ^{3}D^{0}_{2}$	$5s5p^{3}(^{4}S^{o})6s^{2} \ ^{3}S^{o}_{1}$	1974,800	53,102	1,86(-8)	0,045	
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{-5}D^{\circ}1$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-3}P^{\circ}_{0}$	3055,200	52,787	2,46(-8)	0,056	
5s5p ³ (⁴ S ^o)6s ² ³ S ^o ₁	$5s5p^{3}(^{2}P^{o})6s^{2}$ $^{1}P^{o}_{1}$	5728,100	52,229	2,57(-7)	1,092	
5s ² 5p ³ (⁴ S°)6d ⁵ D° ₄	$5s^{2}5p^{3}(^{2}P^{\circ})6d^{-3}F^{\circ}_{4}$	2442,300	49,641	4,44(-8)	0,241	
$5s^{2}5p^{4}$ ³ P ₀	5s ² 5p ³ (² P°)6p ³ P° ₁	567,360	45,438	6,58(-9)	0,001	
$5p^45d^2$ 3G_5	$5p^45d^2$ 3F_4	1713,400	45,125	1,62(-8)	0,076	
$5s^25p^4$ $^{3}P_2$	5s ² 5p ³ (² D°)6p ³ P° ₁	578,700	43,240	1,30(-9)	0,001	
$5s5p^{3}(^{2}P^{0})7s^{2} ~^{3}P^{0}{}_{2}$	$5s5p^{3}(^{2}D^{0})7s^{2}$ $^{1}D^{0}_{2}$	3238,300	43,124	6,78(-8)	0,271	
$5p^{4}5d^{2}$ $^{5}G_{5}$	$5p^{4}5d^{2}$ ${}^{3}F_{4}$	1528,100	42,738	1,22(-8)	0,051	
sp^45d^2 ³ S ₁	$5p^46s^2$ 1S_0	2579.900	42.628	1,42(-8)	0,027	
$5s5p^{3}(^{2}P^{0})6s^{2}$ $^{3}P^{0}_{2}$	$5s5p^{3}(^{2}D^{0})6s^{2}$ $^{1}D^{0}2$	3233.500	42.071	6,59(-8)	0.264	
$5s^25p^3(^4S^\circ)4f^{-5}F^{\circ}_{2}$	$5s^25p^3(^2P^\circ)4f^{-3}D^{\circ_1}$	2466.000	41.736	2.28(-8)	0.070	
$5s^25n^3(^4S^\circ)4f^5F^\circ_5$	$5s^25n^3(^2P^\circ)^{4f} {}^{3}F^{\circ}_{4}$	2681 200	41 337	3 65(-8)	0,266	
$5n^45d^2$ ³ P ₁	$5n^{4}5d^{2}$ ³ P ₀	2389 200	40.997	1 17(-8)	0.021	
5s ² 5n ³ (4S ⁹)5d 5D ⁹	$5s^25n^3(2D^{\circ})5A^{-3}D^{\circ}$.	2007,200	40,266	3,00(-8)	0,021	
$5n^{4}5d^{2}$ $5D_{2}$	55 J J J J J J J I I $5n^4 5d^2 ^3 \text{ D}.$	1426 100	40,200	7 36(0)	0,111	
$5p 5u^{-1}D_2$ $5p 45d^2 3U_2$	$5p - 5d^2 - 1C$	1999 200	40,240	1,50(-9)	0,015	
5p 50 - 5H5	5p 50 - 04	1888,200	40,069	1,73(-8)	0,090	
5°2° 201 201 201 201 201 201 201 201 201 201	$5p^{-}5u^{-}$ P_{0}^{-}	3800,000	39,001 28 7 40	2,80(-8)	0,081	
$3s_{2}p^{-}(^{2}P)_{3}d^{-2}F_{2}$	$585p^{-}(^{+}S)5d^{-5}D_{1}$	1927,400	38,/40	1,29(-8)	0,031	
$Sp^3Sd^2 = D_1$	5p ⁻ 5d ² ³ P ₀	2110,000	37,844	8,42(-9)	0,013	

Tablo 3.14. (Devamı)

		uoro err ii (i	e (ann)			
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{-3}F^{\circ}_{4}$	5s ² 5p ³ (² P°)5d ¹ F° ₃	3693,000	37,519	5,97(-8)	0,490	
5s ² 5p ³ (² P°)6s ¹ P° ₁	5p ⁵ 6s ³ P ^o ₀	403,560	37,080	3,02(-10)	0,000	
5s5p ³ (² P ^o)7s ² ³ P ^o ₂	$5s5p^{3}(^{2}P^{o})7s^{2}$ $^{1}P^{o}_{1}$	2094,200	37,074	1,46(-8)	0,038	
$5p^45d^2$ ³ H ₅	$5p^{4}5d^{2}$ $^{1}G_{4}$	2652,800	36,884	3,18(-8)	0,230	

Şekil 3.5. Xe III iyonu için M1 geçişlerine ait geçiş olasılığı değerlerinin diğer çalışmalar ile karşılaştırılması

İkili iyonlaşmış radon (Rn III) için öz-öz korelasyonu A konfigürasyon seti (CC-A) ile yapılan hesaplama sonucunda elde edilen enerji seviyeleri arasında 32972 E2 ve 24456 M1 geçişi elde edildi. Bu geçişlere ait parametreler için sadece tek bir çalışmada (Biémont ve Quinet, 1996) temel hal konfigürasyonunun ($6s^26p^4$) farklı terimlerinin (seviyelerinin) kendi arasında yapmış olduğu geçişlerdeki geçiş olasılıklarına ulaşılabildi. Bu çalışmadan alınan veriler ile CC hesaplama sonuçlarından elde edilen verilerin karşılaştırması Tablo 3.15.'de verilmektedir. Tablo incelendiğinde M1 geçişleri için uyumun iyi olduğu görülmektedir. Örneğin, $4s^24p^4$ ³P₂ – ¹D₂ geçişinde geçiş olasılığı için karşılaştırma değeri (Biémont ve Quinet 1996) 386,00 s⁻¹ iken CC hesabı sonucunda bu seviye için elde edilen değer 374,65 s⁻¹'dir. E2 geçişleri için karşılaştırma değerleri ile bu çalışmadan elde edilen veriler birbiriyle iyi uyumlu olmasına rağmen bazı seviyeler için hesaplanan değerler karşılaştırma değerlerine oldukça uzaktır. E2 ve M1 yasaklı geçişlerinin sayısının fazla olmasından dolayı Tablo 3.16.'da geçiş olasılığı en yüksek olan ilk 50 geçiş verilmektedir.

Geçişler		2 (Å)	A	ji (s ⁻¹)	£		Oran
Alt Seviye	Üst Seviye	λ (A)	Bu çal.	Diğer çal.	Lij	Sij (a. D)	(V/L)
E2 Geçişleri							
6s ² 6p ⁴ ³ P ₂	6s ² 6p ⁴ ³ P ₁	3291,10	22,427	19,700 ^a	2,185(-8)	23,196	0,880
6s ² 6p ⁴ ³ P ₂	6s ² 6p ⁴ ³ P ₀	9088,50	0,0012	0,366 ^a	3,022(-12)	0,067	69,00
6s ² 6p ⁴ ³ P ₂	6s ² 6p ⁴ ¹ D ₂	2579,60	61,280	47,800 ^a	6,114(-8)	31,255	0,920
$6s^26p^4 {}^3P_2$	$6s^26p^{4} {}^1S_0$	1350,40	135,280	44,200 ^a	7,397(-9)	0,542	0,082
6s ² 6p ⁴ ³ P ₁	$6s^26p^{4} {}^1D_2$	11932,0	7,196(-3)	1,084(-3) ^a	2,560(-10)	7,772	0,780
$6s^26p^4 {}^3P_0$	$6s^26p^{4} D_2$	3602,00	2,275	2,320 ^a	2,212(-8)	6,159	3,600
$6s^26p^{4} {}^1D_2$	$6s^26p^{4} {}^1S_0$	2834,10	171,22	215,00 ^a	4,123(-8)	27,954	0,570
M1 Geçişleri	i						_
6s ² 6p ⁴ ³ P ₂	6s ² 6p ⁴ ³ P ₁	3291,10	480,31	530,00 ^a	4,679(-7)	1,904	_
6s ² 6p ⁴ ³ P ₁	6s ² 6p ⁴ ³ P ₀	5159,4	64,48	74,33ª	7,720(-7)	0,984	
6s ² 6p ⁴ ³ P ₂	6s ² 6p ⁴ ¹ D ₂	2579,60	374,65	386,00 ^a	3,737(-7)	1,192	
$6s^26p^4 {}^3P_1$	$6s^26p^{4} D_2$	11932,0	1,685	0,760 ^a	5,997(-8)	0,531	
6s ² 6p ⁴ ³ P ₁	$6s^26p^4 {}^1S_0$	2290,2	2,101(3)	2,182(3) ^a	5,506(-7)	0,935	

Tablo 3.15. Rn III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı ve karşılaştırma değerleri

^a Biémont ve Quinet, 1996

Tablo 3.16. Rn III iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının

oralli		<u>^</u>				
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	Sij (a.b)	Oran (V/L)
E2 Geçişi						
6s6p ⁵ ³ P° ₂	6p ⁵ 6d ³ P° ₀	343,090	3,886(5)	1,372(-6)	1,650	0,460
6s6p ⁵ ³ P° ₂	6p ⁵ 6d ³ P°1	340,910	3,553(5)	3,714(-6)	4,383	0,430
6s6p ⁵ ³ P° ₂	6p ⁵ 6d ³ F° ₄	335,430	2,814(5)	8,544(-6)	9,603	0,660
6s ² 6p ³ (² D°)6d ³ F° ₂	6p ⁵ 6d ³ P° ₀	355,310	1,955(5)	7,400(-7)	0,989	0,080
6s ² 6p ² (¹ S)6d7s ¹ D ₂	$6p^46d^2$ 1S_0	305,020	1,803(5)	5,028(-7)	0,425	0,000
6s ² 6p ³ (² P°)6d ³ P° ₂	6p ⁵ 6d ³ P° ₀	323,150	1,759(5)	5,508(-7)	0,554	0,380
6s6p ⁵ ¹ P° ₁	6p ⁵ 6d ¹ F°3	412,230	1,623(5)	9,651(-6)	12,080	0,740
6s6p ⁵ ³ P° ₂	6p ⁵ 7s ³ P ^o ₂	330,860	1,500(5)	2,463(-6)	2,656	0,720
6s ² 6p ³ (² D°)6d ³ P° ₁	6p ⁵ 6d ¹ F° ₃	309,050	1,485(5)	4,960(-6)	2,616	0,570
6s ² 6p ³ (⁴ S°)6d ⁵ D° ₁	6p ⁵ 6d ³ D° ₁	315,640	1,468(5)	2,193(-6)	1,232	0,630
6s6p ⁵ ³ P° ₂	6p ⁵ 6d ³ D° ₃	326,170	1,348(5)	3,009(-6)	3,110	0,660
6s6p ⁵ ³ P° ₂	6p ⁵ 6d ³ F° ₃	333,190	1,337(5)	3,116(-6)	3,433	0,790
6s ² 6p ³ (² D°)6d ³ P° ₀	6p ⁵ 6d ³ D° ₂	311,570	1,208(5)	8,790(-6)	1,583	0,540
6s ² 6p ³ (² D°)6d ³ P° ₁	6p ⁵ 6d ³ D° ₁	326,050	1,194(5)	1,903(-6)	1,179	0,790
6s ² 6p ³ (² D°)6d ³ S° ₁	6p ⁵ 6d ³ D° ₁	362,470	1,177(5)	2,319(-6)	1,974	0,520
6s ² 6p ² (¹ S)6d7s ¹ D ₂	6p ⁴ 6d ² ¹ G ₄	332,010	1,151(5)	3,424(-6)	3,732	0,000
6s ² 6p ² (¹ S)6d7s ³ D ₃	6p ⁴ 6d ² ³ F ₄	325,510	1,138(5)	2,324(-6)	3,342	0,000
6s ² 6p ³ (² P°)6d ³ P° ₂	6p ⁵ 7s ³ P ^o ₂	312,280	1,130(5)	1,652(-6)	1,498	0,350
6s ² 6p ³ (⁴ S°)6d ⁵ D° ₁	6p ⁵ 6d ¹ D° ₂	334,230	1,089(5)	3,039(-6)	2,028	0,680
6s ² 6p ³ (² P°)7d ³ F° ₂	6p ⁵ 7s ³ P ^o 0	404,840	1,074(5)	5,279(-7)	1,043	0,061
6s ² 6p ³ (² D°)6d ³ P° ₀	6p ⁵ 6d ³ F° ₂	314,080	1,040(5)	7,687(-6)	1,419	0,560
6s6p ⁵ ¹ P° ₁	$6p^56d^{-3}F^{\circ}_2$	419,120	1,005(5)	4,409(-6)	5,801	0,620
6s ² 6p ² (³ P)6d7s ³ F ₂	6p ⁴ 6d ² ¹ G ₄	310,280	9,892(4)	2,570(-6)	2,286	0,000
6s ² 6p ³ (² D°)6d ³ P° ₂	6p ⁵ 6d ³ F° ₄	401,920	9,890(4)	4,311(-6)	8,336	0,630
6s ² 6p ³ (² P°)6d ³ P° ₂	6p ⁵ 6d ³ P° ₁	321,210	9,712(4)	9,013(-7)	0,890	0,610
6s ² 6p ³ (² P°)6d ³ P° ₀	6p ⁵ 6d ³ D° ₂	336,780	9,419(4)	8,008(-6)	1,822	0,570
6s ² 6p ² (³ P)6d7s ⁵ F ₂	$6p^46d^2$ 5D_0	304,840	9,347(4)	2,604(-7)	0,220	0,000
$6s^26p^4 {}^1D_2$	$6p^{6} S_0$	362,060	8,918(4)	3,505(-7)	0,495	0,000
6s ² 6p ² (³ P)6d7s ³ F ₂	$6p^46d^2$ 1S_0	290,130	8,576(4)	2,164(-7)	0,157	0,000
6s ² 6p ³ (² P°)6d ³ P° ₁	6p ⁵ 6d ¹ D° ₂	408,670	8,524(4)	3,557(-6)	4,338	0,670
6s ² 6p ³ (² P°)6d ³ P° ₂	6p ⁵ 6d ³ F° ₃	314,350	8,270(4)	1,715(-6)	1,587	0,490
6s ² 6p ³ (² D°)6d ³ P° ₁	6p ⁵ 6d ¹ P° ₁	289,040	8,163(4)	1,022(-6)	0,441	0,360
6s6p ⁵ ¹ P° ₁	6p ⁵ 6d ³ D° ₂	414,660	8,104(4)	3,482(-6)	4,436	0,660
6s6p ⁵ ¹ P° ₁	6p ⁵ 6d ¹ P° ₁	377,380	7,981(4)	1,704(-6)	1,636	2,400
6s ² 6p ³ (² D°)6d ³ P° ₁	6p ⁵ 6d ³ D° ₂	310,410	7,755(4)	1,867(-6)	0,998	0,460

	18	ibio 3.16. (De	evami)			
Alt sevive	Üst sevive	λ (Å)	A _{ii} (s ⁻¹)	f _{ii}	S _{ii} (a.b)	Oran (V/L)
$6s^26n^3(^2P^\circ)6d^3P^\circ_2$	$6n^56d^{-3}F^{\circ_4}$	316 340	7 732(4)	2.088(-6)	1 969	0.910
$6^{2}6^{3}(2D^{2})64^{3}D^{2}$	$6p$ $6d$ $3E^{\circ}$	212 010	7,752(4)	2,000(-0)	0,000	0,510
$0^{\circ} 0^{\circ$	$6p^{\circ}$ $6d^{\circ}$ F_{2}°	312,910	7,390(4)	1,009(-0)	0,990	0,510
$6s^{2}6p^{2}(^{3}P)6d/s^{-3}D_{2}$	$6p^46d^2$ 3P_0	339,270	7,322(4)	2,527(-7)	0,294	0,000
6s6p ⁵ ³ P° ₂	$6p^{5}7s^{-3}P^{0}2$	339,670	7,300(4)	1,263(-6)	1,474	0,520
$6s^{2}6p^{3}(^{2}P^{\circ})7d^{-3}P_{2}$	$6p^57s^{-3}P_0^{0}$	407,320	7,262(4)	3,613(-7)	0,727	0,049
$6s^{2}6p^{3}(^{2}P^{\circ})7d^{3}F^{\circ}_{3}$	$6p^57s^{-3}P^{0}1$	407.130	6.894(4)	7.342(-7)	2.066	0.059
$6s^{2}6n^{3}(^{4}S^{\circ})6d^{5}D^{\circ}_{1}$	$6n^{5}6d^{-3}D^{\circ_{2}}$	330 710	6712(4)	2 568(-6)	1,660	0,680
$6^{2}6p^{2}(1S)6d7a^{3}D_{1}$	$6p^{4}6d^{2}$ 3D	211.070	6,712(4)	2,300(0)	0.524	0,000
$(3)0078^{-1}D_{3}^{-1}$		311,070	0,710(4)	4,172(-7)	0,324	0,000
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{-3}S^{\circ}_{1}$	6p ⁵ 6d ¹ P ⁵ 1	301,990	6,538(4)	8,939(-7)	0,440	0,590
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{-3}P^{\circ}{}_{2}$	$6p^{3}6d^{3}P^{0}_{0}$	412,960	6,535(4)	3,342(-7)	0,701	0,870
6s ² 6p ³ (² D°)6d ³ P° ₂	6p ⁵ 6d ³ P° ₁	409,800	6,531(4)	9,866(-7)	2,022	0,750
$6s^{2}6p^{4} {}^{3}P_{2}$	$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-3}P_{0}$	750.010	6.314(4)	1.065(-6)	13.380	0.350
$6s^{2}6p^{2}(^{1}S)6d7s^{-1}D_{2}$	$6n^47s^2$ ¹ S ₀	309 800	6 144(4)	1 768(-7)	0 157	0,000
$6s^{2}6n^{3}(^{2}D^{9})6d^{3}S^{9}$	$6p^{5}6d^{-1}D^{\circ}a$	387,000	5,760(4)	2,158(6)	2 238	0,550
$(2)^{2}(2)^{2}(2)^{2}(1)^{2}$	$Op^{2}Od^{2}D^{2}$	245.020	5,700(4)	2,136(-0)	2,238	0,550
6s ² 6p ³ (² D [*])6d ³ P [*] ₁	$6p^{5}6d^{-1}D^{*}_{2}$	345,920	5,738(4)	1,/16(-6)	1,269	0,670
M1 Geçişi						
$6s^{2}6p^{4} {}^{3}P_{1}$	$6s^{2}6p^{4} {}^{1}S_{0}$	2290.200	2100.800	5,506(-7)	0.935	
$6n^47s^2$ ³ P ₁	$6p^47s^2$ ¹ So	1818 200	2099 800	3,469(-7)	0.468	
$6p^{4}6d(2D)7a^{5}E_{2}$	$6p^{4}6d(^{2}D)7a^{-3}D$	1640 200	1452,800	3, +07(-7)	1,601	
$\frac{6}{2}$	$\frac{00}{10} \frac{10}{10} \frac{10}{10}$	1049,200	1432,800	4,007(-7)	1,091	
$6s^{2}6p^{3}(^{2}D^{2})/p^{3}F_{2}$	$6s^{2}6p^{3}(^{2}P^{2})/p^{4}D_{2}$	1977,300	1298,600	7,612(-7)	1,861	
$6p^46d^2$ $^{5}G_5$	$6p^46d^2 \ {}^3F_4$	1734,600	1228,600	4,534(-7)	2,139	
$6s^{2}6p^{2}(^{3}P)7s^{2} {}^{3}P_{1}$	$6s^{2}6p^{2}(^{1}S)7s^{2}$ $^{1}S_{0}$	1824,500	1197,500	1,992(-7)	0,270	
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}F_{3}$	$6s^{2}6p^{3}(^{2}P^{\circ})7p^{3}D_{3}$	2014.600	1156.200	7.035(-7)	2.453	
$656n^{3}(^{2}D)8s^{2}^{3}D^{\circ}_{2}$	$656n^{3}(^{2}D)8s^{2}$ ¹ D° ₂	1441 500	1143 300	3 561(-7)	0.635	
$650p(12)05 = 2^{2}$	$6n^46d^2$ ¹ D ₂	1702 100	1126 500	3,901(7)	1 202	
6^{2} 6^{3} (49) 7450	$C_{2}^{2}C_{3}^{2}C_{2}^{2}D_{2}^{2}T_{1}^{3}D_{2}^{2}$	2006 600	1120,300	3,874(-7)	1,202	
$6s^{2}6p^{3}(+S^{2})/d^{3}D^{3}4$	65 ² 6p ³ (² P ³)/d ³ F ³ 4	2006,600	1115,100	6,/31(-/)	3,006	
$6s^{2}6p^{3}(^{4}S^{0})/p^{-3}P_{1}$	$6s^{2}6p^{3}(^{2}P^{3})/p^{-3}S_{1}$	1943,900	1098,000	6,220(-7)	0,897	
6s6p ³ (⁴ S°)8s ² ³ S° ₁	6s6p ³ (² P°)8s ² ¹ P° ₁	2223,000	1078,000	7,987(-7)	1,317	
6s ² 6p ³ (² D°)7p ³ P ₁	$6s^{2}6p^{3}(^{2}P^{\circ})7p^{1}S_{0}$	2114,200	1015,500	2,268(-7)	0,356	
$656n^{3}(^{2}D)7s^{2}^{3}D^{0}2$	$686n^{3}(^{2}D)7s^{2}$ ¹ D ^o ₂	1469,500	1010.200	3,271(-7)	0.594	
$686p^{3}(4S_{0})7s^{2} 3S^{0}$	$6s6p^{3}(^{2}P^{0})7s^{2}$ $^{1}P^{0}$	2300,400	9/5 350	7,500(-7)	1,280	
$6_{2}^{2}6_{p}^{4}$ ³ D .	$6\pi^{6}$	251 400	001 520	7,500(-7) 5,563(-0)	0.001	
03 Op F_1	$0p^{-} 30$	331,400	901,320	5,505(-9)	0,001	
6s ² 6p ³ (² D ²)6d ³ G ² 4	6s ² 6p ³ (² P ^o)6d ³ F ^o ₄	2226,500	8/9,060	6,533(-7)	3,237	
$6s^{2}6p^{3}(^{2}D^{\circ})^{7}p^{-3}D_{2}$	$6s^{2}6p^{3}(^{2}P^{3})/p^{-1}P_{1}$	1981,300	824,450	2,911(-7)	0,713	
6s ² 6p ² (³ P)6d7s ⁵ F ₄	$6s^{2}6p^{2}(^{1}S)6d7s^{-3}D_{3}$	1600,300	823,430	2,459(-7)	0,876	
6s ² 6p ³ (⁴ S°)8s ⁵ S° ₂	6s ² 6p ³ (² P°)8s ³ P° ₂	1995,200	799,110	4,769(-7)	1,177	
$6p^46d^2$ 5D_1	$6p^46d^2$ ³ P ₀	1430.000	787.480	8.048(-8)	0.085	
$6s^{2}6n^{2}(^{3}P)7s^{2} ^{3}P_{1}$	$6s^{2}6n^{2}(^{1}D)6d7s^{-1}S_{0}$	1524 100	783 580	9,096(-8)	0.103	
$6s^{2}6p^{3}(^{2}D^{9})7d^{1}D^{9}$	$6s^{2}6p^{3}(^{2}P^{0})7d^{3}P^{0}$	1030 400	774 610	1,050(0)	0,105	
$6n^{2}(2n^{3})^{2}n^{3}n^{3}$	$6_{2}(2n)^{7} = 10$	1992 500	772 720	1, -30(-7)	0,209	
$os - op - (-D^{-})/p - D_1$	$(-1)^{p} ($	1003,500	115,120	1,5/2(-/)	0,192	
$6s6p^{3}(^{2}D)8s^{2} {}^{3}D^{3}{}_{2}$	$6s6p^{3}(^{2}P^{0})8s^{2}$ $^{1}P^{0}_{1}$	1082,700	764,410	8,060(-8)	0,108	
$6p^{4}6d^{2}$ $^{3}S_{1}$	$6p^{4}6d^{2}$ $^{1}S_{0}$	1326,700	753,190	6,625(-8)	0,065	
6s6p ³ (² D)8s ² ³ D° ₁	6s6p ³ (² P)8s ² ³ P° ₁	2484,900	733,740	6,792(-7)	1,252	
6s ² 6p ³ (⁴ S°)7p ⁵ P ₁	$6s^{2}6p^{3}(^{2}P^{\circ})7p^{3}P_{0}$	1834,100	711,740	1,197(-7)	0,163	
6s ² 6p ³ (² D°)8s ³ D° ₁	6s ² 6p ³ (² P°)8s ¹ P° ₁	2008.400	700.480	4.236(-7)	0.631	
$6n^46d^2$ ³ P ₁	$6n^47s^2$ ¹ So	1912 500	694 560	1,270(-7)	0 180	
$6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}$	$6_{1}6_{1}6_{2}6_{1}6_{1}6_{2}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1$	1202 100	681 400	1,2,0(-7) 1,732(-7)	0,100	
(300) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	(D) = (D)	1002,100	675 000	1,732(-7)	0,219	
$686p^{-3}(^{2}D)/s^{2} = 3D^{0}2$	$0000^{-1}(2P^{0})/s^{2}$	1098,000	6/5,080	/,521(-8)	0,099	
6s ² 6p ³ (⁴ S ^o)7d ³ D ^o ₂	$6s^{2}6p^{3}(^{2}P)7d^{-1}P^{0}$	2049,600	667,090	2,521(-7)	0,639	
6s ² 6p ³ (⁴ S°)6d ⁵ D° ₁	$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}P^{\circ}_{0}$	2830,600	649,300	2,600(-7)	0,546	
$6s6p^{3}(^{2}D^{o})7s^{2} ^{3}D^{o}1$	6s6p ³ (² P°)7s ² ³ P° ₁	2599.000	619,140	6,270(-7)	1,209	
$656p^{3}(^{4}S)8s^{2}5S^{\circ}_{2}$	6s6p ³ (⁴ S°)8s ² ³ S°	1137,100	614,910	7.152(-8)	0.101	
$6s^{2}6n^{3}(^{2}D^{\circ})7d^{3}F^{\circ}$	$6s^{2}6n^{3}(^{2}P^{0})7d^{-3}D^{0}$	1923 000	613 /00	3401(-7)	0,800	
$63 \text{ op} (D) / (U^{-1} Z)$	$\cos op (1)/(u^2 D)_2$	1070.000	605 400	3, -01(-7)	1,509	
	$6^{2} 6^{3} (200) = 100$	1979,900	005,480	2,911(-7)	1,308	
6s ² 6p ³ (² D ³)/s ³ D ³ 1	6s ² 6p ³ (² P ³)/s ¹ P ³ 1	2064,400	605,260	3,867(-7)	0,592	
$6p^{4}6d^{2}$ $^{3}S_{1}$	$6p^47s^2$ 1S_0	1684,800	603,330	8,558(-8)	0,107	
$6p^46d^2 {}^3P_1$	$6p^47s^2$ 1S_0	2082,500	600,630	1,302(-7)	0,201	
6s6p ³ (⁴ S)8s ² ⁵ S ^o ₂	6s6p ³ (² D)8s ² ³ D ^o ₂	2465.400	598.510	5,454(-7)	1,662	
$6n^57s^{-1}P^{0_1}$	$6n^57s^{-3}P_0$	3058 400	577 260	2 698(-7)	0.612	
$6p^46d^2$ ³ P .	$6n^46d^2$ ¹ S	1602 400	567 140	2,000(-7)	0.087	
$6n^{2}(4n^{3})/(4n^{3})/(5n^{3})$	6_{2} c_{n}^{2} $(2n_{0})_{7}$ $(2n_{0})_{7}$	2111 400	562 220	1,210(-0)	0,007	
os-op-('S')/s 'S'2	0s-0p-(-P-)/s-P-2	2111,400	202,230	5,/05(-/)	0,985	

Tablo 3.16. (Devamı)

Tablo 3.16. (Devami)							
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	Sij (a.b)	Oran (V/L)	
6p ⁴ 6d(² D)7s ⁵ P ₃	6p ⁴ 6d(² D)7s ³ D ₃	1939,500	542,930	3,062(-7)	1,028		
6s6p ³ (⁴ S)7s ² ⁵ S ^o ₂	6s6p ³ (² D)7s ² ³ D ^o ₂	2512,600	533,790	5,052(-7)	1,570		
6p ⁵ 6d ³ F° ₄	6p ⁵ 6d ¹ F° ₃	2514,400	530,400	3,910(-7)	2,188		
$6p^46d^2$ ³ H ₅	$6p^46d^2$ 1G_4	1568,700	529,110	1,597(-7)	0,681		
6p46d(2D)7s 3F2	6p ⁴ 6d(² D)7s ⁻³ D ₁	1666,200	524,490	1,310(-7)	0,270		

Tablo 3.16. (Devami)

3.2. Üçlü İyonlaşmış Kripton (Kr IV), Ksenon (Xe IV) ve Radon (Rn IV) İçin Enerji Seviye ve Işımalı Geçiş Hesaplamaları

Üç kez iyonlaşmış kripton (Kr IV), ksenon (Xe IV) ve radon (Rn IV) atomları sırasıyla nötral arsenik (As I), antimon (Sn I) ve Bizmut (Bi I) atomları ile aynı elektron dizilimine sahiptir. Her üç iyonun temel hal konfigürasyonu ns²np³ (Kr IViçin n= 4, Xe IV için n= 5 ve Rn IV için n= 6) şeklindedir. Bu üç iyonun temel hal enerji seviyesi (ilk enerji seviyesi) ns²np^{4 4}S°_{3/2}'dir ve bunu aynı konfigürasyonun ²D°_{3/2}, ²D°_{5/2}, ²P°_{1/2} ve ²P°_{3/2} seviyeleri takip eder. Üç kez iyonize olmuş kripton, ksenon ve radon için deneysel ve teoriksel çalışmalar mevcuttur. Örneğin, Bertuccelli ve ark., 2000; Bredice ve ark., 2000; Dzuba ve Flambaum, 2007; Saloman, 2007; Raineri ve ark., 2008; Sterling ve ark., 2011; Schippers ve ark., 2014; Rauch ve ark., 2016 bu çalışmalardan bazılarıdır. Kr IV ve Xe IV ile ilgili sunulan atomik veriler oldukça genişken Rn IV iyonunda oldukça sınırlı veriye (Biémont ve Quinet, 1996) ulaşılabilmektedir.

3.2.1. Enerji seviye hesaplamaları

Kr IV iyonu, [Ni]4s²4p³ elektron dizilimine sahiptir ve temel hal seviyesi 4s²4p³ ⁴S°_{3/2}'dir. Yapılan hesaplamalarda, ilk olarak (VV korelasyonu) sadece 4p elektronları uyarıldı; ikinci olarak (CV korelasyonu) hem 4s hem de 4p yörüngelerinden elektron uyarılan konfigürasyon setleri hesaplamaya dahil edildi ve son olarak (CC korelasyonu) 4s yörüngesinden iki elektronun uyarıldığı konfigürasyon setleri hesaplamaya dahil edildi. Kr III için enerji seviye hesaplamalarında EAL (genişletilmiş ortalama seviye) ve CI (konfigürasyon etkileşimi) hesabına göre kullanılan konfigürasyon setleri Tablo 3.17.'de verilmektedir. Bu hesaplara ait sonuçlar enerji seviyelerini içeren tablolarda A ve B üst indisiyle belirtilmektedir.

	A (EAL)	B (CI)				
VV	$4s^24p^3$, $4s^24p^25p$, $4s^24p^26s$, $4s^24p5s^2$, $4s^24p^25s$, $4s^24p^25s$, $4s^25d^3$, $4s^24p^25d$, $4s^24p5p^2$, $4s^25p^3$	-				
CV	$VV(A) + 4s4p^4$	4s ² 4p ³ , 4s ² 4p ² 5p, 4s ² 4p ² 6s, 4s ² 4p5s ² , 4s ² 4p ² 5s, 4s ² 5d ³ , 4s ² 4p ² 5d, 4s ² 4p4f ² , 4s ² 4p ² 4f, 4s ² 4p ² 4d, 4s ² 4p4d ² , 4s4p ⁴				
CC	$CV(A) + (4s^24p4f^2, 4s^24p^24f, 4p^5)$	4s ² 4p ³ , 4p ⁵ , 4s ² 4p4d ² , 4p ³ 4d ² , 4s4p ⁴ , 4s ² 4p ² 4d, 4p ⁴ 4d, 4s ² 4p ² 5s, 4s ² 4p ² 5p, 4s ² 4p ² 6s, 4s ² 4p ² 5d				

Tablo 3.17. Kr IV iyonu için yapılan hesaplamalarda kullanılan konfigürasyon setleri

EAL (A üst indisli) seçeneği ile yapılan VV, CV ve CC hesaplama sonuçlarında sırasıyla 117, 125 ve 226 seviye elde edildi. CI (B üst indisli) seçeneği ile yapılan CV ve CC hesaplama sonuçlarında sırasıyla 297 ve 322 enerji seviyesi elde edildi. Bu hesaplamalarda elde edilen veriler Ek A'da (Tablo A.4.) verilmektedir. Enerji seviyesi sayısının fazla olması nedeniyle enerji seviyesi tabloları, NIST'ten alınan veriler ile karşılaştırılacak kadar sınırlı tutuldu. Kr IV iyonu enerji spektrumu için mevcut calısma sonuclarınında kendi aralarında özellikle düsük seviyeler icin dikkate değer farklılıkları bulunmaktadır. Örneğin, ilk uyarılmış seviye olan 4s²4p³ ²D^o_{3/2} seviyesi için karşılaştırma değerleri (0,15496-0,19190) Ry aralığındadır (NIST; Biémont ve Hansen, 1986; Sterling ve ark., 2011; Rauch ve ark., 2016). Bu seviye için VV, CV-A, CV-B, CC-A ve CC-B hesaplarından elde edilen veriler sırasıyla 0,19896 Ry, 0,19880 Ry, 0,14356 Ry, 0,18999 Ry ve 0,17412 Ry seklindedir. Bu seviye için öz-öz korelasyonu A ve B (CC-A ve CC-B) hesaplama sonuçları karşılaştırma değerleri ile oldukça iyi uyuma sahiptir. Ancak üst enerji seviyelerine doğru çıkıldıkça CI seçeneği ile yapılan CC-B hesaplama sonuçları için uyum oldukça zayıftır. EAL seçeneği ile yapılan CC-A hesaplama sonuçlarının ise oldukça iyi uyumlu olduğu, özellikle 'b*' üst indisi ile gösterilen verilerle (Sterling ve ark., 2011) neredeyse tüm seviyelerde örtüştüğü görülmektedir. Tablo 3.18.'de Breit ve QED katkılarının etkisi sadece öz-öz korelasyonu A hesabı (CC-A) ile elde edilen enerji seviyeleri için incelendi. Dolayısıyla bu tabloda 4d seviyeleri ile ilgili veri bulunmamaktadır. MCDF enerjisine Breit ve QED etkilerinin eklenmesiyle toplam enerji değeri hemen hemen tüm seviyelerde azaldı. Sadece ilk uyarılmış seviye olan 4s²4p³ ²D°_{3/2} seviyesinde 0,18999 Ry'den 0,19019 Ry'e çıktı. Toplam enerji değerleri mevcut çalışmalar (NIST; Biémont ve Hansen, 1986; Sterling ve ark., 2011; Rauch ve ark., 2016) ile karşılaştırıldığında CC-A hesabı sonuçları bazı seviyelerde daha da uyumlu hale geldi.

Şekil 3.6.'da elde edilen sonuçların diğer mevcut sonuçlarla karşılaştırması ve çok iyi uyumlu olduğu daha açık bir şekilde görülmektedir.

Seviveler	E ⁰	\mathbf{E}^{1}	\mathbf{E}^2	$E_{T} = E^{0} + E^{1} + E^{2}$	Diğer calısmalar
$\frac{4s^24n^3}{4s^2an^3}$	0.00000 ^A	0,00000	0.00000	0.00000	0.00000
$4s^24n^3 {}^2D^{\circ}_{2/2}$	0.18999 ^A	$2 13(-4)^{A}$	-1 53(-5) ^A	0,00000 0,19019 ^A	0,00000 0,15525ª
чэ чр D 3/2	0,10777	2,13(4)	1,55(5)	0,19019	0,19190 ^b
					0,19190 0,18950 ^{b*}
					0.18510 ^{b**}
					0,15512°
					0,15501d
					0,15496 ^{d*}
$4s^2 4n^3 2D^{\circ} c_{\circ}$	0 20820A	-4.05(-4) ^A	8 26(-6) ^A	0 20780 ^A	0,13490
48 4p D 5/2	0,20820	-4,05(-4)	0,20(-0)	0,20780	0,17040 0,20760 ^b
					0,20730 ^{b*}
					0,20730 0,10020 ^{b**}
					0,19920
					0,17053° 0,17057 ^d
					0,17057 0,17058d*
$4 a^2 4 a^3 2 \mathbf{D}^9$	0.205224	1 25(A)A	255(5)A	0.204778	0,17038
48 ² 4p ³ ² P ³ 1/2	0,29522.4	-4,25(-4).	-2,55(-5)**	0,29477**	0,28300 [°]
					0,29440°
					$0,27800^{\circ}$
					0,29810
					0,28310 ^c
					0,28309 ^d
· · · · · · · · · · · · · · · · · · ·	0.01.00.01		0 (F (C))	0.01.577	0,2830/4*
$4s^24p^{5-2}P^{6}_{3/2}$	0,31795 ^A	$-1,21(-3)^{A}$	$3,45(-6)^{A}$	0,31675 ^A	0,30441ª
					0,31390
					0,30010*
					0,31620 ^{b**}
					0,30431°
					0,30429 ^d
					0,30424 ^{d*}
$4s4p^{4} P_{5/2}$	1,12462 ^A	$3,15(-4)^{A}$	-9,32(-4) ^A	1,12400 ^A	1,08223 ^a
					1,12360 ^b
					1,04760 ^{b*}
					$1,05600^{b^{**}}$
					1,08120 ^c
$4s4p^{4} P_{3/2}$	1,15815 ^A	-3,83(-4) ^A	-9,07(-4) ^A	1,15686 ^A	1,11563 ^a
					1,15590 ^b
					1,07820 ^{b*}
					1,08620 ^{b**}
					1,11545°
$4s4p^{4} P_{1/2}$	1,17457 ^A	-6,80(-4) ^A	-8,98(-4) ^A	1,17300 ^A	1,13097 ^a
	4,09068 ^B				1,17180 ^b
					1,09320 ^{b*}
					1,10100 ^{b**}
					1,13148°
4s4p ⁴ ² D _{3/2}	1,54595 ^A	-9,07(-5) ^A	-9,10(-4) ^A	1,54494 ^A	1,32837ª
					1,53340 ^b
					1,35200 ^{b*}
					1,33900 ^{b**}
					1,32916°
4s4p ⁴ ² D _{5/2}	1,55256 ^A	-2,91(-4) ^A	-9,06(-4) ^A	1,55136 ^A	1,33632ª
-					1,53630 ^b
					1,35640 ^{b*}
					1,34380 ^{b**}
					1,33528°

Tablo 3.18. Kr IV'ün enerji seviyeleri (Rydberg). E^0 : MCDF enerjisi, E^1 : Breit katkıları, E^2 : QED katkıları, $E_T = E^0 + E^1 + E^2$.
		Tablo 3	3.18. (Devamı)		
Seviyeler	E ⁰	E^1	$\frac{\mathbf{E}^2}{\mathbf{P}(\mathbf{r})^4}$	$\frac{E_{T}=E^{0}+E^{1}+E^{2}}{107124^{2}}$	Diğer çalışmala
$4s4p^{4} {}^{2}P_{1/2}$	1,97320 ^A	-9,88(-4) ^A	-8,61(-4) ^A	1,97134 ^A	1,51416 ^a 1,51552°
$4s4p^{4} {}^{2}P_{3/2}$	1.93393 ^A	-5.51(-4) ^A	-6.80(-4) ^A	1.93270 ^A	1,91992 1.87173ª
$4s4p^4 \ ^2S_{1/2}$	1,76699 ^A	-4,46(-5) ^A	-9,08(-4) ^A	1,76604 ^A	1,58516 ^a
-					1,73590 ^b
					1,60600 ^{b*}
					1,60410 ^{0**}
$4s^2/n^2(^{3}P)5s^{-4}P_{1/2}$	1 7086/A	-1 66(-3) ^A	8 08(-5) ^A	1 70706 ^A	1,58480° 1.84416ª
чз чр (1)55 11/2	1,79004	-1,00(-5)	0,00(-5)	1,77700	1.84508°
4s ² 4p ² (³ P)5s ⁴ P _{3/2}	1,82673 ^A	-2,34(-3) ^A	1,03(-4) ^A	1,82449 ^A	1,87005ª
4s ² 4p ² (³ P)5s ⁴ P _{5/2}	1,86074 ^A	-2,95(-3) ^A	1,21(-4) ^A	1,85791 ^A	1,89601 ^a
4 24 2(3 D) 5 2 D	1.00000	2 22(2)	0.45(5)	1.067544	1,89857°
4s ² 4p ² (³ P)5s ² P _{1/2}	1,86968**	-2,22(-3)*	8,45(-5)**	1,86/54**	1,90381" 1,89961°
$4s^24p^2(^1D)5s^2D_{3/2}$	2.01798 ^A	-3.15(-3) ^A	$1.22(-4)^{A}$	2.01495 ^A	2.03243ª
I () I ()	,	- , - (-)	, , ,	,	2,04256°
4s ² 4p ² (¹ D)5s ² D _{5/2}	2,01410 ^A	-3,05(-3) ^A	1,23(-4) ^A	2,01117 ^A	2,03497ª
4 24 2(3 D) 5 200	2 100504	1 70(2)	2.95(5)	2 000754	2,04420°
4s ² 4p ² (³ P)5p ⁻² S ² 1/2	2,10050	-1,72(-3)**	-2,85(-5)**	2,09875**	2,13990" 2,13896°
4s ² 4p ² (³ P)5p ⁴ D° _{1/2}	2,12119 ^A	-2,05(-3) ^A	-1,70(-5) ^A	2,11912 ^A	2,16375ª
					2,16322°
$4s^{2}4p^{2}(^{3}P)5p^{-4}D^{\circ}_{3/2}$	2,12923 ^A	-1,86(-3) ^A	-2,47(-5) ^A	2,12734 ^A	2,17127 ^a
$4n^{2}(3\mathbf{D})5n^{4}\mathbf{D}^{0}m^{2}$	2 15511A	2.46(.2)A	6 60(6)A	2 15261A	$2,17212^{\circ}$ 2,10825a
48 4p (1)5p D 5/2	2,13311	-2,40(-3)	-0,09(-0)	2,13204	2,19855 2.19817°
4s ² 4p ² (³ P)5p ⁴ D° _{7/2}	2,18574 ^A	-3,03(-3) ^A	9,22(-6) ^A	2,18272 ^A	2,22753ª
					2,22644°
4s ² 4p ² (³ P)5p ⁴ P ⁶ _{3/2}	2,17112 ^A	-1,99(-3) ^A	$-1,89(-5)^{A}$	2,16911 ^A	$2,20346^{a}$
$4s^24n^2(^{3}P)5n^{-4}P^{\circ}_{1/2}$	2.17896 ^A	-2.41(-3) ^A	-7 58(-6) ^A	2.17655 ^A	2,20439 ^a 2,21954 ^a
15 IP (1)0P 1 1/2	2,17070	2,11(0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,17,000	2,21952°
$4s^24p^2(^{3}P)5p \ ^{4}P^{\circ}_{5/2}$	2,19394 ^A	-2,51(-3) ^A	-4,34(-6) ^A	2,19143 ^A	2,22773ª
4 24 2(3 D) 5 2 D 0	2 105024	2 27(2)	0.02((c))	2 102754	2,22713°
4s ² 4p ² (³ P)5p ⁻² D ² 3/2	2,19505	-2,27(-3)**	-9,93(-0)**	2,19275	2,22250° 2 22353°
4s ² 4p ² (³ P)5p ² D ^o _{5/2}	2,24277 ^A	-3,15(-3) ^A	1,66(-5) ^A	2,23964 ^A	2,22003ª
			, , ,		2,27231°
$4s^{2}4p^{2}(^{3}P)5p^{-4}S^{\circ}_{3/2}$	2,22264 ^A	-2,43(-3) ^A	$4,19(-6)^{A}$	2,22022 ^A	2,24730 ^a
$4s^2 4n^2 (3\mathbf{D}) 5n^2 \mathbf{D}^{\circ}_{20}$	2 26123A	2 50(3)A	$1.00(.6)^{A}$	2 26172A	2,24609°
48 4p (1)5p 1 3/2	2,20423	-2,30(-3)	-1,99(-0)	2,20172	2,27975 2.28066°
$4s^24p^2(^{3}P)5p^{-2}P^{\circ}_{1/2}$	2,26928 ^A	-2,79(-3) ^A	6,70(-6) ^A	2,26649 ^A	2,28633ª
				• • • • • • • •	2,28576°
$4s^{2}4p^{2}(^{1}D)5p^{-2}F^{0}_{5/2}$	2,335774	$-2,90(-3)^{A}$	7,03(-6) ^A	2,33288 ^A	2,34325 ^a 2,34358c
$4s^24n^2(^1D)5n^2F^{\circ}_{7/2}$	2.34652 ^A	-3.11(-3) ^A	1.18(-5) ^A	2.34342 ^A	2,34238 2.35571ª
······································	_,	-,(-)	-,(-)	_,	2,35659°
4s ² 4p ² (¹ D)5p ² D° _{3/2}	2,36593 ^A	-2,35(-3) ^A	$4,24(-6)^{A}$	2,36359 ^A	2,35430ª
$4a^{2}4m^{2}(1D)5m^{2}D^{9}m^{2}$	2 26002A	2 52(2)A	$0.02(\epsilon)^{A}$	2 26622A	2,35416°
48-4p-(-D)5p -D 5/2	2,50885	-2,32(-3)*	9,02(-0)	2,30032	2,55802" 2 35973°
4s ² 4p ² (¹ D)5p ² P° _{1/2}	2,41654 ^A	-2,38(-3) ^A	-6,07(-6) ^A	2,41415 ^A	2,39809ª
					2,39701°
$4s^{2}4p^{2}(^{1}D)5p^{-2}P^{\circ}_{3/2}$	2,44227 ^A	-2,87(-3) ^A	$1,12(-5)^{A}$	2,43940 ^A	2,41893 ^a
$4s^24n^2(1S)5n^{-2}D^{\circ_{10}}$	2 56810A	-2 90(-3)A	9 49(-6) ^A	2 56522A	2,41806° 2 54213ª
$4s^24p^2(^1S)5p^{-2}P^{\circ}_{3/2}$	2,57353 ^A	$-3,14(-3)^{A}$	$1,17(-5)^{A}$	2,57040 ^A	2,54213 [°]
$4s^24p^2(^{3}P)5d ^{4}F_{3/2}$	2,60644 ^A	-2,02(-3) ^A	-3,34(-5) ^A	2,60438 ^A	2,64820ª
		•			2,64882°
$4s^{2}4p^{2}(^{3}P)5d ^{4}F_{5/2}$	2,61612 ^A	-2,20(-3) ^A	-2,95(-5) ^A	2,61389 ^A	2,68247ª

Tablo 3.18. (Devamı)

Tablo 3.18. (Devamı)									
Seviyeler	E ⁰	E1	\mathbf{E}^2	$E_T = E^0 + E^1 + E^2$	Diğer çalışmalar				
4s ² 4p ² (³ P)5d ² P _{3/2}	2,66990 ^A	-2,83(-3) ^A	-2,16(-5) ^A	2,66705 ^A	2,68488ª				
					2,68377°				
$4s^24p^2(^3P)5d^{-4}D_{1/2}$	2,65277 ^A	-2,64(-3) ^A	-1,56(-5) ^A	2,65012 ^A	2,69068 ^a				
					2,68997°				
$4s^{2}4p^{2}(^{3}P)5d^{4}D_{7/2}$	2,67861 ^A	-3,17(-3) ^A	8,19(-7) ^A	2,67544 ^A	2,71605ª				
					2,70669°				
$4s^24p^2(^3P)6s \ ^4P_{1/2}$	2,63249 ^A	-2,04(-3) ^A	-1,26(-5) ^A	2,63044 ^A	2,70385ª				
					2,70333°				
4s ² 4p ² (³ P)6s ⁴ P _{3/2}	2,66277 ^A	-2,79(-3) ^A	1,09(-5) ^A	2,65999 ^A	2,73336ª				
					2,73484°				
4s ² 4p ² (³ P)6s ⁴ P _{5/2}	2,69906 ^A	-3,39(-3) ^A	$2,71(-5)^{A}$	2,69569 ^A	2,76324ª				
					2,76280°				
$4s^24p^2(^{3}P)5d^{-2}F_{5/2}$	2,66855 ^A	-2,71(-3) ^A	-1,38(-5) ^A	2,66583 ^A	2,70604 ^a				
					2,70669°				
$4s^24p^2(^{3}P)5d^{-2}F_{7/2}$	2,71439 ^A	-3,50(-3) ^A	$1,06(-5)^{A}$	2,71090 ^A	2,75017 ^a				
					2,75006°				
$4s^{2}4p^{2}(^{3}P)5d^{4}P_{3/2}$	2,69611 ^A	-3,29(-3) ^A	$2,80(-6)^{A}$	2,69282 ^A	2,72701 ^a				
$4s^{2}4p^{2}(^{3}P)6s^{2}P_{1/2}$	2,67439 ^A	-2,73(-3) ^A	9,86(-6) ^A	2,67167 ^A	2,74199ª				
					2,74253°				
4s ² 4p ² (³ P)6s ² P _{3/2}	2,71392 ^A	-3,32(-3) ^A	2,77(-5) ^A	2,71062 ^A	2,77520ª				
					2,77473°				
4s ² 4p ² (¹ D)6s ² D _{5/2}	2,84104 ^A	-3,53(-3) ^A	3,40(-5) ^A	2,83755 ^A	2,87780 ^a				
					2,87782°				
4s ² 4p ² (¹ D)6s ² D _{3/2}	2,84156 ^A	-3,51(-3) ^A	2,95(-5) ^A	2,83808 ^A	2,87862ª				
					2,87880°				
^a NIST; ^b Sterling ve ar	k., 2011; ^c Ra	uch ve ark., 201	6; ^d Biémont ve	Hansen, 1986					

Şekil 3.6. Kr IV iyonuna ait enerji seviyelerinin diğer çalışmalar ile karşılaştırılması

Xe IV iyonu [Pd] $5s^25p^3$ şeklinde elektron dizilimine sahiptir ve taban hal durumu $5s^25p^3$ $^4S^{\circ}_{3/2}$ 'dir. Kr IV iyonunda olduğu gibi Xe IV içinde öncelikle korelasyon etkileri incelendi. Karşılaştırma değerleri ile uyumlu olan öz-öz korelasyonuna göre

elde edilen enerji seviyelerine Breit ve QED katkılarının etkisi incelendi. Hesaplama sonuçlarına ait detaylı bir tablo Ek A'da (Tablo A.5.) verilmektedir. Hesaplamalarda kullanılan konfigürasyon setleri Tablo 3.19.'da verilmektedir. Bu konfigürasyon setleri ile yapılan VV, CV ve CC hesaplamaları sonucunda sırasıyla 387, 319 ve 460 enerji seviyesi elde edildi. Özden olan uyarmalar arttıkça enerji seviyesi sayısı da artmaktadır.

Tablo 3.19. Xe IV iyonu için yapılan hesaplamalarda kullanılan konfigürasyon setleri

VV	$5s^25p^3$, $5s^25p^25d$, $5s^25p^24f$, $5s^25p^26s$, $5s^25p^26p$, $5s^25p5d^2$, $5s^25p6s^2$, $5s^25p6p^2$, $5s^25p5d6s$,
	$5s^25p^27s$, $5s^25p4f^2$, $5s^25p^26d$, $5s^25p7s^2$, $5s^26p^3$, $5s^25d^26p$, $5s^25d^3$, $5s^26s6p^2$, $5s^25d6s^2$,
	5s ² 5d ² 6s, 5s ² 6s ² 6p
CV	$5s^25p^3$, $5s^25p^25d$, $5s^25p^24f$, $5s^25p^26s$, $5s^25p^26p$, $5s^25p5d^2$, $5s^25p6s^2$, $5s^25p6p^2$, $5s^25p^27s$,
	$5s^25p^26d$, $5s^25p7s^2$, $5s^26p^3$, $5s^25d^26p$, $5s^25d^3$, $5s^26s6p^2$, $5s^25d6s^2$, $5s^25d^26s$, $5s^26s^26p$,
	5s5p ⁴ , 5s5p ² 6s ² , 5s5p ² 7s ²
СС	$4d^{10}5s^25p^3,\ 4d^{10}5s^5p^4,\ 4d^{10}5s^25p^25d,\ 4d^{10}5s^25p^26s,\ 4d^{10}5s^25p^24f,\ 4d^{10}5s^25p^26p,\ 4d^{10}5p5,\ 5d^{10}5p^2,$
	$4d^{10}5s^25p5d^2,4d^{10}5s5p^26s^2,4d^{10}5p^34f^2,4d^{10}5d^5,4d^95s^25p^4,4d^75s^25p^6,4d^95s5p^5$

Tablolarda sunulan veriler CC hesabı sonucunda elde edilen ilk yüz enerji seviyesi ile sınırlı tutuldu. Ek A'daki Tablo A.5. için öncelikle karşılaştırma değeri (NIST; Biémont ve ark., 1995; Dzuba ve Flambaum, 2007; Schippers ve ark., 2014) çok sayıda olan ilk beş seviye değerlendirilecek olursa bu seviye enerjileri için karşılaştırma değerleri oldukça geniş bir aralık oluşturmaktadır. Bundan dolayı da bu çalışmada hesaplanan VV, CV ve CC sonuçlarının tümü karşılaştırma değerleri ile uyum içerisindedir. Örneğin, 5s²5p³ ²P^o_{1/2} seviyesi için karşılaştırma değerleri (0,25548 -0,31277) Ry (NIST; Biémont ve ark., 1995; Dzuba ve Flambaum, 2007; Schippers ve ark., 2014) aralığındadır. VV, CV ve CC hesaplama sonuçları ise bu seviye için sırasıyla 0,28244 Ry, 0,28613 Ry ve 0,25218 Ry olarak elde edildi. Daha üst seviyelere çıkıldıkça karşılaştırma değeri sayısı azalmaktadır. Bu durumda CC hesabı sonuçlarının karşılaştırma değerleri ile daha iyi uyumlu olduğunu söylemek mümkündür. Örneğin, 5s5p⁴ ²D_{3/2} seviyesine baktığımızda karşılaştırma değerleri 1,11109 Ry, 1,13479 Ry ve 1,11274 Ry (NIST; Dzuba ve Flambaum, 2007; Tauheed ve ark., 1993) iken CC hesaplama sonucu da 1,11128 Ry olarak elde edildi. Tablo 3.20.'de öz-öz korelasyonu için elde edilen verilere Breit ve QED katkıları eklenerek elde edilen seviyelerin toplam enerji değerleri sunulmaktadır. Bir pertürbasyon katkısı

olarak eklenen Breit ve QED katkıları MCDF enerjisini azaltan bir etki yapmaktadır. Karşılaştırma değerleri ile olan uyumun bozulmadığı, bazı seviyelerde daha da iyi olduğu görülmektedir. Örneğin, ilk uyarılma seviyesi olan 5s²5p³ ²D°_{3/2} seviyesinde MCDF enerjisi 0,14010 Ry iken Breit ve QED katkıları ile toplam enerji bu seviye için 0,13979 Ry oldu. Bu seviye için verilen karşılaştırma değerleri ise 0,12089 Ry, 0,12068 Ry, 0,13322 Ry ve 0,15800 Ry (NIST; Biémont ve ark., 1995; Dzuba ve Flambaum, 2007; Schippers ve ark., 2014)olarak verilmektedir. Elde edilen bu uyum Şekil 3.7.'de de açıkça görülmektedir.

Seviyeler	E ⁰	E ¹	E ²	$E_T = E^0 + E^1 + E^2$	Diğer çalışmalar
5s ² 5p ³ ⁴ S° _{3/2}	0,00000	0,00000	0,00000	0,00000	0,00000
$5s^{2}5p^{3}$ ² D° _{3/2}	0,14010	-0,00032	0,00000	0,13979	0,12089 ^a
					0,12068 ^b
					0,13322°
					0,15800 ^d
5s ² 5p ³ ² D° _{5/2}	0,18558	-0,00101	0,00004	0,18461	0,15956 ^a
					0,15970 ^b
					0,17257°
					0,19776 ^d
$5s^25p^3 {}^2P^{\circ}{}_{1/2}$	0,25218	-0,00113	0,00000	0,25106	0,25548ª
					0,25551 ^b
					0,27474 ^c
					0,31277 ^d
5s ² 5p ³ ² P° _{3/2}	0,32500	-0,00263	0,00006	0,32243	0,32486 ^a
					0,32477 ^b
					0,34123°
					0,37766 ^d
5s5p ⁴ ⁴ P _{5/2}	0,86157	-0,00110	-0,00085	0,85962	0,90820ª
					0,90640°
					0,90741°
5s5p ⁴ ⁴ P _{3/2}	0,92574	-0,00212	-0,00080	0,92282	0,97435ª
					0,97241°
					0,97400 ^e
$5s5p^4 \ ^4P_{1/2}$	0,94926	-0,00232	-0,00080	0,94614	0,99559ª
					0,99482°
					0,99682 ^e
5s5p ⁴ ² D _{3/2}	1,11128	-0,00184	-0,00060	1,10884	1,11109 ^a
					1,13479°
					1,11274 ^e
5s5p ⁴ ² D _{5/2}	1,14173	-0,00255	-0,00064	1,13854	1,14340 ^a
					1,16748°
					1,14226 ^e
$5s^{2}5p^{2}(^{3}P)5d^{-2}P_{3/2}$	1,22553	-0,00251	-0,00024	1,22278	1,21223ª
					1,23823°
					1,21193 ^e
$5s^25p^2(^{3}P)5d^{-4}F_{3/2}$	1,24100	-0,00242	-0,00007	1,23851	1,24657 ^a
					1,25406°
- 0- 0.2 4-					1,22976 ^e
5s ² 5p ² (³ P)5d ⁴ F _{5/2}	1,25887	-0,00247	-0,00002	1,25637	1,23003ª
					1,26760 ^c
					1,24489 ^e

Tablo 3.20. Xe IV'ün enerji seviyeleri (Rydberg). E⁰: MCDF enerjisi, E¹: Breit katkıları, E²: QED katkıları, $E_T = E^0 + E^1 + E^2$

Controlon	E 0	Tablo 3.2	$\frac{0. (\text{Devam})}{\mathbf{E}^2}$		Dižen selemelen
Seviyeler $5s^25p^2(^3\mathbf{P})5d^{-2}\mathbf{P}_{12}$	<u>E°</u> 1.26080	<u> </u>	<u> </u>	$\frac{\mathbf{E}_{T}=\mathbf{E}^{\circ}+\mathbf{E}^{*}+\mathbf{E}^{*}}{1.25774}$	<u>1 2/38/a</u>
38-3p-(-P)3u -P1/2	1,20080	-0,00279	-0,00027	1,23774	1,24584* 1 27575°
					1,24730 ^e
5s ² 5p ² (³ P)5d ⁴ F _{7/2}	1,30009	-0,00337	0,00001	1,29674	1,29058ª
1 ()	,	,	,	,	1,31234°
					1,29063 ^e
$5s^25p^2(^1D)5d^2F_{5/2}$	1,31960	-0,00277	0,00000	1,31683	1,29239ª
					1,32678°
-)-)/20 - 1 40	4.04000	0.0000			1,29239 ^e
$5s^{2}5p^{2}(^{3}P)5d^{-4}D_{1/2}$	1,34208	-0,00305	-0,00013	1,33891	1,32230 ^a
					1,34806°
$5s^{2}5p^{2}(^{3}D)5d^{4}F_{con}$	1 34454	0.00308	0.00003	1 34058	1,32247° 1,32036ª
58 5p (1)5d 19/2	1,54454	-0,00378	0,00005	1,54050	1,35030 1,35740°
					1,33061°
5s ² 5p ² (³ P)5d ⁴ D _{7/2}	1,34512	-0,00327	0,00002	1,34186	1,42033ª
			,		1,45607°
					1,41991 ^e
$5s^25p^2(^{3}P)5d ^{4}D_{3/2}$	1,35191	-0,00343	-0,00001	1,34847	1,33233ª
					1,35562°
-)-)/20 - 1 40			0.0000		1,33190 ^e
5s ² 5p ² (³ P)5d ⁴ D _{5/2}	1,38009	-0,00383	0,00002	1,37628	1,37361ª
					1,3830/°
$5 \times 5 \times 9^{4/2} S_{1/2}$	1 38088	-0.00386	-0.00042	1 38561	1,35359
535p 51/2	1,50700	-0,00580	-0,00042	1,56501	1,55471 1 40733°
					1,37280 ^e
5s ² 5p ² (³ P)5d ⁴ D _{7/2}	1,44816	-0,00482	0,00006	1,44340	1,42033 ^a
$5s^25p^2(^{3}P)6s ^{4}P_{1/2}$	1,45406	-0,00208	0,00007	1,45204	1,43255ª
					1,47422°
					1,43328 ^e
$5s^{2}5p^{2}(^{3}P)6s^{4}P_{3/2}$	1,52273	-0,00345	0,00012	1,51940	1,50614 ^a
					1,52888°
$5a^{2}5n^{2}(1D)5d^{2}C_{TR}$	1 57/00	0.00287	0.00004	1 52104	1,50621° 1,46408ª
58 5p (D)5d G//2	1,52400	-0,00387	0,00004	1,52104	$1,40408^{\circ}$ 1 46350°
$5s^{2}5n^{2}(^{1}D)5d^{-2}G_{9/2}$	1.54313	-0.00450	0.00005	1.53868	1,48958 ^a
	-,	-,	.,	-,	1,48878 ^e
5s ² 5p ² (³ P)6s ² P _{1/2}	1,55889	-0,00338	0,00011	1,55562	1,52369ª
					1,52599 ^e
$5s^25p^2(^{3}P)6s ^{4}P_{5/2}$	1,56843	-0,00374	0,00009	1,56478	1,55362 ^a
					1,59358°
5 25 2(3D) 5 1 2D	1 57750	0.00216	0.00002	1 57446	1,55149 ^e
5825p2(3P)5d 2D3/2	1,57759	-0,00316	0,00003	1,5/446	1,49080" 1,49080e
$5s^25n^2(^{3}P)5d^{-4}P_{co}$	1 50125	-0.00313	-0.00007	1 58805	1,48980° 1.45477ª
58 5p (1)5d 15/2	1,57125	-0,00515	-0,00007	1,50005	1,45477 1 50529°
					1,45527°
5s ² 5p ² (³ P)5d ⁴ P _{3/2}	1,61365	-0,00325	-0,00010	1,61031	1,47110 ^a
					1,54505°
					1,47032 ^e
$5s^25p^2(^{3}P)5d ^{4}P_{1/2}$	1,62296	-0,00313	-0,00012	1,61972	1,48414 ^a
					1,54082°
	1 (0700	0.00250	0.00004	1 (2249	1,48350 ^e
5s ² 5p ² (³ P)6s ² P _{3/2}	1,62/03	-0,00359	0,00004	1,62348	1,57851ª 1,57570e
$5s5n^4 2P_{222}$	1 67025	-0.00286	-0.00034	1 67665	1,37379° 1 51266ª
555p 1 3/2	1,07,705	-0,00200	-0,00034	1,07005	1,51370 ^e
5s ² 5p ² (³ P)5d ² D _{5/2}	1,68385	-0,00446	0,00006	1,67944	1,54005ª
- r × ,== = 5/2	,	- , - , - ,	- ,	,	1,53892 ^e
$5s^25p^2(^1D)5d^{-2}P_{1/2}$	1,70063	-0,00383	-0,00009	1,69671	1,57550 ^a
					1,57441 ^e

Tablo 3.20. (Devamı)

		1 abio 3.2	20. (Devami)		
Seviyeler	\mathbf{E}^{0}	\mathbf{E}^{1}	\mathbf{E}^2	$E_T = E^0 + E^1 + E^2$	Diğer çalışmalar
5s ² 5p ² (³ P)6p ⁴ D° _{1/2}	1,70436	-0,00210	-0,00005	1,70221	1,69595ª
$5s^25p^2(^1D)6s^2D_{5/2}$	1,72575	-0,00384	0,00003	1,72195	1,69539ª
• • •					1,69604 ^e
$5s^25p^2(^1D)6s^2D_{3/2}$	1.73351	-0.00451	0.00007	1.72907	1.70905 ^a
55 5p (D)65 D 3/2	1,75551	0,00101	0,00007	1,72907	1,70971°
$5s^{2}5n^{2}(^{3}P)/ff^{4}G^{\circ}s^{\circ}$	1 74403	-0.00232	-0.00003	1 7/168	1,70571 1.6/166ª
$5s^{2}5p^{2}(^{3}\mathbf{P})6p^{4}D^{0}ar$	1,74405	-0,00252	-0,00003	1,74100	1,04100
$555p(1)0p D_{3/2}$	1,74744	-0,00230	-0,00003	1,74405	1,73602
58-5p-(-P)41 ·C 7/2	1,70550	-0,00276	-0,00005	1,70037	1,00030"
5825p2(18)5d 2D5/2	1,/6/2/	-0,00403	0,00006	1,76330	1,/3168"
	1 77054	0.000	0.00001	1.5.000	1,72996°
$5s^25p^2(^{3}P)6p^{-2}S_{1/2}$	1,77056	-0,00361	0,00001	1,76696	1,76658ª
$5s^{2}5p^{2}(^{1}D)5d^{-2}D_{3/2}$	1,79179	-0,00365	-0,00011	1,78803	1,60494 ^a
					1,60450 ^e
5s ² 5p ² (³ P)6p ⁴ D _{3/2}	1,80063	-0,00342	-0,00000	1,79721	1,73862ª
5s ² 5p ² (¹ D)5d ² D _{5/2}	1,80138	-0,00370	-0,00010	1,79758	1,63117ª
					1,63173 ^e
5s ² 5p ² (³ P)5d ² F _{7/2}	1,80783	-0,00403	0,00004	1,80385	1,62135 ^a
	,	,	,	,	1.62271 ^e
$5s^{2}5n^{2}(^{3}P)4f^{4}G^{\circ}_{9/2}$	1.81154	-0.00402	0.00002	1.80754	1.71547 ^a
$5s^25n^2(^{3}P)6n^{-4}D^{\circ}s/2$	1 81200	-0.00382	0,00001	1 80819	1 81290ª
$5s^{2}5p^{2}(^{3}P)/f^{4}D^{\circ}_{7}$	1,81200	-0,00362	0,00001	1,81042	1,01290 1 70802ª
$5s^{2}5p^{2}(^{3}D)4f^{2}D^{0}rr^{0}$	1,01575	-0,00331	0,00000	1,01042	1,70072
$58 \text{ Sp}(\mathbf{T})41 \text{ D} 5/2$ $535 \text{ m}^4 2\text{ D}$	1,82070	-0,00341	0,00000	1,02333	1,/19/4
$535p^{-1}P_{1/2}$	1,03371	-0,00274	-0,00057	1,83000	1,02100"
5s ² 5p ² (³ P)op ² D ² 3/2	1,83374	-0,00379	0,00001	1,82996	1,79268"
5s ² 5p ² (³ P)6p ⁴ P ^o 1/2	1,83393	-0,00390	0,00001	1,83005	1,830/3
5s ² 5p ² (³ P)4f ² G ^o _{7/2}	1,83622	-0,00379	0,00001	1,83245	1,72996 ^a
5s ² 5p ² (³ P)6p ⁴ P ^o _{5/2}	1,84269	-0,00378	0,00001	1,83892	1,88684ª
$5s^{2}5p^{2}(^{3}P)4f \ ^{4}G^{0}_{11/2}$	1,84786	-0,00463	0,00003	1,84326	1,75017
5s ² 5p ² (³ P)4f ⁻⁴ F ⁰ _{3/2}	1,85521	-0,00349	0,00001	1,85173	1,74834ª
$5s^{2}5p^{2}(^{3}P)4f^{-4}D^{\circ}_{5/2}$	1,85546	-0,00403	0,00001	1,85145	1,74943 ^a
$5s^{2}5p^{2}(^{1}D)4f^{-2}G^{\circ}_{9/2}$	1,86400	-0,00388	0,00001	1,86013	1,84145 ^a
5s ² 5p ² (³ P)6p ⁴ D° _{7/2}	1,86480	-0,00430	0,00003	1,86052	1,84942 ^a
5s ² 5p ² (³ P)6p ⁴ P° _{3/2}	1,87143	-0,00399	0,00002	1,86746	1,86026 ^a
5s5p ⁴ ² D _{3/2}	1,88085	-0,00391	-0,00026	1,87668	1,11109 ^a
$5s^{2}5p^{2}(^{3}P)4f^{4}D^{\circ}_{3/2}$	1,89156	-0,00422	0,00003	1,88737	1,78412 ^a
5s ² 5p ² (³ P)4f ⁴ D° _{1/2}	1,89701	-0,00427	0,00004	1,89278	1,79204 ^a
$5s^25p^2(^{3}P)4f ^{4}F^{\circ}_{5/2}$	1,90075	-0,00399	0,00002	1,89678	1,79069ª
$5s^25p^2(^{3}P)4f ^{4}F^{\circ}_{7/2}$	1,90140	-0,00401	0,00002	1,89740	1,78904 ^a
$5s^{2}5p^{2}(^{3}P)6p^{-2}P^{\circ}_{3/2}$	1,90186	-0,00392	0,00002	1,89796	1.87776^{a}
$5s^25p^2(^1S)6s^{-2}S_{1/2}$	1.90437	-0.00443	-0.00009	1.89984	1.84125 ^a
$5s^25n^2(^{3}P)6n^{-2}D^{\circ}_{5/2}$	1.91246	-0.00408	0.00002	1.90840	1.82696 ^a
$5s^25p^2(^1S)5d^{-2}D_{3/2}$	1.92819	-0.00421	0.00001	1.92399	1.73477 ^a
00 0p (0)00 2002	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,00121	0,00001	1,72077	1,73581°
$5s^{2}5n^{2}(^{3}P)6n^{-2}P^{\circ}_{1/2}$	1 92930	-0.00437	0.00003	1 92496	1,90768ª
55 5p (1)op 1 1/2	1,92950	0,00157	0,00005	1,72170	1,90780 1,90389 ^f
$5s^{2}5n^{2}(^{3}P)4f^{2}D^{\circ}_{2}$	1 93488	-0.00466	0.00004	1 93027	1,90309 1,81703ª
$5s^{2}5p^{2}(^{3}P)5d^{-2}D_{50}$	1,93750	-0.00460	-0.00007	1,93027	1,51705 1,54005ª
$5s^{2}5p^{2}(^{3}D)4f^{2}C^{9}c^{2}$	1,04148	-0,00400	-0,00002	1,93209	1,54005
5s 3p (17)41 0 9/2 $5s^2 5r^2 (17)54 29$	1,94140	-0,00439	0,00003	1,93092	1,04145
58 Sp (D)50 S1/2	1,94021	-0,00427	-0,00018	1,94170	1, 71500
5 25 2(3D) 46 2E0	1.07097	0.00402	0.00002	1.00004	1,/1000
58-5p ² (³ P)41 ² F ² 7/2	1,97086	-0,00403	0,00002	1,90084	2,00221"
5s ² 5p ² (³ P)4f ² F ³ 5/2	1,99258	-0,00463	0,00004	1,98800	1,90109*
$5s^25p^2(^1D)4f^2G^{0}_{9/2}$	1,99305	-0,00493	0,00005	1,98816	1,87918ª
$5s^{2}5p^{2}(^{1}S)4f^{-2}F^{0}_{7/2}$	2,00157	-0,00508	0,00006	1,99655	2,08657ª
5s ² 5p ² (¹ D)6p ⁻² F° _{5/2}	2,00270	-0,00532	0,00006	1,99744	1,96492 ^a
$5s^{2}5p^{2}(^{1}D)6p^{-2}D^{\circ}_{3/2}$	2,00451	-0,00483	0,00005	1,99973	1,96962ª
$5s^{2}5p^{2}(^{1}D)6p^{-2}D^{\circ}_{5/2}$	2,00972	-0,00485	0,00005	2,00492	1,97663ª
$5s^25p^2(^1D)6p \ ^2F^{\circ}_{7/2}$	2,02139	-0,00522	0,00006	2,01623	1,97963ª
$5s^25p^2(^3P)4f \ ^2F^{\circ}_{5/2}$	2,02429	-0,00435	0,00003	2,01997	1,90109 ^a
$5s^25p^2(^1D)4f ^2H^{\circ}_{11/2}$	2,03189	-0,00517	0,00005	2,02676	1,91978 ^f
$5s^25p^2(^1D)6p \ ^2P^\circ_{1/2}$	2,04440	-0,00474	0,00005	2,03970	2,00553 ^a
$5s^25p^2(^1D)4f^{-2}H^{\circ}_{9/2}$	2,05372	-0,00512	0,00006	2,04866	1,94830 ^f

Tablo 3.20. (Devamı)

Tablo 3.20. (Devamı)									
Seviyeler	E ⁰	E ¹	\mathbf{E}^2	$E_T = E^0 + E^1 + E^2$	Diğer çalışmalar				
5s ² 5p ² (¹ D)4f ² D° _{3/2}	2,08223	-0,00474	0,00005	2,07754	1,94770 ^a				
$5s^{2}5p^{2}(^{1}D)4f^{-2}D^{\circ}_{3/2}$	2,09175	-0,00484	0,00005	2,08696	1,94770 ^a				
$5s^{2}5p^{2}(^{3}P)4f^{2}F^{\circ}_{7/2}$	2,10683	-0,00544	0,00007	2,10146	2,00221ª				
5s ² 5p ² (¹ D)4f ² D° _{5/2}	2,12337	-0,00518	0,00006	2,11825	1,99569ª				
$5s^{2}5p^{2}(^{1}D)4f^{-2}P^{\circ}_{1/2}$	2,16186	-0,00445	0,00004	2,15746	2,01198 ^a				
$5s^25p^2(^1D)4f^2P^{\circ}_{3/2}$	2,16439	-0,00476	0,00004	2,15966	2,01306 ^f				
$5s^25p^2(^1S)6p^2P^{\circ}_{1/2}$	2,19216	-0,00488	0,00006	2,18734	2,12153ª				
5s ² 5p ² (¹ S)6p ² P° _{3/2}	2,21078	-0,00526	0,00006	2,20558	2,14658ª				
$5s^25p^2(^1S)4f^2F^{\circ}_{7/2}$	2,23755	-0,00520	0,00005	2,23241	2,08657ª				
$5s^25p^2(^1S)4f \ ^2F^{\circ}_{5/2}$	2,25302	-0,00499	0,00006	2,24810	2,10958 ^f				

^a NIST; ^b Biémont ve ark., 1995; ^c Dzuba ve Flambaum, 2007; ^d Schippers ve ark., 2014; ^e Tauheed ve ark., 1993; ^f Gallardo ve ark., 1995

Şekil 3.7. Xe IV iyonuna ait enerji seviyelerinin diğer çalışmalar ile karşılaştırılması

Rn IV iyonu, [Pt] $6s^26p^3$ elektron dizilimine sahiptir. Taban hal durumu $6s^26p^3$ ⁴S°_{3/2}'dir. Öncelikle elektronlar arasındaki korelasyonun enerji hesaplamaları üzerindeki etkisi araştırıldı. VV, CV ve CC hesaplamalarında kullanılan konfigürasyon setleri Tablo 3.21.'de verilmektedir. Karşılaştırma değerleri ile uyumlu olan öz-öz korelasyonuna göre elde edilen enerji seviyeleri üzerine Breit ve QED katkılarının etkisi incelendi.

Tablo 3.21. Rn IV iyonu için yapılan hesaplamalarda kullanılan konfigürasyon setleri

VV 6s ² 6p ³ , 6s ² 6p ² 7s, 6s ² 6p ² 7p, 6s ² 6p ² 6d, 6s ² 6p6d7s, 6s ² 6p7s ² , 6s ² 6p ² 7d, 6s ² 6p ² 8s	
CV VV +($6s6p^4$, $6s6p^27s^2$, $6s6p^28s^2$)	
CC CC + $(6p^5, 6p^36d^2, 6p^46d, 6p^37s^2, 6p^47s, 6p^36d7s, 6s^26p^25f)$	

İlk olarak (VV korelasyonu) sadece 6p yörüngesine ait elektronlar uyarıldı, ikinci olarak (CV korelasyonu) hem 6s yörüngesindeki hem de 6p yörüngesindeki elektronlardan uyarılma yapılan konfigürasyonlar eklendi ve son olarak (CC korelasyonu) 6s yörüngesinden iki elektronun uyarıldığı konfigürasyonlar eklendi. Bu konfigürasyon setleri seçilerek yapılan VV, CV ve CC hesaplamaları sonucunda sırasıyla 123, 147 ve 433 enerji seviyesi elde edildi. Bu korelasyon etkileri sonucunda enerji seviyeleri için elde edilen veriler Ek A'da Tablo A.6.'da sunulmaktadır. Fazla sayıda enerji seviyesi olduğu için sunulan veriler CC hesabı sonucunda elde edilen ilk elli enerji seviyesi ile sınırlı tutuldu. Karşılaştırma değeri (Biémont ve Quinet, 1996) bulunan en düşük ilk beş seviye için, VV, CV ve CC sonuçları bu verilerle karşılaştırıldığında üç hesaplama sonucunun da iyi uyumlu olduğu özellikle öz-öz korelasyonu sonuçlarının daha da iyi uyumlu olduğu görülmektedir. Örneğin, taban halinden sonraki ilk uyarılma seviyesi olan 6s²6p³ ²D^o_{3/2} seviyesi incelenecek olursa; VV, CV ve CC sonucları sırasıyla (0,27320, 0,27286 ve 0,27289) Ry iken bu seviyeye ait karşılaştırma değeri de 0,27289 Ry'dir. Bu seviye için CC sonucunun karşılaştırma değeri ile örtüştüğü görülmektedir. CC hesaplamalarına Breit ve QED katkılarının nasıl etki ettiği arastırıldığında elde edilen veriler Tablo 3.22.'de sunulmaktadır. Breit ve QED katkıları MCDF enerjisinde bir azalmaya neden oldu. Taban durumundan sonraki ilk uyarılmış seviyenin enerji değeri MCDF enerjisi ile örtüşüyorken bu katkılar eklendiğinde toplam enerjide karşılaştırma değerinden (Biémont ve Quinet, 1996) çok az farklılık görüldü. Ancak bu toplam enerji değeri de karşılaştırma değeri ile oldukça uyumludur. Diğer dört seviyede ise toplam enerji değerleri, MCDF enerjisine göre karşılaştırma değerleri ile daha iyi uyumlu hale geldi. Örneğin, 6s²6p³ ²P^o_{3/2} seviyesi için MCDF enerjisi 0,70894 Ry iken Breit ve QED katkılarından sonra toplam enerji 0,69991 Ry'e düştü. Bu durumda da toplam enerjinin 0,70053 Ry olan karşılaştırma değeri ile çok iyi uyum içinde olduğu görüldü. Biémont ve Quinet (1996)'in sunduğu çalışma ile bu çalışmadan elde edilen verilerin uyumu Şekil 3.8.'de de görülmektedir.

Seviveler	<u> </u>	E1	E ²	$E_{T} = E^{0} + E^{1} + E^{2}$	Diğer cal
$6s^26p^3 4S^{0}_{3/2}$	0.00000	0.00000	0.00000	0.00000	0.0000ª
$6s^26n^3 {}^2D^{0}_{3/2}$	0 27289	-0.00431	0,00027	0.26885	0 27289ª
$6s^{2}6p^{3} {}^{2}D^{0}5/2$	0.34932	-0.00467	0.00028	0.34494	0.33431ª
$6s^26p^3 {}^{2}P^{0}_{1/2}$	0.43362	-0.00485	0.00027	0.42904	0.42599ª
$6s^{2}6n^{3} {}^{2}P^{0}_{3/2}$	0 70894	-0.00958	0,00055	0 69991	0,70053ª
$6s^{2}6p^{2}(^{3}P)6d^{-4}F_{2/2}$	1 03072	-0.00267	-0.00011	1 02794	-
686p ⁴ ⁴ P ₅ /2	1,03548	-0.00368	-0.00045	1,03135	_
$6s^{2}6n^{2}(^{3}P)7s^{-4}P_{1/2}$	1,05548	-0.00275	-0.00013	1,00100	-
$6s^{2}6p^{2}(^{3}P)6d^{-4}F_{5/2}$	1 17093	-0.00437	-0.00020	1 16636	_
$686n^4 4P_{2/2}$	1 23179	-0.00617	-0.00026	1,22536	_
$686p^4 \ ^4P_{1/2}$	1 24702	-0.00588	-0.00043	1 24071	_
$6s^{2}6n^{2}(^{3}P)6d^{-2}P_{2/2}$	1 31817	-0.00817	0,00002	1 31003	_
$6s^{2}6p^{2}(^{3}P)6d^{-4}F_{5/2}$	1 33224	-0.00748	0.00021	1 32498	_
$6s^{2}6p^{2}(^{3}P)6d^{-4}D_{1/2}$	1 33237	-0.00742	0,00021	1 32513	_
$6s^{2}6p^{2}(^{3}P)6d^{-4}D_{2/2}$	1 34267	-0.00720	0,00015	1 33554	_
$6s^{2}6p^{2}(^{3}P)6d^{-4}F_{7/2}$	1 34463	-0.00821	0,00023	1,33665	_
$6s^{2}6p^{2}(^{3}P)7n^{-4}D^{0}1/2$	1,37830	-0,00310	-0.00023	1,33003	_
$6s^{2}6p^{2}(^{1}D)6d^{-2}Dsp$	1 38278	-0,00310	0.00008	1,37463	_
$6s^{2}6p^{2}(^{1}D)6d^{-2}E_{7/2}$	1,30270	-0,00023	0,00000	1 37880	_
$6s^{2}6p^{2}(^{3}P)7s^{-4}P_{2}p^{2}$	1,30050	-0,00791	0,00024	1 39092	_
$6s^{2}6p^{2}(^{3}P)7s^{-2}P_{1/2}$	1,0755	-0,00701	0,00017	1 30070	_
$6s^{2}6p^{2}(^{3}P)6d^{-4}F_{0/2}$	1,40755	-0,00795	0,00015	1,3777	_
$6s^{2}6p^{2}(^{1}D)7s^{-2}D_{2}n$	1,41400	-0,00050	0,00025	1,40030	_
$6s^{2}6p^{2}(^{3}P)5f^{4}G^{0}s^{12}$	1,40033	-0,00800	-0.00010	1,45245	-
$6s^{2}6p^{2}(^{3}P)7s^{-4}P_{5/2}$	1,40177	-0,00303	-0,00003	1,45567	-
$6s^26p^2(^3\mathbf{P})7p^{-4}\mathbf{D}^{0}aa$	1,40344	-0,00793	0,00019	1,45507	-
$6s^26p^2(^3\mathbf{P})6d^{-4}\mathbf{P}_{z,z}$	1,47050	-0,00379	-0,00003	1,47240	-
$6s^{2}6p^{2}(^{3}P)6d^{-2}P_{1/2}$	1,51004	-0,00777	0,00014	1,50204	
$6s6n^4 \ ^2D_{2/2}$	1,53025	-0.00918	0,00014	1,52721	-
$6s^26p^2(^1D)6d^2G_{7/2}$	1,54510	-0.00934	0,00002	1,55028	-
$6s^{2}6p^{2}(^{3}P)6d^{-4}D_{5/2}$	1,556531	-0,00871	0,00027	1,55678	-
$6s^26p^2(^1D)6d^{-2}P_{2/2}$	1,50551	-0,00871	0,00018	1,55078	-
$6s^26p^2(^3\mathbf{P})6d^{-4}\mathbf{P}_{1/2}$	1,50275	-0,00700	0,00000	1,57514	-
$6s^26p^2(^3\mathbf{P})6d^{-2}\mathbf{D}_{2}p$	1,02205	-0,00780	0,00012	1,01307	-
$6s^26p^2(^3\mathbf{P})7p^{-2}\mathbf{S}^{0}v^{2}$	1,03971	-0,00891	0,00012	1,05095	-
$6s^26p^2(^3\mathbf{P})6d^{-4}\mathbf{P}_{rp}$	1,00550	-0,00820	0,00020	1,65010	-
$6s^{2}6p^{2}(^{3}P)7n^{4}D^{0}a^{2}$	1,00010	-0.00903	0,00008	1,05717	-
$6s^{2}6p^{2}(^{3}P)5f^{4}G^{0}s^{12}$	1,08299	-0,00802	0,00019	1,07510	-
$6s^26p^2(^3\mathbf{P})5f^4\mathbf{C}^{0}z^{10}$	1,7177	-0,00855	0,00023	1,70204	-
$6s^26p^2(^1D)6d^2E_{7/2}$	1,721)2	-0,00805	0,00024	1,71531	-
$6s^{2}6p^{2}(^{1}D)7p^{-2}F^{0}s^{2}$	1,72918	-0.00836	0,00031	1,71044	-
$6s^26p^2(^1D)6d^2S_{1/2}$	1,73001	-0,00830	0,00020	1,72520	-
$6s^{2}6n^{2}(^{3}P)5f^{4}F^{0}_{2/2}$	1,74757	-0,01240	0,00023	1,73910	-
$6s^{2}6n^{2}(^{1}D)6d^{2}Goo$	1,74757	-0,00802	0,00024	1,73719	-
$6s^{2}6n^{2}(^{3}P)7n^{-4}D^{0}c^{-2}$	1,75852	-0,01310	0,00030	1 74985	-
$6s^{2}6n^{2}(^{3}P)7n^{-4}S^{0}ac$	1,75052	-0,00091	0,00024	1,74,705	-
$6s^{2}6n^{2}(^{3}P)^{7}n^{-4}P^{0}m^{2}$	1,70130	-0,00824	0,00022	1,7557	-
$6s^{2}6n^{2}(^{1}D)6d^{2}D$	1,77440	-0,00097	0,00024	1,70373	-
$6s^{2}6n^{2}(^{3}P)7n^{4}P_{2}^{0}$	1,78057	-0,00993	0,00019	1,11277	-
$686n^4 2 P_{ac}$	1,70757	-0,00000	-0.00022	1,70179	-
USUP F 3/2	1,79402	-0,00750	-0,00017	1,/0009	-

Tablo 3.22. Rn IV'ün enerji seviyeleri (Rydberg). E⁰: MCDF enerjisi, E¹: Breit katkıları, E²: QED katkıları, $E_T = E^0 + E^1 + E^2$.

^a Biémont ve Quinet, 1996

Şekil 3.8. Rn IV iyonuna ait enerji seviyelerinin diğer çalışmalar ile karşılaştırılması

3.2.2. Elektrik dipol (E1) geçiş hesaplamaları

Üçlü iyonlaşmış kripton için öz-öz korelasyonu A konfigürasyon seti (CC-A) ile yapılan hesaplama sonucunda elde edilen enerjiler arasında 5860 E1 geçişi elde edildi. Kr IV iyonuna ait mevcut kaynaklarda (Boyce, 1935; Fawcett ve Bromage, 1980; O'Sullivan, 1988; Bredice ve ark., 2000) elektrik dipol geçişleri için sınırlı sayıda geçiş parametresine ulaşıldı. Bu çalışmalarda 4s²4p³ - 4s²4p²5s ve 4s²4p³ - 4s4p⁴ geçişlerine ait dalga boyu ve salınıcı şiddeti değerleri ile ilgili bilgi verilmektedir. Bu geçiş parametreleri ve MCDF karşılaştırma değerleri Tablo 3.23.'de verilmektedir. Tablo incelendiğinde MCDF sonuçları için dalga boyu değerleri daha önceki çalışmalar ile iyi uyumlu olmasına rağmen salınıcı şiddeti değerleri birbiri ile uyuşmamaktadır.

	karşılaştırr	na değerleri	·//, , O , ·	(· , ····				
Ge	çişler	λ	(Å)	Å)		x10		0	
Alt Seviye	Üst Seviye	Bu çal.	Diğ. çal.	$A_{ji}\left(s^{\text{-}1}\right)$	Bu çal.	Diğ. çal	S _{ij} (a.b)	(V/L)	
$4s^24p^3$	$4s^24p^25s$								
⁴ S ^o _{3/2}	${}^{4}P_{1/2}$	507,09	481,14ª 499,05 ^b	3,8167(9)	2,942	4,54° 21,00 ^b	0,491	0,64	
	${}^{4}P_{3/2}$	499,47	ŗ	3,7369(9)	5,590	12,32°	0,919	0,63	
⁴ S ^o _{3/2}	${}^{2}P_{1/2}$	487,95		2,9060(7)	0,021	0,41°	3,332(-3)	0,73	
	⁴ P _{5/2}	490,48	462,12 ^a 480,61 ^b	3,6926(9)	7,990	42,32° 0,30 ^b	1,290	0,63	
	${}^{2}P_{3/2}$	479,56		6,0982(7)	0,084	0,04°	0,013	0,99	

Tablo 3.23. Kr IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), ağırlıklı salınıcı şiddeti (gfx10), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin uzunluk-hızformlarının oranı ve karalatırma doğarlari

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ge	çişler	λ (Å)	$\frac{\lambda(\text{Å})}{\lambda(\text{A})} = \lambda(1000000000000000000000000000000000000$		x10			
	Alt	Üst		Aji (S ⁻¹)	D sal	Diğ.	S _{ij} (a.b)	Oran	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Seviye	Seviye	Bu çal. Dig. ç	al.	Bu çal.	çal		(V/L)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{2}D_{5/2}$	453,10	3,8797(7)	0,072	0,09°	1,068(-2)	0,61	
		$^{2}D_{3/2}$	452,25	2,9032(6)	0,003	0,01°	5,301(-4)	0,42	
		${}^{2}S_{1/2}$	4087,8	2,3301(6)	0,001	$0,00^{\circ}$	1,571(-4)	0,30	
	$^{2}D^{o}_{3/2}$	${}^{4}P_{1/2}$	567,11	3,7763(8)	0,364	0,24 ^c	6,798(-2)	0,61	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{4}\mathbf{P}_{3/2}$	557,59	7,0339(7)	0,131	0,10 ^c	2,407(-2)	0,64	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{2}P_{1/2}$	543,28 506,3	1,2303(10)	10,888	5,44°	1,947	0,60	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			521,1	5 ^b	,	26,00 ^b	,	,	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		${}^{4}P_{5/2}$	546,42	4,9760(6)	0,013	0,01°	2,404(-3)	0,61	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{2}\mathbf{P}_{3/2}$	532,90 513,74	^{4d} 4,0301(8)	0,686	1,26 ^c	0,120	0,74	
						0,05 ^d			
		$^{2}D_{5/2}$	500,43	1,1215(9)	2,526	8,70°	0,416	0,64	
		$^{2}D_{3/2}$	499,39	2,4662(9)	3,688	18,55°	0,606	0,61	
		${}^{2}S_{1/2}$	446,91	2,5576(8)	0,153	0.03°	2,253(-2)	0.58	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{2}D^{o}_{5/2}$	${}^{4}P_{3/2}$	563,67	2,1699(8)	0,413	0,30°	7,671(-2)	0,61	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{4}P_{5/2}$	552,25 528,0	3 2,2206(8)	0,609	0,01°	0,111	0,64	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,,-	,(-)	- ,	1.00 ^d	- 7	- , -	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{2}\mathrm{P}_{3/2}$	538,44 499,0	a^{a} 2,1274(10)	36,978	8,03°	6,556	0,56	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			513.10	5 ^b	,	10.00 ^b	,	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			518.1	7 ^d		17.42 ^d			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{2}D_{5/2}$	505.32	4.7268(9)	10.856	33.95°	1.806	0.63	
		$^{2}D_{3/2}$	504.26	7 1313(7)	0 109	0 47°	1,805(-2)	0.44	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2\mathbf{P}_{1/2}$	${}^{4}P_{1/2}$	606 59	3,2415(7)	0.035	0,47	7 141(-3)	0,44	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	▲ 1/2	⁴ P _{2/2}	595 71	9,2713(7) 9,4752(6)	0.020	0.01°	3,954(-3)	0.64	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$2\mathbf{p}_{1/2}$	579.40	2,3246(9)	2 34	0,01	0.446	0,04	
$ \frac{1}{2} \frac{1}{D_{3/2}} = \frac{507,61}{2} \frac{1}{1,107} = \frac{1}{2,0207(6)} = \frac{1}{0,100} = \frac{1}{1,45^{\circ}} = \frac{1}{0,192} = \frac{1}{0,66} \frac{1}{7,05^{\circ}} = \frac{1}{2} \frac{1}{1,107} = \frac{1}{2,8953(9)} = \frac{1}{1,926} = \frac{1}{0,03^{\circ}} = \frac{1}{0,298} = \frac{1}{0,60} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,66} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,66} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,60} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,60} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,60} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,60} \frac{1}{0,21^{\circ}} = \frac{1}{0,520} \frac{1}{0,920} = \frac{1}{0,60} \frac{1}{0,60} \frac{1}{0,21^{\circ}} = \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{0,54} \frac{1}{2} \frac{1}{0,52} = \frac{1}{5,57,549} = \frac{1}{0,520(5)} \frac{1}{0,000} = \frac{1}{0,80^{\circ}} = \frac{1}{0,540(-4)} = \frac{1}{0,54}$		$2\mathbf{p}_{2/2}$	567.61	2,52+0(9) 2,6207(8)	0,506	2.56°	9461(-2)	0,26	
$ \frac{^{3}S_{1/2}}{^{2}P_{3/2}} = \frac{^{3}Z_{1/3}}{^{2}P_{1/3}} = \frac{^{3}Z_{1/3}}{^{2}P_{1/2}} = \frac{^{3}Z_{1/3}}{^{2}P_{1/3}} = \frac{^{3}Z_{1/3}}{^{2}P_{1/2}} = \frac{^{3}Z_{1/3}}{^{2}P_{1/3}} = ^$		$^{2}D_{2/2}$	529.75 518.17	$7^{\rm d}$ 6 5522(8)	1 102	2,30 1.45°	0.192	0,20	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D3/2	527,75 510,1	0,5522(0)	1,102	7,45 7,05 ^d	0,172	0,00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2510	471.07	2 8053(0)	1 926	0.03°	0.208	0.60	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 p 0	4 P 1/2	615 50 501 8	2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0,000	0,03	3.062(-5)	0,00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3/2	1 1/2	015,57 571,0.	1,5270(5)	0,000	0,02 0,01 ^d	3,002(-3)	0,50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$4P_{2/2}$	604 40 582 0	1 ^d 3 9651(7)	0.086	0,01	1.728(-2)	0.61	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 3/2	004,40 502,0	5,7051(7)	0,000	0.21^{d}	1,720(-2)	0,01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2\mathbf{p}_{1/2}$	587 62	5 (1837(7))	0.056	0,21	1.008(-2)	0.60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4 P _{5/2}	501.20	2,5306(5)	0,000	0,02	1,000(-2) 1,540(-4)	0,00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2\mathbf{p}_{2}$	575.49	2,3300(3) 6 2912(8)	1 249	0,00	1,3+7(-+)	0,54	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 3/2	575,49	0,2712(0)	1,249	0,71 0.34d	0,230	0,10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{2}D_{\pi}$	537.81 526.5	^{7d} 1 1086(0)	2 884	1 530	0.511	0.60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D _{5/2}	557,61 520,5	1,1000())	2,004	1,55 5 82d	0,511	0,09	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$^{2}D_{2}$	536.61	4 2380(0)	7 280	1,07°	1 202	0.60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2S_{1/2}$	176.40	4,2380(9) 4,0073(9)	2 727	0.660	0.427	0,09	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3 1/2	470,49	4,0073(9)	2,727	0,00	0,427	0,39	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4s^24p^3$	4s4p ⁴							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{45^{\circ}}{45^{\circ}}$	⁴ P _{1/2}	776.87 799.9	3^a 3.2190(9)	5.852	0.60 ^b	1.4898	1.10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5/2	- 1/2	805.7	2d	0,002	1.08 ^d	1,1070	1,10	
$ {}^{4}P_{5/2} = {}^{2}D_{3/2} = {}^{6}72,65 = {}^{7}76,78^{d} = {}^{7},3023(9) = {}^{1}1,6456 = {}^{1},70^{b} = {}^{2},15^{d} = {}^{1}10 = {}^{1}10^{d} = {}^{4}P_{5/2} = {}^{2}D_{3/2} = {}^{2}D_{3/2} = {}^{6}72,65 = {}^{7}69,67^{a} = {}^{7},3023(9) = {}^{1}9,81 = {}^{1},90^{b} = {}^{4},3874 = {}^{0},85 = {}^{7}76,78^{d} = {}^{3},49^{d} = {}^{2}D_{5/2} = {}^{2}D_{5/2} = {}^{6}78,25 = {}^{7}75,32^{a} = {}^{6},7783(9) = {}^{2}8,048 = {}^{2},30^{b} = {}^{6},2629 = {}^{0},79 = {}^{8}1,58^{d} = {}^{4},23^{d} = {}^{2}P_{3/2} = {}^{2}S_{1/2} = {}^{6}28,77 = {}^{7}15,00^{a} = {}^{5},9403(9) = {}^{7},041 = {}^{1},20^{b} = {}^{1},4576 = {}^{0},40 = {}^{1}10^{c} = {}$		${}^{4}\mathbf{P}_{3/2}$	787.71 811.6	$\frac{1}{2^{a}}$ 3.0493(9)	11.346	1,00 ^b	2.9423	1.10	
$ {}^{4}P_{5/2} = {}^{4}P_{5/2} = {}^{810,74} {}^{838,11a} {}^{2},7835(9) = {}^{16,456} {}^{1,70b} {}^{4,3924} {}^{1,10} {}^{3,26^d} = {}^{2}D_{3/2} = {}^{2}D_{3/2} = {}^{672,65} {}^{769,67a} {}^{7,3023(9)} = {}^{19,81} {}^{1,90b} {}^{4,3874} {}^{0,85} {}^{776,78^d} {}^{3,49^d} = {}^{2}D_{5/2} = {}^{2}D_{5/2} = {}^{678,25} {}^{775,32a} {}^{6,7783(9)} = {}^{28,048} {}^{2,30b} {}^{6,2629} {}^{0,79} {}^{81,58^d} {}^{4,23^d} = {}^{2}P_{3/2} = {}^{2}S_{1/2} = {}^{628,77} {}^{715,00a} {}^{5,9403(9)} {}^{7,041} {}^{1,20b} {}^{1,4576} {}^{0,40} {}^{1151^d} = {}^{192^d} $		1 5/2	816.8	2 5,6195(9) 9d	11,510	2 15 ^d	2,9125	1,10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		${}^{4}P_{5/2}$	810.74 838.1	-1^{a} 2.7835(9)	16 456	1.70 ^b	4,3924	1.10	
$ {}^{2}D^{o}_{3/2} \ {}^{2}D_{3/2} \ {}^{2}D_{3/2} \ {}^{2}D_{3/2} \ {}^{2}D_{3/2} \ {}^{2}D_{5/2} \ {}^{2}D$		1 3/2	842.0	1 ^d	10,150	3.26 ^d	1,3721	1,10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}D^{0}{}_{2}/_{2}$	$^{2}D_{2/2}$	672 65 760 6	7ª 7 3023(9)	19.81	1 90 ^b	4 3874	0.85	
$ {}^{2}D^{o}_{5/2} \qquad {}^{2}D_{5/2} \qquad {}^{678,25} \qquad {}^{775,32^{a}} \qquad {}^{6,7783(9)} \qquad {}^{28,048} \qquad {}^{2,30^{b}} \qquad {}^{6,2629} \qquad {}^{0,79} \qquad {}^{781,58^{d}} \qquad {}^{4,23^{d}} \qquad {}^{2}P^{o}_{3/2} \qquad {}^{2}S_{1/2} \qquad {}^{628,77} \qquad {}^{715,00^{a}} \qquad {}^{5,9403(9)} \qquad {}^{7,041} \qquad {}^{1,20^{b}} \qquad {}^{1,4576} \qquad {}^{0,40} \qquad {}^{1151^{d}} \qquad {}^{192^{d}} \qquad {}$	5/2	L 3/2	7767	() () () () () () () () () () () () () (17,01	3 40 ^d	7,5074	0,05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{2}D^{0}\varepsilon^{\prime}$	$^{2}D_{5/2}$	678 25 775 2)a 67783(0)	28 0/18	2 30b	6 2620	0.79	
$^{2}P_{3/2}$ $^{2}S_{1/2}$ $^{2}S_{1/2}$ 628,77 $^{715,00^{a}}$ $^{5,9403(9)}$ 7,041 $^{1,20^{b}}$ 1,4576 0,40	D 5/2	D 3/2	781 5	2 0,7703(9) 2d	20,040	2,50 4 23d	0,2027	0,19	
71151d $102d$	2po _{2/2}	$2S_{1/2}$	628 77 715 M) ^a 5 0/103/01	7.041	1,20 ^b	1 4576	0.40	
	1 3/Z	U 1/2	711 5	Id 5,7405(7)	7,041	1 92d	1,7570	0,70	

Tablo 3.23. (Devamı)

^a Boyce, 1935; ^b Fawcett ve Bromage, 1980; ^c O'Sullivan, 1988; ^d Bredice ve ark., 2000

(IIJ), ÇIZĞI		actinin mz-u	Zumuk Torima	IIIII Olaili		
Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	fij	S _{ij} (a.b)	Oran (V/L)
$4s^24p^3 \ ^2D^{o}_{5/2}$	4s ² 4p ² (³ P)5s ² P _{3/2}	538,440	2,127(10)	0,616	6,556	0,560
4s ² 4p ³ ² P ^o _{3/2}	$4s4p^4 \ ^2P_{1/2}$	550,750	1,457(10)	0,331	2,403	0,710
$4s^24p^3 \ ^2D^{o}_{3/2}$	$4s^24p^2(^3P)5s^2P_{1/2}$	543,280	1,230(10)	0,272	1,947	0,600
4s4p ⁴ ² D _{3/2}	$4p^{5} {}^{2}P^{0}{}_{1/2}$	594,350	1,221(10)	0,323	2,530	0,450
4s ² 4p ³ ² D ^o _{3/2}	$4s4p^4 \ ^2P_{1/2}$	511,620	1,192(10)	0,234	1,575	0,390
4s4p ⁴ ² D _{5/2}	$4p^{5} P^{0}_{3/2}$	619,970	1,074(10)	0,412	5,050	0,450
$4s^2 4p^3 \ ^2 D^{o}_{5/2}$	$4s4p^4 {}^2P_{3/2}$	528,300	0,918(10)	0,256	2,673	0,440
$4s^24p^2(^{3}P)5s^{-2}P_{1/2}$	$4s^24p(^2P^o)5s^2 \ ^2P^o_{1/2}$	459,210	0,743(10)	0,235	0,711	0,810
$4s^24p^3 \ ^2D^{o}_{3/2}$	$4s4p^{4} {}^{2}D_{3/2}$	672,650	0,730(10)	0,495	4,387	0,850
$4s^24p^3 \ ^2D^{o}_{5/2}$	$4s4p^4 \ ^2D_{5/2}$	678,250	0,677(10)	0,467	6,263	0,790
$4s4p^{4} {}^{2}P_{1/2}$	$4p^{5} P^{0}_{1/2}$	823,320	0,647(10)	0,658	3,565	0,870
$4s^24p^3 \ ^2P^{o}_{1/2}$	$4s4p^4$ ² S _{1/2}	619,380	0,626(10)	0,360	1,470	0,520
$4s^24p^2(^{3}P)5s^2P_{3/2}$	$4s^24p(^2P^o)5s^2 \ ^2P^o_{1/2}$	450,470	0,608(10)	0,185	1,098	0,800
$4s^24p^3 \ ^2P^{o}_{3/2}$	$4s4p^4 \ ^2S_{1/2}$	628,770	0,594(10)	0,176	1,458	0,400
$4s4p^{4} {}^{2}P_{3/2}$	$4p^{5} P^{0}_{3/2}$	837,160	0,556(10)	0,585	6,449	0,780
$4s^24p^3 \ ^2D^o_{3/2}$	4s4p ⁴ ² P _{3/2}	522,970	0,554(10)	0,227	1,567	0,700
$4s^24p^3 \ ^2P^{o}_{3/2}$	4s4p ⁴ ² P _{3/2}	563,920	0,526(10)	0,251	1,865	1,100

Tablo 3.24. Kr IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

Üçlü iyonlaşmış ksenon (Xe IV) için CC konfigürasyon seti ile yapılan hesaplama sonucunda elde edilen enerjiler arasında 20546 E1 geçisi elde edildi. Bu iyon için daha önce yapılan çalışmalarda (Bertuccelli ve ark., 2000; Raineri ve ark., 2008) sunulan geçiş parametreleri ve bunlara karşılık gelen MCDF hesabı sonuçları Tablo 3.25.'de verilmektedir. Tablo incelendiğinde değerler arasında genel olarak iyi bir uyum varken bazı seviyeler arasındaki geçişlerde değerler birbirinden oldukça farklı olarak elde edildi. Örneğin, $5s^25p^2(^{3}P)6s^{-4}P_{5/2} - 5s^25p^2(^{3}P)6p^{-4}D^{\circ}_{7/2}$ seviyeleri arasındaki geçişlerde dalga boyu için karşılaştırma değeri 3079,72 Å (Raineri ve ark., 2008) iken bu çalışmada 3081,30 Å; geçiş olasığı için karşılaştırma değerleri (2,513(8), 2,439(8) ve 2,731(8)) s⁻¹ (Bertuccelli ve ark., 2000; Raineri ve ark., 2008) iken bu calısmada 2,518(8) s⁻¹; logaritmik ağırlıklı salınıcı şiddeti için karşılaştırma değeri 0,492 (Raineri ve ark., 2008) iken bu çalışmada 0,458 olarak bulundu. Buradaki uyumun çok iyi olduğu görülmektedir. 5s²5p²(³P)5d ²D_{5/2} - 5s²5p²(³P)6p ²D^o_{5/2} seviyeleri arasındaki geçiş parametrelerini incelediğimizde dalga boyu için karşılaştırma değeri 3175,25 Å (Raineri ve ark., 2008) iken bu çalışmada 3980,10 Å; geçiş olasığı için karşılaştırma değerleri (0,995(8), 0,829(8) ve 0,668(8)) s⁻¹ (Bertuccelli ve ark., 2000; Raineri ve ark., 2008) iken bu çalışmada 0,051(8) s⁻¹; logaritmik ağırlıklı salınıcı şiddeti için karşılaştırma değeri -0,217 (Raineri ve ark., 2008) iken bu çalışmada -1,142 olarak bulundu. Son iki parametrenin karşılaştırma değerleri ile arasında onun katı kadar fark vardır. Bu hesaplamada çok sayıda geçiş olmasından dolayı sadece geçiş olasılığı 10¹⁰ ve daha büyük olan geçişler Tablo 3.26.'da sunulmaktadır.

Tablo 3.25. Xe IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), logaritmik ağırlıklı salınıcı şiddeti (Log (gf)), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı ve karşılaştırma değerleri

G	eçişler	la acgei	2	۱ (Å)	Aji (s	1)x(10 ⁸)	Log	g (gf)	a	~
Alt seviye	Üst seviye]	Bu Çal.	Diğ. Çal.	Bu Çal.	Diğ. Çal.	Bu çal.	Diğ. çal.	S _{ij} (a.b)	Oran (V/L)
5s ² 5p ² (³ P)6s ² P _{3/2}	5s ² 5p ² (³ P)6p ⁻²	² P° _{3/2} 3	320,0	3044.26 ^b	0,492	1,880 ^a 1,960 ^{a*} 1.861 ^b	-0,489	0,025 ^b	3,557	1,40
$5s^25p^2(^3P)6s ^4P_{5/2}$	5s ² 5p ² (³ P)6p	⁴ D° _{7/2} 3	081,3	3079.72 ^ь	2,518	2,513 ^a 2,439 ^{a*} 2,731 ^b	0,458	0,492 ^b	29,088	1,20
$5s^25p^2(^3P)5d ^4P_{3/2}$	2 5s ² 5p ² (³ P)6p ²	$^{2}S^{\circ}_{1/2}$ 5	816,9	3083.05 ^b	0,0003	2,751 $32,440^{a}$ $0,100^{a^{*}}$ 0.164^{b}	-3,459	-1,620 ^b	0,007	41,00
$5s^25p^2(^3P)5d ^4P_{5/2}$	2 5s ² 5p ² (³ P)4f ⁴	F° _{3/2} 3	455,9	3103.23 ^b	0,0029	0,104 $0,455^{a}$ $0,013^{a^{*}}$ $0,079^{b}$	-2,684	-1,713 ^b	0,024	13,00
$5s^25p^2(^3P)6s^2P_{1/2}$	$5s^{2}5p^{2}(^{3}P)4f^{-2}$	² D° _{3/2} 2	432,3	3105.62 ^b	0,138	$0,917^{a}$ $0,172^{a^{*}}$ $0,162^{b}$	-1,301	-1,024 ^b	0,393	1,00
$5s^25p^2(^3P)5d\ ^2D_{5/2}$	5s ² 5p ² (³ P)6p ⁻²	² D° _{5/2} 3	980,1	3175.25 ^b	0,051	$0,995^{a}$ $0,829^{a^{*}}$ $0,668^{b}$	-1,142	-0,217 ^b	0,951	3,70
$5s^25p^2(^3P)6s \ ^4P_{3/2}$	5s ² 5p ² (³ P)6p	² D° _{3/2} 2	934,3	3179.27 ^b	1,088	$0,567^{a}$ $1,090^{a^{*}}$ $0,525^{b}$	-0,252	0,494 ^b	5,428	1,10
$5s^25p^2(^{3}P)5d ^{4}P_{3/2}$	2 5s ² 5p ² (³ P)4f ⁴	F° _{3/2} 3	774,6	3285.98 ^b	0,005	0,323 $0,147^{a}$ $0,032^{a^{*}}$	-2,397	-1,777 ^b	0,053	0,70
$5s^25p^2(^{3}P)5d ^{2}D_{5/2}$	5s ² 5p ² (³ P)4f ²	² D° _{3/2} 3	633,0	3289.03 ^b	0,023	$0,055^{a}$ $0,385^{a}$ $0,050^{a^{*}}$	-0,745	-1,559 ^b	0,218	8,90
$5s^25p^2(^3P)5d ^4P_{5/2}$	2 5s ² 5p ² (³ P)4f ² (G° _{7/2} 3	728,6	3310.40 ^b	0,048	$0,042^{a}$ $0,212^{a}$ $0,268^{a^{*}}$	-1,108	-0,399 ^b	0,976	1,70
5s ² 5p ² (¹ D)6s ² D _{5/2}	2 5s ² 5p ² (¹ D)6p ⁻²	² D° _{3/2} 3	280,5	3322.19 ^b	0,847	1,147 ^a 1,398 ^{a*}	-0,262	-0,073 ^b	5,905	1,40
$5s^25p^2(^3P)6s \ ^4P_{5/2}$	5s ² 5p ² (³ P)6p ⁻²	² D°5/2 2	651,9	3332.83 ^b	0,434	$1,274^{a}$ $1,218^{a}$ $0,768^{a^{*}}$	-0,559	-0,058 ^b	2,395	0,66
$5s^25p^2(^3P)6s^2P_{1/2}$	5s ² 5p ² (³ P)6p ⁻²	² D° _{3/2} 3	321,7	3386.75 ^b	1,114	0,870° 0,785° 0,613°	-0,133	-0,384 ^b	8,057	1,40
$5s^25p^2(^3P)6s \ ^4P_{3/2}$	5s ² 5p ² (³ P)6p ⁻²	² S° _{1/2} 3	680,9	3497.89 ^b	0,858	0,599 ^a 0,670 ^a 1,562 ^{a*}	-0,458	-0,424 ^b	4,225	1,20
$5s^25p^2(^3P)6s \ ^4P_{5/2}$	5s ² 5p ² (³ P)6p ⁴	⁴ D°5/2 3	743,7	3513.56 ^b	0,122	$0,165^{a}$ $0,146^{a^{*}}$	-0,806	-0,632 ^b	1,899	1,80
$5s^25p^2(^3P)5d\ ^2D_{5/2}$	5s ² 5p ² (³ P)6p	² D° _{3/2} 6	054,5	3606.05 ^b	0,002	0,208° 0,790 ^a 0,228 ^{a*}	-2,423	-0,819 ^b	0,075	9,10

			Tablo 3.25.	(Devami))				
G	eçişler		λ (Å)	Aji (s	$A_{ji} (s^{-1})x(10^8)$		Log (gf)		Oran
Alt seviye	Üst seviye	Bu Çal.	Diğ. Çal.	Bu Çal.	Diğ. Çal.	Bu çal.	Diğ. çal.	(a.b)	(V/L)
$5s^25p^2(^3P)6s^2P_{3/2}$	5s ² 5p ² (³ P)6p	² D° _{5/2} 3198,	3 3666.75 ^b	0,565	$0,567^{a}$ $0,572^{a^{*}}$ $0,195^{b}$	-0,283	-0,180 ^b	5,477	1,30
$5s^25p^2(^3P)6s^2P_{1/2}$	5s ² 5p ² (³ P)6p	² S° _{1/2} 4311,	7 3750.71 ^b	0,374	$0,510^{a}$ $0,505^{a^{*}}$ $0,490^{b}$	-0,681	-0,685 ^b	2,961	2,10
$5s^25p^2(^3P)5d ^4P_{3/2}$	5s ² 5p ² (³ P)6p	⁴ D° _{1/2} 9914,	9 4051.64 ^b	0,000	$00,630^{a}$ $0,080^{a*}$ $0,80^{b}$	-4,330	-1,398 ^b	0,002	140,0

^a Bertuccelli ve ark., 2000; ^b Raineri ve ark., 2008

Tablo 3.26. Xe IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

	Üst aariva	$\frac{11111112-uzu110}{2(k)}$	A (a-1)	fu Su(ab		$O_{\rm max}$ (V/L)	
Ait seviye	USL SEVIYE	<u>λ (A)</u>	Aji (S ⁻)	Lij	Dij (a.D)	0 740	
58-5p ⁻² ² D ⁻ 5/2	40 ² 58 ² (¹ S)5p ² ² F _{7/2}	204,650	5,462(10)	0,45/	1,849	0,740	
5s*5p*(°P)5d *F7/2	$5s^{2}5p(^{2}P)5d^{2} + G^{2}9/2$	645,820	4,455(10)	3,482	59,220 20.724	0,690	
5S ² 5p ³ ² D ² 5/2	58°5p²(°P)5d °F _{7/2}	562,780	4,366(10)	2,764	30,724	0,640	
$5s^25p^3 ^2P^3_{3/2}$	5s ² 5p ² (³ P)5d ² D _{5/2}	565,850	4,129(10)	2,973	22,153	0,650	
5s ² 5p ³ ⁴ S ⁰ 3/2	5s ² 5p ² (³ P)5d ⁴ P _{1/2}	562,610	3,445(10)	0,817	6,055	0,710	
$5s^25p^3 {}^2P^{\circ}_{1/2}$	$5s5p^{+2}P_{1/2}$	576,920	3,323(10)	1,658	6,299	0,700	
$5s^{2}5p^{3} P^{0}_{1/2}$	$5s^{2}5p^{2}(^{1}S)5d^{-2}D_{3/2}$	544,710	3,299(10)	2,935	10,526	0,690	
$5s^{2}5p^{3} {}^{2}P^{\circ}_{1/2}$	$4d^{9}5s^{2}(^{1}S)5p^{4} ^{2}D_{3/2}$	203,930	3,298(10)	0,411	0,552	0,750	
5s ² 5p ³ ⁴ S° _{3/2}	$4d^{9}5s^{2}(^{1}S)5p^{4} ^{4}P_{5/2}$	205,010	3,224(10)	0,305	0,823	0,760	
$5s^{2}5p^{3} {}^{2}P^{\circ}_{3/2}$	$4d^95s^2(^1S)5p^4 ^2D_{5/2}$	204,340	2,897(10)	0,272	0,732	0,740	
$5s^{2}5p^{3}$ ⁴ S° _{3/2}	$4d^{9}5s^{2}(^{1}S)5p^{4} {}^{4}P_{1/2}$	200,120	2,783(10)	0,084	0,220	0,760	
$5s^{2}5p^{3} {}^{2}P^{\circ}_{3/2}$	$5s^25p^2(^1S)6s^2S_{1/2}$	577,700	2,762(10)	0,691	5,256	0,570	
$5s^{2}5p^{3}$ ⁴ S° _{3/2}	$5s^{2}5p^{2}(^{3}P)5d^{4}P_{3/2}$	565,900	2,617(10)	1,257	9,364	0,710	
$5s^25p^3 \ ^2P^{\circ}_{3/2}$	$4d^95s^2(^1S)5p^4 \ ^2S_{1/2}$	200,130	2,388(10)	0,072	0,189	0,710	
$5s^25p^3 \ ^2D^{\circ}_{3/2}$	4d ⁹ 5s ² (¹ S)5p ⁴ ² D _{5/2}	204,640	2,376(10)	0,224	0,603	0,760	
$5s^25p^3 \ ^2P^\circ_{3/2}$	5s5p ⁴ ² D _{3/2}	586,310	2,274(10)	1,172	9,046	0,930	
5s ² 5p ³ ² D° _{5/2}	5s5p ⁴ ² P _{3/2}	610,750	2,228(10)	0,831	10,022	0,680	
$5s^25p^2(^1S)5d^{-2}D_{3/2}$	$5s^{2}5p(^{2}P)5d^{2}$ $^{2}F^{\circ}_{5/2}$	724,200	2,197(10)	2,591	24,711	0,830	
$5s^25p^3 \ ^4S^{\circ}_{3/2}$	$4d^95s^2(^1S)5p^4 \ ^2P_{3/2}$	205,750	2,178(10)	0,138	0,375	0,760	
$5s^25p^3 \ ^2D^{\circ}_{5/2}$	5s ² 5p ² (¹ D)5d ² D _{5/2}	564,960	2,167(10)	1,037	11,570	0,600	
$5s^25p^3 \ ^4S^{\circ}_{3/2}$	5s ² 5p ² (³ P)5d ⁴ P _{5/2}	573,830	2,071(10)	1,534	11,588	0,690	
$5s^25p^3 \ ^2P^\circ_{3/2}$	4d ⁹ 5s ² (¹ S)5p ⁴ ² P _{3/2}	203,260	2,050(10)	0,127	0,340	0,780	
5s ² 5p ³ ² D° _{3/2}	5s ² 5p ² (¹ D)5d ² D _{3/2}	552,870	2,035(10)	0,932	6,789	0,630	
5s ² 5p ³ ² D° _{3/2}	$5s^25p^2(^1D)5d^2P_{1/2}$	585,300	1,998(10)	0,513	3,955	0,900	
$5s^25p^3 {}^2P^{\circ}_{1/2}$	$4d^95s^2(^1S)5p^4 \ ^2P_{1/2}$	203,190	1,916(10)	0,119	0,159	0,770	
5s ² 5p ² (¹ S)5d ² D _{3/2}	$5s^{2}5p(^{2}P)5d^{2} {}^{2}P^{\circ}{}_{1/2}$	661,200	1,898(10)	0,622	5,416	0,360	
5s ² 5p ³ ² P° _{3/2}	4d ⁹ 5s ² (¹ S)5p ⁴ ² D _{5/2}	199,650	1,891(10)	0,170	0,446	0,720	
$5s^25p^2(^{3}P)5d^{-2}D_{5/2}$	$5s^{2}5p(^{2}P)5d^{2} G^{\circ}_{7/2}$	697,740	1,855(10)	1,806	24,884	0,750	
5s ² 5p ² (³ P)5d ⁴ F _{5/2}	$5s^{2}5p(^{2}P)5d^{2} {}^{4}F^{\circ}{}_{5/2}$	600,520	1,821(10)	0,985	11,681	0,730	
$5s^25p^3 {}^2P^{\circ}_{3/2}$	$5s^25p^2(^1D)5d^2S_{1/2}$	562,740	1,752(10)	0,416	3,081	0,460	
$5s^25p^2(^1D)5d^{-2}P_{1/2}$	$5s^{2}5p(^{2}P)5d^{2} ^{2}D^{\circ}_{3/2}$	583,060	1,689(10)	1,722	6,609	0,460	
$5s^25p^2(^{3}P)5d^{-2}D_{5/2}$	$5s^25p(^2P)5d^2 {}^2P^{\circ}_{3/2}$	654,600	1,559(10)	0,668	8,632	0,300	
$5s^25p^2(^1D)5d^2G_{9/2}$	5s ² 5p(² P)5d ² ² H° _{11/2}	650,130	1,552(10)	1,180	25,258	0,660	
$5s^25p^3 4S^{\circ}_{3/2}$	$5s^25p^2(^{3}P)6s^{-4}P_{5/2}$	582,360	1,491(10)	1,137	8,720	0,720	
$5s^25p^3 {}^2D^{\circ}_{3/2}$	$5s^25p^2(^1D)6s^2D_{5/2}$	575.970	1,476(10)	1,101	8,350	0,690	
$5s^25p^2(^{3}P)5d^{-4}P_{5/2}$	$5s^25p(^2P)5d^2 \ ^4S^{\circ}_{3/2}$	648.570	1,424(10)	0.599	7.670	0.520	
$5s^25p^3 {}^2D^{\circ}{}_{3/2}$	$5s^25p^2(^1D)6s^2D_{3/2}$	573.390	1.422(10)	0.701	5.291	0.710	
$585p^4 {}^2D_{3/2}$	$5s^25p(^2P)5d^2 \ ^2P^{\circ}_{3/2}$	629,200	1.395(10)	0.828	6.859	0.340	
$5s^25p^3 {}^2D^{\circ}{}_{5/2}$	$5s^25p^2(^1D)6s^2D_{5/2}$	592,760	1.388(10)	0.731	8.557	0.770	
5s5p ⁴ ² P _{1/2}	$5s^25p(^2P)5d^2 \ ^2P^{\circ}_{1/2}$	619,240	1.385(10)	0.796	3.245	0.350	
$5s^25n^2(^{3}P)5d^{-4}P_{5/2}$	$5s^25p(^2P)5d^2 ^4D^{\circ}7/2$	691,690	1.282(10)	1.226	16.749	0.860	
$5s^25p^3 {}^2D^{\circ}_{3/2}$	$5s^25p^2(^1D)5d^{-2}D_{5/2}$	549.690	1.268(10)	0.861	6.234	0.680	
$\begin{array}{c} s_{3} s_{3} p_{-} p_{-} s_{3/2} \\ \overline{ss^2 5p^2(^1D)5d} \ ^2P_{1/2} \\ \overline{ss^2 5p^2(^1D)5d} \ ^2D_{5/2} \\ \overline{ss^2 5p^3} \ ^2D_{3/2} \\ \overline{ss^2 5p^3} \ ^2D_{3/2} \\ \overline{ss^2 5p^3} \ ^2D_{3/2} \\ \overline{ss^2 5p^3} \ ^2D_{3/2} \\ \overline{ss^2 5p^3} \ ^2D_{3/2} \\ \overline{ss^2 5p^3} \ ^2D_{5/2} \\ \overline{ss^2 5p^3} \ ^2D_{5/2} \\ \overline{ss^2 5p^4} \ ^2P_{1/2} \\ \overline{ss^2 5p^2(^3P)5d} \ ^4P_{5/2} \\ \overline{ss^2 5p^3} \ ^2D_{3/2} \\ \end{array}$	$\begin{array}{c} 5s \ 5p^{-}(\ D)5d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	562,740 583,060 654,600 650,130 582,360 575,970 648,570 573,390 629,200 592,760 619,240 691,690 549,690	1,752(10) $1,689(10)$ $1,559(10)$ $1,552(10)$ $1,491(10)$ $1,476(10)$ $1,424(10)$ $1,422(10)$ $1,395(10)$ $1,388(10)$ $1,385(10)$ $1,282(10)$ $1,268(10)$	0,410 1,722 0,668 1,180 1,137 1,101 0,599 0,701 0,828 0,731 0,796 1,226 0,861	6,609 8,632 25,258 8,720 8,350 7,670 5,291 6,859 8,557 3,245 16,749 6,234	0,460 0,460 0,300 0,660 0,720 0,690 0,520 0,710 0,340 0,770 0,350 0,860 0,680	

Tablo 3.26. (Devamı)									
Alt seviye	Üst seviye	λ (Å)	A _{ji} (s ⁻¹)	f _{ij}	Sij (a.b)	Oran (V/L)			
5s ² 5p ³ ² D° _{3/2}	5s ² 5p ² (¹ S)5d ² D _{5/2}	561,300	1,204(10)	0,853	6,306	0,620			
5s ² 5p ³ ² D° _{5/2}	4d ⁹ 5s ² (¹ S)5p ⁴ ² F _{5/2}	205,710	1,125(10)	0,071	0,290	0,760			
5s ² 5p ³ ² D° _{3/2}	4d ⁹ 5s ² (¹ S)5p ⁴ ⁴ P _{3/2}	206,250	1,102(10)	0,070	0,191	0,760			
$5s^25p^2(^1D)5d^2D_{5/2}$	$5s^{2}5p(^{2}P)5d^{2}$ $^{2}G^{\circ}_{7/2}$	632,240	1,075(10)	0,859	10,723	0,640			
5s ² 5p ² (³ P)5d ⁴ F _{9/2}	5s ² 5p(² P)5d ² ⁴ F° _{9/2}	613,940	1,065(10)	0,602	12,163	0,710			
$5s^25p^3 \ ^4S^{\circ}_{3/2}$	4d ⁹ 5s ² (¹ S)5p ⁴ ⁴ P _{3/2}	199,930	1,044(10)	0,063	0,165	0,750			
$5s^25p^2(^{3}P)5d ^{4}F_{3/2}$	$5s^{2}5p(^{2}P)5d^{2} {}^{4}F^{\circ}_{3/2}$	595,350	1,011(10)	0,537	4,211	0,750			
5s ² 5p ³ ² D° _{5/2}	4d ⁹ 5s ² (¹ S)5p ⁴ ² P _{3/2}	197,200	1,006(10)	0,039	0,152	0,550			

Üçlü iyonlaşmış radon için öz-öz korelasyonu (CC) konfigürasyon seti ile yapılan hesaplama sonucunda elde edilen enerjiler arasında 23216 adet elektrik dipol (E1) geçişi elde edildi. Bu sayının çok fazla olması nedeniyle Tablo 3.27.'de geçiş olasılığı (A_{ji} (s⁻¹)), 10¹⁰ ve daha büyük olan geçişler sunulmaktadır. Üçlü iyonlaşmış radon için mevcut kaynaklarda elektrik dipol geçişlerine ait herhangi bir geçiş parametresi bulunamadı. Dolayısıyla Rn IV iyonu için hesaplanan geçiş parametrelerinde bir karşılaştırma yapılamadı.

Tablo 3.27. Rn IV iyonu için elektrik dipol (E1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

Alt Seviye	Üst Seviye	λ (Å)	A _{ji} (s ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)
6p ⁴ 6d ² D _{3/2}	$6p^{3}6d^{2} {}^{2}P^{0}{}_{1/2}$	640,950	5,437(10)	1,674	14,132	0,390
$6p^{5} {}^{2}P^{0}_{3/2}$	6p ⁴ 6d ² D _{5/2}	565,090	4,032(10)	2,896	21,547	0,850
$6p^46d^2P_{1/2}$	$6p^{3}6d^{2} P^{0}_{1/2}$	559,420	3,999(10)	1,876	6,911	0,400
$6p^46d^2D_{3/2}$	$6p^{3}6d^{2} {}^{2}F^{0}_{5/2}$	683,580	3,344(10)	3,514	31,629	0,840
$6p^46d^{-2}P_{3/2}$	$6p^{3}6d^{2} {}^{2}P^{0}_{3/2}$	590,170	3,214(10)	1,678	13,043	0,580
$6p^{5} {}^{2}P^{0}{}_{1/2}$	$6p^46d^2D_{3/2}$	549,260	2,935(10)	2,655	9,603	0,800
$6p^47s^{-2}S_{1/2}$	6p ³ 6d(² D)7s ² P ^o _{3/2}	655,950	2,920(10)	3,767	16,270	0,710
$6p^{5} {}^{2}P^{0}_{3/2}$	6p ⁴ 6d ² P _{3/2}	566,720	2,830(10)	1,363	10,169	0,730
$6s^{2}6p^{3} 4S^{o}_{3/2}$	6s ² 6p ² (³ P)6d ⁴ P _{1/2}	564,230	2,808(10)	0,670	4,978	0,640
$6p^47s^{-2}S_{1/2}$	6p ³ 6d(² D)7s ² P ^o _{1/2}	663,190	2,788(10)	1,839	8,028	0,730
6s ² 6p ³ ² P ^o _{3/2}	6s ² 6p ² (¹ S)6d ² D _{5/2}	677,370	2,763(10)	2,851	25,428	0,640
6p ⁴ 6d ² G _{9/2}	6p ³ 6d ² ² G ^o 9/2	578,870	2,683(10)	1,348	25,689	0,720
6s ² 6p ³ ² P ^o _{3/2}	$6s6p^{4} {}^{2}P_{1/2}$	580,710	2,674(10)	0,676	5,168	0,560
6p ⁴ 7s ² D _{3/2}	6p ³ 6d(² D)7s ² F ^o _{5/2}	565,250	2,557(10)	1,837	13,676	0,680
6p ⁴ 6d ² D _{5/2}	$6p^46d^2 \ ^2F_{7/2}$	611,440	2,508(10)	1,874	22,633	0,780
$6p^47s^{-2}S_{1/2}$	6p ³ 6d(² D)7s ⁴ D ^o _{1/2}	567,130	2,503(10)	1,207	4,507	0,740
6p ⁵ ² P ^o _{1/2}	$6p^46d^2P_{1/2}$	627,650	2,371(10)	1,400	5,787	0,720
6s ² 6p ³ ² D ^o 5/2	6s ² 6p ² (³ P)6d ² F _{7/2}	604,190	2,331(10)	1,701	20,301	0,670
$6s^{2}6p(^{2}P)7s^{2} {}^{2}P^{0}_{3/2}$	6s6p ² (³ P)7s ² ² P _{3/2}	551,340	2,143(10)	0,977	7,092	0,690
6s ² 6p ³ ² D ^o 5/2	6s ² 6p ² (³ P)6d ² D _{5/2}	590,500	2,124(10)	1,110	12,952	0,610
$6s^{2}6p^{3}$ $^{4}S^{o}_{3/2}$	6s ² 6p ² (¹ D)6d ² P _{3/2}	578,530	2,087(10)	1,047	7,980	0,680
6s ² 6p ³ ² P ^o 1/2	6s ² 6p ² (¹ S)6d ² D _{3/2}	583,960	2,019(10)	2,065	7,939	0,700
6s ² 6p ³ ² P ^o _{3/2}	6s6p ⁴ ² P _{3/2}	684,970	2,005(10)	1,410	12,719	0,680
$6s^{2}6p^{2}(^{3}P)7s^{4}P_{5/2}$	$6s^{2}6p(^{2}P^{o})6d7s^{-2}F^{o}_{7/2}$	650,140	1,919(10)	1,622	20,826	0,620
6s ² 6p ² (¹ D)7s ² D _{3/2}	6s ² 6p(² P ^o)6d7s ² F ^o 5/2	654,920	1,891(10)	1,824	15,730	0,590
6p ⁴ 6d ² F _{7/2}	6p ³ 6d ² ² G ^o 9/2	582,010	1,849(10)	1,174	17,988	0,800
$6s^{2}6p(^{2}P)7s^{2} {}^{2}P^{o}{}_{1/2}$	$6s6p^2(^{3}P)7s^2 {}^{2}P_{1/2}$	580,620	1,776(10)	0,898	3,432	0,600
$6s^{2}6p^{2}(^{3}P)7s^{4}P_{1/2}$	6s ² 6p(² P ^o)6d7s ⁴ D ^o _{1/2}	577,430	1,766(10)	0,883	3,357	0,740
6p ⁴ 6d ² G _{7/2}	6p ³ 6d ² ² F ^o 7/2	532,630	1,710(10)	0,727	10,200	0,680
6p ⁴ 6d ² D _{5/2}	6p ³ 6d(² D)7s ² D ^o _{5/2}	689,680	1,710(10)	1,219	16,607	0,810
6p ⁴ 6d ⁴ F _{9/2}	6p ³ 6d ² ⁴ F ^o 9/2	593,050	1,687(10)	0,889	17,364	0,770
6p ⁴ 6d ² D _{5/2}	6p ³ 6d ² ² P ^o _{3/2}	537,600	1,676(10)	0,484	5,142	0,330
6s ² 6p ³ ² D ^o _{3/2}	$6s^{2}6p^{2}(^{3}P)6d ^{4}P_{5/2}$	655,430	1,669(10)	1,612	13,913	0,610

Alt Sevive	Üst Sevive	λ(Å)	Aii (s ⁻¹)	fii	Sii (a.b)	Oran (V/L)
$6p^46d^{-2}G_{9/2}$	$6p^{3}6d^{2} {}^{2}H^{0}_{11/2}$	585,890	1.661(10)	1.026	19.781	0.840
$6p^46d^2F_{5/2}$	$6p^{3}6d^{2} {}^{2}D^{0}5/2$	564.390	1.647(10)	0.787	8,770	0.730
$6p^4 6d^{-2}D_{5/2}$	$6p^{3}6d^{2} {}^{2}D^{0}_{3/2}$	660,960	1.620(10)	0.708	9.237	0.730
$6s6p^2(^1D)7s^2 ^2D_{5/2}$	$6p^{3}6d(^{2}D)7s^{-2}F^{0}7/2$	557.920	1.603(10)	0.997	10.989	0.700
$6s^26p^3 {}^2D^{0}_{3/2}$	$6s^{2}6p^{2}(^{1}S)7s^{-2}S_{1/2}$	552.370	1.597(10)	0.365	2.656	0.590
$6s^26p^3 \ ^4S^{\circ}_{3/2}$	$6s^26p^2(^{3}P)6d^{-2}D_{3/2}$	558,740	1.587(10)	0.743	5.465	0.660
$6s^26p^3 \ ^4S^{o}_{3/2}$	$6s^26p^2(^{3}P)6d ^{4}P_{5/2}$	606,440	1,558(10)	1,289	10,293	0,630
$6s^{2}6p^{2}(^{3}P)7s^{4}P_{3/2}$	$6s^{2}6p(^{2}P^{o})6d7s \ ^{4}P^{o}_{1/2}$	567,230	1,490(10)	0,359	2,684	0,740
$6p^4 6d^{-2}P_{3/2}$	$6p^{3}6d^{2} {}^{2}P^{0}_{1/2}$	566,950	1,439(10)	0,347	2,589	0,720
$6p^{5} {}^{2}P^{0}_{3/2}$	$6p^46d^2D_{3/2}$	546,880	1,415(10)	0,635	4,570	0,830
6s ² 6p ³ ² D ^o _{3/2}	$6s^{2}6p^{2}(^{1}S)7s^{-2}S_{1/2}$	534,210	1,388(10)	0,297	2,089	0,560
$6p^46d^{-4}P_{1/2}$	$6p^{3}6d^{2} {}^{4}D^{0}{}_{1/2}$	589,710	1,383(10)	0,721	2,799	0.810
$6p^46d^2D_{3/2}$	$6p^{3}6d^{2} P^{0}_{3/2}$	555,180	1,362(10)	0,629	4,600	0,500
6s ² 6p ³ ² D ^o _{3/2}	6s ² 6p ² (¹ D)6d ² P _{3/2}	556,050	1,355(10)	0,628	4,598	0,590
6s ² 6p ² (¹ D)7s ² D _{3/2}	$6s^{2}6p(^{2}P^{o})6d7s^{-2}D^{o}_{5/2}$	566,080	1,318(10)	0,950	7,080	0,630
6p ⁴ 6d ⁴ P _{5/2}	$6p^{3}6d^{2}$ $^{4}S^{0}_{3/2}$	565,170	1,292(10)	0,412	4,603	0,740
$6s^{2}6p^{3} {}^{2}P^{0}{}_{1/2}$	$6s^26p^2(^1D)6d\ ^2P_{1/2}$	678,050	1,289(10)	0,888	3,965	0,630
$6s^{2}6p(^{2}P)7s^{2} {}^{2}P^{0}_{3/2}$	$6s6p^2(^1S)7s^2 \ ^2S_{1/2}$	569,260	1,286(10)	0,312	2,341	0,480
$6p^{5} \hat{P}^{0}_{3/2}$	$6p^46d^{-2}P_{1/2}$	514,670	1,272(10)	0,253	1,712	0,590
6p ⁴ 6d ² D _{5/2}	$6p^{3}6d^{2} {}^{2}F^{0}_{7/2}$	720,380	1,255(10)	1,302	18,529	0,890
$6p^46d \ ^4F_{3/2}$	$6p^{3}6d^{2} P_{1/2}$	606,100	1,235(10)	0,340	2,714	0,830
$6p^46d \ ^4D_{1/2}$	$6p^{3}6d^{2} \ ^{4}D_{1/2}$	539,090	1,214(10)	0,529	1,878	0,690
6p ⁴ 6d ² P _{3/2}	6p ³ 6d(² D)7s ⁴ P ^o _{3/2}	573,960	1,214(10)	0,600	4,532	0,680
6p ⁴ 7s ² D _{3/2}	6p ³ 6d(² D)7s ² D ^o _{3/2}	569,600	1,208(10)	0,588	4,408	0,690
6p ⁴ 7s ⁴ P _{3/2}	6p ³ 6d ² ² P _{1/2}	576,510	1,192(10)	0,297	2,254	0,770
6s ² 6p ³ ² D ^o _{3/2}	6s6p ⁴ ² P _{3/2}	600,290	1,191(10)	0,643	5,086	0,610
$6s^26p^3 \ ^4S^{o}_{3/2}$	6s ² 6p ² (³ P)6d ⁴ D _{5/2}	585,350	1,175(10)	0,905	6,979	0,720
6p ⁴ 6d ⁴ F _{7/2}	6p ³ 6d ² ² F ^o _{7/2}	589,730	1,172(10)	0,611	9,493	0,660
6p ⁴ 6d ² D _{5/2}	6p ³ 6d ² ² F ^o 5/2	629,920	1,163(10)	0,692	8,611	0,640
$6p^46d \ ^4D_{1/2}$	6p ³ 6d ² ⁴ P ^o _{3/2}	570,960	1,134(10)	1,109	4,167	0,730
6p ⁴ 6d ⁴ F _{9/2}	6p ³ 6d(² D)7s ⁴ G ^o 11/2	596,190	1,110(10)	0,710	13,934	0,950
6s ² 6p ³ ² P ^o 1/2	$6s^{2}6p^{2}(^{1}S)7s^{-2}S_{1/2}$	611,770	1,110(10)	0,623	2,509	0,700
6s ² 6p ² (³ P)7s ² P _{1/2}	6s ² 6p(² P ^o)6d7s ² P ^o _{1/2}	544,870	1,107(10)	0,493	1,767	0,680
6p ⁴ 6d ² D _{5/2}	6p ³ 6d ² ² P ^o _{3/2}	591,960	1,104(10)	0,387	4,519	0,350
6p ⁴ 6d ⁴ F _{7/2}	6p ³ 6d ² ⁴ P ^o 5/2	581,620	1,069(10)	0,407	6,230	0,770
6p ⁴ 6d ⁴ P _{1/2}	6p ³ 6d(² D)7s ⁴ P ^o _{3/2}	576,140	1,066(10)	1,061	4,025	0,750
6p ⁴ 6d ² F _{7/2}	$6p^{3}6d^{2} \ ^{2}G^{o}_{7/2}$	579,810	1,059(10)	0,534	8,152	0,700
6p ⁴ 6d ⁴ D _{7/2}	$6p^{3}6d^{2} {}^{4}F^{0}_{9/2}$	577,560	1,055(10)	0,659	10,027	0,750
6s6p ² (¹ D)7s ² ² D _{5/2}	6p ³ 6d(² D)7s ² F ^o _{7/2}	549,910	1,046(10)	0,632	6,870	0,680
$6s^{2}6p^{2}(^{3}P)7s^{4}P_{1/2}$	6s ² 6p(² P ^o)6d7s ⁴ D ^o _{3/2}	582,100	1,042(10)	1,059	4,059	0,770
6p ⁴ 6d ² G _{7/2}	6p ³ 6d ² ² H ^o 9/2	686,790	1,042(10)	0,921	16,655	0,770
6p ⁴ 7s ² P _{3/2}	6p ³ 6d(² D)7s ⁴ P ^o _{3/2}	599,870	1,026(10)	0,553	4,370	0,820

Tablo 3.27. (Devamı)

3.2.3. Elektrik kuadrupol (E2) ve manyetik dipol (M1) geçiş hesaplamaları

Üçlü iyonlaşmış kripton (Kr IV) iyonu için öz-öz korelasyonuna ait A konfigürasyon seti (CC-A) kullanılarak yapılan hesaplamada aynı pariteye sahip enerji seviyeleri arasında 10039 E2 ve 7238 M1 geçişi elde edildi. Daha önce bu iyona ait yasaklı geçiş parametreleri ile ilgili yapılan çalışmalarda (Biémont ve Hansen, 1985; Sterling ve ark., 2011) sadece temel hal konfigürasyonunun (4s²4p³) farklı seviyeleri arasındaki geçiş olasılığı değerlerine ulaşılabildi. Karşılaştırma değerleri ile bu çalışmadan elde edilen sonuçlar Tablo 3.28.'de verilmektedir. Bu tabloda 'a' ve 'a*' üst indisi ile

gösterilen değerler Biémont ve Hansen (1985)'in HXR ve HFR yöntemi ile yaptığı çalışmadan alınan sonuçlardır. 'b', 'b*' ve 'b**' üst indisi ile gösterilen değerler Sterling ve arkadaşları (2011)'nın AUTOSTRUCTURE yöntemiyle üç farklı konfigürasyon seti kullanarak yaptığı çalışmadan alınan sonuçlardır. Tablo incelendiğinde karşılaştırma değerlerinin de kendi aralarında farklılıklara sahip olduğu görülmektedir. M1 geçişlerine ait geçiş olasılığı değerlerinde oldukça iyi bir uyum vardır. Örmeğin, $4s^24p^3 4S^{\circ}_{3/2} - 4s^24p^3 ^2P^{\circ}_{1/2}$ geçişinde karşılaştırma değerleri (12,580, 12,520, 10,100, 9,420 ve 10,000) s⁻¹ iken bu çalışmada 11,330 s⁻¹ olarak bulundu. Bu uvum, M1 gecislerine ait gecis olasılığı değerlerinin karsılastırıldığı Sekil 3.9.'da da açık olarak görülmektedir. E2 geçişleri için de bazı geçişler dışında genel olarak geçiş olasılığı değerlerinin uyumlu olduğu görülmektedir. Örneğin, 4s²4p³ ⁴S^o_{3/2} - 4s²4p³ ²D^o_{5/2} seviyeleri arasındaki geçişte geçiş olasılığı karşılaştırma değerleri (2,985(-2) ve 2,962(-2)) s⁻¹ iken bu calışmada elde edilen değer 6,854(-2) s⁻¹'dir. $4s^24p^3 4S^{\circ}_{3/2} - {}^{2}P^{\circ}_{1/2}$ geçişinde karşılaştırma değerleri (3,554 ve 3,674)(-2) s⁻¹ iken bu çalışmadaki değeri 6,124 s⁻¹'dir. Bu seviyeler için MCDF hesabından elde edilen değerin karşılaştırma değerlerine oldukça uzak olduğu görülmektedir. E2 ve M1 yasaklı geçişlerinin sayısı fazla olmasından dolayı geçiş olasılığı en yüksek olan ilk 50 geçiş Tablo 3.29.'da sunulmaktadır.

Tablo 3.28. Kr IV iyonu için elektrik kuadrupol (H	E2) ve many	etik dipol (M1)	geçişlerine a	ait dalga boy	u (λ), geçiş
olasılığı (Aji), salınıcı şiddeti (fij), çi	izgi şiddeti	(S _{ij}) ve salınıcı	şiddetinin l	nız-uzunluk	formlarının
oranı ve karsılastırma değerleri					

Geç	işler	2 (Å)	Aji	(s ⁻¹)	c	S (a b)	Oran
Alt Seviye	Üst Seviye	λ (A)	Bu çal.	Diğer çal.	Iij	S _{ij} (a.d)	(V/L)
E2 Geçişleri							
4s ² 4p ^{3 4} S ^o _{3/2}	$4s^24p^3 {}^2D^{o}_{5/2}$	4385,30	6,854(-2)	2,985(-2) ^a 2,962(-2) ^{a*}	2,964(-10)	0,595	1,00
4s ² 4p ³ ⁴ S ^o _{3/2}	$4s^24p^3\ ^2D^o{}_{3/2}$	4791,20	3,042(-2)	$1,266(-2)^{a}$ $1,255(-2)^{a^{*}}$	1,046(-10)	0,274	1,00
$4s^24p^3 \ {}^4S^{o}_{3/2}$	$4s^24p^3{}^2P^o{}_{1/2}$	3091,50	6,124	3,554(-2) ^a 3,674(-2) ^{a*}	4,387(-9)	3,088	0,002
$4s^24p^3 \ {}^4S^{o}_{3/2}$	$4s^24p^3{}^2P^{o}_{3/2}$	2876,90	0,773(-3)	1,614(-3) ^a 1,893(-3) ^{a*}	9,590(-12)	0,005	1,00
4s ² 4p ³ ² D ^o _{5/2}	$4s^24p^3{}^2P^{o}{}_{1/2}$	10478,00	1,736(-4)	$\begin{array}{c} 0,137^{a} \\ 0,136^{a*} \\ 4,420(-2)^{b} \\ 1,570(-2)^{b*} \\ 8.910(-2)^{b**} \end{array}$	9,529(-13)	0,039	0,02
4s ² 4p ³ ² D ^o _{3/2}	$4s^24p^3{}^2D^o{}_{5/2}$	51757,00	20,686(-7)	8,233(-7) ^a 7,953(-7) ^{a*}	1,246(-12)	4,116	1,70
$4s^24p^3 {}^2P^{o}_{1/2}$	$4s^24p^3{}^2P^{o}_{3/2}$	41455,00	2,095(-6)	2,528(-6) ^a 2,442(-6) ^{a*}	1,079(-12)	0,916	3,20
4s ² 4p ³ ² D ^o _{3/2}	$4s^24p^3{}^2P^o{}_{1/2}$	8714,20	0,0392	0,351 ^a 0,350 ^{a*}	2,232(-10)	3,519	3,00

Gecisler			14010 2.201 ((c-1)		Oren			
Alt Soviyo	işier Üst Soviyo	λ (Å)	Aji Du col	(8) Diğar aşl	f _{ij}	Sij (a.b)	(\mathbf{V}/\mathbf{I})		
$\frac{\text{Alt Sevige}}{4s^24r^3 2D^{2}r^3}$	$\frac{1}{4\sigma^2 4p^3 2D^2}$	7200.60	0 101	0.257a	7 916(10)	6.052	0.80		
48-4p ² -D ² 3/2	48-4p* -P* 3/2	7200,00	0,101	0,257*	7,810(-10)	0,932	0,89		
$4a^24m^3^2D^{0}m^3$	$4a^2 4m^3 2D0$	9261 20	0 192	0,234"	1.277(0)	26 719	0.00		
48-4p* -D*5/2	48-4p* -P* 3/2	8304,30	0,185	0,490"	1,277(-9)	20,718	0,90		
				0,495*					
M1 Gecisleri									
$\frac{4s^24p^3 {}^4S^{\circ}_{3/2}}{4s^24p^3 {}^4S^{\circ}_{3/2}}$	$4s^24p^3 {}^2D^{0}{}^{5/2}$	4385.30	0.105	0.124 ^a	4.532(-10)	0.002			
·····F ·······························	····P = 5/2		.,	0.123 ^{a*}	.,	-,			
				0,151 ^b					
				0.167^{b^*}					
				0.131 ^{b**}					
$4s^24n^3 4S_{3/2}^{0}$	$4s^24n^3 {}^2D^{0}_{3/2}$	4791 20	3 921	3 148 ^a	1 349(-8)	0.063			
15 IP B 3/2	10 IP D 3/2	1791,20	5,521	3 128 ^{a*}	1,5 17(0)	0,000			
				3 340 ^b					
				3 940 ^{b*}					
				2 750 ^{b**}					
$4s^24n^3 4S^{0}_{2/2}$	$4s^2 4n^3 P_{1/2}^{0}$	3091 50	11 330	12,750 12,580 ^a	8 116(-9)	0.024			
чэчр в 3/2	-15 -1P I 1/2	5071,50	11,550	12,500 12 520 ^{a*}	0,110())	0,024			
				10,100 ^b					
				9 420 ^{b*}					
				10 000 ^{b**}					
$4s^24n^3 4S^{0}a^{2}$	$4s^2 4n^3 P_{2}^{0}$	2876.90	21 384	23 500 ^a	2 653(-8)	0.075			
чз чр 5 3/2	чз чр т 3/2	2070,90	21,504	23,500 23,460ª*	2,055(-0)	0,075			
				10 300 ^b					
				17,300 ^{b*}					
				10,500					
$4s^2 4n^3 {}^2 D^0_{ava}$	$4s^2/n^3 2D^0$	51757.00	6.7034(-2)	12,000 $1870(-2)^{a}$	4.038(-8)	2.067			
43 4p D 3/2	43 4p D 5/2	51757,00	0,7034(-2)	$4,870(-2)^{a^*}$	4,030(-0)	2,007			
				$4,810(-2)^{b}$					
				$(-2)^{b^*}$					
				3 580(-2) ^{b**}					
$4s^2/n^3 2 \mathbf{P}^0$	$4s^2/n^3 2 \mathbf{P}_{2/2}$	41455.00	10.705(-2)	$9,380(-2)^{a}$	5 516(-8)	1 131			
45 4p 1 1/2	43 4p 1 3/2	41455,00	10,705(-2)	9,930(-2)	5,510(-6)	1,131			
				$7,500(-2)^{b}$					
				$10.700(-2)^{b^*}$					
				$6.230(-2)^{b**}$					
$4s^24n^3 {}^2D^{0}aa$	$4s^2 4n^3 2P_{1/2}$	8714 20	3 591	$5,020^{a}$	2044(-8)	0 176			
43 4p D 3/2	-15 -1P I 1/2	0714,20	5,571	4 996 ^{a*}	2,011(0)	0,170			
				3 360 ^b					
				2,500 2,650 ^{b*}					
				2,050 3 830 ^{b**}					
$4s^24n^3 {}^2D^{0}_{2/2}$	$4s^2 4n^3 2P_{2/2}$	7200.60	9719	13 190ª	7 555(-8)	0 538			
чз чр D 3/2	-15 -1P 1 5/2	7200,00),/1)	$13,120^{a^*}$	7,555(0)	0,550			
				8 370 ^b					
				7 500 ^{b*}					
				8 930 ^{b**}					
$4s^2 4n^3 2 D^{0} 5n^2$	$4s^24n^{3}2P_{2}^{0}$	8364 30	3 797	5 443ª	2 655(-8)	0 329			
чо тр D 5/2	тэтр 1 3/2	0507,50	5,171	5,430 ^{a*}	2,055(-0)	0,527			
				3 530 ^b					
				2,860 ^{b*}					
				4 030 ^{b**}					
				.,050					

Tablo 3.28. (Devamı)

^a Biémont ve Hansen, 1985; ^b Sterling ve ark., 2011

Alt sevive	Üst sevive	λ (Å)	A ;; (s ⁻¹)	f::	S;; (a h)	Oran(V/L)
E2 Gecisi	Ost settye	<i>k</i> (11)	11]1 (5)	тŋ	0ij (4. 0)	
$4s^24p^2(^1D)4f^{-2}P_{3/2}^{0}$	$4s^24p(^2P^o)4f^2 ^2P^o_{1/2}$	316.920	1,114(6)	8.388(-6)	6.361	0.830
$4s^24p^3$ $4S^{\circ}_{3/2}$	$4s^24n^2(^{3}P)4f^{-4}D^{0}1/2$	340,170	1.035(6)	8,976(-6)	8.417	0.800
$4s^24p^2(^{3}P)4f^{-2}F^{0}5/2$	$4s^24p(^2P^0)4f^2 \ ^2P^0_{1/2}$	301.820	8.547(5)	3.891(-6)	3.823	0.700
$4s^24p^2(^{3}P)4f^{-4}D^{0}5/2$	$4s^24p(^2P^0)4f^2 ^2P^0_{3/2}$	310.720	7.945(5)	7.666(-6)	8.218	0.850
$4s^24n^3$ ² D ^o 5/2	$4s^24n^2(^1D)4f^2G^{0}9/2$	351,750	7,565(5)	2,339(-5)	36.373	0.840
$4s^24p^3 {}^{2}P^{0}_{3/2}$	$4s^24p^2(^1D)4f^{-2}G^{0}7/2$	363.720	7,194(5)	2.854(-5)	32.712	0.760
$4s^24p^2(^{3}P)4f^{-2}F^{0}5/2$	$4s^24n(^2P^0)4f^2 ^2H^{0}_{9/2}$	305.800	6.993(5)	1.634(-5)	16.698	0.950
$4s^24p^2(^1D)4f^{-2}H^{0}_{11/2}$	$4s^24p(^2P^o)4f^2 {}^2I^o_{13/2}$	324.570	6.885(5)	1.269(-5)	31.005	0.970
$4s^24p^2(^{3}P)4f^{-2}G^{0}9/2$	$4s^24p(^2P^o)4f^2 {}^2I^o_{13/2}$	317.380	6,798(5)	1.437(-5)	27.368	0.970
$4s^24p^2(^{3}P)4f^{-4}D^{0}7/2$	$4s^24p(^2P^0)4f^2 \ ^4S^{0}_{3/2}$	308.050	6.575(5)	4.677(-6)	6.514	0.820
$4s^24p^3$ $4S^{\circ}_{3/2}$	$4s^24p^2(^{3}P)4f^{-4}D^{0}7/2$	345,450	6,542(5)	2.341(-5)	22.991	0.810
$4s^24p^2(^1D)4f^{-2}H^{0}9/2$	$4s^24p(^2P^o)4f^2 {}^2K^{o}_{13/2}$	322.270	6.392(5)	1.393(-5)	27,776	1.100
$4s^24p^3 {}^2D^{\circ}_{5/2}$	$4s^24p^2(^1D)4f^2F_{7/2}^{0}$	350,980	6,210(5)	1,529(-5)	23,626	0,740
$4s^24p^2(^1D)4f^{-2}H^{0}_{11/2}$	$4s^24p(^2P^o)4f^2 \ ^2K^o_{15/2}$	319,440	6,189(5)	1,262(-5)	29,410	1,100
$4s^24p^2(^1D)4f^2G^{0}7/2$	$4s^24p(^2P^o)4f^2 {}^2I^{o}_{11/2}$	320.800	6.158(5)	1.425(-5)	22,416	1.100
$4s^24p^3 {}^2D^{\circ}{}_{5/2}$	$4s^24p^2(^{3}P)4f^{-2}G^{0}9/2$	363,840	6,148(5)	2,033(-5)	34,998	0,790
$4s^24p^2(^{3}P)4f^{-2}D^{\circ}_{5/2}$	$4s^{2}4p(^{2}P^{0})4f^{2}f^{2}F^{0}7/2$	308.260	6.140(5)	1.166(-5)	12.208	0.890
$4s^24p^2(^1D)4f^{-2}H^{0}9/2$	$4s^24p(^2P^o)4f^2 {}^2I^{o}_{11/2}$	322.710	6.136(5)	1.150(-5)	23.011	0.990
$4s^24p^2(^{3}P)4f^2F^{0}_{7/2}$	$4s^24p(^2P^o)4f^2 ^2P^o_{3/2}$	296,830	5,948(5)	3,928(-6)	4,895	0,670
$4s^24p^2(^1D)4f^2G^{0}9/2$	$4s^24p(^2P^o)4f^2 {}^2K^{o}_{13/2}$	317.710	5,901(5)	1.250(-5)	23.880	1.100
$4s^24p^2(^{3}P)4f^{-2}G^{0}_{9/2}$	$4s^24p(^2P^o)4f^2 {}^2F^o_{7/2}$	312,170	5,609(5)	8,195(-6)	11,879	0,920
$4s^24p^2(^1D)4f^2P_{1/2}^{0}$	$4s^24p(^2P^o)4f^2 ^2D^o_{3/2}$	320,010	5,608(5)	1,722(-5)	6,723	0,970
$4s^24p^3 {}^2D^{\circ}_{3/2}$	$4s^24p^2(^{3}P)4f^{-2}F_{7/2}^{\circ}$	356,670	5,558(5)	2,120(-5)	22,915	0,820
$4s^24p^2(^{3}P)4f^{-4}D^{\circ}_{5/2}$	$4s^24p(^2P^o)4f^2 \ ^4D^o_{7/2}$	315,230	5,520(5)	1,097(-5)	12,274	0,860
$4s^24p^2(^{3}P)4f ^{4}G^{\circ}_{5/2}$	$4s^{2}4p(^{2}P^{0})4f^{2} ^{4}H^{0}_{7/2}$	311,740	5,482(5)	1,065(-5)	11,530	0,940
$4s^24p^3 ^2D^{o}_{3/2}$	$4s^24p^2(^1D)4f^2F_{5/2}$	348,380	5,474(5)	1,494(-5)	15,052	0,740
$4s^24p^2(^1D)4f^2G^{o}_{7/2}$	$4s^24p(^2P^o)4f^2 \ ^2G^{o}_{7/2}$	317,230	5,367(5)	8,097(-6)	12,317	0,910
$4s^24p^2(^{3}P)4f \ ^{4}G^{\circ}_{11/2}$	$4s^24p(^2P^o)4f^2 ^4I^{o}_{13/2}$	311,890	5,285(5)	8,992(-6)	19,499	0,950
$4s^24p^2(^{3}P)4f^{-4}D^{\circ}_{1/2}$	$4s^24p(^2P^o)4f^2 \ ^4G^{o}_{5/2}$	308,590	5,250(5)	2,249(-5)	7,871	0,900
$4s^24p^3 {}^2P^{0}_{3/2}$	$4s^24p^2(^1D)4f^{-2}D^{\circ}_{5/2}$	358,960	5,217(5)	1,512(-5)	16,659	0,850
$4s^24p^3 \ ^4S^{o}_{3/2}$	$4s^24p^2(^{3}P)4f^{-4}D_{3/2}^{\circ}$	340,020	5,212(5)	9,034(-6)	8,460	0,810
$4s^24p^2(^{3}P)4f^{-4}F^{0}_{3/2}$	$4s^24p(^2P^o)4f^2 \ ^2S^o_{1/2}$	311,990	5,179(5)	3,779(-6)	2,734	0,870
$4s^24p^3 {}^2P^{0}_{1/2}$	$4s^24p^2(^{3}P)4f^{-2}F^{0}_{5/2}$	371,740	5,021(5)	3,120(-5)	19,094	0,760
$4s^24p^2(^1D)4f^2D_{5/2}^{\circ}$	$4s^24p(^2P^o)4f^2 \ ^2G^{o}_{9/2}$	321,180	5,013(5)	1,292(-5)	15,298	1,000
$4s^24p^2(^{3}P)4f ^{4}G^{o}_{11/2}$	$4s^24p(^2P^o)4f^2 ^4H^{o}_{13/2}$	317,770	4,895(5)	8,645(-6)	19,827	0,940
$4s^24p^2(^{3}P)4f ^{4}D^{\circ}_{3/2}$	$4s^{2}4p(^{2}P^{0})4f^{2} ^{4}D^{0}_{1/2}$	314,370	4,894(5)	3,625(-6)	2,684	0,890
$4s^24p^2(^1D)4f^2G^{o}_{9/2}$	$4s^24p(^2P^o)4f^2 ^2I^o_{13/2}$	320,310	4,798(5)	1,033(-5)	20,224	1,100
$4s^24p^2(^1D)4f^2P_{3/2}$	$4s^24p(^2P^o)4f^2 ^2D^o_{5/2}$	320,070	4,789(5)	1,103(-5)	8,619	0,960
$4s^24p^2(^{3}P)4f^{-4}D^{o}_{3/2}$	$4s^24p(^2P^o)4f^2 ^2P^o_{1/2}$	308,520	4,774(5)	3,406(-6)	2,383	0,810
$4s^24p^2(^{3}P)4f ^{4}G^{0}_{9/2}$	$4s^24p(^2P^o)4f^2 ^2H^o_{11/2}$	314,940	4,738(5)	8,455(-6)	15,731	0,940
$4s^24p^2(^1D)4f^2F^{o}_{7/2}$	$4s^24p(^2P^o)4f^2 ^2H^o_{11/2}$	321,530	4,728(5)	1,099(-5)	17,409	1,000
$4s^24p^3 \ ^2P^{o}_{1/2}$	$4s^24p^2(^1S)4f^2F^{o}_{5/2}$	329,570	4,724(5)	2,308(-5)	9,841	0,790
$4s^24p^2(^1D)4f^2P_{3/2}$	$4s^24p(^2P^o)4f^2 ^2P^o_{3/2}$	318,640	4,671(5)	7,109(-6)	5,480	1,100
$4s^24p^2(^3P)4f^{-4}D^{o}_{5/2}$	$4s^24p(^2P^o)4f^2 \ ^4D^o_{3/2}$	312,200	4,662(5)	4,541(-6)	4,938	0,860
$4s^24p^2(^1D)4f^2G^{o}_{7/2}$	$4s^24p(^2P^o)4f^2 \ ^2H^o{}_{11/2}$	316,830	4,651(5)	1,050(-5)	15,909	0,980
$4s^24p^2(^1S)4f^2F^{o}_{7/2}$	$4s^24p(^2P^o)4f^2 \ ^2G^{o}_{9/2}$	345,560	4,607(5)	1,031(-5)	20,269	1,100
$4s^24p^3$ $^4S^{o}_{3/2}$	$4s^24p^2(^3P)4f^{-4}D^{o}_{5/2}$	342,960	4,546(5)	1,203(-5)	11,556	0,820
$4s^24p^2(^3P)4f^{-4}D^{o}_{7/2}$	$4s^{2}4p(^{2}P^{o})4f^{2} \ ^{4}D^{o}_{7/2}$	313,150	4,481(5)	6,587(-6)	9,638	0,870
$4s^24p^2(^3P)4f \ ^4G^{o}_{11/2}$	$4s^24p(^2P^o)4f^2 \ ^4G^o{}_{11/2}$	308,430	4,352(5)	6,206(-6)	13,015	0,860
$4s^24p^2(^3P)4f^{-4}F^{o}_{3/2}$	$4s^24p(^2P^o)4f^2 \ ^4D^o{}_{1/2}$	309,630	4,343(5)	3,121(-6)	2,207	0,790
M1 Geçişi						
4s4p ⁴ ⁴ P _{3/2}	$4s4p^4 \ ^2S_{1/2}$	1495,900	77,966	1,308(-8)	1,935(-2)	
4s ² 4p ² (³ P)6s ⁴ P _{3/2}	$4s^24p^2(^1S)6s^2S_{1/2}$	2303,700	61,343	2,440(-8)	5,560(-2)	
$4s^24p(^2P^o)5p^2 \ ^2P^o{}_{3/2}$	$4s^25p^3 \ ^2P^{o}_{1/2}$	350,540	60,107	5,536(-10)	1,920(-4)	
$4s^24p^2(^3P)5s^{-4}P_{3/2}$	$4s^24p^2(^1S)5s^2S_{1/2}$	2251,500	59,262	2,252(-8)	5,015(-2)	
$4s^24p^2(^3P)5d \ ^4F^{o}_{7/2}$	$4s^24p^2(^1S)5d^{-2}D_{5/2}$	2205,400	37,765	2,065(-8)	9,010(-2)	
$4s^24p^3$ $^4S^{o}_{3/2}$	$4s^24p^2(^{3}P)5p \ ^{4}P^{o}_{1/2}$	418,680	36,601	4,809(-10)	1,992(-4)	
$4s^24p(^2P)5p^2 \ ^2F^{o}_{5/2}$	$4s^25p^3$ $^2D^{o}_{5/2}$	335,800	35,696	6,034(-10)	3,006(-4)	
$4s^{2}4p^{2}(^{3}P)5p^{-4}D^{o}_{5/2}$	$4s^24p^2(^1S)5p^2P^{o}_{3/2}$	2181,400	35,462	1,687(-8)	5,458(-2)	

Tablo 3.29. Kr IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu(λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

Alt seviye	Üst seviye	λ (Å)	Aji (s ⁻¹)	fij	S _{ij} (a.b)	Oran (V/L)
$4s^24p(^2P)5p^2 \ ^4P^{o}_{1/2}$	$4s^25p^3$ $4S^{\circ}_{3/2}$	341,910	33,667	1,180(-9)	1,995(-4)	· · · · ·
$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{0}_{7/2}$	$4s^25p^3 \ ^2D^{o}_{5/2}$	330,270	33,197	4,071(-10)	2,660(-4)	
$4s^24p^2(^{3}P)4f^{-4}G^{0}_{9/2}$	$4s^24p^2(^1S)4f^2F^{0}_{7/2}$	2184,500	32,466	1,858(-8)	0,100	
$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{0}_{1/2}$	$4s^{2}5p^{3}$ ² D ^o _{3/2}	321,330	32,408	1,003(-9)	1,594(-4)	
$4s^24p^2(^{3}P)5p^{-4}P_{1/2}^{o}$	$4s^{2}4p(^{2}P)5p^{2} {}^{2}P^{0}{}_{1/2}$	349,520	32,009	5,862(-10)	1,013(-4)	
$4s^24p^3 4S^{o}_{3/2}$	$4s^24p^2(^{3}P)5p^2P_{3/2}$	402,910	31,824	7,745(-10)	3,087(-4)	
$4s^24p^3 \ ^2D^{o}_{3/2}$	$4s^{2}4p^{2}(^{3}P)5p^{-4}D^{o}_{1/2}$	472,420	31,805	5,321(-10)	2,486(-4)	
$4s^{2}4p^{2}(^{3}P)5p^{4}D^{0}_{3/2}$	$4s^{2}4p(^{2}P)5p^{2} {}^{2}P^{0}{}_{1/2}$	343,050	31,374	2,768(-10)	9,390(-5)	
4s ² 4p ² (³ P)5p ² D ^o _{5/2}	$4s^{2}4p(^{2}P)5p^{2} {}^{2}P^{0}_{3/2}$	378,050	30,061	4,294(-10)	2,409(-4)	
$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{0}_{3/2}$	$4s^25p^3 \ ^2P^{0}_{1/2}$	314,700	29,668	2,203(-10)	6,856(-5)	
$4s^{2}4p(^{2}P)5p^{2} ^{4}P^{0}_{5/2}$	$4s^25p^3 4S^{\circ}_{3/2}$	345,050	29,514	3,512(-10)	1,798(-4)	
$4s^24p^3 \ ^2P^{o}_{3/2}$	$4s^24p^2(^1S)5p^2P_{1/2}$	405,290	29,438	3,625(-10)	1,453(-4)	
$4s^{2}4p(^{2}P)5p^{2} {}^{2}P^{0}_{3/2}$	$4s^25p^3 \ ^2D^{o}_{3/2}$	351,730	29,302	5,434(-10)	1,891(-4)	
$4s^24p^2(^{3}P)6s^{-2}P^{0}_{1/2}$	$4s^24p^2(^1S)6s^2S_{1/2}$	2373,800	29,011	2,451(-8)	2,877(-2)	
$4s^24p^2(^{3}P)5p^{-4}P_{5/2}^{\circ}$	$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{o}_{7/2}$	377,540	28,924	8,241(-10)	4,616(-4)	
$4s^24p^2(^{3}P)5p^{-4}D^{o}_{1/2}$	$4s^{2}4p(^{2}P)5p^{2} ^{4}P^{0}{}_{1/2}$	367,270	27,396	5,540(-10)	1,006(-4)	
$4s^24p^2(^{3}P)5p^{-4}P_{3/2}^{o}$	$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{o}_{1/2}$	386,730	27,385	3,070(-10)	1,174(-4)	
$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{0}_{3/2}$	$4s^25p^3 \ ^2D^{o}_{5/2}$	321,940	27,281	6,358(-10)	2,025(-4)	
$4s^24p(^2P)5p^2 \ ^4P^{o}_{3/2}$	$4s^25p^3 \ ^2P^{0}_{3/2}$	318,940	27,212	4,150(-10)	1,309(-4)	
$4s^24p^2(^{3}P)5p^{-4}D^{0}_{3/2}$	$4s^24p^2(^1S)5p^2P_{1/2}$	2081,100	26,074	8,465(-9)	1,742(-2)	
$4s^{2}4p^{2}(^{3}P)5p^{-4}D^{0}_{7/2}$	$4s^{2}4p(^{2}P)5p^{2} {}^{2}F^{0}_{7/2}$	363,070	25,893	5,117(-10)	3,675(-4)	
4s ² 4p ³ ² D ^o _{3/2}	$4s^24p^2(^1D)5p^2P_{1/2}^{o}$	409,750	25,887	3,258(-10)	1,320(-4)	
$4s^24p^3 \ ^2P^{o}_{1/2}$	$4s^{2}4p^{2}(^{1}S)5p^{-2}P^{0}_{3/2}$	400,450	24,816	1,193(-9)	2,363(-4)	
$4s^24p^2(^{3}P)5d^{-4}D_{3/2}$	4s ² 4p ² (¹ S)5d ² D _{3/2}	2240,600	24,639	1,854(-8)	4,110(-2)	
$4s^24p^2(^1D)5p^2P_{3/2}$	$4s^{2}4p(^{2}P)5p^{2} 4S^{\circ}_{3/2}$	416,930	24,248	6,319(-10)	2,606(-4)	
$4s^{2}4p^{2}(^{1}D)5p^{-2}P^{0}_{3/2}$	$4s^{2}4p(^{2}P)5p^{2} {}^{2}P^{0}{}_{1/2}$	388,710	24,054	2,724(-10)	1,047(-4)	
$4s^24p^2(^{3}P)5s^{-2}P_{1/2}$	$4s^24p^2(^1S)5s^2S_{1/2}$	2519,500	23,489	2,235(-8)	2,785(-2)	
4s ² 4p ² (¹ D)5p ² F ^o _{5/2}	$4s^{2}4p(^{2}P)5p^{2} {}^{2}F^{o}_{7/2}$	386,170	23,454	6,991(-10)	4,006(-4)	
$4s^24p(^2P)5p^2 {}^2F^{o}_{5/2}$	$4s^25p^3 \ ^2D^{o}_{3/2}$	336,160	23,002	2,598(-10)	1,296(-4)	
$4s^24p^2(^{3}P)5p^{-2}D_{3/2}^{\circ}$	$4s^24p^2(^1S)5p^2P_{3/2}$	2413,000	22,809	1,991(-8)	4,752(-2)	
$4s^24p^2(^1D)5p^2F_{7/2}$	$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{o}_{7/2}$	402,920	22,747	5,536(-10)	4,412(-4)	
$4s^24p^2(^{3}P)4f^{-2}D^{\circ}_{5/2}$	$4s^24p^2(^1S)4f^2F^{o}_{5/2}$	2167,000	22,690	1,597(-8)	5,136(-2)	
$4s^24p^3 \ ^2D^{o}_{3/2}$	$4s^24p^2(^1D)5p^2P_{3/2}$	405,150	22,673	5,580(-10)	2,236(-4)	
$4s^24p^2(^{3}P)5p^{-4}P^{0}_{1/2}$	$4s^{2}4p(^{2}P)5p^{2} ^{4}D^{o}_{1/2}$	387,950	22,490	5,075(-10)	9,736(-5)	
$4s^{2}4p(^{2}P)5p^{2} {}^{2}F^{o}_{7/2}$	$4s^25p^3 \ ^2D^{o}_{5/2}$	341,090	21,610	2,827(-10)	1,907(-4)	
$4s^24p^3 \ ^4S^{o}_{3/2}$	$4s^24p^3 \ ^2P^{o}_{3/2}$	2876,900	21,384	2,653(-8)	7,550(-2)	
4s ² 4p ² (³ P)5p ⁴ D ^o _{5/2}	$4s^{2}4p(^{2}P)5p^{2} {}^{2}F^{0}{}_{5/2}$	364,810	21,267	4,243(-10)	2,297(-4)	
4s ² 4p ² (¹ D)5p ² P ^o _{1/2}	$4s^{2}4p(^{2}P)5p^{2} ^{4}P^{0}{}_{1/2}$	416,830	20,694	5,390(-10)	1,111(-4)	
$4s^{2}4p(^{2}P)5p^{2}$ $^{4}D^{o}_{5/2}$	4s ² 5p ³ ² D ^o _{5/2}	323,620	20,453	3,211(-10)	1,542(-4)	
$4s^{2}4p^{2}(^{3}P)5p^{-2}D^{o}_{3/2}$	$4s^{2}4p(^{2}P)5p^{2} {}^{2}P^{0}_{3/2}$	353,510	20,370	3,816(-10)	1,334(-4)	
$4s^24p^2(^1S)4f^2F^{o}_{5/2}$	$4s^24p^2(^1S)4f^2F^{o}_{5/2}$	2250,300	20,248	2,306(-8)	5,132(-2)	
$4s^{2}4p^{2}(^{1}D)5p^{-2}D^{o}_{3/2}$	$4s^24p(^2P)5p^2 \ ^4D^{o}_{1/2}$	421,520	20,184	2,688(-10)	1,121(-4)	

Tablo 3.29. (Devamı)

Şekil 3.9. Kr IV iyonu için M1 geçişlerine ait geçiş olasılığı değerlerinin diğer çalışmalar ile karşılaştırılması

Üçlü iyonlaşmış ksenon Xe IV için öz-öz korelasyonuna (CC) ait konfigürasyon seti ile yapılan hesaplamada aynı pariteye sahip enerji seviyeleri arasındaki geçişlerde 40520 E2 ve 27585 M1 geçişi elde edildi. Bu iyona ait yasaklı geçiş parametreleri ile ilgili daha önce yapılan çalışmalarda (Calamai ve Johnson, 1992; Biémont ve ark., 1995), sadece temel hal konfigürasyonunun ($5s^25p^3$) farklı terimlerinin (seviyelerinin) kendi arasında yapmış olduğu geçiş parametrelerine ulaşılabildi. Bu veriler ve bunlara karşılık gelen MCDF sonuçları Tablo 3.30.'da verilmektedir. Tablo incelendiğinde hem E2 hem de M1 geçişleri için genel olarak sonuçların uyumlu olduğu görülmektedir. Örneğin, $5s^25p^3 {}^2P^{o}_{1/2} - 5s^25p^3 {}^2P^{o}_{3/2}$ geçişinde E2 ve M1 geçişleri için geçiş olasılığı karşılaştırma değerleri sırasıyla 4,155(-3) s⁻¹ ve 2,903 s⁻¹'dir (Calamai ve Johnson, 1992; Biémont ve ark., 1995). MCDF sonuçları ise sırasıyla 3,431(-3) s⁻¹ ve 2,983 s⁻¹'dir. Elde edilen geçiş sayısının fazla olmasından dolayı Tablo 3.31.'de sadece geçiş olasılığı en yüksek olan ilk 50 geçiş sunulmaktadır.

Geçişler λ(Å)		(Å)	A) Aji (s ⁻¹)		fii	S _{ij} (a.b)	Oran	
Alt Seviye	Üst Seviye	Bu çal.	Diğ. çal.	Bu çal.	Diğ. çal.	-3	- - , ()	(V/L)
E2 Geçişleri								
5s ² 5p ³ ⁴ S ^o _{3/2}	5s ² 5p ³ ² D ^o _{5/2}	4936,30		0,421	0,229ª	2,310(-9)	6,620	0,710
$5s^25p^3 {}^4S^{o}_{3/2}$	$5s^25p^3 {}^2D^{o}_{3/2}$	6519,00		0,081	0,042 ^a	5,142(-10)	3,394	0,750
$5s^25p^3 {}^4S^{o}_{3/2}$	$5s^25p^3 {}^2P^{o}_{1/2}$	3629,7	3570,00 ^b	6,957	0,858ª	6,871(-9)	7,828	0,079
$5s^25p^3 {}^4S^{o}_{3/2}$	$5s^25p^3{}^2P^{o}{}_{3/2}$	2826,30		0,021	0,017 ^a	2,481(-11)	0,013	0,001
$5s^25p^3 {}^2D^{o}_{5/2}$	$5s^25p^3 {}^2P^{o}_{1/2}$	13713,00		2,651(-5)	0,118 ^a	2,492(-13)	0,023	1500
5s ² 5p ³ ² D ^o _{3/2}	$5s^25p^3{}^2D^{o}{}_{5/2}$	20333,00		6,396(-4)	2,257(-4) ^a	5,946(-11)	11,909	0,120
$5s^25p^3 {}^2P^{o}_{1/2}$	$5s^25p^{32}P^{0_{3/2}}$	12768,00		3,431(-3)	4,155(-3) ^a	1,676(-10)	4,158	0,690
$5s^25p^3 \ ^2D^o_{3/2}$	$5s^25p^{32}P^{o}_{1/2}$	8189,80		0,033	0,712 ^a	1,653(-10)	2,164	13,00
5s ² 5p ³ ² D ^o _{3/2}	5s ² 5p ^{3 2} P ^o _{3/2}	4989,50	4470,00 ^b	0,574	1,332ª	2,145(-9)	6,348	1,700
$5s^25p^3 \ ^2D^{o}_{5/2}$	$5s^25p^3 {}^2P^{o}_{3/2}$	6612,00		0,898	2,272ª	3,925(-9)	40,546	1,500
M1 Geçişleri	l							
5s ² 5p ^{3 4} S ^o _{3/2}	5s ² 5p ³ ² D ^o _{5/2}	4936,30		2,062	2,360 ^a	1,130(-8)	0,055	
$5s^25p^3 {}^4S^{o}_{3/2}$	$5s^25p^3 {}^2D^{o}_{3/2}$	6519,00		23,351	20,930 ^a	1,487(-7)	0,959	
$5s^25p^3 {}^4S^{o}_{3/2}$	$5s^25p^3 {}^2P^{0}_{1/2}$	3629,7	3570,00 ^b	41,407	51,000 ^a	4,089(-8)	0,146	
5s ² 5p ³ ⁴ S ^o _{3/2}	$5s^25p^3 {}^2P^{o}_{3/2}$	2826,30		36,967	39,330 ^a	4,427(-8)	0,123	
$5s^25p^3 {}^2D^{o}_{3/2}$	$5s^25p^{3/2}D^{o}_{5/2}$	20333,00		0,918	0,634ª	8,534(-8)	1,716	
$5s^25p^3 {}^2P^{o}_{1/2}$	$5s^25p^3 {}^2P^{o}_{3/2}$	12768,00		2,983	2,903ª	1,458(-7)	0,920	
$5s^25p^3 {}^2D^{o}_{3/2}$	$5s^25p^3 {}^2P^{o}_{1/2}$	8189,80		6,370	8,215 ^a	3,202(-8)	0,259	
$5s^25p^3 {}^2D^{\circ}_{3/2}$	$5s^25p^3 {}^2P^{0}_{3/2}$	4989,50	4470,00 ^b	60,238	$80,500^{a}$	2,248(-7)	1,109	
5s ² 5p ³ ² D ^o 5/2	$5s^25p^3^2P^{o}_{3/2}$	6612,00		14,522	20,670 ^a	6,345(-8)	0,622	

Tablo 3.30. Xe IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk oranı ve karşılaştırma değerleri

^a Biémont ve ark., 1995; ^b Calamai ve Johnson, 1992

Tablo 3.31. Xe IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı, A_{ji} (s⁻¹), salınıcı şiddeti, f_{ij}, çizgi şiddeti, S_{ij} (a.b) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

Alt Sevive	Üst Sevive	λ (Å)	A ::(s ⁻¹)	f::	S;; (a,b)	Oran (V/L)
E2 Gecisleri	estesenge	<i>N</i> (11)	III(5)	-1]	5ij (415)	
5s ² 5p ³ ⁴ S° _{3/2}	5s ² 5p ² (³ P)4f ⁴ D° _{1/2}	481,440	2,718(5)	4,722(-6)	12,554	0,760
$5s^{2}5p^{3} {}^{2}D^{\circ}_{3/2}$	$5s^25p^2(^{3}P)4f^{-2}F^{\circ}_{7/2}$	498,760	2,160(5)	1,611(-5)	47,628	0,800
$5s^{2}5p^{3} {}^{2}P^{\circ}_{3/2}$	$5s^25p^2(^{3}P)4f^{-2}F^{\circ}_{7/2}$	512,230	1,831(5)	1,440(-5)	46,114	0,770
5s ² 5p ³ ² D° _{5/2}	$5s^25p^2(^1D)4f^2H^{\circ}_{9/2}$	488,870	1,808(5)	1,080(-5)	45,075	0,820
$5s^25p^3 {}^2P^{\circ}_{1/2}$	$5s^25p^2(^1S)4f^2F^{\circ}_{5/2}$	456,310	1,584(5)	1,483(-5)	16,786	0,750
5s5p ⁴ ⁴ P _{5/2}	$4d^95s^2(^1S)5p^4 \ ^4P_{1/2}$	246,690	1,561(5)	4,748(-7)	0,255	0,850
5s5p ⁴ ⁴ P _{3/2}	$4d^95s^2(^1S)5p^4 \ ^4D_{1/2}$	241,140	1,497(5)	6,523(-7)	0,218	0,810
5s5p ⁴ ² D _{5/2}	$4d^95s^2(^1S)5p^4 \ ^2S_{1/2}$	243,840	1,459(5)	4,335(-7)	0,225	0,770
5s5p ⁴ ⁴ P _{3/2}	$4d^95s^2(^1S)5p^4 \ ^4F_{7/2}$	253,120	1,407(5)	2,703(-6)	1,044	0,870
5s5p ⁴ ⁴ P _{5/2}	$4d^95s^2(^1S)5p^4 \ ^4F_{9/2}$	257,750	1,361(5)	2,260(-6)	1,383	0,890
5s ² 5p ³ ² P° _{3/2}	$5s^25p^2(^1D)4f ^2D^{\circ}_{5/2}$	507,440	1,346(5)	7,795(-6)	24,266	0,710
5s5p ⁴ ² D _{5/2}	$4d^95s^2(^1S)5p^4 ^2P_{3/2}$	248,490	1,250(5)	7,712(-7)	0,423	0,790
$5s^25p^3 \ ^2D^{\circ}_{3/2}$	$5s^25p^2(^1S)4f^2F^{\circ}_{7/2}$	490,780	1,217(5)	8,787(-6)	24,748	0,810
5s ² 5p ³ ⁴ S° _{3/2}	$5s^25p^2(^{3}P)6p \ ^{4}D^{\circ}_{5/2}$	503,970	1,198(5)	6,840(-6)	20,860	0,760
5s ² 5p ³ ⁴ S° _{3/2}	$5s^{2}5p^{2}(^{3}P)4f ^{4}D^{\circ}_{7/2}$	503,350	1,188(5)	9,021(-6)	27,408	0,770
$5s^25p^3 \ ^2D^{\circ}_{3/2}$	$5s^25p^2(^1D)4f \ ^2P^\circ_{1/2}$	451,650	1,080(5)	1,652(-6)	3,625	0,760
5s ² 5p ³ ² P° _{1/2}	$5s^25p^2(^{3}P)4f^{-2}F^{\circ}_{5/2}$	524,640	1,058(5)	1,310(-5)	22,534	0,740
5s ² 5p ³ ⁴ S° _{3/2}	$5s^{2}5p^{2}(^{3}P)4f ^{4}D^{\circ}_{3/2}$	482,830	1,047(5)	3,658(-6)	9,809	0,750
5s5p ⁴ ² D _{3/2}	$4d^95s^2(^1S)5p^4 \ ^2P_{1/2}$	251,240	1,017(5)	4,812(-7)	0,182	0,660
$5s^25p^3 \ ^2D^{\circ}_{5/2}$	$5s^25p^2(^{3}P)4f^{-2}G^{\circ}_{9/2}$	520,040	9,875(4)	6,673(-6)	33,538	0,850
$5s^25p^3 \ ^2D^{\circ}_{5/2}$	$5s^25p^2(^1D)4f \ ^2G^{\circ}_{9/2}$	505,260	9,293(4)	5,928(-6)	27,324	0,850
5s5p ⁴ ⁴ P _{5/2}	$4d^95s^2(^1S)5p^4 \ ^4P_{3/2}$	246,400	9,238(4)	5,606(-7)	0,300	0,880
5s5p ⁴ ² D _{5/2}	$4d^95s^2(^1S)5p^4 \ ^2G_{9/2}$	259,360	9,126(4)	1,534(-6)	0,956	1,000
5s ² 5p ³ ² D° _{5/2}	$5s^{2}5p^{2}(^{3}P)6p^{-2}P^{\circ}_{1/2}$	523,610	9,002(4)	1,233(-6)	6,328	0,680

		1 a010 3.51. (1	Jevaiiii)			
Alt Seviye	Ust Seviye	λ (A)	Aji (S ⁻¹)	f _{ij}	Sij (a.b)	Oran (V/L)
$5s^{2}5p^{3} {}^{2}P^{\circ}_{3/2}$	$5s^{2}5p^{2}(^{1}D)4f^{2}P^{\circ}_{3/2}$	496,000	8,828(4)	3,256(-6)	9,466	0,620
$585n^4$ ² S _{1/2}	$4d^{9}5s^{2}(^{1}S)5p^{4} ^{2}D_{3/2}$	251.040	8,389(4)	1.585(-6)	0.299	0.830
$5s^25n^3$ $4S^{\circ}_{2/2}$	$5s^25p^2(^3P)/f^2G^{\circ}_{7/2}$	497 300	8 276(1)	6 137(-6)	17.082	0.760
555p 5 5/2	4 195 2(10)5 4 4D	477,300	0,270(+)	1.0(2(-0))	0.629	0,700
5\$5p ⁺ +P5/2	4d ² 5s ² (¹ S)5p ⁴ ⁴ D _{7/2}	256,130	8,104(4)	1,063(-6)	0,638	0,880
$5s^25p^{-3/2}D^{-3/2}$	$5s^25p^2(^{1}D)4f^{-2}D^{0}_{-3/2}$	468,000	8,048(4)	2,643(-6)	6,453	0,790
5s ² 5p ³ ² D° _{5/2}	$5s^{2}5p(^{2}P)5d^{2} \ ^{2}G^{\circ}_{9/2}$	300,720	7,550(4)	1,706(-6)	1,658	0,610
$4d^95s^2(^1S)5p^4 \ ^2G_{9/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6} ^{2}D_{5/2}$	80,451	7,267(4)	4,231(-8)	0,001	0,000
$58^{2}5n^{3}$ ⁴ S° _{3/2}	$5s^25p^2(^{3}P)4f^{-4}F^{\circ}_{5/2}$	480.430	7,249(4)	3,762(-6)	9.940	0.750
$5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot$	$4d^{9}5s^{2}(^{1}S)5p^{4}$ $^{4}F_{2}p$	243 440	7,002(4)	6301(-7)	0.217	0,860
5 35 p 1 3/2 5 25 p 3 46 9	$5_{2}^{2} = \frac{2}{3} = $	402 100	7,02(4)	2,921(-7)	10.992	0,000
58 5p ⁻ 5 3/2	58 5p (°F)41 D 5/2	492,190	7,032(4)	5,651(-0)	10,885	0,790
5s5p ⁺ ⁺ P _{5/2}	$4d^{5}S^{2}(^{1}S)Sp^{4} + P_{5/2}$	254,160	7,013(4)	6,/91(-/)	0,398	0,810
$4d^95s^2(^1S)5p^4 \ ^2G_{7/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6}^{-2}D_{3/2}$	81,902	6,991(4)	3,515(-8)	0,001	0,000
$5s^{2}5p^{3} {}^{2}P^{\circ}_{3/2}$	$5s^{2}5p^{2}(^{1}S)6p^{-2}P^{\circ}_{1/2}$	488,640	6,830(4)	1,223(-6)	3,398	0,770
$5s^{2}5p^{3}$ ² D° _{3/2}	$5s^{2}5p^{2}(^{1}D)6p^{-2}F^{\circ}_{5/2}$	490,550	6,824(4)	3,693(-6)	10,385	0,780
$585n^4 {}^2S_{1/2}$	$4d^95s^2(^1S)5p^4 ^2D_{5/2}$	260,280	6,693(4)	2.039(-6)	0.428	0.900
$5s^25n^3 {}^2D^9r^9$	$5s^25p^2(^1D)Af^2D^{\circ}_{212}$	481 410	6,628(4)	1,535(-6)	6 1 2 1	0,800
5 3 5 p D 5/2	$5350(D)+1D_{3/2}$	401,410	0,028(4)	1,555(-0)	0,121	0,890
5s ² 5p ³ ² P ³ _{3/2}	5s ² 5p ² (¹ S)4f ² F ³ 7/2	4/7,110	6,615(4)	4,515(-6)	11,682	0,750
$5s^25p^3 4S^3_{3/2}$	$5s^{2}5p^{2}(^{3}P)4f^{4}F^{6}_{3/2}$	492,120	6,520(4)	2,367(-6)	6,722	0,770
$5s^25p^3 {}^2P^{\circ}_{3/2}$	$5s^{2}5p^{2}(^{1}D)6p^{-2}F^{\circ}_{5/2}$	544,040	6,484(4)	4,316(-6)	16,556	0,730
$5s^{2}5p^{3} {}^{2}P^{\circ}_{3/2}$	$5s^{2}5p^{2}(^{1}S)4f^{-2}F^{\circ}_{5/2}$	473,220	6,464(4)	3,255(-6)	8,219	0,750
$585n^4 {}^{4}P_{1/2}$	$4d^95s^2(^1S)5p^4 ^4D_{5/2}$	253,410	6.411(4)	1.852(-6)	0.359	0.830
$585p^4 4P_{50}$	$1d^{9}5s^{2}(^{1}S)5p^{4}$ $^{4}D_{7'2}$	245,000	6,110(4)	7,601(-7)	0.404	0,850
555p 15/2	40.58(5)5p D//2	245,000	(,410(4))	1,091(-7)	0,404	0,850
$585p^{-1}P_{1/2}$	4d ² 5s ² (15)5p ² ¹ D _{3/2}	251,070	0,305(4)	1,203(-6)	0,227	0,880
5s ² 5p ³ ⁴ S ⁰ _{3/2}	$5s^{2}5p^{2}(^{3}P)6p^{-4}D^{0}_{1/2}$	535,340	6,197(4)	1,331(-6)	4,866	0,780
5s5p ⁴ ² D _{3/2}	$4d^95s^2(^1S)5p^4 ^2D_{5/2}$	261,560	6,192(4)	9,525(-7)	0,406	0,880
$5s^25p^3 {}^2P^{\circ}_{1/2}$	$5s^{2}5p(^{2}P)5d^{2} {}^{2}F^{\circ}_{5/2}$	310,880	6,102(4)	2,652(-6)	0,949	0,550
M1 Gecisleri						
	4175 2(10)5 6 2D	2600.000	246 200	2 700(7)	1.405	
4d ⁷ 5s ² (¹ S)5p ⁶ ⁴ F _{7/2}	4d/5s ² (1S)5p ⁶ ² D _{5/2}	2680,900	346,390	2,799(-7)	1,485	
$4d^{7}5s^{2}(^{1}S)5p^{6}$ $^{2}D_{5/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6} ^{2}D_{3/2}$	1976,500	273,600	1,068(-7)	0,313	
$4d^{7}5s^{2}(^{1}S)5p^{6} ^{4}P_{5/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6} ^{2}D_{5/2}$	1300,100	230,960	5,852(-8)	0,113	
$5s5p^{2}(^{3}P)6s^{2} ^{4}P_{3/2}$	$5s5p^{2}(^{1}S)6s^{2} ^{2}S_{1/2}$	1770,700	200,580	4,714(-8)	0,083	
$4d^{9}5s^{2}(^{1}S)5p^{4}$ $^{4}F_{5/2}$	$4d^{9}5s^{2}(^{1}S)5p^{4} ^{2}D_{3/2}$	2817,900	174,490	1.385(-7)	0.579	
$4d^75s^2(^1S)5p^6 ^2F_{5/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6} ^{2}Ds^{2}$	2306 300	145 190	1,158(-7)	0.396	
$4d^{7}5s^{2}(1S)5p^{6}4D_{10}$	$4d^{7}5a^{2}(1S)5p^{6}2D_{10}$	4016 200	141 140	1,130(-7)	1 242	
40°58 (5)5p° F1/2	40 38 (3)5p ⁻ F _{1/2}	4910,200	141,140	5,114(-7)	1,245	
$4d^{7}Ss^{2}(^{1}S)Sp^{6} + P_{3/2}$	$4d^{7}Ss^{2}(^{1}S)Sp^{6} ^{2}D_{3/2}$	1912,100	136,360	/,4/5(-8)	0,141	
$4d^{7}5s^{2}(^{1}S)5p^{6} ^{4}F_{9/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6} ^{2}G_{9/2}$	3068,800	135,750	1,917(-7)	1,454	
$5s5p^4 \ ^4P_{3/2}$	$5s5p^4 \ {}^2S_{1/2}$	1969,100	123,580	3,592(-8)	0,070	
$4d^{7}5s^{2}(^{1}S)5p^{6} ^{4}P_{3/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6} ^{4}P_{3/2}$	4634,900	120,530	3,882(-7)	1,780	
$5s^{2}5p^{2}(^{3}P)6p^{4}D_{3/2}$	$5s^25p^2(^1S)6p^{-2}P^{\circ}1/2$	2335,800	117.420	4.802(-8)	0.111	
$4d^{7}5s^{2}(^{1}S)5p^{6}$ $^{4}P_{2/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6}$ $^{2}D_{2/2}$	4576 500	116 410	3 655(-7)	1 655	
$4d95a^2(15)5p^4 4E_{-7}$	$4d^{95}a^{2}(18)5p^{-1}D^{3/2}$	5286 600	115,740	3,035(-7)	1,033	
40°38°(°3)3p° °F7/2	40 ⁻ 3 ⁵ (-3)3 ^p - F ⁵ / ₂	3380,000	115,740	5,770(-7)	4,025	
40'58°('5)5p° °F5/2	4d'5s ² ('S)5p ⁶ ² D _{3/2}	1890,100	115,570	4,12/(-8)	0,116	
$5s^{2}5p^{2}(^{3}P)6s^{-4}P_{3/2}$	$5s^{2}5p^{2}(^{1}S)6s^{-2}S_{1/2}$	2395,300	112,200	4,825(-8)	0,114	
$5s5p^{2}(^{3}P)6s^{2} {}^{4}P_{1/2}$	$5s5p^{2}(^{1}S)6s^{2} ^{2}S_{1/2}$	1576,300	111,880	4,167(-8)	0,032	
$5s^{2}5p^{2}(^{3}P)6p^{4}D^{\circ}_{5/2}$	$5s^{2}5p^{2}(^{1}S)6p^{-2}P^{\circ}_{3/2}$	2293,100	109,540	5,757(-8)	0,196	
$4d^{7}5s^{2}(^{1}S)5p^{6} ^{2}G_{9/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6}^{2}H_{9/2}$	3843,800	106,960	2,369(-7)	2.252	
$5s5n^2(^3P)6s^2 {}^4P_{2/2}$	$5s5n^2(^{3}P)6s^2 {}^{2}P_{1/2}$	1371 600	106 760	1,506(-8)	0,020	
$4d75a2(15)5c6 4D_{-1}$	$4d75a^2(15)5m^6 4D_{172}$	5550,800	100,700	2,000(7)	0,020	
40°58 (5)5p° F5/2	40 38 (3)3p ⁻ F _{3/2}	1422,200	100,520	3,009(-7)	2,344	
4d ⁷ 5s ² (¹ S)5p ⁶ ⁴ P _{5/2}	$4d^{7}Ss^{2}(^{1}S)Sp^{6} ^{2}D_{3/2}$	1422,200	99,074	2,003(-8)	0,042	
$4d^{7}5s^{2}(^{1}S)5p^{6}^{-2}D_{5/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6}^{-2}D_{3/2}$	4963,100	98,946	2,436(-7)	1,794	
$4d^{9}5s^{2}(^{1}S)5p^{4} {}^{4}F_{7/2}$	$4d^{9}5s^{2}(^{1}S)5p^{4} ^{2}D_{5/2}$	2505,300	91,866	6,483(-8)	0,321	
$4d^95s^2(^1S)5p^4 \ ^4D_{5/2}$	$4d^95s^2(^1S)5p^4 ^2D_{5/2}$	2644,800	90,828	9,525(-8)	0,374	
$5s^25p^3 {}^2P^{\circ}{}_{1/2}$	$5s^{2}5p^{2}(^{1}S)6p^{-2}P^{\circ}_{3/2}$	466.240	90.220	5,880(-9)	0.001	
$4d^{7}5s^{2}(^{1}S)5p^{6}$ 4Ee	$4d^75s^2(^1S)5n^6$ $^4E_{7/2}$	7109 200	86 608	5 250(-7)	9 229	
-40.55(5)5P = 1.9/2 $5c^25n^3 2D^{\circ}$	$5_{0}^{2}5_{0}^{2}(1D)$ ($5_{0}^{2}D^{0}$	5/2 200	80,000	3,230(-1)	0.002	
58 5P - F 3/2	5 Sp ("D)op "D"3/2	545,290	00,308	3,303(-9)	0,002	
5s ² 5p ³ ² D ³ _{3/2}	5s ² 5p ² (¹ D)6p ² P ³ _{1/2}	4/9,640	11,258	1,352(-9)	0,001	
5s ² 5p ³ ² P° _{3/2}	$5s^{2}5p^{2}(^{1}S)6p^{-2}P^{\circ}_{1/2}$	488,640	74,474	1,333(-9)	0,001	
$5s^{2}5p^{3}$ ⁴ S° _{3/2}	5s ² 5p ² (³ P)6p ⁴ P° _{1/2}	497,950	74,327	1,382(-9)	0,001	
$4d^95s^2(^1S)5p^4 ^4D_{1/2}$	4d ⁹ 5s ² (¹ S)5p ⁴ ² D _{3/2}	2904,800	74,165	1,876(-7)	0,270	
$5s^25p^3 4S^{\circ}_{3/2}$	$5s^25p^2(^{3}P)6n^{-2}P^{\circ}_{1/2}$	473.400	73.481	1.234(-9)	0.001	
$5s^25n^2(^{3}P)5d^{-4}F_{77}$	$5s^25n^2(^1S)5d^2D_{e_1}$	1953 200	73 360	3 147(-8)	0 122	
555P(1)50 17/2	58 5P (5)50 D5/2	1755,200	15,507	3,1+7(-0)	0,122	

Tablo 3.31. (Devamı)

Alt Seviye	Üst Seviye	$\frac{\lambda(\dot{A})}{\lambda(\dot{A})}$	Aji(S ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)
5s ² 5p ³ ² D° _{3/2}	5s ² 5p ² (³ P)6p ² S _{1/2}	560,030	72,417	1,703(-9)	0,001	
4d75s2(1S)5p6 2G9/2	4d ⁷ 5s ² (¹ S)5p ⁶ ² F _{7/2}	2415,400	70,507	4,934(-8)	0,295	
$5s^25p^2(^{3}P)4f ^{4}G^{\circ}_{9/2}$	5s ² 5p ² (¹ S)4f ² F° _{7/2}	2144,800	70,310	3,879(-8)	0,206	
5s ² 5p ² (³ P)6p ² D° _{3/2}	5s ² 5p ² (¹ S)6p ² P° _{3/2}	2426,000	69,657	6,146(-8)	0,147	
$4d^95s^2(^1S)5p^4 \ ^4F_{3/2}$	$4d^95s^2(^1S)5p^4 ^2D_{3/2}$	2608,400	68,533	6,991(-8)	0,180	
$4d^95s^2(^1S)5p^4 \ ^4F_{9/2}$	$4d^95s^2(^1S)5p^4 \ ^4F_{7/2}$	7128,200	67,459	4,111(-7)	7,246	
$4d^95s^2(^1S)5p^4 \ ^2D_{5/2}$	$4d^95s^2(^1S)5p^4 \ ^2P_{3/2}$	4281,500	66,290	1,215(-7)	0,771	
5s5p ² (³ P)6s ² ⁴ P _{5/2}	5s5p ² (¹ D)6s ² ² D _{5/2}	2895,500	65,420	8,223(-8)	0,353	
5s ² 5p ² (³ P)6s ⁴ P _{3/2}	$5s^25p^2(^1D)5d^{-2}S_{1/2}$	2157,500	65,231	2,276(-8)	0,049	
$4d^{7}5s^{2}(^{1}S)5p^{6} {}^{4}F_{3/2}$	$4d^{7}5s^{2}(^{1}S)5p^{6}^{2}D_{3/2}$	1220,500	64,834	1,448(-8)	0,017	
$4d^{7}5s^{2}(^{1}S)5p^{6} ^{4}P_{3/2}$	4d ⁷ 5s ² (¹ S)5p ⁶ ² D _{5/2}	1697,700	64,062	4,152(-8)	0,070	
$5p^{3}(^{4}S^{o})4f^{2} {}^{6}P^{o}_{5/2}$	$5p^{3}(^{2}P^{o})4f^{2} ^{4}S^{o}_{3/2}$	1893,100	61,227	2,193(-8)	0,062	
$5s^25p^2(^{3}P)6p^{-2}S_{1/2}$	5s ² 5p ² (¹ S)6p ² P° _{1/2}	2167,800	61,124	4,306(-8)	0,046	
5s ² 5p ³ ² D° _{3/2}	5s ² 5p ³ ² P° _{3/2}	4989,500	60,238	2,248(-7)	1,110	
5s ² 5p ³ ⁴ S° _{3/2}	5s ² 5p ² (³ P)6p ² P° _{3/2}	480,130	60,190	2,080(-9)	0,001	
5s ² 5p ³ ⁴ S° _{3/2}	$5s^25p^2(^{3}P)6p \ ^{4}D^{\circ}_{1/2}$	535,340	60,019	1,289(-9)	0,001	

Üçlü iyonlaşmış radon (Rn IV) iyonu için öz-öz korelasyonu (CC) konfigürasyon seti ile yapılan hesaplama sonucunda elde edilen enerji seviyeleri arasında 41884 E2 ve 30577 M1 geçişi elde edildi. Rn IV iyonuna ait yasaklı geçiş parametreleri için mevcut kaynaklar tarandığında sadece temel hal konfigürasyonunun (6s²6p³) farklı terimlerinin (seviyelerinin) kendi arasında yapmış olduğu geçiş parametrelerine ulaşılabildi (Biémont ve Quinet, 1996). Bu değerler MCDF sonuçları ile birlikte Tablo 3.32.'de verilmektedir. Tablo incelendiğinde özellikle M1 geçişleri için geçiş olasılığı değerlerinin karşılaştırma değerleri ile uyum içerisinde olduğu söylenebilir. Örneğin, $6s^{2}6p^{3}$ konfigürasyonuna ait ${}^{2}D^{o}_{3/2} - {}^{2}P^{o}_{3/2}$ seviyeleri arasındaki geçişte geçiş olasılığı karşılaştırma değeri 1,378(3) s⁻¹ (Biémont ve Quinet, 1996) iken bu çalışmadan elde edilen değer 1,292(3) s⁻¹ olarak bulundu. Bu da hesaplama ile karşılaştırma değerinin iyi uyum içerisinde olduğuna örnektir. E2 geçişlerine ait geçiş olasılığı değerlerinin karşılaştırma değerleri ile kıyaşlamaşı yapıldı ve E2 geçişlerinde de genel olarak karşılaştırma değerleri ile iyi uyum söz konusu olmasına rağmen bazı seviyeler arası geçişte karşılaştırma değerleri ile bu çalışma sonuçları birbirine uzak olarak elde edildi. Örneğin, $5s^25p^3$ konfigürasyonuna ait ${}^4S^{o}_{3/2} - {}^2P^{o}_{3/2}$ seviyeleri arasındaki geçişte karşılaştırma değeri 12,100 s⁻¹ (Biémont ve Quinet, 1996) iken bu hesaplamada 11,805 s⁻¹ olarak elde edildi. Ancak $5s^25p^3$ konfigürasyonuna ait ${}^4S^{o}_{3/2} - {}^2P^{o}_{1/2}$ seviyeleri arasındaki geçişte karşılaştırma değeri 86,00 s⁻¹ iken CC hesabı sonucunda elde edilen değer 140,52 s⁻¹ olarak bulundu. Bu seviyeler için uyumun zayıf olduğu görülmektedir. Sekil 3.10.'da MCDF hesaplama sonuçlarından Rn IV iyonu için elde edilen M1 geçişlerine ait geçiş olasılığı değerlerinin diğer çalışma sonuçları (Biémont ve Quinet,

Tablo 3.31. (Devamı)

1996) ile bir karşılaştırması yapılmaktadır. Karşılaştırma değerleri ile MCDF hesaplama sonuçlarının uyum içerisinde olduğu açıkça şekilden de görülmektedir.

Gecisler			Aij				
	çişici	- λ (Å)			f _{ji}	S _{ij} (a.b)	Oran
Alt Seviye	Üst Seviye	. ,	Bu çalışm	a Diğer çal.	,	0	(V/L)
E2 Geçişleri							
$6s^26p^3 {}^4S^{o}_{3/2}$	6s ² 6p ^{3 2} D ^o _{5/2}	2641,80	35,609	37,000 ^a	5,588(-8)	24,551	0,59
$6s^26p^3 {}^4S^{o}_{3/2}$	6s ² 6p ³ ² D ^o _{3/2}	3389,50	60,773	6,150 ^a	1,046(-8)	9,711	0,40
$6s^26p^3 {}^4S^{o}_{3/2}$	$6s^26p^3 {}^2P^{o}_{1/2}$	2124,00	140,52	86,000 ^a	4,752(-8)	10,848	0,21
6s ² 6p ³ ⁴ S ^o _{3/2}	6s ² 6p ^{3 2} P ^o _{3/2}	1302,00	11,805	12,100 ^a	3,000(-8)	0,157	1,70
6s ² 6p ³ ² D ^o 5/2	$6s^26p^3 {}^2P^{o}_{1/2}$	10836,00	1,727(-4)	0,132 ^a	1,013(-12)	0,046	37,00
6s ² 6p ³ ² D ^o _{3/2}	6s ² 6p ^{3 2} D ^o 5/2	11977,00	0,333(-4)	6,617(-4) ^a	1,076(-10)	4,407	1,00
$6s^26p^3 {}^2P^o{}_{1/2}$	6s ² 6p ^{3 2} P ^o _{3/2}	3364,20	4,664	6,900 ^a	1,582(-8)	7,178	1,10
6s ² 6p ³ ² D ^o _{3/2}	$6s^26p^3 {}^2P^{o}_{1/2}$	5688,80	0,043	1,305 ^a	1,046(-10)	0,459	12,00
6s ² 6p ³ ² D ^o _{3/2}	6s ² 6p ^{3 2} P ^o _{3/2}	2114,00	43,360	48,500 ^a	2,905(-8)	6,539	0,75
$6s^26p^3 \ ^2D^{o}_{5/2}$	$6s^26p^3 {}^2P^{o}_{3/2}$	2567,20	119,000	138,800 ^a	7,838(-8)	47,39	0,48
M1 Geçişleri							
$6s^{2}6p^{3} {}^{4}S^{o}_{3/2}$	$6s^{2}6p^{3} {}^{2}D^{o}{}_{5/2}$	2641,80	100,140	113,800 ^a	1,571(-7)	0,411	
6s ² 6p ³ ⁴ S ^o _{3/2}	6s ² 6p ³ ² D ^o _{3/2}	3389,50	529,030	592,500 ^a	9,112(-7)	3,054	
6s ² 6p ³ ⁴ S ^o _{3/2}	6s ² 6p ^{3 2} P ^o 1/2	2124,00	635,580	690,000 ^a	2,149(-7)	0,452	
6s ² 6p ³ ⁴ S ^o _{3/2}	6s ² 6p ^{3 2} P ^o _{3/2}	1302,00	50,760	24,950 ^a	1,290(-8)	0,016	
6s ² 6p ³ ² D ^o _{3/2}	6s ² 6p ^{3 2} D ^o 5/2	11977,00	3,333	1,683 ^a	1,075(-7)	1,273	
$6s^26p^3 {}^2P^o{}_{1/2}$	$6s^26p^{3\ 2}P^{o}_{3/2}$	3364,20	135,490	146,800 ^a	4,597(-7)	0,765	
6s ² 6p ³ ² D ^o _{3/2}	$6s^26p^{32}P^{o}_{1/2}$	5688,80	4,566	2,580 ^a	1,107(-8)	0,062	
6s ² 6p ³ ² D ^o _{3/2}	$6s^26p^{3\ 2}P^{o}_{3/2}$	2114,00	1,292(3)	1,378(3) ^a	8,658(-7)	1,810	
6s ² 6p ³ ² D ^o 5/2	6s ² 6p ^{3 2} P ^o _{3/2}	2567,20	264,010	292,500 ^a	1,739(-7)	0,662	

Tablo 3.32. Rn IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk oranı ve karşılaştırma değerleri

^a Biémont ve Quinet, 1996

E2 ve M1 yasaklı geçişlerinin sayısının fazla olmasından dolayı geçiş olasılığı, A_{ji} (s⁻), en yüksek olan ilk 50 geçiş Tablo 3.33.'de sunulmaktadır.

Tablo 3.33. Rn IV iyonu için elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait dalga boyu (λ), geçiş olasılığı (A_{ji}), salınıcı şiddeti (f_{ij}), çizgi şiddeti (S_{ij}) ve salınıcı şiddetinin hız-uzunluk formlarının oranı

Üst Seviye	λ (Å)	A _{ji} (s ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)
6p ⁴ 6d ⁴ D _{7/2}	321,780	5,495(5)	1,137(-5)	13,541	0,610
6p ⁴ 6d ⁴ D _{5/2}	323,060	5,452(5)	8,531(-6)	10,279	0,580
6p ⁴ 6d ⁴ F _{9/2}	317,160	5,016(5)	1,261(-5)	14,375	0,720
6p ⁴ 6d ⁴ D _{3/2}	322,820	4,535(5)	4,723(-6)	5,679	0,540
$6p^46d \ ^4D_{1/2}$	322,190	3,229(5)	2,512(-6)	2,002	0,500
$6p^46d \ ^4P_{1/2}$	309,370	3,169(5)	1,516(-6)	1,604	0,670
6p ⁴ 6d ² D _{5/2}	302,060	3,029(5)	1,243(-5)	4,081	0,600
$6p^46d \ ^4D_{1/2}$	320,760	2,875(5)	1,478(-6)	1,744	0,540
$6s^{2}6p^{2}(^{3}P)5f^{-4}D^{o}_{1/2}$	493,240	2,828(5)	5,157(-6)	14,744	0,780
6p ⁴ 6d ⁴ P _{5/2}	321,020	2,794(5)	1,295(-5)	5,104	0,720
6p ⁴ 7s ² P _{3/2}	324,260	2,523(5)	7,953(-6)	3,230	0,700
6p ⁴ 6d ⁴ D _{5/2}	339,300	2,505(5)	4,324(-6)	6,036	0,530
6p ⁴ 6d ² D _{5/2}	367,010	2,355(5)	1,427(-5)	8,402	0,740
6p ⁴ 6d ⁴ F _{5/2}	316,760	2,344(5)	5,288(-6)	4,004	0,860
	$ \begin{array}{c} \ddot{\textbf{U}} \textbf{st Seviye} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	$\begin{array}{c c} \ddot{\text{U}}\text{st Seviye} & \lambda(\mathring{\text{A}}) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Alt Sevive	Üst Sevive	λ (Å)	Δ :: (s ⁻¹)	f::	S:: (a b)	Oran (V/L)
666p ⁴ ² D ₂ /2	6p ⁴ 6d ² Esp	325.840	2×10^{-1}	5 502(6)	1 600	0.700
$6s^{2}6n^{2}(3D)$ 6d $2D_{2}$	$6p^46d^{-4}D_{a/a}$	316 080	2,3+2(3) 2 301(5)	3,372(-0)	7,009	0,700
$6^{2}6^{2}(3D) 6^{-1} 2D_{-1}$	$5p$ $6p$ $4E_{\pi}p$	214 750	2,301(3)	5,400(-0)	2,030	0,010
$666p^4 4P_{}$	$6p46d^{2}E_{-}$	226.660	2,270(3)	0,021(-0)	J,007 7 059	0,000
$6s^26n^3 4S^{0}$	$6n^{2}(n^{2}(3D)) = 6n^{2}(n^{2}(3D))$	330,000	2,203(3)	1,104(-0) 9 049(-6)	1,000	0,850
08°0p° 'S°3/2	05°0P°(°P)51 °D°3/2	490,890	2,203(3)	0,248(-0)	23,240 4.005	0,700
$OSOP^{-1}P_{1/2}$	op ⁻ od ⁻ F5/2	518,460	2,282(5)	1,041(-5)	4,005	0,720
$os^{-}op^{-}(^{+}D)od^{-}S_{1/2}$	$op od ^{2}D_{3/2}$	291,100	2,244(5)	5,702(-6)	1,0/0	0,580
$os^2 op^2 ({}^{3}P) bd^{-2} P_{3/2}$	$OP^{-}Od^{-}D_{3/2}$	309,910	1,926(5)	4,100(-6)	2,950	0,510
6s ² 6p ² (³ P)6d ⁴ F _{5/2}	6p ⁴ 6d ⁴ D _{7/2}	337,890	1,847(5)	4,214(-6)	5,810	0,760
6s6p ⁴ ⁴ P _{3/2}	$6p^{+}6d^{-+}D_{1/2}$	344,270	1,840(5)	1,635(-6)	1,590	0,640
6s ² 6p ² (³ P)6d ⁴ F _{5/2}	6p ⁴ 6d ⁴ F _{9/2}	332,800	1,829(5)	5,061(-6)	6,667	0,820
6s6p ⁴ ⁴ P _{3/2}	6p ⁴ 6d ⁴ F _{7/2}	305,800	1,826(5)	5,119(-6)	3,488	0,610
$6s^{2}6p^{3} {}^{2}P^{0}{}_{1/2}$	$6s^{2}6p^{2}(^{1}S)5f^{-2}F^{0}_{5/2}$	477,210	1,797(5)	1,840(-5)	23,825	0,860
6s6p ⁴ ² D _{3/2}	$6p^46d \ ^4D_{1/2}$	349,860	1,787(5)	1,640(-6)	1,673	0,450
$6s6p^4 \ ^2P_{1/2}$	$6p^46d^2D_{3/2}$	350,960	1,759(5)	6,497(-6)	3,346	1,400
6s6p ⁴ ⁴ P _{3/2}	$6p^46d \ ^4P_{1/2}$	331,180	1,733(5)	1,425(-6)	1,233	0,480
6s ² 6p ² (³ P)6d ⁴ P _{5/2}	$6p^46d^2G_{9/2}$	327,180	1,720(5)	4,599(-6)	5,757	0,700
6s6p ⁴ ⁴ P _{1/2}	6p ⁴ 6d ⁴ F _{3/2}	318,530	1,695(5)	5,158(-6)	1,986	0,710
6s ² 6p ² (³ P)6d ⁴ F _{5/2}	6p ⁴ 6d ⁴ D _{3/2}	339,030	1,693(5)	1,945(-6)	2,708	0,600
6s6p ⁴ ⁴ P _{3/2}	6p ⁴ 6d ⁴ F _{3/2}	316,830	1,685(5)	2,536(-6)	1,921	0,830
6s6p ⁴ ⁴ P _{3/2}	6p ⁴ 6d ⁴ D _{3/2}	307,910	1,669(5)	2,372(-6)	1,650	0,520
6s ² 6p ³ ² D ^o _{3/2}	$6s^{2}6p^{2}(^{1}D)5f^{2}P^{o}_{1/2}$	470,210	1,659(5)	2,750(-6)	6,811	0,910
$6s^26p^3 \ ^4S^{o}_{3/2}$	$6s^{2}6p^{2}(^{1}D)5f^{-2}F^{o}_{5/2}$	500,580	1,626(5)	9,164(-6)	27,385	0,730
6s ² 6p ³ ² D ^o _{3/2}	$6s^{2}6p^{2}(^{1}D)5f^{-2}D^{o}_{3/2}$	482,510	1,607(5)	5,609(-6)	15,011	0,790
6s ² 6p ³ ² D ^o _{5/2}	6s ² 6p ² (¹ D)5f ² H ^o 9/2	499,750	1,554(5)	9,699(-6)	43,262	0,910
6s ² 6p ² (³ P)6d ⁴ F _{5/2}	$6p^46d \ ^4P_{1/2}$	324,230	1,496(5)	7,861(-7)	0,957	0,590
6s ² 6p ² (¹ D)6d ² D _{5/2}	6p ⁴ 6d ² G _{9/2}	312,810	1,452(5)	3,549(-6)	3,882	0,920
6s6p ⁴ ⁴ P _{3/2}	6p ⁴ 6d ⁴ D _{1/2}	312,820	1,382(5)	1,014(-6)	0,740	0,630
6s6p ⁴ ² P _{3/2}	6p ⁴ 6d ⁴ F _{7/2}	376,810	1,334(5)	5,681(-6)	7,242	0,690
6s6p ⁴ ² D _{3/2}	6p ⁴ 6d ⁴ F _{7/2}	341,110	1,323(5)	4,614(-6)	4,363	0,590
6s ² 6p ³ ² D ^o _{3/2}	6s ² 6p ² (¹ D)5f ² F ^o 5/2	493,450	1,246(5)	6,824(-6)	19,533	0,810
6s6p ⁴ ² P _{3/2}	6p ⁴ 6d ⁴ D _{3/2}	380,020	1,246(5)	2,698(-6)	3,528	0,580
6s ² 6p ² (¹ D)6d ² D _{5/2}	6p ⁴ 6d ⁴ D _{3/2}	316,870	1,241(5)	1,868(-6)	2,124	0,330
6s6p ⁴ ² D _{3/2}	6p ⁴ 6d ² P _{1/2}	291,640	1,240(5)	7,903(-7)	0,467	0,820
6s ² 6p ³ ⁴ S ^o _{3/2}	6s ² 6p ² (³ P)5f ² F ^o _{7/2}	492,690	1,226(5)	8,920(-6)	25,416	0,910
6s6p ⁴ ⁴ P _{3/2}	6p ⁴ 6d ⁴ D _{3/2}	346,640	1,178(5)	2,122(-6)	2,106	0,400
M1 Cacislari						
$\frac{6n^47s}{6n^47s}$	6p47s 2810	1781 200	2162 600	5 1/3(7)	0.006	
$6_{8}6_{p}^{2}(^{3}\mathbf{D})8_{s}^{2} 4\mathbf{D}_{a}$	$6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}6_{1}$	1104 000	2049 500	3,1+3(-7) 1 875(7)	0,205	
$6s6p^2(^3P)7s^2 4P_{2/2}$	$6s6p^2(^1S)7s^2 \ ^2S_{1/2}$	1124 100	1730 100	1,073(-7) 1,630(-7)	0.182	
$6n^46d^{4}F_{7/2}$	$6n^4 6d^2 D_{e^{10}}$	1666 500	1680 700	5 277(-7)	1 7/0	
$6s^26n^2(3\mathbf{P})8s^{-4}\mathbf{P}_{2}s^{-6}$	$6s^26n^2(1S)8s^2Strate$	1563 300	1663.000	3,277(-7)	0.471	
$6s^{2}6n^{2}(3D)7n^{4}D^{0}an^{2}$	$6s^2 6n^2 (18)7n^2 D^{0}$	1538 000	1345 800	2,040(-1) 2,286(-7)	0,471	
$6s^{2}6n^{3} {}^{2}D^{0}a^{2}$	$6s^2 6n^3 2 D_{2/2}$	211/ 000	1292 200	2,500(-7)	1 811	
$6s6p^2(3P)8s^2 4D$	$6_{8}6n^{2}(3\mathbf{P})\otimes^{2} 2\mathbf{D}$	2114,000 1333 500	1292,300	0,009(-7) 2 251(7)	0.221	
$6s^{2}6n^{2}(3\mathbf{D})7n^{4}\mathbf{D}^{0}r^{2}$	$6s^26n^2(1S)7n^2D^{0}an$	1550,000	1200,000	2,331(-7)	0,221	
$6s^{2}6p^{2}(^{3}D)^{5}f^{4}C^{0}$	$6n^{3}6d(^{2}D)7n^{2}D^{2}$	1571 600	1102,000	2,923(-1)	1 208	
$6s^{2}6p^{2}(^{3}D)74 4E_{-12}$	$5p$ $0u$ $D/5$ $D^{-5/2}$ $6s^{2}6p^{2}(1s)74$ $2D_{-r}$	1571,000	1001.000	2,229(-1) 2,050(-7)	1,290	
$6s^{2}6p^{2}(3D)6d^{2}D_{}$	$6s^26p^2(^1D)6d^2c$	1333,100 21/2 200	070 720	2,939(-1) 2 212(7)	0,909	
$6s^{2}6p^{2}(^{3}D)7d^{4}E_{-1}$	$6s^2 6p^2 (18)74^2 D_{20}$	2143,300 1551.000	063 040	3,3+3(-7)	0,709	
$6s^{2}6p^{2}(3D)$ 5f 4E0.	$6s^26p^2(1s)5f^2E^{0}$	1520,200	903,040 057 170	2,310(-7)	0,554	
$r^{-3/2}$	$r^{-5/2}$	1320,200	931,170 032 720	+,7/3(-/)	0,740	
$6s^26p^2(3D)$ 5f 4C0	$6s^26n^2(1D)$ 5f 2110	2002 200	752,750 027 020	2,000(-7)	0,170	
$6^{3}6d^{2} 4 \mu_{0} \dots$	$6n^{3}6d^{2}$ 4C ⁹	2003,300 1756 000	$\frac{321,030}{001,110}$	0,7/2(-7)	2,105	
$0p^{-}00^{-}$ $H^{-}11/2$	$6p^{2}00^{2} + 0^{2}11/2$	1/30,800	901,110	4,1/0(-7)	2,1/4 0.095	
$\cos op^{-}(r) 51 - D^{\circ} 7/2$	$op^{-}ou(-D)/s^{-}D^{-}5/2$	1308,/00	000,340 788 350	3,1/4(-7)	0,903	
$05^{-}0p^{-}.5^{-}3/2$	$\cos^{2}(r)/p^{2}P^{0}1/2$	483,300	188,230	1,382(-8)	0,007	
$0^{-}(P)/S^{-}P_{3/2}$	$0s^{-}0p^{-}(3)/s^{-}3_{1/2}$	1/2/,000	115,810	1,/35(-/)	0,290	
$080p^{-}(^{-}P)\delta S^{-} ^{-}P_{5/2}$	$080p^{-}(^{-}D)88^{-2}D_{5/2}$	2109,700	/39,040	3,220(-7)	1,080	
$os^{-}op^{-}(^{-}P)/s^{-}P_{3/2}$	$05^{-}0p^{-}(^{+}S)/S - ^{+}S_{1/2}$	1501,100	/18,380	1,512(-7)	0,203	
$os^{2}op^{2}(^{2}P)bd^{-1}F_{7/2}$	$os^2 op^2 (^{+}S) bd^{-2} D_{5/2}$	15/0,500	/12,190	1,9/5(-7)	0,014	
6s ² 6p ² (³ P) ⁷ /d ² F _{5/2}	$6s^{2}6p^{2}(^{1}S)^{7}/d^{-2}D_{5/2}$	1627,400	/06,160	2,804(-7)	0,677	

Tablo 3.33. (Devamı)

Tablo 3.33. (Devamı)							
Alt Seviye	Üst Seviye	λ (Å)	Aji (s ⁻¹)	f _{ij}	S _{ij} (a.b)	Oran (V/L)	
6s6p ² (³ P)8s ² ² P _{1/2}	6s6p ² (³ P)8s ² ² P _{3/2}	2053,300	685,820	8,669(-7)	0,880		
$6s^{2}6p^{2}(^{3}P)7p^{-2}S^{o}_{1/2}$	6s ² 6p ² (¹ S)7p ² P ^o _{1/2}	1493,500	679,330	2,272(-7)	0,168		
6s6p ² (³ P)8s ² ² P _{1/2}	$6s6p^2(^1S)8s^2 \ ^2S_{1/2}$	2303,600	678,250	5,396(-7)	0,615		
6s ² 6p ² (³ P)5f ² F ^o 5/2	6s ² 6p ² (¹ D)5f ² P ^o _{3/2}	2173,300	676,770	3,195(-7)	1,030		
6s ² 6p ² (³ P)8s ² P _{1/2}	$6s^{2}6p^{2}(^{1}S)8s^{-2}S_{1/2}$	1604,100	673,430	2,598(-7)	0,206		
6s ² 6p ² (³ P)7d ⁴ F _{3/2}	6s ² 6p ² (¹ S)7d ² D _{3/2}	1550,300	672,370	2,423(-7)	0,372		
6s ² 6p ² (³ P)7d ⁴ F _{5/2}	6s ² 6p ² (¹ D)7d ² G _{7/2}	2127,700	671,230	6,074(-7)	1,918		
6s ² 6p ³ ² P ^o _{3/2}	6s ² 6p ² (¹ D)7p ² D ^o _{3/2}	651,490	670,590	4,267(-8)	0,027		
$6s^{2}6p^{3} {}^{4}S^{o}_{3/2}$	$6s^{2}6p^{2}(^{3}P)7p^{-4}D^{o}_{1/2}$	662,690	667,370	2,197(-8)	0,014		
$6s^26p^3 {}^2P^{o}_{1/2}$	6s ² 6p ² (¹ S)7p ² P ^o _{3/2}	478,310	664,680	4,560(-8)	0,011		
6s ² 6p ² (³ P)5f ⁴ G ^o 9/2	6s ² 6p ² (³ P)5f ⁴ G ^o _{11/2}	2165,800	662,820	5,594(-7)	2,996		
$6s^{2}6p^{2}(^{3}P)7p^{-4}D^{o}_{3/2}$	6s ² 6p ² (¹ D)7p ² F ^o 5/2	2132,900	658,300	6,735(-7)	1,421		
6s ² 6p ² (³ P)5f ² F ^o _{5/2}	6p ³ 6d(² D)7s ² D ^o _{5/2}	1580,800	649,080	3,242(-7)	0,760		
6p ⁴ 6d ⁴ D _{3/2}	6p ⁴ 6d ² D _{3/2}	1338,600	636,590	1,710(-7)	0,226		
6s ² 6p ³ ⁴ S ^o _{3/2}	$6s^26p^3 {}^2P^{o}_{1/2}$	2124,000	635,580	2,149(-7)	0,452		
6s6p ² (³ P)8s ² ⁴ P _{3/2}	6s6p ² (¹ D)8s ² ² D _{5/2}	1649,400	609,740	3,730(-7)	0,609		
6p ⁴ 6d ⁴ D _{3/2}	6p ⁴ 6d ² D _{5/2}	1816,600	598,010	2,959(-7)	0,797		
$6p^47s^2P_{1/2}$	$6p^47s^{-2}S_{1/2}$	1944,300	589,000	3,338(-7)	0,321		
6s ² 6p ³ ² D ^o _{3/2}	$6s^{2}6p^{2}(^{3}P)7p^{-2}S^{o}_{1/2}$	656,230	587,890	1,898(-8)	0,012		
6p ³ 6d(² D)7s ⁴ F ^o _{7/2}	6p ³ 6d(² D)7s ⁴ P ^o _{5/2}	1552,100	584,390	1,583(-7)	0,486		
$6p^{5} {}^{2}P^{0}_{3/2}$	$6p^{5} {}^{2}P^{0}{}_{1/2}$	2859,200	570,350	3,495(-7)	0,988		
6s6p ² (¹ D)8s ² ² D _{3/2}	6s6p ² (³ P)8s ² ² P _{3/2}	1717,500	567,240	2,509(-7)	0,426		
6p ⁴ 6d ² D _{5/2}	6p ⁴ 6d ² D _{3/2}	2495,500	566,830	3,528(-7)	1,306		
6s ² 6p ² (³ P)8s ⁴ P _{3/2}	6s ² 6p ² (³ P)8s ⁴ P _{5/2}	2198,300	565,560	6,146(-7)	1,336		
6p ³ 6d(² D)7s ⁴ G ^o 9/2	6p ³ 6d(² D)7s ⁴ F ^o 9/2	1774,600	562,360	2,655(-7)	1,165		
$6s^{2}6p^{2}(^{3}P)7p^{-4}P^{o}_{1/2}$	$6s^{2}6p^{2}(^{1}D)7p^{-2}P^{o}_{1/2}$	2301,800	562,010	4,464(-7)	0,508		

Şekil 3.10. Rn IV iyonu için M1 geçişlerine ait geçiş olasılığı değerlerinin diğer çalışmalar ile karşılaştırılması

BÖLÜM 4. SONUÇ VE ÖNERİLER

Bu çalışmada, asal gazlardan kripton (Z=36), ksenon (Z=54) ve radon (Z=86) atomlarının ikili ve üçlü iyonlaşmış hallerine (Kr III-IV, Xe III, IV ve Rn III-IV) ait atomik yapı hesaplamaları incelendi. Yapılan hesaplamalarda elektronlar arası korelasyon etkileri, Breit etkileşimi ve QED katkılarının enerji seviyeleri üzerine nasıl etki ettiği araştırıldı. Bu katkılar bir pertürbasyon katkısı olarak dahil edildiğinde elde edilen enerji seviyeleri arasındaki elektrik dipol ve kuadrupol (E1 ve E2) ve manyetik dipol (M1) geçişlerine ait ışıma parametreleri hesaplandı. Tüm bu hesaplamalar, tamamen relativistik çok konfigürasyonlu Dirac-Fock (MCDF) yöntemini temel alan relativistik atomik yapı paketi (GRASP) kullanılarak yapıldı.

İkili ve üçlü iyonlaşmış bu iyonlar için yapılan hesaplamalarda, elektronlar arası korelasyon etkilerinin enerji seviyeleri üzerine olan etkileri incelemek amacıyla ilk olarak iyonun açık yörüngesinde bulunan değerlik elektronlarının üst seviyelere uyarıldığı (valans-valans, VV) konfigürasyon takımları seçildi. Daha sonra kapalı yörüngede bulunan bir elektron ile açık yörüngede bulunan bir değerlik elektronunun üst seviyelere uyarıldığı (öz-valans, CV) konfigürasyonlar VV konfigürasyon takımlarına eklendi. Son olarak da kapalı yörüngeden iki elektronun uyarıldığı konfigürasyonlar (öz-öz, CC) önceden seçilen konfigürasyon setlerine eklenerek hesaplamalar yapıldı. VV, CV ve CC etkilerinin incelendiği bu hesaplama sonuçlarına ait verilerin geniş tabloları Ek A'da verilmektedir. Özden uyarılmalar yapıldığında konfigürasyon hal fonksiyonlarının sayısının çok fazla arttığı görüldü. Genel olarak VV ve CV hesaplama sonuçları birbirine yakın iken CC konfigürasyon takımı ile yapılan hesaplamalar sonuçları daha da iyileştirmektedir. Bu nedenle Breit etkilerinin ve QED katkılarının etkisi CC hesaplamalarından elde edilen seviyeler için incelendi. Breit ve QED katkılarının MCDF enerjisini azaltan yönde bir etki yaptığı belirlendi. Bu katkıların dikkate alındığında elde edilen enerji değerlerinin mevcut kaynaklar ile

daha iyi uyum içerisinde olduğu görüldü. Z atom numarası arttıkça QED katkılarının da arttığı görüldü. Denklem 2.44'e göre, QED katkıları Z⁴ ile doğru orantılı olduğu için bu sonuç beklenen bir durumdur.

Kr III ve Kr IV iyonunda iki farklı hesaplama seçeneği (EAL ve CI) kullanıldı. EAL hesabında taban halden 4d seviyesine elektron uyarıldığında program bu hesabı tamamlayamadı. Bu nedenle hesaplamayı iterasyon yapmadan tamamlayan ve tablolarda B üst indisi ile belirtilen CI seçeneği kullanıldı. Bu durumda 4d yörüngesi hesaplamaya dahil edilebildi. Ancak sonuçların bu durumda çokta iyi olmadığı açıkça görüldü. Ama yine de karşılaştırma yapılabilmesi için Ek A'da sunulan tablolara dahil edildi. Breit ve QED katkıları ile ışıma parametreleri de EAL hesabı üzerinden incelendi. Xe III-IV ve Rn III-IV iyonlarına ait hesaplamalar yapılırken EAL seçeneği kullanıldı. Rn III ve Rn IV iyonları için sadece en düşük beş enerji seviyesi için mevcut çalışmalar ile karşılaştırma yapılabildi.

Elektrik dipol (E1), elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişlerine ait ışıma parametreleri altı iyon için de hesaplandı. 3. Bölümde bu geçislere ait mevcut kaynaklarda bulunan veriler ile bu çalışma sonucunda elde edilen veriler karsılastırılarak tablolar halinde sunulmaktadır. Ayrıca geçiş olasılığı yüksek olan bazı geçiş parametreleri de ayrı tablolarda verilmektedir. Elektrik dipol geçişleri için yapılan karşılaştırma tabloları incelendiğinde geçiş olasılığı, salınıcı şiddeti ve bazı dalga boyu değerlerinin karşılaştırılabildiği görülmektedir. Genel olarak geçiş olasılığı ve dalga boyu değerleri mevcut kaynaklar ile oldukça uyumlu olarak elde edildi. Salınıcı şiddeti değerleri ise bazı seviyelerde karşılaştırma değerlerinden biraz farklı olarak elde edildi. Rn III ve Rn IV iyonu için elektrik dipol geçişlerine ait mevcut kaynaklarda veri bulunmadığından dolayı bu iyonlar için karşılaştırma yapılamamıştır. Elektrik kuadrupol (E2) ve manyetik dipol (M1) geçişleri için ise daha önceki calışmalarda sadece taban enerji seviyesinin farklı terimleri arasında yapılan geçişlere ait parametreler mevcuttur. Bu geçişler için karşılaştırma yapıldığında tüm iyonlar için, M1 geçişlerine ait geçiş olasılığı değerlerinin E2 geçişlerine ait geçiş olasılığı değerlerinden daha iyi olduğu görülmektedir.

Kripton, ksenon ve radon atomlarının ikili ve üçlü iyonlaşmış halleri için hem deneysel hem de teorik olarak yapılan çalışmalar literatürde özellikle radon için çok azdır. İkili ve üçlü iyonlaşmış kripton, ksenon ve radon için yapılan hesaplamalarda elde edilen seviyeler arasındaki geçişlerde sunulan geçiş parametrelerinden bir çoğu ilk kez bu çalışma ile birlikte verilmektedir. İyonize olmuş asal gazlara ait atomik verilere, astrofizikten laboratuvar plazmalarına kadar geniş bir alanda ihtiyaç duyulmaktadır. Bu nedenle bu çalışmadan elde edilen verilerin de bu alanda yapılacak çalışmalara katkı sağlayacağı düşünülmektedir. Ayrıca bu çalışmada iki ve üç kez iyonlaşmış Kr, Xe ve Rn için yapılan hesaplamalar, daha yüksek iyonlaşmış asal gazları içeren çalışmalara da (enerji ve ışımalı geçişlerin yanı sıra fotoiyonlaşma gibi) genişletilebilir.

KAYNAKLAR

- Aggarwall, K. M. Keenan, F. P., Kisielius, R. 2004. Radiative rates for transitions Fe XVII. A&A, 420: 783-788.
- Andersson, E. Linusson, P., Fritzsche, S., Hedin, L., Eland, J. H. D., Karlsson, L., Rubensson, J.-E., Feifel, R. 2012. Formation of Kr³⁺ via core-valence doubly ionized intermediate states. Phys. Rev. A, 85:032502-8.
- Balankeswara Rao, A. Krishnamurty, S. G. 1939. The third spark spectrum of krypton, Kr IV. Proceedings of the Physical Society, 51(5): 772-777.
- Bertuccelli, G. Di Rocco, H. O., Iriarte, D. I., Pomarico, J. A. 2000. Experimental determination of trnsition probabilities of Xe IV; comparison with semiempirical calculations. Phys. Scr., 62: 277-281.
- Biémont, E. Hansen, J. E. 1986. Forbidden transitions in 3p⁴ and 4p⁴ configurations. Phys. Scr., 34: 116-130.
- Biémont, E. Hansen, J. E., Quinet, P., Zeippen, C. J. 1995. Forbidden transitions of astrophysical interest in the 5p^k (k=1-5) configurations. Astron. Astrophys. Suppl. Ser., 111: 333-346.
- Biémont, E. Quinet, P. 1996. Forbidden lines in $6p^k$ (k = 1-5) configurations. Phys. Scr., 54: 36-43.
- Bolognesi, P. Cavanagh, S. J., Avaldi, L., Camilloni, R., Zitnik, M., Stuhec, M., King, G. C. 2000. A study of the doubly charged states of Xe and their satellites by threshold photoelectron–threshold photoelectron coincidence (TPEsCO) spectroscopy. J Phys B: At Mol Opt Phys., 33: 4723-4734.
- Boyce, J. C. 1935. The spectra of krypton in the extreme ultraviolet. Phys. Rev., 47: 718-720.
- Bredice, F. Reyna Almandos, J., Gallardo M. 1988. Revised and extended analysis of the low configurations in Kr III. J. Opt. Soc. Am. B, 5(2):222-235.
- Bredice, F. Raineri, M., Reyna Almandos, J., Gallardo, M., Trigueiros, A. G. 2000. Weighted oscillator strengths for Kr IV spectrum. J. Quant. Spectrosc. Radiat. Transfer, 65: 805-819.
- Brink, D. M. Satchler, G. R. 2002. Angular Momentum. Third Edition. Oxford Science Publications.
- Calamai, A. G. Johnson, C. E. 1992. Radiative lifetimes of several metastable states of doubly and triply ionized Ar, Kr, and Xe. Phys. Rev. A, 45(11): 7792-7799.
- Charro, E. Martín, I., Serna, M. A. 2000. Systematic trends for quartet transitions in the phosphorus sequence. J. Phys. B: At. Mol. Opt. Phys., 33: 1753-1766.

- Coetzer, F. J. Van der Westhuizen, P. 1979. Radiative lifetimes of some energy levels of doubly ionized xenon. Z. Phys. A, A294: 199-202.
- Coetzer, F. J. Kotzé, P. B., Van Der Westhuizen, P. 1982. Beam-Foil level lifetimes in Krypton III. Z. Phys. A- Atoms and Nuclei, 306: 19-23.
- Di Rocco, H. O. Reyna Almandos, J. G., Gallardo, M., Persson, W. 1986. Spectrum trebly ionized xenon (Xe IV). Phys. Rev. A, 33(3): 2114-2116.
- Di Rocco, H. O. Lanzini, F. 2016. Breit and quantum electrodynamics energy contributions in multielectron atoms from the relativistic screened hydrogenic model. Braz. J. Phys., 46: 175-183.
- Djeniže, S. Milosavljević, V., Dimitrijević, M. S. 2003. Transition probabilities in Kr II and Kr III spectra. Eur. Phys. J. D, 27: 209-213.
- Dyall, K. G. Grant, I. P., Johnson, C. T., Parpia, F. A., Plummer, E. P. 1989. GRASP: Generel-purpose relativistic atomic structure program. Comp. Phys. Commun., 55: 425-456.
- Dzuba, V. A. Flambaum, V. V. 2007. Core-valence correlations for atoms with open shells. Phys. Rev. A, 052504-13.
- Ehresmann A. Kilin, V. A., Schmoranzer, H., Schartner, K-H., Amusia M. Ya. 1995. Assignment of new fluorescence lines from Kr III 4p³6s/5d states observed after excitation of the Kr I 3d⁹_{5/2} 5p-resonance. J. Phys. B: At. Mol. Opt. Phys., 28: 965-977.
- Ehresmann, A. Schäffer, H., Vollweiler, F., Mentzel, G., Magel, B., Schartner, K. H., Schmoranzer, H. 1998. Alignment of Xe II and Xe III ionic states after the decay of the Xe I 4d⁹_{5/2} 6p ¹P₁ autoionization resonance. J. Phys. B: At. Mol. Opt. Phys., 31: 1487-1501.
- Elabidi, H. 2012. Electron impact excitation for Ar VI. Journal of Physics: Conference Series, 397: 012055-4.
- Eser, S. Özdemir, L. 2017. Electric dipole transition parameters for 5s-5p and 5p-5d transitions in doubly ionized xenon. Acta Phys. Pol. A, 132(4): 1284-1289.
- Eser, S. Özdemir, L. 2018. Electric dipole transitions between low-lying levels in doubly ionized krypton, xenon, and radon. Can. J. Phys., Basım aşamasında, https://doi.org/10.1139/cjp-2017-0238.
- Fawcett, B. C. Bromage, G. E. 1980. Classification of Krypton IV, V and Xenon VI spectral lines. J. Phys. B: Atom. Molec. Phys., 13: 2711-2716.
- Fink, U. Bashkin, S., Bickel, W. S. 1970. Transitions and level lifetimes in Ne II, III, Ar II, III, Kr II, III and Xe II. J. Quant. Spectrosc. Radiat. Transfer, 10: 1241-1256.
- Fischer, C. F. Brage, T., Jönsson, P. 1997. Computational Atomic Structure-An MCHF Approach, Institute of Physics Publishing, 1-279.
- Gallardo, M. Massone, C. A., Tagliaferri, A. A., Garavaglia M. 1979. 5s²5p³ (⁴S)nl levels of Xe III. Phys. Scr., 19: 538-544.

- Gallardo, M. Raineri, M., Reyna Almandos, J. G. 1995. 5s²5p²(6p+4f) configurations in triply ionized xenon (Xe IV). Phys. Scr., 51: 737-751.
- Garstang, R. H. 1963. Transition probabilities of forbidden lines. J. Res. Natl. Bur. Stand. Sec. A, 68A(1): 61-73.
- Grant, I. P. 1974. Gauge invariance and relativistic radiative transitions. J. Phys. B: At. Mol. Opt. Phys., 7(12): 1458-1475.
- Grant, I. P. 2007. Relativistic Quantum Theory of Atoms and Molecules. Springer Series on Atomic, Optical, and Plasma Physics, 1-797.
- Hansen, J. E. Persson, W. 1982. Revised analysis of the 5p⁴ ground configuration of two-times ionized Xe (Xe III) and reevaluation of transition probabilities for forbidden lines within this configuration. Phys. Scr., 25: 487-490.
- Hansen, J. E. Meijer, F. G., Outred, M., Persson, W., Di Rocco, H. O. 1983 Identification of the $4d^{10}5p^{6}$ $^{1}S_{0}$ level in Xe III using optical spectroscopy. Phys. Scr., 27: 254-255.
- Humphreys, C. J. 1935. The third spectrum of Krypton. Phys. Rev., 47: 712-717.
- Humphreys, C. J. 1939. Second spectrum of xenon. J. Res. Natl. Bur. Stand., 22: 19-53.
- Kernahan, J. A. Pinnington, E. H., Ansbacher, W. 1987. Beam-foil mean lives for levels in Kr III. JOSA B, 4(7): 1130-1132.
- Kilin, V. A. Kharlova, A. N., Ehresmann, A., Schmoranzer, H., Schartner, K. H. 1995. Competition between non-correlative visible and correlative fluorescence transition in Kr III. J. Phys. B: At. Mol. Opt. Phys., 28: 4723-4732.
- Kim, Y. K. 1997. Strengths and weaknesses of relativistic atomic structure calculations. Phys. Scr., T73: 19-24.
- Kingston, A. E. Norrington, P. H., Boone, A. W. 2002. Spontaneous transition rates for electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions for He-like calcium and sulfur ions. J. Phys. B: At. Mol. Opt. Phys., 35: 4077–4100.
- Livingston, A. E. 1976. New identifications in the spectra of Kr Iv-Kr VII. J. Phys. B: Atom. Molec. Phys., 9(9): L215-L218.
- Löwdin, P.-O. 1955. Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects. Phys. Rev., 97: 1509-1520.
- Lu, M. Alna'washi, G., Habibi, M., Gharaibeh, M. F., Phaneuf, R. A., Kilcoyne, A. L. D., Levenson, E., Schlachter, A. S., Cisneros, C., Hinojosa, G. 2006. Photoionization and electron-impact ionization of Kr³⁺. Phys. Rev. A, 74: 062701-10.
- Lundin, J. 2010. QED and collective effects in vacuum and plasmas. Umeå University, Department of Physics, Doctorate Thesis.
- Mann, J. B. Johnson, W. R. 1971. Breit interaction in multielectron atoms. Phys. Rev. A, 4(3): 41-51.

- Mohan, M. Singh, J., Aggarwal, S., Verma, N. 2013. Atomic structure calculations useful for fusion and astrophysics. İçinde: New Trends in Atomic and Molecular Physics- Advanced Technological Applications. Springer Series on Atomic, Optical, and Plasma Physics, 23-37.
- Mohr, P. J. 1992. Self-energy correction to one-electron energy levels in a strong Coulomb field. Phys. Rev. A, 46(7): 4421-4424.
- NIST Atomic Spectra Bibliographic Databases, 2017.
- O'Sullivan, G. 1988. The emission spectrum of a laser-produced plasma of rubidium in the 320-450 Å region. J. Phys. B: At. Mol. Opt. Phys., 22: 987-996.
- Osterbrock, D. E. 1951. Transition probabilities of forbidden lines. Ap. J., 114:469-472.
- Peláez, R. J. Ćirišan, M., Djurović, S., Aparicio, J. A., Mar, S. 2006. Stark broadening measurements of Xe III spectral lines. J. Phys. B: At. Mol. Opt. Phys., 39: 5013-5022.
- Peláez, R. J. Cirišan, M., Djurović, S., Aparicio, J. A., Mar, S. 2009. Stark broadening measurements of low-intensity singly and doubly ionized xenon spectral lines. A&A, 507:1697-1705.
- Peláez, R. J. Djurović, S., Ćirišan, M., Aparicio, J. A., Mar, S. 2012. Stark halfwidth trends along the homologous sequence of doubly ionized noble gases. A&A, 539: A40-9.
- Pernpointner, M. 2010. The four-component two-particle propagator for the calculation of double-ionization spectra of heavy-element compounds: I. Method. J Phys B: At Mol Opt Phys., 43: 205102-11.
- Pernpointner, M. Zobel, J. P., Kryzhevoi, N. V. 2012. Strong configuration interaction in the double ionization spectra of noble gases studied by the relativistic propagator method. Phys. Rev. A, 85: 012505-9.
- Persson W. Pettersson, S.-G. 1984. 4s²4p³ and 4s4p⁴ configurations in Kr IV, Rb V and Sr VI. Phys. Scr., 29: 308-312.
- Persson, W. Wahlström, C. –G., Bertuccelli, G., Di Rocco, H. O., Reyna Almandos, J. G., Gallardo, M. 1988. Spectrum of doubly ionized xenon (Xe III). Phys. Scr., 38: 347-369.
- Postavaru, O. 2010. Strong-field relativistic processes in highly charged ions. Ruperto-Carola University of Heidelberg, Combined Faculties for the Natural Sciences and for Mathematics, Doctorate Thesis.
- Pyper, N. C. Grant, I. P., Beatham, N. 1978. A new program for calculating matrix elements of one-particle operators in jj-coupling. Comput. Phys. Commun., 15:387-400.
- Raineri, M. Lagorio, C., Padilla, S., Gallardo, M., Reyna Almandos, J. 2008. At. Data. Nucl. Data Tables, 94: 140-159.
- Raineri, M. Reyna Almandos, J. G., Bredice F., Gallardo, M., Trigueiros, A. G., Pettersson, S-G. 1998. Weighted oscillator strengths for Kr III spectrum. J. Quant. Spectrosc. Radiat. Transfer, 60(1): 25-42.

- Rauch, T. Quinet, P., Hoyer, D., Werner, K., Richter, P., Kruk, J. W., Demleitner, M. 2016. Stellar laboratories VII. New Kr IV – VII oscillator strengths and an improved spectral analysis of the hot, hydrogen-deficient DO-type white dwarf RE 0503-289. A&A, 590: A128-26.
- Reyna Almandos, J. G. Bredice, F., Gallardo, M., Pagan, C. J. B. 1991. 5s²5p²(5d+6s) configurations in triply ionized xenon (Xe IV). Phys. Rev. A, 43(11): 6098-6103.
- Reyna Almandos, J. G. Bredice, F., Raineri, M., Gallardo, M., Trigueiros, A. G. 1996. New energy levels of the Kr III spectrum. J. Phys. B: At. Mol. Opt. Phys., 29: 5643-5650.
- Reyna Almandos, J. G. Bredice, F., Raineri, M., Gallardo, M., Trigueiros, A. G. 1998. Extended analysis of three-times ionized krypton (Kr IV). J. Phys. B: At. Mol. Opt. Phys., 31: 3129-3136
- Reyna Almandos, J. Bredice, F., Raineri, M., Gallardo, M. 2009 Spectral analysis of ionized noble gases and implications for astronomy and laser studies. Phys. Scr., T134: 014018-6.
- Rose, M. E. 1967. Elementary Theory of Angular Momentum. Published by John Wiley & Sons, 1-272.
- Saloman, E. B. Kim, Y. K. 1989. Energy levels and transition probabilities in the ground-state configuration of sulfur-like ions. At. Data. Nucl. Data Tables, 41(2): 339-356.
- Saloman, E. B. 2004. Energy levels and observed spectral lines of Xenon, Xe I through Xe LIV. J. Phys. Chem. Ref. Data, 33(3): 765-921.
- Saloman, E. B. 2007. Energy levels and observed spectral lines of Krypton, Kr Ithrough Kr XXXVI. J. Phys. Chem. Ref. Data, 36: 215-386.
- Schippers, S. Ricz, S., Buhr, T., Borovik, Jr A., Hellhund, J., Holste, K., Huber, K., Schäfer, H. –J., Schury, D., Klumpp, S., Mertens, K., Martins, M., Flesch, R., Ulrich, G., Rühl, E., Jahnke, T., Lower, J., Metz, D., Schmidt, L. P. H., Schöffler, M., Williams, J. B., Glaser, L., Scholz, F., Seltmann, J., Viefhaus, J., Dorn, A., Wolf, A., Ullrich, J., Müller, A. 2014. Absolute cross sections for photoionization of Xe^{q+} ions ($1 \le q \le 5$) at the 3d ionization threshold. J. Phys. B: At. Mol. Opt. Phys., 47: 115602-10.
- Seidel, S. Wrubel, Th., Roston, G., Kunze, H. -J. 2001. Line profile measurements of (⁴S) 6s ⁵S–(⁴S) 6p ⁵P transitions of Xe III. J. Quant. Spectrosc. Radiat. Transfer, 71: 703-709.
- Stasinopoulos, I. 2011. Hyperfine optical resonance fluorescence spectrum of titaniumlike ions. Astronomy University of Heidelberg, Department of Physics, Bachelor Thesis.
- Sterling, N. C. 2011. Atomic data for neutron-capture elements II. Photoionization and recombination properties of low-charge krypton ions. A&A, 533: A62-15.
- Sugar, J. Musgrove A. 1991. Energy levels of Krypton, Kr I through Kr XXXVI. J. Phys. Chem. Ref. Data, 20(5): 859-916.

- Tauheed, A. Joshi, Y. N. Revised and extended analysis of the 5s²5p³, 5s5p⁴, 5s²5p²5d and 5s²5p²6s configurations of trebly ionized Xenon (Xe IV). Phys. Scr., 47: 555-560.
- Walch, R. A. Knight, R. D. 1988. Radiative lifetimes of the ${}^{1}S_{0}$ metastable states of Kr^{2+} and Xe^{3+} . Phys. Rev. A, 38(5): 2375-2379.
EKLER

EK A: Kr III-IV, Xe III-IV ve Rn III-IV iyonlarına ait valans, öz-valans ve özöz korelasyonlarını içeren tablolar

$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Tablo A.1. Kr III iyonuna ait enerji seviyeleri (in Rydberg)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Seviyeler	VV	CV	CC	Diğer çalışmalar	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4s^24p^4 {}^3P_2$	0,00000	0,00000	0.0000	0.00000 ^{a-d}	
$ 4s^{2}4p^{4} {}^{3}P_{0} = 0.02987^{B} = 0.02977^{B} = 0.01656^{B} = 0.04128^{b} \\ 0.03860^{d} \\ 0.03860^{d} \\ 0.03980^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.03850^{d}^{c} \\ 0.0481^{d} \\ 0.00481^{d} \\ 0.0481^{d} \\ 0.0481^{d} \\ 0.0481^{d} \\ 0.0481^{d} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.04857^{b} \\ 0.13344^{b} \\ 0.13344^{b} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.15580^{d} \\ 0.13580^{d} \\ 0.15580^{d} \\ 0.13580^{d} \\ 0.15580^{d} \\ 0.13580^{d} \\ 0.15580^{d} \\ 0.13580^{d} \\ 0.15580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.13580^{d} \\ 0.15580^{d} \\ 0.2850^$	$4s^{2}4p^{4} {}^{3}P_{1}$	0,04022 ^A	0,04020 ^A	0.04051 ^A	0.04144 ^a	
$4s^{2}4p^{4} {}^{3}P_{0} = 0.04927^{A} \\ 0.03800^{4} \\ 0.03850^{4**} \\ 0.03850^{4**} \\ 0.03850^{4**} \\ 0.04841 \\ 0.04841 \\ 0.04841^{B} \\ 0.02299^{B} \\ 0.04876^{c} \\ 0.04876^{c} \\ 0.04570^{4} \\ 0.04630^{4**} \\ 0.04630^{4*} \\ 0.0280^{4} \\ 0.$		0,02987 ^B	0,02977 ^B	0.01656 ^B	0.04128 ^b	
$4s^{2}4p^{4}^{3}P_{0} = 0.04927^{A} = 0.04925^{A} = 0.04740^{A} = 0.03850^{0}$ $4s^{2}4p^{4}^{1}P_{0} = 0.052870^{4} = 0.03639^{B} = 0.04740^{A} = 0.04857^{b} = 0.04857^{b} = 0.04857^{b} = 0.04857^{b} = 0.04857^{b} = 0.04857^{b} = 0.04857^{b} = 0.04876^{c} = 0.0486^{c} $					0,04123°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,03860 ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,03940 ^{d*}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,03850 ^{d**}	
$ 4s^24p^{41}D_2 = 0,03624^B = 0,03639^B = 0.02299^B = 0.04857^b \\ 0,04876^c \\ 0,04670^d \\ 0,04630^{4**} \\ 0,04630^{4**} \\ 0,15997^A = 0,15993^A = 0.16016^A = 0.13344^a \\ 0,11996^B = 0,11920^B = 0.16787^B = 0.13343^b \\ 0,13361^c \\ 0,13500^d \\ 0,15500^d \\ 0,15500^d \\ 0,15500^d \\ 0,14980^{4**} \\ 0,25757^B = 0,26602^B = 0.34881^B = 0.30139^b \\ 0,30139^b \\ 0,30287^c \\ 0,28500^d \\ 0,28500^d \\ 0,28500^d \\ 0,28620^{4*} \\ 0,30190^{4**} \\ 1.00523^B = 1.22540^d \\ 1.02380^{4*} \\ 1.02380^{4*} \\ 1.02380^{4*} \\ 1.02380^{4*} \\ 1.09510^{4**} \\ 4s4p^5 ^3P^{0} = - 1.29073^A = 1.27700^A \\ 1.09510^{4**} \\ 4.61285^B = 1.01988^B = 1.25880^d \\ 1.05430^{4*} \\ 1.01758^a \\ 4.62106^B = 1.02789^B \\ 1.02789^B \\ 1.02780^{4*} \\ 1.01758^a \\ 1.07230^{4*} \\ 1.14340^{4**} \\ 1.14340^{4**} \\ 1.0480^{4**} \\ 1.0480^{4**} \\ 1.0480^{4**} \\ 1.0480^{4**} \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.02780^{4*} \\ 1.01988^B \\ 1.0280^{4*} \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.02780^{4*} \\ 1.01988^B \\ 1.0280^{4*} \\ 1.02780^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.0280^{4*} \\ 1.080^{4*} \\ 1.080^{4*} \\ 1.080^{4*} \\ 1.080^{4*} \\ 1.080^{4*} \\ 1.080^{4*} \\ 1.080^{4*} \\ 1.0$	$4s^24p^4 {}^3P_0$	0,04927 ^A	0,04925 ^A	0.04740^{A}	0.04841ª	
$4s^{2}4p^{4}1D_{2} = 0,15997^{A} = 0,15993^{A} = 0,16016^{A} = 0,04630^{4**} = 0,04630^{4**} = 0,04630^{4**} = 0,13344^{a} = 0,11996^{B} = 0,11920^{B} = 0,16787^{B} = 0,13343^{b} = 0,13361^{c} = 0,15500^{d} = 0,15500^{d} = 0,15500^{d} = 0,15500^{d} = 0,15580^{d**} = 0,14980^{4**} = 0,04630^{4**} = 0$		0,03624 ^B	0,03639 ^B	0.02299 ^B	0.04857 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,04876°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,04570 ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$0,04640^{d*}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,04630 ^{d**}	
$4s^24p^{4} {}^{5} {}^{3}P^{\circ}_{2} = - \begin{array}{ccccccccccccccccccccccccccccccccccc$	$4s^24p^{41}D_2$	0,15997 ^A	0,15993 ^A	0.16016 ^A	0.13344 ^a	
$4s^{2}4p^{4}{}^{1}S_{0} = \begin{array}{ccccccccccccccccccccccccccccccccccc$	-	0,11996 ^B	0,11920 ^B	0.16787 ^B	0.13343 ^b	
$4s^{2}4p^{4}{}^{1}S_{0} = \begin{array}{ccccccccccccccccccccccccccccccccccc$					0,13361°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,15500 ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,15580 ^{d*}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,14980 ^{d**}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4s^24p^{4}S_0$	0,36083 ^A	0,36084 ^A	0.29152 ^A	0.30144 ^a	
$4s4p^{53}P^{\circ}_{2} - 1.25684^{A} 1.24338^{A} 1.05644^{a} 0,282500^{d} 0,282500^{d} 0,282500^{d} 0,282620^{d*} 0,30190^{d**} 0$	1	0,25757 ^B	0,26602 ^B	0.34881 ^B	0.30139 ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-,	-,		0,30287°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.28500 ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0,28620 ^{d*}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.30190 ^{d**}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4s4p^{5} {}^{3}P^{\circ}_{2}$	-	1.25684 ^A	1.24338 ^A	1.05644ª	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·		4.59741 ^B	1.00523 ^B	1.22540^{d}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1.02380 ^{d*}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1.09510 ^{d**}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4s4p^{5} {}^{3}P^{\circ}_{1}$	-	1.29073 ^A	1.27700^{A}	1.08787ª	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.61285 ^B	1.01988 ^B	1.25880 ^d	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1.05430 ^{d*}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1.12550 ^{d**}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4s4p^{5} {}^{3}P^{\circ}_{0}$	-	1.30862 ^A	1.29616 ^A	1.10758 ^a	
$4s^{2}4p^{3}(^{4}S^{\circ})4d\ ^{5}D^{\circ}_{0} 5.31977^{B} \qquad 5.29766^{B} \qquad 1.19475^{B} \qquad 1.26161^{a} \\ 1,20890^{d*} \\ 1,20890^{d$	····P ····		4.62106 ^B	1.02789 ^B	1.27730 ^d	
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{0}$ 5.31977 ^B 5.29766 ^B 1.19475 ^B 1.26161 ^a 1,20890 ^{d*}					1.07230 ^{d*}	
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{0}$ 5.31977 ^B 5.29766 ^B 1.19475 ^B 1.26161 ^a 1,20890 ^{d*}					1.14340 ^{d**}	
1,20890 ^{d*}	$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{0}$	5.31977 ^B	5.29766 ^B	1.19475 ^B	1.26161ª	
1,20070	15 IP (5) IC 2 0	0101777	0.29700	1117 170	1.20890 ^{d*}	
1.28400 ^{d**}					1.28400 ^{d**}	
$4s^24p^3(^4S^\circ)4d^5D^\circ_1$ 5.32039 ^B 5.29826 ^B 1.19500 ^B 1.26184 ^a	$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{1}$	5.32039 ^B	5.29826 ^B	1.19500 ^B	1.26184^{a}	
1 20910 ^{d*}					1.20910 ^{d*}	
1,20910 ^{d**}					1.28420 ^{d**}	

Tablo A.1. (Devamı)

		Tablo A.I. (Dev	ami)	
Seviyeler	VV	CV	CC	Diğer çalışmalar
4s ² 4p ³ (⁴ S°)4d ⁵ D° ₂	5.32163 ^B	5.29947 ^B	1.19554 ^B	1.26192ª
				1,20930 ^{d*}
				1,28430 ^{d**}
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{5}D^{\circ}_{3}$	5.32349 ^B	5.30130 ^B	1.19642 ^B	1.26203 ^a
15 Ip (5) Id 2 5	0.020.0	0.00100		1.20970 ^{d*}
				1 28460 ^{d**}
$4s^{2}/n^{3}(4S^{\circ})/d^{5}D^{\circ}$	5 32605 ^B	5 30386 ^B	1 10777 ^B	1,20400 1,264/6ª
48 4p (5)40 D 4	5.52005	5.50500	1.17////	1.20340
				1,21100
4-4-5100		1 750744	1 775054	1,20370-
484p ⁵ ¹ P ⁻¹	-	1./59/4 ⁴	1.//595**	1.29287"
		5.06299 ^b		1,28340
				1,35210 ^{d***}
$4s^{2}4p^{3}(4S^{\circ})5s^{3}S^{\circ}_{2}$	1,22524 ^A	1.22366 ^A	1.24746 ^A	1.32788ª
	2.94869 ^B	2.26947 ^B	0.02491 ^B	
4s ² 4p ³ (⁴ S°)4d ³ D° ₂	6.30806 ^B	6.28621 ^B	2.09623 ^B	1.34689 ^a
				1,32460
				1,39920
$4s^{2}4p^{3}(^{4}S^{\circ})4d^{3}D^{\circ}_{3}$	6.29586 ^B	6.27394 ^B	2.08537 ^B	1.35537ª
······································				1 3300
				1,007
$4a^{2}4n^{3}(48^{\circ})$ Ad $3D^{\circ}$.	6 21600 ^B	6 20508B	2 10288B	1,4047
48 4p (5)4u D 1	0.31090	0.29508	2.10300	1.33644
				1,3306
1 24 2400 5 200	1 2010 14	1.001101		1,4078
$4s^{2}4p^{3}(4S^{\circ})5s^{3}S^{\circ}_{1}$	1.28486 ^A	1.28610 ^A	1.31258 ^A	1.38130 ^a
	2.96764 ^B	2.57622 ^B	0.11547 ^B	
4s ² 4p ³ (² D°)4d ³ F° ₂	5.56083 ^B	5.53864 ^B	1.40143 ^B	1.39937 ^a
4s ² 4p ³ (² D°)4d ³ F° ₃	5.56789 ^B	5.54570 ^B	1.40837 ^B	1.40972 ^a
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}F^{\circ}_{4}$	5.57698 ^B	5.55479 ^B	1.41661 ^B	1.42232ª
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{1}S^{\circ}_{0}$	5.58413 ^B	5.56197 ^B	1.48741 ^B	1.40699^{a}
I () a st				1.40540
				1 48010
$4s^24n^3(^2D^\circ)4d^3G^{\circ_2}$	5 66675 ^B	5 64456 ^B	1 53520 ^B	1 45799ª
$4s^{2}4p^{3}(2D^{0})$ $4d^{3}C^{0}$	5.66092B	5.64765B	1.53520 1.52710 ^B	1.46190a
$48 4p^{-1}$ (D) 40^{-1} (D) 41^{-1} (D) 41^{-1}	J.00903	5.04705 5.65162B	1.53/10 1.5205 CB	1.40180
$48^{-4}p^{-3}(^{-1}D) 44^{-3}G 5$	J.0/382 ⁻	5.05105- 5.70572B	1.33930 ⁻	1.40812
$4s^{2}4p^{3}(^{2}D^{*})4d^{4}G^{*}4$	5.727915	5.705725	1.603395	1.48391"
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{3}D^{\circ}_{1}$	1.44455 ^A	1.44418 ^A	1.45908 ^A	1.48781ª
	3.20935 ^B	2.62230 ^B	0.30614 ^B	
$4s^{2}4p^{3}(^{2}D^{\circ})5s^{3}D^{\circ}_{2}$	1.44668 ^A	1.44640 ^A	1.46075 ^A	1.49115 ^a
	3.21024 ^B	2.62380 ^B	0.30688 ^B	
4s ² 4p ³ (² D°)5s ³ D° ₃	1.45569 ^A	1.45534 ^A	1.47394 ^A	1.50407 ^a
	3.21301 ^B	2.62810 ^B	0.30894 ^B	
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{1}D^{\circ}_{2}$	5.78049 ^B	5.75804 ^B	1.58289 ^B	1.50781ª
$4s^24n^3(^2D^\circ)4d^3D^\circ$	5 50355 ^B	5 48135 ^B	1 38604 ^B	1 55099ª
$4s^24n^3(^2D^\circ)4d^3D^\circ$	5 50154 ^B	5 47934 ^B	1 38173 ^B	1.57162ª
$4s^24n^3(^2D^0)/(d^3D^0)$	5.50104 5.50108 ^B	5 47076 ^B	1.30175 1.30288 ^B	1 58071a
$4e^{2}/n^{3}/(2D^{0}) = 1D^{0}$	1 AQ115A	J.4/9/0 1 10712A	1.30200 1.50026A	1.507/1 1.55724a
48-4p ⁻ (-D)38 ⁻ D ₂	1.48115 ¹²	1.46245 ¹⁰	1.30020 ¹²	1.55754-
()()())())()())	3.22055 ^B	2.76986 ^b	0.35266 ^B	
$4s^{2}4p^{3}(^{2}P^{0})4d^{3}P^{0}_{0}$	5.87349 ^b	5.85497 ^B	1.69258 ^b	1.56/34 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}P^{\circ}_{1}$	5.87926 ^B	5.86164 ^B	1.69853 ^B	1.57633ª
$4s^{2}4p^{3}(^{2}P^{\circ})4d ^{3}P^{\circ}_{2}$	5.88704 ^B	5.87756 ^B	1.71271 ^B	1.61103 ^a
4s ² 4p ³ (² P°)4d ³ F° ₃	5.86076 ^B	5.83860 ^B	1.64346 ^B	1.59317 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}F^{\circ}_{4}$	5.86076 ^B	5.83857 ^B	1.64180 ^B	1.59510 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}F^{\circ}_{2}$	5.86233 ^B	5.84018 ^B	1.64803 ^B	1.59664 ^a
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{5}P_{1}$	1.47913 ^A	1.47873 ^A	1.50849^{A}	1.59967ª
F (~). P + 1	2.20632 ^B	2 18427 ^B		
1s2/n3(45°)5- 5D-	1 /8155A	1 10421	1 51002A	1 601918
ч» чр (s jsp-r2	1.40133 -	1.40110	1.51095	1.00101
4 24 3/400 E 50	2.20/00	2.18300	1 51 500 1	1 (005 (*)
4s ² 4p ³ (³ S ²)5p ³ P ₃	1.48/10 ^A	1.486/0 ^A	1.516/2 ^A	1.60856ª
	2.20856 ^в	2.18646 ^в		
4s ² 4p ³ (² P°)5s ³ P° ₀	1.59522 ^A	1.59563 ^A	1.56328 ^A	1.62427 ^a
	3.41975 ^B	2.79670 ^B	0.48145^{B}	

		Tablo A.I. (Deva	(1111)	
Seviyeler	VV	CV	CC	Diğer çalışmalar
$4s^{2}4p^{3}(^{2}P^{\circ})5s^{3}P^{\circ}1$	1.59958 ^A	1.60001 ^A	1.56843 ^A	1.62441 ^a
I ()	3 41962 ^B	2 79983 ^B	0 48317 ^B	
$4s^24n^3(^2P^\circ)5s^3P^\circ_2$	1 61433 ^A	1 61486 ^A	1 58773 ^A	1 64253ª
чэ чр (1 <i>)</i> 55 1 2	2 /1822 ^B	2 81154B	0.48720 ^B	1.04235
$4a^{2}4m^{3}(4S^{\circ})5m^{3}D$	1.52047A	2.81134 1.52912A	0.40720 1.55952A	1 626800
4s-4p-(-5-)5p-P1	1.33647	1.55812 ¹⁰	1.55855	1.03089
4 24 3(400) 5 3D	1 5400 64	2.303472	1 5 (170)	1 (1102)
4s ² 4p ³ (*S*)5p ³ P ₂	1.54296**	1.54260 ^A	1.561/9**	1.64103"
1 2 4 2 4 2 2 2 2 2 2		2.29124	1 5 (9 0 0 Å	
$4s^{2}4p^{3}(^{4}S^{\circ})5p^{-5}P_{0}$	1.54376 ^A	1.54342 ^A	1.56308 ^A	1.64244 ^a
		2.29431 ^B		
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{-3}S^{\circ}_{1}$	6.09144 ^B	6.06765 ^B	1.91233 ^B	1.65179 ^a
4s ² 4p ³ (² P°)5s ¹ P° ₁	1.63812 ^A	1.63647 ^A	1.60760 ^A	1.66092 ^a
	3.42039 ^в	2.59097 ^B	0.53027 ^B	
4s ² 4p ³ (² D°)4d ¹ F° ₃	6.51420 ^B	6.49202 ^B	1.88971 ^B	1.66731 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}D^{\circ}_{3}$	5.89938 ^B	5.47976 ^B	1.73259 ^B	1.68485 ^a
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}D^{\circ}_{2}$	5.88039 ^B	5.47934 ^B	1.71826 ^B	1.69211ª
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{3}D^{\circ}_{1}$	5.87149 ^B	5.48135 ^B	1.70757 ^B	1.71530 ^a
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}P^{\circ}_{2}$	5.96271 ^B	6.16886^{B}	2.22990 ^B	1.71836 ^a
$4s^{2}4p^{3}(^{2}D^{\circ})4d^{3}P^{\circ}_{1}$	5.96487 ^B	6.18441 ^B	2.24005^{B}	1,73346 ^a
$4s^24n^3(^2D^\circ)4d^3P^\circ_0$	5 96801 ^B	6.18537 ^B	2.24672 ^B	-
$4s^24n^3(^2D^\circ)5n^3D_1$	1.66456 ^A	1 66414 ^A	1.69305 ^A	1 73800ª
45 4p (D)5p DI	2 34018 ^B	2 31800 ^B	1.07505	1.75600
$4a^{2}4n^{3}(2D^{9})5n^{3}D_{1}$	2.34018 1.68267A	2.51809 1.69225A	1 70007A	1 76654a
48 4p (D)5p D ₂	1.06207	1.08225 2.22001B	1.70907	1.70034
4 24 3/2005 30	2.342085	2.320012	1 7002 ()	1 70 1 203
4s ² 4p ³ (² D ²)5p ³ D ₃	1.69256 ^{rr}	1.69214 ^A	1./2836*	1./8132"
·) ·) ·) · · · · · · · · · · · · · ·	2.34949	2.327408	4 = 4 00 0 Å	
$4s^{2}4p^{3}(^{2}D^{0})5p^{3}F_{2}$	1.69458 ^A	1.69416 ^A	1.71890 ^A	1.75602ª
	2.40806 ^b	2.38600 ^B		
4s ² 4p ³ (² D°)5p ³ F ₃	-	2.38810 ^B	1.71870 ^A	1.76626 ^a
	2.41019 ^B			
4s ² 4p ³ (² D°)5p ³ F ₄	1.70983 ^A	1.70941 ^A	1.73434 ^A	1.78311 ^a
	2.41538 ^B	2.39327 ^B		
4s ² 4p ³ (² D°)4d ¹ D° ₂	6.36518 ^B	6.35040 ^B	2.15220 ^B	1.76468 ^a
4s ² 4p ³ (² D°)5p ¹ P ₁	1.69457 ^A	1.69415 ^A	1.72253 ^A	1.76895 ^a
4s ² 4p ³ (² D°)5p ¹ F ₃	1.71234 ^A	1.71192 ^A	1.73477 ^A	1.77663 ^a
	2.47007 ^B	2.44797 ^B		
$4s^{2}4p^{3}(^{2}P^{\circ})4d^{1}F^{\circ}_{3}$	6.06291 ^B	6.04072^{B}	1.88970^{B}	1.78869^{a}
$4s^24n^3(^2D^\circ)5n^3P_2$	1.76859 ^A	1.76830^{A}	1.76874^{A}	1.80529ª
15 IP (12)0P 12	-	8.08807 ^B	11/00/1	110002)
$4s^24n^3(^2D^\circ)5n^3P_0$	1 76829 ^A	1.76808 ^A	1 77315 ^A	1 81149 ^a
чэ чр (в)эр 10	1.70025	8 09663 ^B	1.77515	1.01149
$4e^{2}4n^{3}(^{2}D^{0})5n^{3}D_{1}$	- 1 76877A	1.76852A	1 77300A	1 8118 2 ª
48 4p (D)5p 11	1.70877	1.70852 9.00297B	1.77500	1.81182
$4a^{2}4m^{3}(2D^{0})5m^{1}D$	- 1 91776A	0.09307 1.91755A	1 919004	1 949000
48 4p (D)5p D2	1.01//0 1.100/0B	1.01755 1.10202B	1.01000	1.04092
4 24 3(2D0) 5 3D	1.19902	1.192025	1.065404	1 000573
4s ² 4p ³ (² P [*])5p ³ D ₁	1.84319 ⁴⁴	1.842/5 ^{rr}	1.86542**	1.88857"
1 2 1 2 (200) = 20	2.51842	2.49635	1.0==0.1.4	1.000000
$4s^{2}4p^{3}(^{2}P^{0})5p^{-5}D_{2}$	1.85290 ^A	1.85248 ^A	1.87581 ^A	1.90008 ^a
	2.51822 ^B	2.49615 ^B		
4s ² 4p ³ (² P°)5p ³ D ₃	1.86305 ^A	1.86260 ^A	1.88734 ^A	1.91246 ^a
	2.52318 ^B	2.50108 ^B		
$4s^{2}4p^{3}(^{2}P^{\circ})5p^{3}P_{1}$	1.89489 ^A	1.89449 ^A	1.91159 ^A	1.90713 ^a
	2.59192 ^B	2.56987 ^B		
4s ² 4p ³ (² P°)5p ³ P ₀	1.88092 ^A	1.88055 ^A	1.89255 ^A	1.91171 ^a
	2.58551 ^B	2.56351 ^B		
4s ² 4p ³ (² P°)5p ³ P ₂	1.89912 ^A	1.89882 ^A	1.91789 ^A	1.94152 ^a
- / *	2.61413 ^B	2.59210 ^B		
4s ² 4p ³ (² P°)5p ¹ D ₂	1.91292 ^A	1.91252 ^A	1.91645 ^A	1.93301 ^a
· · / · -	2.65750 ^B	2.63546 ^B		
4s ² 4p ³ (⁴ S°)6s ⁵ S° ₂	1.82622 ^A	1.83178 ^A	1.85804 ^A	1.96397 ^a
* ` / -	4.01903 ^B	3.45239 ^B		

Tablo A.1. (Devamı)

Seviyeler	VV	CV	CC	Diğer çalışmalar
4s ² 4p ³ (⁴ S°)6s ³ S° ₁	1.84513 ^A	1.86223 ^A	1.87823 ^A	1.98087ª
	4.11247 ^B	3.72992 ^B		
4s ² 4p ³ (² D°)6s ³ D° ₂	2.03548 ^A	2.04406 ^A	2.06089 ^A	2.12640 ^a
	4.30281 ^B	3.79061 ^B		
4s ² 4p ³ (² D°)6s ³ D° ₃	2.04620 ^A	2.05452 ^A	2.07220 ^A	2.13753 ^a
	4.30493 ^B	3.79419 ^B		
4s ² 4p ³ (² D°)6s ¹ D° ₂	2.05332 ^A	2.06630 ^A	2.07967 ^A	2.14313 ^a
	4.34985 ^B	3.92549 ^B		
$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{o}_{1}$	2.18881 ^A	2.19784 ^A	2.21013 ^A	2.27057ª
	4.47998 ^B	3.96801 ^B		
$4s^{2}4p^{3}(^{2}P^{\circ})6s^{-3}P^{\circ}_{2}$	2.20529 ^A	2.21330 ^A	2.22765 ^A	2.27235ª
	4.48415 ^B	3.97679 ^B		
4s ² 4p ³ (² P°)6s ¹ P ^o 1	2.21187 ^A	2.22479 ^A	2.23465 ^A	2.27659ª
	4.52833 ^B	4.10722^{B}		

Tablo A.1. (Devamı)

C		onuna an energi se	viyelen (Kydderg)	Dižov selecuslas
Seviyeler 5 a ² 5 a ⁴ ³ Da	<u> </u>			Diger çalışmalar
$38^{-}3p^{-}3P_2$ $5a^25n^43P_2$	0.00000	0.00000	0.00000	0.0000
$5s^25p^{12}P_0$	0.0/556	0.07534	0.07345 ¹	0.07408
			0.07490-	0.07240°
				0.07759 ^d
				0.07373 0.08136°
$5s^{2}5n^{4}$ ³ P ₁	0 08447	0.08440	0 08299A	0.08130
58 5p 11	0.00447	0.00440	0.08233 ^B	0.08925
			0.00555	0.08772°
				0.08782 ^d
				0.08797°
$5s^25p^{4}D_2$	0.17718	0.17715	0.17238 ^A	0.15581ª
00 0p 22	011//10	0117710	0.16719 ^B	0.15638 ^b
				0.15805°
				0.17392 ^d
				0.17941 ^e
$5s^{2}5p^{4} {}^{1}S_{0}$	0.35165	0.35167	0.33138 ^A	0.32899 ^a
			0.33705 ^B	0.32769 ^b
				0.34482°
				0.33972 ^d
				0.37410 ^e
5s5p ^{5 3} P° ₂	-	0.87158	0.89987 ^A	0.89543 ^a
			0.90721 ^B	0.89584 ^b
				0.90076^{d}
5s5p ^{5 3} P° ₁	-	0.91966	0.94841 ^A	0.94378 ^a
			0.95586 ^B	0.94317 ^b
				0.95076^{d}
$5s5p^{5}P^{\circ}_{0}$	-	-	0.98476 ^A	0.98720 ^a
			0.99233 ^в	0.99365 ^b
	0.0=0.40	0.0=001	1 0 0 0 40 1	0.98928 ^d
$5s^{2}5p^{3}(^{4}S^{6})5d^{3}D^{6}_{3}$	0.97868	0.97801	1.02060 ^A	1.01702 ^a
			1.02848 ^b	1.01/83
5 25 3/499) 5 1 509	0.070/7	0.00005	1.024054	1.01484 ^d
5s ² 5p ³ (⁴ S ⁴)5d ³ D ⁴ ₂	0.9/86/	0.98085	1.02405 ^A	1.01931 ^d
5 a ² 5 a ³ (489) 5 d 5D ⁹	0.0226	0.09167	1.031932	1.01210
58 5p (5)5d D 4	0.98230	0.98107	1.02422 1.03210 ^B	1.02309 1.02312b
			1.03210	1.02512 1.01484d
$5s^{2}5n^{3}(4S^{\circ})5d^{5}D^{\circ}1$	0 97840	0.98605	1 02997 ^A	1.01464 1.02471a
53 5p (5)5d D 1	0.970+0	0.96005	1.02797 1.03784 ^B	1.02471 1.01611 ^d
$5s^{2}5n^{3}(^{4}S^{\circ})5d^{5}D^{\circ}$	0 97718	0 99346	1.03758 ^A	1.02694^{a}
55 5p (5)5d D 0	0.97710	0.77540	1.04340 ^B	1.02665 ^b
				1.02191 ^d
$5s^{2}5p^{3}(^{4}S^{\circ})5d^{3}D^{\circ}_{2}$	1.05966	1.06096	1.09872 ^A	1.06837 ^a
1 ()			1.10671 ^B	1.06810 ^b
				1.08053 ^d
5s ² 5p ³ (⁴ S°)6s ⁵ S° ₂	1.07006	1.06916	1.11416 ^A	1.10697 ^a
• • •			1.12341 ^B	1.08442 ^d
5s ² 5p ³ (² D°)5d ¹ P° ₁	1.25434	1.07863	1.11688 ^A	1.08464 ^a
			1.12505 ^B	1.48934 ^b
				1.08442 ^d
5s ² 5p ³ (⁴ S°)5d ³ D° ₃	1.09303	1.09236	1.13337 ^A	1.10472 ^a
			1.14134 ^B	1.10462 ^b
				1.11613 ^d
5s ² 5p ³ (⁴ S°)5d ³ D° ₁	1.09847	1.10140	1.14336 ^A	1.11104 ^a
			1.15142 ^B	1.10911 ^b
				1.12314 ^d
5s ² 5p ³ (⁴ S°)6s ³ S° ₁	1.12310	1.12372	1.16948 ^A	1.14470 ^a
			1.17771 ^B	1.14343 ^b
				1.13135 ^d

Tablo A.2. Xe III iyonuna ait enerji seviyeleri (Rydberg)

	1 a010	A.2. (Devalue)		
Seviyeler	VV	CV	CC	Diğer çalışmalar
$5s^25p^3(^2D^\circ)5d\ ^3F^\circ_2$	1.13524	1.13541	1.17446 ^A	1.13627 ^a
			1.18230 ^B	1.13527 ^b
				1.16029 ^d
5s ² 5p ³ (² D°)5d ³ F° ₃	1.15064	1.15015	1.18929 ^A	1.14928 ^a
• • •			1.19712 ^B	1.14776 ^b
				1.17594 ^d
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{1}S^{\circ}_{0}$	1.15652	1.15649	1.19810 ^A	1.15504 ^b
			1.20594 ^B	
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{3}F^{\circ}4$	1 16873	1 16822	1 20561 ^A	1 18623ª
	1110070	1110022	1 21345 ^B	1 18399 ^b
			11210.0	1 22082 ^d
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{3}G^{\circ}_{2}$	1 18655	1 186031	1 22762 ^A	1.22002 1.16960ª
53 5P (D)54 G 3	1.10055	1.100051	1.22702 1.23546 ^B	1.16910 ^b
			1.23340	1.10012 1.21127 ^d
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{3}F^{\circ}$	1 197304	1 19676	1 23001A	1.21127 1.16443a
55 5p (D)54 1 4	1.177504	1.19070	1.23777 ^B	1.16297 ^b
			1.24777	1.10257 1.10655d
$5e^{2}5n^{3}(^{2}D^{\circ})5d^{3}C^{\circ}$	1 21535	1 21/180	1 25038A	1.17055
58 5p (D)5d G 5	1.21333	1.21400	1.25750 1.26727B	1.20452 1.20222b
			1.20727	1.20332 1.24216d
$5a^{2}5a^{3}(2D^{\circ})6a^{3}D^{\circ}$	1 20055	1 22746	1 26502A	1.24510
38-3p*(-D)08 -D 1	1.20933	1.22740	1.20393 ¹²	1.21411
$5^{2}5^{3}(2D0)(-3D0)$	1 00150	1 02250	1.27484	1 20 45 93
$5s^{2}5p^{3}(^{2}D^{2})6s^{3}D^{2}2$	1.23150	1.23259	1.26951 ^A	1.29458"
5 25 3/200 51100	1 22010	1 22050	1.27826	1 200250
5s ² 5p ³ (² D ⁶)5d ¹ G ⁶ 4	1.23010	1.22950	1.2/348 ^A	1.20935ª
			1.28137	1.20854
$5s^{2}5p^{3}(^{2}D^{0})6s^{3}D^{0}{}_{2}$	1.23150	1.23259	1.29099 ^A	1.29458 ^a
			1.29979 ^B	
$5s^{2}5p^{3}(^{2}D^{\circ})6s^{3}D^{\circ}_{3}$	1.27058	1.26961	1.31444 ^A	1.30453 ^a
			1.32339 ^B	1.26307 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})6s\ ^{3}D^{\circ}{}_{1}$	1.20955	1.22746	1.31847 ^A	1.21411 ^a
			1.32636 ^B	
$5s^{2}5p^{3}(^{2}P^{\circ})5d \ ^{3}P^{\circ}_{0}$	-	1.31131	1.32810 ^A	1.27976 ^a
			1.33659 ^в	
5s ² 5p ³ (⁴ S°)6p ⁵ P ₁	1.28293	1.28132	1.33260 ^A	1.33757 ^a
			1.34105 ^B	1.33788 ^b
5s ² 5p ³ (⁴ S°)6p ⁵ P ₂	1.28530	1.28370	1.33537 ^A	1.33922ª
			1.34377 ^в	1.33921 ^b
$5s^{2}5p^{3}(^{2}P^{\circ})5d \ ^{3}P^{\circ}{}_{1}$	-	1.31614	1.33572 ^A	1.28243 ^a
			1.34454 ^B	1.28181 ^b
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{3}D^{\circ}_{2}$	1.45660	1.44505	1.35054 ^A	1.40237 ^a
			1.35908 ^B	1.40145 ^b
5s ² 5p ³ (⁴ S°)6p ⁵ P ₃	1.30129	1.29967	1.35129 ^A	1.35834 ^a
			1.35976 ^B	
5s ² 5p ³ (² D°)6s ¹ D° ₂	1.33461	1.25872	1.36101 ^A	1.30355ª
			1.36891 ^B	
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{3}F^{\circ}_{3}$	1.35804	1.35745	1.36854 ^A	1.32444ª
			1.37646 ^B	
$5s^{2}5p^{3}(^{4}S^{\circ})6p^{3}P_{1}$	1.32434	1.32278	1.37599 ^A	1.36964ª
			1.38373 ^B	
$5s^{2}5n^{3}(^{2}P^{\circ})5d^{3}F^{\circ}_{2}$	1.36203	1.36021	1.38130 ^A	1.32407ª
			1.38949 ^B	1.32392 ^b
$5s^{2}5n^{3}(^{2}D^{\circ})5d^{3}D^{\circ}_{3}$	1 41887	1 34545	1.38762 ^A	1.30453ª
55 5p (D)54 D 3	1.41007	1.54545	1 39581 ^B	1.25954 ^b
$5s^{2}5n^{3}(4S^{\circ})6n^{3}P_{2}$	1 33569	1 33413	1 38944 ^A	1.23555 ^a
58 5p (5)op 12	1.55509	1.55415	1.30744 1.20742B	1.56505
5s ² 5n ³ (2D°)5d 3E°.	1 38002	1 38040	1.37743 1 30328A	1 35355a
зо эр (т јэц Г 4	1.30072	1.30040	1.37330 1.40125 ^B	1.55555
$5s^{2}5n^{3}(4S^{\circ})(4n^{3}D)$	1 34266	1 3/105	1.40135 ⁻ 1.20517A	1 30240a
s sp (s jop r ₀	1.34200	1.54105	1.3731/" 1.40261B	1.37247" 1.20129b
5 a25 a3(2D°) 6 a 3D°	1 20/20	1 10004	1.40201- 1.41046A	1.37130
38 3p-(-r)08 - P-0	1.39460	1.40080	1.41040 ⁻⁴	1.3/130"
			1.418512	

Tablo A.2. (Devamı)

Seviyeler	VV	CV	CC	Diğer çalışmalar
5s ² 5p ³ (² P°)6s ³ P° ₁	1.41815	1.39514	1.41278 ^A	1.38040 ^a
			1.42105 ^B	1.37970 ^b
$5s^25p^3(^2P^\circ)5d ^3P^\circ_2$	1.39805	1.39722	1.41346 ^A	1.37058ª
5-25-3(200)54300	1 47393	1 41776	1.42209 ^B	1 405153
5s ² 5p ³ (² P ²)5d ³ D ² ₃	1.47282	1.41//6	1.44934 ⁴⁴ 1.45762 ^B	1.42515" 1.42416 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}S^{\circ}1$	1.35842	1.41886	1.45500 ^A	1.34682ª
	1.43337		1.46576 ^B	1.34604 ^b
5s ² 5p ³ (² P°)6s ³ P° ₂	1.48274	1.45658	1.46924 ^A	1.44825 ^a
- 2- 2.2- 0.5 2-			1.47773 ^B	1.44834 ^b
$5s^{2}5p^{3}(^{2}D^{0})6p^{-3}D_{1}$	1.43230	1.43093	1.48040 ^A	1.44888ª
$5s^{2}5n^{3}(^{2}P^{\circ})5d^{3}D^{\circ}_{2}$	1 45660	1 44505	1.48844 ² 1.48499 ^A	1 40237ª
55 5p (1)5u D 2	1.45000	1.4305	1.49342 ^B	1.40145 ^b
5s ² 5p ³ (² P°)6s ¹ P° ₁	1.47934	1.47348	1.48704 ^A	1.45245 ^a
			1.49568 ^B	1.45186 ^b
$5s^{2}5p^{3}(^{2}P^{\circ})5d^{-1}F^{\circ}_{3}$	1.57837	1.48065	1.48782 ^A	1.48497 ^a
$5a^{2}5a^{3}(2D^{2})(a)^{3}E_{2}$	1 44500	1 44450	1.49609 ^B	1.48427
38-3p-(-D)0p -F2	1.44399	1.44439	1.49815 ¹⁴	1.40452" 1.46370 ^b
5s ² 5p ³ (² D°)6p ³ D ₂	1.46317	1.46181	1.51278 ^A	1.47862ª
			1.52073 ^B	1.47744 ^b
$5s^{2}5p^{3}(^{2}P^{\circ})5d \ ^{3}D^{\circ}{}_{1}$	1.496603	1.48649	1.51522 ^A	1.41611 ^a
	1.46050	1.4622.4	1.52377 ^B	1.41512 ^b
$5s^{2}5p^{3}(^{2}D^{2})6p^{-3}F_{3}$	1.463/8	1.46224	1.51606 ^A	1.48167ª
$5s^{2}5n^{3}(^{2}D^{\circ})6n^{1}P_{1}$	1 48565	1 48423	1.52259 1.53355 ^A	1.48120° 1 49914 ^a
55 5p (D)op 11	1.40505	1.40425	1.54164 ^B	1.49897 ^b
5s ² 5p ³ (² D°)6p ³ D ₃	1.50012	1.49866	1.53483 ^A	1.51907 ^a
			1.55855 ^B	
$5s^{2}5p^{3}(^{2}D^{0})6p^{-3}D_{3}$	1.50012	1.49866	1.55105 ^A	1.51907 ^a
$5s^{2}5n^{3}(^{2}D^{\circ})6n^{3}Et$	1 50031	1 /0883	1.55855 ⁸ 1.55273 ^A	1 51775a
58 5p (D)0p 14	1.50051	1.49005	1.56093 ^B	1.51800 ^b
5s ² 5p ³ (² D°)6p ³ P ₀	1.50771	1.50636	1.55541 ^A	1.51217 ^a
			1.56349 ^B	1.51257 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}P^{\circ}_{2}$	1.30426	1.52143	1.56103 ^A	1.35204 ^a
$5e^{2}5n^{3}(2D^{\circ})6n^{3}D_{\circ}$	1 51402	1 51270	1.56915 ^b 1.56271 ^A	1.35192 ⁶ 1.52242ª
58 5p*(D)0p *P2	1.51402	1.31279	1.50271 1.57087 ^B	1.52242 1.52168 ^b
5s ² 5p ³ (² D°)6p ³ P ₁	1.52224	1.52089	1.57059 ^A	1.53171 ^a
			1.57826 ^B	1.53057 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{3}P^{\circ}_{1}$	1.31789	1.54560	1.58430 ^A	1.40917 ^a
5-25-3(209)54 109	1 55005	1 55007	1.59265 ^b	1.40733
5825p3(2D2)5d 2D22	1.55095	1.55097	1.58591 1 59479 ^B	1.47452" 1.47384 ^b
$5s^{2}5p^{3}(^{2}D^{\circ})5d^{1}F^{\circ}_{3}$	1.57837	1.57697	1.60955 ^A	1.35243ª
1 ()			1.61801 ^B	
5s ² 5p ³ (² D°)6p ¹ D ₂	1.56377	1.56245	1.61562 ^A	1.56728 ^a
5 25 3/2D0) 5 1 3D0	1 20571	1 50250	1.62249 ^B	1 464719
$5s^{2}5p^{3}(2D^{\circ})5d^{3}P^{\circ}_{0}$	1.29571	1.58370	1.62/56 ^A 1.63574 ^B	1.464/1"
$5s^{2}5n^{3}(4S^{\circ})6d^{5}D^{\circ}_{3}$	1 59876	1 59703	1.03374 1.64477 ^A	1 66273ª
	1.07070	1.57705	1.65342 ^B	1.00270
5s ² 5p ³ (⁴ S°)6d ⁵ D ^o 1	1.59788	1.59732	1.64490 ^A	1.66353ª
- 2- 2400			1.65352 ^B	
5s ² 5p ³ (⁴ S ^o)6d ⁵ D ^o ₂	1.59813	1.59729	1.64518 ^A	1.66158 ^a
$5s^{2}5n^{3}(4S^{\circ})6d^{5}D^{\circ}$	1 59771	1 59807	1.03383 ⁵ 1.64532 ^A	1 66326ª
55 5P (5 Jou D 0	1.37//1	1.57007	1.65390 ^B	1.00520
5s ² 5p ³ (⁴ S°)6d ⁵ D ^o ₄	1.59982	1.59809	1.64600^{A}	1.66503 ^a
			1.65462 ^B	

Tablo A.2. (Devamı)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Seviveler	VV	CV	CC	Diğer çalışmalar
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5s ² 5n ³ (⁴ S°)7s ⁵ S° ₂	1 59615	1 80342	1 64869 ^A	1 66290ª
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$58^{2}5n^{3}(^{2}P^{\circ})6n^{3}D_{1}$	1.60048	1.59916	1.65293 ^A	1.59682ª
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.00010	1107710	1.65775 ^B	110,002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5n^{3}(^{2}D^{\circ})5d^{-1}P^{\circ}$	1.25434	1.61830	1.66433 ^A	1.08464^{a}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.67262 ^B	1.48934 ^b
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5p^{3}(^{2}P^{\circ})6p^{3}D_{2}$	1.62546	1.62411	1.67729 ^A	1.62165 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.68128 ^B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5s ² 5p ³ (² P°)6p ³ P ₁	1.627500	1.62615	1.67805 ^A	1.62255 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.68427 ^B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5s ² 5p ³ (⁴ S°)7s ³ S ^o ₁	1.61531	1.63074	1.67805 ^A	1.67478 ^a
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$5s^{2}5p^{3}(^{2}P^{\circ})6p^{3}P_{0}$	1.63134	1.63012	1.68267 ^A	1.62255 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.68985 ^B	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5s ² 5p ³ (⁴ S°)6d ³ D ^o ₂	1.65809	1.65695	1.70316 ^A	1.68694 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.71194 ^B	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5s ² 5p ³ (² P°)6p ³ S ₁	1.66126	1.65994	1.70861 ^A	1.65972 ^a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.71657 ^B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5s ² 5p ³ (² P°)6p ³ D ₃	1.67535	1.67393	1.71662 ^A	1.68214 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.71840 ^B	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5p^{3}(^{2}P^{\circ})5d^{1}P^{\circ}_{1}$	1.66803	1.72084	1.72152 ^A	1.59519 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.73047 ^B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5s ² 5p ³ (² P°)6p ³ D ₃	1.67535	1.67393	1.72703 ^A	1.68214 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.71840 ^B	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5p^{3}(^{4}S^{\circ})6d^{-3}D^{0}{}_{1}$	1.68736	1.68219	1.72903 ^A	1.70032ª
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.73785 ^B	
$ \frac{1.74234^{5}}{5s^{2}5p^{3}(^{2}P^{\circ})6p^{1}P_{1}} 1.69466 1.69319 1.74738^{A} 1.69393^{a} 1.76308^{B} 1.76308^{B} 1.76308^{B} 1.75565^{B} 1.75565^{B} 1.75565^{B} 1.75565^{B} 1.75565^{B} 1.75565^{B} 1.75565^{A}(^{3}P)5d^{5}D_{3} - C 1.78410^{A} - 555p^{4}(^{3}P)5d^{5}D_{2} - C 1.78529^{A} - 555p^{4}(^{3}P)5d^{5}D_{1} - C 1.79222^{A} - 555p^{4}(^{3}P)5d^{5}D_{1} - 1.76201 1.80206^{A} - 55s^{2}5p^{3}(^{2}P^{\circ})6p^{1}S_{0} 1.76297 1.76201 1.80387^{A} 1.73588^{a} 1.81296^{B} 1.81296^{B} 1.81296^{B} 1.78587^{a} 1.92528^{B} 1.78587^{a} 1.92528^{B} 1.9528^{B} 1.9528^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.95228^{B} 1.9528^{B} 1$	$5s^{2}5p^{3}(^{2}P^{0})6p^{-1}D_{2}$	1.68004	1.67874	1.73531 ^A	1.67681 ^a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.74234 ^B	
$ 5s^{2}5p^{3}(^{2}P^{\circ})6p^{3}P_{2} $ $ 1.70514 $ $ 1.70359 $ $ 1.75600^{A} $ $ 1.69788^{a} $ $ 1.75565^{B} $ $ 5s5p^{4}(^{3}P)5d^{5}D_{4} $ $ - $ $ - $ $ 1.78410^{A} $ $ - $ $ 5s5p^{4}(^{3}P)5d^{5}D_{3} $ $ - $ $ - $ $ 1.78529^{A} $ $ - $ $ 5s5p^{4}(^{3}P)5d^{5}D_{2} $ $ - $ $ - $ $ 1.79222^{A} $ $ - $ $ 5s5p^{4}(^{3}P)5d^{5}D_{1} $ $ - $ $ - $ $ 1.80206^{A} $ $ - $ $ 5s^{2}5p^{3}(^{2}P^{\circ})6p^{1}S_{0} $ $ 1.76297 $ $ 1.76201 $ $ 1.80387^{A} $ $ 1.73588^{a} $ $ 1.81296^{B} $ $ - $ $ 5s^{2}5p^{3}(^{2}D^{\circ})6d^{3}F_{2} $ $ 1.76067 $ $ 1.75955 $ $ 1.80651^{A} $ $ 1.78587^{a} $ $ 1.95228 $	$5s^{2}5p^{3}(^{2}P^{0})6p^{-1}P_{1}$	1.69466	1.69319	1.74738 ^A	1.69393 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 25 3(2D0) (3D	1 50514	1 50050	1.76308	1 (0700)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s^{2}5p^{3}(^{2}P^{2})6p^{3}P_{2}$	1.70514	1.70359	1.75600 ^A	1.69788 ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 4(3D) 5 1 5D			1.75565	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5s5p^{+}(^{3}P)5d^{-5}D_{4}$	-	-	1.78410	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$585p^{-}(^{3}P)5d^{-}D_{3}$	-	-	1.78529**	-
$\frac{585p}{5s^25p^3(^2D^\circ)6p} \frac{1}{s_0} = \frac{1.76297}{1.76297} = \frac{1.80206^{-1}}{1.80387^A} = \frac{1.73588^a}{1.81296^B}$ $\frac{1.76297}{1.75955} = \frac{1.80651^A}{1.80651^A} = \frac{1.78587^a}{1.78587^a}$	585p (°P)50 °D2 585p4(3D)5d 5D	-	-	1./9222** 1.80206Å	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5_{2}^{2} 5_{2}^{3} (2D^{\circ}) (5_{2}^{\circ})$	-	-	1.80200 ⁻² 1.80287Å	- 1 72599a
$5s^25p^3(^2D^\circ)6d\ ^3F^{\circ}_2$ 1.76067 1.75955 1.80651 ^A 1.78587 ^a	38 3p ⁻ (-r)op - 30	1./029/	1./0201	1.0030/** 1.81206 ^B	1./3300-
55 5p (D jour 2 1.70007 1.7555 1.00051 1.76567	$5s^{2}5n^{3}(^{2}D^{\circ})6d^{3}F^{\circ}$	1 76067	1 75055	1.01290 1.80651 ^A	1 78587ª
	55 5P (D)00 1 2	1./000/	1.75755	1.81522 ^B	1./050/

Tablo A.2. (Devamı)

Tablo A.3. Rn III iyonuna ait enerji seviyeleri (Rydberg)

Seviyeler	VV	CV	CC	Diğer Çalışmalar
$6s^26p^4 {}^3P_2$	0,000	0,000	0,000	0.00000 ^a
$6s^26p^4 {}^{3}P_0$	0.11577	0.11576	0.10064	0.10241 ^a
1 0	,	,	,	0.10877 ^b
$6s^26n^4 {}^{3}P_{1}$	0 28471	0 28428	0 28126	0.28552ª
	0,20171	0,20120	0,20120	0.28332 0.28149 ^b
$6a^{2}6m^{4}$ D	0.26006	0.26059	0 25769	0.242028
$OS^{-}OP^{-1}D_2$	0,30090	0,50058	0,55708	0.34202 ²
c 2c 41c	0.510.10	0.510.65	0.000.00	0.34103°
$6s^{2}6p^{4-1}S_{0}$	0,71943	0,71867	0,68363	0.68130 ^a
				0.69529 ^b
$6s^{2}6p^{3}(^{4}S^{\circ})7s^{-5}S^{\circ}{}_{2}$	0,88865	0,88383	0,87338	-
$6s^{2}6p^{3}(^{4}S^{\circ})7s^{-3}S^{\circ}{}_{1}$	0,91409	0,90150	0,89251	-
6s ² 6p ³ (⁴ S°)6d ⁵ D° ₂	0,90536	0,90217	0,89354	-
$6s^{2}6p^{3}(^{4}S^{\circ})6d^{5}D^{\circ}_{3}$	0,91458	0,91351	0,90567	-
$6s^{2}6p^{3}(^{4}S^{\circ})6d ^{5}D^{\circ}_{1}$	0.93068	0,92262	0.91230	-
$6s^{2}6p^{3}(^{4}S^{\circ})6d^{5}D^{\circ}_{0}$	0.92483	0.92296	0.91472	-
$6s^{2}6p^{3}(^{4}S^{\circ})6d^{5}D^{\circ}_{4}$	0.92835	0.92724	0.91870	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}P^{\circ}_{2}$	-	0,93667	0.92468	_
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}G^{\circ}$	1.06004	1,0595	1 05581	
$6^{2}6^{3}(4S^{\circ}) 6d^{3}D^{\circ}$	1,00050	1,0575	1,05351	-
$\cos op^2 (S) ou^2 D_1$	1,08050	1.00043	1,00233	-
$630p^{-3}P^{-2}$	-	1.10207	1,09118	-
$6s^{2}6p^{3}(^{4}S^{\circ})/p^{3}P_{1}$	1,10349	1.10144	1,09479	-
$6s^{2}6p^{3}(^{4}S^{0})7p^{-5}P_{2}$	1,10570	1.10362	1,09682	-
$6s^{2}6p^{3}(^{4}S^{\circ})6d^{5}D^{\circ}{}_{1}$	0,93068	1.14071	1,13020	-
$6s^{2}6p^{3}(^{4}S^{\circ})7s^{-5}S^{\circ}{}_{2}$	0,88865	0,88383	1,14601	-
$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-5}P_{3}$	1.16157	1.15940	1,15247	-
$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-3}P_{1}$	1.16782	1.16568	1,15899	-
$6s^{2}6p^{3}(^{2}D^{\circ})7s^{3}D^{\circ}_{1}$	1.19709	1.18089	1,17331	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}F^{\circ}_{3}$	1.18522	1.18378	1,17678	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{1}S^{\circ}_{0}$	1.18979	1.18281	1,17710	-
$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-3}P_{2}$	1.19024	1.18835	1.18221	-
$6s^{2}6n^{3}(^{2}D^{\circ})6d^{3}F^{\circ}_{2}$	1 18265	1 19021	1 18338	_
$6s^{2}6n^{3}(^{2}D^{\circ})6d^{3}G^{\circ}_{4}$	1 20188	1 20042	1 19380	_
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}G^{\circ}_{2}$	1.20100	1.20012	1 20926	_
$6s^{2}6p^{3}(4S^{\circ})7p^{-3}P_{-}$	1.21002	1.21521	1,20920	
$6s^{2}6r^{3}(2D^{2}) \leq 4^{3}D^{2}$	1.22733	1.22550	1,21091	-
$(a^{2}(r^{3})^{2}D^{9})7r^{3}D^{9}$	1.34232	1.22990	1,22244	-
$OS^{-}OP^{-}(-D^{-})/S^{-}D^{-}_{3}$	1.25800	1.23033	1,22930	-
$6s^{2}6p^{3}(^{2}D^{2})6d^{3}D^{2}_{1}$	1.1/632	1.24194	1,23380	-
$6s^{2}6p^{3}(^{2}D^{2})6d^{-9}P^{0}_{0}$	-	1.24323	1,23430	-
$6s^{2}6p^{3}(^{2}D^{0})/s^{-1}D^{0}{}_{2}$	1.24216	1.24223	1,23551	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}F^{0}_{4}$	1.26051	1.25917	1,25381	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{-3}G^{\circ}_{5}$	1.28358	1.28213	1,27786	-
6s ² 6p ³ (² D°)6d ¹ G° ₄	1.29064	1.28921	1,28599	-
6s ² 6p ³ (² D°)6d ³ D° ₃	1.33329	1.33110	1,33025	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{-3}F^{\circ}_{2}$	1.37384	1.34862	1,33445	-
$6s^{2}6p^{3}(^{2}P^{\circ})7s^{-3}P^{\circ}_{0}$	1.30755	1.36763	1,33767	-
$6s^{2}6p^{3}(^{2}P^{\circ})7s^{3}P^{\circ}_{1}$	-	1.37837	1,33893	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}D^{\circ}_{2}$	1.36386	1.36319	1.35356	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}S^{\circ}_{1}$	1.36943	1.35315	1,35863	-
$6s^{2}6p^{3}(^{4}S^{\circ})7p^{-5}P_{1}$	1.37418	1.37173	1.36254	-
$6s^26n^3(^2D^\circ)7n^3F_2$	1 38913	1 38670	1 37755	-
$6 s^{2} 6 n^{3} (^{4}S^{\circ}) 7 d^{3} D^{\circ}$	-	1.80526	1 30007	_
$6s^{2}6n^{3}(2D^{\circ})$ 6d $3D^{\circ}$	1 71129	1 70851	1 30500	-
$6_{2}6_{2}6_{2}(48^{\circ}) = 50^{\circ}$	1./1120	1.70001	1,53577	-
$\cos 0p^{-1}(5) \cos 55^{-2}$	1.40000	1.41303	1,40200	-
$05^{-}0p^{-}(-5^{-})85^{-}5^{-}2$	1.40836	1.41303	1,42009	-
$bs^{2}bp^{3}(^{2}D^{2})/p^{3}F_{3}$	1.43430	-	1,42227	-
$6s^{2}6p^{3}(^{4}S^{\circ})7d^{3}D^{\circ}_{1}$	1.45139	1.43299	1,42292	-

Seviyeler	VV	CV	CC	Diğer Çalışmalar
6s ² 6p ³ (² D°)7p ³ D ₂	1.43507	1.43253	1,42325	-
6s ² 6p ³ (⁴ S°)7d ⁵ D° ₃	-	-	1,42727	-
6s ² 6p ³ (⁴ S°)7d ⁵ D° ₁	1.44348	1.43819	1,43123	-
$6s^{2}6p^{3}(^{4}S^{\circ})7d^{5}D^{\circ}_{0}$	1.44455	1.43982	1,43159	-
6s ² 6p ³ (⁴ S°)7d ⁵ D° ₂	1.43719	1.44110	1,43372	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}P_{0}$	1.44639	1.44388	1,43481	-
$6s^{2}6p^{3}(^{4}S^{\circ})7d^{5}D^{\circ}_{4}$	1.44492	1.44269	1,43566	-
$6s^{2}6p^{3}(^{4}S^{\circ})8s^{3}S^{\circ}_{1}$	-	1.45008	1,43759	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{-1}F_{3}$	1.45522	1.46344	1,44339	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}P^{\circ}_{0}$	1.64772	1.48363	1,45471	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{1}F^{\circ}_{3}$	1.41136	1.40946	1,45716	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}D_{1}$	1.46978	1.46733	1,45842	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}P_{2}$	1.48428	1.48205	1,47368	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{1}D^{\circ}_{2}$	1.44754	1.50159	1,49933	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}D_{3}$	1.51261	1.51011	1,50071	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}F_{4}$	1.51303	1.51050	1,50100	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}S^{\circ}_{1}$	1.36943	1.35315	1,50445	-
$6s^{2}6p^{3}(^{4}S^{\circ})7d^{3}D^{\circ}_{3}$	1.51028	1.50803	1,50698	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{3}P_{1}$	1.52236	1.52002	1,51129	-
$6s^{2}6p^{3}(^{2}D^{\circ})6d^{3}P^{\circ}_{2}$	1.30628	1.54794	1,54318	-
$6s^{2}6p^{3}(^{2}D^{\circ})7p^{-1}D_{2}$	1.56505	1.56279	1,55430	-
$6s^{2}6p^{3}(^{2}P^{\circ})7p^{3}D_{1}$	1.56985	1.56758	1,55835	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{1}P^{\circ}_{1}$	1.56194	1.57652	1,56785	-
$6s^{2}6p^{3}(^{2}P^{\circ})7s^{3}P^{\circ}_{2}$	1.60756	1.60799	1,58111	-
$6s^{2}6p^{3}(^{2}P^{\circ})7p^{3}P_{0}$	1.60562	1.60361	1,59518	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}F^{\circ}_{4}$	1.64224	1.64050	1,60807	-
$6s^{2}6p^{3}(^{2}P^{\circ})7p^{3}P_{1}$	1.62799	1.62569	1,61665	-
$6s^{2}6p^{3}(^{2}P^{\circ})7s^{1}P^{\circ}_{1}$	1.63291	1.65189	1,61910	-
$6s^{2}6p^{3}(^{2}P^{\circ})7p^{3}D_{2}$	1.63083	1.62852	1,61944	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}P^{\circ}_{1}$	-	1.64463	1,62891	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}P^{\circ}_{2}$	-	0,93667	1,65122	-
$6s^{2}6p^{3}(^{4}S^{\circ})8s {}^{5}S^{\circ}{}_{2}$	1.67795	1.67861	1,67806	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{3}D^{\circ}_{3}$	1.71128	1.70851	1,67851	-
$6s^{2}6p^{3}(^{2}P^{\circ})6d^{1}F^{\circ}_{3}$	-	-	1,68228	-
$6s^{2}6p^{3}(^{2}D^{\circ})8s^{3}D^{\circ}_{1}$	1.67799	1.70221	1,69106	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{1}D^{\circ}_{2}$	1.85042	1.71059	1,69305	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{3}P^{\circ}_{0}$	-	1.70448	1,69414	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{1}P^{\circ}_{1}$	-	-	1,69904	-
$6s^{2}6p^{3}(^{4}S^{\circ})7d^{5}D^{\circ}_{4}$	1.71960	1.71691	1,70729	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{3}F^{\circ}_{2}$	1.72278	1.72071	1,71094	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{3}G^{\circ}_{3}$	1.73257	1.72984	1,72048	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{3}D^{\circ}_{1}$	1.71277	1.73304	1,72424	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{3}D^{\circ}_{3}$	1.74566	1.74311	1,72951	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{1}S^{\circ}_{0}$	1.80518	1.76400	1,75518	-
6s ² 6p ³ (² D°)8s ³ D° ₃	1.76566	1.77160	1,76105	-
6s ² 6p ³ (² D°)8s ¹ D° ₂	1.76724	1.77406	1,76378	-
$6s^{2}6p^{3}(^{2}D^{\circ})7d^{3}F^{\circ}_{4}$	1.79280	1.79021	1,78060	-
$6s^26p^3(^2D^\circ)7d \ ^3F^\circ_4$	1.79280	1.79577	1,78611	-

Tablo A.3. (Devamı)

Seviyeler	VV	CV	CC	Diğer çalışmalar
$4s^24p^3 \ ^4S^{\circ}_{3/2}$	0,00000	0,00000	0,00000A	0.000000
$4s^24p^3 \ ^2D^{\circ}_{3/2}$	0,19896 ^A	0,19880 ^A	0,18999 ^A	0.15525ª
1 01	,	0,14356 ^B	0,17412 ^B	0.19190 ^b
		- ,	- ,	0.18950 ^{b*}
				0.18510 ^{b**}
				0.15512°
				0.15501 ^d
				0.15496 ^{d*}
$4s^24n^3 {}^2D^{\circ}_{5/2}$	0.21250 ^A	0.21235 ^A	0.20820^{A}	0.17040 ^a
r = 5/2	•,====••	0.15391 ^B	0.18331 ^B	0.20760 ^b
		•,	.,	0.20730 ^{b*}
				0,1992.0 ^{b**}
				0.17055°
				0.17057 ^d
				0,17058 ^{d*}
$4s^24n^3 {}^2P^{\circ}_{1/2}$	0 34778 ^A	0 34756 ^A	0 29522 ^A	0,28300ª
15 IP I 1/2	0,51770	0.24594^{B}	0,29522 0.26678 ^B	0.29440 ^b
		0,21391	0,20070	0.27800 ^{b*}
				0,29810 ^{b**}
				0,29310
				0,28309 ^d
				0,28307 ^{d*}
$4s^2/n^3 2P^{\circ}_{aa}$	0 36715 ^A	0 36695 ^A	0 31795 ^A	0,20307 0,30441ª
чз чр 1 3/2	0,50715	0,30075 0.26047 ^B	0,31775 0,27874 ^B	0.30441 0.31300b
		0,20047	0,27874	0,31390 0,30010 ^{b*}
				0,30010 0,31620 ^{b**}
				0,31020
				0,30431 0,20420d
				0,50429 0 30424d*
$4c4n^4$ 4D		1 11169A	1 12462A	1 092228
484p r _{5/2}	-	1.11100 5.52720B	1.12402 4.09222B	1.00225 1.12260b
		5.55759	4.06232	1,12500° 1,04760 ^{b*}
				1,04700 1,05600 ^{b**}
				1,05000
$4 c 4 p^4 4 P_{ev}$		1 14533A	1 15815A	1,00120
454p r 3/2	-	1.14333 5.54201B	1.13813 4.00025 ^B	1.11505 1.15500b
		5.54201	4.09023	1,15590 1,07820b*
				1,07820 ^{b**}
				1,00020
$4 c 4 p^4 4 P_{c}$		1 1617/A	1 17457A	1,11345
484p r 1/2	-	1.10174 5.58674 ^B	1.17457 4.00068 ^B	1.13097 1.17180b
		5.50074	4.09008	1,17100 1,00320 ^{b*}
				1,09320 1 10100 ^{b**}
				1,10100
$4 c 4 p^4 ^2 D_{e}$		1 52820A	1 54505A	1,13140 1 22827a
484p D _{3/2}	-	1.32620 6.02205B	1.34393 4.51104B	1.52057 1.52240b
		0.02293	4.31194	1,55540° 1,25200 ^{b*}
				1,55200
				1,33900
4 a 4 a 4 2D		1 525004	1 550564	1,52910°
484p ⁻ ² D _{5/2}	-	1.53509 ^A	1.55256 ^A	1.55052" 1.52620h
		0.020325	4.514928	1,33030° 1,25640b*
				1,33040°
				1,54580°
				1,33528

Tablo A.4. Kr IV iyonuna ait enerji seviyeleri (Rydberg)

		Tablo A.4. (Devamı)		
Seviyeler		VV CV	CC	Diğer çalışmalar
$4s^{2}4p^{2}(^{3}P)4d^{2}P_{3/2}$	-	7.60212 ^B	2.51017 ^B	1.48942 ^a
				1,52310 ^{b*}
				1,50220 ^{b**}
				1,49114°
$4s4p^{4} {}^{2}P_{1/2}$	-	1.95155 ^A	1.97320 ^A	1.51416 ^a
-		6.51032 ^B	4.92032 ^B	1,51552°
$4s4p^{4} P_{3/2}$	-	1.89968 ^A	1.93393 ^A	1.87173 ^a
-		6.49141 ^B	4.89120 ^B	
$4s^{2}4p^{2}(^{3}P)4d ^{4}F_{3/2}$	-	7.32884^{B}	5.84309 ^B	1.57397 ^a
• • •				$1,59650^{b^*}$
				1,58610 ^{b**}
				1,57297°
$4s^{2}4p^{2}(^{3}P)4d ^{4}F_{5/2}$	-	7.33631 ^B	5.85025 ^B	1.58656 ^a
				$1,60750^{b^*}$
				1,59690 ^{b**}
				1,58558°
$4s^{2}4p^{2}(^{3}P)4d ^{4}F_{7/2}$	-	7.34692 ^B	5.86034 ^B	1.60593 ^a
				1,62420 ^{b*}
				1,61350 ^{b**}
				1,60497°
$4s^{2}4p^{2}(^{3}P)4d^{4}F_{9/2}$	-	7.36072 ^B	5.87337 ^B	1.63004 ^a
				1,64590 ^{b*}
				1,63550 ^{b**}
				1,62873°
$4s4p^{4} {}^{2}S_{1/2}$	-	1.74659 ^A	1.76699^{A}	1.58516 ^a
I III		6.34787 ^B	4.89208^{B}	1.73590 ^b
				1.60600^{b*}
				1.60410 ^{b**}
				1.58486 ^c
$4s^{2}4p^{2}(^{1}D)4d^{-2}F_{5/2}$	-	7.44072 ^B	5.95614 ^B	1.63324ª
I () () () ()				1.69120 ^{b*}
				1.67160 ^{b**}
				1,63398°
$4s^24p^2(^1D)4d^2F_{7/2}$	-	7.46128 ^B	5.97486 ^B	1.70011 ^a
1				1.72620^{b^*}
				1,70610 ^{b**}
$4s^{2}4p^{2}(^{3}P)4d^{4}D_{1/2}$	-	7.41083 ^B	5.91634 ^B	1.64653ª
1 1 1 22				1.66770^{b^*}
				1,64840 ^{b**}
				1,64498°
$4s^{2}4p^{2}(^{3}P)4d^{4}D_{7/2}$	-	7.42276 ^B	5.92897 ^B	1.64724 ^a
				$1,67460^{b^*}$
				1,65540 ^{b**}
				1,64652°
$4s^{2}4p^{2}(^{3}P)4d^{4}D_{3/2}$	-	7.41413 ^B	5.91941 ^B	1.64939 ^a
1 () 5,2				1,67050 ^{b*}
				1,65120 ^{b**}
				1,64792°
$4s^{2}4p^{2}(^{3}P)4d^{4}D_{5/2}$	-	7.41782 ^B	5.92361 ^B	1.66459 ^a
1 1 7 5/2			- / -	1,66680 ^{b*}
				1,64750 ^{b**}
				1,66436°
$4s^{2}4p^{2}(^{3}P)4d^{4}P_{5/2}$	-	7.77309 ^B	6.28927 ^B	1.83551ª
$\mathbf{r} \times \mathbf{j} = -3/2$				1.91960^{b^*}
				1,89710 ^{b**}
				1,84511°

	1 au	DIO A.4. (Devalue)		
Seviyeler	VV	CV	CC	Diğer çalışmalar
$4s^{2}4p^{2}(^{3}P)4d ^{4}P_{1/2}$	-	7.78106^{B}	6.29718 ^B	1.86568 ^a
				1,94160*
				1,92990 ^{b**}
				1,87661°
$4s^{2}4p^{2}(^{3}P)5s^{4}P_{1/2}$	1.80089^{A}	1.80324 ^A	1.79864 ^A	1.84416 ^a
		3.95681 ^B	2.51269 ^B	1,84508°
$4s^{2}4p^{2}(^{3}P)5s^{4}P_{3/2}$	1.82902^{A}	1.83142 ^A	1.82673 ^A	1.87005 ^a
		3.96759 ^в	2.52235 ^B	
$4s^{2}4p^{2}(^{3}P)5s^{-4}P_{5/2}$	1.86295 ^A	1.865335 ^A	1.86074 ^A	1.89601 ^a
		-	2.58173 ^B	1,89857°
$4s^{2}4p^{2}(^{3}P)4d^{-2}D_{3/2}$	-	7.86489 ^b	6.75988 ^b	1.89174 ^a
		E COLLOR		1,89437
$4s^{2}4p^{2}(^{3}P)4d^{-2}D_{5/2}$	-	7.881435	6.75540 ^B	1.93061ª
4 24 2/3D) 5 2D	1.074554	1.077(0)	1.00000	1,9348/
$4s^{2}4p^{2}(^{3}P)5s^{-2}P_{1/2}$	1.8/455	1.8 / /604	1.86968 ^A	1.90381"
4-24-2(3D)5- 2D	1.012124	1.022004	2.5/283	1,89961
4s ² 4p ² (³ P)5s ² P _{3/2}	1.91313**	1.92290 ^A	1.90265 ¹¹	1.92902"
4 - 24 - 2(1D) 4 - 4 - 2D		4.02497 ²	2.38540 ²	1,95518
48 ⁻⁴ P ⁻ (¹ D)4d ⁻¹ P _{1/2}	-	8.0///12	0.303312	1.91082
$4c^{2}4r^{2}(1D)/d^{2}D$		8 00000B	6 57162B	1,910/0
48 4p (D)4d F 3/2	-	0.00900	0.37403	2.03232
$4s^2 4p^2 (^1D) 4d^2D_{re}$		7 00770 ^B	6 48640 ^B	2,02007 1 0812/a
чз чр (D)ча D5/2	-	1.))11)	0.+00+)	1.98378°
$4s^2/n^2(^1D)/d^{-2}D_{2/2}$	_	7 99015 ^B	6 48546 ^B	1,98253ª
		1.99013	0.40540	1.98401°
$4s^24n^2(^{3}P)4d^{-2}F_{5/2}$	-	8.18897 ^B	6.67643 ^B	2.00468ª
\mathbf{F} $(-)$ $(-)$ $(-)$				2.00345°
$4s^{2}4p^{2}(^{3}P)4d^{2}F_{7/2}$	-	8.19245 ^B	6.68018 ^B	2.01558 ^a
1				2,01446°
$4s^24p^2(^1D)5s^2D_{3/2}$	2.01934 ^A	2.02191 ^A	2.01798 ^A	2.03243ª
- · ·		4.15981 ^B	2.71400 ^B	2,04256°
$4s^24p^2(^1D)5s^2D_{5/2}$	2.01572 ^A	2.01775 ^A	2.01410 ^A	2.03497 ^a
		4.16348 ^B	2.71890 ^B	2,04420°
$4s^24p^2(^1S)4d^2D_{5/2}$			6.33517 ^в	2.11359 ^a
			_	2,11056 ^c
$4s^{2}4p^{2}(^{1}S)4d^{-2}D_{3/2}$			6.31404 ^B	2.12149 ^a
		•	•	2,12091°
$4s^{2}4p^{2}(^{3}P)5p^{-2}S^{\circ}_{1/2}$	2.10481 ^A	2.10766 ^A	2.10050 ^A	2.13990 ^a
() () () () () () () () () () () () () (0.10.00.1	3.40291 ^B	a 1 a 11 a 1	2,13896°
$4s^{2}4p^{2}(^{3}P)5p^{-4}D^{0}_{1/2}$	2.12624 ^A	2.12916 ^A	2.12119 ^A	2.16375 ^a
4-24-2(3D)5- 4D9	0.124624	3.44337 ^b	3.41001	2,16322
4s ² 4p ² (³ P)5p ⁻⁴ D ³ _{3/2}	2.13463**	2.13/38 ^{rr}	2.12923 ¹¹	2.1/12/"
$4a^{2}4a^{2}(3\mathbf{D})5a^{4}\mathbf{D}^{9}$	2 160714	3.45164 ²	3.41688 ⁵	$2,1/212^{\circ}$ 2,10925a
48-4p-(*P)3p *D 5/2	2.100/11	2.10309 ¹² 2.46616 ^B	2.13311 ¹¹ 2.42946 ^B	2.19855"
$4s^2 4n^2 (^3\mathbf{P}) 5n^4 \mathbf{D}^{\circ} - n$	2 10166A	2.10465 ^A	5.42040 2.18574A	2,19017 2,22753a
48 4p (°F)5p D 7/2	2.19100	2.19403 3.48454 ^B	2.10374 3.44433 ^B	2.22755
$4s^2/n^2(^{3}P)5n^{-4}P^{\circ}_{2}$	2 175/18 ^A	2.40434 2.17833 ^A	2 17112 ^A	2,22044 2,20346ª
то тр (т)ор т 3/2	2.17540	3 50015 ^B	3 46892 ^B	2.20340 2.20459°
$4s^24n^2(^{3}P)5n^{-4}P^{\circ}1/2$	2.18323 ^A	2.18629 ^A	2.17896 ^A	2,21954ª
······································	2.10020	3.50169 ^B	3.46461 ^B	2.21952°
$4s^{2}4p^{2}(^{3}P)5p^{4}P^{\circ}{}_{5/2}$	2.19863 ^A	2.20162 ^A	2.19394 ^A	2.22773ª
$\mathbf{F} \times \mathbf{F} = -5/2$		3.50843 ^B	3.47724 ^B	2,22713°
$4s^{2}4p^{2}(^{3}P)5p^{-2}D^{\circ}_{3/2}$	2.19952 ^A	2.20225 ^A	2.19503 ^A	2.22256ª
				2,22353°

Tablo A.4. (Devamı)

Tablo A.4. (Devamı)

Seviyeler	VV	CV	CC	Diğer çalışmalar
$4s^24p^2(^{3}P)5p^{-2}D^{\circ}_{5/2}$	2.24759 ^A	2.25044 ^A	2.24277 ^A	2.27093 ^a
				2,27231°
$4s^{2}4p^{2}(^{3}P)5p \ ^{4}S^{\circ}_{3/2}$	2.22575 ^A	2.22804 ^A	2.22264 ^A	2.24730 ^a
			6.26883 ^B	2,24609°
$4s^{2}4p^{2}(^{3}P)5p^{-2}P^{\circ}_{3/2}$	2.26800 ^A	2.27151 ^A	2.26423 ^A	2.27975 ^a
- · · -				2,28066 ^c
$4s^{2}4p^{2}(^{3}P)5p^{-2}P^{\circ}_{1/2}$	2.27419 ^A	2.27695 ^A	2.26928 ^A	2.28633ª
- · · -			3.58812 ^B	2,28576°
$4s^24p^2(^1D)5p^2F^{\circ}_{5/2}$	2.34208 ^A	2.34486 ^A	2.33577 ^A	2.34325ª
		3.63825 ^B	3.65497 ^B	2,34258°
$4s^24p^2(^1D)5p^2F^{\circ}_{7/2}$	2.35314 ^A	2.35598 ^A	2.34652 ^A	2.35571ª
		3.64404 ^B	3.65858 ^B	2,35659°
$4s^24p^2(^1D)5p^2D^{\circ}_{3/2}$	2.36900 ^A	2.37101 ^A	2.36593 ^A	2.35430 ^a
			3.50164 ^B	2,35416°
$4s^24p^2(^1D)5p^2D^{\circ}_{5/2}$	2.37197 ^A	2.37396 ^A	2.36883 ^A	2.35802ª
			3.52457 ^B	2,35973°
$4s^{2}4p^{2}(^{1}D)5p^{-2}P^{\circ}_{1/2}$	2.42214 ^A	2.42440 ^A	2.41654 ^A	2.39809ª
				2,39701°
$4s^{2}4p^{2}(^{1}D)5p^{-2}P^{\circ}_{3/2}$	2.44825 ^A	2.45032 ^A	2.44227 ^A	2.41893ª
			3.58699 ^B	2,41806 ^c
$4s^{2}4p^{2}(^{1}S)5p^{-2}P^{\circ}_{1/2}$	2.57650 ^A	2.57890 ^A	2.56810 ^A	2.54213ª
- · · -		3.81523 ^B	3.91172 ^B	
$4s^24p^2(^1S)5p^2P^{\circ}_{3/2}$	2.58216 ^A	2.58465 ^A	2.57353 ^A	2,54218°
- · · -		3.82232 ^B	3.92515 ^B	
$4s^24p^2(^{3}P)5d ^{4}F_{3/2}$	2.60910 ^A	2.61401 ^A	2.60644 ^A	2.64820ª
		3.94777 ^B	2.49675 ^B	2,64882°
$4s^24p^2(^{3}P)5d ^{4}F_{5/2}$	2.61920 ^A	2.62370 ^A	2.61612 ^A	2.68247ª
		3.95422 ^B	2.50314 ^B	
$4s^24p^2(^{3}P)5d^{-2}P_{3/2}$	2.64221 ^A	2.65494 ^A	2.66990 ^A	2.68488 ^a
		3.95830 ^B	2.51017 ^B	2,68377°
$4s^24p^2(^{3}P)5d^{-4}D_{1/2}$	2.65289 ^A	2.66053 ^A	2.65277 ^A	2.69068 ^a
- · ·		3.99989 ^B	2.54975 ^B	2,68997°
$4s^24p^2(^{3}P)5d^{-4}D_{7/2}$	2.68260 ^A	2.68653 ^A	2.67861 ^A	2.71605 ^a
		4.00996 ^B	2.55855 ^B	2,70669°
$4s^24p^2(^{3}P)6s^{-4}P_{1/2}$	2.63648 ^A	2.64044 ^A	2.63249 ^A	2.70385 ^a
- · ·		5.53915 ^B		2,70333°
$4s^24p^2(^{3}P)6s \ ^{4}P_{3/2}$	2.66706 ^A	2.67091 ^A	2.66277 ^A	2.73336 ^a
			4.14000^{B}	2,73484°
$4s^{2}4p^{2}(^{3}P)6s^{4}P_{5/2}$	2.70289 ^A	2.70707 ^A	2.69906 ^A	2.76324 ^a
		5.59815 ^B	4.15316 ^B	2,76280°
$4s^24p^2(^{3}P)5d^{-2}F_{5/2}$	2.67094 ^A	2.67543 ^A	2.66855 ^A	2.70604 ^a
		4.02334 ^B	2.57308 ^B	2,70669°
$4s^24p^2(^{3}P)5d^{-2}F_{7/2}$	2.71801 ^A	2.72158 ^A	2.71439 ^A	2.75017 ^a
		4.04865^{B}	2.59795 ^в	2,75006 ^c
$4s^24p^2(^{3}P)5d ^{4}P_{3/2}$	2.69360 ^A	2.70278 ^A	2.69611 ^A	2.72701 ^a
		4.03119 ^B	2.57701 ^B	
$4s^{2}4p^{2}(^{3}P)6s^{2}P_{1/2}$	2.67838 ^A	2.68287 ^A	2.67439 ^A	2.74199 ^a
		5.63927 ^B	4.19694 ^B	2,74253°
$4s^24p^2(^{3}P)6s^{-2}P_{3/2}$	2.71821 ^A	2.72240 ^A	2.71392 ^A	2.77520 ^a
		5.66129 ^B	4.21892 ^B	2,77473°
$4s^24p^2(^1D)6s^2D_{5/2}$	2.84326 ^A	2.84743 ^A	2.84104 ^A	2.87780^{a}
		5.78664 ^B	4.34346 ^B	2,87782°
$4s^24p^2(^1D)6s ^2D_{3/2}$	2.84513 ^A	2.84847 ^A	2.84156 ^A	2.87862^{a}
		5.78744 ^B	4.34421 ^B	2,87880 ^c

	Tablo A.J. ACTV Tyolit	ina an cheiji seviy	cierr (Ryuberg)	
Seviyeler	VV	CV	CC	Diğer Çalışmalar
$5s^25p^3 {}^4S^{\circ}_{3/2}$	0,00000	0,00000	0.00000	0,00000
$5s^{2}5p^{3} {}^{2}D^{\circ}_{3/2}$	0,14261	0,14353	0,14010	0.12089 ^a
				0,12068 ^b
				0,13322°
				0,15800 ^d
5s ² 5p ³ ² D° _{5/2}	0,18255	0,18276	0,18558	0.15956 ^a
L C	,	,	,	0,15970 ^b
				0,17257°
				0.19776 ^d
$5s^{2}5p^{3} {}^{2}P^{\circ}_{1/2}$	0.28244	0.28613	0.25218	0.25548ª
555p 1 1/2	0,20211	0,20015	0,20210	0.25551 ^b
				0.27474°
				0.31277 ^d
$5s^25n^3$ ² P°	0 35074	0 35323	0 32500	0,31277 0.32486ª
58 5p 1 3/2	0,33074	0,33323	0,32300	0.32400 0.32477b
				0,32477
				0,54125 0,27766d
5 . 5 . 4 4D		0.05400	0.06157	0,57700°
$5s5p^{-1}P_{5/2}$	-	0,85422	0,86157	0.90820ª
				0,90640
1 1-				0,90741 ^e
$5s5p^4 {}^4P_{3/2}$	-	0,91812	0,92574	0.97435 ^a
				0,97241°
				0,97400 ^e
$5s5p^4 \ ^4P_{1/2}$	-	0,94179	0,94926	0.99559ª
				0,99482°
				0,99682 ^e
5s5p ⁴ ² D _{3/2}	-	1,10243	1,11128	1.11109 ^a
				1,13479°
				1,11274 ^e
5s5p ⁴ ² D _{5/2}	-	1,13346	1,14173	1.14340 ^a
•				1,16748°
				1,14226 ^e
$5s^{2}5p^{2}(^{3}P)5d^{-2}P_{3/2}$	-	1.21398	1.22553	1.21223ª
r y s s z		,	,	1.23823°
				1.21193 ^e
$5s^25n^2(^{3}P)5d^{-4}F_{2/2}$	1 21508	1 22672	1 24100	1,24657ª
	1121000	1,==0/=	1,21100	1 25406°
				1,22976 ^e
$5s^25n^2(^3P)5d^4F_{5/2}$	1 24513	1 24115	1 25887	1,22976 1,23003ª
55 5p (1)5d 1 _{3/2}	1.2 13 13	1,21115	1,25007	1.25005 1.26760°
				1,20700 1,24480e
$5s^25p^2(^3P)5d^{-2}P_{1,p}$	1 42486	1 25170	1 26080	1,24409 1 2/38/a
58 5p (1)5d 11/2	1.42400	1,23179	1,20080	1.2+30+
				1,2/3/3
5 - 25 - 2(3D) = 4 4E	1 200/1	1 29207	1 20000	1,24/30
58-5p-(5P)5d F _{7/2}	1.29001	1.28307	1,30009	1.29058"
				1,31234
	1 21 220	1.00.1.5	1 010 00	1,29063°
$5s^{2}5p^{2}(^{1}D)5d^{-2}F_{5/2}$	1.31029	1.30465	1,31960	1.29239 ^a
				1,32678°
a a a t				1,29239 ^e
$5s^{2}5p^{2}(^{3}P)5d^{-4}D_{1/2}$	1.31544	1.33006	1,34208	1.32230 ^a
				1,34806 ^c
				1,32247°
$5s^25p^2(^3P)5d^{-4}F_{9/2}$	1.33442	1.32674	1,34454	1.33036 ^a
				1,35740°
				1,33061 ^e

Tablo A.5. Xe IV iyonuna ait enerji seviyeleri (Rydberg)

~ • •		D A.5. (Devami)	~~	
Seviyeler				Diğer Çalışmalar
5s ² 5p ² (³ P)5d ⁴ D _{7/2}	1.33854	1.33118	1,34512	1.42033ª
				1,45607
5 25 2/3D) 5 1 4D	1 20057	1 227 (0	1 25101	1,41991°
$5s^{2}5p^{2}(^{3}P)5d^{-4}D_{3/2}$	1.30957	1.33760	1,35191	1.33233ª
				1,35562°
- 2- 2/32 - 1 42	1 0 10 51	1.0.4.50	1 20000	1,33190 ^e
$5s^{2}5p^{2}(^{3}P)5d^{-4}D_{5/2}$	1.36351	1.36459	1,38009	1.3/361ª
				1,38367
5 5 4 20		1 20205	1 20000	1,35539°
$5s5p^{4/2}S_{1/2}$	-	1.38295	1,38988	1.35491ª
				140/33
- 2- 2/32 - 1 42	1 1 10 50	1 1000 4	1 1 101 1	1,37280 ^e
$5s^{2}5p^{2}(^{3}P)5d^{-4}D_{7/2}$	1.44070	1.43286	1,44816	1.42033ª
$5s^{2}5p^{2}(^{3}P)6s^{-4}P_{1/2}$	1.45107	1.43614	1,45406	1.43255ª
				1,47422°
- 2- 2/2= 4-				1,43328 ^e
$5s^{2}5p^{2}(^{3}P)6s^{-4}P_{3/2}$	1.51799	1.50576	1,52273	1.50614 ^a
				1,52888°
				1,50621 ^e
$5s^{2}5p^{2}(^{1}D)5d^{-2}G_{7/2}$	1.51105	1.50367	1,52488	1.46408 ^a
				1,46350 ^e
$5s^25p^2(^1D)5d^{-2}G_{9/2}$	1.52925	1.52168	1,54313	1.48958 ^a
				1,48878 ^e
$5s^{2}5p^{2}(^{3}P)6s^{-2}P_{1/2}$	1.55346	1.53720	1,55889	1.52369ª
				1,52599 ^e
$5s^25p^2(^{3}P)6s {}^{4}P_{5/2}$	1.56817	1.56107	1,56843	1.55362 ^a
				1,59358°
				1,55149 ^e
$5s^25p^2(^{3}P)5d^{-2}D_{3/2}$	1.55670	1.54188	1,57759	1.49080 ^a
				1,48980 ^e
$5s^25p^2(^{3}P)5d ^{4}P_{5/2}$	1.45506	1.53326	1,59125	1.45477ª
- · · ·				1,50529°
				1,45527°
$5s^25p^2(^{3}P)5d ^{4}P_{3/2}$	1.47899	1.56908	1,61365	1.47110 ^a
				1,54505 ^c
				1,47032 ^e
$5s^25p^2(^{3}P)5d^{-4}P_{1/2}$	1.49550	1.57737	1,62296	1.48414 ^a
1 () (2			,	1,54082°
				1,48350 ^e
$5s^25p^2(^{3}P)6s^{-2}P_{3/2}$	1.62697	1.60229	1.62703	1.57851ª
I () I () I () I () I () I () I () I () I () ()) I () ()) () ()) ()) () ()) ()(,	1.57579 ^e
$5s5p^{4}$ ² P _{3/2}	-	1.82535	1.67985	1.51266 ^a
555 p 1 3/2		1102000	1,07700	1.51370 ^e
$5s^25n^2(^{3}P)5d^{-2}D_{5/2}$	1 67111	1 63439	1 68385	1,54005 ^a
55 5p (1)54 D _{3/2}	1.07111	1.05 157	1,00505	1.51005 1.53892°
$5s^{2}5n^{2}(^{1}D)5d^{-2}P_{1/2}$	1 67642	1 65916	1 70063	1,57550 ^a
55 5P (D)54 11/2	1.07072	1.05710	1,70005	1.57441°
$5s^25n^2(^3P)6n^{-4}D^{\circ}$	1 69307	1 68778	1 70/36	1,57 + 1 1 60505 ^a
$5s^{2}5p^{2}(^{1}D)6s^{2}D_{-2}$	1.0757	1.00770	1,70430	1.09595 1.69539ª
$55 \text{ Jp} (D) 08 D_{5/2}$	1./0102	1.001037	1,72373	1.07557
$5c^{2}5r^{2}(^{1}D)6c^{2}D$	1 76115	1 70079	1 72251	1,09004
$35 \text{ JP}(\mathbf{D}) 08 \mathbf{D}_{3/2}$	1./0443	1./00/8	1,/3331	1.70903
$5_{0}25_{0}2(3D)$ Af 400	1 72244	1 72/12	1 74402	1,/07/1-
$5s^{-}5p^{-}(^{-}P)41 - G^{-}5/2$	1./3344	1./3413	1,74403	1.04100"
$5s^{-}5p^{-}(^{-}P)op^{-}D^{-}_{3/2}$	1./91/4	4.79036	1,/4/44	1./3802"
S\$~Sp~(°P)4t [™] G [™] 7/2	1.80152	1./5257	1,76336	1.66050 ^a

Tablo A.5. (Devamı)

	1 40		00	
Seviyeler	VV	CV	CC	Diğer Çalışmalar
$5s^25p^2(^1S)5d^{-2}D_{5/2}$	1.69219	1.85257	1,76727	1.73168 ^a
				1,72996 ^e
$5s^25p^2(^{3}P)6p^{-2}S_{1/2}$	1.76127	1.75320	1,77056	1.76658ª
$5s^25p^2(^1D)5d^{-2}D_{3/2}$	1.58036	1.75687	1,79179	1.60494 ^a
1 () 5/2			,	1.60450^{e}
$5s^25n^2(^3P)6n^{-4}D_{2/2}$	1 30957	1 78783	1 80063	1 73862ª
$5s^{2}5p^{2}(^{1}D)5d^{2}D_{3/2}$	1.50757	1.76765	1,00005	1.75002 1.62117ª
58 5p (D)5d D5/2	1.0/111	1.75655	1,00150	1.03117
	1 5 4 1 0 5	1 500.00	1.00702	1,03175
5s ² 5p ² (³ P)5d ² F _{7/2}	1./410/	1.73069	1,80/83	1.62135"
				1,62271 ^e
$5s^{2}5p^{2}(^{3}P)4f \ ^{4}G^{\circ}_{9/2}$	1.80241	1.80292	1,81154	1.71547 ^a
$5s^25p^2(^{3}P)6p \ ^{4}D^{\circ}_{5/2}$	1.79968	1.79599	1,81200	1.81290 ^a
$5s^25p^2(^{3}P)4f ^{4}D^{\circ}_{7/2}$	-	-	1,81393	1.70892 ^a
$5s^{2}5p^{2}(^{3}P)4f^{2}D^{\circ}_{5/2}$	1.81656	1.81686	1.82676	1.71974^{a}
$585n^4 {}^2P_{1/2}$	_	-	1 83371	1 62160ª
$5s^25n^2(^3P)6n^{-2}D^{\circ}_{2n}$	1 82708	1 00/3/	1,83374	1 70268ª
5s 5p (1) 6p D 3/2 $5s^2 5p^2 (3D) 6p 4D^{\circ}$	1.02700	4.20434	1,05574	1.79200 1.92072a
$555p(1)op 1_{1/2}$	1.02034	1.02041	1,03575	1.85075
5s ² 5p ² (³ P)41 ² G ³ _{7/2}	1.82113	1.80397	1,83622	1.72996"
$5s^{2}5p^{2}(^{3}P)6p^{-4}P^{0}_{5/2}$	1.83239	1.82810	1,84269	1.88684 ^a
$5s^{2}5p^{2}(^{3}P)4f \ ^{4}G^{\circ}_{11/2}$	1.83839	1.83987	1,84786	1,75017 ^r
$5s^{2}5p^{2}(^{3}P)4f \ ^{4}F^{\circ}_{3/2}$	1.84441	1.84376	1,85521	1.74834 ^a
$5s^25p^2(^{3}P)4f ^{4}D^{\circ}_{5/2}$	1.84465	1.84572	1,85546	1.74943 ^a
$5s^{2}5p^{2}(^{1}D)4f^{-2}G^{\circ}_{9/2}$	1.84812	-	1,86400	1.84145 ^a
$5s^25p^2(^{3}P)6p^{-4}D^{\circ}_{7/2}$	1.85458	-	1.86480	1.84942 ^a
$5s^25p^2(^{3}P)6p^{-4}P^{\circ}_{3/2}$	-	-	1.87143	1.86026 ^a
$585p(1)p(1)p(1)_{3/2}$	_	_	1 88085	1 11109 ^a
$5s_{2}^{2}p_{2}^{2}(^{3}\mathbf{P}) 4f_{2}^{4} \Phi^{\circ}$	1 88110	1 88250	1,00005	1.11109 1.78412a
$58.5p(1)41 D_{3/2}$	1.00110	1.00237	1,09130	1.70412
$58^{-}59^{-}(^{-}P)41 ^{-}D_{1/2}$	1.00042	1.00/30	1,89701	1.79204*
5s ² 5p ² (³ P)4f ⁴ F ⁵ _{5/2}	1.88793	1.88939	1,90075	1.79069"
$5s^25p^2(^{3}P)4f^{-4}F^{-7/2}$	1.88779	1.89020	1,90140	1.78904ª
$5s^{2}5p^{2}(^{3}P)6p^{-2}P^{0}_{-3/2}$	1.89630	1.89389	1,90186	1.87776^{a}
$5s^25p^2(^1S)6s^2S_{1/2}$	1.88729	1.91073	1,90437	1.84125 ^a
$5s^25p^2(^{3}P)6p \ ^{2}D^{\circ}_{5/2}$	-	1.90415	1,91246	1.82696 ^a
$5s^25p^2(^1S)5d^{-2}D_{3/2}$	1.83390	1.83645	1,92819	1.73477 ^a
• • •				1,73581°
$5s^{2}5p^{2}(^{3}P)6p^{-2}P^{\circ}_{1/2}$	1.92621	1.92111	1.92930	1.90768 ^a
$5s^25n^2(^{3}P)4f^{-2}D^{\circ}_{2/2}$		1 92374	1 93488	1 81703ª
$5s^{2}5p^{2}(^{3}P)5d^{-2}D_{z/2}$	1 83003	1.52571	1,93750	1.54005ª
$5s^{2}5p^{2}(^{3}\mathbf{P}) 4f^{2}G^{\circ}r$	1.03003	1.03437	1,93730	1.94145a
58.5p(1)41 = 0.9/2	1.72007	1.92002	1,94140	1.04145
$3s^{2}Sp^{2}(D)Sd^{-2}S_{1/2}$	1./0155	1./8020	1,94621	1. /1500"
				1,71656
$5s^25p^2(^{3}P)4f^2F^{6}_{7/2}$	1.94833	1.95400	1,97086	2.00221ª
$5s^{2}5p^{2}(^{3}P)4f^{-2}F^{\circ}_{5/2}$	1.97711	1.98095	1,99258	1.90109 ^a
$5s^25p^2(^1D)4f^{-2}G^{\circ}_{9/2}$	1.97330	1.98388	1,99305	1.87918 ^a
$5s^{2}5p^{2}(^{1}S)4f^{-2}F^{\circ}_{7/2}$	1.98775	1.99412	2,00157	2.08657 ^a
$5s^25p^2(^1D)6p^{-2}F^{\circ}_{5/2}$	1.98821	1.98857	2,00270	1.96492 ^a
$5s^25p^2(^1D)6p^{-2}D^{\circ}_{3/2}$	1.99993	1.99426	2,00451	1.96962 ^a
$5s^25n^2(^1D)6n^{-2}D^{\circ}s^{\prime 2}$	2 00338	2 00101	2 00972	1 97663ª
$5s^25p^2(^1D)6p^{-2}F^{\circ}_{72}$	2.00550	2.00792	2,02139	1 97963ª
$5s^{2}5p^{2}(^{3}P)/f^{2}F^{0}$	2.00749 2.00714	2.00772	2,02139	1.90109 ^a
$5^{2}5^{2}(1)^{41}$ 1 5/2 $5^{2}5^{2}(1)^{1}$ 1 2110	2.00714	2.00703	2,02429	1.90109 1.01070f
$58 3p (D)41 - H^{2}11/2$	2.01220	2.02102	2,03189	1,919/8
$5s^{-}5p^{-}(1D)5p^{-}2P^{-}_{1/2}$	2.04669	2.03631	2,04440	2.00555"
$5s^{2}5p^{2}(^{+}D)4t^{-2}H^{0}_{-9/2}$	2.03449	2.04086	2,05372	1,94830
$5s^{2}5p^{2}(^{1}D)4f^{2}D^{\circ}_{3/2}$	2.05738	2.07111	2,08223	1.94770^{a}
$5s^{2}5p^{2}(^{1}D)4f^{-2}D^{\circ}_{3/2}$	2.05738	-	2,09175	1.94770 ^a
$5s^25p^2(^{3}P)4f^{-2}F^{\circ}_{7/2}$	2.08785	2.08869	2,10683	2.00221ª

Tablo A.5. (Devamı)

Tablo A.5. (Devamı)

Seviyeler	VV	CV	CC	Diğer Çalışmalar
$5s^25p^2(^1D)4f^2D^{\circ}_{5/2}$	2.09881	2.10859	2,12337	1.99569 ^a
$5s^25p^2(^1D)4f^2P^{\circ}_{1/2}$	2.13123	2.14659	2,16186	2.01198 ^a
$5s^25p^2(^1D)4f ^2P^{\circ}_{3/2}$	2.08954	2.14929	2,16439	2,01306 ^f
$5s^25p^2(^1S)6p^2P^{\circ}_{1/2}$	2.16068	2.15849	2,19216	2.12153 ^a
$5s^25p^2(^1S)6p \ ^2P^{\circ}_{3/2}$	2.17960	2.17535	2,21078	2.14658 ^a
$5s^25p^2(^1S)4f^2F^{\circ}_{7/2}$	2.22270	2.22609	2,23755	2.08657 ^a
$5s^25p^2(^1S)4f^{-2}F^{\circ}_{5/2}$	2.23681	2.24002	2,25302	2,10958 ^f

	Tablo A.o. Kn IV 190	onuna ait enerji se	viyeleri (Rydberg	5)
Seviyeler	VV	CV	CC	Diğer çalışmalar
$6s^26p^3 {}^4S^{o}_{3/2}$	0,00000	0,00000	0,00000	0,00000
6s ² 6p ³ ² D ^o _{3/2}	0,27320	0,27286	0,27289	0,27289
$6s^26p^3 {}^2D^{0}{}_{5/2}$	0,35288	0,35251	0,34932	0,33431
$6s^26p^3 {}^2P^{0}_{1/2}$	0.45846	0.45810	0.43362	0.42599
$6s^{2}6n^{3} {}^{2}P^{0}{}_{2/2}$	0 73830	0 73758	0 70894	0 70053
$6s^26n^2(^3P)6d^{-4}F_{20}$	1,06305	1.04152	1,03072	0,70033
6_{2} 6_{2} 6_{2} 6_{2} 6_{3} 6_{2} 4_{1} 4_{1} D	1.00505	1.04152	1,03072	-
$(30) = \frac{15}{2}$	1 10054	1.04554	1,05346	-
$6s^{-}0p^{-}(^{3}P)/s^{-}P_{1/2}$	1.12234	1.113/1	1,10348	-
$6s^{2}6p^{2}(^{3}P)6d ^{2}F_{5/2}$	1.13302	1.1/816	1,17093	-
$686p^4 {}^4P_{3/2}$	-	1.24229	1,23179	-
$6s6p^4 \ ^4P_{1/2}$	-	1.25735	1,24702	-
$6s^{2}6p^{2}(^{3}P)6d^{-2}P_{3/2}$	1.33910	1.32881	1,31817	-
$6s^{2}6p^{2}(^{3}P)6d ^{4}F_{5/2}$	1,34303	1.34120	1,33224	-
6s ² 6p ² (³ P)6d ⁴ D _{1/2}	1.35460	1.34075	1,33237	-
$6s^{2}6p^{2}(^{3}P)6d ^{4}D_{3/2}$	1.42078	1.35270	1,34267	_
$6s^26p^2(^{3}P)6d ^{4}F_{7/2}$	1.35542	1.35415	1,34463	-
$6s^{2}6n^{2}(^{3}P)7n^{-4}D^{0}1/2$	1 37666	1 37548	1 37830	_
$6s^{2}6p^{2}(^{1}D)6d^{-2}D_{5/2}$	1 48809	1 39554	1 38278	_
$6s^26n^2(^1D)6d^{-2}E_{}$	1 20670	1 30550	1 38656	
$\cos op (D) ou r_{7/2}$	1.390/9	1,39339	1,36030	-
$6s^{-}6p^{-}(^{3}P)/s^{-}P_{3/2}$	1.40003	1.40905	1,39830	-
$6s^{2}6p^{2}(^{3}P)/s^{-2}P_{1/2}$	1.42129	1.41381	1,40755	-
$6s^{2}6p^{2}(^{3}P)6d ^{4}F_{9/2}$	1.42550	1.42421	1,41468	-
$6s^{2}6p^{2}(^{1}D)7s^{-2}D_{3/2}$	1.48271	1.46538	1,46033	-
$6s^{2}6p^{2}(^{3}P)5f^{-4}G^{o}_{5/2}$	-	-	1,46177	-
$6s^{2}6p^{2}(^{3}P)7s^{4}P_{5/2}$	1.40603	1.81733	1,46344	-
$6s^{2}6p^{2}(^{3}P)7p^{-4}D^{o}_{3/2}$	1.47501	1.47384	1,47630	-
6s ² 6p ² (³ P)6d ⁴ P _{5/2}	1.42490	1.51136	1,51064	-
$6s^{2}6p^{2}(^{3}P)6d^{-2}P_{1/2}$	1.61030	1.54611	1,53625	_
$686p^{4} {}^{2}D_{3/2}$	-	1.55612	1,54310	-
$6s^26n^2(^1D)6d^{-2}G_{7/2}$	1 56646	1 56518	1 55885	-
$6s^{2}6p^{2}(^{3}P)6d^{-4}D_{r/2}$	-	1.00010	1,56531	_
$6s^26n^2(^1D)6d^{-2}P_{ava}$	1 96450	1 58862	1,50551	
$6s^{2}6p^{2}(^{3}\mathbf{D})6d^{-4}\mathbf{D}$	1.90450	1.50002	1,50275	-
$(r^2)(r^2)(3P)(r^2)$	1.52414	1.02013	1,02203	-
$OS^{2}OP^{2}(^{3}P)Od^{-2}D_{3/2}$	1.01/03	1.05539	1,039/1	-
$6s^{2}6p^{2}(^{3}P)/p^{-2}S^{0}_{1/2}$	1.66/04	1.66551	1,66550	-
$6s^{2}6p^{2}(^{3}P)6d ^{4}P_{5/2}$	1.42490	1.67218	1,66816	-
$6s^{2}6p^{2}(^{3}P)7p^{-4}D^{o}_{3/2}$	1.68478	1.68328	1,68299	-
$6s^{2}6p^{2}(^{3}P)5f^{-4}G^{o}_{5/2}$	-	-	1,71799	-
$6s^{2}6p^{2}(^{3}P)5f ^{4}G^{o}_{7/2}$	-	-	1,72192	-
6s ² 6p ² (¹ D)6d ² F _{7/2}	1.39679	1.75192	1,72918	-
$6s^26p^2(^1D)7p^{-2}F^{o}_{5/2}$	2.11910	2.11736	1,73661	-
$6s^26p^2(^1D)6d^2S_{1/2}$	1.89249	1.76595	1,74733	-
$6s^{2}6p^{2}(^{3}P)5f^{4}F^{0}_{3/2}$	_	_	1.74757	-
$6s^26p^2(^1D)6d^2G_{0/2}$	1 77771	1,77613	1 75442	_
$6s^{2}6n^{2}({}^{3}P)7n^{4}D^{0}c_{2}$	1 73611	1 75862	1 75852	_
$6s^{2}6n^{2}(^{3}\mathbf{D})7n^{-4}\mathbf{C}^{0}$	1 76/20	1.75002	1 76129	_
$6s^26n^2(3D)7n^{-4}D^0$	1.70 4 30 1.77700	1.70202	1,70130	-
$(r^2(r^2)/p^2)^{1/2}$	1.770001	1.//343	1,//448	-
$os^{-}op^{-}(^{+}D)od^{-}P_{1/2}$	1./9991	1.80018	1,/82/3	-
$6s^{2}6p^{2}(^{3}P)/p^{-4}P^{3}_{3/2}$	1./9194	1./904/	1,78957	-
6s6p ⁺ ² P _{3/2}	-	1.80109	1,79462	-
$6s^{2}6p^{2}(^{3}P)7s^{4}P_{5/2}$	1.81971	1.81733	1,79557	-
$6s^{2}6p^{2}(^{1}D)7p^{-2}F^{o}_{7/2}$	-	-	1,81621	-
$6s^26p^2(^1D)5f^{-2}H^{o}_{9/2}$	-	-	1,81728	-
$6s^{2}6p^{2}(^{1}D)7s^{-2}D_{3/2}$	1.47440	1.83294	1,81937	-
$6s^{2}6p^{2}(^{1}D)5f^{-2}F^{0}5/2$	-	-	1,82895	-
$6s^{2}6p^{2}(^{1}D)7n^{-2}P^{0}_{3/2}$	1.83507	1.83353	1.83355	-
$\mathbf{r} = \mathbf{r} + \mathbf{r} = -\frac{3}{2}$,	

Tablo A.6. Rn IV iyonuna ait enerji seviyeleri (Rydberg)

Seviveler			CC	Diğer calısmalar
$6s^26n^2(^3P)8s^{-4}P_{1/2}$	1 82443	1 832/1	1 83/30	-
$6s^{2}6p^{2}(^{3}P)7d^{-4}F_{2/2}$	1 82324	2 13698	1,83450	_
$6s^{2}6n^{2}({}^{3}P)5f^{4}D^{0}1/2$	-	-	1,85646	_
$6s^{2}6p^{2}(^{1}D)7p^{-2}D^{0}52$	1 85197	1 85048	1,85771	-
$6s^{2}6p^{2}(^{3}P)5f^{-2}F^{0}7p^{2}$	-	-	1,85803	-
$6s^{2}6p^{2}(^{3}P)7d^{-4}D_{5/2}$	1 85727	1 85629	1,85961	-
$6s^{2}6p^{2}(^{3}P)5f^{-4}D^{0}_{3/2}$	-	-	1,86511	-
$6s^{2}6p^{2}(^{3}P)6d^{-2}F_{7/2}$	1.87939	1.87779	1.86515	-
$6s^{2}6p^{2}(^{3}P)7p^{-2}P^{0}1/2$	1.89104	1.88957	1.89294	-
$6s^{2}6p^{2}(^{3}P)6d^{-2}D_{5/2}$	1.96104	1.57590	1.89925	-
$6s^{2}6p^{2}(^{1}D)6d^{-2}P_{3/2}$	1.96450	1.58862	1.91938	-
$6s^{2}6p^{2}(^{1}S)6d^{-2}D_{5/2}$	1.96104	1.96565	1.92919	-
$6s^{2}6p^{2}(^{1}S)7s^{-2}S_{1/2}$	2.01807	2.02114	1.93006	-
$6s^26p^2(^1S)7s^{-2}S_{1/2}$	2.01807	2.02114	1,98562	-
$6s^{2}6p^{2}(^{1}S)6d^{-2}D_{3/2}$	2.03997	2.03465	2.00112	-
$6s6p^{4} {}^{2}P_{3/2}$	-	2.06946	2,04196	-
$6s^26p^2(^1S)6d^{-2}D_{5/2}$	2.04285	1.96565	2,05782	-
$6s^{2}6p^{2}(^{1}D)7p^{-2}D^{0}_{3/2}$	-	-	2,11115	-
$6s^{2}6p^{2}(^{1}D)7p^{-2}F^{0}5/2$	2.11910	2.11736	2,11482	-
$6s^{2}6p^{2}(^{3}P)8s^{4}P_{3/2}$	2.11705	2.12401	2,12377	-
$6s^{2}6p^{2}(^{3}P)7d^{-4}D_{1/2}$	2.13369	2.12906	2,12868	-
$6s^{2}6p^{2}(^{1}D)5f^{-2}F^{o}_{5/2}$	-	-	2,12884	-
$6s^{2}6p^{2}(^{3}P)7d^{4}F_{3/2}$	2.11981	2.13698	2,13047	-
$6s^{2}6p^{2}(^{3}P)7d ^{4}F_{5/2}$	2.13218	2.13144	2,13109	-
$6s^26p^2(^{3}P)7d ^{4}F_{7/2}$	2.13558	2.1339	2,13326	-
$6s^{2}6p^{2}(^{3}P)8s^{2}P_{1/2}$	2.12114	2.13925	2,13867	-
$6s^26p^2(^{3}P)7d^{-2}F_{5/2}$	2.15855	2.16027	2,15994	-
$6s^{2}6p^{2}(^{3}P)7d^{4}D_{3/2}$	2.16206	-	2,16758	-
$6s^26p^2(^1D)5f^{-2}D^{o}_{3/2}$	-	-	2,17042	-
$6s^{2}6p^{2}(^{3}P)7p^{-4}P^{o}_{5/2}$	2.17516	2.17330	2,17048	-
$6s^{2}6p^{2}(^{3}P)7p^{-4}D^{o}_{7/2}$	2.17931	1.82087	2,17120	-
$6s^{2}6p^{2}(^{1}D)7p^{-2}P^{0}_{1/2}$	2.18023	2.17840	2,17494	-
$6s^{2}6p^{2}(^{1}D)5f^{-2}H^{o}_{9/2}$	-	-	2,18166	-
$6s^{2}6p^{2}(^{1}D)7d^{-2}G_{7/2}$	2.18514	2.18351	2,18296	-
$6s^{2}6p^{2}(^{1}D)5f^{-2}G^{o}_{7/2}$	-	-	2,18451	-
$6s^{2}6p^{2}(^{1}D)8s^{-2}D_{5/2}$	2.18376	2.19039	2,19016	-
$6s^{2}6p^{2}(^{3}P)7d ^{4}F_{9/2}$	2.55820	2.55627	2,19633	-
$6s^{2}6p^{2}(^{1}D)8s^{-2}D_{3/2}$	2.19208	2.20164	2,20079	-
$6s^{2}6p^{2}(^{3}P)7d^{-4}D_{5/2}$	1.85727	2.20933	2,20885	-
$6s^{2}6p^{2}(^{3}P)7d^{4}P_{3/2}$	2.20810	2.21417	2,21420	-
$6s^{2}6p^{2}(^{3}P)7d^{4}P_{1/2}$	2.21469	2.21679	2,21579	-
$6s^{2}6p^{2}(^{1}D)5f^{2}P^{0}_{1/2}$	-	-	2,21954	-
$6s^{2}6p^{2}(^{1}D)7d^{2}D_{5/2}$	2.22268	2.22626	2,22696	-
$6s^{2}6p^{2}(^{3}P)7d^{-2}F_{7/2}$	2.23941	2.23781	2,23835	-

Tablo A.6. (Devamı)

ÖZGEÇMİŞ

Selda ESER, 22.08.1986 tarihinde Adapazarı'nda doğdu. İlk öğrenimini Alifuatpaşa Cemal Gürsel İlköğretim okulunda, lise öğrenimini Geyve Lisesi'nde bitirdi. 2005 yılında Sakarya Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü'nü kazandı. 2006 yılında Çift Anadal Programı'ndan faydalanarak Sakarya Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü'nde öğrenim görmeye başladı. 2009 yılında Fizik ve 2010 yılında Matematik bölümünden mezun oldu. 2010-2011 eğitim-öğretim yılında Sakarya Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim dalında yüksek lisans öğrenimini tamamladı ve aynı zamanda Sakarya Üniversitesi Eğitim Fakültesi'nde Pedagojik Formasyon eğitimi aldı. 2011 yılında Sakarya Üniversitesi Fen Bilimleri Enstitüsü'nde doktora öğrenimine başladı. Halen aynı üniversitede öğrenimine ve görevine devam etmektedir.