T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

6-METİLPİRİDİN-2-KARBOKSİLİK ASİT İÇEREN BAZI GEÇİŞ METAL KOMPLEKSLERİNİN SENTEZİ, YAPI ANALİZLERİ VE α-GLUKOZİDAZ ENZİMİ ÜZERİNE ETKİLERİNİN İNCELENMESİ

DOKTORA TEZİ

Sümeyye ALTÜRK

Enstitü Anabilim Dalı

: FİZİK

Tez Danışmanı

: Doç. Dr. Davut AVCI

Temmuz 2019

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

6-METILPIRIDIN-2-KARBOKSILİK ASİT İÇEREN BAZI GEÇİŞ METAL KOMPLEKSLERİNİN SENTEZİ, YAPI ANALİZLERİ VE α-GLUKOZİDAZ ENZİMİ ÜZERİNE ETKİLERİNİN İNCELENMESİ

DOKTORA TEZİ

Sümeyye ALTÜRK

Enstitü Anabilim Dalı :

FIZIK

Bu tez 10/07/2019 tarihinde aşağıdaki jüri tarafından oybirliği/oyçokluğu ile kabul edilmiştir.

Hillh

Prof. Dr. Erdoğan TARCAN Jüri Baskanı

Dr. Öğr. Üyesi Murat TUNA Üye

Prof. Dr. Yusuf ATALAY Üye

Prof. Dr. Kadir ESMER Üye

Doç. Dr. **Davut AVCI** Üye

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Sümeyye ALTÜRK 10.07.2019

TEŞEKKÜR

Doktora eğitimim boyunca değerli bilgi ve deneyimlerinden yararlandığım, her konuda bilgi ve desteğini, araştırmanın planlanmasından yazılmasına kadar tüm aşamalarında yardımlarını esirgemeyen, teşvik eden, aynı titizlikte beni yönlendiren değerli danışman hocam Doç.Dr. Davut AVCI'ya teşekkürlerimi sunarım.

Laboratuar çalışmalarında bilgi, engin tecrübelerini ve yardımlarını esirgemeyen sayın hocalarım Doç.Dr. Davut AVCI, Doç.Dr. Fatih SÖNMEZ ve Doç.Dr. Ömer TAMER ve Dr.Öğr.Üyesi Murat TUNA'ya, ayrıca bilgi ve deneyimlerini aktaran ve çalışmalarımız boyunca destek olan sayın hocalarım Doç.Dr. Adil BAŞOĞLU ve Prof.Dr. Yusuf ATALAY'a teşekkür ederim.

Kristal yapı tanımlama analizleri için Ondokuz Mayıs Üniversitesi Fen Edebiyat Fakültesi öğretim üyesi Doç.Dr. Necmi DEGE'ye ve enzim aktivite çalışmalarına katkılarından dolayı Bezmialem Vakıf Üniversitesi Eczacılık Fakültesinden Dr.Öğr.Üyesi Belma ZENGİN KURT'a teşekkürü bir borç bilirim.

Doktora eğitimim boyunca maddi ve manevi desteğini hiçbir zaman esirgemeyen sevgili aileme sonsuz teşekkürlerimi sunarım.

Ayrıca bu çalışmanın maddi açıdan desteklenmesine olanak sağlayan Türkiye Bilimsel ve Teknolojik Araştırma Kurumuna (TÜBİTAK) (Proje No: 117F234) teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	xi
TABLOLAR LİSTESİ	xiv
ÖZET x	viii
SUMMARY	xix

BÖLÜM 1.

GİRİS			1
,			

BÖLÜM 2.

LİTERATÜR ÖZETİ	
2.1. Alfa–Glukozidaz Enzimi ve İnhibitörleri	3
2.2. Pikolinik Asit ve Türevlerinin Kristal Yapı Çalışmaları	6
2.3. Moleküler Modelleme ve Yapı Analizi	13

BÖLÜM 3.

GENEL BİLGİLER 15		
3.1.	X–Işını Kırınımı	15
3.2.	Spektroskopik Yöntemler	16
3.3.	Kuramsal Hesaplama Yöntemleri	19
	3.3.1. Yoğunluk fonksiyonu teorisi (DFT: Density Functional Theory)	21
	3.3.2. HSEh1PBE Hibrit (karma) yoğunluk fonksiyonu teorisi	23
	3.3.3. Temel setler	24
	3.3.4. Kutuplu süreklilik modeli (Polarizable Continuum Model, PCM)) 25

BÖLÜM 4.

GEREÇ V	E YÖNTEM
4.1.	Kullanılan Kimyasallar ve Cihazlar
4.2.	6-Metilpiridin-2-Karboksilik Asit (6-mpaH) İçeren Metal
	Komplekslerin Sentezi
	4.2.1.6-mpaH'nin kendisi ile yapmış olduğu metal kompleksleri
	(Kompleks 1–8) 29
	4.2.2.6-mpaH ile siyanat (NCS) ligandının metal kompleksleri
	(Kompleks 9–11)
	4.2.3.6-mpaH ile 4(5)metilimidazol (4(5)MeI) ligandının metal
	kompleksleri (Kompleks 12–17)
	4.2.4.6-mpaH ile 2,2'-bipiridil (bpy) ligandının metal kompleksleri
	(Kompleks 18–23)
	4.2.5.6-mpaH ile 1,10-fenantrolin (phen) ligandının metal kompleksleri
	(Kompleks 24–28) 37
	4.2.6.6-mpaH ile 2,2'-dipiridilamin (dipya) ligandının metal
	kompleksleri (Kompleks 29–31)
	4.2.7.6-mpaH ile 4,4'-dimetil-2,2'-dipiridil (dmdpy) ligandının metal
	kompleksleri (Kompleks 32–37) 41
4.3.	Deneysel Yöntemlerle Yapı Çözümleme
	4.3.1. X-Işını kırınımı yöntemi veya kütle spektroskopisi ile yapı
	tanımlama
	4.3.2. FT-IR ve UV-Vis spektrumlarının deneysel olarak kaydedilmesi44
4.4.	α–Glukozidaz Aktivite Yöntemi
4.5.	Kuramsal Hesaplama Yöntemi

BÖLÜM 5.

ANALİZ VE BULGULAR	46
5.1. X-Işını Kırınımı Yöntemi veya Kütle Spektroskopisi ile Yapı Tanımla	ama
ve Geometrik Optimizasyon Analizi	46
5.1.1. Kompleks 1–8'in yapısal analizleri	46
5.1.2. Kompleks 9–11'in yapısal analizleri	58
5.1.3. Kompleks 12–17'nin yapısal analizleri	65

	5.1.4. Kompleks 18–23'ün yapısal analizleri	76
	5.1.5. Kompleks 24–28'in yapısal analizleri	87
	5.1.6. Kompleks 29–31'in yapısal analizleri	94
	5.1.7. Kompleks 32–37'nin yapısal analizleri	102
5.2.	Sentezlenen Komplekslerin Titreşim Spektum Çalışmaları	108
	5.2.1. Kompleks 1–8'in titreşim frekansları	109
	5.2.2. Kompleks 9–11'in titreşim frekansları	114
	5.2.3. Kompleks 12–17'nin titreşim frekansları	116
	5.2.4. Kompleks 18–23'ün titreşim frekansları	121
	5.2.5. Kompleks 24–28'in titreşim frekasları	126
	5.2.6. Kompleks 29–31'in titreşim frekansları	131
	5.2.7. Kompleks 32–37'nin titreşim frekansları	134
5.3.	Sentezlenen Komplekslerin Elektronik Özellikleri ve Sınır Molek	üler
	Orbital (FMO) Enerjileri	139
	5.3.1. Kompleks 1–8'in elektronik özellikleri ve FMO enerjileri	140
	5.3.2. Kompleks 9–11'in elektronik özellikleri ve FMO enerjileri	146
	5.3.3. Kompleks 12–17'nin elektronik özellikleri ve FMO enerjileri	151
	5.3.4. Kompleks 18–23'ün elektronik özellikleri ve FMO enerjileri	157
	5.3.5. Kompleks 24–28'in elektronik özellikleri ve FMO enerjileri	163
	5.3.6. Kompleks 29–31'in elektronik özellikleri ve FMO enerjileri	168
	5.3.7. Kompleks 32–37'nin elektronik özellikleri ve FMO enerjileri .	173
5.4.	Sentezlenen Komplekslerin Doğrusal Olmayan Optik (N	LO)
	Parametreleri	179
	5.4.1. Kompleks 1–8'in NLO parametreleri	180
	5.4.2. Kompleks 9–11'in NLO parametreleri	181
	5.4.3. Kompleks 12–17'nin NLO parametreleri	182
	5.4.4. Kompleks 18–23'ün NLO parametreleri	184
	5.4.5. Kompleks 24–28'in NLO parametreleri	185
	5.4.6. Kompleks 29–31'in NLO parametreleri	185
	5.4.7. Kompleks 32–37'nin NLO parametreleri	186
5.5.	Sentezlenen Komplekslerin Doğal Bağ Orbital (NBO) Analizleri	ve
	Elektrostatik Potansiyel (MEP) Yüzeyleri	187
	5.5.1. Kompleks 1–8'in NBO analizleri ve MEP yüzeyleri	189

5.5.2. Kompleks 9–11'in NBO analizleri ve MEP yüzeyleri	192
5.5.3. Kompleks 12–17'nin NBO analizleri ve MEP yüzeyleri	. 195
5.5.4. Kompleks 18–23'ün NBO analizleri ve MEP yüzeyleri	. 198
5.5.5. Kompleks 24–28'in NBO analizleri ve MEP yüzeyler	. 202
5.5.6. Kompleks 29–31'in NBO analizleri ve MEP yüzeyleri	206
5.5.7. Kompleks 32–37'nin NBO analizleri ve MEP yüzeyleri	209
Sentezlenen Komplekslerin α–Glukozidaz Aktivite Sonuçları	213
	 5.5.2. Kompleks 9–11'in NBO analizleri ve MEP yüzeyleri 5.5.3. Kompleks 12–17'nin NBO analizleri ve MEP yüzeyleri 5.5.4. Kompleks 18–23'ün NBO analizleri ve MEP yüzeyleri

BÖLÜM 6.

SONUÇ VE ÖNERİLER	218
KAYNAKLAR	221
ÖZGEÇMİŞ	237

SİMGELER VE KISALTMALAR LİSTESİ

3-OHpicH	: 3-Hidroksipikolinik asit (3-Hidroksipiridin-2-karboksilik asit)
3-OHpic	: 3–Hidroksipikolinat
3-mpaH	: 3–Metilpiridin–2–karboksilik asit
3-mpa	: 3–Metilpiridin–2–karboksilat
4(5)MeI	: 4(5)–Metilimidazol
4-pic	: 4–Pikolin
5-ipa	: 5-İyodo pikolinat
6-BrpaH	: 6–Bromopikolinik asit
6-Brpa	: 6–Bromopikolinat
6-mpaH	: 6–Metilpiridin–2–karboksilik asit
6-mpa	: 6–Metilpiridin–2–karboksilat
Abs	: Absorbans
AGI	: α–Glukozidaz inhibitörleri
akb	: Atomik kütle birimi
AR	: Aldoz redüktaz
α	: Kutuplanabilirlik (Polarizabilite)
< <i>α</i> >	: Ortalama kutuplanabilirlik
$\Delta lpha$: Yönelime bağlı kutuplanabilirlik
bpy	: 2,2′–Bipiridil
β	: Düzlem içi açı bükülmesi
$<\beta>$: Birinci mertebeden statik yüksek kutuplanabilirlik
c	: Işık hızı
С	: Molar derişim
Cd	: Kadmiyum
Co	: Kobalt
Cr	: Krom
СТ	: Yük transferi

Cu	: Bakır
d	: Paralel örgü düzlemleri arasındaki uzaklık
DFT	: Yoğunluk fonksiyon teorisi
dipya	: 2,2'–Dipiridilamin
DM	: Diyabet hastalığı (Diabetes mellitus)
dmdpy	: 4,4'–Dimetil–2,2'–dipiridil
DZ	: İkili–zeta temel set
ζ	: Orbital üsteli
e	: Elektron yükü
Е	: Molekülün toplam enerjisi
<i>E</i> ⁽²⁾	: Hiperkonjugatif etkileşim enerjisi (Stabilizasyon enerjisi)
EA	: Elektron ilgisi
Ee	: Elektronik enerji
esu	: Elektrostatik yük birimi
Еномо	: En yüksek dolu molekül orbital enerjisi
E _{LUMO}	: En düşük boş molekül orbital enerjisi
Ε[ρ]	: Elektron yoğunluğunun elektronik enerjisi
E _{tit}	: Titreșim enerjisi
E _{xc}	: Değiş–tokuş ve karşılıklı etkileşim enerjisi
$\epsilon_{xc}[\rho(r)]$: Sabit yoğunluklu her bir elektron için değiş–tokuş ve karşılıklı
FHSE	· HSE değis_tokuş ve karşılıklı etkileşim eneriişi
E_{xc}	· Kusa menzil HE değis-tokuş eneriisi
L_{χ} $\Gamma^{WPBE,LR}$	· DDE dožis, tokus fonksivonun uzun monzil bilosoni
E_{χ}	DDE dežia talan fanlainanna haa maaril bilaani
$E_x^{WIDD, SR}$: PBE degiş–tokuş fonksiyonun kisa menzil bileşeni
ϵ	: ψ Ozvektörüne ait zaman bağlı Kohn–Sham operator özdeğerleri
Fe	: Demir
FFA	: Serbest yağ asidi
$\mathcal{F}_{KS}(r)$: Kohn–Sham operatörü
FMO	: Sınır moleküler orbital (Frontier moleküler orbital)
FT-IR	: Fourier dönüşümlü kırmızı altı spektroskopisi
GC	: Gaz kromatografisi (gas chromatography)

GLUT2	: Glikoz taşıyıcıları 2 (glucose transporter 2)
GTO	: Gaussian tipi orbitaller
γ	: Düzlem dışı açı bükülmesi
$<\gamma>$: İkinci mertebeden statik yüksek kutuplanabilirlik
h	: Planck sabiti
Н	: HOMO
HF	: Hartree Fock
H ₂ FDCA	: 2,5–Furandikarboksilik asit
Hg	: Civa
НОМО	: En yüksek dolu molekül orbital
IC ₅₀	: Yarı maksimum inhibitor konsantrasyonu
ILCT	: Ligand içi yük transferi
IP	: İyonlaşma enerjisi
IR	: Kırmızı altı (Infrared) spektroskopisi
k	: Kuvvet sabiti
KS	: Kohn–Sham operatörü
KSCN	: Potasyum tiyosiyanat
χ	: Elektronegatiflik
L	: LUMO
λ	: Dalga boyu
LDA	: Yerel yoğunluk yaklaşımı
LP	: Orbital çifti (Lone pair)
LR	: Uzun menzil
LUMO	: En düşük boş molekül orbital
m _e	: Elektronun kütlesi
MLCT	: Metal-ligand ve ligand-metal yük transferi
MMCT	: Metal–metal yük transferi
Mn	: Mangan
mRNA	: Taşıyıcı ribo nükleik asit (Messenger Ribonucleic acid)
MS	: Kütle spektroskopisi (Mass spectroscopy)
μ	: Dipol moment
n	: Kunatum sayıları (n= 1, 2, 3,)
Ν	: Azot

NCS	: Siyanat
Ni	: Nikel
ν	: Titreşim frekansı
η	: Kimyasal sertlik
∇^2	: Laplasyan işlemcisi
0	: Oksijen
OAc	: Asetat
ра	: 2–Pikolinat
РСМ	: Kutuplu süreklilik modeli
phen	: 1,10–Fenantrolin
π	: Pi
ψ	: Dalga fonksiyonu
pNA	: Para nitroanilin
Ру	: Piridin
q	: Yük
qi	: Elektron verici nüfus yoğunluğu
r	: Çekirdekler arası uzaklık
ρ(r)	: Olasılık yoğunluğu
S	: Kimyasal yumuşaklık
SGLT1	: Sodyum bağımlı glikoz taşıyıcıları (Na ⁺ glucose cotransporter)
SR	: Kısa menzil
STO	: Slater tipi orbital
T2DM	: Tip 2 Diyabet hastalığı
TD-DFT	: Zamana bağlı yoğunluk fonksiyon teorisi
θ	: Dalga demetini düzlemler ile yaptığı açı
ΤZ	: Üçlü–zeta temel set
TZD	: Tiazolidindion
U	: Potansiyel enerji
U_{NN}	: Çekirdek itme enerjisi
UV-Vis	: Mor ötesi ve görünür bölge spektroskopisi
V	: Vanadyum
Ŵ	: Potansiyel enerji işlemcisi

V _{xc}	: Değiş-tokuş ve karşılıklı etkileşim potansiyeli
$V^{ext}(r)$: Dış potansiyel
VO	: Okso vanadyum (IV)
$v^{PCM}(r)$: PCM operatörü
XRD	: X–ışını kırınımı
Ζ	: Çekirdek yükü
Zn	: Çinko

ŞEKİLLER LİSTESİ

Şekil 2.1.	Bilinen bazı heterohalkalı α-glukozidaz inhibitörleri	6
Şekil 2.2.	(a) $[Co(3-mpa)_3]$ (b) $[Co(6-mpa)_2(H_2O)_2]$ ·2H ₂ O komplekslerin	
	kristal yapıları	7
Şekil 2.3.	[Co(6-mpa) ₂ (H2O) ₂] kompleksin kristal yapısı	7
Şekil 2.4.	(a) [Ni(6-mpa) ₂ (H ₂ O) ₂]·2H ₂ O (b) [Ni(6-mpa) ₂ (H ₂ O) ₂]'nin kristal	
	yapıları	8
Şekil 2.5.	(a) $[Cu(6-mpa)_2(H_2O)]$ (b) $[Cu(6-mpa)_2(py)]$ (c) $[Cu(6-mpa)_2(py)]$	
	Brpa) ₂ (H ₂ O)] komplekslerin kristal yapıları	9
Şekil 2.6.	[Cu(6-mpa)2(H2O)] H2O kompleksin kristal yapısı	10
Şekil 2.7.	(a) $[Cu(3-mpa)_2(H_2O)] \cdot H_2O$ (b) $[Cu(3-mpa)_2(3-pa)]$ komplekslerin	
	kristal yapıları	11
Şekil 2.8.	[Zn(6-mpa) ₂ (H ₂ O)]·H ₂ O kompleksin kristal yapısı	12
Şekil 2.9.	İnsülinomimetik özellik gösteren Zn(6-mpa)2 kompleksi	13
Şekil 3.1.	Bragg saçılması	15
Şekil 4.1.	Kompleks 1–8'in sentezi	30
Şekil 4.2.	Kompleks 9–11'in sentezi	32
Şekil 4.3.	Kompleks 12–17'nin sentezi	34
Şekil 4.4.	Kompleks 18–23'ün sentezi	36
Şekil 4.5.	Kompleks 24–28'in sentezi	38
Şekil 4.6.	Kompleks 29–31'in sentezi	40
Şekil 4.7.	Kompleks 32–37'nin sentezi	42
Şekil 5.1.	Kompleks 1–6, 8'in tek kristal yapıları ve kompleks 7'nin optimize	
	edilmiş molekül yapısı	51
Şekil 5.2.	Kompleks 7'nin kütle spektrumu	52
Şekil 5.3.	Kompleks 9–11'in tek kristal yapıları	60

Şekil 5.4.	Kompleks 12-15'in tek kristal yapıları ve kompleks 16, 17'nin
	optimize edilmiş molekül yapıları
Şekil 5.5.	Kompleks 16 ve 17'nin kütle spektrumları
Şekil 5.6.	Kompleks 18, 19'un tek kristal yapıları ve kompleks 20-23'ün
	optimize edilmiş molekül yapıları
Şekil 5.7.	Kompleks 20–23'ün kütle spektrumları
Şekil 5.8.	Kompleks 24'ün tek kristal yapısı ve kompleks 25–28'in optimize
	edilmiş molekül yapıları
Şekil 5.9.	Kompleks 25–28'in kütle spektrumları
Şekil 5.10.	Kompleks 29'un tek kristal yapısı ve kompleks 30, 31'in optimize
	edilmiş molekül yapıları
Şekil 5.11.	Kompleks 30 ve 31'in kütle spektrumları
Şekil 5.12.	Kompleks 32–37'nin optimize edilmiş molekül yapıları 1
Şekil 5.13.	Kompleks 32–37'nin kütle spektrumları 10
Şekil 5.14.	Kompleks 1, 2, 4, 6, 7 için (a) 4000–400 cm ^{-1} (b) 1750–400 cm ^{-1}
	aralığında FT–IR spektrumları 1
Şekil 5.15.	Kompleks 9–11 için FT–IR spektrumları 1
Şekil 5.16.	Kompleks 12–17 için (a) 4000–400 cm ⁻¹ (b) 1750–400 cm ⁻¹
	aralığında FT–IR spektrumları 1
Şekil 5.17.	Kompleks 18–23 için (a) 4000–400 cm ^{-1} (b) 1750–400 cm ^{-1}
	aralığında FT–IR spektrumları 11
Şekil 5.18.	Kompleks 24–28 için (a) 4000–400 cm ⁻¹ (b) 1750–400 cm ⁻¹
	aralığında FT–IR spektrumları 11
Şekil 5.19.	Kompleks 29–31 için FT–IR spektrumları
Şekil 5.20.	Kompleks 32–37 için (a) 4000–400 cm ^{-1} (b) 1750–400 cm ^{-1}
	aralığında FT–IR spektrumları 1
Şekil 5.21.	Kompleks 1, 2, 4, 6 ve 7 için UV–Vis spektrumları 14
Şekil 5.22.	Kompleks 1, 2, 4, 6, 7 için FMO enerjileri 14
Şekil 5.23.	Kompleks 9–11 için UV–Vis spektrumları 14
Şekil 5.24.	Kompleks 9–11 için FMO enerjileri 1
Şekil 5.25.	Kompleks 12–17 için UV–Vis spektrumları 1
Şekil 5.26.	Kompleks 12–17 için FMO enerjileri 1
Şekil 5.27.	Kompleks 18–23 için UV–Vis spektrumları 1

Şekil 5.28.	Kompleks 18–23 için FMO enerjileri	162
Şekil 5.29.	Kompleks 24–28 için UV–Vis spektrumları	165
Şekil 5.30.	Kompleks 24–28 için FMO enerjileri	167
Şekil 5.31.	Kompleks 29–31 için UV–Vis spektrumları	170
Şekil 5.32.	Kompleks 29–31 için FMO enerjileri	172
Şekil 5.33.	Kompleks 32–37 için UV–Vis spektrumları	176
Şekil 5.34.	Kompleks 32–37 için FMO enerjileri	178
Şekil 5.35.	Kompleks 1, 2, 4, 6, 7 için MEP yüzeyleri	193
Şekil 5.36.	Kompleks 9–11 için MEP yüzeyleri	196
Şekil 5.37.	Kompleks 12–17 için MEP yüzeyleri	199
Şekil 5.38.	Kompleks 18–23 için MEP yüzeyleri	203
Şekil 5.39.	Kompleks 24–28 için MEP yüzeyleri	207
Şekil 5.40.	Kompleks 29–31 için MEP yüzeyleri	210
Şekil 5.41.	Kompleks 32–37 için MEP yüzeyleri	214

TABLOLAR LİSTESİ

Tablo 3.1.	Enerji ifadelerinden hesaplanan bazı moleküler özellikler	20
Tablo 5.1.	Kompleks 1–6 ve 8'in kristal yapı arıtım verileri	49
Tablo 5.2.	Kompleks 1, 2, 4, 6 ve 7 için bazı deneysel ve teorik karşılığı	
	olan geometrik parametreler	54
Tablo 5.3.	Kompleks 1–6 ve 8'de gözlenen hidrojen bağ etkileşimleri (Å, °)	56
Tablo 5.4.	Kompleks 9–11'in kristal yapı arıtım verileri	59
Tablo 5.5.	Kompleks 9–11 için bazı deneysel ve teorik karşılığı olan	
	geometrik parametreler	63
Tablo 5.6.	Kompleks 9–11'de gözlenen hidrojen bağ etkileşimleri (Å, °)	65
Tablo 5.7.	Kompleks 12–15'in kristal yapı arıtım verileri	67
Tablo 5.8.	Kompleks 12–17 için bazı deneysel ve teorik karşılığı olan	
	geometrik parametreler	72
Tablo 5.9.	Kompleks 12–15'te gözlenen hidrojen bağ etkileşimleri (Å, °)	76
Tablo 5.10.	Kompleks 18 ve 19'un kristal yapı arıtım verileri	78
Tablo 5.11.	Kompleks 18-23 için bazı deneysel ve teorik karşılığı olan	
	geometrik parametreler	83
Tablo 5.12.	Kompleks 18 ve 19'da gözlenen hidrojen bağ etkileşimleri (Å, °)	87
Tablo 5.13.	Kompleks 24'ün kristal yapı arıtım verileri	89
Tablo 5.14.	Kompleks 24–28 için bazı deneysel ve teorik karşılığı olan	
	geometrik parametreler	93
Tablo 5.15.	Kompleks 24'te gözlenen hidrojen bağ etkileşimleri (Å, °)	94
Tablo 5.16.	Kompleks 29'un kristal yapı arıtım verileri	96
Tablo 5.17.	Kompleks 29-31 için bazı deneysel ve teorik karşılığı olan	
	geometrik parametreler	100
Tablo 5.18.	Kompleks 29'da gözlenen hidrojen bağ etkileşimleri (Å, °)	102

Tablo 5.19.	Kompleks 32-37 için bazı deneysel ve teorik karşılığı olan
	geometrik parametreler
Tablo 5.20.	Kompleks 1, 2, 4, 6, 7 için bazı FT-IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.21.	Kompleks 9–11 için bazı FT–IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.22.	Kompleks 12–17 için bazı FT–IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.23.	Kompleks 18–23 için bazı FT–IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.24.	Kompleks 24–28 için bazı FT–IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.25.	Kompleks 29–31 için bazı FT–IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.26.	Kompleks 32–37 için bazı FT–IR ve hesaplanan titreşim
	frekanslarının karşılaştırılması
Tablo 5.27.	Kompleks 1, 2, 4, 6 ve 7 için deneysel ve teorik elektronik
	soğurma dalgaboyları, önemli elektronik geçişler
Tablo 5.28.	Kompleks 1, 2, 4, 6, 7 için hesaplanan HOMO, LUMO enerjileri
	ve ilgili bazı parametreler
Tablo 5.29.	Kompleks 9–11 için deneysel ve teorik elektronik soğurma
	dalgaboyları, önemli elektronik geçişler
Tablo 5.30.	Kompleks 9-11 için hesaplanan HOMO, LUMO enerjileri ve
	ilgili bazı parametreler
Tablo 5.31.	Kompleks 12–17 için deneysel ve teorik elektronik soğurma
	dalgaboyları, önemli elektronik geçişler
Tablo 5.32.	Kompleks 12-17 için hesaplanan HOMO, LUMO enerjileri ve
	ilgili bazı parametreler
Tablo 5.33.	Kompleks 18-23 için deneysel ve teorik elektronik soğurma
	dalgaboyları, önemli elektronik geçişler
Tablo 5.34.	Kompleks 18-23 için hesaplanan HOMO, LUMO enerjileri ve
	ilgili bazı parametreler

Tablo 5.35.	Kompleks 24-28 için deneysel ve teorik elektronik soğurma	
	dalgaboyları, önemli elektronik geçişler	163
Tablo 5.36.	Kompleks 24-28 için hesaplanan HOMO, LUMO enerjileri ve	
	ilgili bazı parametreler	166
Tablo 5.37.	Kompleks 29-31 için deneysel ve teorik elektronik soğurma	
	dalgaboyları, önemli elektronik geçişler	168
Tablo 5.38.	Kompleks 29-31 için hesaplanan HOMO, LUMO enerjileri ve	
	ilgili bazı parametreler	171
Tablo 5.39.	Kompleks 32-37 için deneysel ve teorik elektronik soğurma	
	dalgaboyları, önemli elektronik geçişler	173
Tablo 5.40.	Kompleks 32-37 için hesaplanan HOMO, LUMO enerjileri ve	
	ilgili bazı parametreler	177
Tablo 5.41.	Kompleks 1, 2, 4, 6, 7 için hesaplanan dipol moment (μ , Debye),	
	statik kutuplanabilirlikler ($<\alpha>$ ve $\Delta\alpha$, 10^{-24} esu), 1. ve 2.	
	mertebeden statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve	
	$<\gamma>$, 10 ⁻³⁶ esu) parametreleri	181
Tablo 5.42.	Kompleks 9–11 için hesaplanan dipol moment (μ , Debye), statik	
	kutuplanabilirlikler ($<\alpha>$ ve $\Delta\alpha$, 10^{-24} esu), 1. ve 2. mertebeden	
	statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve < γ >, 10 ⁻³⁶ esu)	
	parametreleri	182
Tablo 5.43.	Kompleks 12-17 için hesaplanan dipol moment (µ, Debye),	
	statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2.	
	mertebeden statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve	
	$<\gamma>$, 10^{-36} esu) parametreleri	184
Tablo 5.44.	Kompleks 18-23 için hesaplanan dipol moment (µ, Debye),	
	statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10 ⁻²⁴ esu), 1. ve 2.	
	mertebeden statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve	
	$<\gamma>$, 10^{-36} esu) parametreleri	185
Tablo 5.45.	Kompleks 24-28 için hesaplanan dipol moment (µ, Debye),	
	statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2.	
	mertebeden statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve	
	$<\gamma>$, 10^{-36} esu) parametreleri	186

Tab	olo 5.46.	Kompleks 29-31 için hesaplanan dipol moment (µ, Debye),	
		statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2.	
		mertebeden statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve	
		$<\gamma>$, 10^{-36} esu) parametreleri	187
Tab	olo 5.47.	Kompleks 32-37 için hesaplanan dipol moment (µ, Debye),	
		statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2.	
		mertebeden statik yüksek kutuplanabilirlik (< β >, 10 ⁻³⁰ esu ve	
		$<\gamma>$, 10^{-36} esu) parametreleri	188
Tab	olo 5.48.	Kompleks 1, 2, 4, 6, 7 için NBO analiz	191
Tab	olo 5.49.	Kompleks 9–11 için NBO analizi	195
Tat	olo 5.50.	Kompleks 12–17 için NBO analizi	198
Tab	olo 5.51.	Kompleks 18–23 için NBO analizi	201
Tab	olo 5.52.	Kompleks 24–28 için NBO analizi	205
Tab	olo 5.53.	Kompleks 29–31 için NBO analizi	209
Tab	olo 5.54.	Kompleks 32–37 için NBO analizi	212
Tab	olo 5.55.	Kompleks 1–37 ve ligandların α -glukozidaz için in vitro	
		inhibisyon IC ₅₀ değerleri (µM)	215

ÖZET

Anahtar kelimeler: 6–Metilpiridin–2–karboksilik asit, Kristal yapı, Geçiş grubu metalleri, Antidiyabetik, 2. ve 3. mertebeden NLO, NBO, IR ve UV–Vis spektrumları, α –Glukozidaz, DFT/TD–DFT.

Bu çalışma kapsamında, daha önce sentezlenmemiş olan 6-metilpiridin-2-karboksilik asit (6-mpaH) içeren karışık ligandlı farklı metal kompleksleri sentezlenerek elde edilen komplekslerin antidiyabetik özellikleri α -glukozidaz enzimi üzerine etkileri incelenerek araştırılmıştır.

Yapılan çalışmalar sonucunda, karışık ligandlı 28 adet yeni kompleks sentezlenmiş ve bunlardan 10 tanesi tek kristal vapı olarak elde edilmistir. Avrıca, daha önce literatürde olmayan 6-mpa'nın kendisi ile Cr, Mn, Hg, Zn ve Fe'in metal kompleksleri ve 3-metilpiridin-2-karboksilik asit (3-mpaH) içeren Co metal kompleksi sentezlenmiştir. Bu çalışma kapsamında, 37 adet kompleks yapının 17'si tek kristal olup yapıları X-ışını kırınımı yöntemiyle, diğer elde edilen toz komplekslerin yapıları ise kütle spektroskopisiyle belirlenmiştir. Bu komplekslerin yapısal, titreşimsel, elektronik özellikler hem deneysel hem de hibrit DFT metodu olan HSEh1PBE yöntemi kullanılarak detaylı olarak incelenmiştir. α-glukozidaz enzim aktivite sonuçlarına göre, sentezlenen kompleksler arasında en iyi inhibe edici yapıların liganda bakılmaksızın Hg metali içeren kompleksler olduğu sonucuna varılmıştır. Cu içeren tüm kompleks yapılarda (9, 17, 20, 29) aktivite sonuçları ligandlara bağlı olarak 4(5)MeI>NCS>dipya>bpy azalan inhibisyon değerlerinde gözlenmiştir. Bu değişimin kullanılan diğer metaller için aynı olmadığı belirlenmiştir. Elde edilen sonuçlara göre farklı metal içeren ligandların yapı aktivite ilişkileri karşılaştırıldığında, Hg, Cu ve Fe içeren metal komplekslerin in vitro sonuçları kayda değer olarak bulunmuştur.

SYNTHESIS OF SOME TRANSITION METAL COMPLEXES CONTAINING 6-METHYLPYRIDINE-2-CARBOXYLIC ACID, STRUCTURAL ANALYSES, INVESTIGATION OF EFFECTS ON α-GLUCOSIDASE ENZYME

SUMMARY

Keywords: 6–Methylpyridine–2–carboxylic acid, Crystal structure, Transition group metals, Antidiabetic, Second– and third–order NLO, NBO, IR and UV–Vis. spectra, α –Glucosidase, DFT/TD–DFT.

In the scope of this study, the novel mixed ligand metal complexes containing 6– methylpyridine–2–carboxylic acid (6-mpaH) was synthesized for the first time, and the antidiabetic properties of the obtained complexes were investigated by determining the α –glucosidase enzyme activity.

As a result of the synthesis studies, 10 of 28 new complex structures with mixed ligand were obtained as single crystal structure. Besides, Co metal complex containing the 3-methylpyridine-2-carboxylic acid (3-mpaH) and Cr, Mn, Hg, Zn and Fe metal complexes of the 6-mpa were synthesized for the first time. Within the scope of this study, 17 of 37 complex structures obtained as single crystal were characterized by X-ray diffraction method and the structures of remaining complexes obtained as powder structures were determined by mass spectroscopy. The structural, vibrational and electronic properties of these complexes were investigated in detail by using both the experimental and hybrid DFT/HSEh1PBE level. According to the results of α -glucosidase enzyme activity, it was concluded that the best inhibitory structures between synthesized complexes were Hg metal-containing complexes regardless of ligand. Activity results in all complex structures containing Cu (9, 17, **20**, **29**) were observed in 4(5)MeI>NCS>dipya>bpy by decreasing inhibition values depending on the ligands. It is determined that this change was not the same for the other metals used. According to the results, the in vitro results of the metal complexes containing Hg, Cu and Fe were found to be significant when the structure activity relationships of different metal-containing ligands were compared.

BÖLÜM 1. GİRİŞ

Azot içeren ligandların metal kompleksleri, vücudumuzdaki bazı enzim-substrat kompleksleri ile yapısal, spektroskopik ve katalitik olarak benzer özellik taşıdıkları için koordinasyon kimyası alanında sıkça kullanılmaktadır [1-6]. Pikolinik asit gibi piridin türevi ligandların ve koordinasyon komplekslerini de içeren farklı yapıların sentezlenmesi ve bu ligandların kataliz, doğrusal olmayan optik, lüminesans, iyon değişimi gibi fiziko-kimyasal özelliklerinin araştırılmasının malzeme kimyasındaki birçok uygulamalarından dolayı önem taşımaktadır [7-11].

Diyabet hastalığı (Diabetes mellitus, DM) yüksek kan glikoz seviyeleri ile karakterize olan ve dünyadaki en yaygın metabolik dejeneratif hastalıklardan biridir [12,13]. Diyabet hastalığı tip 1 ve tip 2 olmak üzere iki gruba ayrılır. Tip 1 diyabet insülin eksikliğinden kaynaklı olup diyabetik popülasyonun %5–10'unu oluşturmaktadır. Tip 2 ise diyabetin en yaygın nedeni insülin direnci olup en sık görülen tiptir.

Glikoz kontrolünün diyabet için etkili bir tedavi olduğundan birçok antidiyabetik tedavi kan glikoz seviyelerini düşürmeye odaklanmaktadır. Önemli terapötik yaklaşımlardan biri, şeker sindirimini ve emilimini yavaşlatmak ve postprandiyal hiperglisemiyi baskılamak için bağırsaktaki α -glukozidaz veya α -amilaz gibi sindirilen enzimleri inhibe etmektir. α -Glukozidaz inhibitörleri (baskılayıcıları) (AGI), karbonhidrat sindirimini geciktirir ve genel karbonhidrat sindirim süresini uzatır, glikoz emilimini yavaşlatır ve dolayısıyla postprandiyal plazma glikoz artışını köreltir. Postprandiyal hiperglisemiyi azaltan inhibitörler, T2DM ve diyabet öncesi durumların tedavisinde önemli bir role sahiptir. Ayrıca, bu tür ajanların, diyabetin ilerlemesini, mikro ve makro-vasküler komplikasyonları azaltma potansiyeline sahiptir [14,15]. Son çalışmalar, α -glukozidaz inhibitörünün postprandiyal hiperglisemiyi iyileştirdiğini ve daha sonra bozulmuş glikoz direnci olan hastalarda tip 2 diyabet gelişim riskini azalttığını ortaya koymuştur [15,16]. Akarboz, vogliboz ve miglitol molekülleride dâhil olmak üzere çeşitli AGI'ler klinikte T2DM'yi tedavi etmek için etkili bir şekilde kullanılmıştır [17]. α -Glukozidaz inhibitörleri, hipergliseminin kardiyovasküler komplikasyonlarının önlenmesinde oldukça etkilidir.

İnsüline bağlı olmayan diyabet hastalığın tedavisinde kullanılan α -Glukozidaz inhibitörleri (AGI'ler) antidiyabetik ilaç pazarının büyük bir kısmını temsil eder [18]. Fakat ticari olarak sadece birkaç AGI mevcuttur ve gösterdikleri yan etkilerden dolayı ihtiyacı karşılayamamaktadır. Bu nedenle, yüksek afiniteli glukozidaz inhibitörlerinin dizaynı ve sentezi büyük önem taşımaktadır. Bu hedef doğrultusunda, günümüze kadar farklı metal iyonları içeren komplekslerin Tip 2 diyabetli bireyler üzerindeki iyileştirici etkileri yoğun bir şekilde araştırmalara konu olmuştur. Ancak, 6-metilpiridin–2–karboksilik asit içeren karışık ligandlı farklı metal komplekslerinin sentezi, kristal yapı analizi, α -glukozidaz enzim aktivite ve yapı–aktivite ilişkileri üzerine çalışmaların literatürde yer almadığı görülmektedir.

Bu tez çalışmasında, 6-metilpiridin–2-karboksilik asit (6-mpaH) içeren 4(5)– metilimidazol (4(5)MeI), 1,10–fenantrolin (phen), 2,2'–bipiridil (bpy), 2,2'– dipiridilamin (dipya), 4,4'–dimetil–2,2'–dipiridil (dmdpy) gibi karışık ligandlı vanadyum (V), krom (Cr), mangan (Mn), demir (Fe), kobalt (Co), nikel (Ni), bakır (Cu), çinko (Zn), kadmiyum (Cd) ve civa (Hg) metal komplekslerin ilk kez sentezlenmiş ve tek kristal yapıları veya toz kompleks yapıları elde edilmiştir. Sentezlenen komplekslerin yapıları XRD, MS, FT–IR, UV–Vis yöntemleriyle deneysel olarak incelenmiştir. Deneysel çalışmaların yanı sıra, DFT/HSEh1PBE/6– 311G(d,p)/LanL2DZ metodu kullanılarak kuramsal hesaplamaları yapılmıştır. Ayrıca, sentezlenen komplekslerin diyabet hastalığı ile ilişkili olan α –glukozidaz enzimi üzerine etkileri incelenerek farklı metal içeren komplekslerin yapı aktivite ilişkileri incelenmiştir.

BÖLÜM 2. LİTERATÜR ÖZETİ

2.1. Alfa–Glukozidaz Enzimi ve İnhibitörleri

Divabet hastalığı (Diabetes mellitus, DM) yüksek kan glikoz seviyeleri ile karakterize olan ve dünyadaki en yaygın metabolik dejeneratif hastalıklardan biridir [12,13]. Divabet, nöropati, nefropati, kalp hastalığı, inme ve vasküler hastalıklar gibi çeşitli komplikasyonlarla ilişkili hiperglisemi ile karakterize morbidite ve mortalitenin önde gelen nedenlerinden biridir. Diyabetin neden olduğu kronik hiperglisemi (şeker yüksekliği) başta göz, böbrek, sinir, kalp ve kan damarları olmak üzere vücudun birçok organında ciddi hasarlara neden olur [19]. Diyabet hastalığı tip 1 ve tip 2 olmak üzere iki gruba ayrılır. Tip 1 diyabet insülin eksikliğinden kaynaklı olup diyabetik popülasyonun %5-10'unu oluşturmaktadır. Tip 2 ise diyabetin en yaygın nedeni insülin direnci olup en sık görülen tiptir. Dünya genelinde tüm yaş gruplarında diyabet prevalansı artmakta olup, bunun 2000 yılında %2,8 iken 2030 yılında %4,4'e kadar çıkabileceği tahmin edilmektedir [20]. Etki mekanizmalarına göre tip 2 diyabet (T2DM) ilaçları yedi gruba ayrılabilir; insülin salgılatıcılar (metformin, tiazolidindionlar (TZD'ler), beta-reseptör agonistleri dahil), α-glukozidaz inhibitörleri (akarboz, miglitol ve vogliboz gibi), aldoz redüktaz (AR) inhibitörleri (tolrestat ve epalrestat gibi), simülasyon insülin sensitizörleri (insülin benzeri büyüme faktörleri ve vanadat bileşikleri dahil), insülin ilaçları (oral, enjeksiyon ve inhale insülin preparasyonları) ve geleneksel Çin hipoglisemik tıbbı (tek bitkisel ilaç veya kompozit formülasyon dahil) [21].

Glikoz kontrolünün diyabet için etkili bir tedavi olduğundan birçok antidiyabetik tedavi kan glikoz seviyelerini düşürmeye odaklanmaktadır. Önemli terapötik yaklaşımlardan biri, şeker sindirimini ve emilimini yavaşlatmak ve postprandiyal hiperglisemiyi baskılamak için bağırsaktaki α -glukozidaz veya α -amilaz gibi sindirilen enzimleri inhibe etmektir. α-Glukozidaz inhibitörleri (AGI), karbonhidrat sindirimini geciktirir ve genel karbonhidrat sindirim süresini uzatır, glikoz emilimini yavaslatır ve dolayısıyla postprandiyal plazma glikoz artısını köreltir. Postprandiyal hiperglisemiyi azaltan inhibitörler, T2DM ve diyabet öncesi durumların tedavisinde önemli bir role sahiptir. Ayrıca, bu tür ajanların, diyabetin ilerlemesini ve mikro ve makro-vasküler komplikasyonları azaltma potansiyeline sahiptir [14,15]. Son çalışmalar, α-glukozidaz inhibitörünün postprandiyal hiperglisemiyi iyileştirdiğini ve daha sonra bozulmus glikoz direnci olan hastalarda tip 2 diyabet gelişim riskini azalttığını ortaya koymuştur [15,16]. Akardoz, vogliboz ve miglitol molekülleride dâhil olmak üzere çeşitli AGI'ler klinikte T2DM'yi tedavi etmek için etkili bir şekilde kullanılmıştır [17]. α-Glukozidaz inhibitörleri, hipergliseminin kardiyovasküler komplikasyonlarının önlenmesinde oldukça etkilidir. α–Glukozidaz inhibitörlerinden akarboz, glikoz direnci bozulmuş olan insanlarda kardiyovasküler hastalık riskinde %49'luk [18] ve hipertansiyonda %34'lük [18,22] bir azalma sağlar. Bir diğer α -glukozidaz inhibitörlerinden olan genistein izoflavonoid ailesine aittir [23] ve soya proteinine en fazla ilgi duyan izoflavondur [24]. Calışmaların çoğu, genisteinin bir tirozin kinaz inhibitörü olarak farmakolojik aktivitelerine, kanser ve kardiyovasküler hastalıklara karşı kemoprotektan aktivitelerinin yanı sıra fitoöstrojen aktivitesine odaklanmıştır. Son zamanlarda, Lee ve arkadaşları genisteinin güçlü bir α glukozidaz inhibitörü olabileceğini bildirmişlerdir [25].

Bağırsaktaki α -glukozidaz kompleks karbonhidratların son glikoz kalıntılarını ayırır ve glikozun lüminal konsantrasyonunu arttırır. Bu artış α -glukozidaz inhibitörleri (AGI) tarafından engellenir ve bu nedenle postprandiyal hiperglisemiyi düşürmek için tercih edilen bir tedavi şeklidir. AGI'ler, taşıyıcı ribo nükleik asit (Messenger Ribonucleic acid) (mRNA), sodyum bağımlı glikoz taşıyıcıları (Na⁺ glucose cotransporter) (SGLT1) ve glikoz taşıyıcıları 2 (glucose transporter 2) (GLUT2)'dir [26] proteinlerini etkilemediğinden lüminal şeker konsantrasyonları üzerindeki etkisiyle bağırsaktaki şekerin taşınmasını düzenlerler [18]. İnsüline bağımlı olmayan diyabet hastalığın tedavisinde kullanılan α -glukozidaz inhibitörleri (AGI'ler) antidiyabetik ilaç pazarının büyük bir kısmını temsil eder [18]. Fakat ticari olarak sadece birkaç AGI mevcuttur ve gösterdikleri yan etkilerden dolayı ihtiyacı karsılayamamaktadır. Bu nedenle, yüksek afiniteli glukozidaz inhibitörlerinin dizaynı ve sentezi büyük önem taşımaktadır. Bugüne kadar, vanadil (IV) iyonları ile sıçan adipositlerinde glikoz oksidasyonunun insülin benzeri uyarılması [27], antidiyabetik vanadyum (IV) ve çinko (II) kompleksleri [28], çinkonun adipositler üzerine insülin benzeri etkisi [29], bakır komplekslerinin kronik hastalıkların tedavisinde fizyolojik bir yaklaşım sunması [30] ve ek krom alımının arttırılması ile tip 2 diyabetli bireylerde glikoz ve insülin değişkenlerini iyileştirmesi [31] gibi metal içeren farklı calışmalar literatürde yer almaktadır. Ayrıca, sıçan adipositlerinden serbest yağ asidi (FFA) salınımı için inhibisyon değerlerinin insülinomimetik aktivite çalışmaları, pikolinik asit ve türevlerini içeren farklı metal kompleksleri VO(pa)₂ [32-35], VO(6mpa)₂ [32-34], VO(3-mpa)₂, VO(5-ipa)₂ [34], Cr(pa)₃, Mn(pa)₂, Mn(pa)₃, Fe(pa)₂, Fe(pa)₃, Co(pa)₂, Ni(pa)₂, Cu(pa)₂ [35] ve Zn(pa)₂ [32,35], Zn(3-mpa)₂, Zn(6-mpa)₂ [32] için yapılmıştır. Son olarak, α -glukosidaz enzim aktivitesine karşı pikolinat (pa) ve türevlerini içeren çeşitli metal komplekslerin IC₅₀ değerleri Cu(pa)₂, Zn(pa)₂, VO(pa)₂ [36] ve Zn(6mpa-ma)₂SO₄ [37] için rapor edilmiştir.

Literatürde indol, pirolidin, piperidin gibi azot atomu içeren hetero–halkalı çeşitli moleküllerin α –glukozidaz enzimini inhibe ederek T2DM'deki hiperglisemi tedavisinde kullanıldığı belirtilmektedir (Şekil 2.1.) [20]. Ancak, bugüne kadar 6–metilpiridin–2–karboksilik asit içeren karışık ligandlı farklı metal komplekslerinin sentezi ve bunların α –glukozidaz enzim aktivitesi çalışmaları yapılmamıştır.

Şekil 2.1. Bilinen bazı heterohalkalı a-glukozidaz inhibitörleri [20].

2.2. Pikolinik Asit ve Türevlerinin Kristal Yapı Çalışmaları

Azot içeren ligandların metal kompleksleri, vücudumuzdaki bazı enzim-substrat kompleksleri ile yapısal, spektroskopik ve katalitik olarak benzer özellik taşıdıkları için koordinasyon kimyası alanında sıkça kullanılmaktadır [1-6]. Pikolinik asit gibi piridin türevi ligandların ve koordinasyon komplekslerini de içeren farklı yapıların sentezlenmesi ve bu ligandların kataliz, doğrusal olmayan optik, lüminesans, iyon değişimi gibi fiziko-kimyasal özelliklerinin araştırılmasının malzeme kimyasındaki birçok uygulamalarından dolayı önem taşımaktadır [7-11].

Kukovec ve arkadaşları [38] 3– ve 6–metilpikolinik asit içeren Co komplekslerinin sentezini, yapısal, spektroskopik ve termal karakterizasyonunu çalışmıştır. Çalışmada Co(II) iyonuna ikişer dişli olarak koordine olan üç adet 3–metilpiridin–2–karboksilat ligandları birbirlerine göre dik konumlara yerleşerek bozulmuş oktahedral geometrili simetri ortaya koymuşlardır (Şekil 2.2.a). Benzer şekilde iki adet 6–metilpiridin–2–karboksilat ligandları ve iki su molekülünün Co(II) iyonuna

koordine olmasıyla bozulmuş oktahedral geometrili kristal yapı (Şekil 2.2.b) elde edilmiştir.

Şekil 2.2. (a) [Co(3-mpa)₃] (b) [Co(6-mpa)₂(H₂O)₂][•]2H₂O komplekslerin kristal yapıları [38].

March ve arkadaşları [39] pikolinik asit türevleri ile Co(II) komplekslerin sentezini, deneysel yapı ve spektroskopik özelliklerini incelemiştir. Elde edilen komplekste iki adet 6-metilpiridin–2-karboksiat ve iki su molekülünün Co(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kristal yapı (Şekil 2.3.) elde edilmiştir.

Şekil 2.3. [Co(6-mpa)₂(H₂O)₂] kompleksin kristal yapısı [39].

Bir bileşiğin birden fazla kristallenme kabiliyeti olarak tanımlanan polimorfizm bilimsel çalışmalarda ilgi çekmektedir. Polimorfizm modifikasyonlarının kristal yapıları, moleküler konformasyon üzerine kristal çevresinin etkisi ve kristallerde moleküler arası etkileşimler üzerine önemli bilgiler sağlar. Bu yüzden yapılan çalışma makul kristal dizaynı için çok önemlidir [40]. Polimorfizm'in farklı yapıları erime noktası, çözünürlük, yoğunluk ve iletkenlik gibi farklı fiziksel özelliklerle sıklıkla ilişkilendirilir. Yapı aynı kaldığı için onlar sadece kristal paketlemedeki veya moleküler konformasyondaki farklar üzerine bağlı olan yapı–özellik ilişkilerinin çalışmasını izin verir [41-43]. 2008 yılında Kukovec ve arkadaşları tarafından Şekil 2.4.'te gösterilen iki yeni yapay polimorfizm'in {[Ni(6-mpa)₂(H₂O)₂]·2H₂O (a) ve [Ni(6-mpa)₂(H₂O)₂] (b)} sentezi ve yapısal karakterizasyonu rapor edilmiştir [40]. Bu kompleks moleküler yapılarda Ni(II) iyonu, yapay polimorfizm için beklenildiği gibi çok benzer bağ uzunlukları ve açılarıyla çarpık bir oktahedral geometri sergilemektedir (Şekil 2.4.).

Şekil 2.4. (a) [Ni(6-mpa)₂(H₂O)₂][•]2H₂O (b) [Ni(6-mpa)₂(H₂O)₂][•]nin kristal yapıları [40].

Benzer şekilde, 2008 yılında Kukovec ve arkadaşları [44] tarafından [Cu(6-mpa)₂(H₂O)] (a), [Cu(6-mpa)₂(py)] (b) ve [Cu(6-Brpa)₂(H₂O)] (c) olarak adlandırılan 6-metilpikolinik asit (6-mpaH) ve 6-bromopikolinik asit'in (6-BrpaH) Cu(II) kompleksleri (Şekil 2.5.) sentezlenmiş ve spektroskopik yöntemlerle karakterize

edilmiştir. Şekil 2.5.'te görüldüğü gibi yapı (a)'da Cu(II) iyonu, N,O-şelat modlu iki dişli bağlanarak beş üyeli şelat halka oluşturan metilpikolinat ligandları ve bir su molekülü ile koordine olur.

Şekil 2.5. (a) [Cu(6-mpa)₂(H₂O)] (b) [Cu(6-mpa)₂(py)] (c) [Cu(6-Brpa)₂(H₂O)] komplekslerin kristal yapıları [44].

García ve arkadaşları 2016 yılında 6-metilpikolinik asit içeren Cu(II) kompleksini [Cu(6-mpa)₂(H₂O)].H₂O sentezlemiş ve yapısal özelliklerini incelemiştir (Şekil 2.6.). Elde edilen kompleks bozulmuş trigonal bipiramidal koordinasyon geometrisine sahiptir [45].

Şekil 2.6. [Cu(6-mpa)₂(H₂O)] H₂O kompleksin kristal yapısı [45].

2013 yılında Kukovec ve arkadaşları 3-metilpikolinik asit içeren Ni(II) ve Cu(II) komplekslerinin sentezini, kristal yapı analizini, IR spektroskopik, termal ve DFT çalışmasını yapmışlardır. $[Ni(3-mpa)_2(H_2O)_2]$ ve $[Cu(3-mpa)_2(H_2O)]$ ·H₂O kompleksleri sulu çözeltide 3-metilpikolinik asit ve uygun metal tuzların reaksiyonu ile hazırlandığı bildirilmiştir. [Cu(3-mpa)₂(H₂O)]·H₂O (a)'da koordine olan su molekülü 3-pikolin ile yer değiştirdiği ve [Cu(3-mpa)₂(3-pa)] (b)'nin oluşumuna yol açtığı gösterilmiştir. Su molekülünün 3-pikolin ile substitute olması Cu(II) iyonunun koordinasyon geometrisini (her iki yapı (a) ve (b) kare-piramit) etkilemediği belirtilmiştir (Şekil 2.7.). Ayrıca (a) (b) kristal yapıları için ve DFT//B3LYP/6-311G(d,p) metodu ile hesaplanan geometrik parametrelerle deneysel parametreler arasında iyi uyum olduğu saptanmıştır. Bu metodun aynı zamanda çoğu deneysel karakteristik titreşim modların işaretlemesinde karşılaştırabilir sonuçlar verdiği vurgulanmıştır [46].

Şekil 2.7. (a) [Cu(3-mpa)₂(H₂O)]·H₂O (b) [Cu(3-mpa)₂(3-pa)] komplekslerin kristal yapıları [46].

2013 yılında Furić ve arkadaşları daha önce sentezlenen ve X–ışını kırınımı ile yapı analizi yapılan 3–hidroksipikolinik asitli (3–hidroksipiridin–2–karboksilik asit, 3-OHpicH) iki Co(II) komplekslerinin {trans-[Co(3-OHpic)₂(py)₂] ve cis-[Co(3-OHpic)₂(4-pic)₂] (py= piridin; 4-pic= 4–pikolin veya 4–metilpiridin)} titreşim özellikleri deneysel olarak IR ve Raman spektrumlarıyla ve bu spektrumların karşılığını DFT//B3LYP/6–311G(d,p) metodu ile hesaplamıştır [47,48]. DFT hesaplamalarının titreşimsel spektroskopik çalışmadaki önemi temel titreşim modlarının çok kesin bir şekilde belirlenmesine izin vermesi, deneysel ve kuramsal sonuçların iyi bir zeminde karşılaştırılması açısından büyük önem taşıdığı bir kez daha vurgulanmıştır. Ayrıca çalışmada deneysel ve kuramsal sonuçların karşılaştırılmasında spektrumların tamamında tek bir uyum çarpanı yerine 500–1650 cm⁻¹ aralığı için lineer uyum faktörü ve 500 cm⁻¹ üzerindeki tüm aralık için parabolik bir uyum faktörü ile yaklaşım yapılması gerektiği vurgulanmıştır.

2004 yılında Pons ve arkadaşları [49] tarafından 6-metil-2-piridinkarboksilik asit ile Zn(II) kompleksi sentezlenerek yapısal ve spektroskopik özellikleri incelenmiştir. Bu çalışmada Zn(II) iyonu iki adet 6-metil-2-piridinkarboksilik asit ligandı ve bir su molekülünün koordine olmasıyla trigonal bipiramidal ve kare piramit arasında kristal yapı geometrisi (Şekil 2.8.) elde edilmiştir.

Şekil 2.8. [Zn(6-mpa)₂(H₂O)]·H₂O kompleksin kristal yapısı [49].

Ayrıca, farklı pikolinat ligandlarının özellikle krom, bakır, çinko ve vanadyum komplekslerinin insülinomimetik aktivite çalışmaları rapor edilmiştir [28,35,50-54]. 2002 yılında Yoshikawa ve arkadaşları [32] yaptığı çalışmada, epinefrin varlığında izole edilmiş sıçan adipositlerinden serbest yağ asidi (FFA) salınımının engellenmesinin *in vitro* değerlendirilmesiyle, Zn(pa)₂, Zn(6-mpa)₂ (Şekil 2.9.) ve Zn(3-mpa)₂ komplekslerinin insülinomimetik aktivite değerlerini VOSO₄ ve ZnSO₄'ün değerlerinden daha yüksek olarak bulmuşlardır. İncelenen kompleksler arasında en yüksek *in vitro* insülinomimetik aktivite sergileyen Zn(6-mpa)₂ kompleksidir. Sonuç olarak, diyabetin düzelmesi oral glikoz tolerans testi ile teyit edilmiştir [32].

Şekil 2.9. İnsülinomimetik özellik gösteren Zn(6-mpa)₂ kompleksi [32].

2.3. Moleküler Modelleme ve Yapı Analizi

Günümüzde bilgisayar sistemlerindeki hızla artan gelişmeler, hiçbir deneysel veriye ihtiyaç duymayan yeni yoğunluk fonksiyon teorisi (DFT) modellerinin ortaya konmasına olanak sağlamaktadır. Bu durumda ortaya çıkan yeni modeller malzemelerin yapısal, titreşimsel, elektronik ve doğrusal olmayan optik özellikleri gibi farklı özelliklerinin araştırılmasında ve deneysel sonuçlarla mükemmele varan uyumlar vermesi açısından son derece önemlidir. Bununla birlikte deneysel çalışma yapmanın zor olduğu durumlarda taban ve uyarılmış durum özellikleri bu metotlarla belirlenerek, malzeme bilimi ve fiziği gibi farklı alanlardaki bilimlerin önemine katkı sağlamaktadır.

X–ışını kırınım yöntemleri ile tek kristallerin incelenmesi geçmiş yıllarda büyük bir gelişme göstermiştir. Ayrıca, geçiş metal komplekslerini içeren supramoleküler kristallerin disiplinler arası bir araştırma alanı haline gelmesine yardımcı olmuştur [55]. Bu sayede, geçiş metal kompleksleri, atom ve molekül fiziği, kimya, malzeme mühendisliği, tıp ve biyokimya gibi önemli uygulama alanlarında kapsamlı araştırmalara konu olmuşlardır [56-60]. Bu komplekslerin dizaynı ve sentezlenmesi,

ilgi çekici yapısal motifleri ve katalizi, gaz absorbsiyonu, manyetizma ve doğrusal olmayan optik alanlarındaki önemli uygulamaları sayesinde geçmiş yıllarda kayda değer bir ilgi çekmiştir [61-69]. Son zamanlarda da yapılan deneysel ve kuramsal çalışmalar, yeni sentezlenen moleküler yapıların karakterizasyonunu doğrulamak için birlikte kullanılmaktadır.

BÖLÜM 3. GENEL BİLGİLER

3.1. X–Işını Kırınımı

Günümüzde görüntüleme yöntemlerinin temelini oluşturan X–ışınlarını ilk olarak 1895'te Alman bilim adamı Wilhelm Roentgen tarafından keşfedilmiştir. X–ışınları yüksek enerjili elektronların yavaşlatılması veya atomların iç yörüngelerindeki elektron geçişleri sonucu meydana gelen elektromanyetik dalgalardır. X–ışınlarının elektromanyetik enerji dalgaları olduğu 1912'de kanıtlanmıştır [70]. İlk olarak X– ışınları ile kristallerin incelenmesi Alman fizikçi Max von Laue tarafından 1912 yılında gerçekleştirilmiştir. X–ışını kırınımı deneyleri devam ederken iki İngiliz fizikçi W. H. Bragg ve W. L. Bragg kırınım olayının gerçekleşebilmesi için gerekli koşulları Bragg Kanunu ile açıklamışlardır [71].

Şekil 3.1. Bragg saçılması [71].

Şekil 3.1.'de görüldüğü gibi paralel örgü düzlemleri arasındaki uzaklığın d ve bu düzlemler üzerine düşen dalga demetinin düzlemler ile yaptığı açı θ olarak düşünülürse, her düzlem gelen ışının bir kısmını yansıtacaktır. Bu farklı düzlemlerden yansıyan X–ışınlarının girişimleri sonucu kırınım olayı gerçekleşir. Yapıcı bir girişimin gerçekleşmesi için ardışık düzlemlerden yansıyan ışınlar arasındaki yol farkının dalga boyunun tam katları olması gerektiğinden Bragg yasası ile açıklanabilir.

$$n\lambda = 2dsin\theta \tag{3.1}$$

Bragg yansımasının gerçekleşebilmesi için $\lambda \leq 2d$ şartı sağlanmalıdır. [72].

Kristal yapılar a, b, c, α , β , γ birim hücre parametreleri belirlenerek tanımlanır. Ayrıca, atomların konumları bağ uzunlukları, kristal yüzlerinin indislenmesi, kristalin mükemmelliği de tespit edilebilir. X–ışını kırınımı ile kristal yapı tespit edilirken spektroskopik yöntemlerle atomların veya moleküllerin yerleri belirlenebilir [73].

3.2. Spektroskopik Yöntemler

Spektroskopi, madde ile ışın arasındaki etkileşimler ve bu etkileşim sonucu maddenin atomik veya moleküler özelliklerindeki değişmeleri inceleyen bilim dalıdır. Spektroskopik yöntemlerde maddenin fiziksel ve kimyasal özellikleri incelenebilir. Ayrıca, maddenin nitel ya da nicel analizleri yapılabilir. Elektronların bir enerji düzeyinden diğerine geçişleri incelemek için "Atomik Spektroskopi", atomların molekül içindeki kararlılığını ve moleküller arası etkileşimleri incelemek için "Moleküler Spektroskopi"'den yararlanılır. Elektromanyetik ışınımın enerjisinin şiddetine bağlı olarak değişik spektrum bölgelerine ayrılır.

Kütle spektroskopisi (MS), katı, sıvı ve gaz halindeki maddelerin atom veya molekül ağırlıklarının saptanmasında, moleküler yapılarının incelenmesinde, inorganik, organik ve biyolojik moleküler yapıların aydınlatılmasında kullanılan etkin bir yöntemdir. Kütle spektrometresi (MS) ilk olarak Wien tarafından 1898 yılında elde edilmiştir. 1905 yılında ise Thompson kararlı izotopların bulunduğunu göstermek için farklı pozitif iyonların kütle/yük (m/z) oranına göre farklı parabolik yörüngelerde olduğunu göstermiştir. 1957 yılında Holmes ve Morrel tarafından gaz kromatografisi (GC) ile entegre edilmiştir [74]. Kütle spektrometresi yönteminde, atom veya moleküllerden gaz fazında iyonlar oluşturulur ve bu iyonlar kütlelerine göre birbirinden ayrılarak kaydedilir. İyonların bağıl miktarlarının (m/z) oranlarına göre çizilmiş grafiğine kütle spektrumu denir. Kütle spektrometresi yapısı belli maddeleri belirtmek ve tayin etmek amacıyla kullanılabildiği gibi, yapısı belli olmayan yeni maddelerin yapısını aydınlatmak amacıyla da kullanılabilir [75].

Kırmızı altı spektroskopisi (IR), elektromanyetik spektrumda görünür bölge ile mikrodalga bölgeleri arasında yer alır. Kırmızı altı spektroskopisi dalga sayısına bağlı olarak yakın IR (12800–4000 cm⁻¹), orta IR (4000–200 cm⁻¹) ve uzak (200–10 cm⁻¹) olmak üzere üç bölgeye ayrılır [76]. Fonksiyonel gruplar hakkında en fazla bilgi IR spektroskopisinden elde edildiğinden "fonksiyonel grup spektroskopisi" olarakta adlandırılır. IR spektrumlarında karakteristik soğurulmaların gözlendiği 4000–1500 cm⁻¹ bölgesine fonksiyonel grup bölgesi denir. 1500–400 cm⁻¹ bölgesi molekülün tüm gruplarının titreşimlerini içeren parmak izi bölgesi denir [71,77]. Kırmızı altı spektroskopisi organik ve inorganik bileşiklerin analizinde kullanılan en genel spektroskopi yöntemlerindendir. Moleküllerin bir titreşim ve dönme seviyeleri arasındaki geçişleriyle sağlanan enerjideki çeşitli değişimlerden kaynaklandığını varsayılarak açıklanabilir. Bu spektroskopi yönteminin temel amacı, herhangi bir bileşiğin yapısı hakkında kimyasal fonksiyonel grupların belirlenmesi ve analiz edilmesidir [78,79]. Klasik teoriye göre bir titreşimin aktif olabilmesi için o molekülün elektriksel dipol momentindeki değişimin sıfırdan farklı olmalıdır [80].

$$\left(\frac{\partial \vec{\mu}}{\partial Q_k}\right) \neq 0 \tag{3.2}$$

Bir molekülün temel titreşim modları, bütün atomlarının aynı faz ve frekansta fakat farklı genlikte yaptıkları basit harmonik hareket titreşimleridir. N atomlu bir molekülün 3N serbestlik derecesi vardır. Lineer olmayan bir molekülün titreşim serbestlik dereceleri sayısı 3N–6'dır. Molekül lineer olması durumunda 3N–5 temel titreşim serbestlik derecesi elde edilir [79]. IR ışınları moleküllerin titreşim ve dönme enerjilerini uyarır ve bu düzeylerin uyarılması molekülün geometrisine, bağların kuvvetine ve bağda bulunan atomların büyüklüklerine göre farklılık gösterir [77]. Molekül titreşim hareketleri gerilme ve bükülme olmak üzere iki türü vardır. Gerilme titreşimi ile bağ ekseni doğrultusunda uzama ve kısalma hareketi incelenir. Bükülme titreşimi ise bağ açılarındaki değişme ve atom gruplarının molekül içindeki hareketleridir. Bükülme hareketleri düzlem içi ve düzlem dışı açı bükülmeleri olmak üzere iki grupta toplanabilir [81].

Mor ötesi spektroskopisi, elektromanyetik spektrumda X–ışınları ile görünür bölge arasında yer alır. Mor ötesi ve görünür bölge (UV–Vis) spektroskopisi çok sayıda organik ve inorganik bileşiklerin analizinde kullanılmaktadır. Bu spektroskopide maddenin soğurduğu enerji, yapısında bulunan bir elektronu bir üst enerji seviyesine çıkardığından dolayı UV–Vis spektroskopisine elektronik spektroskopisi de denir [79]. Moleküllerde bulunan elektronlar bulundukları orbitallere göre farklı çekim kuvvetleri etkisi altında kalır. Atom gruplarında soğurma yapan değerlik elektronlarına göre elektronik geçişler, d–d geçişleri ve yük aktarım geçişleri olmak üzere üç tip geçiş yapar.

3.3. Kuramsal Hesaplama Yöntemleri

Günümüzde bilgisayar sistemlerindeki hızla artan gelişmeler, hiçbir deneysel veriye ihtiyaç duymayan yeni yoğunluk fonksiyon teorisi (DFT) modellerinin ortaya konmasına olanak sağlamaktadır. Bu durumda ortaya çıkan yeni modeller malzemelerin yapısal, elektronik, titreşimsel ve doğrusal olmayan optik özellikleri gibi farklı özelliklerinin araştırılmasında ve deneysel sonuçlarla mükemmele varan uyumlar vermesi açısından son derece önemlidir. Bununla birlikte deneysel çalışma yapmanın zor olduğu durumlarda taban ve uyarılmış durum özellikleri bu metotlarla belirlenerek, atom ve molekül fiziği, katıhal fiziği ve malzeme bilimi gibi farklı alanlardaki bilimlerin kullanımına sunulabilir. Molekülün farklı enerji düzeyleri arasındaki geçişler, molekül ile etkileşen elektromanyetik dalganın enerjisine bağlı olarak değişik spektrum bölgelerine ayrılır. Serbest bir molekülün toplam enerjisi, Born–Oppenheimer yaklaşımına göre dönme, titreşim ve elektronik enerjilerinin toplamı olarak ifade edilir [82].

$$E = E_{d\"onme} + E_{tit} + E_{e}$$

Kimyasal sonuçları deneysel sonuçlarla ilişkilendirmek ve deneysel ölçümlerden doğrudan elde edilebilen nicelikleri hesaplamak bugünkü bilim ve teknolojinin gelişmesinde son derece önemlidir. Schrödinger eşitliğinin çözümlerinden elde edilen enerjiler ve dalga fonksiyonları bu amaç için yeterli değildir. Bu durum için, atomik ve moleküler sistemlerle ilgili karakterize edilen daha çok nicelik hesaplamalar gereklidir. Özellikle, yapının kuramsal olarak hesaplanması, spektroskopik nicelikler, dipol moment, kutuplanabilirlik ve yüksek mertebeli kutuplanabilirlik özellikleri gibi deneyle bağlantı kurabilmek ve aynı zamanda teori ve deneysel sonuçlar ile arasında uygun bağlantı oluşturmayı başlatmak için önemlidir. Kuramsal yaklaşımın avantajı, detaylı sentezleme ve deneysel karakterizasyonun yapılması için yapı ve özellik ilişkilerinin sorgulanmasına izin vermesi ve aynı zamanda, ölçümler için yapılıp yapılamayacağı bilgisini içermesi açısında ayrı bir önem taşımaktadır. Bununla

(3.3)

birlikte moleküler geometrinin belirgin olmadığı durumlar için de bazı zorlayıcı yaklaşımlar makul yeterliliğe cevap verebilmektedir [83]. Çeşitli atomik ve moleküler özellikleri bilinen ve etkin hesaplaması, Schrödinger eşitliğinin "basit" çözümünün ötesine giden gerekli tekniklerdir. Bununla birlikte kuramsal konular, hesaplama etkinliğini kuantum kimyasında adreslenebilen durumları gösteren çok önemli konulardır. Elektronik durumu verilen bir molekülün hesaba alınması için ilk öncelikler arasında enerji farkları gelmektedir. Bunlar, reaksiyon enerjileri, atomik enerjileri, ayrışma enerjileri, çeşitli konformasyonları veya izomerleri arasındaki enerji farklarıdır. Daha sonra verilen bir elektronik durum için moleküler özellikler kendine özgüdür. Denge yapısı, dipol moment, kutuplanabilirlik, titreşim frekansları, manyetizebilite ve NMR kimyasal kaymalar gibi özellikleri içerir. Son olarak farklı elektronik seviyeler arasındaki geçişler, elektronik uyarılma enerjileri, bir ve iki foton geçiş şiddetleri (strengths), ışıma süreleri, iyonizasyon potansiyelleri, elektron ilgileri gibi özellikleri karakterize eder (Tablo 3.1.) [84,85].

Enerji Türevi	Gözlenen Özellik
dE	Dipol moment
$d\varepsilon_i$	
$d^2 E$	Kutuplanabilirlik
$d\varepsilon_{\alpha}d\varepsilon_{\beta}$	
d^3E	Birinci mertebeden yüksek kutuplanabilirlik
$d\varepsilon_{\alpha}d\varepsilon_{\beta}d\varepsilon_{\gamma}$	
dE	Çekirdek üzerine kuvvetler, potansiyel yüzey üzerindeki sabit noktalar, denge
$\overline{dx_i}$	ve geçiş durumu yapıları
d^2E	Harmonik kuvvet sabitleri; harmonik titreşimler frekansı
$\overline{dx_i dx_j}$	
d^2E	Dipol türevleri; harmonik yaklaşım içinde infrared şiddetleri
$dx_i d\varepsilon_{\alpha}$	
d^3E	Kutuplanabilirlik türevi; Raman şiddetleri
$dx_i d\varepsilon_{\alpha} d\varepsilon_{\beta}$	

Tablo 3.1. Enerji ifadelerinden hesaplanan bazı moleküler özellikler [85].

3.3.1. Yoğunluk fonksiyonu teorisi (DFT: Density Functional Theory)

Yoğunluk fonksiyonu teorisi (DFT) moleküler sistemin temel hal özelliklerini incelemede kullanılan geleneksel yaklaşımlardan yarı-deneysel ve Hartree–Fock (HF) metotlarına göre alternatif olarak ortaya çıkmıştır. Bu teoriye göre temel haldeki elektronik enerji tamamen elektron olasılık yoğunluğu (ρ) ile belirlenir ve bu yoğunluğa bağlı enerji $E[\rho]$ ile tanımlanır. Teori ilk kez 1964 yılında Hohenberg ve Kohn tarafından yapılarak sistemin taban durum özellikleri tanımlanmıştır [86]. Bu teorinin pratik uygulamasını Hartree–Fock'a benzer bir yapıda formüle eden Kohn ve Sham tarafından geliştirildi [87]. Bu formülasyonda matematiksel olarak HF orbitallerine benzer şekilde elektron yoğunluğu taban fonksiyonlarının çizgisel birleşimi olarak ifade edildi. Olasılık yoğunluğu,

$$\rho(\vec{r}) = \sum_{i=1}^{n} |\psi_i(\vec{r})|^2$$
(3.4)

denkelmi ile verilir. Kohn ve Sham tarafından gösterildiği gibi n elektronlu bir sistemin *E* taban durum elektronik enerjisi,

$$E[\rho] = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \int \psi_i^*(\vec{r}_1) \nabla_1^2 \psi_i(\vec{r}_1) d\vec{r}_1 - \sum_{l=1}^N \int \frac{Z_l e^2}{4\pi\varepsilon_0 r_{l1}} \rho(\vec{r}_1) d\vec{r}_1 + \frac{1}{2} \int \frac{\rho(\vec{r}_1) \rho(\vec{r}_2) e^2}{4\pi\varepsilon_0 r_{12}} d\vec{r}_1 d\vec{r}_2 + E_{XC}[\rho]$$
(3.5)

ile verilir. Burada birinci terim elektronların kinetik enerjisi, ikinci terim elektron çekirdek arası çekici enerji, üçüncü terim Coulomb etkileşim enerjisi, dördüncü terim ise değiş-tokuş karşılıklı etkileşme enerjisidir. Moleküler sisteme ait tüm elektronların etkileşimlerini dikkate alan DFT'nin diğer hesaplama yöntemleri üzerinde bir üstünlük kurmasını sağlayan nedenlerden biri değiş–tokuş ve karşılıklı etkileşimi hesaba katmasıdır [88]. E_{XC} için yaklaşık bir form elde etmek amacıyla pek çok değişik yaklaşımlar vardır. Yerel yoğunluk yaklaşımında (LDA) E_{XC} ,

$$E_{XC} = \int \rho(\vec{r}) \varepsilon_{XC}[\rho(\vec{r})] d\vec{r}$$
(3.6)

ile verilir. Burada $\varepsilon_{XC}[\rho(\vec{r})]$ sabit yoğunluklu bir elektron gazındaki her bir elektron için değiş–tokuş karşılıklı etkileşim enerjisidir. Elektron orbitalleri için Kohn–Sham eşitlikleri aşağıdaki gibidir.

$$\left\{-\frac{\hbar^2}{2m_e}\nabla_1^2 - \sum_{I=1}^N \frac{Z_I e^2}{4\pi\varepsilon_0 r_{I1}} + \int \frac{\rho(\vec{r_2})e^2}{4\pi\varepsilon_0 r_{12}} d\vec{r_2} + V_{XC}(\vec{r_1})\right\} \psi_i(\vec{r_1}) = \varepsilon_i \psi_i(\vec{r_1}) \quad (3.7)$$

Burada, ε_i Kohn-Sham orbital enerjisi, V_{XC} değiş-tokuş korelasyon enerjisidir ve

$$V_{XC}[\rho] = \frac{\delta E_{XC}[\rho]}{\delta \rho}$$
(3.8)

ile verilir. Eğer E_{XC} bilinirse V_{XC} kolayca hesaplanabilir. Kohn ve Sham eşitlikleri bir öz uyumlu alan şeklinde çözülür. Başlangıçta yük yoğunluğu ρ tahmin edilir. Daha sonra E_{XC} 'nin yoğunluğa bağlılığı için bazı yaklaşımlar kullanılarak bir sonraki durumda *r*'nin bir fonksiyonu olarak V_{XC} hesaplanır. Süreç yoğunluk, değiş—tokuş ve karşılıklı etkileşim enerjisi bir tolerans içinde yakınsayıncaya kadar tekrarlanır, daha sonra elektronik enerji hesaplanır [84,89].

3.3.2. HSEh1PBE Hibrit (karma) yoğunluk fonksiyonu teorisi

DFT, moleküllerin değiş-tokuş ve karşılıklı etkileşim enerjilerinde tam enerji ifadesinin hesabı için hem HF hemde DFT modellerinin enerji ifadelerini toplam elektronik enerji ifadesinde kullanılarak hibrit modeller üretilmiştir.

Değiş-tokuş enerji fonksiyonları: Becke 1988 (B88) [90], Perdew-Wang 1991 (PW91) [91], Perdew-Burke-Ernzerhof (PBE) [92], Tao-Perdew-Staroverov-Scuseria (TPSS) [93], Heyd-Scuseria-Ernzerhof (aynı zamanda HSE olarakta bilinir.) (wPBEh) [94], Perdew-Burke-Ernzerhof'dur (PBE fonksiyonuna bir düzeltmedir) (PBEh) [95]. Karşılıklı etkileşim (korelasyon) enerji fonksiyonları: Vosko-Wilk-Nusair (VWN) [96], Lee-Yang-Parr (LYP) [97], Perdew-Wang 1991 (PW91) [91], Tao-Perdew-Staroverov-Scuseria (TPSS) olarak sıralanabilir [93]. Karma modellerden bazıları ise B3LYP, B3PW91, PBE1PBE, HSEh1PBE ve CAM-B3LYP'dir.

Heyd–Scuseria–Ernzerhof (HSE) metodu son zamanlarda değiş–tokuş ve karşılıklı etkileşme enerjisi E_{XC} 'yi daha doğru hesaplayabilmek için geliştirilmiş hibrit (karma) yöntemlerden biridir ve HSEh1PBE literatürde HSE06 olarak bilinir [97-101]. PBE; Perdew, Bruke ve Ernzerhof'un fonksiyonudur [101]. HSE, HF'nin uzun menzil (LR) kısmını perdelemek için perdelenmiş Coulomb potansiyelini yalnızca değiş–tokuş etkileşimine uygulamayı önermektedir. Buna göre; elektronların Coulomb itmesi gibi, Hamiltonyen'in diğer tüm Coulomb etkileşimleri perdelenmeyecektir. Coulomb operatörü eşitliğin sağ tarafındaki ilk terim kısa menzil (Short–Range, SR) ve ikinci terim uzun menzil (Long–Range, LR) olmak üzere,

$$\frac{1}{r} = \frac{erfc(\omega r)}{r} + \frac{erf(\omega r)}{r}$$
(3.9)

ile verilir. Burada $erfc(\omega r) = 1 - erf(\omega r)$ tamamlayıcı hata fonksiyonudur. Denklemde $\omega = 0$ için LR terimi sıfır olur ve SR terimi tüm Coulomb operatörüne eşit olur, $\omega \rightarrow \infty$ için ise tersi olur. HSE fonksiyonunun değiş-tokuş etkileşim enerji ifadesi,

$$E_{XC}^{HSE} = a E_X^{HF,SR}(\omega) + (1-a) E_X^{\omega PBE,SR}(\omega) + E_X^{\omega PBE,LR}(\omega) + E_C^{PBE}$$
(3.10)

şeklinde verilmektedir. Burada $E_X^{HF,SR}$ kısa menzil HF değiş–tokuş enerjisi, $E_X^{\omega PBE,SR}$ ve $E_X^{\omega PBE,LR}$ PBE değiş–tokuş fonksiyonun kısa ve uzun menzil bileşenleri, ω ayırma parametresidir ve *a* değeri 1/4 olan sabit parametredir [98].

3.3.3. Temel setler

Temel set, atomik yörüngelerin matematiksel olarak ifade edilmesidir. Kuantum mekaniksel yöntemler kullanılarak moleküler yapı hesaplamalarının başarısı kullanılan yöntem kadar doğru setin seçimine de bağlıdır. İyi bir temel set moleküle ait yörüngeleri iyi tanımlamalı ve matematiksel işlemlerde kolaylık sağlamalıdır. Atom ve moleküler sistemler için en yaygın kullanılan temel setler Slater tipi orbitaller (STO) ve Gaussian tipi orbitallerdir (GTO). STO'lar genel olarak $e^{-\xi r}$ ile karakterize edilir. Özellikle atom ve küçük moleküllerde çok iyi sonuç verirken üç veya daha fazla atomlu moleküller için HF SCF hesaplamaları zor ve pratik değildir. Bu problemi çözmek için Gaussian tipi orbitaller oluşturulmuştur. GTO'lar $e^{-\xi r^2}$ ile karakterize edildiklerinden dolayı elektron itme integrallerinin kolay bir şekilde hesaplanmasını sağlar. Kartezyen Gaussian fonksiyonları,

$$\theta(\vec{r}_1 - \vec{r}_c) = (x_1 - x_c)^i (y_1 - y_c)^j (z_1 - z_c)^k e^{-a|\vec{r}_1 - \vec{r}_c|^2}$$
(3.11)

şeklinde verilir. Burada r kartezyen koordinatları gösterir, i, j, k negatif olmayan tam sayılar ve a pozitif üsteldir. i + j + k = 0 olduğu zaman s-tipi Gaussian orbitali, i + j + k = 1 olduğunda p-tipi Gaussian orbitali ve i + j + k = 2 durumunda d-tipi Gaussian orbitali denir. Farklı merkezli iki Gaussian'ın çarpımı olan GTO'ların en önemli avantajı iki merkez arasında bir noktada merkezlenmiş tek bir Gaussian ile ifade edilir olmasıdır. Yani dört merkezli elektron integralleri iki merkezli integrallere indirgenerek ifade edilebilmektedir [102].

Atomik orbitallerde yaygın olarak kullanılan temel setlerden ilki minimal temel setleri, GTO'ların çizgisel birleşimi kullanılarak elde edilen basit fonksiyonlara denir ve STO–nG ile gösterilir [103]. İkincisi split valans (bölünmüş değerlik) temel setleri, en küçük temel setin yetersizliği, İkili–zeta (DZ) ve Üçlü–zeta (TZ) temel setlerin hesaplama gereksinimi arasında bir uzlaşmadır. Üçüncüsü kutuplanmış temel setleri, atom orbitallerinin kutuplanmış karakterini belirlemek için bölünmüş orbitallerin açısal momentum kuantum sayısı yüksek Gaussian fonksiyonları eklenerek oluşturulur. Bu fonksiyonlar karbon atomları için d, hidrojen atomları için p ve geçiş metalleri için f sembolleri ile temsil edilir [103]. Dördüncüsü difüz temel setleri, bu temel setine sahip sistemlerde elektronları çekirdekten çok uzak olan sistemler, çiftlenmemiş elektronlara sahip moleküller ve eksi yüke sahip diğer sistemlerde önemlidir. Difüz fonksiyonların varlığı "+" işareti ile belirlenir. Temel setine bir + eklenmiş olduğunda bütün ağır atomlara, iki ++ eklenmiş olduğunda ise hidrojen atomlarına difüz fonksiyonlarının eklendiğini gösterir [103].

3.3.4. Kutuplu süreklilik modeli (Polarizable Continuum Model, PCM)

PCM yöntemi, Miertus ve Tomasi tarafından önerilmiş ve yapılan hesaplamalara çözücü etkisini dâhil etmek için kullanılır [104]. Bu yönteme göre çözünen molekül için moleküler yüzey tanımlanır ve çözücü ile etkileşimi hesaplanır. Yoğunluk fonksiyon teorisinde moleküler sistemin toplam enerjisi,

$$E[\rho^{el}] = \int h(r)\rho^{el}(r)dr + \int V^{ext}(r)\rho^{el}(r)dr + \frac{1}{2} \iint \frac{\rho^{el}(r)\rho^{el}(r')}{|r-r'|} dr dr' + E_{XC}[\rho^{el}] + U_{NN}$$
(3.12)

şeklinde yazılabilir. Burada h(r) kinetik ve çekirdek çekim terimlerini içerir, $V^{ext}(r)$ dış potansiyel, U_{NN} çekirdek itme enerjisi ve $E_{XC}[\rho^{el}]$ değiş-tokuş ve karşılıklı etkileşim enerjisidir. Çözünenin serbest enerjisi aşağıdaki gibi yazılır.

$$G = E[\rho^{el}] + G_i[\rho^{el}]$$
(3.13)

Burada G_i çözünenin elektron yoğunluğuna bağlıdır. Gaz fazında ve çözücüde molekül için Kohn–Sham (KS) operatörleri yukarıdaki iki eşitlikten bulunur.

$$\hat{F}_{KS}^{0}(r) = h(r) + V^{ext}(r) + \int \frac{\rho^{el}(r')}{|r-r'|} dr' + V_{XC}[\rho^{el}](r)$$
(3.14)

$$\hat{F}_{KS}(r) = \hat{F}_{KS}^0(r) + V^{PCM}(r)$$
(3.15)

Burada PCM operatörü şu şekilde yazılabilir,

$$V^{PCM}(r) = \iint \phi(s) \mathcal{Q}(\varepsilon; s, s') \frac{1}{|s'-r|} ds ds'$$
(3.16)

ve

$$V_{XC}[\rho^{el}] = \frac{\delta E_{XC}}{\delta \rho^{el}(r)} \tag{3.17}$$

KS operatörünün $\psi_i(r)$ özverktörleri elektronik yoğunluğu bulmak için kullanılabilir.

$$\rho^{el}(r) = \sum_{i=1}^{n_i} |\psi_i(r)|^2 \tag{3.18}$$

Burada n_i i orbitalin işgal numarasıdır. Dış potansiyel zamanla değişiyorsa zamana bağlı Kohn–Sham eşitliği [105-109] aşağıdaki gibi olur.

$$\left[h(r) + V^{ext}(r,t) + \int \frac{\rho^{el}(r')}{|r-r'|} t dr' + V_{XC}[\rho^{el}](r,t) + V^{PCM}(r,t) \right] \psi_i(r,t) =$$

$$i\hbar \frac{\partial}{\partial t} \psi_i(r,t)$$
(3.19)

Yoğunluktaki ani değişim ile zamana bağlı benzer yoğunluk fonksiyonu kullanılarak yaygın olarak kullanılan adyabatik yaklaşımı ile $V_{XC}[\rho^{el}](r,t) = V_{XC}[\rho^{el}](r)$ yazılmasına olanak sağlar. Zamana bağlı özelliklerin birçoğu dış potansiyel değişiminin sonucu olarak elektronik yoğunluğun birinci dereceden değişimine bakılarak hesaplanabilir.

BÖLÜM 4. GEREÇ VE YÖNTEM

4.1. Kullanılan Kimyasallar ve Cihazlar

Komplekslerin sentezi için kullanılan ligandlar: 6-metilpiridin-2-karboksilik asit (6mpaH), 3-metilpiridin-2-karboksilik asit (3-mpaH), 4(5)-metilimidazol (4(5MeI)), 1,10-fenantrolin (phen), 2,2'-bipiridil (bpy), 2,2'-dipiridilamin (dipya), 4,4'-dimetil-2,2'-dipiridil (dmdpy), potasyum tiyosiyanat (KSCN). Kullanılan metal tuzları: $Cr(NO_3)_3 \cdot 9H_2O_1$ $Mn(CH_3CO_2)_2 \cdot 4H_2O_1$ $Co(CH_3CO_2)_2 \cdot 4H_2O_1$ $CoCl_2 \cdot 6H_2O_1$ $Ni(CH_3CO_2)_2 \cdot 4H_2O_1$ NiCl₂, $Cu(CH_3CO_2)_2 \cdot H_2O_1$ $Cu(NO_3)_2 \cdot 3H_2O_1$ $Zn(CH_3CO_2)_2 \cdot 2H_2O$, $ZnCl_2$, $Cd(CH_3CO_2)_2$, $Cd(NO_3)_2 \cdot 4H_2O$, $Hg(CH_3CO_2)_2$, Hg(NO₃)₂·H₂O, FeCl₂, Fe(NO₃)₃·9H₂O, VOSO₄·xH₂O, diğer kimyasallar ve çözücüler yüksek saflıkta Sigma–Aldrich'den satın alındı.

Enzim aktivite çalışmasında Sigma–Aldrich'den alınan α –glukozidaz enzimi (from *Saccharomyces cerevisiae*, EC No: 3.2.1.20) ve standart olarak genistein kullanılmıştır.

Elde edilen kompleks yapılarının belirlenmsinde; tek kristal kompleks yapılar için XRD Stoe IPDS (II) (Stoe Imaging Plate Diffraction System II) cihazı, toz (powder) kompleks yapıların kütle spektrumları için SHIMADZU 8030 modeli veya AGILENT 6460 modeli üçlü kuadrupol LC–MS/MS spektrometresi kullanılarak belirlenmiştir. FT–IR spektrumları Perkin Elmer UATR–TWO (ATR ile donatılmış Perkin Elmer Spektrum–two) spektrofotometre ile 4000–400 cm⁻¹ aralığında kaydedilmiştir. UV–Vis absorpsiyon spektrumları, 1 cm'lik kuvars hücresi ile etanol çözücüsü içinde SHIMADZU UV–2600 UV–Vis spektrofotometresi kullanılarak

1100–200 nm aralığında incelenmiştir. Enzim ölçümleri için BioTek marka, SYNERGY™ H1 çoklu pleyt okuyucu cihazı kullanılmıştır.

4.2. 6–Metilpiridin–2–Karboksilik Asit (6-mpaH) İçeren Metal Komplekslerin Sentezi

4.2.1.6-mpaH'nin kendisi ile yapmış olduğu metal kompleksleri (Kompleks 1–8)

Kompleks 1'in sentezi: 10 ml saf suda çözülen 6–metilpiridin–2–karboksilik asit (6mpaH) (2 mmol) ligandına, 5 ml saf suda çözülmüş metal tuzları (1 mmol) $[Cr(NO_3)_3 \cdot 9H_2O]$ damla damla ilave edildi. Son olarak elde edilen kompleks çözelti 60°C sıcaklıkta yaklaşık iki saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı.

Kompleks **2**, **4–6** ve **8**'in sentezi: 10 ml (1:1 oranında) etanol ve saf su çözüsünde çözülen 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol) ligandına, 5 ml saf suda çözülmüş metal tuzları (1 mmol) [Mn(CH₃CO₂)₂·4H₂O, Hg(CH₃CO₂)₂, Cu(CH₃CO₂)₂, Zn(CH₃CO₂)₂·2H₂O, Co(CH₃CO₂)₂·4H₂O] damla damla ilave edildi. Son olarak elde edilen kompleks çözelti 60°C sıcaklıkta yaklaşık dört saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks **3** ise 15 ml saf suda çözülmüş olan 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol) ligandına 5 ml saf suda çözülmüş Ni(NO₃)₂·6H₂O (1 mmol) ilave edilmiş ve oda sıcaklığında buharlaşmaya bırakılmış [40].

Kompeleks 7'nin sentezi: 20 ml metanolde çözülen 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol) ligandına, metal tuzları (1 mmol) (FeCl₂) ilave edildi. Son olarak elde edilen kompleks çözelti oda sıcaklığında (25°C) yaklaşık iki saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı. Kompleks 1–8'in sentez şeması Şekil 4.1.'de verilmiştir.

Şekil 4.1. Kompleks **1–8**'in sentezi.

4.2.2. 6-mpaH ile siyanat (NCS) ligandının metal kompleksleri (Kompleks 9–11)

Kompleks **9–11**'in sentezi: 10 ml saf suda çözülen metal tuzların (1 mmol) $[Cu(NO_3)_2 \cdot 3H_2O, Cd(NO_3)_2 \cdot 4H_2O, Cr(NO_3)_3 \cdot 9H_2O]$ sulu çözeltisine 10 ml saf suda çözülen potasyum tiyosiyanat (KSCN) (1 mmol) eklendi ve çözelti 20 dakika karıştırıldı. Daha sonra 10 ml saf suda çözülen 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol) sürekli olarak karışan KSCN ve metal çözeltisine eklendi. Son olarak elde edilen kompleks çözelti 55–60°C sıcaklıkta yaklaşık üç saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks **9–11**'in sentez şeması Şekil 4.2.'de verilmiştir.

4.2.3.6-mpaH ile 4(5)-metilimidazol (4(5)MeI) ligandının metal kompleksleri (Kompleks 12–17)

Kompleks 12, 13, 16 ve 17'nin sentezi: 10 ml saf suda çözülen 4(5)-metilimidazol (4(5)MeI)'e 5 ml saf suda çözülen metal tuzları [Mn(CH₃CO₂)₂·4H₂O (4:1:1), Zn(CH₃CO₂)₂·2H₂O (4:1:1), Ni(CH₃CO₂)₂·4H₂O (2:1:2), Cu(NO₃)₂·3H₂O (6:1:1)] eklendi ve on beş dakika karıştırıldı. Daha sonra 5 ml saf suda çözülen 6-metilpiridin–2-karboksilik asit (6-mpaH) sürekli olarak karışan 4(5)MeI ve metal çözeltisine eklendi. Son olarak elde edilen kompleks çözelti 60°C sıcaklıkta yaklaşık üç saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Kompleks 12 ve 13 için yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks 16 ve 17 toz ürün olarak toplandı.

Kompleks 14'ün sentezi: 4(5)–metilimidazol (4(5)MeI) (2 mmol) oda sıcaklığında 10 ml etanolde çözüldü, 5 ml saf suda çözülen Cd(CH₃CO₂)₂ (1 mmol) metal tuzu ile karıştırıldı. Daha sonra 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol) 5 ml saf suda çözülerek karışıma eklendi ve 6-mpa ile aynı ekivalent oranında alınan potasyum hidroksit (KOH) ile son karışımın pH değeri 5 yapıldı. Son olarak elde edilen kompleks çözelti oda sıcaklığında (25°C) yaklaşık dört saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı.

Kompleks **15**'in sentezi: 4(5)–metilimidazol (4(5)MeI) (3 mmol) 20 ml asetonitrilde çözüldü, üzerine 3 ml trietilamin eklendi ve 30 dakika karıştırıldı. Daha sonra etanolde çözülmüş CoCl₂·6H₂O (1 mmol) metal tuzu eklendi ve 60°C sıcaklıkta iki saat karıştırıldı. Son olarak 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol) eklenerek son çözelti iki saat daha karıştırıldı ve karışım oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks **12–17**'nin sentez şeması Şekil 4.3.'te verilmiştir.

Şekil 4.3. Kompleks 12–17'nin sentezi

4.2.4.6-mpaH ile 2,2'-bipiridil (bpy) ligandının metal kompleksleri (Kompleks 18-23)

Kompleks **18**'in sentezi: Oda sıcaklığında her biri 10 ml asetonitrilde çözülen 6– metilpiridin–2–karboksilik asit (6-mpaH) (1 mmol) ve 2,2'–bipridil (bpy) (1 mmol), 10 ml asetonitrilde çözülen metal tuzuna [Hg(CH₃CO₂)₂] eklendi. Son olarak elde edilen kompleks çözelti oda sıcaklığında (25°C) altı saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı.

Kompleks **19** ve **20**'nin sentezi: Toplam 20 ml (1:1 oranında) etanol ve saf su çözücüsüne sırasıyla 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol), metal tuzları (1 mmol) $[Co(CH_3CO_2)_2 \cdot 4H_2O, Cu(NO_3)_2 \cdot 3H_2O]$ ve 2,2'–bipridil (bpy) (1 mmol) direk katkılama ile eklendi ve 60°C sıcaklıkta yaklaşık üç saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks **19** için yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks **20** toz ürün olarak toplandı.

Kompleks **21** ve **22**'nin sentezi: Başlangıçta 70°C sıcaklıkta etanol ve saf su çözücüsünde 6-metilpiridin–2-karboksilik asit (6-mpaH) (1 mmol), metal tuzları [Mn(CH₃CO₂)₂·4H₂O, NiCl₂] (1 mmol) ve 2,2'-bipridil (bpy) direk katkılama ile eklendi ve karıştırıldı. Daha sonra kompleks 21 için üç saat ve kompleks 22 için yirmi dört saat refluks yapıldı. Soğutulan son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleksler toz ürün olarak toplandı.

Kompleks **23**'ün sentezi: Asetonitril, saf su ve etanol çözeltisine sırasıyla metal tuzu (1 mmol) (FeCl₂), 2,2'–bipridil (bpy) (1 mmol) ve 6–metilpiridin–2–karboksilik asit (6-mpaH) (1 mmol) direk katkılama ile eklendi ve 50°C sıcaklıkta ve kapak kapalı olarak yaklaşık dört saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı. Kompleks **18–23**'ün sentez şeması Şekil 4.4.'te verilmiştir.

Şekil 4.4. Kompleks 18–23'ün sentezi.

4.2.5.6-mpaH ile 1,10-fenantrolin (phen) ligandının metal kompleksleri (Kompleks 24–28)

Kompleks 24, 27 ve 28'in sentezi: Toplam 15 ml saf su ve etanol çözeltisine 1,10– fenantrolin (phen) (1 mmol) ve metal tuzları (1 mmol) [Co(CH₃CO₂)₂·4H₂O, Ni(CH₃CO₂)₂·4H₂O] eklenerek karıştırıldı. 30 dakika sonra 5 ml saf su ve etanol çözücüsünde çözülen 3–/6–metilpiridin–2–karboksilik asit (3-/6-mpaH) (2 mmol) katkılandı ve 60°C sıcaklıkta üç saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks 24 için yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı. Kompleks 27 ve 28 toz ürün olarak toplandı.

Kompleks **25**'in sentezi: Oda sıcaklığında 10 ml asetonitrilde çözülen 6– metilpiridin–2–karboksilik asit (6-mpaH) (1 mmol) ve 10 ml etanolde çözülen 1,10– fenantrolin (phen) (1 mmol), 10 ml asetonitrilde çözülen metal tuzlarına (1 mmol) [Hg(CH₃CO₂)₂] eklendi. Oda sıcaklığında (25°C) üç buçuk saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı.

Kompleks **26**'nın sentezi: Toplam 20 ml (1:1 oranında) etanol ve saf su çözeltisine sırasıyla 6–metilpiridin–2–karboksilik asit (6-mpaH) (2 mmol), metal tuzu (1 mmol) [Mn(CH₃CO₂)₂·4H₂O] ve 1,10–fenantrolin (phen) (1 mmol) direk katkılama ile eklendi ve 60°C sıcaklıkta yaklaşık üç saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı. Kompleks **24–28**'in sentez şeması Şekil 4.5.'te verilmiştir.

Şekil 4.5. Kompleks 24–28'in sentezi.

4.2.6.6-mpaH ile 2,2'-dipiridilamin (dipya) ligandının metal kompleksleri (Kompleks 29–31)

Kompleks **29**'un sentezi: 10 ml etanolde çözülen 2,2′–dipiridilamin (dipya) (1 mmol) çözeltisine 5 ml saf su çözülen metal tuzu (1 mmol) [Cu(CH₃CO₂)₂·H₂O] eklendi ve kırk beş dakika karıştırıldı. Daha sonra 5 ml saf suda çözülen 6–metilpiridin–2– karboksilik asit (6-mpaH) (1 mmol) çözeltiye eklendi ve 60°C sıcaklıkta yaklaşık dört saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Yeterli büyüklükteki kristal kompleks yapılar çözücü içerisinden süzülerek toplandı.

Kompleks **30**'un sentezi: Başlangıçta 70°C sıcaklıkta etanol ve saf su çözeltisine 6– metilpiridin–2–karboksilik asit (6-mpaH) (1 mmol), metal tuzu (CoCl₂·6H₂O) ve 2,2'–dipiridilamin (dipya) (1 mmol) direk katkılama ile eklendi ve karıştırıldı. Daha sonra iki buçuk saat refluks yapıldı. Soğutulan son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı.

Kompleks **31**'in sentezi: Toplam 50 ml asetonitril çözeltisine 6–metilpiridin–2– karboksilik asit (6-mpaH) (2 mmol) ve 2,2'–dipiridilamin (dipya) (2 mmol) direk katkılama ile eklendi ve karıştırıldı. Saf suda çözülen metal tuzu (1 mmol) $[Zn(CH_3CO_2)_2 \cdot 2H_2O]$ karışıma eklendi ve 50°C sıcaklıkta kapak kapalı olarak yaklaşık dört saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı. Kompleks **29–31**'in sentez şeması Şekil 4.6.'da verilmiştir.

4.2.7.6-mpaH ile 4,4'-dimetil-2,2'-dipiridil (dmdpy) ligandının metal kompleksleri (Kompleks 32–37)

Kompleks **32**'nin sentezi: Toplam 15 ml saf su ve etanol çözeltisine 4,4'–dimethyl– 2,2'–dipyridyl (dmdpy) (1 mmol) ve metal tuzu (1 mmol) (VOSO₄·xH₂O) direk katkılma ile eklendi ve son çözelti 60°C sıcaklıkta kapak kapalı olarak iki saat karıştırıldı. Daha sonra 6–metilpiridin–2–karboksilik asit (6-mpaH) (1 mmol) katkılandı ve iki saat daha karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı.

Kompleks **33** ve **37**'nin sentezi: Asetonitril ve etanol çözeltisine sırasıyla metal tuzları (1 mmol) $[Fe(NO_3)_3 \cdot 9H_2O, Hg(NO_3) \cdot H_2O], 4,4'-dimethyl-2,2'-dipyridyl (dmdpy) (1 mmol) ve 6-metilpiridin-2-karboksilik asit (6-mpaH) (1 mmol) direk katkılama ile eklendi. Son olarak elde edilen kompleks çözelti 70°C sıcaklıkta kapak kapalı olarak yaklaşık beş saat karıştırıldıktan sonra oda sıcaklığında buharlaşmaya bırakıldı. Kompleksler toz ürün olarak toplandı.$

Kompleks **34** ve **35**'in sentezi: Başlangıçta 70°C sıcaklıkta saf su ve etanol çözeltisine 6–metilpiridin–2–karboksilik asit (6-mpaH) (1 mmol), metal tuzları (1 mmol) (ZnCl₂, NiCl₂) ve 4,4'–dimethyl–2,2'–dipyridyl (dmdpy) (2 mmol) direk katkılama ile eklendi ve karıştırıldı. Daha sonra kompleks **34** için yirmi dört saat ve kompleks **35** üç saat refluks yapıldı. Soğutulan son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleksler toz ürün olarak toplandı.

Kompleks **36**'nın sentezi: Toplam 30 ml (1:1 oranında) saf su ve etanol çözeltisine sırasıyla 4,4'-dimethyl-2,2'-dipyridyl (dmdpy) (1 mmol), metal tuzu (1 mmol) [Cd(CH₃CO₂)₂] ve 6-metilpiridin-2-karboksilik asit (6-mpaH) (2 mmol) direk katkılama ile eklendi ve 50°C sıcaklıkta yaklaşık iki saat karıştırıldı. Son kompleks çözelti oda sıcaklığında buharlaşmaya bırakıldı. Kompleks toz ürün olarak toplandı. Kompleks **32**–**37**'nin sentez şeması Şekil 4.7.'de verilmiştir.

Şekil 4.7. Kompleks 32–37'nin sentezi.

4.3. Deneysel Yöntemlerle Yapı Çözümleme

4.3.1. X–Işını kırınımı yöntemi veya kütle spektroskopisi ile yapı tanımlama

X–ışını kırınım verilerinin toplanmasında kullanılan Stoe IPDS (II) (Stoe Imaging Plate Diffraction System II) katı örneklerin hızla tanımlanması için geliştirilmiş bir difraktometredir. 34 cm çaplı görüntü plakası ve iki eksenli gonyometreye sahiptir. IPDS II çoğu durumda tek kristal analizi için kullanılır.

Elde edilen kompleks kristallerin yapı analizi için seçilen uygun tek kristallerde 296 K'de Mo–K α (λ = 0,71073 A) radyasyonu kullanılarak Stoe IPDS II difraktometre ile veri toplama işlemi yapılmıştır. Kristal yapı SHELXT [110] kullanılarak doğrudan yöntemlerle çözülmüştür. Fourier haritasında bulunan ağır atomlara ait şiddet pikleri isimlendirilerek (hidrojenler hariç) bütün atomların konumları bulunmuş ve başlangıç fazı oluşturulmuştur. Yapı çözümleme SHELXL-97 kullanılarak F² üzerinde tam matrisli en küçük kareler yöntemi ile arıtılmıştır [111]. İlk arıtım işleminde sıcaklık titreşim parametreleri izotropik alınmış, daha sonraki adımda çözüm esnasında bulunmayan karbon atomlarına ait hidrojen atomları geometrik konumlarından, oksijen atomuna ait hidrojen atomları ise Fourier elektron yoğunluk haritasından bulunmuştur. H atomları bağlanmadan önce sıcaklık titreşim parametrelerini optimize etmek için H dışı atomlara anizotropik arıtım işlemi uygulanmış, daha sonra H atomları ise izotropik arıtım işlemine maruz bırakılmıştır. Yapı ağırlık fonksiyonu beklenen değerine esitleninceye kadar arıtım islemine devam edilmiştir. Moleküler diyagramlar MERCURY kullanılarak oluşturulmuştur [112]. Supramoleküler analizler yapılmış ve diyagramlar PLATON yardımıyla hazırlanmıştır [113].

Tek kristali oluşmayan kompleks yapıların kütle spektrumları SHIMADZU 8030 modeli veya AGILENT 6460 modeli üçlü kuadrupol LC–MS/MS spektrometresi kullanılarak incelenmiştir.

4.3.2. FT-IR ve UV-Vis spektrumlarının deneysel olarak kaydedilmesi

Elde edilen tüm kompleksler için FT–IR spektrumları, Perkin Elmer UATR–TWO (ATR ile donatılmış Perkin Elmer Spektrum–two) spektrofotometre ile 4000–400 cm⁻¹ aralığında kaydedildi. Komplekslerinin UV–Vis absorpsiyon spektrumları, 1 cm'lik kuvars hücresi ile etanol çözücüsü içinde SHIMADZU UV–2600 UV–Vis spektrofotometresi kullanılarak 1100–200 nm aralığında incelenmiştir.

4.4. α-Glukozidaz Aktivite Yöntemi

Reaksiyon karışımı toplam hacmi 200 μ L olacak şekilde; 140 μ L 50 mM fosfat tamponu pH=6,8, 10 μ L metanolde ve 8 farklı konsantrasyonda test bileşiği ve bunu takiben tampon içinde 20 μ L (0,02 ünite) enzim çözeltisi ilavesi edildi. Pleyt yavaşça çalkalandı, 10 dakika süreyle 37 °C'de inkübe edildi ve 405 nm'de ilk absorbans ölçüldü. Daha sonra, 30 μ L 1,25 mM substrat (p–nitrofenilglikopiranozid) eklenerek reaksiyon başlatılmıştır. 37 °C'de 30 dakika inkübe edildikten sonra, ortaya çıkan p– nitrofenolün absorbansı, 405 nm'de ölçüldü. Genistein pozitif kontrol olarak kullanıldı. Tüm deneyler üçer kez gerçekleştirilerek (ortalama ± SEM, n= 3), yüzde inhibisyonu (Denklem 4.1)'e göre hesaplandı.

$$Inhibisyon(\%) = (Abs_{Kontrol} - Abs_{Test} / Abs_{Kontrol}) \times 100$$
(4.1)

Elde edilen inhibisyon değerleri konsantrasyona karşı grafiğe geçirilerek IC_{50} (enzimin %50'sini inhibe eden inhibitör konsantrasyonu) değeri belirlendi [114,115].

4.5. Kuramsal Hesaplama Yöntemi

Moleküler mekanik, yarı–deneysel ve ab–initio yöntemlerini içeren, çok sayıda teori ve temel set seçeneğine sahip olan oldukça kapsamlı bir moleküler modelleme programı olan Gaussian (Gauss 09, Revision D.01, 2013 ve Gauss View, version5) kuramsal hesaplamalar için kullanılmıştır [116,117].

Elde edilen komplekslerin kararlı yapıları temel halde ve gaz fazında yoğunluk fonksiyonel teorisi (DFT) yöntemi olan HSEh1PBE metodu [98-101] ile C, H, N, ve O atomları için 6-311G(d,p) temel seti [118,119] ve Cr, Mn, Co, Ni ve Cu için LanL2DZ temel seti [120-122] kullanılarak elde edilmiştir. Bunun dışında Cd ve Hg kompleksleri için sadece LanL2DZ temel seti kullanılmıştır. Bu yapılar için titreşim frekansları aynı yöntem kullanılarak hesaplanmıştır. Daha sonra tüm kompleks yapılar için UV-Vis soğurma dalgaboyları, osilatör şiddet değerleri zamana bağlı TD-HSEh1PBE/6-311G(d,p)/LanL2DZ yönteminde [106-109] gaz fazında ve etanol çözücüsünde aynı yöntemle birlikte PCM (Kutuplu Süreklilik Modeli: Polarizable Continuum Model) [104,105] kullanılarak elde edilmiştir. Sınır moleküler orbitallerin enerjileri (İşgal edilmiş en yüksek moleküler orbital olan HOMO ve işgal moleküler edilmemis en düsük orbital olan LUMO) HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi kullanılarak elde edilmiştir. Sınır moleküler orbital enerjileri (FMO) kullanılarak elektronegatiflik (χ), kimyasal sertlik (η) ve kimaysal yumuşaklık (S) paramtreleri hesaplandı [79,123]. SWizard programı [124] kullanılarak $\lambda_{soğurma}$ 'ya karşılık gelen HOMO ve LUMO orbitalleri arasındaki geçişler yüzdelik değerde hesaplanarak verilmiştir. Komplekslerin doğal bağ orbital (NBO) analizi yapılarak, molekül içinde ve moleküller arasında bağ orbitallerin yüksek enerjili etkileşimleri, hidrojen bağı oluşumları ve metal iyonunun koordinasyon geometrisi hakkında bilgi edinilmiştir. Son olarak, sentezlenen farklı metal komplekslerin mikroskobik boyutta 2. ve 3. mertebeden doğrusal olmayan parametreleri HSEh1PBE/6-311G(d,p)/LanL2DZ yöntemi kullanılarak optik hesaplanmıştır.

BÖLÜM 5. ANALİZ VE BULGULAR

5.1. X–Işını Kırınımı Yöntemi veya Kütle Spektroskopisi ile Yapı Tanımlama ve Geometrik Optimizasyon Analizi

Yapıları X–ışını kırınımı veya kütle spektroskopisi yöntemleri ile belirlenen metal komplekslerinin taban durum enerji seviyelerindeki kararlı geometrileri yoğunluk fonksiyon teorisi (DFT) ile elde edilmiştir. Bu hesaplamalar gaz fazında HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak yapılmıştır.

5.1.1. Kompleks 1–8'in yapısal analizleri

Kırmızı renkte prizma şeklinde elde edilen kompleks 1 { $[Cr(6-mpa)_2(H_2O)_2] \cdot H_2O \cdot NO_3$ }'in kristal yapısı, monoklinik sistemi içinde Pc uzay grubunda konumlandığı tespit edilmiştir. Kompleks 1, iki 6-mpa ligandı, iki koordine su ligandı, koordine olmayan su ve nitrat moleküllerin bir Cr(III) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki su ligandının O atomları üzerinden Cr(III) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Sarı renkte prizma şeklinde elde edilen kompleks **2** $[Mn(6-mpa)_2(H_2O)_2)]$ 'nin kristal yapısı, monoklinik sistemi içinde P2₁/c uzay grubunda konumlandığı tespit edilmiştir. Kompleks **2**, iki 6-mpa ligandı ve iki su ligandının bir Mn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki su ligandının O atomları üzerinden Mn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Yeşil renkte prizma şeklinde elde edilen kompleks **3** {[Ni(6-mpa)₂(H₂O)₂]·2H₂O} 'ün kristal yapısı, triklinink sistemi içinde P–1 uzay grubunda konumlandığı tespit edilmiştir. Kompleks **3**, iki 6-mpa ligandı, iki koordine su ligandı ve iki koordine olmayan su molekülünün bir Ni(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki su ligandının O atomları üzerinden Ni(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır [40].

Renksiz prizma şeklinde elde edilen kompleks 4 $[Hg(6-mpa)_2 \cdot H_2O]$ 'ün kristal yapısı, monoklinik sistemi içinde I2/a uzay grubunda konumlandığı tespit edilmiştir. Kompleks 4, iki 6-mpa ligandı ve bir su ligandının bir Hg(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir su ligandının O atomu üzerinden Hg(II) iyonuna koordine olmasıyla kare piramid geometrili kompleks yapı oluştuğu anlaşılmıştır.

Mavi renkte prizma şeklinde elde edilen kompleks **5** {[Cu(6-mpa)₂(H₂O)]·H₂O}'in kristal yapısı, triklinink sistemi içinde P–1 uzay grubunda konumlandığı tespit edilmiştir. Kompleks **5**, iki 6-mpa ligandı, bir koordine su ligandı ve bir koordine olmayan su molekülünün bir Cu(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir su ligandının O atomu üzerinden Cu(II) iyonuna koordine olmasıyla kare piramid geometrili kompleks yapı oluştuğu anlaşılmıştır [125].

Renksiz prizma şeklinde elde edilen kompleks **6** { $[Zn(6-mpa)_2 \cdot H_2O] H_2O$ }'nın kristal yapısı, triklinik sistemi içinde P–1 uzay grubunda konumlandığı tespit edilmiştir. Kompleks **6**, iki 6-mpa ligandı, bir koordine su ligandı ve bir koordine olmayan su molekülünün bir Zn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir su ligandının O atomu üzerinden Zn(II) iyonuna koordine olmasıyla kare piramid geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks 7 [Fe(6-mpa)₃], üç 6-mpa ligandının bir Fe(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Üç 6-mpa ligandlarının N, O atomları üzerinden Fe(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Pembe renkte prizma şeklinde elde edilen kompleks **8** { $[Co(6-mpa)_2(H_2O)_2] \cdot 2H_2O$ }'in kristal yapısı, triklinink sistemi içinde P–1 uzay grubunda konumlandığı tespit edilmiştir. Kompleks **8**, iki 6-mpa ligandı, iki koordine su ligandı ve iki koordine olmayan su molekülünün bir Co(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki su ligandının O atomları üzerinden Co(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır [68].

Elde edilen kristal yapı arıtım verileri Tablo 5.1.'de, **1–8** komplekslerin geometrik yapıları Şekil 5.1.'de ve kompleks 7'nin kütle spektrumu Şekil 5.2.'de verilmektedir.

	Kompleks 1	Kompleks 2	Kompleks 3 [40]	Kompleks 4	Kompleks 5 [125]	Kompleks 6	Kompleks 8 [68]
CCDC numarası	1815203	1848000	688073	1865576	1551875	1827161	_
Kimyasal formül	C14H18CrN3O10	$C_{14}H_{16}MnN_2O_6$	C14H16NiN2O6.2H2O	C ₁₄ H ₁₄ HgN ₂ O ₅	$C_{14}H_{14}CuN_2O_5.H_2O$	$C_{28}H_{32}N_4O_{12}Zn_2$	$C_{14}H_{20}N_2CoO_8$
Formül ağırlığı (akb)	440,31	363,23	403,03	490,86	371,83	747,31	403,25
Kristal rengi	Kırmızı	Sarı	Yeşil	Renksiz	Mavi	Renksiz	Pembe
Kristal sistemi	Monoklinik	Monoklinik	Triklinik	Monoklinik	Triklinik	Triklinik	Triklinik
Uzay grubu	Pc	$P2_1/c$	P-1	I2/a	P-1	P-1	P-1
Sıcaklık (K)	296	296	296	296	296	296	296
Radyasyon tipi	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο Κα	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο Κα
Dalgaboyu (Å)	0,71073	0,71073	0,71073	0,71073	0,71073	0,71073	0,71073
Kristal boyutu (mm)	0,75x0,67x0,57	0,62x0,57x0,52	0,60x0,54x0,47	0,79x0,73x0,59	0,52x0,40x0,23	0,72x0,45x0,32	0,14x0,15x0,18
h, k, l aralığı	–7→7, –19→18,	-8→8, -15→15,	$-11 \rightarrow 11, -14 \rightarrow 14, -$	–17→17, –9→8,	–10→10, –11→11,	–9→9, –11→11,	–10→10, –14→14,
	–12→11	–21→21	16→16	-29→26	-12→13	-13→13	-15→15
a (Å)	5,9794 (4)	7,1869 (4)	7,8910 (8)	14,5969 (10)	8,0581(9)	7,9970 (4)	7,8660 (7)
b (Å)	15,6088 (8)	12,5379 (6)	10,6447 (16)	7,9576 (6)	9,4965(9)	9,4285 (5)	10,6823 (9)
c (Å)	9,7917 (6)	17,4513 (10)	11,5059 (11)	24,5490 (16)	11,0973(12)	11,1588 (6)	11,6057 (9)
α (°)	90	90	100,112 (10)	90	96,332(8)	96,824 (4)	100,373 (4)
β (°)	91,739 (5)	93,672 (5)	105,278 (8)	94,521 (5)	100,026(9)	98,744 (4)	105,094 (3)
γ (°)	90	90	107,348 (11)	90	107,910(8)	106,945 (4)	106,584 (4)
$V(Å^3)$	913,45 (10)	1569,28 (15)	855,3 (2)	2842,6 (3)	783,46(15)	783,56 (7)	867,61 (13)
Z	2	4	2	8	2	1	2
F(000)	454	748	-	1856	382	384	418
Yoğunluk (g cm ⁻³)	1,601	1,537	1,565	2,294	1,576	1,584	1,54

Tablo 5.1. Kompleks 1–6 ve 8'in kristal yapı arıtım verileri.

	Kompleks 1	Kompleks 2	Kompleks 3 [40]	Kompleks 4	Kompleks 5 [125]	Kompleks 6	Kompleks 8 [68]
μ (mm ⁻¹)	0,69	0,87	1,179	10,86	1,43	1,60	1,03
θ aralığı (°)	2,5–26,0	2,3–26,0	3,9–30.,0	2,7–25,1	1,9-27,0	2,3–26,0	3,2–27,6
Gözlenen yansıma sayısı	6826	11056	24059	6926	9303	11362	33220
Bağımsız yansıma sayısı	3279	3090	4946	2500	3227	3082	4239
R _{int}	0,037	0,031	0,018	0,136	0,064	0,032	0,065
S	1,05	1,06	1,06	1,33	0,94	1,05	1,13
R1/wR2	0,045/0,134	0,032/0,088	0,033/0,075	0,150/0,348	0,036/0,087	0,026/0,068	0,052/0,146
max/min (eÅ ⁻³)	0,49/-0,37	0,40/-0,32	0,64/-0,428	7,00/-2,29	0,30/0,60	0,20/0,30	0,87/-0,49

Tablo 5.1. (Devam)

Şekil 5.1. Kompleks 1–6, 8'in tek kristal yapıları ve kompleks 7'nin optimize edilmiş molekül yapısı [40,68,125].

.

Şekil 5.2. Kompleks 7'nin kütle spektrumu.

Kompleks 1, 2, 4, 6 ve 7'de, 6-mpa ligandları, Mn(II), Hg(II), Cr(III), Zn(II) ve Fe(II) merkez atomlarına piridin N ve karboksilat O atomları üzerinden koordine olarak beş üyeli şelat halkaları oluşturmuşlardır. Kompleks 1, 2, 4 ve 6 için M-N1, ve M–O3 şelat halkalarının bağ M-02, M-N2 uzunlukları sırasıyla 2,095(7)-2,283(15) Å, 1,930(5)-2,370(2) Å, 2,118(6)-2,362(16) Å ve 1,934(5)-2,430(2) Å aralığında gözlenmiştir. Bu bağ uzunluklarına karşılık gelen teorik olarak hesaplanan değerler sırasıyla 2,056–2,387 Å, 1,932–2,255 Å, 2,013– 2,434 Å ve 1,936–2,306 Å aralığında elde edildi. Merkez atoma bağlı su ligandların M–O bağ uzunlukları deneysel olarak 1,939(6)–2,400(2) Å aralığında gözlenmiş ve 1,870–2,466 Å aralığında hesaplanmıştır. Kompleks 7'de şelat halkasına ait Fe–N ve Fe–O bağ uzunlukları sırasıyla 2,010–2,082 Å ve 1,847–1,907 Å aralığında elde edilmiştir.

Kompleks 1, 2, 4 ve 6 için beş üyeli şelat halkasına ait O2–M–N1 ve O3–M–N2 bağ açıları sırasıyla 73,0(8)°–81,5(2)° ve 72,8(7)°–80,2(3)° aralığında gözlenmiş ve 73,6°–80,7° ve 71,3°–82,9° aralığında hesaplanmıştır. Kompleks 7 için O–Fe–N bağ açıları 81,1°–84,3° aralığında elde edilmiştir. Önemli bağ uzunlukları ve bağ açıları Tablo 5.2.'de özetlenmiştir.

Kompleks **1** için 6-mpa, metil grubu, karboksilat, nitrat ve su molekülleri arasında $C-H \cdot \cdot \cdot O$, $O-H \cdot \cdot \cdot O$ ve $C-H \cdot \cdot \cdot N$ tipi hidrojen bağ etkileşimleri oluşmuştur. Kompleks **2** için 6-mpa, metil grubu, karboksilat ve su molekülleri arasında $C-H \cdot \cdot \cdot O$ ve OH/O tipi hidrojen bağ etkileşimleri oluşmuştur. Kompleks **4** için 6-mpa, metil grubu, karboksilat ve su molekülleri arasında $C-H \cdot \cdot \cdot O$ ve $O-H \cdot \cdot \cdot O$ tipi hidrojen bağ etkileşimleri oluşmuştur. Kompleks **4** için 6-mpa, metil grubu, karboksilat ve su molekülleri arasında $C-H \cdot \cdot \cdot O$ ve $O-H \cdot \cdot \cdot O$ tipi hidrojen bağ etkileşimleri oluşmuştur. Kompleks **6** için metil grubu, karboksilat ve su molekülleri arasında $C-H \cdot \cdot \cdot O$ tipi hidrojen bağ etkileşimleri oluşmuştur. Tüm hidrojen parametreleri ve simetri kodları Tablo 5.3.'te verilmiştir.

Küçük koordinasyon ortamı farklılığına rağmen komplekslerin deneysel ve teorik sonuçları arasında iyi bir uyum olduğu söylenebilir.

Kompleks 1			Kompleks 2			Kompleks 4		
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE
Bağ uzunluğu (Å)			Bağ uzunluğu (Å)			Bağ uzunluğu (Å)		
Cr1–O2	1,930 (5)	1,932	Mn1–O2	2,121 (13)	1,971	Hg1–O2	2,370 (2)	2,255
Cr1–O3	1,934 (5)	1,956	Mn1–O3	2,142 (15)	1,936	Hg1–O3	2,430 (2)	2,306
Cr1–O5	1,989 (6)	2,074	Mn1–O5	2,170 (15)	2,145	Hg1–O5	2,400 (2)	2,466
Cr1–O6	1,939 (6)	1,870	Mn1–O6	2,200 (14)	2,081	Hg1-N1	2,161 (19)	2,387
Cr1–N1	2,095 (7)	2,082	Mn1–N1	2,283 (15)	2,056	Hg1-N2	2,150 (19)	2,434
Cr1–N2	2,118 (6)	2,105	Mn1–N2	2,362 (16)	2,013			
Bağ açıları (°)			Bağ açıları (°)			Bağ açıları (°)		
O2Cr1O3	177,9 (3)	164,2	O2-Mn1-O3	167,6 (9)	165,1	O2-Hg1-O3	133,7 (8)	165,7
O2Cr1O5	89,3 (3)	83,6	O2-Mn1-O5	85,2 (6)	76,2	O2-Hg1-O5	114,6 (7)	113,1
O3-Cr1-O5	88,5 (3)	80,6	O3-Mn1-O5	83,1 (7)	92,9	O3-Hg1-O5	111,3 (7)	62,7
O2Cr1O6	90,1 (2)	97,6	O2-Mn1-O6	97,6 (5)	86,9	O2-Hg1-N1	73,0 (8)	73,6
O3-Cr1-O6	92,1 (3)	98,2	O3-Mn1-O6	86,3 (5)	82,0	O3-Hg1-N1	96,0 (7)	119,7
O5-Cr1-O6	179,1 (3)	178,5	O5-Mn1-O6	88,2 (6)	85,7	O5-Hg1-N1	96,9 (7)	95,6
O2-Cr1-N1	81,5 (2)	80,0	O2-Mn1-N1	74,1 (5)	80,7	O2-Hg1-N2	109,7 (8)	104,3
O3-Cr1-N1	98,4 (2)	100,2	O3-Mn1-N1	118,0 (6)	109,6	O3-Hg1-N2	72,8 (7)	71,3
O6Cr1N1	88,7 (3)	90,8	O5-Mn1-N1	157,7 (7)	156,9	O5-Hg1-N2	93,4 (7)	126,1
O5-Cr1-N1	91,9 (3)	88,5	O6-Mn1-N1	86,3 (5)	92,3	N1-Hg1-N2	167,1 (7)	132,3
O2-Cr1-N2	99,8 (2)	100,2	O2-Mn1-N2	104,5 (6)	108,0			

Tablo 5.2. Kompleks 1, 2, 4, 6 ve 7 için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 1			Kompleks 2			Kompleks 4		
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE
Bağ açıları (°)			Bağ açıları (°)					
O3Cr1N2	80,2 (3)	79,6	O3-Mn1-N2	73,5 (6)	82,0			
O6Cr1N2	92,4 (3)	89,2	O5-Mn1-N2	99,5 (6)	91,3			
O5-Cr1-N2	87,0 (3)	91,4	O6-Mn1-N2	157,1 (6)	163,5			
N1-Cr1-N2	178,2 (4)	179,8	N1-Mn1-N2	93,8 (6)	96,7			

Tablo 5.2. (Devam)

Kompleks 6			Kompleks 7	
Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE
Bağ uzunluğu (Å)			Bağ uzunluğu (Å)	
Zn1–O2	2,002 (14)	1,992	Fe1–O2	1,847
Zn1–O3	1,983 (13)	1,978	Fe1–O3	1,907
Zn1–O5	1,992 (15)	2,094	Fe1–O5	1,862
Zn1–N1	2,156 (14)	2,142	Fe1–N1	2,012
Zn1–N2	2,146 (14)	2,072	Fe1–N2	2,082
			Fe1–N3	2,010
Bağ açıları (°)			Bağ açıları (°)	
O2–Zn1–O3	128,8 (6)	160,0	O2–Fe1–O3	87,9
O2–Zn1–O5	121,3 (7)	84,0	O2–Fe1–O5	93,7
O3–Zn1–O5	109,6 (7)	85,7	O3–Fe1–O5	173,0
O2–Zn1–N1	79,0 (5)	79,5	O2-Fe1-N1	84,3
O3–Zn1–N1	98,0 (5)	102,9	O3–Fe1–N1	84,0
O5–Zn1–N1	100,3 (6)	152,9	O5–Fe1–N1	89,4
O2–Zn1–N2	92,6 (6)	115,4	O2-Fe1-N2	167,2
O3–Zn1–N2	79,9 (5)	82,9	O3–Fe1–N2	81,1
O5–Zn1–N2	92,1 (6)	97,3	O5–Fe1–N2	98,0
N1–Zn1–N2	167,4 (6)	109,2	N1-Fe1-N2	101,0
			O2-Fe1-N3	84,9
			O3–Fe1–N3	102,7
			O5–Fe1–N3	84,2
			N1-Fe1-N3	167,1
			N2–Fe1–N3	91,1

Tablo 5.2. (Devam)

Tablo 5.3. Kompleks 1-6 ve 8'de gözlenen hidrojen bağ etkileşimleri (Å, °).

D–H· · ·A	D–H	H···A	D···A	D–H…A	Simetri kodu
Kompleks 1					
C14–H14A· · · O2	0,96	2,15	2,976 (11)	144	(i) x+1, -y+2, z-1/2
$C12-H12 \cdot \cdot \cdot O4^{i}$	0,93	2,58	3,506 (11)	174	(ii) x-1, -y+1, z+1/2
$C5-H5 \cdot \cdot \cdot O1^{ii}$	0,93	2,61	3,529 (12)	171	(iii) x–1, y, z
O6–H6B· · ·O1 ⁱⁱⁱ	0,83 (2)	1,85 (3)	2,649 (7)	161 (5)	(iv) x+1, y, z+1
$O10H10A\cdot\cdot\cdot N3^{iv}$	0,87 (3)	2,40 (4)	3,242 (11)	162 (6)	(v) x, y, z+1
$O10H10A\cdot\cdot\cdot O7^{iv}$	0,87 (3)	1,65 (3)	2,416 (16)	145 (4)	(vi) x+1, y, z

D–H· · ·A	D–H	Н…А	D···A	D–H…A	Simetri kodu
O10–H10A···O9 ^{iv}	0,87 (3)	1,78 (6)	2,406 (16)	127 (5)	
$O10H10B\cdot\cdot\cdot O8^v$	0,80 (3)	2,15 (3)	2,911 (8)	161 (7)	
O5–H5A· · ·O10	0,83 (2)	1,75 (3)	2,574 (11)	171 (6)	
$O5-H5B \cdot \cdot \cdot O3^{vi}$	0,83 (3)	2,62 (5)	3,439 (7)	171 (24)	
$O5-H5B\cdot\cdot\cdot O4^{vi}$	0,83 (3)	2,1 (2)	2,599 (8)	118 (20)	
Kompleks 2					
$O6-H6A \cdot \cdot \cdot O1^i$	0,88	1,95	2,772 (2)	155	(i) x+1, y, z
O6−H6B· · ·O4 ⁱⁱ	0,88	1,87	2,732 (2)	165	(ii) -x+2, -y+1, -z+1
O5-H5A··· $O3$ ⁱⁱ	0,85	1,99	2,790 (2)	157	(iii) x-1, -y+1/2, z-1/2
C3–H3· \cdot ·O4 ⁱⁱⁱ	0,93	2,32	3,150 (3)	149	(iv) -x+1, y-1/2, -z+1/2
$C5-H5 \cdot \cdot \cdot O1^{iv}$	0,93	2,60	3,341 (3)	138	
С7–Н7А· · ∙О3	0,96	2,65	3,556 (3)	157	
Kompleks 3 [40]					
$O5-H15O \cdot \cdot \cdot O1^{i}$	0,78 (2)	2,00 (2)	2,757 (2)	165 (3)	(i) -x+1, -y+2, -z+1
O5−H25O···O7 ⁱⁱ	0,85 (2)	1,81 (2)	2,647 (2)	170 (2)	(ii) -x+2, -y+1, -z+1
O6–H36O· · · O8 ⁱⁱⁱ	0,84 (2)	1,84 (2)	2,677 (2)	172 (2)	(iii) x, y+1, z
$O6-H46O \cdot \cdot \cdot O1^{i}$	0,78 (3)	2,55 (3)	3,252 (2)	150 (3)	(iv) x, y–1, z
O7–H57O· · · O3 ^{iv}	0,76 (3)	2,09 (3)	2,848 (2)	176 (3)	(vi) x-1, y-1, z
$O7-H57O \cdot \cdot \cdot O2^{v}$	0,83 (3)	1,92 (3)	2,737 (3)	167 (3)	(vii) -x+1, -y+1, -z
$O8-H78O \cdot \cdot \cdot O4^{vi}$	0,76 (3)	2,09 (3)	2,821(2)	161 (2)	
O8–H88O· · ·O4 ^{vii}	0,81 (3)	2,02 (3)	2,832 (2)	177 (2)	
Kompleks 4					
$O5-H5A \cdot \cdot \cdot O1^i$	0,86	1,96	2,65 (3)	138	(i) x, y–1, z
$C12-H12 \cdot \cdot \cdot O2^{ii}$	0,93	2,62	3,38 (3)	139	(ii) -x+1, y-1/2, -z+3/2
$C5-H5 \cdot \cdot \cdot O3^{iii}$	0,93	2,54	3,35 (4)	145	(iii) -x+3/2, y, -z+1
C14–H14C $\cdot \cdot \cdot O4^{iv}$	0,96	2,57	3,49 (5)	163	(iv) x–1/2, –y, z
C7–H7A· · ·O3	0,96	2,42	3,29 (5)	150	
Kompleks 5 [125]					
C14–H14C···O2	0,96	2,41	3,125 (3)	131	(i) -x+1, -y, -z+1
С7–Н7С· · ·О3	0,96	2,28	2,978 (4)	129	(ii) x, y, z+1
$O6-H6B \cdot \cdot \cdot O4^{i}$	0,81(2)	1,99(2)	2,786 (3)	164 (3)	
O6–H6A· · ·O4 ⁱⁱ	0,81(2)	1,97(2)	2,760 (3)	167 (4)	
Kompleks 6					
С7–Н7С· · ·О3	0,96	2,51	3,371 (3)	150	(i) -x+1, -y+1, -z+1
C14–H14C···O1	0,96	2,58	3,154 (3)	119	(ii) x–1, y, z

Şekil 5.3. (Devam)

D–H· · ·A	D–H	H···A	D…A	D–H…A	Simetri kodu
O5−H5A· · · O6	0,81 (1)	1,82 (1)	2,627 (2)	173 (3)	(iii) –x+1, –y, –z
$O5-H5B\cdot\cdot\cdot O4^{i}$	0,81 (1)	1,88 (1)	2,685 (2)	176 (3)	
$O6-H6A \cdot \cdot \cdot O2^{ii}$	0,81 (1)	1,97 (1)	2,771 (2)	168 (3)	
O6-H6B··· $O2$ ⁱⁱⁱ	0,82 (1)	1,94 (1)	2,743 (2)	167 (3)	
Kompleks 8 [68]					
С7—Н7С⋯О3	0,96	2,57	3,241 (5)	128	
O5— $H5B$ ···O3 ⁱ	0,82 (2)	1,95 (2)	2,739 (4)	161 (5)	(i) -x+1, -y+2, -z+2
O5— $H5A$ ···O8 ⁱⁱ	0,83 (2)	1,82 (2)	2,637 (4)	170 (7)	(ii) x+1, y, z+1
O6—H6A…O7 ⁱⁱⁱ	0,81 (2)	1,86 (2)	2,661 (4)	172 (5)	(iii) x, y+1, z
$O6-H6B\cdots O3^{i}$	0,81 (2)	2,53 (3)	3,213 (4)	142 (4)	(iv) -x+1, -y+1, -z+1
O6—H6B⋯O5 ⁱ	0,81 (2)	2,24 (4)	2,911 (4)	141 (5)	(v) x-1, y-1, z
O7—H7D⋯O2 ^{iv}	0,83 (2)	1,98 (2)	2,808 (4)	172 (5)	(vi) -x+1, -y+2, -z+1
O7—H7E⋯O2 ^v	0,83 (2)	2,02 (3)	2,820 (4)	165 (5)	(vii) x, y, z–1
O8—H8A…O1 ^{vi}	0,83 (2)	2,04 (2)	2,858 (4)	173 (6)	
O8—H8B…O4 ^{vii}	0,82 (2)	1,93 (2)	2,738 (4)	171 (5)	

Şekil 5.3. (Devam)

5.1.2. Kompleks 9–11'in yapısal analizleri

Yeşil renkte prizma şeklinde elde edilen kompleks **9** [Cu(NCS)(6-mpa)₂]'un kristal yapısı, monoklinik sistemi içinde P2₁/n uzay grubunda konumlandığı tespit edilmiştir. Kompleks **9**, iki 6-mpa ligandı ve bir siyanat ligandının bir Cu(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve siyanat ligandının N atomu üzerinden Cu(II) iyonua koordine olmasıyla kare piramid ile bozulmuş trigonal bipiramidal geometrisi arasında bir trigonal bipiramit geometrili kompleks yapı oluştuğu anlaşılmıştır.

Renksiz polimerik tabaka şeklinde elde edilen kompleks **10** { $[Cd(NCS)(6-mpa)]_n$ }'un kristal yapısı, monoklinik sistemi içinde P2₁/c uzay grubunda konumlandığı tespit edilmiştir. Kompleks **10**, bir 6-mpa ligandı ve bir siyanat ligandının bir Cd(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları ve siyanat ligandının N atomu üzerinden Cd(II) iyonuyla

koordinasyonundan oluştuğu anlaşılmıştır. Kompleks **10** kristalize bir polimerizasyon yapısı olarak tüm Cd(II) merkezlerinde bozulmuş oktahedral geometrilerle altı koordinatlıdır.

Kırmızı renkte prizma şeklinde elde edile kompleks **11** [Cr(NCS)(6-mpa)₂·H₂O]'in kristal yapısı, monoklinik sistemi içinde I2/a uzay grubunda konumlandığı tespit edilmiştir. Kompleks **11**, iki 6-mpa ligandı, bir siyanat ve bir su ligandının bir Cr(III) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları, siyanat ligandının N atomu ve bir su ligandının O atomu üzerinden Cr(III) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Elde edilen kristal yapı arıtım verileri Tablo 5.4.'te ve **9–11** komplekslerin geometrik yapıları Şekil 5.3.'te verilmektedir.

	Kompleks 9	Kompleks 10	Kompleks 11
CCDC numrası	1548534	1567035	1827152
Kimyasal formül	$C_{15}H_{12}CuN_3O_4S$	$C_8H_6CdN_2O_2S$	$C_{15}H_{14}CrN_3O_5S$
Formül ağırlığı (akb)	393,88	306,61	400,35
Kristal rengi	Yeşil	Renksiz	Kırmızı
Kristal sistemi	Monoklinik	Monoklinik	Monoklinik
Uzay grubu	$P2_1/n$	$P2_1/c$	I2/a
Sıcaklık (K)	296	298	296
Radyasyon tipi	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο <i>Κ</i> α
Dalgaboyu (Å)	0,71073	0,71073	0,71073
Kristal boyutu (mm)	0,61x0,46x0,31	0,56x0,29x0,06	0,53x0,25x0,12
h, k, l aralığı	–18→18, –10→10, –	–12→13, –7→7, –	$-11 \rightarrow 11, -14 \rightarrow 14, -$
	18→19	21→21	19→19
a (Å)	14,5100 (8)	10,2673 (8)	9,6669 (12)
b (Å)	8,3307 (3)	5,8796 (3)	11,4028 (10)
c (Å)	14,9636 (8)	16,9126 (13)	15,778 (2)

Tablo 5.4. Kompleks 9–11'in kristal yapı arıtım verileri [114].

	Kompleks 9	Kompleks 10	Kompleks 11
α (°)	90	90	90
β (°)	112,870 (4)	103,541 (6)	106,394 (10)
γ (°)	90	90	90
V (Å ³)	1666,59 (15)	992,59 (12)	1668,5 (3)
Z	4	4	4
F(000)	800	592	820
Yoğunluk (g cm ⁻³)	1,57	2,052	1,594
$\mu (mm^{-1})$	1,46	2,38	0,84
θ aralığı (°)	2,5–26,97	2,0–28,1	2,2–28,4
Gözlenen yansıma sayısı	12725	7833	8493
Bağımsız yansıma sayısı	3612	2284	1640
R _{int}	0,048	0,029	0,045
S	1,06	1,04	0,99
R1/wR2	0,041/0,118	0,025/0,063	0,38/ 0,09
max/min (eÅ ⁻³)	0,33/ -0,69	0,48/ -0,63	0,26/-0,24

Şekil 5.3. Kompleks 9–11'in tek kristal yapıları.

Kompleks **9–11**'de, 6-mpa ligandları, Cu(II), Cd(II) ve Cr(III) merkez atomlarına piridin N ve karboksilat O atomları üzerinden koordine olarak beş üyeli şelat halkaları oluşturmuşlardır. Komplekslerin Cu1–N1, Cu1–N2, Cd1–N2 ve Cr1–N2 şelat halkalarının bağ uzunlukları sırasıyla 2,018(2), 2,362(2) ve 2,078(19) Å olarak gözlenmiştir. Bu bağ uzunluklarına karşılık gelen teorik olarak hesaplanan değerler 1,925, 1,890, 2,286, 2,071 ve 2,090 Å olarak elde edildi. Bu halkadaki metal–oksijen bağ uzunlukları 1,948(18) ve 2,267(19) Å aralığında bulunmuştur. Metal merkezin siyanat N atomuyla koordinasyonunda Cu–N3, Cd–N1 ve Cr–N1 bağ uzunlukları 2,026(3), 2,233(3) ve 1,975(4) Å olarak gözlenmiştir ve 1,909, 2,047 ve 1,872 Å olarak hesaplanmıştır. Kompleks 4'te bozulmuş oktahedral geometrisine etkisi olan Cr1–O1 bağ uzunluğu 1,994 (3) Å olarak gözlenmiş ve 2,230 Å olarak hesaplanmıştır.

Kompleks 9–11'de NCS ligandında N=C ve C–S bağ uzunlukları 1,136(5)–1,150(5) ve 1,603(4)–1,646(3) Å aralığında bulunmuş, 1,185–1,205 ve 1,592–1,642 Å olarak hesaplanmıştır. Bu gruba ait N–C–S bağ açısı koordinasyon geometrisine bağlı olarak yaklaşık 180,0°'de gözlenmiştir. Kompleks 9–11'teki piridin halkası üzerindeki N–C bağ uzunlukları 1,326(4)–1,353(3) Å aralığında gözlenirken C–C bağ uzunlukları 1,363(5)–1,513(4) Å aralığında gözlenmiştir.

Kompleks 9'daki Cu (II) atomunun koordinasyon geometrisi için bağ açıları $81,5(8)-161,4(10)^{\circ}$ aralığındadır, buda bozulmuş trigonal bipiramit geometriyi doğrulamaktadır. Şelat halkasına ait O2–Cu1–N1 ve O3–Cu1–N2 bağ açıları sırasıyla $81,5(8)^{\circ}$ ve $81,5(8)^{\circ}$ 'de gözlenmiştir. Polimerik kompleks **10**'un birim hücresinde beş üyeli şelat halkasına ait O1–Cd1–N2 bağ açısı 104,6(9)° olarak ölçülmüştür. Kompleks **11**'de, iki şelat halkasında bulunan 6-mpa'nın O ve N atomları ekvatoral düzlemde bir paralel kenar, siyanat ve su ligandlarının N ve O atomların bulunduğu eksensel düzlem düz bir çizgi oluşturur [N–Cr–O= 180,0]. O2–Cr–O2ⁱ ve N2–Cr–N2ⁱ bağ açıları sırasıyla 172,5(13) ve 175,3(13)° olarak gözlendi. Diğer önemli bağ uzunlukları ve bağ açıları Tablo 5.5.'te verilmiştir.

Komplekslere **9–11**'de 6-mpa, metil grubu, karboksilat, siyanat ve su molekülleri arasında C–H···O, O–H···O ve C–H···S tipi moleküller arası hidrojen bağ etkileşimleri oluşmuştur. Tablo 5.6.'da hidrojen bağlarına ait parametreler ve simetri kodları verilmiştir. Tablo 5.6.'dan, hidrojen bağ etkileşimleri koordine olmamış O3, O2, S1 atomları ve 6-mpa ligandının C6, C7, C8, C14 atomları ve su ligandının O1 atomu arasında oluştuğu görülmektedir.

Küçük koordinasyon ortamı farklılığına rağmen **9–11** kompleksleri için deneysel ve teorik sonuçları arasında iyi bir uyum olduğu söylenebilir.

Kompleks 9			Kompleks 10			Kompleks 11		
Parametreler	Deneysel	HSEh1PBE	Parametreler	Deneysel	HSEh1PBE	Parametreler	Deneysel	HSEh1PBE
Bağ uzunluğu (Å))		Bağ uzunluğu (A	Å)		Bağ uzunluğu (A	Å)	
Cu1–O3	1,999 (18)	2,100	Cd1–N1	2,233 (3)	2,047	Cr1–O2	1,948 (18)	1,886
Cu1–O2	2,002 (18)	1,881	Cd1–O1	2,267 (19)	2,089	Cr1–O2 ⁱ	1,948 (18)	1,868
Cu1–N1	2,018 (2)	1,925	Cd1–N2	2,362 (2)	2,286	Cr1–N1	1,975 (4)	1,872
Cu1–N2	2,018 (2)	1,890	S1C1	1,646 (3)	1,642	Cr1–O1	1,994 (3)	2,230
Cu1–N3	2,026 (3)	1,909	N1C1	1,143 (4)	1,205	Cr1-N2 ⁱ	2,078 (19)	2,071
S1C15	1,603 (4)	1,592				Cr1–N2	2,078 (19)	2,090
N3-C15	1,136 (5)	1,192				S1C1	1,607 (5)	1,600
						N1C1	1,150 (5)	1,185
Bağ açıları (°)			Bağ açıları (°)			Bağ açıları (°)		
O3–Cu1–O2	136,8 (10)	112,0	N1-Cd1-O1	160,1 (9)	153,9	O2–Cr1–O2 ⁱ	172,5 (13)	153,1
O3–Cu1–N1	92,3 (8)	94,3	N1-Cd1-N2	104,6 (9)	128,1	O2–Cr1–N1	93,8 (7)	102,6
O2–Cu1–N1	81,5 (8)	84,6	O1-Cd1-N2	72,4 (7)	78,0	O2 ⁱ -Cr1-N1	93,8 (7)	104,2
O3–Cu1–N2	81,5 (8)	82,9	N1-C1-S1	179,4 (3)	179,6	O2Cr1O1	86,2 (7)	76,9
O2–Cu1–N2	91,0 (8)	89,9				O2 ⁱ -Cr1-O1	86,2 (7)	76,4
N1–Cu1–N2	161,4 (10)	172,4				N1–Cr1–O1	180,0	177,6
O3–Cu1–N3	110,4 (11)	101,6				O2–Cr1–N2 ⁱ	99,5 (7)	99,1
O2–Cu1–N3	112,8 (11)	146,2				O2 ⁱ -Cr1-N2 ⁱ	80,2 (7)	81,8
N1–Cu1–N3	99,6 (10)	97,1				N1-Cr1-N2 ⁱ	92,4 (7)	92,5

Tablo 5.5. Kompleks 9–11 için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 9			Kompleks 10			Kompleks 11		
Parametreler	Deneysel	HSEh1PBE	Parametreler	Deneysel	HSEh1PBE	Parametreler	Deneysel	HSEh1PBE
Bağ açıları (°)						Bağ açıları (°)		
N2–Cu1–N3	99,1 (10)	90,3				O1-Cr1-N2 ⁱ	87,6 (7)	85,3
N3-C15-S1	178,8 (3)	176,6				O2-Cr1-N2	80,2 (7)	80,9
						O2 ⁱ -Cr1-N2	99,5 (7)	97,0
						N1-Cr1-N2	92,4 (7)	89,9
						O1-Cr1-N2	87,6 (7)	92,4
						N2 ⁱ -Cr1-N2	175,3 (13)	177,5
						N1C1S1	180,0	179,9
						Simetri kodu: (i	i) $-x+3/2$, y, $-x$	z+1.

Tablo 5.	.5. (D	evam)
----------	--------	-------

D–H···A	D–H	Н…А	D…A	D–H…A	Simetri kodu
Kompleks 9					
$C7-H7A \cdot \cdot \cdot S1^i$	0,96	3,01	3,932 (4)	160	(i) -x+1/2, y-1/2, -z+3/2
С7–Н7С· · ·О3	0,96	2,34	3,069 (4)	132	
C14–H14C···O2	0,96	2,37	3,098 (4)	132	
Kompleks 10					
C6–H6 \cdot \cdot S1 ⁱ	0,90	3,05	3,893 (3)	157	(i) -x, -y+1, -z+1
Kompleks 11					
$C8\text{-}H8A^{\cdot}\cdot \cdot O2^{i}$	0,96	2,48	2,984 (4)	112	(i) -x+3/2, y, -z+1
O1-H1··· $O3$ ⁱⁱ	0,82 (1)	1,86 (2)	2,650 (2)	160 (3)	(ii) -x+2, -y+2, -z+1

Tablo 5.6. Kompleks 9-11'de gözlenen hidrojen bağ etkileşimleri (Å, °).

5.1.3. Kompleks 12–17'nin yapısal analizleri

Sarı renkte prizma şeklinde elde edilen kompleks **12** [Mn(6-mpa)₂(4(5)MeI)₂]'nin kristal yapısı, monoklinik sistemi içinde P2₁/n uzay grubunda konumlandığı tespit edilmiştir. Kompleks **12**, iki 6-mpa ligandı ve iki 4(5)–metilimidazol ligandının bir Mn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki 4(5)–metilimidazol ligandının N atomları üzerinden Mn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Renksiz blok şeklinde elde edilen Kompleks **13** $[Zn(6-mpa)_2(4(5)MeI)_2]$ 'ün kristal yapısı, monoklinik sistemi içinde P2₁/n uzay grubunda konumlandığı tespit edilmiştir. Kompleks **13**, iki 6-mpa ligandı ve iki 4(5)–metilimidazol ligandının bir Zn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki 4(5)–metilimidazol ligandının N atomları üzerinden Zn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Renksiz prizma şeklinde elde edilen Kompleks **14** $[Cd(6-mpa)_2(4(5)MeI)_2]$ 'ün kristal yapısı, monoklinik sistemi içinde P2₁/c uzay grubunda konumlandığı tespit

edilmiştir. Kompleks **14**, iki 6-mpa ligandı ve iki 4(5)–metilimidazol ligandının bir Cd(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki 4(5)–metilimidazol ligandının N atomları üzerinden Cd(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Sarı renkte prizma şeklinde elde edilen kompleks **15** $[Co(6-mpa)_2(4(5)MeI)_2]'$ in kristal yapısı, monoklinik sistemi içinde P2₁/n uzay grubunda konumlandığı tespit edilmiştir. Kompleks **15**, iki 6-mpa ligandı ve iki 4(5)–metilimidazol ligandının bir Co(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve iki 4(5)–metilimidazol ligandının N atomları üzerinden Co(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **16** [Ni(6-mpa)₂(4(5)MeI)(OAc)], iki 6-mpa ligandı, bir 4(5)– metilimidazol ligandı ve bir asetat ligandının bir Ni(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları, bir 4(5)–metilimidazol ligandının N atomu ve bir asetat ligandınını O atomu üzerinden Ni(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **17** [Cu(6-mpa)₂(4(5)MeI)], iki 6-mpa ligandı ve bir 4(5)–metilimidazol ligandının bir Cu(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir 4(5)–metilimidazol ligandının N atomu üzerinden Cu(II) iyonuna koordine olmasıyla trigonal bipiramit geometrili kompleks yapı oluştuğu anlaşılmıştır.

Elde edilen kristal yapı arıtım verileri Tablo 5.7.'de, **12–17** komplekslerin geometrik yapıları Şekil 5.4.'te ve kompleks **16** ve **17**'nin kütle spektrumları Şekil 5.5.'te verilmektedir.

	Kompleks 12	Kompleks 13	Kompleks 14	Kompleks 15
CCDC numarası	1846402	1889914	1587372	1883573
Kimyasal formül	$\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{MnN}_{6}\mathrm{O}_{4}$	$C_{22}H_{24}N_6O_4Zn$	$C_{22}H_{24}CdN_6O_4$	$\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{CoN}_{6}\mathrm{O}_{4}$
Formül ağırlığı (akb)	491,41	501,84	548,87	495,40
Kristal rengi	Sarı	Renkdiz	Renksiz	Sarı
Kristal sistemi	Monoklinik	Monoklinik	Monoklinik	Monoklinik
Uzay grubu	$P2_1/n$	$P2_1/n$	$P2_1/c$	$P2_1/n$
Sıcaklık (K)	296	296	296	296
Radyasyon tipi	Μο Κα	Μο Κα	Μο Κα	Μο <i>Κ</i> α
Dalgaboyu (Å)	0,71073	0,71073	0,71073	0,71073
Kristal boyutu (mm)	0,79x0,73x0,55	0,18x0,14x0,12	0,53x0,35x0,21	0,66x0,51x0,42
h, k, l aralığı	$-11 \rightarrow 19, -11 \rightarrow 12, -16 \rightarrow 16$	$-11 \rightarrow 10, -13 \rightarrow 13, -17 \rightarrow 17$	$-8 \rightarrow 11, -11 \rightarrow 12, -16 \rightarrow 16$	$-11 \rightarrow 11, -12 \rightarrow 12, -16 \rightarrow 16$
a (Å)	8,9547 (6)	8,9616 (16)	8,9414 (6)	8,9267 (5)
b (Å)	10,2054 (9)	10,102 (2)	10,3077 (5)	10,0906 (4)
c (Å)	13,4572 (8)	13,395 (3)	13,5484 (10)	13,3896 (7)
α (°)	90	90	90	90
β (°)	108,853 (5)	108,517 (6)	109,233 (6)	108,555 (4)
γ (°)	90	90	90	90
$V(Å^3)$	1163,83 (15)	1149,8 (4)	1179,0 (14)	1143,38 (10)
Ζ	2	2	2	2
F(000)	510	520	556	514

Tablo 5.7. Kompleks 12–15'in kristal yapı arıtım verileri [126].

	Kompleks 12	Kompleks 13	Kompleks 14	Kompleks 15
Yoğunluk (g cm ⁻³)	1,402	1,449	1,546	1,439
μ (mm ⁻¹)	0,61	1,11	0,97	0,79
θ aralığı (°)	2,4–27,3	3,1–28,3	2,0–29,6	2,4–27,4
Gözlenen yansıma sayısı	6720	29315	5158	14376
Bağımsız yansıma sayısı	2288	2853	2305	2247
R _{int}	0,024	0,036	0,020	0,070
S	1,04	1,08	0,98	1,07
R1/wR2	0,031/0,089	0,029/0,081	0,024/0,057	0,033/0,084
max/min (eÅ ⁻³)	0,25/-0,17	0,28/0,41	0,38/0,28	0,30/-0,36

Tablo 5.7. (Devam)

Şekil 5.4. Kompleks 12–15'in tek kristal yapıları ve kompleks 16, 17'nin optimize edilmiş molekül yapıları [126].

Şekil 5.5. Kompleks 16 ve 17'nin kütle spektrumları.

6-mpa ligandı, piridin N ve karboksilat O atomları vasıtasıyla merkez atomları ile koordinasyonu sonucu beş üyeli şelat halkalar oluşturmuşlardır. Kompleks **12–15**'de beş üyeli şelat halkasının çevresindeki M–O ve M–N bağ uzunlukları 2,062(13)–2,288(16) Å ve 2,332(16)–2,284(18) Å aralıklarında gözlenmiştir. Teorik hesaplama sonucu bağ uzunlukları 1,951–2,250 Å ve 2,062–2,404 Å aralıklarında elde edilmiştir. Kompleks **16** ve **17** için merkez atomun şelat halkasına M–O ve M–N bağ uzunlukları 1,900–1,918 Å ve 2,102–2,180 Å aralıklarında elde edilmiştir. 4(5)MeI ligandının N atomları ile merkez atomun koordinasyonunu gösteren M–N bağ uzunlukları deneysel/teorik olarak kompleks **12–15** için 2,306(18)–2,233(14) Å/1,982–2,366(14) Å aralığında elde edilmiş, kompleks **16** ve **17** için bu bağ uzunlukları teorik olarak 1,962 ve 1,179 Å olarak hesaplanmıştır. Kompleks **17**'de

merkez atomun asetat ligandının O atomu ile yaptığı bağ uzunluğu 1,863 Å olarak hesaplanmıştır.

Kompleks **12–15**'de M(II) iyon (M=Mn, Zn, Cd, Co) ile oluşturulan şelat halkasında bulunan 6-mpa'nın O ve N atomları ekvatoral düzlemde bir paralelkenar, 4(5)MeI ligandına ait N atomların bulunduğu eksensel düzlem düz bir çizgi oluşturur $[N2-M-N2^{i}= 180,0^{\circ}]$. Ekvatoral düzlem açıları N1–M–N1ⁱ ve O1–M–O1ⁱ 180,0° olarak gözlendi. Bu komplekslerin beş üyeli şelat halkasına ait bağ açıları 71,8(6)–77,2(5)° aralığında gözlenmiş ve 72,8–79,9° aralığında hesaplanmıştır. Kompleks **16**'da N1–Ni–N2, O2–Ni–O4, N3–Ni–O5 bağ açıları 174,4, 173,5, 173,6° olarak hesaplanmıştır. Kompleks **17**'de ise O2–Cu1–O4 ve N1–Cu1–N4 bağ açıları sırasıyla 166,4° ve 163,0° olarak hesaplanmıştır. Kompleks **16** ve **17** için şelat halkasına ait bağ açıları 81,1–98,4° aralığında elde edilmiştir. Diğer önemli bağ uzunlukları ve bağ açıları Tablo 5.8.'de özetlenmiştir.

Kompleks 12–15'de, metil grubu, karboksilat ve 4(5)–metilimidazol arasında C–H···O ve N–H···O tipi moleküller arası hidrojen bağ etkileşimleri oluşmuştur. Tablo 5.9.'da hidrojen bağlarına ait parametreler ve simetri kodları verilmiştir. Tablo 5.9.'dan, hidrojen bağ etkileşimleri koordine olmamış O1, O2 atomları ve 6-mpa ligandının C1, C6 atomları ve 4(5)MeI ligandının N3 atomu arasında oluştuğu görülmektedir.

Küçük koordinasyon ortamı farklılığına rağmen komplekslerin deneysel ve teorik sonuçları arasında iyi bir uyum olduğu söylenebilir.

Kompleks 12			Kompleks 13			Kompleks 14		
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE
Bağ uzunluğu (Å)			Bağ uzunluğu (Å)			Bağ uzunluğu (Å)		
Mn1–O1 ⁱ	2,144 (12)	1,978	Zn1–O1 ⁱ	2,081 (12)	2,027	Cd1–O1 ⁱ	2,288 (16)	2,243
Mn1–O1	2,144 (12)	1,979	Zn1–O1	2,081 (12)	2,027	Cd1O1	2,288 (16)	2,250
Mn1-N2 ⁱ	2,233 (14)	2,056	Zn1–N1 ⁱ	2,275 (13)	2,246	Cd1–N1 ⁱ	2,394 (18)	2,403
Mn1–N2	2,233 (14)	2,038	Zn1–N1	2,275 (13)	2,245	Cd1–N1	2,394 (18)	2,404
Mn1–N1 ⁱ	2,336 (14)	2,064	Zn1-N2 ⁱ	2,135 (14)	2,159	Cd1–N2 ⁱ	2,307 (18)	2,366
Mn1–N1	2,336 (14)	2,062	Zn1–N2	2,135 (14)	2,159	Cd1–N2	2,306 (18)	2,349
Bağ açıları (°)			Bağ açıları (°)			Bağ açıları (°)		
O1 ⁱ -Mn1-O1	180,0	175,9	O1 ⁱ –Zn1–O1	180,0	180,0	O1 ⁱ –Cd1–O1	180,0	175,6
O1 ⁱ -Mn1-N2	90,3 (5)	92,8	O1 ⁱ –Zn1–N2 ⁱ	89,9 (5)	89,2	O1 ⁱ -Cd1-N2 ⁱ	90,1 (6)	85,8
O1 -Mn1-N2	89,7 (5)	91,3	O1–Zn1–N2 ⁱ	90,1 (5)	90,8	O1-Cd1-N2 ⁱ	89,9 (6)	89,8
$O1^{i}$ –Mn1–N2 ⁱ	89,7 (5)	87,3	O1 ⁱ –Zn1–N2	90,1 (5)	90,8	O1 ⁱ -Cd1-N2	89,9 (6)	97,3
O1 –Mn1–N2 ⁱ	90,3 (5)	88,6	O1–Zn1–N2	89,9 (5)	89,2	O1-Cd1-N2	90,1 (6)	87,0
N2 ⁱ -Mn1-N2	180,0	179,8	N2 ⁱ –Zn1–N2	180,0 (8)	180,0	N2-Cd1-N2 ⁱ	180,0	178,8
O1 ⁱ -Mn1-N1 ⁱ	74,3 (5)	80,1	O1 ⁱ –Zn1–N1	102,9 (5)	102,0	O1 ⁱ –Cd1–N1	108,2 (6)	106,3
O1 –Mn1–N1 ⁱ	105,8 (5)	100,1	O1–Zn1–N1	77,1 (5)	78,0	O1-Cd1-N1	71,8 (6)	72,8
N2 –Mn1–N1 ⁱ	93,0 (5)	91,4	N2 ⁱ –Zn1–N1	92,2 (5)	89,3	N2 ⁱ -Cd1-N1	86,3 (7)	87,9
$N2^{i}$ –Mn1–N1 ⁱ	87,0 (5)	88,4	N2-Zn1-N1	87,9 (5)	89,2	N2-Cd1-N1	93,7 (7)	92,1

Tablo 5.8. Kompleks 12–17 için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 12			Kompleks 13			Kompleks 14		
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE
Bağ açıları (°)			Bağ açıları (°)			Bağ açıları (°)		
O1 ⁱ -Mn1-N1	105,8 (5)	99,8	O1 ⁱ –Zn1–N1 ⁱ	77,1 (5)	78,0	O1 ⁱ -Cd1-N1 ⁱ	71,8 (6)	72,9
O1 –Mn1–N1	74,3 (5)	79,9	O1–Zn1–N1 ⁱ	102,9 (5)	102,0	O1–Cd1–N1 ⁱ	108,2 (6)	107,9
N2 -Mn1-N1	87,0 (5)	90,9	N2 ⁱ –Zn1–N1 ⁱ	87,9 (5)	90,7	N2 ⁱ -Cd1-N1 ⁱ	93,7 (7)	90,1
N2 ⁱ -Mn1-N1	93,0 (5)	89,4	N2-Zn1-N1 ⁱ	92,2 (5)	89,3	N2-Cd1-N1 ⁱ	86,3 (7)	90,1
N1 ⁱ -Mn1-N1	180,0	177,8	N1–Zn1–N1 ⁱ	180,0	180,0	N1–Cd1–N1 ⁱ	180,0	177,8
Simetri kodu: (i) -x-	+1, -y, -z+1.		Simetri kodu: (i) -	-x+1, -y+2, -z	+1.	Simetri kodu: (i) –	x, -y+1, -z+1.	

Tablo 5.8. (Devam)

Kompleks 15			Kompleks 16		Kompleks 17	
Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE
Co1–O2 ⁱ	2,062 (13)	1,950	Ni1–O2	1,900	Cu1–O4	1,910
Co1–O2	2,062 (13)	1,951	Ni1–O4	1,900	Cu1–O2	1,918
Co1–N2 ⁱ	2,130 (15)	1,982	Ni1–N1	2,180	Cu1–N4	2,106
Co1–N2	2,130 (15)	1,974	Ni1–N2	2,139	Cu1–N1	2,102
Co1–N1 ⁱ	2,232 (16)	2,271	Ni1–N3	1,962	Cu1–N2	2,179
Co1–N1	2,232 (16)	2,269	Ni1–O5	1,863		
Bağ açıları (°)			Bağ açıları (°)		Bağ açıları (°)	
O2 ⁱ –Co1–O2	180,0	178,9	O2-Ni1-O4	173,5	O4–Cu1–O2	166,4
O2 ⁱ -Co1-N2 ⁱ	90,0 (6)	88,8	O2-Ni1-N1	81,6	O4–Cu1–N4	81,5
O2–Co1–N2 ⁱ	90,0(6)	90,1	O4-Ni1-N1	99,9	O2-Cu1-N4	97,0
O2 ⁱ -Co1-N2	90,0 (6)	91,2	O2-Ni1-N2	89,1	O4–Cu1–N1	96,3
O2-Co1-N2	90,0 (6)	89,9	O4-Ni1-N2	81,1	O2-Cu1-N1	81,2
N2 ⁱ -Co1-N2	180,0	179,9	N1-Ni1-N2	174,4	N4–Cu1–N1	163,0
O2 ⁱ –Co1–N1 ⁱ	77,2 (5)	78,3	O2-Ni1-N3	86,9	O4–Cu1–N2	98,4
O2–Co1–N1 ⁱ	102,8 (5)	101,7	O4-Ni1-N3	86,7	O2-Cu1-N2	95,3
N2 ⁱ -Co1-N1 ⁱ	87,6 (6)	89,5	N1-Ni1-N3	92,7	N4-Cu1-N2	98,4
N2–Co1–N1 ⁱ	92,4 (6)	90,6	N2-Ni1-N3	92,9	N1-Cu1-N2	98,6

Tablo 5.8. (Devam)

			Tal	blo 5.8. (Devam)		
Kompleks 15			Kompleks 16		Kompleks 17	
Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE
Bağ açıları (°)			Bağ açıları (°)			
O2 ⁱ -Co1-N1	102,8 (5)	101,6	O2-Ni1-O5	86,9		
O2-Co1-N1	77,2 (5)	78,4	O4-Ni1-O5	99,5		
N2 ⁱ -Co1-N1	92,4 (6)	89,5	N1-Ni1-O5	84,8		
N2-Co1-N1	87,6 (6)	90,5	N2-Ni1-O5	89,7		
N1 ⁱ -Co1-N1	180,0	178,9	N3-Ni1-O5	173,6		

Simetri kodu: (i) –x+1, –y+2, –z+1.

D–H· · ·A	D–H	Н…А	D…A	D–H…A	Simetri kodu
Kompleks 12					
$N3-H3 \cdot \cdot \cdot O2^i$	0,86	1,95	2,765 (2)	159	(i) -x+3/2, y+1/2, -z+3/2
$C1H1C\cdot\cdot\cdot O1^{ii}$	0,96	2,64	3,284 (3)	125	(ii) -x+1, -y, -z+1
Kompleks 13					
$C6H6A^{\cdot}\cdot\cdot O1^{i}$	0,96	2,52	3,180 (2)	126	(i) -x+1, -y+2, -z+1
N3–H3 \cdot · ·O2 ⁱⁱ	0,86	1,93	2,7597 (19)	161	(ii) -x+3/2, y-1/2, -z+3/2
Kompleks 14					
N3–H3 \cdot · ·O2 ⁱⁱ	0,86	1,96	2,773 (3)	158	(ii) x, -y+1/2, z-1/2
Kompleks 15					
$N3\text{-}H3^{\cdot}\cdot\cdot\text{O1}^{i}$	0,86	1,93	2,758 (2)	160	(i) -x+3/2, y-1/2, -z+3/2
$C1-H1A \cdot \cdot \cdot O2^{ii}$	0,96	2,63	3,122 (3)	112	(ii) -x+1, -y+2, -z+1

Tablo 5.9. Kompleks 12-15'te gözlenen hidrojen bağ etkileşimleri (Å, °).

5.1.4. Kompleks 18-23'ün yapısal analizleri

Renksiz çubuk şeklinde elde edilen kompleks **18** {[Hg(6mpa)(bpy)(OAc)]·2H₂O)}in kristal yapısı, moniklinik sistemi içinde P2₁/c uzay grubunda konumlandığı tespit edilmiştir. Kompleks **18**, bir 6-mpa ligandı, bir 2,2'– bipiridil ligandı, bir asetat ligandı ve koordine olmamış iki su molekülünün bir Hg(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'–bipiridil ligandının N atomları ve bir asetat molekülünün O atomları üzerinden Hg(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kırmızı renkli prizma şeklinde elde edilen kompleks **19** [Co(6-mpa)₂(bpy)]'un kristal yapısı, ortorombik sistemi içinde Pbca uzay grubunda konumlandığı tespit edilmiştir. Kompleks **19**, iki 6-mpa ligandı ve bir 2,2'–bipiridil ligandının bir Co(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir 2,2'–bipiridil ligandının N atomları üzerinden Co(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **20** {[Cu(6-mpa)(bpy)(NO₃)]·3H₂O}, bir 6-mpa ligandı, bir 2,2'–bipiridil ligandı, bir nitrat ligandı ve koordine olmamış üç su molekülünün bir Cu(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'–bipiridil ligandının N atomları ve bir nitrat ligandının O atomu üzerinden Cu(II) iyonuna koordine olmasıyla trigonal bipiramit geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **21** [Mn(6-mpa)(bpy)(H₂O)₂], bir 6-mpa ligandı, bir 2,2'–bipiridil ligandı ve iki su ligandının bir Mn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'–bipiridil ligandının N atomları ve iki su ligandının O atomları üzerinden Mn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **22** { $[Ni(6-mpa)(bpy)(H_2O)_2] \cdot H_2O$ }, bir 6-mpa ligandı, bir 2,2'-bipiridil ligandı, iki su ligandı ve koordine olmamış bir su molekülünün bir Ni(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'-bipiridil ligandının N atomları ve iki su ligandının O atomları üzerinden Ni(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **23** {[Fe(6-mpa)(bpy)(H₂O)₂]·2H₂O}, bir 6-mpa ligandı, bir 2,2'–bipiridil ligandı, iki su ligandı ve koordine olmamış iki su molekülünün bir Fe(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'–bipiridil ligandının N atomları ve iki su ligandının O atomları üzerinden Fe(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Elde edilen kristal yapı arıtım verileri Tablo 5.10.'da, **18–23** komplekslerin geometrik yapıları Şekil 5.6.'te ve kompleks **20–23**'ün kütle spektrumları Şekil 5.7.'de verilmektedir.

	Kompleks 18	Kompleks 19
CCDC numarası	1812523	1857711
Kimyasal formül	$C_{19}H_{21}HgN_3O_6$	$C_{24}H_{20}CoN_4O_4$
Formül ağırlığı (akb)	587,98	487,37
Kristal rengi	Renksiz	Kırmızı
Kristal sistemi	Monoklinik	Ortorombik
Uzay grubu	$P2_1/c$	Pbca
Sıcaklık (K)	296	296
Radyasyon tipi	Μο Κα	Μο Κα
Dalgaboyu (Å)	0,71073	0,71073
Kristal boyutu (mm)	0,71x0,62x0,55	0,78x0,75x0,59
h, k, l aralığı	$-10 \rightarrow 11, -26 \rightarrow 26, -13 \rightarrow 12$	$-16 \rightarrow 14, -21 \rightarrow 23, -19 \rightarrow 21$
a (Å)	9,178 (4)	13,2756 (6)
b (Å)	21,630 (9)	19,049 (1)
c (Å)	10,742 (4)	17,2348 (11)
α (°)	90	90
β (°)	107,64 (3)	90
γ (°)	90	90
V (Å ³)	2032,04 (15)	4358,5 (4)
Z	4	8
F(000)	1136	2008
Yoğunluk (g cm ⁻³)	1,922	1,485
$\mu (mm^{-1})$	7,62	0,83
θ aralığı (°)	1,9–27,8	1,9–30,0
Gözlenen yansıma sayısı	14504	16570
Bağımsız yansıma sayısı	3990	4292
R _{int}	0,051	0,081
S	0,96	1,00
R1/wR2	0,028/0,060	0,045/0,108
max/min (eÅ ⁻³)	0,49/-1,07	0,85/-0,54

Tablo 5.10. Kompleks 18 ve 19'un kristal yapı arıtım verileri.

Şekil 5.6. Kompleks 18, 19'un tek kristal yapıları ve kompleks 20–23'ün optimize edilmiş molekül yapıları.

Şekil 5.7. Kompleks 20–23'ün kütle spektrumları.

2,2'–Bipiridil (bpy) ligandı ile sentezlenen komplekslerde, 6-mpa ligandı merkez iyonuna N, O atomları ile beş üyeli şelat halkaları oluşturmuşlardır. Kompleks **18** için Hg1–N1 ve Hg1–O2 şelat halkalarının bağ uzunlukları 2,284(4) ve 2,349(4) Å olarak gözlenmiş ve 2,445 ve 2,311 Å olarak hesaplanmıştır. Kompleks **19**'da Co1– N1, Co1–N2 için bağ uzunlukları 2,186(2), 2,195(2) Å olarak gözlenmiş ve 2,280 Å olarak hesaplanmıştır. Bu halkadaki Co1–O2, Co1–O3 bağ uzunlukları 2,023(19), 2,029(16) Å olarak gözlenmiştir. Kompleks **20–23** için M–N1 ve M–O2 bağ uzunlukları 1,971–2,318 Å ve 1,922–2,039 Å aralığında gözlenmiştir.

Metal merkez atomların bpy ligandının N atomlarıyla koordinasyonunda M–N bağ uzunlukları kompleks **18** için 2.335(4) ve 2.393(4) Å olarak gözlenmiş, kompleks **19** için 2,144(2) ve 2,220(2)Å olarak gözlenmiştir. Kompleks **20–23**'te 1,886–2,055 Å aralığında hesaplanmıştır. Kompleks **18**'de asetat molekülünün O atomu ile merkez atoma ait Hg1–O3 bağ uzunluğu 2,304(4) Å olarak gözlenmiş ve 2,385 Å olarak hesaplanmıştır. Kompleks **20**'de ise nitrat ligandının O atomu ile merkez atomun Cu1–O3 bağ uzunluğu 2,049 Å olarak elde edildi.

Sentezlenen komplekslerdeki şelat halkasına ait bağ açıları incelendiğinde; kompleks **18** için O2–Hg1–N1 bağ açısı 72,5(14)° olarak gözlenmiş ve 71,5°hesaplanmıştır, kompleks **19** için O2–Co1–N1 ve O3–Co1–N2 bağ açıları 79,2(8)° ve 78,4(7)° olarak gözlenmiş ve 79,1° olarak hesaplanmıştır. Kompleks **20–23**'te şelat halkasına ait bağ açıları 78,6–81,7° aralığında elde edildi. Diğer önemli bağ uzunlukları ve bağ açıları Tablo 5.11.'de özetlenmiştir.

Kompleks **18** ve **19**'da, 6-mpa, karboksilat, 2,2'-bipiridil, asetat ve su molekülleri arasında C–H···O ve O–H···O tipi moleküller arası hidrojen bağ etkileşimleri oluşmuştur. Tablo 5.12.'de hidrojen bağlarına ait parametreler ve simetri kodları verilmiştir. Tablo 5.12.'den, hidrojen bağ etkileşimleri kompleks **18** için koordine olmamış O1, O2, O3, O4, O5 atomları ve 2,2'-bipiridil ligandının C8, C16, C17 atomları ve su molekülünün O5, O6 atomları arasında, kompleks **19** için koordine olmamış O1, O2, O3, O4 atomları ve 2,2'–bipiridil ligandının C15, C16, C18, C23, C24 atomları ve 6-mpa ligandının C5 atomu arasında oluştuğu görülmektedir.

Küçük koordinasyon ortamı farklılığına rağmen komplekslerin deneysel ve teorik sonuçları arasında iyi bir uyum olduğu söylenebilir.

Kompleks 18			Kompleks 19			Kompleks 20	
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE
Bağ uzunluğu (Å)			Bağ uzunluğu (Å)			Bağ uzunluğu (Å)	
Hg1–O2	2,349 (4)	2,311	Co1–O2	2,023 (19)	1,905	Cu1–O2	1,940
Hg1–O3	2,304 (4)	2,385	Co1–O3	2,029 (16)	1,905	Cu1–O3	1,968
Hg1–N1	2,284 (4)	2,445	Co1–N1	2,186 (2)	2,280	Cu1-N1	2,295
Hg1–N2	2,335 (4)	2,492	Co1–N2	2,195 (2)	2,280	Cu1-N2	2,030
Hg1–N3	2,393 (4)	2,468	Co1–N3	2,144 (2)	1,932	Cu1-N3	2,010
			Co1–N4	2,220 (2)	1,932		
Bağ açıları (°)			Bağ açıları (°)			Bağ açıları (°)	
O2-Hg1-O3	85,9 (15)	105,4	O2–Co1–O3	103,7 (8)	94,0	O2-Cu1-O3	93,9
O2-Hg1-N1	72,5 (14)	71,5	O2-Co1-N1	79,2 (8)	79,1	O2-Cu1-N1	78,6
O3-Hg1-N1	121,0 (13)	126,0	O3-Co1-N1	88,2 (7)	84,9	O3-Cu1-N1	87,2
O2-Hg1-N2	151,8 (14)	144,9	O2-Co1-N2	88,7 (8)	84,9	O2-Cu1-N2	168,9
O3-Hg1-N2	104,8 (15)	96,6	O3-Co1-N2	78,4 (7)	79,1	O3-Cu1-N2	92,7
N1-Hg1-N2	120,1 (14)	116,5	N1-Co1-N2	159,4 (7)	156,6	N1-Cu1-N2	110,7
O2-Hg1-N3	82,2 (14)	79,8	O2-Co1-N3	163,1 (8)	173,3	O2-Cu1-N3	91,7
O3-Hg1-N3	116,5 (13)	112,5	O3-Co1-N3	93,0 (8)	92,1	O3-Cu1-N3	167,2
N1-Hg1-N3	114,0 (13)	119,4	N1-Co1-N3	104,7 (8)	104,3	N1-Cu1-N3	105,2
N2-Hg1-N3	69,6 (14)	66,5	N2-Co1-N3	91,7 (8)	93,4	N2-Cu1-N3	80,1
			O2–Co1–N4	89,9 (8)	92,1		

Tablo 5.11. Kompleks **18–23** için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 18			Kompleks 19			Kompleks 20	
Parametreler	XRD	HSEh1PBE	Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE
			Bağ açıları (°)				
			O3–Co1–N4	163,9 (8)	173,3		
			N3-Co1-N4	74,2 (8)	82,0		
			N1–Co1–N4	85,8 (8)	93,4		
			N2-Co1-N4	111,1 (8)	104,3		

Tablo 5.11. (Devam)

		Tablo 5	11 (Devam)		
Kompleks 21		Kompleks 22		Kompleks 23	
Parametreler	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE
Bağ uzunluğu (Å)		Bağ uzunluğu (Å)		Bağ uzunluğu (Å)	
Mn1–O2	1,987	Ni1-O2	2,039	Fe1–O2	1,965
Mn1–O3	2,126	Ni1–N1	2,045	Fe1–O3	2,107
Mn1–O4	2,117	Ni1–N2	1,966	Fe1–O4	2,092
Mn1-N1	1,971	Ni1–N3	1,995	Fe1–N1	2,051
Mn1-N2	1,886			Fe1–N2	1,947
Mn1-N3	1,898			Fe1–N3	1,952
Bağ açıları (°)		Bağ açıları (°)		Bağ açıları (°)	
O2-Mn1-O3	85,7	O2-Ni1-N1	80,1	O2–Fe1–O3	86,5
O2-Mn1-O4	75,8	O2-Ni1-N2	157,3	O2–Fe1–O4	84,9
O3-Mn1-O4	78,9	N1-Ni1-N2	122,6	O3–Fe1–O4	77,7
O2-Mn1-N1	81,7	O2-Ni1-N3	97,1	O2-Fe1-N1	81,5
O3-Mn1-N1	89,0	N1-Ni1-N3	100,9	O3–Fe1–N1	166,2
O4-Mn1-N1	155,1	N2-Ni1-N3	81,4	O4–Fe1–N1	94,3
O2-Mn1-N2	97,1			O2-Fe1-N2	97,1
O3-Mn1-N2	170,7			O3-Fe1-N2	93,5
O4-Mn1-N2	93,1			O4–Fe1–N2	170,9
N1-Mn1-N2	100,2			N1-Fe1-N2	94,8
O2-Mn1-N3	167,3			O2-Fe1-N3	171,9

		Tat	blo 5.11. (Devam)		
Kompleks 21		Kompleks 22		Kompleks 23	
Parametreler	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE
Bağ açıları (°)				Bağ açıları (°)	
O3-Mn1-N3	92,6			O3–Fe1–N3	85,5
O4-Mn1-N3	91,5			O4–Fe1–N3	94,2
N1-Mn1-N3	110,8			N1–Fe1–N3	106,6
N2-Mn1-N3	82,7			N2–Fe1–N3	82,6
D–H· · · A	D–H	Н…А	D…A	D–H…A	Simetri kodu
--	----------	----------	------------	---------	------------------------
Kompleks 18					
С8–Н8∙ ∙ ∙О2	0,93	2,43	3,078 (7)	127	(i) x+1, y, z+1
С17-Н17· · · О4	0,93	2,50	3,175 (8)	129	(ii) -x+1, -y+1, -z
$C16H16\cdot\cdot\cdot O1^{i}$	0,93	2,37	3,111 (7)	136	
$O6-H6A \cdot \cdot \cdot O1^{ii}$	0,82 (2)	2,10 (4)	2,884 (7)	161 (9)	
O6–H6B· · · O5	0,83 (2)	2,02 (4)	2,753 (9)	147 (8)	
O5–H5A· · ·O3	0,81 (2)	2,00 (3)	2,789 (6)	165 (9)	
$O5-H5B \cdot \cdot \cdot O5^{ii}$	0,80 (2)	2,32 (6)	2,747 (13)	114 (6)	
Kompleks 19					
$C18\text{-}H18\cdot\cdot\cdot O1^{i}$	0,93	2,63	3,364 (4)	137	(i) x-1/2, -y+3/2
C16–H16· · ·O1 ⁱⁱ	0,93	2,48	3,363 (4)	159	(ii) -x+1/2, y-1/2
C23–H23· \cdot ·O4 ⁱⁱⁱ	0,93	2,56	3,441 (4)	158	(iii) x, -y+3/2, z+1/2
С15-Н15· · · ОЗ	0,93	2,64	3,171 (4)	117	(iv) x-1/2, y, -z+1/2
C24–H24· · · O2	0,93	2,63	3,151 (4)	116	
$C5-H5 \cdot \cdot \cdot O1^{iv}$	0,93	2,59	3,159 (4)	120	

Tablo 5.12. Kompleks 18 ve 19'da gözlenen hidrojen bağ etkileşimleri (Å, °).

5.1.5. Kompleks 24–28'in yapısal analizleri

Kırmızı renkte prizma şeklinde elde edilen kompleks **24** { $[Co(3-mpa)_2(phen)]\cdot 3H_2O$ }'ün kristal yapısı, monoklinik sistemi içinde P2₁/c uzay grubunda konumlandığı tespit edilmiştir. Kompleks **24**, iki 3-mpa ligandı, bir 1,10–fenantrolin ligandı ve koordine olmamış iki su molekülünün bir Co(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 3-mpa ligandının N, O atomları ve bir 1,10–fenantrolin ligandının N atomları üzerinden Co(II) iyonua koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **25** { $[Hg(6-mpa)_2(phen)] \cdot 2H_2O$ }, iki 6-mpa ligandı, bir 1,10–fenantrolin ligandı ve iki koordine olmamış su molekülünün bir Hg(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandlarının N, O atomları ve bir 1,10–fenantrolin ligandının N atomları üzerinden Hg(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır. Kompleks **26** { $[Mn(6-mpa)_2(phen)] \cdot 2H_2O$ }, iki 6-mpa ligandı, bir 1,10–fenantrolin ligandı ve koordine olmamış iki su molekülünün bir Mn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir 1,10–fenantrolin ligandının N atomları üzerinden Mn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks 27 { $[Co(6-mpa)_2(phen)] \cdot H_2O$ }, iki 6-mpa ligandı, bir 1,10–fenantrolin ligandı ve koordine olmamış bir su molekülünün bir Co(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir 1,10–fenantrolin ligandının N atomları üzerinden Co(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **28** {[Ni(6-mpa)₂(phen)]·H₂O}, iki 6-mpa ligandı, bir 1,10–fenantrolin ligandı ve koordine olmamış bir su molekülünün bir Ni(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir 1,10–fenantrolin ligandının N atomları üzerinden Ni(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Elde edilen kristal yapı arıtım verileri Tablo 5.13.'te ve **24–28** komplekslerin geometrik yapıları Şekil 5.8.'de ve kopmleks **25–28**'nin kütle spektrumları Şekil 5.9.'da verilmektedir.

CCDC numarası	1567105
Kimyasal formül	$C_{26}H_{20}CoN_4O_4 \cdot 3(H_2O)$
Formül ağırlığı (akb)	565,44
Kristal rengi	Kırmızı
Kristal sistemi	Monoklinik
Uzay grubu	$P2_1/c$
Sıcaklık (K)	296
Radyasyon tipi	Μο Κα
Dalgaboyu (Å)	0,71073
Kristal boyutu (mm)	0,79x0,67x0,57
h, k, l aralığı	$-12 \rightarrow 12, -23 \rightarrow 23, -19 \rightarrow 19$
a (Å)	10,0043 (4)
b (Å)	18,3878 (8)
c (Å)	15,5370 (5)
α (°)	90
β (°)	104,923 (3)
γ (°)	90
$V(Å^3)$	2761,74 (19)
Z	4
F(000)	1172
Yoğunluk (g cm ⁻³)	1,360
$\mu (mm^{-1})$	0,67
θ aralığı (°)	1,4–27,7
Gözlenen yansıma sayısı	43519
Bağımsız yansıma sayısı	6116
R _{int}	0,055
S	0,99
R1/wR2	0,058/0,191
max/min (eÅ ⁻³)	1,14/-0,46

Tablo 5.13. Kompleks 24'ün kristal yapı arıtım verileri.

Şekil 5.8. Kompleks 24'ün tek kristal yapısı ve kompleks 25–28'in optimize edilmiş molekül yapıları.

Şekil 5.9. Kompleks **25–28**'in kütle spektrumları.

1,10–Fenantrolin (phen) ligandı ile sentezlenen komplekslerde, 6-mpa ligandları merkez iyonuna N, O atomları ile beş üyeli şelat halkaları oluşturmuşlardır. Kompleks **24** için Co1–N1 ve Co1–N2 şelat halkalarının bağ uzunlukları 2,122(3) ve 2,127(3) Å olarak gözlenmiş ve 1,938 ve 1,945 Å olarak hesaplanmıştır. Kompleks **25–28**'da M–N1, M–N2, Şelat halkalarının bağ uzunlukları 1,974–2,576 Å aralığında elde edildi. Bu halkadaki M–O bağ uzunlukları kompleks **24** için 2,053(2) ve 2,037(3) Å olarak gözlenmiştir. Kompleks **25–28** için M–O bağ uzunlukları 1,914–2,342 Å aralığında hesaplanmıştır.

Metal merkezin phen ligandının N atomuyla koordinasyonunda kompleks **24** için Co–N uzunlukları sırasıyla 2,146(3) ve 2,133(3) Å olarak gözlenmiştir. Elde edilen komplekslerin M–N bağ uzunlukları 1,936–2,547 Å aralığında hesaplanmıştır.

Kompleks **24** için 6-mpa ligandı N–C bağ uzunlukları 1,332(5)–1,350(5) Å ararığında gözlenmiş ve 1,332–1,345 Å aralığında hesaplanmıştır. 1,10–fenantrolin ligandına ait N–C bağ uzunlukları ise 1,319(5)–1,349(5) aralığında gözlenmiş ve 1,339–1,379 Å aralığında hesaplanmıştır. Kompleks **24**'e ait piridin halkasındaki C–C bağ uzunlukları 6-mpa için 1,354(7)–1,400(5) Å ve 1,10–fenantrolin ligandı için 1,326(7)–1,450(5) Å aralığında gözlenmiştir.

Sentezlenen komplekslerdeki şelat halkasına ait bağ açıları incelendiğinde kompleks **24** için O1–Co1–N1 ve O3–Co1–N2 sırasıyla 77,3(10)° ve 77,5(10)° olarak gözlenmiş, 83,9° ve 83,5° olarak hesaplanmıştır. Kompleks **25–28**'de şelat halkasına ait bağ açıları 69,26–82,2° aralığında elde edildi. Diğer önemli bağ uzunlukları ve bağ açıları Tablo 5.14.'te özetlenmiştir.

Kompleks **24**'te, 6-mpa ve karboksilat molekülleri arasında C–H···O tipi moleküller arası hidrojen bağ etkileşimleri oluşmuştur. Tablo 5.15.'te hidrojen bağlarına ait parametreler ve simetri kodları verilmiştir. Tablo 5.15.'ten, hidrejen bağ

etkileşimleri koordine olmamış O1 atomu ve 6-mpa ligandının C8 atomu arasında oluştuğu görülmektedir.

Küçük koordinasyon ortamı farklılığına rağmen deneysel ve teorik sonuçları arasında iyi bir uyum olduğu söylenebilir.

Kompleks 24			Kompleks 25	
Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE
Bağ uzunluğu (Å)			Bağ uzunluğu (Å)	
Co1–O3	2,037 (3)	1,892	Hg1–O1	2,342
Co1–O1	2,053 (2)	1,877	Hg1–O3	2,315
Co1–N1	2,122 (3)	1,938	Hg1–N1	2,497
Co1–N2	2,127 (3)	1,945	Hg1–N2	2,527
Co1–N3	2,146 (3)	1,931	Hg1–N4	2,479
Co1–N4	2,133 (3)	1,930	Hg1–N3	2,474
Bağ açıları (°)			Bağ açıları (°)	
O3–Co1–O1	167,7 (10)	175,0	O1-Hg1-O3	148,3
O3-Co1-N1	95,2 (11)	92,6	O1-Hg1-N1	70,0
O1-Co1-N1	77,3 (10)	83,9	O3–Hg1–N1	93,1
O3–Co1–N2	77,5 (10)	83,5	O1-Hg1-N2	91,8
O1–Co1–N2	93,3 (11)	93,0	O3-Hg1-N2	69,6
N1-Co1-N2	94,6 (11)	90,9	N1-Hg1-N2	112,8
O3-Co1-N3	98,4 (11)	92,2	O1-Hg1-N4	83,9
O1-Co1-N3	90,3 (11)	91,5	O3-Hg1-N4	124,2
N1-Co1-N3	164,9 (11)	174,4	N1-Hg1-N4	90,6
O3–Co1–N4	94,5 (11)	91,7	N2-Hg1-N4	153,2
O1-Co1-N4	95,9 (11)	91,9	O1-Hg1-N3	109,1
N1–Co1–N4	94,8 (12)	92,2	O3-Hg1-N3	96,4
N2-Co1-N4	168,1 (12)	174,4	N1-Hg1-N3	158,3
N2-Co1-N3	94,7 (11)	92,4	N2-Hg1-N3	88,8
N3-Co1-N4	77,7 (12)	84,9	N4-Hg1-N3	67,9

Tablo 5.14. Kompleks 24–28 için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 26		Kompleks 27		Kompleks 28			
Parametreler	HSEh1PBE	Parametreler HSEh1PBE		Parametreler	HSEh1PBE		
Bağ uzunluğu (.	Å)	Bağ uzunluğu (Å)	Bağ uzunluğu (Bağ uzunluğu (Å)		
Mn1–O3	1,941	Co1–O2	1,914	Ni1–O2	1,869		
Mn1–O1	1,941	Co1–O3	1,914	Ni1–O3	1,839		
Mn1–N2	2,089	Co1–N1	2,075	Ni1–N1	2,567		
Mn1–N1	2,089	Co1–N2	2,238	Ni1–N2	1,974		
Mn1–N3	1,994	Co1–N3	2,034	Ni1–N3	2,547		
Mn1–N4	1,994	Co1–N4	2,196	Ni1–N4	1,936		
Bağ açıları (°)		Bağ açıları (°)		Bağ açıları (°)			
O3-Mn1-O1	177,0	O2–Co1–O3	176,4	O2-Ni1-O3	174,1		
O3-Mn1-N2	80,8	O2-Co1-N1	82,2	O2-Ni1-N1	74,1		
O1-Mn1-N2	101,3	O3-Co1-N1	101,0	O3-Ni1-N1	103,7		
O3-Mn1-N1	101,3	O2-Co1-N2	101,8	O2-Ni1-N2	99,9		
O1–Mn1–N1	80,8	O3-Co1-N2	79,7	O3-Ni1-N2	85,6		
N2-Mn1-N1	91,4	N1-Co1-N2	93,7	N1-Ni1-N2	93,1		
O3-Mn1-N3	89,2	O2-Co1-N3	88,1	O2-Ni1-N3	81,2		
O1-Mn1-N3	88,5	O3-Co1-N3	88,5	O3-Ni1-N3	100,1		
N2-Mn1-N3	94,6	N1-Co1-N3	168,3	N1-Ni1-N3	154,0		
N1-Mn1-N3	168,6	N2-Co1-N3	94,6	N2-Ni1-N3	98,9		
O3-Mn1-N4	88,5	O2-Co1-N4	91,2	O2-Ni1-N4	87,6		
O1-Mn1-N4	89,2	O3-Co1-N4	86,9	O3-Ni1-N4	87,2		
N2-Mn1-N4	168,6	N1–Co1–N4	94,7	N1-Ni1-N4	95,8		
N1-Mn1-N4	94,6	N2-Co1-N4	165,4	N2-Ni1-N4	169,6		
N3-Mn1-N4	81,2	N3-Co1-N4	79,0	N3-Ni1-N4	75,1		

Tablo 5.14. (Devam)

Tablo 5.15. Kompleks 24'te gözlenen hidrojen bağ etkileşimleri (Å, °).

D–H···A	D-H	Н…А	D····A	D–H···A
С8-Н8· · · О1	0,93	2,65	3,187 (5)	117

5.1.6. Kompleks 29-31'in yapısal analizleri

Mavi renkte prizma şeklinde elde edilen kompleks **29** {[Cu(6-mpa)(dipya)(OAc)]·3H₂O}'un kristal yapısı, triklinik sistemi içinde P-1 uzay

grubunda konumlandığı tespit edilmiştir. Kompleks **29**, bir 6-mpa ligandı, bir 2,2'dipiridilamin ligandı, bir asetat ligandı ve koordine olmamış üç su molekülünün bir Cu(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'-dipiridilamin ligandının N atomları ve bir asetat ligandının O atomu üzerinden Cu(II) iyonuna koordine olmasıyla trigonal bipiramit geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **30** {[Co(6-mpa)(dipya)Cl₂]·2H₂O}, bir 6-mpa ligandı, bir 2,2'dipiridilamin ligandı, iki klor atomu ve koordine olmamış iki su molekülünün bir Co(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 2,2'-dipiridilamin ligandının N atomları ve iki Cl atomu üzerinden Co(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **31** {[Zn(6-mpa)₂(dipya)]}, iki 6-mpa ligandı ve bir 2,2'–dipiridilamin ligandının bir Zn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları, bir 2,2'–dipiridilamin ligandının N atomları üzerinden Zn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Elde edilen kristal yapı arıtım verileri Tablo 5.16.'da, **29–31** komplekslerin geometrik yapıları Şekil 5.10.'da kompleks 30 ve 31 için kütle spektrumları Şekil 5.11.'de verilmektedir.

CCDC numarası	1586422
Kimyasal formül	$C_{19}H_{18}CuN_4O_4\cdot 3(H_2O)$
Formül ağırlığı (akb)	483.96
Kristal rengi	Mavi
Kristal sistemi	Triklinik
Uzay grubu	P-1
Sıcaklık (K)	296
Radyasyon tipi	Μο Κα
Dalgaboyu (Å)	0,71073
Kristal boyutu (mm)	0,78x0,61x0,38
h, k, l aralığı	$-9 \rightarrow 9, -12 \rightarrow 12, -17 \rightarrow 18$
a (Å)	7,829 (8)
b (Å)	9,776 (10)
c (Å)	14,874 (14)
α (°)	96,432 (8)
β (°)	104,575 (7)
γ (°)	103,068 (8)
$V(Å^3)$	1055,77 (19)
Ζ	2
F(000)	502
Yoğunluk (g cm ⁻³)	1,522
$\mu (mm^{-1})$	1,08
θ aralığı (°)	1,4–27,5
Gözlenen yansıma sayısı	14175
Bağımsız yansıma sayısı	4147
R _{int}	0,075
S	1,11
R1/wR2	0,047/0,124
max/min (eÅ ⁻³)	0,71/-0,64

Tablo 5.16. Kompleks 29'un kristal yapı arıtım verileri.

Şekil 5.10. Kompleks 29'un tek kristal yapısı ve kompleks 30, 31'in optimize edilmiş molekül yapıları.

Şekil 5.11. Kompleks 30 ve 31'in kütle spektrumları.

2,2'-dipiridilamin (dipya) ligandı ile sentezlenen komplekslerde, 6-mpa ligandları merkez iyonuna N, O atomları ile beş üyeli şelat halkaları oluşturmuşlardır. Kompleks **29** için Cu1–N1 ve Cu1–O2 şelat halkalarının bağ uzunlukları 2,019(3) ve 2,154(2) Å olarak gözlenmiş ve 2,066 ve 2,174 Å olarak hesaplanmıştır. Kompleks **30** ve **31** için şelat halkasına ait M–N ve M–O sırasıyla 1,971–2,206 Å ve 1,875–2,032 Å aralıklarında hesapalnmıştır. Metal merkezin dipya ligandının N atomuyla koordinasyonunda kompleks **29** için M–N2 ve M–N4 uzunlukları 2,024(3) ve 1,989(3) Å olarak gözlenmiştir. Bu bağ uzunlukları 2,019 Å olarak hesaplanmıştır. Kompleks **30** ve **31** için metal atomun dipya ile yaptığı bağ uzunlukları 1,971–2,447 Å aralığında hesaplanmıştır.

Kompleks **29**'de merkez atomun asetat ligandı ile yaptığı bağ uzunluğu (Cu1–O3) 2,025 (2) Å olarak gözlenmiş ve 1,938 Å olarak hesaplanmıştır. Kompleks **30**'te ise merkez atomun klor atomları ile yaptığı bağ uzunlukları Co1–Cl1 ve Co1–Cl2 sırasıyla 2,250 ve 2,257 Å olarak hesaplanmıştır.

Sentezlenen komplekslerdeki şelat halkasına ait bağ açıları incelendiğinde; kompleks **29** için N1–Cu1–O2 açısı 80,0(11)° olarak gözlenmiş ve 78,0° olarak hesaplanmıştır. Kompleks **30** ve **31**'ye ait bağ açıları sırasıyla 83,2° ve 79,5° olarak elde edildi. Diğer önemli bağ uzunlukları ve bağ açıları Tablo 5.17.'de özetlenmiştir.

Kompleks **29**'da karboksilat, 2,2'-dipiridilamin, asetat ve su molekülleri arasında O-H···O ve N-H···O tipi moleküller arası hidrojen bağ etkileşimleri oluşmuştur. Tablo 5.18.'de hidrojen bağlarına ait parametreler ve simetri kodları verilmiştir. Tablo 5.18.'den, hidrojen bağ etkileşimleri koordine olmamış O1, O2, O3, O4, O5, O6 atomları ve dipya ligandının N3 ve su moleküllerinin O5, O6, O7 atomları arasında oluştuğu görülmektedir.

Küçük koordinasyon ortamı farklılığına rağmen deneysel ve teorik sonuçları arasında iyi bir uyum olduğu söylenebilir.

Kompleks 29			Kompleks 30		Kompleks 31	
Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE
Bağ uzunluğu (Å)			Bağ uzunluğu (Å)		Bağ uzunluğu (Å)	
Cu1–O2	2,154 (2)	2,174	Co1–O2	1,875	Zn1–O2	2,007
Cu1–O3	2,025 (2)	1,938	Co1–N1	1,991	Zn1–O3	2,032
Cu1–N1	2,019 (3)	2,066	Co1–N4	1,971	Zn1–N1	2,176
Cu1–N2	2,024 (3)	2,019	Co1–N2	1,983	Zn1–N2	2,206
Cu1–N4	1,989 (3)	2,019	Co1–Cl1	2,250	Zn1–N3	2,208
			Co1–Cl2	2,257	Zn1–N5	2,447
Bağ açıları (°)			Bağ açıları (°)		Bağ açıları (°)	
O2–Cu1–O3	94,7 (10)	92,2	O2-Co1-N1	83,2	O2–Zn1–O3	118,7
O2-Cu1-N1	80,0 (11)	78,0	O2-Co1-N4	90,6	O2–Zn1–N1	79,5
O3–Cu1–N1	88,2 (10)	88,9	N1-Co1-N4	92,8	O3–Zn1–N1	87,9
O2-Cu1-N2	112,8 (10)	94,2	O2-Co1-N2	177,2	O2-Zn1-N2	86,1
O3–Cu1–N2	152,5 (11)	173,5	N1-Co1-N2	98,5	O3–Zn1–N2	77,5
N1-Cu1-N2	95,0 (11)	93,6	N4-Co1-N2	91,5	N1-Zn1-N2	151,4
O2-Cu1-N4	95,6 (11)	112,1	O2–Co1–Cl1	89,8	O2-Zn1-N3	153,3
O3–Cu1–N4	89,2 (10)	89,8	N1–Co1–Cl1	173,1	O3–Zn1–N3	87,3
N1–Cu1–N4	174,6 (12)	169,9	N4–Co1–Cl1	87,2	N1-Zn1-N3	109,5

Tablo 5.17. Kompleks 29–31 için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 29			Kompleks 30		Kompleks 31	
Parametreler	XRD	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE
Bağ açıları (°)			Bağ açıları (°)		Bağ açıları (°)	
N2–Cu1–N4	89,5 (11)	86,7	N2–Co1–Cl1	88,5	N2-Zn1-N3	94,4
			O2–Co1–Cl2	86,3	O2–Zn1–N5	79,6
			N1–Co1–Cl2	87,7	O3–Zn1–N5	158,7
			N4–Co1–Cl2	176,8	N1–Zn1–N5	84,7
			N2–Co1–Cl2	91,5	N2–Zn1–N5	117,0
			Cl1–Co1–Cl2	91,8	N3-Zn1-N5	76,4

Tablo 5.17. (Devam)

D–H· · ·A	D–H	H···A	D…A	D–H…A	Simetri kodu
O6–H6A· · ·O3	0,82 (2)	2,06 (2)	2,861 (4)	167 (4)	(i) -x+1, -y+1, -z+2
O6−H6B···O5	0,79 (2)	2,05 (2)	2,833 (4)	171 (5)	(ii) -x+1, -y+2, -z+1
O5–H5A· · ·O1	0,81 (2)	2,14 (2)	2,923 (4)	163 (5)	(iii) x–1, y, z
O7–H7A· · ·O6	0,84 (2)	2,06 (2)	2,866 (5)	161 (4)	
$N3-H3 \cdots O4^i$	0,86	1,96	2,777 (4)	159	
O5–H5B· · ·O1 ⁱⁱ	0,81 (2)	2,28 (4)	2,961 (4)	142 (5)	
$O7-H7B \cdot \cdot \cdot O2^{iii}$	0,83 (2)	2,07 (2)	2,875 (4)	165 (4)	

Tablo 5.18. Kompleks 29'da gözlenen hidrojen bağ etkileşimleri (Å, °).

5.1.7. Kompleks 32–37'nin yapısal analizleri

Kompleks **32** {[VO(6-mpa)(dmbpy)]·SO₃}, bir 6-mpa ligandı, bir 4,4'-dimetil-2,2'dipiridil ligandı, bir oksijen atomu ve koordine olmamış kükürt trioksit molekülünün bir V(IV) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 4,4'-dimetil-2,2'-dipiridil ligandının N atomları ve O atomu üzerinden V(IV) iyonuna koordine olmasıyla trigonal bipiramit geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **33** { $[Fe(6-mpa)(dmbpy)(NO_3)_2] \cdot NO_3$ }, bir 6-mpa ligandı, bir 4,4'dimetil-2,2'-dipiridil ligandı ve üç nitrat ligandının bir Fe(III) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 4,4'-dimetil-2,2'-dipiridil ligandının N atomları ve üç nitrat ligandının O atomları üzerinde Fe(III) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **34** {[Ni(6-mpa)(dmbpy)Cl₂]·H₂O}, bir 6-mpa ligandı, bir 4,4'–dimetil– 2,2'–dipiridil ligandı, iki klor atomu ve koordine olmamış bir su molekülünün bir Ni(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 4,4'–dimetil–2,2'–dipiridil ligandının N atomları ve iki Cl atomu üzerinden Ni(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu anlaşılmıştır.

Kompleks **35** { $[Zn(6-mpa)(dmbpy)Cl_2] \cdot H_2O$ }, bir 6-mpa ligandı, bir 4,4'–dimetil– 2,2'–dipiridil ligandı, iki klor atomu ve koordine olmamış bir su molekülünün bir Zn(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6-mpa ligandının N, O atomları, bir 4,4'–dimetil–2,2'–dipiridil ligandının N atomları ve iki Cl atomu üzerinden Zn(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu görülmüştür.

Kompleks **36** [Cd(6-mpa)₂(dmbpy)], iki 6-mpa ligandı ve bir 4,4'–dimetil–2,2'– dipiridil ligandının bir Cd(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. İki 6-mpa ligandının N, O atomları ve bir 4,4'–dimetil–2,2'–dipiridil ligandının N atomları üzerinden Cd(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu görülmüştür.

Kompleks **37** {[Hg(6-mpa)(dmbpy)(NO₃)₂]·H₂O}, bir 6-mpa ligandı, bir 4,4'– dimetil–2,2'–dipiridil ligandı, iki nitrat ligandı ve koordine olmamış bir su molekülünün bir Hg(II) iyonu ile koordinasyonundan oluştuğu görülmüştür. Bir 6mpa ligandının N, O atomları, bir 4,4'–dimetil–2,2'–dipiridil ligandının N atomları ve iki nitrat ligandının O atomları üzerinde Hg(II) iyonuna koordine olmasıyla bozulmuş oktahedral geometrili kompleks yapı oluştuğu görülmüştür.

Elde edilen **32–37** komplekslerin geometrik yapıları Şekil 5.12.'de ve kütle spektrumları Şekil 5.13.'te verilmektedir.

Şekil 5.12. Kompleks 32–37'nin optimize edilmiş molekül yapıları.

Şekil 5.13. Kompleks 32–37'nin kütle spektrumları.

4,4'–Dimetil–2,2'–dipiridil (dmdpy) ligandı ile sentezlenen komplekslerde, 6-mpa ligandları merkez iyonuna N, O atomları ile beş üyeli şelat halkaları oluşturmuşlardır. Elde edilen komplekslerin M–N ve M–O şelat halkalarının bağ uzunlukları sırasıyla 2,083–2,478 Å ve 1,864–2,311 Å aralığında hesaplanmıştır. Metal merkez atomların dmdpy ligandının N atomlarıyla koordinasyonunda M–N bağ uzunlukları 1,921–2,444 Å aralığında hesaplanmıştır. Kompleks **32**'de V1–O3 bağ uzunluğu 1,561 Å olarak hesaplanmıştır. Kompleks **33** ve **37**'de Metal atomun nitrat ligandının O atomuyla yaptığı koordinasyonda M–O bağ uzunlukları 1,874–2,506 Å aralığında bulunmuştur. Kompleks **34** ve **35**'te ise metal atomun klor atomları ile koordinasyonunda M–Cl bağ uzunlukları 2,183–2,713 Å aralığında elde edildi.

Sentezlenen komplekslerdeki şelat halkasına ait O–M–N bağ açıları 70,5–80,5° aralığında elde edildi. Metal merkez atomların dmdpy ligandının N atomlarıyla koordinasyonuna ait N–M–N bağ açıları 66,9–82,5° aralığında hesaplanmıştır. Kompleks **34** ve **35**'te ise metal atomun klor atomları ile yaptığı Cl1–M–Cl2 bağ açıları sırasıyla 97,4° ve 62,2° olarak bulunmuştur. Diğer önemli bağ uzunlukları ve bağ açıları Tablo 5.19.'da özetlenmiştir.

Kompleks 32		Kompleks 33		Kompleks 34		
Parametreler	HSEh1PBE	Parametreler	HSEh1PBE	Parametreler	HSEh1PBE	
Bağ uzunluğu (A	Å)	Bağ uzunluğu (A	Å)	Bağ uzunluğu (Å)		
V1–O2	2,062	Fe1–O2	1,874	Ni1–O2	1,864	
V1–O3	1,561	Fe1–O3	1,919	Ni1-N1	2,258	
V1-N1	2,083	Fe1–O6	1,874	Ni1–N2	1,921	
V1-N2	2,050	Fe1–O9	2,000	Ni1–N3	1,959	
V1-N3	2,033	Fe1–N1	2,086	Ni1-Cl1	2,183	
		Fe1–N2	2,080	Ni1–Cl2	2,374	
		Fe1–N3	2,041			
Bağ açıları (°)		Bağ açıları (°)		Bağ açıları (°)		
O2-V1-O3	130,1	O2–Fe1–O3	75,2	O2-Ni48-N1	80,1	
O2-V1-N1	76,4	O2–Fe1–O6	114,1	O2-Ni48-N2	90,9	
O3-V1-N1	101,4	O3–Fe1–O6	75,2	N1-Ni48-N2	91,6	
O2-V1-N2	111,9	O2-Fe1-O9	92,6	O2-Ni48-N3	173,4	
O3-V1-N2	118,0	O3–Fe1–O9	156,3	N1-Ni48-N3	100,4	
N1-V1-N2	90,1	O6–Fe1–O9	126,3	N2-Ni48-N3	82,5	
O2-V1-N3	86,8	O2–Fe1–N1	78,2	O2-Ni48-Cl1	92,0	
O3-V1-N3	104,3	O3–Fe1–N1	132,3	N1-Ni48-Cl1	85,6	
N1-V1-N3	154,3	O6–Fe1–N1	71,5	N2-Ni48-Cl1	175,5	
N2-V1-N3	78,2	O9–Fe1–N1	69,7	N3-Ni48-Cl1	94,6	
		O2–Fe1–N2	158,9	O2-Ni48-Cl2	94,0	
		O3–Fe1–N2	81,1	N1-Ni48-Cl2	173,5	
		O6–Fe1–N2	78,1	N2-Ni48-Cl2	85,8	
		O9–Fe1–N2	93,2	N3-Ni48-Cl2	85,2	
		N1-Fe1-N2	122,8	Cl1-Ni48-Cl2	97,4	
		O2–Fe1–N3	83,7			
		O3–Fe1–N3	81,8			
		O6-Fe1-N3	149,2			
		O9-Fe1-N3	74,5			
		N1-Fe1-N3	138,8			
		N2-Fe1-N3	78,3			

Tablo 5.19. Kompleks **32–37** için bazı deneysel ve teorik karşılığı olan geometrik parametreler.

Kompleks 35		Kompleks 36		Kompleks 37	
Parametreler	HSEh1PBE	Parametreler HSEh1PBE		Parametreler	HSEh1PBE
Bağ uzunluğu (A	Å)	Bağ uzunluğu (A	Å)	Bağ uzunluğu (Å)	
Zn1–O2	1,973	Cd1–O2	2,239	Hg1–O2	2,311
Zn1–N1	2,155	Cd1–O3	2,239	Hg1–O3	2,506
Zn1–N2	2,137	Cd1–N1	2,412	Hg1–O6	2,419
Zn1-N3	2,140	Cd1–N2	2,412	Hg1–N1	2,478
Zn1–Cl1	2,496	Cd1–N3	2,444	Hg1–N2	2,421
Zn1–Cl2	2,713	Cd1–N4	2,444	Hg1–N3	2,429
Bağ açıları (°)		Bağ açıları (°)		Bağ açıları (°)	
O2–Zn1–N1	80,5	O2Cd1O3	132,2	O2-Hg1-O3	84,3
O2–Zn1–N2	88,6	O2-Cd1-N1	72,1	O2-Hg1-O6	119,8
N1–Zn1–N2	103,9	O3-Cd1-N1	91,1	O3-Hg1-O6	83,8
O2–Zn1–N3	163,5	O2-Cd1-N2	91,1	O2-Hg1-N1	70,5
N1–Zn1–N3	108,4	O3-Cd1-N2	72,1	O3-Hg1-N1	143,2
N2–Zn1–N3	75,9	N1-Cd1-N2	138,3	O6-Hg1-N1	86,0
O2–Zn1–Cl1	100,8	O2-Cd1-N3	146,9	O2-Hg1-N2	84,2
N1–Zn1–Cl1	93,8	O3-Cd1-N3	80,7	O3-Hg1-N2	91,4
N2–Zn1–Cl1	161,2	N1-Cd1-N3	109,3	O6-Hg1-N2	154,7
N3–Zn1–Cl1	92,7	N2-Cd1-N3	105,3	N1-Hg1-N2	111,4
O2–Zn1–Cl2	95,0	O2-Cd1-N4	80,7	O2-Hg1-N3	152,1
N1–Zn1–Cl2	154,5	O3-Cd1-N4	146,9	O3-Hg1-N3	103,3
N2–Zn1–Cl2	101,0	N1-Cd1-N4	105,3	O6-Hg1-N3	87,9
N3–Zn1–Cl2	82,7	N2-Cd1-N4	109,3	N1-Hg1-N3	111,5
Cl1–Zn1–Cl2	62,2	N3-Cd1-N4	66,9	N2-Hg1-N3	69,0

Tablo 5.19. (Devam)

5.2. Sentezlenen Komplekslerin Titreşim Spektum Çalışmaları

Infrared spektroskopisi organik ve inorganik yapıların analizinde kullanılan en genel spektroskopik yöntemlerden biridir. Bu spektroskopi yöntemi ile moleküllerdeki bağların titreşim frekansları ölçülür ve moleküldeki fonksiyonel gruplar hakkında bilgi edinilir. Sentezlenen kompleksler için FT–IR spektrumu 4000–400 cm⁻¹ aralığında kaydedildi. Bu komplekslere ait teorik titreşim frekansları HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak elde edildi.

HSEh1PBE/6–311G(d,p)/LanL2DZ metodu ile elde edilen titreşim dalga sayıları 0,96 skala faktörü ile çarpılarak deneysel değerlere daha yakın sonuçlar elde edildi [127,128].

5.2.1. Kompleks 1-8'in titreşim frekansları

1, 2, 4, 6 ve 7 kompleksleri { $[Cr(6-mpa)_2(H_2O)_2] \cdot H_2O \cdot NO_3$, $Mn(6-mpa)_2(H_2O)_2$, $Hg(6-mpa)_2 \cdot H_2O$, $[Zn(6-mpa)_2 \cdot H_2O] \cdot H_2O$, $Fe(6-mpa)_3$ }'ne ait FT–IR ve teorik titreşim frekansları Tablo 5.20.'de, FT–IR spektrumları Şekil 5.14.'te verilmiştir.

Literatürde OH gerilme titreşimleri 3700–3550 cm⁻¹ aralığında olduğu görülür [129]. Asimetrik/simetrik serbest OH gerilme titreşimleri değerleri 3767 ve 3772 cm⁻¹/3406 ve 3209 cm⁻¹ olarak hesaplanmıştır. Komplekslerin OH gerilme titreşiminin asimetrik değerleri 3444 ve 3355 cm⁻¹, simetrik değerleri ise 3335, 3228, 3291 ve 3292 cm⁻¹ olarak gözlenmiştir. Asimetrik ve simetrik titreşim modları sırasıyla 3735–3792 ve 3260–3734 cm⁻¹ aralığında hesaplanmıştır. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleksler için FT–IR'de CH gerilme titreşimine karşılık gelen pikler 3041–3088 cm⁻¹ aralığında gözlenmiş ve teorik olarak 3091–3156 cm⁻¹ aralığında hesaplanmıştır. CH₃ gerilme titreşimleri ise 2917–3005 cm⁻¹ aralığında gözlenmiş ve teorik olarak 2999–3060 cm⁻¹ aralığında elde edilmiştir.

Karboksil grubunun asimetrik ve simetrik COO⁻ gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de sırasıyla 1635, 1690, 1622, 1636, 1650 cm⁻¹ olarak gözlendi ve 1740, 1729, 1617, 1738, 1751 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri 1366, 1254, 1252, 1260, 1284 cm⁻¹'de gözlendi ve 1338, 1307, 1313, 1333, 1311 cm⁻¹ olarak hesaplandı. Deneysel/teorik v COO⁻ modları arasındaki fark 269–436/304–440 cm⁻¹ aralığında bulunmuştur. Bu sonuçlar, karboksil grubunun merkez metal iyonuna tek dişli koordinasyonu olduğunu göstermektedir.

Kompleksteki CC gerilme titreşimleri 1586–1609 cm⁻¹ aralığında gözlenmiş ve 1573–1613 cm⁻¹ aralığında hesaplanmıştır. Literatürde NC gerilme titreşimleri Silverstein ve Webster tarafından 1328–1266 cm⁻¹ aralığında belirlenmiştir [134]. Elde edilen **1**, **2**, **4**, **6**, **7** komplekslerde NC gerilme titreşimleri 1254–1365 cm⁻¹ aralığında gözlenmiştir. Teorik olarak karşılık gelen değerler 1263–1309 cm⁻¹ aralığında elde edilmiştir.

Kompleks **1**'de nitrat moleküle ait kuvvetli NO gerilme titreşim piki 1603 cm⁻¹'de gözlenmiş ve 1729 cm⁻¹ olarak hesaplanmıştır. Komplekse ait zayıf NO gerilme titreşimi 1288 cm⁻¹ olarak gözlendi ve teorik olarak 1328 cm⁻¹ olarak elde edildi.

Şekil 5.14. Kompleks 1, 2, 4, 6, 7 için (a) 4000–400 cm $^{-1}$ (b) 1750–400 cm $^{-1}$ aralığında FT–IR spektrumları.

İşaretlemeler	K	ompleks 1	Ко	mpleks 2	Ko	mpleks 4	Kor	npleks 6	Kompleks 7	
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
υ _{as} OH	3444	3783		3763		3735	3355	3792	_	_
$\upsilon_{as}OH\;Serbest$		3767	_	_	_	-		3772	_	_
$\upsilon_s OH$	3335	3734	3228	3640	3291	3260	3292	3373	_	_
υ_s OH Serbest		3406	-	-	-	_	3146	3209	_	_
υCH	3088	3097	3069	3104	3076	3156	3074	3091	3041	3092
υCH_3	2917	3010	2972	3033	3005	3060	2967	2999	2973	3014
υCOO ⁻	1635	1740	1690	1729	1623	1617	1636	1738	1650	1751
υ ΝΟ	1603	1729	-	-	-	-	-	-	-	-
υ СС		1573	1609	1602	1585	1574	1593	1605	1601	1613
βНОН		1612	1564	1551	1462	1486	1621	1628	_	_
β НСС		1609		1451		1446	1466	1451	1468	1454
β НСН	1467	1454	1410	1419		1472		1435	1386	1442
υCOO^-	1366	1338		1307	1251	1313	1260	1333	1284	1311
υ ΝΟ	1288	1328	-	-	-	-	-	-	-	-
υ ΝC	1262	1263	1254	1269	1365	1309	1260	1274	1259	1267
γ ΗCCN		1000		1023	906	1007		1026		1025
γ HCCC	1021	990	1009	982	1026	1020	1014	996	1014	987
γ ΟΝΟΟ		795	-	-	-	-	-	-	-	_
βΟϹΟ		793	782	793		751	810	796		803

Tablo 5.20. Kompleks 1, 2, 4, 6, 7 için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması.

İşaretlemeler	Kompleks 1		Ko	Kompleks 2		Kompleks 4		npleks 6	Kompleks 7	
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
γ OHOHg	_	_	_	-	770	759	—	_	_	_
γ CZnCN	_	_	-	_	-	_	713	709	—	_
γ HOMnO	_	-	678	673	-	_	_	-	_	_
γ OHOZn	_	-	-	-	-	_		645	_	_
β HOCr	555	568	-	-	-	-	-	-	—	-
β COCr	475	462	-	-	-	-	-	-	—	-
βNFeN	_	-	-	-	-	-	-	-	445	447
β HOMn	_	-		507	-	_	_	-	_	_
γ HgCCN	_	-	-	-		440	_	-	_	_
β MnNC	_	-		396	-	_	_	-	_	_

Tablo 5.20. (Devam)

υ: Gerilme titreşimi; β : Düzlem içi açı bükülmesi; γ : Düzlem dışı açı bükülmesi.

5.2.2. Kompleks 9–11'in titreşim frekansları

9–11 kompleksleri { $Cu(NCS)(6-mpa)_2$, [Cd(NCS)(6-mpa)]_n, Cr(NCS)(6-mpa)₂·H₂O}'ne ait FT–IR ve teorik titreşim frekansları Tablo 5.21.'de, FT–IR spektrumları Şekil 5.15.'te verilmiştir.

Literatürde OH gerilme titreşimleri 3700–3550 cm⁻¹ aralığında olduğu görülür [129]. Kompleks **11**'de OH gerilme titreşiminin asimetrik değeri 3740 cm⁻¹ olarak gözlenmiştir. Asimetrik ve simetrik titreşim modları sırasıyla 3796 ve 3686 cm⁻¹ olarak hesaplanmıştır. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleks **9–11** için FT–IR'de CH gerilme titreşimine karşılık gelen pikler 2985–3081 cm⁻¹ aralığında gözlenmiş ve teorik olarak 3094–3157 cm⁻¹ aralığında hesaplanmıştır.

Kompleks **9–11**'de NCS ligandında NC gerilme titreşim pikleri 2072, 2119 ve 2082 cm^{-1} 'de gözlendi. Bu piklere karşılık gelen teorik sonuçlar 1969, 2044 ve 2046 cm^{-1} olarak bulundu. Yine siyanat ligandına ait SC gerilme titreşim pikleri **9–11** komplekslerinde sırasıyla 769, 767 ve 769 cm^{-1} olarak gözlenmiştir.

Karboksil grubunun asimetrik ve simetrik COO^- gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen **9–11** komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de sırasıyla 1701, 1618, 1643 cm⁻¹ gözlemlendi ve 1740, 1628, 1749 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri 1092, 1096, 1083 cm⁻¹'de gözlemlendi ve 1164, 1147, 1148 cm⁻¹ olarak hesaplandı. Deneysel ve teorik v COO⁻ modları arasındaki fark, karboksil grubunun merkez metal iyonuna tek dişli koordinasyonundan dolayı 552–609 ve 481–601 cm⁻¹ aralığında bulunmuştur.

Kompleks **9–11**'te CuN, CdN ve CrN gerilme titreşimleri 505, 835 ve 407 olarak kaydedilmiş ve 528, 841 ve 385 hesaplanmıştır.

Şekil 5.15. Kompleks 9–11 için FT–IR spektrumları.

İşaretlemeler	Ko	mpleks 9	Ко	mpleks 10	Kompleks 11			
	FT–IR HSEh1PBE		FT–IR	HSEh1PBE	FT–IR	HSEh1PBE		
υ _{as} OH	_	_	_	-	3740	3796		
$\upsilon_s OH$	_	-	_	_		3686		
υCH	3081	3106	3074	3157	3070	3110		
υCH		3097	2985	3143	2925	3094		
υ CH ₃		3036		3072	2853	3038		
υCH_3		2933		2951		2943		
υ ΝC	2072	1969	2119	2044	2082	2046		
υ COO-	1701	1740	1618	1628	1643	1749		

Tablo 5.21. Kompleks 9–11 için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması [114].

İşaretlemeler	Ko	mpleks 9	Ко	mpleks 10	Ko	Kompleks 11			
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE			
υ CC	1606	1611	1570	1597	1606	1610			
β НОН	_	_	-	-	1464	1538			
β НСН	1416	1458	1394	1405	1368	1436			
υCOO^-	1092	1164	1096	1147	1083	1148			
ү НССС	829	906	919	945	921	912			
υ CdN	_	_	835	841	_	_			
υSC	769	870	767	841	769	899			
υCdO	_	_	523	444	_	_			
γ SCNCd	_	-	495	442	_	_			
υ CuN	505	528	_	_	_	_			
γ SCNCr	_	_	_	_	470	502			
βSCN	473	528	465	440	450	445			
γ SCNCu	445	461	_	_	_	_			
υ CrN	_	_	_	_	407	385			

Tablo 5.21. (Devam)

v: Gerilme titreşimi; β: Düzlem içi açı bükülmesi; γ: Düzlem dışı açı bükülme bükülmesi.

5.2.3. Kompleks 12–17'nin titreşim frekansları

Kompleks **12–17** { $Mn(6-mpa)_2(4(5)MeI)_2$, $Zn(6-mpa)_2(4(5)MeI)_2$, $Cd(6-mpa)_2(4(5)MeI)_2$, $Co(6-mpa)_2(4(5)MeI)_2$, $Ni(6-mpa)_2(4(5)MeI)(OAc)$, $Cu(6-mpa)_2(4(5)MeI)$ }'ye ait FT–IR ve teorik titreşim frekansları Tablo 5.22.'de, FT–IR spektrumları Şekil 5.16.'da verilmiştir.

Kompleks **12–17**'de 4(5)–metilimidazol 4(5)MeI ligandına ait NH gerilme titreşimleri 3110–3401 cm⁻¹ aralığında gözlenmiştir. Bu titreşim pikleri 3536–3573 cm⁻¹ aralığında teorik hesaplama sonucu elde edildi. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleks **12–17** için deneysel/teorik CH gerilme titreşimleri 6-mpa için 2937–3091 cm⁻¹/3105–3153 cm⁻¹, 4(5)MeI ligandı için 3066–3193 cm⁻¹/3148–3207 cm⁻¹ aralığında elde edilmiştir. Deneysel olarak elde edilen CH₃ gerilme titreşimleri 6-mpa için 2721–3037 cm⁻¹ ve 4(5)MeI için 2789–2966 cm⁻¹ aralıklarında gözlenmiştir. Bu piklere karşılık gelen teorik sonuçlar 3023–3055 cm⁻¹ ve 3026–3065 cm⁻¹ aralıklarında elde edilmiştir. Kompleks **16**'daki asetat ligandına (OAc) ait CH gerilme titreşimleri 2813 cm⁻¹ gözlenmiş ve 3053 cm⁻¹ hesaplanmıştır.

Kompleks **12–17**'de 6-mpa ve 4(5)MeI ligandlarına ait NC gerilme titreşim pikleri sırasıyla 1377–1569 cm⁻¹ ve 1454–1497 cm⁻¹ aralıklarında gözlendi. Bu piklere karşılık gelen teorik gerilem titreşimleri 1391–1579 cm⁻¹ ve 1448–1493 cm⁻¹ aralıklarında elde edilmiştir.

Karboksil grubunun asimetrik ve simetrik COO⁻ gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen **12–17** komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de sırasıyla 1621, 1625, 1587, 1624, 1627, 1617 cm⁻¹ gözlendi, 1601, 1705, 1708, 1601, 1702, 1716, 1732 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri 1272, 1279, 1257, 1280, 1252 ve 1350 cm⁻¹'de gözlendi, 1315, 1330, 1308, 1334, 1324 ve 1331 cm⁻¹ olarak hesaplandı. Deneysel ve teorik v COO⁻ modları arasındaki fark, karboksil grubunun merkez metal iyonuna tek dişli koordinasyonundan dolayı 267–375 ve 293–401 cm⁻¹ aralığında bulunmuştur. Kompleks **16**'da merkez atoma bağlı OAc ligandına ait kuvvetli asimetrik COO⁻ gerilme titreşimi 1587 cm⁻¹ olarak gözlenmiş ve 1677 cm⁻¹ olarak hesaplanmıştır. Simetrik gerilme titreşimi 1239 cm⁻¹ de gözlenmiş ve 419 olarak bulunmuş ve bu değer merkez atoma tek dişli koordinasyonunu göstermektedir.

Şekil 5.16. Kompleks **12–17** için (a) 4000–400 cm⁻¹ (b) 1750–400 cm⁻¹ aralığında FT–IR spektrumları.

· · ·												
Işaretlemeler	Kom	pleks 12	Kompleks 13		Kor	npleks 14	Kon	npleks 15	Kompleks 16		Kompleks 17	
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
υNH	3201	3545	3401	3540	3110	3573	3245	3544	3137	3537	3140	3536
υ CH 4(5)MeI	3127	3161	3132	3154	3066	3207	3193	3162	3076	3169	3089	3148
υ CH 6-mpa	3072	3105	3073	3110	2937	3153	3091	3108	2965	3113	3046	3110
υCHOAc	_	-	_	-	_	_	_	-	2812	3053	_	-
υ CH ₃ 4(5)MeI	2964	3028	2966	3026	2789	3065	2951	3027		3031		3027
$\upsilon CH_3 6$ -mpa	3037	3033	2868	3023	2721	3055	2891	3026	2752	3045	2930	3035
$\upsilon \text{COO}^- 6\text{-mpa}$	1621	1705	1625	1708	1587	1601	1624	1702	1627	1716	1617	1732
$\upsilon \text{COO}^- \text{OAc}$	_	-	_	-	_	-	-	-	1586	1677	-	-
υ CC 6-mpa	1584	1598	1582	1597	1582	1573	1585	1596		1603		1606
υ CC 4(5)MeI		1593		1591	1497	1571		1595		1598	1580	1588
υ NC 6-mpa	1567	1561	1569	1576	1377	1391	1569	1578	1500	1579	1569	1576
υ NC 4(5)MeI	1484	1485	1458	1485	1454	1448	1497	1489	1460	1493	1469	1485
β НСН 6-тра	1456	1449		1441		1477	1460	1445		1441	1439	1437
β HCH 4(5)MeI	1440	1440	1430	1438		1473	1384	1440	1408	1441		1437
β HCC 6-mpa	1433	1435		1431		1442		1431		1394	1431	1435
υCOO^- 6-mpa	1272	1315	1279	1330	1257	1308	1280	1334	1252	1324	1350	1331
$\upsilon \text{COO}^- \text{OAc}$	_	-	_	-	_	-	-	-	1239	1258	-	_
γ HCCC 6-mpa	981	973	980	986	958	940	981	983	961	987	1003	990
β CCN 4(5)MeI	953	932	958	930		926	914	938		943		925

Tablo 5.22. Kompleks 12–17 için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması.

İşaretlemeler	Kompleks 12		Kon	npleks 13	Koi	mpleks 14	Kon	Kompleks 15 Kompleks 16		npleks 16	Kompleks 17	
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
γ HCNCd	_	_	_	_	829	857	-	_	-	_	-	_
γ HCCC 4(5)MeI	829	837	831	841		852	827	826		854	833	840
γ HCNNi	_	_	_	-	_	_	-	-	830	833	-	-
βΟϹΟ	795	788	795	784	770	753	716	793	769	793	763	790
γ CNiCN	_	_	_	-	_	_	-	-	683	708	-	-
γ CCuCN	_	_	_	-	_	_	-	-	-	_	714	706
γ CCdCN	_	_	_	-	658	660	-	-	-	_	-	-
γ NCNMn	661	633	_	-	_	_	-	-	-	_	-	-
γ NCNCd	_	-	_	-		634	-	-	-	_	-	-
βNMnN		479	_	-	_	_	-	-	-	_	-	-
βΟCοΟ	_	-	_	-	_	_	432	447	-	_	-	-
βΟϹͷΟ	_	-	_	-	_	_	-	-	-	_	431	456
βCNMn	421	412	_	_	-	_	-	-	-	-	-	_
β CNNi	_	_	_	_	_	_	-	_	401	395	-	_
υNiN	_	-	_	-	_	_	-	-		378	-	-
υNiO	_	-	_	-	_	_	-	-		378	-	-
βCNCu	_	-	_	-	_	_	-	-	-	_		337
υ MnN		334	_	-	-	-	-	-	-	_	-	-
υ CoN	_	_	_	_	-	_		332	-	_	-	_

Tablo 5.22. (Devam)

υ: Gerilme titreşimi; β: Düzlem içi açı bükülmesi; γ : Düzlem dışı açı bükülmesi.

5.2.4. Kompleks 18–23'ün titreşim frekansları

Kompleks **18–23** {[Hg(6-mpa)(bpy)(OAc)] \cdot 2H₂O, Co(6-mpa)₂(bpy), [Cu(6-mpa)(bpy)(NO₃)] \cdot 3H₂O, Mn(6-mpa)(bpy)(H₂O)₂, [Ni(6-mpa)(bpy)(H₂O)₂] \cdot H₂O, [Fe(6-mpa)(bpy)(H₂O)₂] \cdot 2H₂O}'e ait FT–IR ve teorik titreşim frekansları Tablo 5.23.'te, FT–IR spektrumları Şekil 5.17.'de verilmiştir.

Literatürde OH gerilme titreşimleri 3700–3550 cm⁻¹ aralığında olduğu görülür [129]. Sentezlenen komplekslerde OH gerilme titreşiminin asimetrik değerleri sırasıyla 3370, 3411, 3253, 3355, 3366 cm⁻¹, simetrik titreşim modları kompleks **18** ve **20** için 3242 ve 3253 cm⁻¹ olarak gözlenmiştir. Asimetrik ve simetrik titreşim modları sırasıyla 3724–3770 cm⁻¹ ve 3516–3763 cm⁻¹ aralıklarında hesaplanmıştır. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleks **18–23**'te 6-mpa ve bpy ligandlarında CH gerilme titreşimleri sırasıyla 3025–3192 cm⁻¹ ve 3054–3106 cm⁻¹ aralığında gözlenmiştir. Bu sonuçlara karşılık gelen teorik sonuçlar sırasıyla 3092–3136 cm⁻¹ ve 3096–3152 cm⁻¹ aralıklarında elde edilmiştir. 6-mpa'da deneysel/teorik CH₃ gerilme titreşimleri 2910–3071 cm⁻¹/ 2940–3061 cm⁻¹ aralığında bulunmuştur. Kompleks **18**'deki asetat (OAc) ligandına ait CH gerilme titreşimleri 3028 cm⁻¹ gözlenmiş ve 3020 cm⁻¹ olarak hesaplanmıştır.

Literatürde NC gerilme titreşimleri Silverstein ve Webster tarafından 1328–1266 cm⁻¹ aralığında belirlenmiştir [134]. Elde edilen **18–23** komplekslerinde 6-mpa ve bpy ligandları için NC gerilme titreşimleri sırasıyla 1228–1267 cm⁻¹ ve 1247–1313 cm⁻¹ aralığında gözlenmiştir. Yapılan teorik hesaplama sonucu karşılık gelen değerler sırasıyla 1264–1308 cm⁻¹ ve 1280–1319 cm⁻¹ aralıklarında elde edilmiştir.

Karboksil grubunun asimetrik ve simetrik COO⁻ gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de sırasıyla 1591, 1630, 1657, 1640, 1600, 1655 cm⁻¹ olarak gözlenen bantlar 1607, 1716, 1680, 1713, 1696, 1726 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri 1337, 1313, 1331, 1310, 1315, 1342 cm⁻¹'de gözlendi ve 1356, 1328, 1358, 1296, 1345, 1325 cm⁻¹ olarak hesaplandı. Deneysel ve teorik v COO⁻ modları arasındaki fark, karboksil grubunun merkez metal iyonuna tek dişli koordinasyonundan dolayı deneysel ve teorik olarak 254–330 ve 251–417 cm⁻¹ aralığında bulunmuştur. Kompleks **18**'de merkez atoma bağlı OAc ligandına ait kuvvetli asimetrik COO⁻ gerilme titreşimi 1577 cm⁻¹ olarak gözlenmiş ve 1585 cm⁻¹ olarak hesaplanmıştır. Simetrik gerilme titreşimi 1251 cm⁻¹ de gözlenmiş ve 1245 cm⁻¹ olarak hesaplanmıştır. Deneysel ve teorik modlar arasındaki fark 326 ve 340 cm⁻¹ olarak elde edilmiş ve bu değer merkez atoma tek dişli koordinasyonunu göstermektedir.

Kompleks **20**'de merkez atoma bağlı nitrat (NO₃) ligandına ait NO gerilme titreşimi 1546/1328 cm⁻¹'de gözlenmiş ve 1595/1336 cm⁻¹ olarak hesaplanmış. Düzlem içi eğilme titreşim modu (β ONO) deneysel ve teorik olarak sırasıyla 730 ve 745 cm⁻¹'de elde edildi. Düzlem dışı bükülme (γ OOON) titreşim frekansı 796 cm⁻¹ olarak gözlenmiş ve 813 cm⁻¹ olarak hesaplanmış.

Şekil 5.17. Kompleks **18–23** için (a) 4000–400 cm⁻¹ (b) 1750–400 cm⁻¹ aralığında FT–IR spektrumları.

İsərətləmələr	Kor	mpleks 18	Kor	nnleks 10	Kon	mleks 20	Komr	Jeks 21	Kom	nleks ??	Kor	mleks 23
işaretlemeler	KU	inpleks 18	KU	inpleks 19	Kul	iipieks 20	Конц	JICKS 21	Kulli		Kul	iipieks 23
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
υOH	3370	3732	_	_	3411	3735	3253	3735	3355	3770	3366	3724
υOH	3242	3707	_	-	3253	3516		3629		3763		3603
υ CH bpy	3105	3152	3106	3105	3086	3111	3054	3096	3094	3101	3073	3104
υ CH 6-mpa		3136	3192	3110	3114	3114	3086	3103	3075	3092	3025	3095
υCH_3 6-mpa	3071	3061	2990	3021	2991	3026	2991	3024	2910	2940	2989	3035
$\upsilon CH_3 OAc$	3028	3020	_	_	_	_	_	_	_	_	_	_
βНОН	1634	1630	_	_	1627	1635	1491	1575	1568	1627	1621	1639
υCOO ⁻	1591	1607	1630	1716	1657	1680	1640	1713	1600	1696	1655	1726
υ CC bpy		1595	1595	1604	1602	1616		1586	1495	1572	1569	1571
υ CC 6-mpa	1577	1585	1572	1599	1577	1599	1587	1597		1603		1570
υ ΝΟ	_	_	_	_	1546	1595	_	_	_	_	_	_
β HCH OAc	1488	1500	_	_	_	—	_	_	_	_	_	_
β HCH 6-mpa	1473	1481	1403	1418		1416	1400	1426	1373	1414	1426	1426
β HCC bpy	1439	1452		1428	1476	1455	1438	1439		1438	1440	1440
β HCC 6-mpa		1452	1443	1435	1441	1447	1463	1447	1443	1455	1464	1448
υCOO ⁻	1337	1356	1313	1328	1331	1358	1310	1296	1315	1345	1342	1325
υ ΝΟ	_	_	_	_	1328	1336	_	_	_	_	_	_
υ NC bpy	1313	1319	1259	1299	1313	1314	1247	1280	1284	1303	1282	1296
υ NC 6-mpa		1308	1249	1274	1267	1278	1228	1265	1250	1275	1244	1264

Tablo 5.23. Kompleks 18–23 için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması.

İşaretlemeler	Kor	npleks 18	Kor	npleks 19	Kon	npleks 20	Kom	pleks 21	Kom	pleks 22	Kon	npleks 23
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
β ΟΗΟ	_	_	-	_	_	_	_	_	1019	997	806	819
γ HCCC bpy	1044	1040	1010	991	1016	998	926	945	976	965	1007	946
γ HCCC 6-mpa	1013	1019	925	984	971	988	974	969	910	947	915	912
γ ΟΟΟΝ	_	_	_	_	796	813	_	_	_	_	_	_
βΟCΟ	650	652	799	798	765	801	771	782		794	_	_
βΟΝΟ	_	_	_	_	730	745	_	_	_	_	_	_
β HOFe	_	_	_	_	_	_	_	_	-	_	662	665
γ HOMnO	_	_	_	_	_	_	673	684	_	_	_	_
γ HOFeO	_	_	_	_	_	_	_	_	_	_	588	594
βHOMn	_	_	_	_	_	_	533	560	_	_	_	_
γ CoCCN	_	_	474	462	_	_	_	_	_	_	_	_
ү НОНО	_	_	_	_	_	_	_	_	469	458	_	_
γ OHOFe	_	_	_	_	_	_	_	_	_	_	422	425
β CNCu	_	_	_	_	432	442	_	_	_	_	_	_
γ CCuCN	_	_	_	_		426	_	_	_	_	_	_
υ MnN	_	_	_	_	_	_	413	403	_	_	_	_
γ CNiCN	_	_	_	_	_	_	_	_	416	390	_	_
β CNCo	_	_		384	_	_	_	_	_	_	_	_

Tablo 5.23. (Devam)

v: Gerilme titreşimi; β: Düzlem içi açı bükülmesi; γ: Düzlem dışı açı bükülmesi.

5.2.5. Kompleks 24–28'in titreşim frekasları

Kompleks **24–28** { $[Co(3-mpa)_2(phen)] \cdot 3H_2O$, $[Hg(6-mpa)_2(phen)] \cdot 2H_2O$, $[Mn(6-mpa)_2(phen)] \cdot 2H_2O$, $[Co(6-mpa)_2(phen)] \cdot H_2O$, $[Ni(6-mpa)_2(phen)] \cdot H_2O$ }'e ait FT–IR ve teorik titreşim frekansları Tablo 5.24.'te, FT–IR spektrumları Şekil 5.18.'de verilmiştir.

Literatürde OH gerilme titreşimleri 3700–3550 cm⁻¹ aralığında olduğu görülür [129]. Kompleks **24–28**'de OH gerilme titreşiminin asimetrik değerleri sırasıyla 3384, 3429, 3506, 3494, 3490 cm⁻¹, simetrik değerleri ise 3261, 3256, 3441, 3434, 3434 cm⁻¹ olarak gözlenmiştir. Bu asimetrik ve simetrik titreşim frekanslarına karşılık gelen teorik değerler 3698–3760 cm⁻¹ ve 3212–3616 cm⁻¹ aralığında hesaplanmıştır. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleks **24–28** için FT–IR'de CH gerilme titreşimleri mpa için 3067–3281 cm⁻¹ ve phen ligandı için 3016–3097 cm⁻¹ olarak gözlenmiş. Teorik olarak karşılık gelen değerler mpa ve phen için sırasıyla 3108–3157 cm⁻¹ ve 3098–3148 cm⁻¹ aralıklarında hesaplanmıştır. mpa ligandında metil gurubuna ait CH₃ gerilme titreşimleri deneysel/teorik olarak 2960–3046 cm⁻¹/ 3022–3123 cm⁻¹ aralıklarında elde edilmiştir.

Karboksil grubunun asimetrik ve simetrik COO⁻ gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen **24–28** komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de sırasıyla 1615, 1559, 1721, 1635, 1619 cm⁻¹ olarak gözlendi ve 1691, 1556, 1704, 1722, 1733 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri 1276, 1334, 1341, 1272, 1308 cm⁻¹ olarak gözlendi ve 1342, 1329, 1328, 1333, 1341 cm⁻¹ olarak hesaplandı. Deneysel ve teorik v COO⁻ modları arasındaki fark 225–380 ve 227–392 cm⁻¹ aralığında bulunmuştur. Bu souçlar, karboksil grubunun merkez metal iyonuna tek dişli koordine olduğunu göstermektedir.

Literatürde NC gerilme titreşimleri Silverstein ve Webster tarafından 1328–1266 cm⁻¹ aralığında belirlenmiştir [134]. Elde edilen **24–28** komplekslerinde mpa ve phen ligandları için NC gerilme titreşimleri sırasıyla 1242–1384 cm⁻¹ ve 1225–1358 cm⁻¹ aralığında gözlenmiştir. Teorik hesaplama sonucu karşılık gelen değerler sırasıyla 1236–1393 cm⁻¹ ve 1234–1349 cm⁻¹ aralıklarında elde edilmiştir.

Şekil 5.18. Kompleks **24–28** için (a) 4000–400 cm⁻¹ (b) 1750–400 cm⁻¹ aralığında FT–IR spektrumları.

İşaretlemeler	Kom	pleks 24	Kor	mpleks 25	Kon	pleks 26	Kom	pleks 27	Kompleks 28	
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
υOH	3384	3738	3429	3698	3506	3702	3494	3760	3490	3715
υOH	3261	3485	3256	3212	3441	3616	3434	3430	3434	3556
υ CH mpa	3097	3113	3140	3157	3067	3108	3281	3109		3108
υ CH phen	3060	3106	3097	3148	3016	3106	3065	3098	3077	3098
υ CH ₃ mpa	3014	3123	3046	3067	2960	3022	3025	3036	3005	3028
υCOO^-	1615	1691	1559	1556	1721	1704	1635	1722	1619	1733
β ΗΟΗ		1637	1582	1607		1641		1628		1638
υ CC phen	1577	1602	1657	1630	1617	1621	1615	1615		1620
υ CC mpa		1591	1571	1598	1590	1602	1593	1603	1593	1609
β HCC mpa	1452	1446	1433	1441	1458	1451	1426	1434	1406	1394
β HCC phen		1409		1421	1405	1412	1406	1411	1382	1389
β НСН	1356	1407	1460	1476	1426	1417	1372	1366		1368
υCOO^-	1276	1342	1334	1329	1341	1328	1272	1333	1308	1341
υ NC mpa	1242	1236	1384	1393	1251	1260	1252	1268	1252	1278
υ NC phen	1225	1234	1358	1349	1304	1288	1228	1332	1230	1323
γ HCCC mpa	1045	1025	935	943	1002	983	1005	987	1009	987
γ HCCC phen	967	941	955	960		963		971	972	972
γ OHOHg	_	_	834	844	_	_	_	_	_	_
γ CNiCN	_	_	_	-	_	_	_	_	726	723

Tablo 5.24. Kompleks 24–28 için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması.

İşaretlemeler	Kon	npleks 24	Ko	Kompleks 25		Kompleks 26		Kompleks 27		Kompleks 28	
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PB	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	
						Е					
γ CCoCN	_	-	_	_	_	_	677	698	_	_	
υNiO	_	-	-	-	_	-	-	-	456	453	
γ CCNNi	_	-	_	_	_	_	_	_	439	447	
γ ΝΝΝCο	450	414	—	_	_	_	_	_	_	_	
γ OHOMn	_	-	—	_	519	413	_	_	_	_	
γ CHgCN	_	-	422	412	_	_	_	-	_	_	
β CNMn	_	-	_	_		402	_	-	_	_	
υCoN		396	_	_	_	_	_	-	_	_	
γ ΟΗΟϹο	_	-	_	_	—	_		392	_	_	

Tablo 5.24. (Devam)

υ: Gerilme titreşimi; β: Düzlem içi açı bükülmesi; γ : Düzlem dışı açı bükülmesi.

5.2.6. Kompleks 29–31'in titreşim frekansları

Kompleks **29–31** {[Cu(6-mpa)(dipya)(OAc)]·3H₂O, [Co(6-mpa)(dipya)Cl₂]·2H₂O, Zn(6-mpa)₂(dipya)}'e ait FT–IR ve teorik titreşim frekansları Tablo 5.25.'te, FT–IR spektrumları Şekil 5.19.'da verilmiştir.

Literatürde OH gerilme titreşimleri 3700–3550 cm⁻¹ aralığında olduğu görülür [129]. Kompleks **29** ve **30**'da OH gerilme titreşiminin asimetrik değerleri 3507 ve 3351 cm⁻¹, simetrik değerleri ise 3309 ve 3248 cm⁻¹ olarak gözlenmiştir. Bu gerilme titreşimlerine karşılık gelen teorik asimetrik/simetrik titreşim modları sırasıyla 3780 ve 3719 cm⁻¹/3456 ve 3636 cm⁻¹ olarak hesaplanmıştır. **29–31** komplekslerinde 2,2'– dipiridilamin ligandına ait NH gerilme titreşimleri 3423, 3217, 3354 cm⁻¹ olarak gözlenmiş ve 3518, 3526, 3512 cm⁻¹ olarak hesaplanmıştır. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleks **29–31** için FT–IR'de CH gerilme titreşimine karşılık gelen pikler 6-mpa için 3084, 3109 ve 3089 cm⁻¹, dipya ligandı için 3140, 3140 ve 3178 cm⁻¹ olarak gözlenmiştir. Teorik olarak karşılık gelen değerler 6-mpa ve dipya için sırasıyla 3113, 3108, 3110 ve 3115, 3160, 3135 cm⁻¹ olarak hesaplanmıştır.

Literatürde NC gerilme titreşimleri Silverstein ve Webster tarafından 1328–1266 cm⁻¹ aralığında belirlenmiştir [134]. Elde edilen **29–31** komplekslerinde 6-mpa ve dipya ligandları için NC gerilme titreşimleri sırasıyla 1259, 1269, 1274 cm⁻¹ ve 1249, 1244, 1258 cm⁻¹ olarak gözlenmiştir. Teorik hesaplama sonucu karşılık gelen titreşim bantları sırasıyla 1294, 1266, 1276 cm⁻¹ ve 1286, 1262, 1269 cm⁻¹ aralıklarında elde edilmiştir.

Karboksil grubunun asimetrik ve simetrik COO⁻ gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen **29–31** komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de 1651, 1651, 1637 cm⁻¹ olarak gözlendi, 1693 ve 1748, 1721 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri 1372, 1305, 1314 cm⁻¹ olarak gözlenmiştir. Teorik hesaplama sonucu 1338, 1313, 1337 cm⁻¹ olarak elde edildi. Deneysel/teorik v COO⁻ modları arasındaki fark, karboksil grubunun merkez metal iyonuna tek dişli koordinasyonundan dolayı 279, 346, 323/335, 435, 384 cm⁻¹ olarak bulunmuştur. Kompleks **29**'da metal atoma bağlı asetat (OAc) ligandı için asimetrik/simetrik COO⁻ titreşim modları 1585/1404 cm⁻¹ olarak gözlenmiş ve 1645/1368 cm⁻¹ olarak hesaplanmıştır. Deneysel ve teorik modlar arasındaki fark 181 ve 277 olarak bulunmuş ve bu değer merkez metal iyonuna tek dişli koordinasyonu

Şekil 5.19. Kompleks 29-31 için FT-IR spektrumları.

İşaretlemeler	Kon	npleks 29	Kon	npleks 30	Kon	npleks 31
	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
υOH	3507	3780	3351	3719	_	_
υNH	3423	3518	3217	3526	3354	3512
υOH	3309	3456	3248	3636	-	_
υ CH dipya	3140	3115	3140	3160	3178	3135
υ CH 6-mpa	3084	3113	3109	3108	3089	3110
$\upsilon CH_3 OAc$	2991	3047	_	-	-	-
υCH_3 6-mpa	2911	3022	2988	3043	3017	3028
υ COO ⁻ 6-mpa	1651	1693	1651	1748	1637	1721
β НОН		1651	1597	1628	-	-
υ COO ⁻ OAc	1585	1645	_	-	-	-
υ CC 6-mpa		1602		1622	1618	1601
υ CC dipya	1564	1591	1557	1610	1531	1610
β HCC dipya		1582	1481	1484	1480	1479
υ NC 6-mpa	1259	1294	1267	1266	1274	1276
υ NC dipya	1249	1286	1244	1262	1258	1269
β HCC 6-mpa	1531	1575	1451	1450		1448
β НСН 6-тра	1476	1452	1417	1437	1464	1451
β НСН ОАс	1411	1423	-	-	-	_
υ COO ⁻ OAc	1404	1368	-	-	-	_
υ COO ⁻ 6-mpa	1372	1338	1305	1313	1314	1337
γ HCCC dipya	1011	1020	939	969	962	971
γ HCCC 6-mpa	907	989	983	988	989	986
ү НОНО	770	769	527	567	-	-
γ CZnCN	-	-	_	-	712	711
γ CCNCu	538	499	-	-	-	_
υ CoO	-	-	507	465	_	_
γ ZnCCN	_	-	_	_	433	439
β CoNC	-	-	408	402	-	-
υCoCl	-	-		348	-	-

Tablo 5.25. Kompleks 29–31 için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması.

v: Gerilme titreşimi; β: Düzlem içi açı bükülmesi; γ: Düzlem dışı açı bükülmesi.

5.2.7. Kompleks 32–37'nin titreşim frekansları

Kompleks **32–37** {[VO(6-mpa)(dmbpy)]·SO₃, [Fe(6-mpa) (dmbpy)(NO₃)₂]·NO₃, [Ni(6-mpa)(dmbpy)Cl₂]·H₂O, [Zn(6-mpa)(dmbpy)Cl₂]·H₂O, Cd(6-mpa)₂(dmbpy)], [Hg(6-mpa)(dmbpy)(NO₃)₂]·H₂O} 'ye ait FT–IR ve teorik titreşim frekansları Tablo 5.26.'da, FT–IR spektrumları Şekil 5.20.'de verilmiştir.

Literatürde OH gerilme titreşimleri 3700–3550 cm⁻¹ aralığında olduğu görülür [129]. Kompleks **34**, **35** ve **37**'de OH gerilme titreşiminin asimetrik değerleri sırasıyla 3406, 3386, 3410 cm⁻¹, simetrik titreşim modları 3338, 3234, 3243 cm⁻¹ olarak gözlenmiştir. Asimetrik ve simetrik titreşim modları sırasıyla 3764, 3762, 3691cm⁻¹ ve 3543, 3498, 3291 cm⁻¹ aralıklarında hesaplanmıştır. Aromatik moleküller için CH gerilme modları 3100–3000 cm⁻¹ aralığında gözlenir [130]. Kompleks **32–37** için CH gerilme titreşimleri 6-mpa ve dmdpy ligandlarında sırasıyla 2989–3109 cm⁻¹ ve 3057–3189 cm⁻¹ aralığında gözlenmiştir. Teorik olarak 3089–3138 cm⁻¹ ve 3096– 3151 cm⁻¹ olarak hesaplanmıştır. Komplekslerin deneysel/teorik CH₃ gerilme titreşimleri 6-mpa ve dmdpy için 2973–3049 cm⁻¹/3028–3064 cm⁻¹ ve 2937–2993 cm⁻¹/3022–3060 cm⁻¹ aralıklarında elde edilmiştir.

Karboksil grubunun asimetrik ve simetrik COO⁻ gerilme titreşim modları arasındaki fark, komplekslerin merkez iyonlarının koordinasyon ortamı hakkında bilgi verir. Karboksil grubu gerilme titreşimleri 1700–1730 cm⁻¹ aralığında gözlendiği bilinmektedir [131-133]. Sentezlenen komplekslerin kuvvetli asimetrik titreşim modları FT–IR'de sırasıyla 1685, 1659, 1614, 1613, 1653, 1486 cm⁻¹'de gözlendi ve 1765, 1757, 1689, 1700, 1606, 1491 cm⁻¹ olarak hesaplandı. Simetrik gerilme titreşimleri sırasıyla 1151, 1318, 1307, 1376, 1270, 1324 cm⁻¹'de gözlendi, 1102, 1319, 1333, 1361, 1314, 1328 cm⁻¹ olarak hesaplandı. Deneysel ve teorik v COO⁻ modları arasındaki fark 162–534 cm⁻¹ ve 163–663 cm⁻¹ aralığında bulunmuştur. Bu sonuçlar, karboksil grubunun merkez metal iyonuna tek dişli koordinasyonu olduğunu göstermektedir. Literatürde NC gerilme titreşimleri Silverstein ve Webster tarafından 1328–1266 cm⁻¹ aralığında belirlenmiştir [134]. Elde edilen **32–37** komplekslerinde 6-mpa ve dmdpy ligandları için NC gerilme titreşimleri sırasıyla 1242–1258 cm⁻¹ ve 1258–1298 cm⁻¹ olarak gözlenmiştir. Teorik hesaplama sonucu karşılık gelen titreşim gerilmeleri sırasıyla 1270–1298 cm⁻¹ ve 1299–1314 cm⁻¹ aralıklarında elde edilmiştir.

Kompleks **32**'de merkez atoma bağlı O atomuna ait VO gerilme titreşimi 1043 cm⁻¹'de gözlenmiş ve 1070 cm⁻¹ olarak hesaplanmıştır. VN gerilme titreşimi düzlem içi titreşim 561 cm⁻¹ olarak gözlenmiş ve 548 cm⁻¹ olarak hesaplanmıştır. Kompleks **32**'de SO₃ ligandına ait SO gerilme titreşimi 1338 cm⁻¹ olarak gözlenmiş ve teorik hesaplama sonucu 1321 cm⁻¹ olarak elde edilmiştir. Düzlem içi eğilme titreşim modu (β OSO) deneysel ve teorik sonuçları sırasıyla 514 ve 512 cm⁻¹ olarak elde edildi. Düzlem dışı bükülme (γ OOOS) titreşim frekansı 473 cm⁻¹ olarak gözlenmiş ve 492 cm⁻¹ olarak hesaplanmış. Kompleks **33** ve **37**'de merkez atoma bağlı nitrat (NO₃) ligandına ait NO gerilme titreşimi 1342, 1250 cm⁻¹'de gözlenmiş ve 1332, 1234 cm⁻¹ olarak hesaplanmıştır. Deneysel/teorik düzlem içi eğilme titreşim modu (β ONO) 980/989 cm⁻¹ ve 1135/1133 cm⁻¹ olarak elde edilmiştir.

Şekil 5.20. Kompleks **32–37** için (a) 4000–400 cm⁻¹ (b) 1750–400 cm⁻¹ aralığında FT–IR spektrumları.

Kor	npleks 32	Kon	pleks 33	Kor	npleks 34	Kon	npleks 35	Kon	npleks 36	Kon	pleks 37
FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE	FT–IR	HSEh1PBE
—	-	_	-	3406	3764	3386	3762	-	—	3418	3691
_	-	_	-	3338	3543	3234	3498	-	—	3243	3291
3057	3128	3085	3136	3189	3103	3117	3096	3105	3135	3119	3151
2989	3109		3108	3109	3089	3065	3089	3053	3133	3075	3138
2973	3034	2989	3036	3049	3028	3029	3028	2989	3056	2987	3064
2937	3022		3027	2993	3026	2973	3024	2964	3056	2971	3060
1685	1765	1659	1757	1614	1689	1613	1700	1653	1606	1486	1491
_	_		1652	-	_	-	_	-	_		
1609	1612	1613	1626	1557	1625		1622	1593	1608	1607	1613
_	_	_	_		1614		1620	-	_		1603
1590	1598	1559	1609		1601	1557	1605	1570	1587	1557	1597
1468	1464		1476	1489	1473	1489	1479		1464	1488	1479
1458	1451	1444	1455	1448	1452	1444	1453		1443	1442	1445
	1428		1430		1439		1435	1456	1460		1463
1406	1420	1372	1425	1409	1436	1410	1434		1456		1474
1338	1321	_	_	-	_	-	_	-	_	_	_
_	_	1342	1332	_	_	_	_	_	-	1250	1234
1282	1313	1278	1300	1287	1299	1286	1302	1258	1308	1298	1314
1256	1279	1258	1272	1242	1270	1248	1272	1242	1288	1249	1298
	Kon FT-IR - 3057 2989 2973 2937 1685 - 1609 - 1590 1468 1458 1406 1338 - 1282 1256	Kompleks 32 FT–IR HSEh1PBE – – 3057 3128 2989 3109 2973 3034 2937 3022 1685 1765 – – 1609 1612 – – 1590 1598 1468 1464 1458 1451 1428 1420 1338 1321 – – 1282 1313 1256 1279	Kompleks 32 Kom FT-IR HSEh1PBE FT-IR - - - 3057 3128 3085 2989 3109 2989 2973 3034 2989 2937 3022 1685 1685 1765 1659 - - - 1609 1612 1613 - - - 1590 1598 1559 1468 1464 - 1458 1451 1444 1428 - - 1338 1321 - - - 1342 1282 1313 1278 1256 1279 1258	Kompleks 32 Kompleks 33 FT-IR HSEh1PBE FT-IR HSEh1PBE - - - - 3057 3128 3085 3136 2989 3109 3108 3036 2973 3034 2989 3036 2937 3022 3027 3027 1685 1765 1659 1757 - - - 1652 1609 1612 1613 1626 - - - - 1590 1598 1559 1609 1468 1464 1476 1458 1451 1444 1455 1428 1430 1425 1338 1321 - - - - - 1342 1332 1282 1313 1278 1300 1256 1279 1258 1272	Kompleks 32 Kompleks 33 Kompleks FT-IR HSEh1PBE FT-IR HSEh1PBE FT-IR - - - - 3406 - - - 3338 3057 3128 3085 3136 3189 2989 3109 3108 3109 2973 3034 2989 3036 3049 2937 3022 3027 2993 1685 1765 1659 1757 1614 - - - - - 1609 1612 1613 1626 1557 - - - - - 1590 1598 1559 1609 1448 1451 1444 1455 1448 1458 1451 1444 1455 1409 1458 1420 1372 1425 1409 1338 1321 - - <	Kompleks 32 Kompleks 33 Kompleks 34 FT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBE34063764333835433057312830853136318931032989310931083109308929733034298930363049302829373022302729933026168517651659175716141689165216091612161316261557162516141590146814641476148914731458145114441455144814521406142013721425140914361338132113421332128213131278130012871299125612791258127212421270	Kompleks32Kompleks33Kompleks34KompleksFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IR3406376433863338354332343057312830853136318931033117298931093108310930893065304930282973303429893036304930283029293730223027299330262973168517651659175716141689161316521609161216131626155716251614145914681464147614891473148914581451144414551448145214441428143014391439143914061420137214251409143614101338132113421332134213301287129912861256127912581272124212701248	Kompleks32Kompleks33Kompleks34Kompleks35FT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBE34063764338637623338354332343498305731283085313631893103311730962989310931083109308930653089297330342989303630493028302930282937302230272993302629733024168517651659175716141689161317001652160916121613162615571625162216141620159015981559160916011557160514681464147614891473148914791458145114441455144814521444133813211342133213421332128213131278130012871299128613021256127912581272	Kompleks32Kompleks33Kompleks34Kompleks35KompleksFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IR34063764338637623338354332343498-30573128308531363189310331173096310529893109310831093089306530893053297330242989303630493028302930282989293730223027299330262973302429641685176516591757161416891613170016531609161216131626155716251622159315901598155916091601155716051570146814641476148914731489147914351458145114441455144814521444145314061420137214251409143614101434133813211342133012871	KompleksS2KompleksS3KompleksS4KompleksS5KompleksS6FT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBE34063764338637623338354332343498305731283085313631893103311730963105313529893109310831093089306530893053313329733024298930363049302830293028298930562937302230272993302629733024296430561685176516591757161416891613170016531606160916121613162615571625162215931608159015981559160916011557160515701587146814641476148914731489147314851443142814301439143914431456146014061420137214251409 </td <td>Kompleks 32Kompleks 33Kompleks 34Kompleks 35Kompleks 36Kompleks 36FT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IR34063764338637623418333835433234349832433057312830853136318931033117309631053135311929893109310831093089306530893053313330752973303429893036304930283029302829893056298729373022302729933026297330242964305629711685176516591757161416891613170016531606148616091612161316261557162516221593160816071590159815591609161115571605157015871557146814641476148914731489147914641488145114441455144814521444145314461456133</td>	Kompleks 32Kompleks 33Kompleks 34Kompleks 35Kompleks 36Kompleks 36FT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IRHSEh1PBEFT-IR34063764338637623418333835433234349832433057312830853136318931033117309631053135311929893109310831093089306530893053313330752973303429893036304930283029302829893056298729373022302729933026297330242964305629711685176516591757161416891613170016531606148616091612161316261557162516221593160816071590159815591609161115571605157015871557146814641476148914731489147914641488145114441455144814521444145314461456133

Tablo 5.26. Kompleks **32–37** için bazı FT–IR ve hesaplanan titreşim frekanslarının karşılaştırılması.

İsaretlemeler	Kor	npleks 32	Kon	mleks 33	Kor	npleks 34	Kor	npleks 35	Kor	npleks 36	Kon	npleks 37
	ET ID	USEP1DDE	ET ID	USEP1DDE	ET ID	USEP1DDE	ET ID	USEPIDDE	ET ID	USELIDDE	ET ID	USEP1DDE
	I I-IK	IISEIIII DE	I I-IK	IISEIIII DE	I I-IK	IISEIIIIBE	I'I-IK	IISEIIII DE	I'I-IK	IISEIIITBE	I'I-IK	IISEIIII DE
υ COO ⁻	1151	1102	1318	1319	1307	1333	1376	1361	1270	1314	1324	1328
βΟΝΟ	_	_	980	989	_	_	-	_	_	_	1135	1133
υVO	1043	1070	_	_	_	_	-	_	-	_	_	_
γ HCCC dmdpy	912	946	1017	984	933	980	1017	990	1037	1033	1037	1062
γ HCCC 6-mpa	977	972	923	972	922	942	920	945	1013	1016	1017	1017
β ОНО	_	_	_	_	650	658	667	707	_	_	_	_
υVN	561	548	_	_	_	_	_	_	_	_	_	_
υNiN	_	_	_	_	550	544	_	_	_	_	_	_
βΟSΟ	514	512	_	_	_	_	_	_	_	_	_	_
γOOOS	473	492	_	_	_	_	_	_	_	_	_	_
γ CZnCN	_	_	_	_	_	_	447	445	_	_	_	_
γ CNiCN	_	_	_	_	456	444	_	_	_	_	_	_
γ CVCN	437	435	_	_	_	_	_	_	_	_	_	_
υ NiCl	_	_	_	_		399	_	_	_	_	_	-

Tablo 5.26. (Devam)

v: Gerilme titreşimi; β: Düzlem içi açı bükülmesi; γ: Düzlem dışı açı bükülmesi.

5.3. Sentezlenen Komplekslerin Elektronik Özellikleri ve Sınır Moleküler Orbital (FMO) Enerjileri

UV–Vis spektroskopisi organik ve inorganik bileşiklerin analizinde kullanılmaktadır. Enerji seviyeleri arasındaki elektron geçişlerini kullanarak bağlanma düzenleri hakkında bilgi verir. Sentezlenen metal komplekslerin UV–Vis spektrumları etanol çözücüsü içerisinde 600–200 nm aralığında verilmiştir. Daha sonra tüm kompleks yapılar için elektronik soğurma dalgaboyları ve osilatör şiddetleri optimize edilen yapı üzerinden TD–HSEh1PBE/6–311G(d,p)/LanL2DZ yöntemi ile gaz fazında ve etanol çözücüsünde PCM (Polarizable Continuum Model) [104,105] kullanılarak elde edilmiştir. Soğurma dalga boylarına karşılık gelen önemli elektronik geçişler SWizard [124] programı kullanılarak elde edilmiştir.

Bir molekülün moleküler reaktifliği, elektrik ve optik özelliklerinin tanımlanmasında sınır molekül orbitaller (FMO) önemli bir rol oynar [135]. Sınır moleküler orbitaller HOMO (en yüksek dolu moleküler orbital) ve LUMO (en düşük boş moleküler orbital) olarak bilinmektedirler. Moleküler orbitallerin kuantum mekaniksel hesaplamalar ile görüntülenmesi moleküllerin kimyasal reaksiyonlarının ve UV–Vis spektrumunun anlaşılmasında, optik ve elektronik özelliklerinin belirlenmesinde önemlidir [135]. HOMO ve LUMO arasındaki enerji aralığın büyük olması molekülün kararlı yapıda, küçük olması ise daha reaktif bir molekül olduğunu temsil eder. HOMO ve LUMO enerji değerleri kullanılarak iyonlaşma enerjisi ($IP \sim - E_{HOMO}$) ve elektron ilgisi ($EA \sim - E_{LUMO}$) bulunabilir. Ayrıca bu enerjiler kullanılarak kimyasal sertlik (η),

$$\eta = \frac{(IP - EA)}{2} \tag{5.1}$$

elektronegatiflik (χ),

$$\chi = \frac{(IP + EA)}{2} \tag{5.2}$$

ve kimyasal yumuşaklık (S),

$$S = \frac{1}{\eta} \tag{5.3}$$

moleküler parametreleri hesaplanabilmektedir [68,136-139]. Kimyasal sertlik (η), kimyasal sistemlerin elektronik dağılımlarını değiştirilmesine karşı gösterdiği direnç olarak bilinmektedir [140]. η , χ , S parametreleri kimyasal reaktivite ve sistemlerin kararlılıklarının birer göstergeleridir [141].

5.3.1. Kompleks 1–8'in elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde **1**, **2**, **4**, **6**, **7** komplekslerin soğurma dalgaboyları sırasıyla 326–217 nm, 323–205 nm, 372–202 nm, 272 ve 217 nm, 350–205 nm aralığında gözlenmiştir (Tablo 5.27.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki n $\rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **1**, **2**, **4**, **6**, **7**'nin UV–Vis spektrumları Şekil 5.21.'de verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsü/gaz fazında en yüksek elektronik soğurma dalgaboyu kompleks **1**, **2**, **7** için sırasıyla 570 nm (H \rightarrow L+8 β (+%33), H \rightarrow L+7 α (+%26))/541 nm (H \rightarrow L+7 α (+%36), H \rightarrow L+8 β (+%26)), 598 nm (H–1 \rightarrow L β (+%50), H–1 \rightarrow L+6 β (+%14))/582 nm (H–1 \rightarrow L+1 β (+%36), H–1 \rightarrow L β (+%34)), 559 nm/559 nm (H \rightarrow L+8 β (+%19), H \rightarrow L+6 α (+%12)) olarak elde edilmiştir. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi (MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.22.). Şekil 5.22.'de görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varılmıştır.

Çözücü	Deneysel	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ						
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar				
Kompleks	1							
Etanol		570	0,0001	$H\rightarrow L+8 \beta (+\%33)$	H→L+7 α (+%26)			
		375	0,0026	H→L+1 α (+%93)				
	326	337	0,0002	$H\rightarrow L+3 \beta (+\%37)$	$H {\rightarrow} L {+} 4 \beta ({+}\%{20})$			
	277	330	0,0005	H→L+4 β (+%24)	H→L+6 β (+%22)			
	217	318	0,0003	H–4→L α (+%27)	H−3→Lβ(+%16)			
Gaz fazı		541	0,0002	H→L+7 α (+%36)	$H\rightarrow L+8 \beta (+\%26)$			
		374	0,0004	H→L+1 α (+%86)				
		342	0,0001	$H\rightarrow L+3 \beta (+\%44)$	H−2→Lα(+%21)			
		335	0,0004	$H\rightarrow L+4 \beta (+\%55)$	H \rightarrow L+5 β (+%21)			
		329	0,0002	H−1→L+1 β (+%24)	H−2→L α (+%14)			
Kompleks 2	2							
Etanol		598	0,0009	H−1→L β (+%50)	H−1→L+6 β (+%14)			
	323	482	0,0022	H→L α (+%66)	H→L+1 α (+%11)			
	271	475	0,0004	H−1→L+1 α (+%43)	H−1→L α (+%18)			
	258	463	0,0125	H−1→L α (+%38)	$H \rightarrow L+2 \beta (+\%38)$			
	205	433	0,0176	$H\rightarrow L+3 \beta (+\%66)$	H–1 \rightarrow L+2 β (+%9)			
Gaz fazı		582	0,0014	H−1→L+1 β (+%36)	H−1→Lβ(+%34)			
		486	0,0008	H−1→L α (+%33)	H→L α (+%31)			
		473	0,0051	$H\rightarrow L+2 \beta (+\%56)$	H→L+1 α (+%24)			
		463	0,0402	H−1→L α (+%51)	H−1→L+1 α (+%8)			
		438	0,0197	$H\rightarrow L+3 \beta (+\%38)$	$H\rightarrow L+1 \alpha (+\%9)$			
Kompleks 4	4							
Etanol	372	316	0,0003	H→L+1 (+%88)				
	273	278	0,0064	H→L (+%81)				
		255	0,0016	H–2→L (+%88)				
		230	0,0049	H–6→L+1 (+%91)				
	202	203	0,0018	H–10→L (+%77)				
Gaz fazı		352	0,0001	H→L+1 (+%80)				
		304	0,0030	H→L (+%74)				
		274	0,0015	H–2→L (+%77)				
		220	0,0016	H–4→L+3 (+%82)				
		205	0,0010	H−7→L+3 (+%46)	H–5→L+3 (+%16)			

Tablo 5.27. Kompleks 1, 2, 4, 6 ve 7 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

Çözücü	Deneysel	TD-HSI	Eh1PBE/6-311	G(d,p)/LanL2DZ	
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks	6				
Etanol		295	0,0002	H→L+1 (+%88)	
		291	0,0004	H−1→L (+%69)	H→L (+%22)
	272	263	0,0060	H→L (+%76)	H−1→L (+%19)
		257	0,0026	H−1→L+1 (+%58)	H–5→L+1 (+%25)
		246	0,0798	H−3→L (+%59)	H–5→L (+%17)
	217	246	0,0402	H−5→L (+%41)	H–3→L (+%22)
Gaz fazı		328	0,0001	H→L+1 (+%93)	
		314	0,0004	H−1→L (+%71)	H→L (+%21)
		297	0,0035	H→L (+%78)	H−1→L (+%18)
		272	0,0013	H−1→L+1 (+%60)	H–3→L+1 (+%34)
		265	0,0018	H−2→L (+%85)	
Kompleks '	7				
Etanol		559	0,0006		
	350	354	0,0001		
	269	274	0,0107		
	219	265	0,0112		
	205	259	0,0032		
Gaz fazı		559	0,0005	H→L+8 β (+%19)	H→L+6 α (+%12)
		357	0,0002	H−2→L α (+%20)	H−2→Lβ(+%15)
		322	0,0031	H→L+2 α (+%25)	H−1→L β (+%15)
		287	0,0022	H−3→L+1 α (+%54)	H−2→L+2 α (+%3)
		274	0,0010	H→L+4 β (+%20)	H−3→L+1 α (+%14)

Tablo 5.27. (Devam)

H: HOMO, L: LUMO.

Şekil 5.21. Kompleks 1, 2, 4, 6 ve 7 için UV–Vis spektrumları.

HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak **1**, **2**, **7** kompleksleri için hesaplanan α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 3,15/2,89 eV, 3,09/2,40 eV ve 4,78/4,04 eV olarak elde edilmiştir. Kompleks **4** ve **6** için elde edilen HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 4,49 eV ve 4,47 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.28.'de sunulmuştur. Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri ligand içi yük transferinin (ILCT) meydana geldiğini göstermektedir.

Parametreler	Kompleks 1		Kompleks 2		Kompleks 4	Kompleks 6	Kompleks 7	
	α spin	β spin	α spin	β spin			a spin	β spin
E _{HOMO} (eV)	-6,09	-5,50	-5,04	-4,38	-6,70	-6,88	-7,27	-6,95
$E_{LUMO} (eV)$	-2,94	-2,60	-1,95	-1,98	-2,22	-2,12	-2,50	-2,91
ΔΕ	3,15	2,89	3,09	2,40	4,49	4,76	4,78	4,04
χ (eV)	4,52	4,05	3,49	3,18	4,46	4,50	4,89	4,93
η (eV)	1,57	1,45	1,54	1,20	2,24	2,38	2,39	2,02
$S (eV^{-1})$	0,63	0,69	0,65	0,83	0,45	0,42	0,42	0,49

Tablo 5.28. Kompleks 1, 2, 4, 6, 7 için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

Şekil 5.22. Kompleks 1, 2, 4, 6, 7 için FMO enerjileri.

5.3.2. Kompleks 9–11'in elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde **9–11** komplekslerin soğurma dalgaboyları 330–223 nm, 325–209 nm ve 327–209 nm aralığında gözlenmiştir (Tablo 5.29.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki $n \rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **9–11**'in UV–Vis spektrumları Şekil 5.23.'te verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsünde en yüksek elektronik soğurma dalgaboyu kompleks **9** için 601 nm (H–4 \rightarrow L (+%32), H–2 \rightarrow L (+%29)) olarak elde edilmiştir. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi (MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.24.). TD–HSEh1PBE metodu kullanılarak etanol çözücüsünde deneysel dalgaboylarına karşılık gelen pikler 384–294 nm, 316–210 nm ve 398–371 nm olarak elde edildi. Şekil 5.24.'te görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varılmıştır.

Çözücü	Deneysel	HSEh1PI	BE/6-311G(d,	p)/LanL2DZ	
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 9					
Etanol		601	0,1259	H–4→L (+%32)	H−2→L (+%29)
		510	0,0562	H–8→L (+%68)	
		422	0,0468	H–9→L (+%64)	
	330	384	0,0151	H–11→L (+%41)	H–13→L (+%19)
	268	347	0,0513	H–11→L (+%30)	H–15→L (+%15)
	223	294	0,4081	H−12→L (+%65)	
Gaz fazı		608	0,0756	H–8→L (+%27)	H–4→L (+%22)
		557	0,0555	H–8→L (+%30)	H–4→L (+%26)
		544	0,0227	H–5→L (+%70)	
		505	0,0301	H–6→L (+%60)	
		444	0,0372	H–9→L (+%52)	H–5→L (+%11)
		333	0,0114	H–10→L (+%32)	H–11→L (+%11)

Tablo 5.29. Kompleks 9–11 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

			14010 5.29. (
Çözücü	Deneysel	HSEh1PE	3E/6-311G(d,j	p)/LanL2DZ	
	$\lambda(nm)$	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 10					
Etanol	325	316	0,0056	H−1→L (+%100)	
	271	247	0,1578	H–3→L (+%86)	
		240	0,0411	H–4→L (+%87)	
	209	210	0,0408	H–4→L+1 (+%43)	H–6→L (+%29)
		202	0,0233	H−2→L+2 (+%75)	
Gaz fazı		403	0,0160	H−1→L (+%100)	
		267	0,0434	H–3→L (+%91)	
		244	0,0759	H–5→L (+%73)	
		238	0,0337	H–2→L+2 (+%72)	
		214	0,2802	H→L+4 (+%59)	H−1→L+6 (+%19)
Kompleks 11					
Etanol		505	0,0328	H−1→L α (+%77)	
		478	0,0250	H→L+1 β (+%64)	
	327	398	0,0255	H→L+1 α (+%77)	
	276	384	0,0608	H→L+2 α (+%52)	H−1→L β (+%24)
	209	371	0,1147	H−1→L β (+%47)	H−1→L α (+%11)
Gaz fazı		500	0,0028	H→L+3 β (+%31)	$H\rightarrow L\beta$ (+%25)

H−2→L β (+%73)

 $H\rightarrow L+2 \alpha (+\%67)$

 $H-1\rightarrow L\beta$ (+%56)

H−2→L β (+%46)

H−2→L β (+%17)

H–1 \rightarrow L+1 β (+%26)

Tablo 5.29. (Devam)

H: HOMO, L: LUMO.

472

428

400

381

0,0090

0,0026

0,0033

0,0094

Şekil 5.23. Kompleks 9–11 için UV–Vis spektrumları.

DFT/HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak **9** ve **10** kompleksleri için hesaplanan HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 1,62 eV ve 3,96 eV olarak elde edilmiştir. Kompleks **11** için α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark 4,75/4,25 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.30.'da sunulmuştur. Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri, ligand içi yük transferinin (ILCT) meydana geldiğini göstermektedir.

Parametreler	Kompleks 9	Kompleks 10	Kompleks 11	
		-	α spin	β spin
E _{HOMO} (eV)	-6,85	-6,22	-5,84	-5,38
E _{LUMO} (eV)	-5,23	-2,27	-3,67	-3,11
ΔΕ	1,62	3,96	2,17	2,27
χ (eV)	6,04	4,25	4,75	4,25
η (eV)	0,81	1,98	1,08	1,13
$S (eV^{-1})$	1,23	0,51	0,93	0,88

Tablo 5.30. Kompleks 9–11 için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

5.3.3. Kompleks 12–17'nin elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde soğurma dalgaboyları kompleks **12–17** için sırasıyla 372–215 nm, 378–220 nm, 322–219 nm, 312–217 nm, 372 ve 206 nm, 372–209 nm olarak gözlenmiştir (Tablo 5.31.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki n $\rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **12–17**'nin UV– Vis spektrumları Şekil 5.25.'de verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsünde en yüksek elektronik soğurma dalgaboyu kompleks **12**, **16**, **17**'de sırasıyla 595 nm (H \rightarrow L+6 α (+%27), H–1 \rightarrow L+1 α (+%14)), 589 nm (H–1 \rightarrow L α (+%45), H \rightarrow L α (+%24)) ve 669 nm (H–14 \rightarrow L β (+%48), H–9 \rightarrow L β (+%25)), olarak hesaplanmıştır. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi (MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.26.). Şekil 5.26.'da görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varılmıştır.

Çözücü	Deneysel	HSEh1PBE/6-311G(d,p)/LanL2DZ				
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar		
Kompleks 1	2					
Etanol		595	0,0004	H→L+6 α (+%27)	H−1→L+1α (+%14)	
	372	376	0,0046	H−2→L+7 α (+%45)	H–1→L+3 α (+%10)	
		366	0,0045	H→L+2 α (+%45)	H→L+3 α (+%17)	
	304	361	0,0075	H−1→L+3 α (+%31)	H→L+3 α (+%29)	
	272	355	0,0061	H−2→L α (+%72)	H→L+2 α (+%7)	
	215	351	0,0095	H−2→L+1 α (+%49)	H \rightarrow L+4 β (+%22)	
Gaz fazı		594	0,0003	H−1→L+9α (+%29)	H→L+2 β (+%12)	
		379	0,0092	H→L+5 β (+%70)	H–1→L+3 α (+%8)	
		374	0,0007	H−1→L+4 β (+%40)	H→L+3 α (+%26)	
		372	0,0002	H→L+2 α (+%66)	H→L+3 α (+%12)	
		367	0,0020	H→L+3 α (+%29)	H−1→L+4 β (+%18)	
		364	0,0158	H−1→L+2 α (+%70)	H→L+3 α (+%8)	

Tablo 5.31. Kompleks 12-17 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

Çözücü	Deneysel	HSEh1PBE/6-311G(d,p)/LanL2DZ			
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 13					
Etanol	378	295	0,0014	H−2→L (+%68)	H−3→L+1 (+%25)
		276	0,0108	H−1→L (+%96)	
	270	266	0,0081	H–4→L (+%76)	H−2→L (+%7)
		238	0,0155	H−9→L (+%42)	H–6→L (+%18)
	220	223	0,0074	H–3→L+3 (+%61)	H–4→L+2 (+%12)
Gaz fazı		319	0,0007	H→L (+%68)	H−1→L+1 (+%27)
		277	0,0014	H−1→L+1 (+%38)	H−2→L (+%28)
		269	0,0024	H−2→L (+%42)	H−1→L+1 (+%22)
		240	0,0146	H−10→L (+%54)	H−5→L+1 (+%21)
		226	0,0034	H−3→L+3 (+%83)	
Kompleks	14				
Etanol	322	312	0,0006	H−2→L (+%58)	H−3→L+1 (+%22)
		280	0,0027	H→L (+%98)	
	271	278	0,0002	H−1→L (+%92)	
		238	0,0010	H−1→L+3 (+%94)	
	219	220	0,0003	H–6→L+2 (+%68)	H–5→L+2 (+%21)
Gaz fazı		346	0,0006	H→L (+%62)	H−1→L+1 (+%32)
		287	0,0007	H−3→L (+%27)	H−1→L+1 (+%23)
		276	0,0002	H→L+2 (+%65)	H−1→L+2 (+%26)
		228	0,0013	H−5→L+3 (+%89)	
		217	0,0001	H−1→L+5 (+%96)	
Kompleks	15				
Etanol		441	0,0002	H−2→L+8 β (+%34)	H→L+1 α (+%26)
		436	0,0006	H→L α (+%95)	
	312	321	0,0060	H−2→L α (+%90)	
		282	0,0030	H−2→L+2 β (+%86)	
	272	273	0,0003	H−4→L α (+%84)	
	217	269	0,0047	H−2→L+2 α (+%85)	
Gaz fazı		445	0,0004	H→L α (+%61)	H→L+1 α (+%16)
		376	0,0005	H−1→L β (+%58)	$H \rightarrow L \beta (+\%36)$
		321	0,0039	H−2→Lα (+%86)	
		288	0,0009	H→L+6 α (+%95)	
		273	0,0046	H−2→L+2 β (+%73)	

Tablo 5.31. (Devam)

Çözücü	Deneysel	HSEh1PBE/6-311G(d,p)/LanL2DZ			
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
		269	0,0009	H−1→L+4 β (+%86)	
Kompleks	16				
Etanol		589	0,0354	H−1→L α (+%45)	H→L α (+%24)
		315	0,0031	H−1→L+1 β (+%89)	
		304	0,0129	H−4→L β (+%47)	H−5→Lβ(+%5)
	273	291	0,0040	H−5→L β (+%53)	H−6→L β (+%8)
	206	283	0,0054	H−1→L+1 α (+%50)	H→L+2 β (+%47)
Gaz fazı		578	0,0022	H−4→L α (+%28)	H−8→L+2 β (+%25)
		311	0,0008	H→L+2 β (+%55)	$H\rightarrow L+1 \beta (+\%13)$
		296	0,0051	H→L+1 β (+%39)	H−1→L+2 α (+%12)
		289	0,0156	H−1→L+2 β (+%33)	H−3→Lβ(+%13)
		283	0,0014	H−5→Lβ(+%79)	
Kompleks	17				
Etanol		669	0,0004	H−14→Lβ(+%48)	H−9→Lβ(+%25)
	372	349	0,0004	H→L β (+%98)	
		302	0,0429	H−2→Lβ(+%72)	H–4→Lβ(+%20)
	272	270	0,0047	H−2→L α (+%41)	
		250	0,0016	H→L+3 β (+%90)	
	209	244	0,0361	H−9→Lβ(+%40)	
Gaz fazı		649	0,0010		
		323	0,0048		
		298	0,0411		
		273	0,0083		
		252	0,0316		
		245	0,0473		

Tablo 5.31. (Devam)

H: HOMO, L: LUMO.

Şekil 5.25. Kompleks 12–17 için UV–Vis spektrumları.

DFT/HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak **12**, **15**, **16**, **17** kompleksleri için hesaplanan α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 2,97/2,06 eV, 3,50/3,78 eV, 2,47/3,87 eV ve 4,30/3,81 eV olarak elde edilmiştir. Kompleks **13** ve **14** için HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 4,62 eV ve 4,54 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.32.'de sunulmuştur. Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri, ligand içi yük transferinin (ILCT) meydana geldiğini göstermektedir.

Parametreler	Kompl	eks 12	Kompleks 13		Kompleks 14	
	α spin	β spin				
E _{HOMO} (eV)	-4,78	-3,91	-6,32		-6,48	
E _{LUMO} (eV)	-1,80	-1,84	-1,71		-1,93	
ΔΕ	2,97	2,06	4,62		4,54	
χ (eV)	3,29	2,88	4,02		4,21	
η (eV)	1,49	1,03	2,	31	2,	27
$S (eV^{-1})$	0,67	0,97	0,43		0,44	
Parametreler	Kompl	eks 15	Kompleks 16		Kompleks 17	
	a spin	β spin	a spin	β spin	α spin	β spin
E _{HOMO} (eV)	-5,16	-5,43	-6,63	-6,77	-6,37	-6,37
E _{LUMO} (eV)	-1,66	-1,66	-4,15	-2,91	-2,08	-2,57
ΔΕ	3,50	3,78	2,47	3,87	4,30	3,81
χ (eV)	3,41	3,54	5,39	4,84	4,23	4,47
η (eV)	1,75	1,89	1,23	1,93	2,15	1,90
$S (eV^{-1})$	0,57	0,53	0,81	0,52	0,47	0,53

Tablo 5.32. Kompleks 12–17 için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

Şekil 5.26. Kompleks 12–17 için FMO enerjileri.

5.3.4. Kompleks 18–23'ün elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde soğurma dalgaboyları kompleks **18–23** sırasıyla için 276 nm ve 217 nm, 372–220 nm, 310–211 nm, 277–204 nm, 306–213 nm 521–244 nm olarak gözlenmiştir (Tablo 5.33.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki n $\rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **18–23**'ün UV– Vis spektrumları Şekil 5.27.'de verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsünde en yüksek elektronik soğurma dalgaboyu kompleks **19– 23**'te sırasıyla 560 nm (H \rightarrow L α (+%87)), 594 nm (H–25 \rightarrow L+1 β (+%12), H–25 \rightarrow L β (+%8)), 568 nm (H–2 \rightarrow L+7 (+%43), H–1 \rightarrow L (+%9)), 596 nm (H–3 \rightarrow L+1 β (+%23), H–4 \rightarrow L+5 β (+%14)) ve 535 nm (H–2 \rightarrow L+4 α (+%23), H–3 \rightarrow L+4 β (+%23)) olarak elde edilmiştir. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi, MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.28.). Şekil 5.28.'de görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varilmıştir.

Çözücü	Deneysel	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ			
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 18					
Etanol		317	0,0003	H→L+1 (+%79)	
		293	0,0014	H–1→L (+%60)	
	276	277	0,2800	H–3→L (+%57)	
		260	0,0034	H–6→L (+%65)	
	217	252	0,0030	H→L+4 (+%39)	
Gaz fazı		417	0,0001	H→L (+%99)	
		365	0,0004	H−1→L (+%95)	
		354	0,0015	H→L+2 (+%62)	H−3→L (+%29)
		353	0,0014	H−3→L (+%58)	H→L+2 (+%30)
		336	0,0002	H–4→L (+%96)	

Tablo 5.33. Kompleks 18–23 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

Çözücü	Deneysel	el TD-HSEh1PBE/6-311G(d,p)/LanL2DZ			
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Komplek	s 19				
Etanol		560	0,0024	H→L α (+%87)	
	372	376	0,0015	H→L+3 α (+%55)	H→L+1 α (+%42)
	306	355	0,0026	H→L+4 α (+%83)	
	276	323	0,0021	H→L+5 α (+%89)	
	243	308	0,0028	H−3→L β (+%96)	
	220	296	0,0003	H−5→L α (+%81)	
Gaz fazı		510	0,0004	H−2→L α (+%76)	
		373	0,0026	H−2→L+2 β (+%80)	
		356	0,0048	H−2→L+2 α (+%87)	
		335	0,0003	H−7→L β (+%93)	
		330	0,0013	H−3→L+1 β (+%78)	
Komplek	s 20				
Etanol		594	0,0002	H−25→L+1 β (+%12)	H−25→L β (+%8)
	310	340	0,0001	H→L α (+%87)	
	299	299	0,0312	H–4→L+1 β (+%24)	H–4→L β (+%19)
	278	277	0,0019	H−3→L+1 β (+%28)	H−3→L β (+%28)
	244	250	0,0030	H−6→Lβ(+%82)	
	211	245	0,0010	H−7→L+1 β (+%22)	H→L+4 β (+%12)
Gaz fazı		609	0,0004	H−14→L+1 β (+%38)	H−22→L+1 β (+%30)
		340	0,0037	H−1→L β (+%95)	
		299	0,0012	H−5→Lβ(+%56)	H−2→L+1 β (+%16)
		276	0,0213	H−9→Lβ(+%46)	H→L+3 α (+%14)
		274	0,0119	H−10→L α (+%63)	
Komplek	s 21				
Etanol		568	0,0435	H−2→L+7 (+%43)	H−1→L (+%9)
		314	0,0737	H→L+6 (+%85)	
	277	284	0,0041	H−2→L+6 (+%93)	
		266	0,4810	H−3→L+1 (+%69)	H−3→L (+%20)
	231	232	0,0033	H−4→L+2 (+%71)	
	204	228	0,0077	H−1→L+11 (+%47)	H−1→L+9 (+%11)
Gaz fazı		569	0,0291	H→L+3 (+%41)	H→L+7 (+%10)
		314	0,0181	H−2→L+5 (+%60)	
		282	0,0019	H−2→L+6 (+%79)	

Tablo 5.33. (Devam)
Çözücü	Deneysel	TD-HSH	Eh1PBE/6-311	G(d,p)/LanL2DZ	
	$\lambda(nm)$	λ (nm)	Os. Şiddeti	Başlıca katkılar	
		268	0,0109	H−3→L+1 (+%68)	H−4→L+1 (+%17)
		236	0,0164	H→L+12 (+%61)	H−5→L+1 (+%10)
		233	0,0130	H→L+13 (+%81)	
Kompleks	22				
Etanol		596	0,0044	H–3→L+1 β (+%23)	H–4 \rightarrow L+5 β (+%14)
		342	0,0040	H→L α (+%77)	
	306	305	0,0647	H–1→L+3 α (+%26)	H−1→L+1 α (+%22)
	292	294	0,0019	H−1→L β (+%68)	
	247	249	0,0117	H–1 \rightarrow L+2 β (+%67)	
	213	245	0,0195	H−2→L+2 α (+%60)	
Gaz fazı		495	0,0003	H−2→L+5 β (+%35)	H−1→L+5 β (+%10)
		303	0,0573	H−1→L+3 α (+%30)	H−1→L+1 α (+%25)
		353	0,0115	H→L α (+%72)	
		287	0,0004	H→L+2 α (+%95)	
		260	0,0013	$H\rightarrow L+13 \beta (+\%88)$	
		250	0,0002	H→L+14 β (+%65)	
Kompleks	23				
Etanol	521	535	0,0034	H−2→L+4 α (+%23)	H−3→L+4 β (+%23)
	486	496	0,0003	$H \rightarrow L \beta (+\%49)$	H−1→L α (+%19)
	346	341	0,1187	H–3→L+1 β (+%27)	H−1→L+2 α (+%21)
	297	312	0,0063	H−3→L β (+%75)	
	244	300	0,0011	H→L+9 α (+%45)	H→L+10 α (+%37)
Gaz fazı		538	0,0007	H−2→L+4 α (+%22)	H−2→L+5 β (+%21)
		489	0,0004	$H {\rightarrow} L {+} 1 \beta ({+}\%{27})$	$H \rightarrow L \beta (+\%11)$
		443	0,0409	H→L+6 α (+%39)	H−1→L β (+%26)
		336	0,0145	H−1→L+1 α (+%47)	H−1→L+2 β (+%21)
		307	0,0048	$H\rightarrow L+4 \beta (+\%21)$	H−3→L+2 α (+%14)

Tablo 5.33. (Devam)

H: HOMO, L: LUMO.

Şekil 5.27. Kompleks 18–23 için UV–Vis spektrumları.

DFT/HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak **18** ve **21** kompleksleri için hesaplanan HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 4,12 eV ve 1,87 eV olarak elde edilmiştir. Kompleks **19**, **20**, **22**, **23** için α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 2,69/3,07 eV, 4,10/4,06 eV, 3,99/1,15 eV ve 1,09/3,20 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.34.'te sunulmuştur. Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri, ligand içi yük transferinin (ILCT) meydana geldiğini göstermektedir.

Parametreler	Kompleks 18	Kompleks 19		Kompleks 20	
		a spin	β spin	α spin	β spin
E _{HOMO} (eV)	-6,59	-5,40	-5,75	-7,02	-6,96
E _{LUMO} (eV)	-2,47	-2,71	-2,69	-2,91	-2,91
ΔE	4,12	2,69	3,07	4,10	4,06
χ (eV)	4,53	4,05	4,22	4,96	4,94
η (eV)	2,06	1,34	1,53	2,05	2,03
$S (eV^{-1})$	0,49	0,74	0,65	0,49	0,49
Parametreler	Kompleks 21	Kompl	eks 22	Komp	leks 23
		a spin	β spin	α spin	β spin
E _{HOMO} (eV)	-3,62	-6,11	-3,24	-3,01	-5,11
E _{LUMO} (eV)	-1,75	-2,12	-2,09	-1,91	-1,91
ΔΕ	1,87	3,99	1,15	1,09	3,20
χ (eV)	2,69	4,11	2,67	2,46	3,51
η (eV)	0,94	1,99	0,57	0,55	1,60
$S (eV^{-1})$	1,07	0,50	1,75	1,82	0,63

Tablo 5.34. Kompleks 18–23 için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

Şekil 5.28. Kompleks 18–23 için FMO enerjileri.

5.3.5. Kompleks 24–28'in elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde soğurma dalgaboyları kompleks **24–28** için sırasıyla 326–230 nm, 266–202 nm, 372–227 nm, 267–235 nm, 270 ve 227 nm olarak gözlenmiştir (Tablo 5.35.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki n $\rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **24–28**'in UV–Vis spektrumları Şekil 5.29.'da verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsünde en yüksek elektronik soğurma dalgaboyu kompleks **24**, **26–28**'de sırasıyla 529 nm (H–2 \rightarrow L+2 β (+%14), H–3 \rightarrow L+3 α (+%12)), 590 nm (H–1 \rightarrow L+2 β (+%71)), 539 nm (H \rightarrow L+4 α (+%80)) ve 511 nm (H \rightarrow L (+%98)) olarak bulundu. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi, MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.30.). Şekil 5.30.'da görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varılmıştır.

Çözücü	Deneysel	TD-HSE	h1PBE/6-311	G(d,p)/LanL2DZ	
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 24					
Etanol		529	0,0002	H−2→L+2 β (+%14)	H–3→L+3 α (+%12)
	326	334	0,0012	$H \rightarrow L \beta (+\%96)$	
		300	0,0001	H→L+11 α (+%83)	
	259	290	0,0006	H–2 \rightarrow L+1 α (+%93)	
	230	288	0,0097	H→L+13 α (+%45)	H−1→L+3 α (+%21)
Gaz fazı		532	0,0002	H–4 \rightarrow L+3 α (+%13)	H−3→L+2 β (+%11)
		338	0,0014	$H {\rightarrow} L{+}1 \ \beta \ (+\%92)$	
		327	0,0012	H−1→L α (+%73)	
		313	0,0001	H−2→L α (+%75)	
		306	0,0002	H−1→L+3 β (+%32)	H−1→L+2 β (+%28)
Kompleks 25					
Etanol		308	0,0006	H→L+2 (+%55)	H→L+3 (+%17)
		293	0,0020	H→L (+%84)	

Tablo 5.35. Kompleks 24–28 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

Çözücü	Deneysel	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ				
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar		
	266	270	0,0023	H–4→L (+%95)		
	227	255	0,6483	H–6→L (+%55)	$H-1\rightarrow L+1(+\%20)$	
	202	237	0,0067	H–6→L+3(+%96)		
Gaz fazı		366	0,0002	H→L (+%92)		
		294	0,0056	$H-7 \rightarrow L+1(+\%54)$	H−8→L (+%19)	
		271	0,0166	H−2→L+3(+%50)	$H-1 \rightarrow L+3(+\%33)$	
		254	0,0014	$H-1 \rightarrow L+4(+\%95)$		
		243	0,0345	H−7→L+2(+%39)	H−9→L+2 (+%28)	
Kompleks 26						
Etanol		590	0,0242	H−1→L+2 β (+%71)		
	372	371	0,0039	H−1→L+6 β (+%81)		
	324	324	0,0006	H−2→L+3 α (+%64)	H–4 \rightarrow L+1 α (+%7)	
	265	320	0,0090	H−1→L+5 α (+%87)		
	227	312	0,0002	H→L+6 α (+%71)		
Gaz fazı		571	0,0030	H−1→L+8 α (+%25)	H→L+9 α (+%22)	
		370	0,0032	H−2→L α (+%55)	H−1→L+6 β (+%28)	
		338	0,0007	H−2→L+2 α (+%58)		
		324	0,0010	H→L+4 α (+%71)		
		312	0,0047	H−1→L+5 α (+%71)		
Kompleks 27						
Etanol		539	0,0002	H→L+4 α (+%80)		
		421	0,0006	H−1→L α (+%92)		
	267	377	0,0171	H−1→L+2 α (+%48)	H−3→L α (+%26)	
	258	349	0,0054	H−3→L+1 α (+%58)	H–4→L α (+%9)	
	235	323	0,0039	H−1→L+4 β (+%42)	H–1→L+5 β (+%41)	
Kompleks 28						
Etanol		511	0,0001	H→L (+%98)		
		300	0,0378	H−2→L+2 (+%84)		
	270	270	0,0025	H–4→L+1 (+%89)		
		256	0,2837	H–6→L+1 (+%22)	H−1→L+6 (+%20)	
	227	246	0,0256	H–10→L+1 (+%38)	H–4→L+3 (+%19)	
Gaz fazı		579	0,0002	H→L (+%97)		
		457	0,0018	H→L+2 (+%99)		
		370	0,0010	H−1→L+1 (+%98)		

Tablo 5.35. (Devam)

Tablo 5.35. (Devam)

Çözücü	Deneysel	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ							
	λ (nm)	λ (nm)	λ (nm) Os. Şiddeti Başlıca katkılar						
		268	0,0008	H−1→L+7 (+%93)					
		253	0,0045	H−7→L+2 (+%30)	H−2→L+5 (+%24)				

H: HOMO, L: LUMO.

Şekil 5.29. Kompleks 24–28 için UV–Vis spektrumları.

DFT/HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak 24, 26, 27 kompleksleri için hesaplanan α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 0,70/3,80 eV, 2,85/1,85 eV, 1,59/2,99 eV olarak elde edilmiştir. Kompleks 25 ve 28 için HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 4,30 eV ve 2,82 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.36.'da sunulmuştur. Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri, ligand içi yük transferinin (ILCT) meydana geldiğini göstermekstedir.

Parametreler	Kompl	eks 24	Kompleks 25	Komp	leks 26	Komp	leks 27	Kompleks 28
	a spin	β spin		a spin	β spin	α spin	β spin	
E _{HOMO} (eV)	-3,27	-6,37	-6,81	-5,39	-4,39	-4,03	-5,41	-5,33
E _{LUMO} (eV)	-2,57	-2,57	-2,51	-2,54	-2,54	-2,44	-2,42	-2,51
ΔE	0,70	3,80	4,30	2,85	1,85	1,59	2,99	2,82
χ (eV)	2,92	4,47	4,66	3,96	3,47	3,23	3,91	3,92
η (eV)	0,35	1,90	2,15	1,43	0,93	0,79	1,50	1,41
$S (eV^{-1})$	2,86	0,53	0,47	0,70	1,08	1,03	0,67	0,71

Tablo 5.36. Kompleks 24–28 için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

Şekil 5.30. Kompleks 24–28 için FMO enerjileri.

5.3.6. Kompleks 29–31'in elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde soğurma dalgaboyları kompleks **29–31** için sırasıyla 384–219 nm, 320–200 nm, 311–277 nm olarak gözlenmiştir (Tablo 5.37.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki $n \rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **11**, **24** ve **37**'nin UV–Vis spektrumları Şekil 5.31.'de verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsünde en yüksek elektronik soğurma dalgaboyu kompleks **29** ve **30** için sırasıyla 594 nm (H–13 \rightarrow L β (+%15), H–17 \rightarrow L β (+%13)) ve 586 nm (H–9 \rightarrow L+1 (+%10), H–17 \rightarrow L+1 (+%9)) olarak hesaplanmıştır. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi, MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.32.). Şekil 5.32.'de görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varılmıştır.

Çözücü	Deneysel	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ				
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar		
Kompleks 29)					
Etanol		594	0,0004	H−13→Lβ(+%15)	H−17→L β (+%13)	
	384	364	0,0010	$H \rightarrow L \beta (+\%44)$	$H\rightarrow L+1 \alpha (+\%16)$	
	314	318	0,0002	H−1→L α (+%35)	H−3→L α (+%14)	
	253	253	0,0025	H−7→L β (+%46)	H−8→Lβ(+%39)	
	219	244	0,0420	H−1→L+4 α (+%72)		
Gaz fazı		593	0,0009	H−18→Lβ(+%29)	H−14→L β (+%14)	
		370	0,0007	H−1→L β (+%66)		
		319	0,0068	H−2→L β (+%32)	H−3→L β (+%12)	
		278	0,0035	H−1→L+2 α (+%26)	H−4→L+2 α (+%19)	
		268	0,0223	H−10→Lβ(+%16)	H−8→L β (+%16)	

Tablo 5.37. Kompleks 29–31 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

Çözüc	cü Deney	vsel TD-HSE	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ					
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar				
Komp	oleks 30							
Etano	1	586	0,0002	H−9→L+1 (+%10)	H−17→L+1 (+%9)			
	320	320	0,0048	H→L+2 (+%99)				
	294	307	0,1668	H→L+3 (+%87)				
	282	273	0,0058	H−1→L+2 (+v80)				
	254	257	0,0011	H−1→L+3 (+%82)				
	200	235	0,0137	H−6→L+3 (+%52)	H−9→L+2 (+%14)			
Gaz fa	azı	594	0,0001	H−8→L (+%12)	H−8→L+3 (+%8)			
		316	0,0006	H−1→L+2 (+%65)	H→L+2 (+%10)			
		304	0,0104	H−1→L+3 (+%59)	H−1→L+1 (+%17)			
		285	0,0055	H−2→L+3 (+%43)	H−5→L+1 (+%20)			
		271	0,0028	H−3→L+4 (+%61)				
		260	0,0131	H–8→L+3 (+%13)	H−11→L (+%11)			
Komp	oleks 31							
Etano	1 311	299	0,0409	H−1→L+1 (+%23)	H−2→L+1 (+%18)			
		275	0,0575	H→L+3 (+%92)				
	266	267	0,0075	H−2→L+2 (+%65)				
		254	0,1920	H→L+4 (+%77)				
	227	227	0,0030	H–3→L+4 (+%72)				
Gaz fa	azı	334	0,0003	H→L (+%52)	H→L+2 (+%35)			
		275	0,0093	H–5→L (+%79)				
		267	0,0019	H–5→L+1 (+%67)				
		245	0,1681	H–3→L+4 (+%59)	H−2→L+4 (+%14)			
		233	0,0001	H−1→L+7 (+%90)				

Tablo 5.37. (Devam)

H: HOMO, L: LUMO.

Şekil 5.31. Kompleks 29–31 için UV–Vis spektrumları.

DFT/HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak kompleks **29** için hesaplanan α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark 4,40/3,79 eV olarak elde edilmiştir. Kompleks **30** ve **31** için HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 3,34 eV ve 4,32 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.38.'de Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri, ligand içi yük transferinin (ILCT) meydana geldiğini göstermektedir.

Parameter	Kompleks 29		Kompleks 30	Kompleks 31
	α spin	β spin	_	
E _{HOMO} (eV)	-6,44	-6,43	-6,51	-6,25
E _{LUMO} (eV)	-2,05	-2,64	-3,17	-1,93
ΔΕ	4,40	3,79	3,34	4,32
χ (eV)	4,25	4,54	4,84	4,09
η (eV)	2,20	1,90	1,67	2,16
$S(eV^{-1})$	0,45	0,53	0,60	0,46

Tablo 5.38. Kompleks 29-31 için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

Şekil 5.32. Kompleks **29–31** için FMO enerjileri.

5.3.7. Kompleks 32–37'nin elektronik özellikleri ve FMO enerjileri

Etanol çözücüsü içinde soğurma dalgaboyları kompleks **32–37** için sırasıyla 275 ve 211 nm, 529–210 nm, 285–227 nm, 292–219 nm, 275 ve 202 nm, 299 ve 218 nm olarak gözlenmiştir (Tablo 5.39.). Bu pikler, metal–ligand ve ligand–ligand yük aktarım geçişleri arasındaki n $\rightarrow \pi^*$ ve $\pi \rightarrow \pi^*$ geçişleridir. Kompleks **32–37**'nin UV– Vis spektrumları Şekil 5.33.'te verilmiştir. TD–HSEh1PBE hesaplama sonuçlarına göre etanol çözücüsünde en yüksek elektronik soğurma dalgaboyu kompleks **32–35**, **37**'de sırasıyla 577 nm (H \rightarrow L+1 (+%73), H \rightarrow L+2 (+%19)), 598 nm (H \rightarrow L (+%93)), 587 nm (H $-2\rightarrow$ L α (+%77)), 520 nm (H $-9\rightarrow$ L β (+%27), H $-8\rightarrow$ L β (+%14)) ve 578 nm (H $-16\rightarrow$ L β (+%41), H $-22\rightarrow$ L β (+%30)) olarak elde edilmiştir. Bu teorik soğurma dalgaboyu d \rightarrow d (metal–metal yük transferi, MMCT), metal–ligand ve ligand–metal yük transfer (MLCT) geçişleri olarak belirlenir (Şekil 5.34.). Şekil 5.34.'te görüldüğü gibi, komplekslerin soğurma dalgaboyları ligand içi yük aktarımında (ILCT) önemli bir katkı sağladığı sonucuna varılmıştır.

Çözücü	Deneysel	TD-HSI	TD-HSEh1PBE/6-311G(d,p)/LanL2DZ			
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar		
Kompleks 32						
Etanol		577	0,0584	H→L+1 (+%73)	H→L+2 (+%19)	
		295	0,3590	H−1→L (+%94)		
	275	274	0,0589	H−1→L+1 (+%98)		
		242	0,0013	H−3→L+1 (+%96)		
	211	213	0,0027	H−3→L+2 (+%86)		
Gaz fazı		591	0,0073	H→L+2 (+%46)	H→L+1 (+%28)	
		290	0,1465	H−2→L (+%31)	H–3→L (+%27)	
		270	0,0098	H−1→L+1 (+%84)		
		246	0,0013	H−6→L (+%88)		
		214	0,0366	H−5→L+2 (+%58)		

Tablo 5.39. Kompleks 32-37 için deneysel ve teorik elektronik soğurma dalgaboyları, önemli elektronik geçişler.

Çözücü	Deneysel	TD-HS	Eh1PBE/6-31	1G(d,p)/LanL2DZ	
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 3	3				
Etanol	529	598	0,0020	H→L (+%93)	
	349	469	0,0069	H→L+1 (+%87)	
	288	335	0,0021	H→L+2 (+%69)	
	263	317	0,0084	H−1→L+2 (+%60)	H–4→L+2 (+%16)
	253	294	0,1454	H→L+3 (+%63)	
	210	284	0,0078	H−15→L+1 (+%39)	H−5→L+2 (+%14)
Gaz fazı		622	0,0043	H→L (+%66)	H−5→L (+%8)
		477	0,0074	H→L+1 (+%57)	
		356	0,0028	H–11→L (+%71)	
		321	0,0152	H−17→L (+%39)	H−2→L+3 (+%14)
		297	0,0135	H–16→L+1 (+%24)	H−15→L+1 (+%13)
		294	0,0078	H−14→L+1 (+%20)	H−3→L+3 (+%18)
Kompleks 3	4				
Etanol		587	0,0003	H−2→L α (+%77)	
		492	0,0004	H−3→L α (+%76)	H−5→L α (+%18)
	285	352	0,0004	H−2→Lβ(+%67)	H−3→Lβ (+%14)
	250	329	0,0161	H−1→L+1 α (+%52)	$H\rightarrow L+2 \beta (+\%21)$
	227	307	0,0043	H−14→L α (+%40)	H−15→L α (+%13)
Gaz fazı		571	0,0062	H→L+1 β (+%29)	H−2→L+1 β (+%14)
		501	0,0003	H−2→L+1 α (+%93)	
		352	0,0007	H−3→Lβ(+%69)	
		340	0,0017	H−4→Lβ(+%55)	
Kompleks 3	5				
Etanol		520	0,0002	H−9→Lβ(+%27)	H−8→Lβ(+%14)
	292	294	0,0010	H→L α (+%95)	
		283	0,4419	H−1→L α (+%38)	$H\rightarrow L+1 \beta (+\%38)$
	249	252	0,0006	H–6→L+1 β (+%80)	
	219	248	0,0009	H−7→L α (+%86)	
Gaz fazı		532	0,0017	$H \rightarrow L \beta (+\%27)$	H−6→Lβ (+%20)
		295	0,0164	H−13→L β (+%63)	H−7→L α (+%18)
		280	0,0033	H−8→L+1 β (+%30)	
		275	0,2076	H−7→L+1 β (+%42)	H−8→L α (+%28)

Tablo 5.39. (Devam)

Çözücü	Deneysel	TD-HS	Eh1PBE/6-31	1G(d,p)/LanL2DZ	
	λ (nm)	λ (nm)	Os. Şiddeti	Başlıca katkılar	
Kompleks 3	6				
Etanol		314	0,0004	H→L+1 (+%62)	H−1→L+2 (+%30)
		302	0,0013	H→L (+%96)	
	275	274	0,1409	H−2→L (+%68)	H–4→L (+%21)
		252	0,0022	H→L+3 (+%96)	
	202	222	0,0055	H−7→L+3 (+%61)	H–4→L+4 (+%10)
Gaz fazı		408	0,0003	H→L (+%100)	
		317	0,0001	H→L+1 (+%96)	
		283	0,0004	H−1→L+4 (+%93)	
		270	0,2626	H−8→L (+%81)	
		235	0,0014	H–3→L+5 (+%37)	H−2→L+6 (+%28)
Kompleks 3	7				
Etanol		578	0,0003	H−16→Lβ(+%41)	H−22→L β (+%30)
		368	0,0001	H−23→L β (+%99)	
		331	0,0001	H−19→L α (+%37)	H−19→L+1 β (+%18)
	299	302	0,0003	H→L+3 α (+%38)	H−1→L+4 β (+%38)
	218	293	0,0002	H→L α (+%27)	H−1→L+2 β (+%13)
Gaz fazı		591	0,0019	H−15→L β (+%35)	H−21→L β (+%35)
		364	0,0001	H−1→L+2 β (+%60)	H–2 \rightarrow L+2 β (+%8)
		334	0,0001	H→L+1 β (+%59)	H−3→L+1 β (+%10)
		303	0,0001	H→L α (+%36)	H−3→L+3 β (+%10)
		297	0,0004	H−3→L+1 β (+%29)	H−1→L α (+%18)

Tablo 5.39. (Devam)

H: HOMO, L: LUMO.

Şekil 5.33. Kompleks **32–37** için UV–Vis spektrumları.

DFT/HSEh1PBE metodu ve 6–311G(d,p)/LanL2DZ temel seti kullanılarak **32**, **33** ve **36** kompleksleri için hesaplanan HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 1,57 eV, 2,32 eV ve 4,18 eV olarak elde edilmiştir. Kompleks **34**, **35**, **37** için elde edilen α/β spin HOMO–LUMO sınır moleküler orbital enerjileri arasındaki fark sırasıyla 2,30/3,43 eV, 4,31/2,68 eV, 4,30/0,28 eV olarak hesaplanmıştır. HOMO ve LUMO enerji değerleri kullanılarak hesaplanan moleküler parametreler Tablo 5.40.'ta sunulmuştur. Kimyasal sertlik (η) parametresi sınır moleküler orbitalleri arasındaki enerji farkı ile doğru orantılı olarak değişmektedir. Sentezlenen komplekslerde elde edilen düşük η parametreleri, ligand içi yük transferinin (ILCT) meydana geldiğini göstermekstedir.

Parametreler	Komp	leks 32	Kompleks 33	Komp	leks 34				
				α spin	β spin				
E _{HOMO} (eV)	-4	,37	-7,24	-6,88	-7,02				
E _{LUMO} (eV)	-2,80		-2,80		-2,80		-491	-4,58	-3,59
ΔΕ	1,57		2,32	2,30	3,43				
χ (eV)	3,	59	6,07	5,73	5,30				
η (eV)	0,	78	1,16	1,15	1,71				
$S (eV^{-1})$	1,28		0,86	0,87	0,58				
Parametreler	Komp	leks 35	Kompleks 36	Komp	leks 37				
-	a spin	β spin		a spin	β spin				
E _{HOMO} (eV)	-7,08	-7,22	-6,61	-7,03	-6,94				
E _{LUMO} (eV)	-2,77	-4,53	-2,44	-2,73	-6,67				
ΔΕ	4,31	2,68	4,18	4,30	0,28				
χ (eV)	4,92	5,88	4,53	4,88	6,80				
η (eV)	2,16	1,34	2,09	2,15	0,14				
$S(eV^{-1})$	0,46	0,75	0,48	0,47	7,14				

Tablo 5.40. Kompleks **32–37** için hesaplanan HOMO, LUMO enerjileri ve ilgili bazı parametreler.

Şekil 5.34. Kompleks 32–37 için FMO enerjileri.

5.4. Sentezlenen Komplekslerin Doğrusal Olmayan Optik (NLO) Parametreleri

Calışmanın dikkat çekici kışımlarından biri sentezlenen 6-metilpiridin-2-karboksilik asit içeren yeni karışık-ligandlı farklı metal komplekslerin mikroskobik boyutta NLO parametrelerinin kuramsal olarak incelenmesidir. Uygulanan lazer ışığına karsı hızlı ve yüksek tepki gösteren malzemelerin üretimi ve karakterizasyonuna uygun değerlikte olan kompleksler optik iletişim ve bilgi depolama alanlarında kullanılacak yeni malzemeler olabileceği öngörülmektedir. Literatürde bu araştırmaların daha çok organik ve metal-organik bileşikler üzerinde yoğunlaştığı bilinen bir gerçektir [114,123,125,142-152]. Bu çalışma, sentezlenmiş metal kompleksleri için elde edilen sonuçların organik yapılara metal atomunun koordinasyonu ile doğrusal olmayan optik özelliklerin mikroskobik boyutta tanımlanmasında önemli bir katkı sağlayacağını göstermektedir. Bu komplekslerin NLO parametrelerindeki değişimin temel sebepleri, kompleksler içerisindeki yük hareketliliği, koordinasyondaki substitute ve metallerin değişimi olarak sıralanabilir. Ayrıca bu kompleks yapılarda her ne kadar π -elektronlarının delokalize etkisi, π -konjugasyon zincir uzunluğu, yük transferi gibi faktörler ön planda olsa da metal etrafindaki simetri merkezi kompleksin NLO parametrelerindeki diğer önemli değişimi göstermektedir.

Hesaplamalara getireceği katkı ve farklılıkları gözlemlemek amacıyla sentezlenen metal komplekslerin kararlı yapıları temel alınarak, sentezlenen komplekslerin dipol momenti (μ), ortalama kutuplanabilirlik ($\langle a \rangle$), yönelime bağlı kutuplanabilirlik (Δa), birinci mertebeden statik yüksek kutuplanabilirlik ($\langle \beta \rangle$) ve ikinci mertebeden statik yüksek kutuplanabilirlik ($\langle \gamma \rangle$) değerleri HSEh1PBE/6–311++G(d,p)/LanL2DZ yöntemi kullanılarak hesaplandı. Ortalama kutuplanabilirlik ($\langle a \rangle$),

$$< a >= \frac{(a_{xx} + a_{yy} + a_{zz})}{3}$$
 (5.4)

yönelime bağlı kutuplanabilirlik (Δa),

$$\Delta a = \left\{ \frac{1}{2} \left[\left(a_{xx} - a_{yy} \right)^2 + \left(a_{yy} - a_{zz} \right)^2 + \left(a_{zz} - a_{xx} \right)^2 \right] \right\}^{1/2}$$
(5.5)

ve birinci mertebeden statik yüksek kutuplanabilirlik (< β >),

$$<\beta>=(\beta_x^2+\beta_y^2+\beta_z^2)^{1/2}$$
 (5.6)

denklemleri ile hesaplanır. Burada $\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$, $\beta_y = \beta_{yyy} + \beta_{yxx} + \beta_{yzz}$, $\beta_z = \beta_{zzz} + \beta_{zyy} + \beta_{zxx}$ olarak verilir [153]. Elde edilen sonuçlardan *a* değerleri 0,1482×10⁻²⁴ esu ve β değerleri 8,6393×10⁻³³ esu ile çarpılarak atomik birimden elektrostatik birime çevrilir.

Herhangi bir molekül için Kleinman simetri ifadeleri kullanılarak ikinci mertebeden statik yüksek kutuplanabilirlik ($\langle \gamma \rangle$) değerleri kartezyen koordinatlarda,

$$<\gamma>=\frac{1}{5}[\gamma_{xxxx}+\gamma_{yyyy}+\gamma_{zzzz}+2(\gamma_{xxyy}+\gamma_{xxzz}+\gamma_{yyzz})]$$
(5.7)

denklemi ile verilir [142,154]. Ayrıca bu denklemlerden yararlanarak komplekslerin 2. ve 3. mertebeden lineer olmayan optik özellikleri mikroskopik olarak incelendi.

5.4.1. Kompleks 1-8'in NLO parametreleri

Kompleks 1, 2, 4, 6, 7'nin μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek

kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.41.'de sunulmuştur. Elde edilen sonuçlara göre, kompleks **2** için β ve γ değerleri oldukça kayda değer şekilde hesaplanmıştır. Bu sonuçlardan, kompleks **2**'nin ikinci ve üçüncü mertebeden NLO özellik gösteren malzemelere önemli bir aday olabileceği öngörülmektedir. Bu parametrelerdeki farklılıkların koordinasyondaki substitute ve metallerin değişiminden kaynaklı olduğu açık şekilde görülmektedir.

Tablo 5.41. Kompleks **1**, **2**, **4**, **6**, **7** için hesaplanan dipol moment (μ , Debye), statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik (< β >, 10^{-30} esu ve < γ >, 10^{-36} esu) parametreleri.

Kompleks	μ (Debye)		<α> (esu)		Δα (e	su)	<β> (e	esu)	<γ> (ε	esu)
	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz
		fazı		fazı		fazı		fazı		fazı
Kompleks 1	8,5	6,3	46,8	35,5	14,4	14,0	6,5	2,3	92,5	32,5
Kompleks 2	3,6	2,4	43,7	32,1	20,4	14,3	52,8	22,2	265,8	79,3
Kompleks 4	10,0	3,7	37,6	29,2	21,7	17,5	1,5	1,3	52,5	18,7
Kompleks 6	6,3	4,4	37,5	28,7	10,9	10,0	1,9	2,0	33,3	14,2
Kompleks 7	114,2	8,9	57,4	41,9	7,9	7,9	7,2	4,9	68,0	23,8
	2,44 ^a		17^{a}				9,2ª, 0	,13 ^b	15 ^a	

^a pNA [83,155], ^b üre [156] sonuçları.

5.4.2. Kompleks 9–11'in NLO parametreleri

Kompleks **9–11**'in μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.42.'de sunulmuştur. Elde edilen sonuçlara göre, kompleks **11** için β ve γ değerleri pNA'ya göre daha büyük değerde hesaplanmıştır. Bu sonuçlardan, bu kompleks için

ikinci ve üçüncü mertebeden NLO parametrelerinin kayda değer olduğu görülmektedir. Bu parametrelerdeki farklılıkların kompleks 9–11 için koordinasyondaki substitute ve metallerin değişiminden kaynaklı olduğu belirtilebilir.

Tablo 5.42. Kompleks 9–11 için hesaplanan dipol moment (μ , Debye), statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10⁻²⁴ esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik (< β >, 10⁻³⁰ esu ve < γ >, 10⁻³⁶ esu) parametreleri.

Kompleks	μ (Debye)		<α> (esu)		$\Delta \alpha$ (esu)		<β> (esu)		<γ> (esu)	
	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz
		fazı		fazı		fazı		fazı		fazı
Kompleks 9	10,8	5,1	58,2	41,4	36,7	22,0	40,5	10,9	_	_
Kompleks 10	10,3	9,0	24,0	20,2	23,06	20,9	8,2	10,8	33,7	37,1
Kompleks 11	9,6	4,7	52,3	37,6	8,5	8,4	59,0	13,3	271,1	32,1
	2,44 ^a		17 ^a				9,2 ^a , 0	,13 ^b	15 ^a	

^a pNA [83,155], ^b üre [156] sonuçları.

5.4.3. Kompleks 12–17'nin NLO parametreleri

Kompleks 12–17'nin μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.43.'te sunulmuştur. 4(5)MeI ligandı ile sentezlenen metal komplekslerinin elde edilen sonuçlarına göre, β değeri kompleks **16** için γ değeri ise kompleks 12 için oldukça kayda değer şekilde hesaplanmıştır. Bu sonuçlardan, kompleks 16 ikinci mertebeden NLO ve kompleks 12 üçüncü mertebeden NLO özellik gösteren malzemelere önemli aday olabileceği öngörülmektedir. Bu parametrelerdeki farklılıkların koordinasyondaki substitute metallerin ve değişiminden kaynaklı olduğu belirtilebilir.

Kompleks	μ (Debye)		<α> (esu)		Δα ($\Delta \alpha$ (esu)		<β> (esu)		<γ> (esu)	
	Etanol	Gaz fazı	Etanol	Gaz fazı	Etanol	Gaz fazı	Etanol	Gaz fazı	Etanol	Gaz fazı	
Kompleks 12	3,3	1,9	67,6	49,3	19,3	13,4	9,1	1,7	947,4	253,1	
Kompleks 13	0,3E-3	0,5E-3	56,4	42,9	12,2	4,16	18,6E–5	10,1E–5	51,6	21,2	
Kompleks 14	1,2	1,3	54,2	41,9	13,0	3,09	54,8E-2	38,6E-2	47,7	19,8	
Kompleks 15	0,5	0,6	59,1	44,6	12,4	5,0	36,8	0,3	90,4	37,2	
Kompleks 16	1,7	1,1	59,3	45,4	9,8	4,7	55,1	76,9	240,3	96,2	
Kompleks 17	12,6	7,1	47,8	36,3	16,6	12,0	1,6	1,7	62,7	25,0	
	2,44 ^a		17 ^a				9,2ª,	0,13 ^b	15 ^a		

Tablo 5.43. Kompleks 12–17 için hesaplanan dipol moment (μ , Debye), statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10⁻²⁴ esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik (< β >, 10⁻³⁰ esu ve < γ >, 10⁻³⁶ esu) parametreleri.

^a pNA [83,155], ^b üre [156] sonuçları.

5.4.4. Kompleks 18–23'ün NLO parametreleri

Kompleks **18–23**'ün μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.44.'te sunulmuştur. 2,2'–Bipiridil ligandı ile sentezlenen metal komplekslerinin elde edilen sonuçlarına göre, β ve γ değerleri kompleks **21** için oldukça kayda değer şekilde hesaplanmıştır. Bu sonuçlardan, kompleks **21** ikinci ve üçüncü mertebeden NLO özellik gösteren malzemelere önemli bir aday olabileceği öngörülmektedir. Bu parametrelerdeki farklılıkların koordinasyondaki substitute ve metallerin değişiminden kaynaklı olduğu belirtilebilir.

Tablo 5.44. Kompleks **18–23** için hesaplanan dipol moment (µ, Debye), statik kutuplanabilirlikler (α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik (β >, 10^{-30} esu ve γ >, 10^{-36} esu) parametreleri.

Kompleks	μ (Del	bye)	<a>(e	esu)	Δα (e	su)	<β> (e	esu)	<γ> (esu)	
	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz
		fazı		fazı		fazı		fazı		fazı
Kompleks 18	11,0	11,8	51,4	39,2	25,0	4,7	5,4	4,7	92,3	31,8
Kompleks 19	21,6	14,1	64,4	47,8	11,6	6,9	38,9	32,1	167,3	85,1
Kompleks 20	20,9	13,7	52,1	39,3	21,1	16,5	13,4	10,0	93,8	35,6
Kompleks 21	7,6	4,5	68,6	44,7	54,9	30,5	268,5	62,0	441,5	43,8
Kompleks 22	9,1	5,9	60,0	42,0	30,3	20,1	102,8	39,5	210,3	44,7
Kompleks 23	4,2	2,6	59,5	41,1	13,7	11,8	46,5	22,1	257,5	107,6
	2,44 ^a		17 ^a				9,2ª, 0	,13 ^b	15 ^a	

^a pNA [83,155], ^b üre [156] sonuçları.

5.4.5. Kompleks 24–28'in NLO parametreleri

Kompleks **24–28**'nın μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.45.'te sunulmuştur. 1,10–fenantrolin ligandı ile sentezlenen metal komplekslerinin elde edilen sonuçlarına göre, β ve γ değerleri kompleks **26** için oldukça kayda değer şekilde hesaplanmıştır. Bu sonuçlardan, kompleks **26** ikinci ve üçüncü mertebeden NLO özellik gösteren malzemelere oldukça önemli bir aday olabileceği öngörülmektedir. Bu parametrelerdeki farklılıkların metallerin değişiminden kaynaklı olduğu açık şekilde görülmektedir.

Tablo 5.45. Kompleks **24–28** için hesaplanan dipol moment (µ, Debye), statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik (< β >, 10^{-30} esu ve < γ >, 10^{-36} esu) parametreleri.

Kompleks	μ (Del	oye)	<α> (esu)		$\Delta \alpha$ (e	su)	<β> (ε	esu)	<γ> (esu)	
	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz
		fazı		fazı		fazı		fazı		fazı
Kompleks 24	6,1	3,5	92,4	60,4	50,4	24,6	29,4	36,3	_	331,5
Kompleks 25	20,0	9,6	68,7	51,4	12,6	17,1	2,4	2,9	99,4	35,5
Kompleks 26	0,7	0,3	84,1	64,0	31,9	33,7	241,3	435	2775	1601
Kompleks 27	2,5	2,7	72,6	51,2	23,5	14,2	7,8	3,5	202,1	_
Kompleks 28	3,4	2,3	70,5	51,2	17,7	12,0	10,0	2,9	117,2	39,8
	2,44 ^a		17^{a}				9,2 ^a , 0	,13 ^b	15 ^a	

^a pNA [83,155], ^b üre [156] sonuçları.

5.4.6. Kompleks 29–31'in NLO parametreleri

Kompleks **29–31**'in μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek

kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.46.'da sunulmuştur. Elde edilen sonuçlara göre, kompleks **30** için β değeri diğer kompleks **29** ve **31**'den biraz farklı büyüklükte hesaplanmıştır. γ değerleri bu kompleksler için oldukça yakın değerlerde bulunmuştur. Bu komplekslerde metallerin ve koordinasyon çevresindeki substitute farklılıkları ikinci ve üçüncü mertebeden NLO parametreleri üzerinde önemli farklar oluşturmamıştır.

Tablo 5.46. Kompleks **29–31** için hesaplanan dipol moment (µ, Debye), statik kutuplanabilirlikler (< α > ve $\Delta \alpha$, 10^{-24} esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik (< β >, 10^{-30} esu ve < γ >, 10^{-36} esu) parametreleri.

Kompleks	μ (Debye)		<a>	<α> (esu)		$\Delta \alpha$ (esu)		<β> (esu)		<γ> (esu)	
	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	
		fazı		fazı		fazı		fazı		fazı	
Kompleks 29	19,7	13,1	56,1	42,0	21,8	15,8	7,4	7,2	89,0	32,9	
Kompleks 30	25,8	16,2	58,8	42,2	18,7	13,3	10,6	8,1	77,2	26,8	
Kompleks 31	24,1	11,9	62,4	46,1	6,8	10,5	3,0	5,0	91,3	30,5	
	2,44 ^a		17 ^a				9,2 ^a , 0,1	3 ^b	15 ^a		

^a pNA [83,155], ^b üre [156] sonuçları.

5.4.7. Kompleks 32–37'nin NLO parametreleri

Kompleks **32–37**'nin μ , α , β ve γ (dipol moment, statik kutuplanabilirlik, 1. mertebeden statik yüksek kutuplanabilirlik ve 2. mertebeden statik yüksek kutuplanabilirlik) parametreleri etanol çözücüsü ve gaz fazında hesaplandı. Elde edilen sonuçlar moleküler sistemde NLO özelliklerinin karşılaştırılmasında prototip olarak kullanılan para nitroanilin (pNA) [83,155] ve üre [156] sonuçları ile karşılaştırılarak Tablo 5.47.'de sunulmuştur. 4,4'–dimetil–2,2'–dipiridil ligandı ile sentezlenen metal komplekslerinin elde edilen sonuçlarına göre, kompleks **37** için β değeri oldukça kayda değer şekilde hesaplanmıştır. Bu sonuç, kompleks **37** ikinci mertebeden NLO özellik gösteren malzemelere oldukça önemli bir aday olabileceği öngörülmektedir. Kompleks **32** içinde bu parametreler ölçülebilir büyüklüktedir. Bu

parametrelerdeki farklılıkların koordinasyondaki substitute ve metallerin değişiminden kaynaklı olduğu açık şekilde görülmektedir.

Tablo 5.47. Kompleks **32–37** için hesaplanan dipol moment (µ, Debye), statik kutuplanabilirlikler ($\alpha > ve \Delta \alpha$, 10^{-24} esu), 1. ve 2. mertebeden statik yüksek kutuplanabilirlik ($\beta >$, 10^{-30} esu ve $\gamma >$, 10^{-36} esu) parametreleri.

Kompleks	μ (Del	bye)	<α> (esu)		Δα (e	su)	<β> (ε	esu)	<γ> (esu)	
	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz	Etanol	Gaz
		fazı		fazı		fazı		fazı		fazı
Kompleks 32	22,1	11,8	73,3	51,7	39,7	29,8	208,0	38,4	177,2	_
Kompleks 33	16,1	11,0	73,6	51,8	25,6	19,7	11,3	5,9	118,3	31,7
Kompleks 34	26,0	16,8	62,5	45,9	20,3	15,5	23,6	15,3	124,2	44,6
Kompleks 35	27,1	16,1	57,5	42,6	13,5	15,1	9,2	6,8	62,7	27,8
Kompleks 36	21,0	12,4	63,2	48,2	5,4	5,5	1,9	1,0	94,2	35,4
Kompleks 37	23,3	13,8	85,0	71,2	56,5	35,3	657,7	435	36214	_
	2,44 ^a		17 ^a				9,2 ^a , 0	,13 ^b	15 ^a	

^a pNA [83,155], ^b üre [156] sonuçları.

5.5. Sentezlenen Komplekslerin Doğal Bağ Orbital (NBO) Analizleri ve Elektrostatik Potansiyel (MEP) Yüzeyleri

Doğal bağ orbital analizi molekül içi ve moleküller arası bağlar, hidrojen bağı etkileşmeleri, moleküler sistemde yük transferi ve konjugatif etkileşimleri incelemek için etkili bir yöntemdir [157]. Sentezlenen kompleklerin NBO analizi HSEh1PBE yöntemi ile 6-311G(d,p) ve LanL2DZ temel setleri ile optimize yapılar için hesaplandı. Elde edilen Hiperkonjugatif etkileşim enerjisi, ikinci–mertebe pertürbasyon yaklaşımından türetilmiştir [158-160]. Her bir elektron verici (*i*) ve elektron alıcı (*j*) için kararlılık enerjisi,

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\varepsilon_i - \varepsilon_j}$$
(5.8)

ile ifade edilir. Burada, q_i elektron verici nüfus yoğunluğunu ε_i ve ε_j NBO Fock matrisinin köşegen elemanlarını, F(i, j) köşegen olmayan elemanlarını temsil eder. NBO analizinde, Büyük $E^{(2)}$ enerji değeri elektron alıcı ve elektron vericiler arasındaki etkileşimlerin daha şiddetli olduğunu gösterir. Ayrıca, büyük $E^{(2)}$ değerleri molekül içi ve moleküller arası yük geçişlerinin fazla olduğunun bir göstergesidir.

Elektrostatik potansiyelin izoelektron yoğunluğu yüzeyine eşleşmesi yöntemi MEP (moleküler elektrostatik potansiyel) yüzeyinin analizi olarak bilinir. MEP, moleküler sistemin çevresi ile etkileşimi incelenmek için kullanılan bir yöntemdir. Moleküler elektrostatik potansiyel yüzeyler, kimyasal moleküllerin özellikleri ve moleküller arası etkileşimleri, biyolojik moleküller, ilaç moleküllerin fizikokimyasal özellikleri ve enzim katalizi gibi önemli süreçlerin araştırılmasında kullanılan yararlı bir araçtır [161-166]. MEP, moleküldeki elektron veren ve elektron alan bölgelerin belirlenmesinde ve molekül içi hidrojen bağı oluşumu hakkında önemli bilgiler vermektedir [167-170].

Moleküler elektrostatik potansiyel V(r), bir r(x, y, z) noktasına yerleştirilmiş pozitif bir yük ile incelenen molekül arasındaki etkileşim enerjisi olarak tanımlanmaktadır. Herhangi bir sistem için V(r) hem çekirdek hem de elektronik dağılımdan gelen katkıların toplamından oluşur [171].

$$V(r) = \sum_{A}^{M} \frac{Z_{A}}{|R_{A}-r|} - \int \frac{\rho(r')}{|r-\prime|} dr'$$
(5.9)

Burada R_A çekirdek konumunu, Z_A çekirdeğin yükünü, $\rho(r')$ molekülün elektron yoğunluğunu ve r' keyfi bir integral değişkenini temsil eder. Burada, ilk terim çekirdeklerin katkısını ve ikinci terim elektronlardan gelen katkıyı ifade eder. MEP eş zamanlı olarak renk sınıflandırması açısından moleküler boyut, şekil ve elektrostatik potansiyel bölgelerini gösterir. MEP yüzeyinde, kırmızı renk elektronca zengin, sarı renk kısmen elektron zengini, mavi renk elektron eksikliği, açık mavi rengi kısmen elektron eksikliği ve yeşil renk nötr bölgeleri temsil eder. Bir MEP yüzeyinde kırmızı ve mavi rengin fazla olması incelenen molekülün kutuplu bir molekül olduğu, renksiz veya sarı ve açık mavi renklerin olması molekülün kutuplanabilirliğinin azaldığını göstermektedir.

5.5.1. Kompleks 1–8'in NBO analizleri ve MEP yüzeyleri

Sentezlenen 1, 2, 4, 6 ve 7 komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.48.'de sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) Cr(III), Mn(II), Hg(II), Zn(II) ve Fe(II) orbital çiftleri arasında verici-alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.48.'de görüldüğü üzere, 1, 2, 4, 6 ve 7 kompleksleri içerisindeki n→n* etkileşimlerinden kaynaklanan yer değiştirme etkileri Cr(III), Mn(II), Hg(II), Zn(II) ve Fe(II) iyonlarının koordinasyon ortamlarında çok önemli bir rol oynamaktadır. Kompleks 1, 2, 4, 6 ve 7 için en güçlü stabilizasyon enerjisi $(E^{(2)})$ değerleri 36,61–9,10 kcal/mol aralığında elde edilmiştir. Komplekslerdeki bu etkilesimler koordinasvon geometrisini doğrular. Avrıca, komplekslerin LP(3)O3 $\rightarrow\pi^*(O4-C8)$, LP(3)O2 $\rightarrow\pi^*(C7-O1)$, LP(3)O2 $\rightarrow\pi^*(C1-C8)$ O1), LP(3)O3 $\rightarrow \pi^*(O4-C8)$ ve LP(3)O3 $\rightarrow \pi^*(C8-O4)$ etkileşim enerjileri 30,61, 32,33, 69,28, 70,25 ve 21,47 kcal/mol olarak bulunmuştur. Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Komplekslerdeki diğer önemli etkileşimler 6-mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkilesimleri gösterdiği açıktır. Kompleks 1, 2, 4 ve 6 için O-H·· \cdot O ve Kompleks 2 için C–H \cdot \cdot O tipi moleküller arası hidrojen bağ etkileşimleri NBO analizi ile doğrulanmıştır (Tablo 5.48.).

Kompleks 1			Kompleks 2			Kompleks 4		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Donor (i)	Acceptor (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(C1–O2)	13,21	LP(2) O1	σ*(C7–O2)	12,69	LP(2) O1	σ*(C1–O2)	24,27
LP(3) O2	π*(C1–O1)	22,78	LP(3) O2	π*(C7–O1)	32,33	LP(3) O2	π*(C1–O1)	69,28
LP(2) O2	LP*(3) Cr1	13,06	LP(2) O2	LP*(3) Mn1	25,57	LP(2) O2	LP*(6) Hg1	22,94
LP(2) O3	LP*(3) Cr1	11,55	LP(2) O2	σ*(O6–H6B)	0,12	LP(1) O2	σ*(O5–H5B)	11,75
LP(3) O3	π *(O4–C8)	30,61	LP(3) O2	σ*(C13–H13C)	0,43	LP(2) O3	LP*(6) Hg1	28,98
LP(2) O4	σ*(O3–C8)	11,05	LP(2) O3	σ*(C14–O4)	12,76	LP(3) O3	π *(C8–O4)	73,85
LP(2) O5	LP*(4) Cr1	17,40	LP(3) O4	π*(C14–O3)	31,86	LP(2) O4	σ*(C8–O3)	23,73
LP(3) O6	LP*(2) Cr1	29,76	LP(2) O4	LP*(3) Mn1	21,71	LP(2) O5	LP*(6) Hg1	9,10
LP(1) N1	LP*(3) Cr1	14,34	LP(2) O5	LP*(5) Mn1	15,93	LP(1) N1	LP*(6) Hg1	19,15
LP(1) N2	LP*(3) Cr1	13,78	LP(2) O6	LP*(4) Mn1	15,49	LP(1) N2	LP*(6) Hg1	20,22
LP(2) O7	σ*(N3–O8)	12,03	LP(1) N1	LP*(4) Mn1	26,36			
LP(2) O8	π*(N3–O7)	21,08	LP(1) N2	LP*(5) Mn1	22,98			
LP(2) O9	σ*(N3–O8)	13,36						
LP(3) O9	σ*(N3–O7)	77,58						
LP(2) O10	σ*(O5–H5A)	15,37						

Tablo 5.48. Kompleks 1, 2, 4, 6, 7 için NBO analizi.

Kompleks 6			Kompleks 7		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	LP*(6) Zn1	29,51	LP(2) O1	σ*(C1–O2)	13,30
LP(3) O1	π*(O2–C1)	64,45	LP(2) O2	π*(C1–O1)	12,99
LP(2) O2	σ*(O1–C1)	25,20	LP(3) O2	LP*(3) Fe1	19,02
LP(2) O3	LP*(6) Zn1	36,61	LP(2) O3	LP*(3) Fe1	13,89
LP(3) O3	π*(O4–C8)	70,25	LP(3) O3	π *(C8–O4)	21,47
LP(2) O4	σ*(O3–C8)	24,22	LP(2) O4	σ*(C8–O3)	12,73
LP(2) O5	LP*(6) Zn1	27,05	LP(2) O5	LP*(3) Fe1	18,34
LP(2) O6	σ*(O5–H5A)	21,74	LP(3) O5	π*(C15–O6)	22,34
LP(1) N1	LP*(6) Zn1	30,83	LP(2) O6	σ*(C15–O5)	13,27
LP(1) N2	LP*(6) Zn1	31,52	LP(1) N1	LP*(4) Fe1	17,29
			LP(1) N2	LP*(5) Fe1	15,11
			LP(1) N3	LP*(5) Fe1	17,76

Tablo 5.48. (Devam)

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).

Kompleksler 1, 2, 4, 6, 7 için MEP yüzeyleri Şekil 5.35.'te verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları üzerindedir. Mavi renkle temsil edilen pozitif potansiyel daha fazla C–H bağ bölgesinde elde edilmiştir.

Şekil 5.35. Kompleks 1, 2, 4, 6, 7 için MEP yüzeyleri.

5.5.2. Kompleks 9–11'in NBO analizleri ve MEP yüzeyleri

Sentezlenen 9–11 komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.49.'da sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) Cu(II), Cd(II) ve Cr(III) orbital çiftleri arasında verici–alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.49.'da görüldüğü üzere, 9–11 kompleksleri içerisindeki n→n* etkileşimlerinden kaynaklanan yer değiştirme etkileri Cu(II), Cd(II) ve Cr(III) iyonlarının koordinasyon ortamlarında çok önemli bir rol oynamaktadır. Kompleks 9–11 için en güçlü stabilizasyon enerjisi ($E^{(2)}$) değerleri

58,24–13,46 kcal/mol aralığında elde edilmiştir. Komplekslerdeki bu etkileşimler koordinasyon geometrisini doğrular. Ayrıca, komplekslerin LP(3)O3 $\rightarrow \pi^*(O4-C8)$, LP(3)O1 $\rightarrow \pi^*(O2-C2)$ ve LP(3)O2 $\rightarrow \pi^*(O3-C2)$ etkileşim enerjileri 81,33, 68,37 ve 15,28 kcal/mol olarak bulunmuştur. Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Ayrıca, kompleks **9**– **11** için güçlü hiperkonjugatif etkileşimlerin siyanat grubuna ait üçlü bağ NC grubu ile yalnız kükürt çiftinde gözlenir. Örneğin, LP(1) S1 $\rightarrow \pi^*(N3-C15)$, LP(1) S1 $\rightarrow \pi^*(N1-C1)$ ve LP(1) S1 $\rightarrow \pi^*(N1-C1)$ etkileşimi enerjileri sırasıyla 60,60, 62,68 ve 26,25'te kcal/mol olarak hesaplanmıştır. Komplekslerdeki diğer önemli etkileşimler 6-mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkileşimleri gösterdiği açıktır. Kompleks **1** için C–H···O tipi moleküller arası hidrojen bağ etkileşimleri NBO analizi ile doğrulanmıştır (Tablo 5.49.).

Kompleks 9			Kompleks 10			Kompleks 11		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(O2–C1)	26,91	LP(2) O1	LP*(6) Cd1	33,50	σ(C8–H8C)	$\sigma^{*}(O2^{1}-C2^{1})$	0,07
LP(2) O2	π*(O1–C1)	50,25	LP(3) O1	$\pi^*(O2-C2)$	68,37	σ(O1–H1)	π*(O3–C2)	0,05
LP(3) O2	LP*(5) Cu1	34,98	LP(2) O2	σ*(O1–C2)	25,17	$LP(2) O2^{i}$	LP*(2) Cr1	21,68
LP(2) O2	σ*(C14–H14C)	0,51	LP(1) N1	LP*(6) Cd1	49,17	LP(2) O2	LP*(2) Cr1	24,17
LP(3) O3	σ*(C7–H7A)	0,07	LP(1) N2	LP*(6) Cd1	23,36	LP(3) O2	π*(O3–C2)	15,28
LP(2) O3	LP*(5) Cu1	20,89	LP(2) S1	π*(N1–C1)	62,68	LP(2) O3	σ*(O2–C2)	13,91
LP(3) O3	π*(O4–C8)	81,33				LP(1) N1	LP*(4) Cr1	30,99
LP(2) O4	σ*(O3–C8)	21,84				LP(1) N2	LP*(4) Cr1	13,46
LP(1) N1	LP*(5) Cu1	57,43				$LP(1) N2^{i}$	LP*(4) Cr1	14,09
LP(1) N2	LP*(5) Cu1	58,24				LP(2) S1	σ*(N1–C1)	26,25
LP(1) N3	LP*(5) Cu1	36,30						
LP(2) S1	π*(N3–C15)	60,60						

Tablo 5.49. Kompleks 9–11 için NBO analizi

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).
Kompleksler **9–11** için MEP yüzeyleri Şekil 5.36.'da verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları üzerindedir. Mavi renkle temsil edilen pozitif potansiyel daha fazla C–H bağ bölgesinde elde edilmiştir.

Kompleks 11

Şekil 5.36. Kompleks 9–11 için MEP yüzeyleri.

5.5.3. Kompleks 12–17'nin NBO analizleri ve MEP yüzeyleri

Sentezlenen 12–17 komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.50.'de sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) Mn(II), Zn(II), Cd(II), Co(II), Ni(II) ve Cu(II) orbital çiftleri arasında verici–alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.50.'de görüldüğü üzere, **12–17** kompleksleri içerisindeki n \rightarrow n* etkileşimlerinden kaynaklanan yer değiştirme etkileri Mn(II), Zn(II), Cd(II), Co(II), Ni(II) ve Cu(II) iyonlarının koordinasyon ortamlarında çok önemli bir rol oynamaktadır. Kompleks **12–17** için en güçlü stabilizasyon enerji ($E^{(2)}$) değerleri 27,80–7,86 kcal/mol aralığında elde edilmiştir. Komplekslerdeki bu etkileşimler koordinasyon geometrisini doğrular. Ayrıca,

komplekslerin LP(3)O1 $\rightarrow\pi^*(C7-O2)$, LP(3)O1 $\rightarrow\pi^*(C7-O2)$, LP(3)O1 $\rightarrow\pi^*(C1-O2)$, LP(3)O2 $\rightarrow\pi^*(C7-O1)$, LP(2)O2 $\rightarrow\pi^*(C7-O1)$, LP(3)O4 $\rightarrow\pi^*(C18-O3)$, LP(3)O2 $\rightarrow\pi^*(C7-O1)$ ve LP(3)O4 $\rightarrow\pi^*(C18-O3)$ etkileşim enerjileri 33,65, 72,46, 79,98, 12,16, 17,00, 18,05, 32,87 ve 33,52 kcal/mol olarak bulunmuştur. Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Komplekslerdeki diğer önemli etkileşimler 6-mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkileşimleri gösterdiği açıktır.

Kompleks 12			Kompleks 13			Kompleks 14		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	LP*(5) Mn1	11,53	LP(2) O1	LP*(6) Zn1	23,33	LP(2) O1	LP*(6) Cd1	18,59
LP(3) O1	π*(C7–O2)	33,65	LP(3) O1	π*(C7–O2)	72,46	LP(3) O1	π*(C1–O2)	79,98
LP(2) O2	σ*(C7–O1)	12,33	LP(2) O2	σ*(C7–O1)	23,62	LP(2) O2	σ*(C1–O1)	22,37
LP(1) N1	LP*(4) Mn1	16,35	LP(1) N1	LP*(6) Zn1	21,54	LP(1) N1	LP*(6) Cd1	13,43
LP(1) N2	LP*(5) Mn1	14,23	LP(1) N2	LP*(6) Zn1	27,80	LP(1) N2	LP*(6) Cd1	17,02
Kompleks 15			Kompleks 16			Kompleks 17		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(C7–O2)	34,40	LP(2) O1	σ*(C7–O2)	12,92	LP(2) O1	σ*(C7–O2)	12,56
LP(3) O2	π *(C7–O1)	12,16	LP(2) O2	π *(C7–O1)	17,00	LP(3) O2	π*(C7–O1)	32,87
LP(2) O2	LP*(5) Co1	13,68	LP(3) O2	LP*(4) Ni1	14,72	LP(2) O2	LP*(6) Cu1	17,70
LP(1) N1	LP*(6) Co1	9,93	LP(2) O3	σ*(C18–O4)	13,13	LP(2) O3	σ*(C18–O4)	12,56
LP(1) N2	LP*(5) Co1	13,87	LP(3) O4	π*(C18–O3)	18,05	LP(3) O4	π*(C18–O3)	33,52
			LP(2) O4	LP*(6) Ni1	7,86	LP(2) O4	LP*(6) Cu1	18,57
			LP(3) O5	LP*(6) Ni1	18,52	LP(1) N1	LP*(6) Cu1	17,26
			LP(1) N1	LP*(6) Ni1	11,02	LP(1) N2	LP*(6) Cu1	11,79
			LP(1) N2	LP*(6) Ni1	11,79	LP(1) N4	LP*(6) Cu1	14,25
			LP(1) N3	LP*(6) Ni1	19,13			

Tablo 5.50. Kompleks **12–17** için NBO analizi.

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).

Kompleksler **12–17** için MEP yüzeyleri Şekil 5.37.'de verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları üzerindedir. Mavi renkle temsil edilen pozitif potansiyel N–H ve C–H bağ bölgelerinde elde edilmiştir.

Şekil 5.37. Kompleks 12–17 için MEP yüzeyleri.

5.5.4. Kompleks 18–23'ün NBO analizleri ve MEP yüzeyleri

Sentezlenen 18–23 komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.51.'de sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) Hg(II), Co(II), Cu(II), Mn(II), Ni(II) ve Fe(II) orbital çiftleri arasında verici–alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.51.'de görüldüğü üzere, 18–23 kompleksleri içerisindeki n \rightarrow n* etkileşimlerinden kaynaklanan yer değiştirme etkileri Hg(II), Co(II), Cu(II), Mn(II), Ni(II) ve Fe(II) iyonlarının koordinasyon ortamlarında çok önemli bir rol oynamaktadır. Kompleks 18–23 için en güçlü

stabilizasyon enerjisi ($E^{(2)}$) değerleri 58,78–8,81 kcal/mol aralığında elde edilmiştir. Komplekslerdeki bu etkileşimler koordinasyon geometrisini doğrular. Ayrıca, komplekslerin LP(3)O2 $\rightarrow\pi^*(O1-C1)$ etkileşim enerjileri sırasıyla 78,27, 33,22, 37,80, 64,41, 37,34, 31,74 kcal/mol olarak bulunmuştur. Bunu yanı sıra, kompleks **19**'da LP(3)O3 $\rightarrow\pi^*(O4-C8)$ 'in etkileşim enerjisi 33,22 kcal/mol olarak elde edilmiştir. Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Komplekslerdeki diğer önemli etkileşimler 6mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkileşimleri gösterdiği açıktır. Kompleks **18**, **20**, **22**, **23** için O–H···O ve kompleks **19** için C–H···O tipi moleküller arası hidrojen bağ etkileşimleri NBO analizi ile doğrulanmıştır (Tablo 5.51.).

Kompleks 18			Kompleks 19			Kompleks 20		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(O2–C1)	22,74	LP(2) O1	σ*(O2–C1)	12,26	LP(2) O1	σ*(O2–C1)	10,60
LP(3) O2	π*(O1–C1)	78,27	LP(3) O2	π*(O1–C1)	33,22	LP(3) O2	π *(O1–C1)	37,80
LP(2) O2	LP*(6) Hg1	20,36	LP(2) O2	LP*(5) Co1	17,19	LP(2) O2	LP*(6) Cu1	17,53
LP(2) O3	LP*(6) Hg1	13,77	LP(3) O2	σ*(C15–H15)	0,44	LP(2) O3	LP*(6) Cu1	13,76
LP(2) O5	σ*(O6–H6B)	35,22	LP(2) O3	LP*(5) Co1	17,19	LP(2) O5	σ*(O3–N4)	10,12
LP(3) O5	LP*(1) H5A	410,12	LP(3) O3	π*(O4–C8)	33,22	LP(2) O7	σ*(O8–H8B)	7,13
LP(1) N1	LP*(6) Hg1	17,87	LP(3) O3	$\sigma^*(C24-H24)$	0,44	LP(1) N1	LP*(6) Cu1	8,81
LP(1) N2	LP*(6) Hg1	14,79	LP(2) O4	σ*(O3–C8)	12,26	LP(1) N2	LP*(6) Cu1	18,12
LP(1) N3	LP*(6) Hg1	12,96	LP(1) N1	LP*(6) Co1	12,94	LP(1) N3	LP*(6) Cu1	18,86
			LP(1) N2	LP*(6) Co1	12,94	LP(1) N4	σ*(N4–O4)	22,07
			LP(1) N3	LP*(5) Co1	16,92			
			LP(1) N4	LP*(5) Co1	16,92			

Tablo 5.51. Kompleks 18–23 için NBO analizi.

Kompleks 21			Kompleks 22			Kompleks 23		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(O2–C1)	25,04	LP(2) O1	σ*(O2–C1)	12,07	LP(2) O1	σ*(O2–C1)	12,83
LP(3) O2	π*(O1–C1)	64,41	LP(3) O2	π*(O1–C1)	37,34	LP(3) O2	π*(O1–C1)	31,74
LP(2) O2	LP*(3) Mn1	35,67	LP(2) O2	LP*(4) Ni1	11,19	LP(2) O2	LP*(4) Fe1	17,62
LP(2) O3	LP*(5) Mn1	28,04	LP(2) O3	$\sigma^*(O4-H4B)$	11,69	LP(2) O3	LP*(6) Fe1	17,80
LP(2) O4	LP*(5) Mn1	28,23	LP(2) O4	LP*(5) Ni1	15,33	LP(2) O4	LP*(6) Fe1	11,35
LP(1) N1	LP*(5) Mn1	42,28	LP(1) N1	LP*(5) Ni1	11,77	LP(2) O5	σ*(O3–H3B)	13,53
LP(1) N2	LP*(5) Mn1	41,68	LP(1) N2	LP*(5) Ni1	14,45	LP(1) N1	LP*(6) Fe1	20,87
LP(1) N3	LP*(3) Mn1	58,78	LP(1) N3	LP*(5) Ni1	23,05	LP(1) N2	LP*(5) Fe1	24,84
						LP(1) N3	LP*(4) Fe1	23,58

Tablo 5.51. (Devam)

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).

Kompleksler **18–23** için MEP yüzeyleri Şekil 5.38.'de verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları üzerindedir. Mavi renkle temsil edilen pozitif potansiyel daha fazla C–H bağ bölgesinde elde edilmiştir.

Şekil 5.38. Kompleks 18–23 için MEP yüzeyleri.

5.5.5. Kompleks 24–28'in NBO analizleri ve MEP yüzeyleri

Sentezlenen 24–28 komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.52.'de sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) Co(II), Hg(II), Mn(II), Co(II) ve Ni(II) orbital çiftleri arasında verici–alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.52.'de görüldüğü üzere, 24–28 kompleksleri içerisindeki n \rightarrow n* etkileşimlerinden kaynaklanan yer değiştirme etkileri Co(II), Hg(II), Mn(II), Co(II) ve Ni(II) iyonlarının koordinasyon ortamlarında çok önemli

bir rol oynamaktadır. Kompleks **24–28** için en güçlü stabilizasyon enerjisi ($E^{(2)}$) değerleri 36,20–6,71 kcal/mol aralığında elde edilmiştir. Komplekslerdeki bu etkileşimler koordinasyon geometrisini doğrular. Ayrıca, **24–26** komplekslerin LP(3)O1 $\rightarrow\pi^*(C6-O2)$ ve LP(3)O3 $\rightarrow\pi^*(C13-O4)$ etkileşim enerjileri sırasıyla 22,67, 70,33, 34,59 kcal/mol ve 22,16, 88,60, 34,53 kcal/mol olarak bulunmuştur. Bunu yanı sıra, kompleks **27** ve **28**'de LP(3)O2 $\rightarrow\pi^*(C1-O1)$ ve LP(3)O3 $\rightarrow\pi^*(C8-O4)$ 'ün etkileşim enerjileri sırasıyla 33,02, 12,32 kcal/mol ve 35,04, 12,21 kcal/ mol olarak elde edilmiştir. Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Komplekslerdeki diğer önemli etkileşimler 6-mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkileşimleri gösterdiği açıktır. Kompleks **24** için C–H···O tipi moleküller arası hidrojen bağ etkileşimleri NBO analizi ile doğrulanmıştır (Tablo 5.52.).

Kompleks 24			Kompleks 25			Kompleks 26		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(C8–H8)	0,18	LP(1) O1	σ*(O6–H6B)	18,12	LP(1) O1	σ*(O6–H6A)	1,91
LP(3) O1	LP*(5) Co1	19,69	LP(2) O1	LP*(6) Hg1	17,38	LP(2) O1	LP*(2) Mn1	19,41
LP(2) O1	π*(O2–C6)	22,67	LP(3) O1	π*(C6–O2)	70,33	LP(3) O1	π*(C6–O2)	34,59
LP(2) O2	σ*(O1–C6)	11,50	LP(2) O2	σ*(C6–O1)	23,68	LP(2) O2	σ*(C6–O1)	12,03
LP(2) O3	LP*(5) Co1	15,18	LP(1) O3	LP*(6) Hg1	20,28	LP(2) O3	LP*(2) Mn1	19,43
LP(3) O3	π*(O4–C13)	22,16	LP(3) O3	π*(C13–O4)	88,60	LP(3) O3	π*(C13–O4)	34,53
LP(2) O4	σ*(O3–C13)	10,72	LP(2) O4	σ*(C13–O3)	14,39	LP(2) O4	σ*(C13–O3)	12,06
LP(1) N1	LP*(6) Co1	20,41	LP(2) O4	σ*(O5–H5B)	16,09	LP(2) O5	σ*(C7–H7B)	1,25
LP(1) N2	LP*(6) Co1	20,16	LP(1) N1	LP*(6) Hg1	15,23	LP(1) N1	LP*(4) Mn1	12,58
LP(1) N3	LP*(6) Co1	22,17	LP(1) N2	LP*(6) Hg1	13,94	LP(1) N2	LP*(4) Mn1	12,58
LP(1) N4	LP*(6) Co1	22,12	LP(1) N3	LP*(6) Hg1	14,71	LP(1) N3	LP*(3) Mn1	14,32
			LP(1) N4	LP*(6) Hg1	14,57	LP(1) N4	LP*(4) Mn1	14,17

Tablo 5.52. Kompleks **24–28** için NBO analizi.

Kompleks 27			Kompleks 28		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(C1–O2)	12,39	σ(O5–H5A)	LP*(1) H5B	34,18
LP(3) O2	π*(C1–O1)	33,02	LP(2) O1	σ*(C1–O2)	24,34
LP(1) O2	σ*(O5–H5B)	4,71	LP(2) O2	σ*(C1–O1)	12,32
LP(2) O2	LP*(4) Co1	13,60	LP(2) O2	LP*(6) Ni1	30,73
LP(2) O3	LP*(5) Co1	14,56	LP(2) O3	LP*(5) Ni1	36,20
LP(3) O3	π*(C8–O4)	35,04	LP(2) O3	σ*(C8–O4)	12,21
LP(2) O4	σ*(C8–O3)	12,17	LP(2) O4	σ*(C8–O3)	25,25
LP(2) O5	σ*(C14–H14B)	1,43	LP(2) O5	σ*(C14–H14B)	567,30
LP(1) N1	LP*(5) Co1	13,08	LP(1) N1	LP*(6) Ni1	6,96
LP(1) N2	LP*(6) Co1	11,48	LP(1) N2	LP*(6) Ni1	31,02
LP(1) N3	LP*(5) Co1	13,35	LP(1) N3	LP*(6) Ni1	6,71
LP(1) N4	LP*(6) Co1	12,33	LP(1) N4	LP*(6) Ni1	29,72

Tablo 5.52. (Devam)

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).

Kompleksler **24–28** için MEP yüzeyleri Şekil 5.39.'da verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları ve su ligandları üzerindedir. Mavi renkle temsil edilen pozitif potansiyel daha fazla C–H bağ bölgelerinde elde edilmiştir.

Şekil 5.39. Kompleks 24–28 için MEP yüzeyleri.

5.5.6. Kompleks 29–31'in NBO analizleri ve MEP yüzeyleri

Sentezlenen **29–31** komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.53.'te sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) Cu(II), Co(II) ve Zn(II) orbital çiftleri arasında verici–alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.53.'te görüldüğü üzere, **29–31** kompleksleri içerisindeki n \rightarrow n* etkileşimlerinden kaynaklanan yer değiştirme etkileri Cu(II),

Co(II) ve Zn(II) iyonlarının koordinasyon ortamlarında çok önemli bir rol oynamaktadır. Kompleks **29–31** için en güçlü stabilizasyon enerjisi ($E^{(2)}$) değerleri 43,93–18,26 kcal/mol aralığında elde edilmiştir. Komplekslerdeki bu etkileşimler koordinasyon geometrisini doğrular. Kompleks **30**'da LP(n) klor orbital çiftleri ile LP(n*) Co(II) orbital çiftleri arasındaki stabilizasyon enerjisi 18,26 ve 66,82 kcal/mol olarak elde edilmiştir. Ayrıca, **29–31** komplekslerinin LP(2)O3 $\rightarrow \pi^*(O4-$ C18), LP(2)O2 $\rightarrow \pi^*(C7-O1)$, LP(2)O2 $\rightarrow \pi^*(C1-O1)$ ve LP(2)O3 $\rightarrow \pi^*(C8-O4)$ etkileşim enerjileri sırasıyla 26,40, 31,76, 15,49, 74,04 kcal/mol Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Komplekslerdeki diğer önemli etkileşimler 6-mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkileşimleri gösterdiği açıktır. Kompleks **29** için O– H· · ·O tipi moleküller arası hidrojen bağ etkileşimleri NBO analizi ile doğrulanmıştır (Tablo 5.53.).

Kompleks 29			Kompleks 30			Kompleks 31		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(O5–H5A)	1,23	LP(2) O1	σ*(C7–O2)	26,73	LP(2) O1	σ*(C1–O2)	23,71
LP(2) O1	σ*(O2–C7)	10,55	LP(2) O2	π *(C7–O1)	31,76	LP(2) O2	σ*(C1–O1)	15,49
LP(3) O2	π*(O1–C7)	40,44	LP(3) O2	LP*(5) Co1	39,56	LP(2) O2	LP*(6) Zn1	27,40
LP(1) O3	σ*(O6–H6A)	2,80	LP(1) O2	σ*(O3–H3A)	2,59	LP(2) O3	LP*(6) Zn1	23,92
LP(3) O3	LP*(5) Cu1	17,20	LP(1) N1	LP*(6) Co1	36,14	LP(2) O3	π *(C8–O4)	74,04
LP(2) O3	π*(O4–C18)	26,40	LP(1) N2	LP*(6) Co1	43,93	LP(2) O4	σ*(C8–O1)	23,57
LP(2) O4	σ*(O3–C18)	10,74	LP(1) N3	π*(N2–C13)	0,51	LP(1) N1	LP*(6) Zn1	25,26
LP(2) O5	σ*(O6–H6B)	9,35	LP(1) N3	π*(N4–C12)	53,14	LP(1) N2	LP*(6) Zn1	23,91
LP(2) O6	σ*(O7–H7A)	8,94	LP(1) N4	LP*(6) Co1	37,95	LP(1) N3	LP*(6) Zn1	24,43
LP(1) N1	LP*(6) Cu1	17,45	LP(2) Cl1	LP*(6) Co1	18,26	LP(1) N4	π*(C19–N3)	42,55
LP(1) N2	LP*(6) Cu1	17,24	LP(4) Cl2	LP*(6) Co1	66,82	LP(1) N4	π*(C20–N5)	41,52
LP(1) N3	π*(N2–C13)	22,58				LP(1) N5	LP*(6) Zn1	15,69
LP(1) N3	π*(N4–C12)	19,91						
LP(1) N4	LP*(6) Cu1	19,11						

Tablo 5.53. Kompleks **29–31** için NBO analizi.

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).

Kompleks **29–31** için MEP yüzeyleri Şekil 5.40.'ta verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları ve su molekülleri üzerindedir. Mavi renkle temsil edilen pozitif potansiyel N–H ve C–H bağ bölgelerinde elde edilmiştir.

Şekil 5.40. Kompleks 29-31 için MEP yüzeyleri.

5.5.7. Kompleks 32–37'nin NBO analizleri ve MEP yüzeyleri

Sentezlenen **32–37** komplekslerin doğal bağ orbital hesaplama sonuçları Tablo 5.54.'te sunulmuştur. NBO analizi LP(n) oksijen/azot orbital çiftleri ile LP*(n) V, Fe(III), Ni(II), Zn(II), Cd(II) ve Hg(II) orbital çiftleri arasında verici–alıcı şeklinde bir yer değiştirmeyi gösterir. Tablo 5.54.'te görüldüğü üzere, **32–37** kompleksleri içerisindeki n \rightarrow n* etkileşimlerinden kaynaklanan yer değiştirme etkileri V, Fe(III), Ni(II), Zn(II), Cd(II) ve Hg(II) iyonlarının koordinasyon ortamlarında çok önemli bir

rol oynamaktadır. Kompleks **32–37** için en güçlü stabilizasyon enerjisi ($E^{(2)}$) değerleri 119,23–4,88 kcal/mol aralığında elde edilmiştir. Kompleks **34** ve **35**'te LP(n) klor orbital çiftleri ile LP(n*) Ni(II) ve Zn(II) orbital çiftleri arasındaki stabilizasyon enerjisi sırasıyla 43,08, 6,94 ve 18,86, 11,15 kcal/mol olarak elde edilmiştir. Komplekslerdeki bu etkileşimler koordinasyon geometrisini doğrular. Ayrıca, **32–37** komplekslerin LP(2)O1 $\rightarrow\pi^*(C1-O2)$, LP(2)O2 $\rightarrow\pi^*(O1-C1)$, LP(3)O2 $\rightarrow\pi^*(O1-C1)$ ve LP(3)O3 $\rightarrow\pi^*(O4-C8)$ etkileşim enerjileri sırasıyla 21,92, 57,32, 28,77, 39,38, 76,78, 76,78, 44,02 kcal/mol olarak bulunmuştur. Karbonil grubu ile metal atomuna bağlı oksijen atomu arasında dikkate değer bir etkileşimi olduğunu gösterir. Komplekslerdeki diğer önemli etkileşimler 6-mpa ligandı içindeki stabilizasyonu göstermektedir. Sistemin dengelenmesine neden olan bağ ve antibağ yörüngelerin yük transfer (CT) etkileşimleri gösterdiği açıktır.

Kompleks 32			Kompleks 33			Kompleks 34		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(1) O1	LP*(3) V1	24,14	LP(2) O1	σ*(O2–C1)	27,15	LP(2) O1	σ*(O3–H3B)	2,70
LP(3) O1	LP*(1) S1	96,18	LP(2) O2	π*(O1–C1)	57,32	LP(2) O1	σ*(O2–C1)	12,51
LP(2) O1	π*(C1–O2)	21,92	LP(3) O2	LP*(5) Fe1	59,23	LP(2) O2	π*(O1–C1)	28,77
LP(2) O2	σ*(C1–O1)	31,85	LP(3) O3	LP*(6) Fe1	26,77	LP(3) O2	LP*(5) Ni1	24,66
LP(2) O3	LP*(1) V1	119,23	LP(3) O6	LP*(3) Fe1	33,77	LP(1) N1	LP*(5) Ni1	7,82
LP(3) O4	LP*(1) S1	290,41	LP(3) O9	LP*(6) Fe1	20,67	LP(1) N2	LP*(5) Ni1	21,07
LP(3) O5	LP*(1) S1	246,40	LP(1) N1	LP*(6) Fe1	24,59	LP(1) N3	LP*(5) Ni1	25,37
LP(3) O6	LP*(1) S1	307,96	LP(1) N2	LP*(5) Fe1	32,11	LP(4) Cl1	LP*(4) Ni1	43,08
LP(1) N1	LP*(2) V1	49,35	LP(1) N3	LP*(4) Fe1	34,26	LP(3) Cl2	LP*(5) Ni1	6,94
LP(1) N2	LP*(3) V1	30,74						
LP(1) N3	LP*(2) V1	59,39						

Tablo 5.54. Kompleks **32–37** için NBO analizi.

Kompleks 35			Kompleks 36			Kompleks 37		
Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)	Verici (i)	Alıcı (j)	$E^{(2)}$ (kcal/mol)
LP(2) O1	σ*(O3–H3B)	3,20	LP(2) O1	σ*(O2–C1)	22,74	LP(2) O1	σ*(O9–H9B)	5,27
LP(2) O1	σ*(O2–C1)	11,71	LP(3) O2	π*(O1–C1)	76,78	LP(2) O1	σ*(O2–C1)	9,0
LP(3) O2	π*(O1–C1)	39,38	LP(2) O2	LP*(6) Cd1	18,36	LP(3) O2	π *(O1–C1)	44,02
LP(2) O2	LP*(6) Zn1	17,59	LP(2) O3	LP*(6) Cd1	18,36	LP(2) O2	LP*(6) Hg1	8,90
LP(1) N1	LP*(6) Zn1	14,19	LP(3) O3	π*(O4–C8)	76,78	LP(1) O3	LP*(7) Hg1	4,88
LP(1) N2	LP*(6) Zn1	13,19	LP(2) O4	σ*(O3–C8)	22,74	LP(2) O3	$\sigma^*(N4-O4)$	48,70
LP(1) N3	LP*(6) Zn1	15,20	LP(1) N1	LP*(6) Cd1	13,76	LP(2) O5	$\sigma^*(N4-O4)$	54,99
LP(3) Cl1	LP*(6) Zn1	18,86	LP(1) N2	LP*(6) Cd1	13,76	LP(1) O6	LP*(8) Hg1	6,36
LP(3) Cl2	LP*(6) Zn1	11,15	LP(1) N3	LP*(6) Cd1	12,58	LP(3) O6	π*(N5–O7)	35,74
			LP(1) N4	LP*(6) Cd1	12,58	LP(3) O8	π *(N5–O7)	141,29
						LP(1) N1	LP*(6) Hg1	7,68
						LP(1) N2	LP*(6) Hg1	8,87
						LP(1) N3	LP*(6) Hg1	9,53

Tablo 5.54. (Devam)

 $E^{(2)}$ Hiperkonjugatif etkileşim enerjisi (stabilizasyon enerjisi).

Kompleks **32–37** için MEP yüzeyleri Şekil 5.41.'de verilmiştir. Şekilde görülebileceği gibi, negatif potansiyel merkez iyonlarıyla koordine olmayan karboksilat gruplarına ait elektronegatif O atomları ve su molekülleri üzerindedir. Mavi renkle temsil edilen pozitif potansiyel daha fazla C–H bağ bölgesinde elde edilmiştir.

Şekil 5.41. Kompleks 32–37 için MEP yüzeyleri.

5.6. Sentezlenen Komplekslerin α–Glukozidaz Aktivite Sonuçları

Literatürde, sıçan adipositlerinden serbest yağ asidi (FFA) salınımı için inhibisyon değerlerinin insülinomimetik aktivite çalışmaları, pikolinik asit ve türevlerini içeren vanadyum, krom, mangan, demir, kobalt, nikel, bakır ve çinko kompleksleri için rapor edilmiştir [32,35,36]. Bu çalışmalarda IC₅₀ değerleri, krom, mangan, kobalt ve nikel'in metal komplekslerinde ölçülemezken, diğer metallerle yapılan

komplekslerde 0,92 mM ile 0,22 mM arasında ölçülmüştür. Ayrıca, α-glukozidaz enzim aktivitesine karşı pikolinat (pa) ve türevlerini içeren çeşitli metal komplekslerin IC₅₀ değerleri Cu(pa)₂, Zn(pa)₂, VO(pa)₂ [36] ve Zn(6mpa-ma)₂SO₄ [37] için rapor edilmiştir. Cu(pa)₂, Zn(pa)₂, VO(pa)₂ için IC₅₀ değerleri 1,28 µM, $15,4 \mu$ M, >1 mM ve Zn(6mpa-ma)₂SO₄ kompleksinde sukroz ve maltoz için sırasıyla 9,6 µM ve 7,5 µM olarak elde edilmiştir. Bu çalışmaların dışında, Cu⁺², Ni⁺², Mg⁺², Fe⁺², Hg⁺², Zn⁺², Ca⁺², Pb⁺², Ag⁺, V⁺⁵, V⁺⁴ ve Mn⁺² gibi çeşitli metal iyonları ile α glukozidaz inhibisyon çalışması yapılmıştır [172]. Bu çalışmada, en iyi inhibe eden 2,28 μ M değerinde Cu⁺² iyonu, en az inhibe eden 217 μ M değerinde Fe⁺² iyonu olarak bulunmuştur. Bunların dışında Zn^{+2} için 99,3 µM ve V⁺⁴ için 44,8 µM değeri ölçülmüştür. Diğer metal iyonları için herhangi bir inhibisyon değeri belirlenmemiştir. Ancak, bugüne kadar 6-metilpiridin-2-karboksilik asit içeren karışık ligandlı farklı metal komplekslerinin sentezi, kristal yapı analizi, α -glukozidaz enzim aktivite ve yapı-aktivite ilişkileri üzerine çalışmaların literatürde yer almadığı görülmektedir. Bu bağlamda, bu çalışma kapsamında sentezlenen kompleks yapılarının deneysel ve kuramsal yöntemlerle detaylı olarak belirlenmesi işleminden sonra bu kesimde komplekslerin diyabet hastalığı ile ilişkili olan α-glukozidaz enzimi üzerine etkileri incelenmiştir. Sentezlenen tüm komplekslerin α-glukosidaz aktivite çalışmaları, referans bileşik olarak genistein kullanılarak belirlenmiştir. α-glukosidaz inhibisyonları için IC₅₀ değerleri Tablo 5.55.'de sunulmuştur.

Kompleks	$IC_{50} \left(\mu M\right)^{a}$
6-Metilpiridin-2-karboksilik asit (6-mpaH)	Aktif değil
3-Metilpiridin-2-karboksilik asit (3-mpaH)	Aktif değil
4(5)–Metilimidazol (4(5)MeI)	Aktif değil
2,2'–Dipiridil (bpy)	Aktif değil
1,10-Fenantrolin (phen)	Aktif değil
2,2'–Dipiridilamin (dipya)	Aktif değil
4,4'-Dimetill-2,2'-dipiridil(dmbpy)	Aktif değil
Kompleks 1 [Cr(6-mpa) ₂ (H ₂ O) ₂]·H ₂ O·NO ₃	164,87±0,87

Tablo 5.55. Kompleks 1–37 ve ligandların α -glukozidaz için in vitro inhibisyon IC₅₀ değerleri (μ M).

Tablo 5.55. (Devam)

Kompleks	$IC_{50} (\mu M)^a$
Kompleks 2 Mn(6-mpa) ₂ (H ₂ O) ₂	>600
Kompleks 3 [Ni(6-mpa) ₂ (H ₂ O) ₂]·H ₂ O	>600
Kompleks 4 Hg(6-mpa) ₂ ·H ₂ O	0,247±0,10
Kompleks 5 [Cu(6-mpa) ₂ ·H ₂ O]·H ₂ O	2,95±0,55
Kompleks 6 [Zn(6-mpa) ₂ ·H ₂ O]·H ₂ O	456,04±1,01
Kompleks 7 Fe(6-mpa) ₃	446,2±1,32
Kompleks 8 $[Co(6-mpa)_2(H_2O)_2]$ ·2H ₂ O	>600
Kompleks 9 Cu(NCS)(6-mpa) ₂	8,02±0,05
Kompleks 10 [Cd(NCS)(6-mpa)] _n	240,08±1,21
Kompleks 11 Cr(NCS)(6-mpa) ₂ ·H ₂ O	>600
Kompleks 12 $Mn(6-mpa)_2(4(5)MeI)_2$	>600
Kompleks 13 $Zn(6-mpa)_2(4(5)MeI)_2$	>600
Kompleks 14 Cd(6-mpa) ₂ (4(5)MeI) ₂	260,20±1,50
Kompleks 15 Co(6-mpa) ₂ (4(5)MeI) ₂	>600
Kompleks 16 Ni(6-mpa) ₂ (4(5)MeI)(OAc)	>600
Kompleks 17 Cu(6-mpa) ₂ (4(5)MeI)	2,91±0,45
Kompleks 18 [Hg(6-mpa)(bpy)(OAc)]·2H ₂ O	0,184±0,015
Kompleks 19 Co(6-mpa) ₂ (bpy)	>600
Kompleks 20 [Cu(6-mpa)(bpy)(NO ₃)]·3H ₂ O	688,94±1,41
Kompleks 21 Mn(6-mpa)(bpy)(H ₂ O) ₂	>600
Kompleks 22 [Ni(6-mpa)(bpy)(H ₂ O) ₂]·H ₂ O	>600
Kompleks 23 [Fe(6-mpa)(bpy)(H ₂ O) ₂]·2H ₂ O	97,33±0,22
Kompleks 24 [Co(3-mpa) ₂ (phen)]·3H ₂ O	>600
Kompleks 25 [Hg(6-mpa) ₂ (phen)]·2H ₂ O	0,161±0,03
Kompleks 26 [Mn(6-mpa) ₂ (phen)]·2H ₂ O	>600
Kompleks 27 [Co(6-mpa) ₂ (phen)]·H ₂ O	>600
Kompleks 28 [Ni(6-mpa) ₂ (phen)]·H ₂ O	>600
Kompleks 29 [Cu(6-mpa)(dipya)(OAc)]·3H ₂ O	513,1±0,75
Kompleks 30 [Co(6-mpa)(dipya)Cl ₂]·2H ₂ O	>600
Kompleks 31 Zn(6-mpa) ₂ (dipya)	>600
Kompleks 32 [VO(6-mpa)(dmdpy)]·SO ₃	>600
Kompleks 33 [Fe(6-mpa)(dmdpy)(NO ₃) ₂]·NO ₃	492,3±1,05
Kompleks 34 [Ni(6-mpa)(dmdpy)Cl ₂]·H ₂ O	>600
Kompleks 35 [Zn(6-mpa)(dmdpy)Cl ₂] \cdot H ₂ O	>600
Kompleks 36 Cd(6-mpa) ₂ (dmdpy)	>600

Tablo 5.55. (Devam)

Kompleks	$IC_{50} (\mu M)^a$
Kompleks 37 [Hg(6-mpa)(dmdpy)(NO ₃) ₂]·H ₂ O	0,4699±0,02
Genistein	12,22±0,55
Akarboz ^b	906
Resveratrol ^c	12,70

^a IC₅₀ değerleri üç paralel ölçümün ortalaması \pm S.E.M. değerini temsil eder (p < 0,05). ^b [173,174]. ^c [175,176].

Tablo 5.55.'den görüldüğü gibi, α -glukozidaz enzimine karşı en aktif kompleks yapılar Hg(II) metal tuzu kullanılarak elde edilen kompleks yapılar olduğu açıktır. Bunun yanı sıra Cu(II), Cd(II), Cr(III), Zn(II) ve Fe(II) metalleri ile sentezlenen kompleks yapılarda da α-glukozidaz enzimini belli değerlerde inhibe ettiği sonucuna varılmıştır. Sentezlenen tüm komplekslerde 6-mpa içeren faklı metal ve ligandlardaki yapı aktivite sonuçlarının enzim aktivite sonuçları üzerinde önemli bir rol oynadığı Tablo 5.55.'den görülmektedir. 6-mpa içeren siyanat (NCS)'ın Cu, Cd ve Cr içeren metal komplekslerinde (9–11) α–glukozidaz inhibisyonları için IC₅₀ değerleri 8,02, 240,08 ve >600 µM [114] olarak ölçülmüştür. Benzer şekilde 4(5)metilimidazol (4(5)MeI)'un Cd, Zn, Cu, Mn, Ni, Co ile karışık ligandlı metal komplekslerinde (12-17) 2,91 ile >600 μM [126] arasında değişen inhibisyon değerleri bulunmuştur. Bunların arasında α-glukozidaz enzimini en iyi inhibe eden yapıların Cu metal kompleksleri olduğu açıktır. Diğer taraftan, Cd ve Cu metali içeren komplekslerinde NCS ve 4(5)MeI'nın ligand etkisi inhibisyon sonuçlarında farklı bir eğilim göstermiştir. Cu iyonunun 4(5)MeI ile olan kompleksi (17) NCS ile olan kompleksine (9) göre daha iyi inhibe edici olduğu bulunurken, Cd'nin komplekslerinde bu durumun tersi gözlenmiştir. 2,5-furandikarboksilat (FDCA)'nın 4(5)MeI ile Cu metal kompleksinde 1,685 µM'lık [177] bir inhibisyon değeri bulunmuştur. Bu farklılıkları yapı-aktivite ilişkisi olarak yorumlamak mümkündür. Tablo 5.55.'den açık şekilde görüldüğü gibi, sentezlenen tüm kompleks yapılarda Cu metali içeren kompleksler arasında α -glukozidaz enzimini en iyi inhibe edici kompleks 4(5)MeI ligandlı ve en az ihibe edici kompleks 2,2'-bipiridil (bpy) ligandlı olduğu belirtilebilir. 2,2'-bipiridil (bpy) ligandı içeren farklı metal komplekslerinde en yüksek aktivite değeri Hg metali içeren kompleks için 0,184 μ M ölçülürken diğer Co, Mn, Ni, Fe ve Cu metali içeren komplekslerde >600 ve 807,539 μ M ölçülmüştür [178]. 4,4'–dimetill–2,2'–dipiridil (dmdpy) ligandı içeren Ni, Zn, Cd, V, Hg, Fe metal komplekslerinde α –glukozidaz inhibisyonları için IC₅₀ değerleri 0,4699 ile >600 μ M arasında bulunmuştur. 1,10–fenantrolin (phen)'in Hg, Mn, Co, Ni (**25–28**) ve 2,2'– dipiridilamin (dipya)'in Cu, Co, Zn (**29–31**) ile karışık ligandlı metal komplekslerinde α –glukozidaz enzimini en iyi inhibe edici sonuçlar Hg metali içeren kompleksler için bulunmuştur. Bunun yanı sıra dipya ligandı içeren Cu metal kompleksi içinde 513,1±0,75 μ M inhibisyon değeri elde edilmiştir [179]. Bu sonuçların yanı sıra, 6-mpa ile Cr, Mn, Hg, Zn ve Fe (**1–8**) metal komplekslerinde α – glukozidaz enzimi için IC₅₀ değerleri 0,247 ile >600 μ M arasında değişmektedir.

Sentezlenen tüm komplekslerin α -glukozidaz enzim aktivite sonuçlarına göre, en iyi inhibe edici yapıların liganda bakılmaksızın Hg metali içeren kompleksler olduğu sonucuna varılmıştır. Bunun yanı sıra, yapı-aktivite ilişkisi özellikle 600 µM değerinin altında elde edilen ölçüm sonuçlarında göze çarpmaktadır. Cu içeren tüm kompleks yapılarda α -glukozidaz enziminin aktivite sonuçları 4(5)MeI>NCS>dipya>bpy azalan inhibisyon değerinde gözlenmiştir. Bu değişimin kullanılan diğer metaller için aynı olmadığı belirlenmiştir. Son olarak, aktivite sonuçlarında metal seçimi ve kompleks yapılarda metal iyonu etrafındaki koordinasyon, yapı-aktivite sonuçları üzerinde önemli bir rol oynağı sonucuna ulaşılmıştır.

BÖLÜM 6. SONUÇ VE ÖNERİLER

α-Glukozidaz inhibitörleri (AGI) klinikte T2DM tedavisinde kullanılmaktadır. Fakat ticari olarak sadece birkaç AGI mevcut olup, gösterdikleri yan etkilerden dolayı yeni yüksek afiniteli spesifik α -glukozidaz inhibitörlerinin dizaynı ve sentezi büyük önem taşımaktadır. Bugüne kadar 6-metilpiridin-2-karboksilik asit (6-mpaH) içeren karışık ligandlı farklı metal komplekslerinin sentezi, kristal yapı analizi, αglukozidaz enzim aktivite ve yapı-aktivite ilişkileri üzerine çalışmaların literatürde yer almadığı görülmektedir. Bu çalışma kapsamında daha önce sentezlenmemiş 6mpa içeren karışık ligandlı farklı metal komplekslerin sentezi yapılmıştır. Bu sentez sonrasında, 28 adet yeni kompleks yapıdan 10 tanesi tek kristal yapı olarak elde edilmiştir. Ayrıca, daha önce literatürde olmayan 6-mpa'nın Cr, Mn, Hg, Zn ve Fe içeren metal kompleksleri ve 3-mpa'nın phen ile Co metal kompleksi sentezlenmiştir. Bu çalışma kapsamında, toplamda 37 adet kompleks yapının 17 adeti tek kristal olup, bunların yapıları X-ışını kırınımı yöntemi ile toz olarak elde edilen komplekslerin yapıları kütle spektroskopisi ile belirlenmiştir. Daha sonra yapıları belirlenen komplekslerin kırmızı–altı (IR) spektroskopisi ile fonksiyonel grupları tayin edilerek yapılar doğrulanmıştır. Bu aşamada son olarak, sentezlenen komplekslerin elektronik geçişleri ve yük hareketliliğindeki değişimleri gözlemlemek için morötesi-görünür bölge (UV-Vis.) spektroskopi yöntemi kullanmış olup sentezlenen komplekslerin deneysel olarak yapısal, titreşim ve elektronik özellikleri incelenmiştir. Deneysel olarak detaylı analizi yapılan komplekslerin antidiyabetik özellikleri, α-glukozidaz aktivite yöntemiyle belirlenmis ve elde edilen komplekslerin diyabet için etkinliği araştırılmıştır. Tez çalışmasının bir sonraki aşamasında, elde edilen kompleks yapılarının deneysel karakterizasyon sonuçlarını desteklemek ve doğrulamak için taban durumundaki yapısal özelliklerin (geometrik parametreler, dipol moment, toplam enerji) kuramsal analizi, hibrit DFT metodu olan HSEh1PBE kullanılarak gerçekleştirilmiştir. Bunun yanı sıra aynı yöntem kullanılmak suretiyle, sentezlenen

komplekslerin titreşim frekansları hesaplanmıştır ve deneysel sonuçlar ile karşılaştırılmıştır. Zamana bağlı DFT (TD–DFT) yöntemi ile elektronik spektrumlar elde edilmiştir. Hesaplanan sonuçlar ile deneysel sonuçlar arasındaki uyum karşılaştırılarak hibrit DFT metodunun sentezlenen kompleksler üzerindeki geçerliliği detaylı biçimde test edilmiştir. Son olarak, sentezlenen komplekslerin NLO aktifliklerinin göstergesi olarak gösterilebilecek mikroskopik boyutta 1. ve 2. mertebeden yüksek kutuplanabilirlik (β ve γ) parametreleri, DFT yöntemi ile hesaplanmıştır. Elde edilen değerler, prototip NLO malzemeleri olarak kullanılan pNA (para Nitro Anilin) ve üre'nin değerleri ile karşılaştırılmıştır.

Bu çalışmanın sonuçlarından biri de, sentezlenen 6-metilpikolinik asit içeren yeni komplekslerin karışık–ligandlı farklı metal mikroskobik boyutta NLO parametrelerinin kuramsal olarak incelenmesi, hızlı ve yüksek tepki gösteren malzemelerin üretimi ve karakterizasyonuna uygun değerlikte olan kompleksler, optik iletişim ve bilgi depolama alanlarında kullanılacak yeni malzemeler olabileceği öngörülmektedir. Bu çalışmada elde edilen sonuçlara göre, daha çok Mn metalini içeren kompleks yapılarda NLO parametrelerinin kayda değer şekilde hesaplanmıştır. Bunun yanı sıra, 6-mpa içeren farklı ligandlarla koordinasyonda bulunan Cr, Ni, Co, Hg ve V metalleri ile elde edilen komplekslerde de NLO parametreleri dikkat çekici şekilde bulunmuştur. Bu sonuçlardan, NLO parametrelerindeki değişimin temel sebepleri, kompleks içerisindeki yük hareketliliği, koordinasyondaki substitute ve metallerin değişimi olarak sıralanabilir. Ayrıca bu kompleks yapıda her ne kadar π elektronlarının delokalize etkisi, π -konjugasyon zincir uzunluğu, yük transferi gibi faktörler ön planda olsa da metal etrafindaki simetri merkezi kompleksin NLO parametrelerindeki diğer önemli değişimi göstermektedir.

Sentezlenen tüm komplekslerin α -glukozidaz aktivite çalışmaları, referans bileşik olarak genistein kullanılarak belirlenmiştir. Tüm komplekslerin α -glukozidaz enzim aktivite sonuçlarına göre, en iyi inhibe edici yapıların liganda bakılmaksızın Hg metali içeren kompleksler olduğu sonucuna varılmıştır. Bunun yanı sıra, yapıaktivite ilişkisi özellikle 600 µM değerinin altında elde edilen ölçüm sonuçlarında göze çarpmaktadır. Cu içeren tüm kompleks yapılarda α -glukozidaz enziminin aktivite sonuçları 4(5)MeI>NCS>dipya>bpy azalan inhibisyon değerinde gözlenmiştir. Bu değişimin kullanılan diğer metaller için aynı olmadığı belirlenmiştir. Son olarak, aktivite sonuçlarında metal seçimi ve kompleks yapılarda metal iyonu etrafındaki koordinasyon yapı–aktivite sonuçları üzerinde önemli bir rol oynadığı sonucuna ulaşılmıştır.

Elde edilen sonuçlara göre farklı metal içeren ligandların yapı–aktivite ilişkileri karşılaştırıldığında, Hg, Cu ve Fe içeren metal komplekslerin in vitro sonuçları kayda değer olarak bulunmuştur. Bu metalleri içeren komplekslerin iyi inhibitör özelliği göstermesi, in vivo ve ileri düzeyde araştırmalara bağlı olarak yeni disiplinler arası akademik iş birliğine katkı sağlayacağı düşünülmektedir. Ayrıca, uygun paydaşlarla iş birlikleri sayesinde ekonomik değeri olan yeni AGI'ların ülkemize kazandırılması mümkün olabilecektir.

Bu tez çalışması 117F234 numaralı TÜBİTAK projesi kapsamında hazırlanmıştır. Proje başlangıcından önce yapılan çalışmalarla birlikte SCI kapsamında 6 adet makale yayınlanmış, ayrıca sonuçlanmak üzere yeni makaleler hazırlık aşamasındadır. Literatüre kazandırılan ve kazandırılmak üzere olan çıktılar bilim dünyası ile paylaşılarak üniversitemiz ve ülkemiz adına önemli bilimsel katkı sağlayacaktır.

KAYNAKLAR

- [1] Reedijk, J., Heterocyclic nitrogen-donor ligands. Comprehensive Coordination Chemistry, 2, 73-98, 1987.
- [2] House, D., Ammonia and amines. Comprehensive Coordination Chemistry, 2, 23, 1987.
- [3] Adams, H., Bailey, N.A., Crane, J.D., Fenton, D.E., Latour, J.-M., Williams, J.M., Manganese (II) and iron (III) complexes of the tridentate ligands bis (benzimidazol-2-ylmethyl)-amine (L1) and-methylamine (L2). Crystal structures of [MnL1(CH₃CO₂)₂],[FeL2Cl₃], and [Fe₂L1 2(μ -O){ μ -(CH₃)₃ CCO₂}₂][ClO₄]₂. Journal of the Chemical Society, Dalton Transactions, 1727-1735, 1990.
- [4] Driessen, W., De Graaff, R., Parlevliet, F., Reedijk, J., De Vos, R., Transition metal compounds of the tridentate pyrazole substituted amine ligand bis (2-(3,5-dimethyl-1-pyrazolyl) ethyl) ethylamine (ddae). X-ray structures of [Co (ddae)(NO₃)₂],[Cu(ddae)(NO₃)(H₂O)](NO₃) and [Cu(ddae)(Cl)₂]C₂H₅OH. Inorganica Chimica Acta, 216, 43-49, 1994.
- [5] Wang, S., Luo, Q., Wang, X., Wang, L., Yu, K., Synthesis, crystal structures and physical properties of μ-oxo-μ-carboxylato-diiron (III) complexes with tripodal polybenzimidazole ligands containing distinct iron sites. Journal of the Chemical Society, Dalton Transactions, 2045-2055, 1995.
- [6] Groß, F., Müller-Hartmann, A., Vahrenkamp, H., Diphosphate– Zinc Complexes with Tridentate Coligands. European Journal of Inorganic Chemistry, 2000, 2363-2370, 2000.
- [7] Demadis, K.D., Katarachia, S.D., Metal-phosphonate chemistry: Synthesis, crystal structure of calcium-amino tris-(methylene phosphonate) and inhibition of CaCO3 crystal growth. Phosphorus, Sulfur, and Silicon, 179, 627-648, 2004.
- [8] Mao, J.-G., Structures and luminescent properties of lanthanide phosphonates. Coordination Chemistry Reviews, 251, 1493-1520, 2007.
- [9] Hardy, A.M., LaDuca, R.L., Synthesis and structure of a cobalt dicyanamide chain coordination polymer incorporating a long-spanning hydrogen-bonding capable diimine with a novel binodal (4, 6)-connected supramolecular topology. Inorganic Chemistry Communications, 12, 308-311, 2009.

- [11] Monot, J., Petit, M., Lane, S.M., Guisle, I., Léger, J., Tellier, C., Talham, D.R., Bujoli, B., Towards zirconium phosphonate-based microarrays for probing DNA- protein interactions: critical influence of the location of the probe anchoring groups. Journal of the American Chemical Society, 130, 6243-6251, 2008.
- [12] Cai, C.-Y., Rao, L., Rao, Y., Guo, J.-X., Xiao, Z.-Z., Cao, J.-Y., Huang, Z.-S., Wang, B., Analogues of xanthones—Chalcones and bis-chalcones as αglucosidase inhibitors and anti-diabetes candidates. European Journal of Medicinal Chemistry, 130, 51-59, 2017.
- [13] Zhen, J., Dai, Y., Villani, T., Giurleo, D., Simon, J.E., Wu, Q., Synthesis of novel flavonoid alkaloids as α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry, 25, 5355-5364, 2017.
- [14] Baron, A.D., Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Research and Clinical Practice, 40, S51-S55, 1998.
- [15] Adisakwattana, S., Charoenlertkul, P., Yibchok-anun, S., α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 65-69, 2009.
- [16] Chiasson, J.-L., Josse, R., Gomis, R.f., Hanefeld, M., Karasik, A., Laakso, M., Group, S.-N.T.R., Acarbose for the prevention of Type 2 diabetes, hypertension and cardiovascular disease in subjects with impaired glucose tolerance: facts and interpretations concerning the critical analysis of the STOP-NIDDM Trial data. Diabetologia, 47, 969-975, 2004.
- [17] Bian, X., Fan, X., Ke, C., Luan, Y., Zhao, G., Zeng, A., Synthesis and αglucosidase inhibitory activity evaluation of N-substituted aminomethyl-β-dglucopyranosides. Bioorganic & Medicinal Chemistry, 21, 5442-5450, 2013.
- [18] Casirola, D.M., Ferraris, R.P., α-Glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism, 55, 832-841, 2006.
- [19] Wang, G., He, D., Li, X., Li, J., Peng, Z., Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors. Bioorganic Chemistry, 65, 167-174, 2016.
- [20] Ghani, U., Re-exploring promising α -glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. European Journal of Medicinal Chemistry, 103, 133-162, 2015.

- [21] Wang, H., Yan, J.-f., Song, X.-l., Fan, L., Xu, J., Zhou, G.-m., Jiang, L., Yang, D.-c., Synthesis and antidiabetic performance of β-amino ketone containing nabumetone moiety. Bioorganic & Medicinal Chemistry, 20, 2119-2130, 2012.
- [22] Chiasson, J.-L., Josse, R.G., Gomis, R., Hanefeld, M., Karasik, A., Laakso, M., Group, S.-N.T.R., Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. Jama, 290, 486-494, 2003.
- [23] Bois, F., Desfougères, A., Boumendjel, A., Mariotte, A.-M., Bessard, G., Caron, F., Devillier, P., Genistein and fluorinated analogs suppress agonistinduced airway smooth muscle contraction. Bioorganic & Medicinal Chemistry Letters, 7, 1323-1326, 1997.
- [24] Lorraine, A., Fitzpatrick, A., Soy isoflavone: hope or hype. Maturitas, 44, S21-9, 2003.
- [25] Lee, D.-S., Lee, S.-H., Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Letters, 501, 84-86, 2001.
- [26] Paiva, L., Binsack, R., Machado, U.F., Chronic acarbose-feeding increases GLUT1 protein without changing intestinal glucose absorption function. European Journal of Pharmacology, 434, 197-204, 2002.
- [27] Shechter, Y., Karlish, S.J., Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl(IV) ions. Nature, 284, 556, 1980.
- [28] Sakurai, H., Kojima, Y., Yoshikawa, Y., Kawabe, K., Yasui, H., Antidiabetic vanadium(IV) and zinc(II) complexes. Coordination Chemistry Reviews, 226, 187-198, 2002.
- [29] Coulston, L., Dandona, P., Insulin-like effect of zinc on adipocytes. Diabetes, 29, 665-667, 1980.
- [30] Sorenson, J.R., 6 copper complexes offer a physiological approach to treatment of chronic diseases. Progress in Medicinal Chemistry. Vol. 26. Elsevier, 437-568, 1989.
- [31] Anderson, R.A., Cheng, N., Bryden, N.A., Polansky, M.M., Cheng, N., Chi, J., Feng, J., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes, 46, 1786-1791, 1997.
- [32] Yoshikawa, Y., Ueda, E., Kawabe, K., Miyake, H., Takino, T., Sakurai, H., Kojima, Y., Development of new insulinomimetic zinc(II) picolinate complexes with a Zn(N₂O₂) coordination mode: structure characterization, in vitro, and in vivo studies. JBIC Journal of Biological Inorganic Chemistry, 7, 68-73, 2002.

- [33] Takino, T., Yasui, H., Yoshitake, A., Hamajima, Y., Matsushita, E., Takada, J., Sakurai, H., A new halogenated antidiabetic vanadyl complex, bis(5-iodopicolinato)oxovanadium(IV): in vitro and in vivo insulinomimetic evaluations and metallokinetic analysis. JBIC Journal of Biological Inorganic Chemistry, 6, 133-142, 2001.
- [34] Yasui, H., Tamura, A., Takino, T., Sakurai, H., Structure-dependent metallokinetics of antidiabetic vanadyl-picolinate complexes in rats: studies on solution structure, insulinomimetic activity, and metallokinetics. Journal of Inorganic Biochemistry, 91, 327-338, 2002.
- [35] Yasumatsu, N., Yoshikawa, Y., Adachi, Y., Sakurai, H., Antidiabetic copper (II)-picolinate: impact of the first transition metal in the metallopicolinate complexes. Bioorganic & Medicinal Chemistry, 15, 4917-4922, 2007.
- [36] Yoshikawa, Y., Hirata, R., Yasui, H., Sakurai, H., Alpha-glucosidase inhibitory effect of anti-diabetic metal ions and their complexes. Biochimie, 91, 1339-1341, 2009.
- [37] Ueda, E., Yoshikawa, Y., Sakurai, H., Kojima, Y., Kajiwara, N.M., In vitro alpha-glucosidase inhibitory effect of Zn(II) complex with 6-methyl-2-picolinmethylamide. Chemical and Pharmaceutical Bulletin, 53, 451-452, 2005.
- [38] Kukovec, B.-M., Popović, Z., Komorsky-Lovrić, Š., Vojković, V., Vinković, M., Synthesis, structural, spectroscopic and thermal characterization of cobalt complexes with 3-and 6-methylpicolinic acid. Voltammetric and spectrophotometric study in solution. Inorganica Chimica Acta, 362, 2704-2714, 2009.
- [39] March, R., Clegg, W., Coxall, R.A., Cucurull-Sánchez, L., Lezama, L., Rojo, T., González-Duarte, P., Synthesis, characterisation and magnetic properties of cobalt (II) complexes with picolinic acid derivatives: the crystal and molecular structures of [Co(MeC₅H₃NCOO)₂(H₂O)₂] and [CoCl₂(C₅H₄NCOOPri)₂]. Inorganica Chimica Acta, 353, 129-138, 2003.
- [40] Kukovec, B.-M., Vaz, P.D., Popovic, Z., Calhorda, M.J., Furić, K.i., Pavlović, G., Linarić, M.a.R., Pseudopolymorphism in Nickel(II) Complexes with 6-Methylpicolinate. Synthesis, Structural, Spectroscopic, Thermal, and Density Functional Theory Studies. Crystal Growth and Design, 8, 3465-3473, 2008.
- [41] Bernstein, J., Davey, R.J., Henck, J.O., Concomitant polymorphs. Angewandte Chemie International Edition, 38, 3440-3461, 1999.
- [42] Bernstein, J., Hagler, A., Conformational polymorphism. The influence of crystal structure on molecular conformation. Journal of the American Chemical Society, 100, 673-681, 1978.
- [43] Dunitz, J.D., Bernstein, J., Disappearing polymorphs. Accounts of Chemical Research, 28, 193-200, 1995.

- [44] Kukovec, B.-M., Popović, Z., Kozlevčar, B., Jagličić, Z., 3D supramolecular architectures of copper(II) complexes with 6-methylpicolinic and 6bromopicolinic acid: synthesis, spectroscopic, thermal and magnetic properties. Polyhedron, 27, 3631-3638, 2008.
- [45] García, F., Perles, J., Zamora, F., Amo-Ochoa, P., Rhodium and copper 6methylpicolinate complexes. Structural diversity and supramolecular interaction study. Inorganica Chimica Acta, 453, 574-582, 2016.
- [46] Kukovec, B.-M., Kodrin, I., Vojković, V., Popović, Z., Synthesis, X-ray structural, IR spectroscopic, thermal and DFT studies of nickel(II) and copper(II) complexes with 3-methylpicolinic acid. UV–Vis spectrophotometric study of complexation in the solution. Polyhedron, 52, 1349-1361, 2013.
- [47] Furić, K., Kodrin, I., Kukovec, B.-M., Mihalić, Z., Popović, Z., Vibrational spectroscopic and DFT calculation studies of cobalt(II) complexes with 3hydroxypicolinic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 101, 273-282, 2013.
- [48] Furić, K., Kodrin, I., Kukovec, B.-M., Mihalić, Z., Popović, Z., Erratum to "Vibrational spectroscopic and DFT calculation studies of cobalt(II) complexes with 3-hydroxypicolinic acid" [Spectrochim. Acta Part A 101 (2013) 273–282]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 463-466, 2013.
- [49] Pons, J., March, R., Rius, J., Ros, J., Zinc complexes of 6-methyl-2pyridinecarboxylic acid. Crystal structure of [Zn(MeC₅H₃NCOO)₂(H₂O)]·H₂O. Inorganica Chimica Acta, 357, 3789-3792, 2004.
- [50] Broadhurst, C.L., Domenico, P., Clinical studies on chromium picolinate supplementation in diabetes mellitus-a review. Diabetes Technology & Therapeutics, 8, 677-687, 2006.
- [51] Shaver, A., Ng, J.B., Hall, D.A., Lum, B.S., Posner, B.I., Insulin mimetic peroxovanadium complexes: preparation and structure of potassium oxodiperoxo (pyridine-2-carboxylato) vanadate(V), K₂[VO(O₂)₂(C₅H₄NCOO)].2H₂O, and potassium oxodiperoxo (3-hydroxypyridine-2-carboxylato) vanadate(V), K₂[VO(O₂)₂(OHC₅H₃NCOO)].3H₂O, and their reactions with cysteine. Inorganic Chemistry, 32, 3109-3113, 1993.
- [52] Thompson, K.H., Orvig, C., Design of vanadium compounds as insulin enhancing agents. Journal of the Chemical Society, Dalton Transactions, 2885-2892, 2000.

- [53] Nakai, M., Obata, M., Sekiguchi, F., Kato, M., Shiro, M., Ichimura, A., Kinoshita, I., Mikuriya, M., Inohara, T., Kawabe, K., Synthesis and insulinomimetic activities of novel mono-and tetranuclear oxovanadium(IV) complexes with 3-hydroxypyridine-2-carboxylic acid. Journal of Inorganic Biochemistry, 98, 105-112, 2004.
- [54] Nakai, M., Sekiguchi, F., Obata, M., Ohtsuki, C., Adachi, Y., Sakurai, H., Orvig, C., Rehder, D., Yano, S., Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. Journal of Inorganic Biochemistry, 99, 1275-1282, 2005.
- [55] Evans, O.R., Lin, W., Crystal engineering of NLO materials based on metalorganic coordination networks. Accounts of Chemical Research, 35, 511-522, 2002.
- [56] Batten, S.R., Topology of interpenetration. CrystEngComm, 3, 67-72, 2001.
- [57] Natarajan, S., Mahata, P., Metal–organic framework structures–how closely are they related to classical inorganic structures, Chemical Society Reviews, 38, 2304-2318, 2009.
- [58] Perry Iv, J.J., Perman, J.A., Zaworotko, M.J., Design and synthesis of metalorganic frameworks using metal-organic polyhedra as supermolecular building blocks. Chemical Society Reviews, 38, 1400-1417, 2009.
- [59] Qiu, S., Zhu, G., Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 253, 2891-2911, 2009.
- [60] Kitagawa, S., Kitaura, R., Noro, S.i., Functional porous coordination polymers. Angewandte Chemie International Edition, 43, 2334-2375, 2004.
- [61] Seayad, A.M., Antonelli, D.M., Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Advanced Materials, 16, 765-777, 2004.
- [62] Sun, Y.-Q., Zhang, J., Yang, G.-Y., A series of luminescent lanthanide– cadmium–organic frameworks with helical channels and tubes. Chemical Communications, 4700-4702, 2006.
- [63] Chandler, B.D., Cramb, D.T., Shimizu, G.K., Microporous metal– organic frameworks formed in a stepwise manner from luminescent building blocks. Journal of the American Chemical Society, 128, 10403-10412, 2006.
- [64] Cheng, J.-W., Zheng, S.-T., Ma, E., Yang, G.-Y., $\{Ln^{III} [\mu^5 \kappa^2, \kappa^1, \kappa^1, \kappa^1, \kappa^1 1,2-(CO_2)_2C_6H_4]$ [isonicotine][H₂O] $\}_2Cu^1$. X (Ln= Eu, Sm, Nd; X= ClO₄⁻, Cl⁻): A New Pillared-Layer Approach to Heterobimetallic 3d– 4f 3D-Network Solids. Inorganic Chemistry, 46, 10534-10538, 2007.

- [65] Huang, Y.-G., Jiang, F.-L., Hong, M.-C., Magnetic lanthanide–transitionmetal organic–inorganic hybrid materials: From discrete clusters to extended frameworks. Coordination Chemistry Reviews, 253, 2814-2834, 2009.
- [66] Li, J.-R., Kuppler, R.J., Zhou, H.-C., Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38, 1477-1504, 2009.
- [67] Tamer, Ö., Avcı, D., Atalay, Y., Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co (II)-picolinate complex. Materials Chemistry and Physics, 168, 138-146, 2015.
- [68] Altürk, S., Avcı, D., Tamer, Ö., Atalay, Y., Şahin, O., A cobalt (II) complex with 6-methylpicolinate: Synthesis, characterization, second-and third-order nonlinear optical properties, and DFT calculations. Journal of Physics and Chemistry of Solids, 98, 71-80, 2016.
- [69] Wang, Y., Zhang, Y., Zhu, D., Ma, K., Ni, H., Tang, G., Synthesis, structural characterization and theoretical approach of the tri (2-(2,6-dichlorophenyl)-1H-imidazo [4,5-f][1,10] phenanthroline) cobalt(II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 147, 31-42, 2015.
- [70] Uyanık, C., X-Işınları kristalografisi. Trakya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, Lisans Tezi, 2011.
- [71] Tanak, H., Schiff bazı ve nitril içeren bazı moleküllerin enerjilerinin, yapılarının ve elektriksel özelliklerinin deneysel ve kuramsal yöntemlerle incelenmesi. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Fizik, Doktora Tezi, 2010.
- [72] Kittel, C., Introduction to Solid State Physics . John Wiley& Sons. Inc., New York, 2004.
- [73] Arslan, T., X-Işınları ve Kullanım Alanları. Gazi Üniversitesi, Ankara, 2010.
- [74] Daniş, İ., Kapsaisin'in gaz kromatografisi-kütle spektrometresi (GC-MS) yöntemi ile farmasötik preparatlarda analizi. İstanbul Üniversitesi, Sağlık Bilimleri Enstitüsü, Analitik Kimya Bölümü, Yüksek Lisans Tezi, 2017.
- [75] Aşcı, G., İki alanli kütle spektrometresinin incelenmesi. Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Yüksek Lisans Tezi, 2009.
- [76] Banwell, C.N., "Raman spectroscopy," in Fundamentals of molecular spectroscopy, McGraw-Hill Book Company (UK) Limited, Maidenhead, 100-126, 1983.
- [77] Gündüz, T., İnstrümental analiz. Gazi Büro Kitabevi, 2002.
- [78] Wilson, E.B., Decius, J.C., Cross, P.C., Molecular vibrations: the theory of infrared and Raman vibrational spectra. Dover Piblications, ING, New York, 1980.

- [79] Altürk, S., 1,3-tiyazolidin-2,4-dikarboksilat-Mn(II) kompleksinin 1,10fenantrolin ile sentezi, spektroskopik karakterizasyonu ve DFT metoduyla incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Yüksek Lisans Tezi, 2015.
- [80] Bransden, B.H., Joachain, C.J., Plivier, T.J., Physics of atoms and molecules. Pearson Education India, 2003.
- [81] Özdemir, N., Bazı piridin-2,6-diimin metal komplekslerinin kristal ve moleküler yapılarının deneysel ve teorik yöntemlerle incelenmesi. Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Doktora Tezi, 2010.
- [82] Banwell, C.N., McCash, E.M., Fundamentals of molecular spectroscopy. Vol. 851. McGraw-Hill, New York, 1994.
- [83] Cheng, L.T., Tam, W., Stevenson, S.H., Meredith, G.R., Rikken, G., Marder, S.R., Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. The Journal of Physical Chemistry, 95, 10631-10643, 1991.
- [84] Avcı, D., Heteroatom içeren bazı aromatik moleküllerin lineer olmayan optik ve spektroskopik özelliklerinin teorik olarak incelenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Doktora Tezi, 2009.
- [85] Thiel, W., Modern methods and algorithms of quantum chemistry. NIC Series, 3, 261, 2000.
- [86] Hohenberg, P., Kohn, W., Inhomogeneous electron gas. Physical Review, 136, B864, 1964.
- [87] Kohn, W., Sham, L.J., Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133, 1965.
- [88] Baerends, E.J., Gritsenko, O.V., A quantum chemical view of density functional theory. The Journal of Physical Chemistry A, 101, 5383-5403, 1997.
- [89] Atkins, P.W., Friedman, R.S., Molecular quantum mechanics. Oxford University Press, 2011.
- [90] Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098, 1988.
- [91] Perdew, J.P., Ziesche, P., Eschrig, H., Electronic structure of solids' 91. Akademie Verlag, Berlin, 1991.
- [92] Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Physical Review Letters, 77, 3865, 1996.

- [93] Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E., Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 91, 146401, 2003.
- [94] Heyd, J., Scuseria, G.E., Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 118, 8207-8215, 2003.
- [95] Ernzerhof, M., Perdew, J.P., Generalized gradient approximation to the angle-and system-averaged exchange hole. The Journal of Chemical Physics, 109, 3313-3320, 1998.
- [96] Vosko, S.H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58, 1200-1211, 1980.
- [97] Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Physical Review B, 37, 785, 1988.
- [98] Heyd, J., Scuseria, G.E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The Journal of Chemical Physics, 121, 1187-1192, 2004.
- [99] Heyd, J., Scuseria, G.E., Assessment and validation of a screened Coulomb hybrid density functional. The Journal of Chemical Physics, 120, 7274-7280, 2004.
- [100] Heyd, J., Peralta, J.E., Scuseria, G.E., Martin, R.L., Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. The Journal of Chemical Physics, 123, 174101, 2005.
- [101] GE, H.J.S., Ernzerhof, M., Erratum:"Hybrid functionals based on a screened Coulomb potential"[The Journal of Chemical Physics, 118, 8207 (2003)]. The Journal of Chemical Physics, 124, 219906, 2006.
- [102] Krukau, A.V., Vydrov, O.A., Izmaylov, A.F., Scuseria, G.E., Influence of the exchange screening parameter on the performance of screened hybrid functionals. The Journal of Chemical Physics, 125, 224106, 2006.
- [103] Hinchliffe, A., Ab Initio Determination of Molecular Properties; Adam Hilger. Institute of Physics Publishing, Bristol UK, 1987.
- [104] Binning Jr, R., Curtiss, L., Compact contracted basis sets for third-row atoms: Ga–Kr. Journal of Computational Chemistry, 11, 1206-1216, 1990.
- [105] Miertuš, S., Scrocco, E., Tomasi, J., Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117-129, 1981.

- [107] Van Gisbergen, S., Snijders, J.,Baerends, E., Implementation of timedependent density functional response equations. Computer Physics Communications, 118, 119-138, 1999.
- [108] Petersilka, M., Gossmann, U., Gross, E., Excitation energies from timedependent density-functional theory. Physical Review Letters, 76, 1212, 1996.
- [109] Stratmann, R.E., Scuseria, G.E., Frisch, M.J., An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. The Journal of Chemical Physics, 109, 8218-8224, 1998.
- [110] Sheldrick, G.M., SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71, 3-8, 2015.
- [111] Sheldrick, G.M., SHELXS-97, program for X-ray crystal structure solution. University of Göttingen, Germany, 1997.
- [112] Edgington, P.R., McCabe, P., Macrae, C.F., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., Van De Streek, J., Mercury: visualization and analysis of crystal structures. Journal of Applied Crystallography, 39, 453-457, 2006.
- [113] Spek, A.L., Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65, 148-155, 2009.
- [114] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Kurt, B.Z., Dege, N., Three novel Cu(II), Cd(II) and Cr(III) complexes of 6-Methylpyridine-2-carboxylic acid with thiocyanate: Synthesis, crystal structures, DFT calculations, molecular docking and α-Glucosidase inhibition studies. Tetrahedron, 74, 7198-7208, 2018.
- [115] Sun, H., Ding, W., Song, X., Wang, D., Chen, M., Wang, K., Zhang, Y., Yuan, P., Ma, Y., Wang, R., Synthesis of 6-hydroxyaurone analogues and evaluation of their α-glucosidase inhibitory and glucose consumptionpromoting activity: Development of highly active 5, 6-disubstituted derivatives. Bioorganic & Medicinal Chemistry Letters, 27, 3226-3230, 2017.
- [116] Dennington, R., Keith, T., Millam, J., GaussView, version 5. Semichem Inc.: Shawnee Mission, KS, 2009.
- [117] Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Broothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachri, K., Rendell, A., Burant, J.C., Iyengar, J.E., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvdor, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09, Revision D. 01, 2013, Gaussian. Inc., Wallingford CT, 2013.
- [118] Ditchfield, R., Hehre, W.J., Pople, J.A., Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724-728, 1971.
- [119] Dobbs, K., Hehre, W., Molecular orbital theory of the properties of inorganic and organometallic compounds. 6. Extended basis sets for second-row transition metals. Journal of Computational Chemistry, 8, 880-893, 1987.
- [120] Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82, 270-283, 1985.
- [121] Wadt, W.R., Hay, P.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82, 284-298, 1985.
- [122] Hay, P.J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. Journal of Chemical Physics, 82, 299-310, 1985.
- [123] Altürk, S., Tamer, Ö., Avcı, D., Atalay, Y., Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn (II) complex. Journal of Organometallic Chemistry, 797, 110-119, 2015.
- [124] Gorelsky, S., SWizard program. University of Ottawa, Ottawa, Canada, 2010.
- [125] Altürk, S., Avcı, D., Başoğlu, A., Tamer, Ö., Atalay, Y., Dege, N., Copper (II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV–Vis spectra, refractive index, band gap and NLO parameters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 190, 220-230, 2018.

- [126] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Dege, N., A novel series of M (II) complexes of 6-methylpyridine-2-carboxylic acid with 4(5)-methylimidazole: Synthesis, crystal structures, αglucosidase activity, density functional theory calculations and molecular docking. Applied Organometallic Chemistry, e4935, 2019.
- [127] Scott, A.P., Radom, L., Harmonic vibrational frequencies: an evaluation of Hartree– Fock, Møller– Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. The Journal of Physical Chemistry, 100, 16502-16513, 1996.
- [128] Keresztury, G., Chalmers, J., Griffith, P., Raman Spectroscopy: Theory in Handbook of Vibrational Spectroscopy, John Wiley & Sons Ltd., New York, 1, 2002.
- [129] Teimouri, A., Chermahini, A.N., Taban, K., Dabbagh, H.A., Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 369-377, 2009.
- [130] Varsányi, G., Kovner, M.A.e., Láng, L., Assignments for vibrational spectra of 700 benzene derivatives. Akademiai Kiado, 1973.
- [131] Nakamoto, K., Infrared spectra of inorganic and coordination compounds. Wiley-Interscience, 1970.
- [132] Ghosh, S., Ray, P.K., Bandyopadhyay, T.K., Deb, A.K., New Stable Manganese (III) Chelates of Some Pyridine Carboxylic Acids. Zeitschrift für. Naturforschung B, 36, 1270-1272, 1981.
- [133] Gipson, K., Stevens, K., Brown, P., Ballato, J., Infrared spectroscopic characterization of Photoluminescent polymer nanocomposites. Journal of Spectroscopy, 2015, 2015.
- [134] Silverstein, R.M., Webster, F.X., Kiemle, D.J., Spectrometric identification of organic compounds, John Wiley & Sons, INC, New York, 2005.
- [135] Fleming, I., Frontier orbitals and organic chemical reactions. Wiley, 1977.
- [136] Fukui, K., Role of frontier orbitals in chemical reactions. Science, 218, 747-754, 1982.
- [137] Yang, W., Parr, R.G., Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proceedings of the National Academy of Sciences, 82, 6723-6726, 1985.
- [138] Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1, 104-113, 1934.
- [139] Pearson, R.G., Absolute electronegativity and hardness correlated with molecular orbital theory. Proceedings of the National Academy of Sciences, 83, 8440-8441, 1986.

- [140] Pearson, R.G., The electronic chemical potential and chemical hardness. Journal of Molecular Structure: THEOCHEM, 255, 261-270, 1992.
- [141] Faundez-Gutierrez, R., Macleod-Carey, D., Zarate, X., Bustos, C., Molins, E., Schott, E., Synthesis, characterization and DFT study of a new family of pyrazole derivatives. Polyhedron, 81, 414-420, 2014.
- [142] Levine, B., Bethea, C.G., Second and third order hyperpolarizabilities of organic molecules. The Journal of Chemical Physics, 63, 2666-2682, 1975.
- [143] Oudar, J.d., Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. The Journal of Chemical Physics, 67, 446-457, 1977.
- [144] Green, M.L., Marder, S.R., Thompson, M.E., Bandy, J.A., Bloor, D., Kolinsky, P., Jones, R., Synthesis and structure of (cis)-[1-ferrocenyl-2-(4nitrophenyl) ethylene], an organotransition metal compound with a large second-order optical nonlinearity. Nature, 330, 360, 1987.
- [145] Prasad, P.N., Williams, D.J., Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York etc., 1, 1991.
- [146] Kanis, D.R., Ratner, M.A., Marks, T.J., Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chemical Reviews, 94, 195-242, 1994.
- [147] Albert, I.D., Marks, T.J., Ratner, M.A., Large molecular hyperpolarizabilities. Quantitative analysis of aromaticity and auxiliary donor- acceptor effects. Journal of the American Chemical Society, 119, 6575-6582, 1997.
- [148] Clays, K., Coe, B.J., Design strategies versus limiting theory for engineering large second-order nonlinear optical polarizabilities in charged organic molecules. Chemistry of Materials, 15, 642-648, 2003.
- [149] Ivanova, B., Spiteller, M., Ag(I) and Zn(II) complexes with possible application as NLO materials–Crystal structures and properties. Polyhedron, 30, 241-245, 2011.
- [150] Lamshöft, M., Storp, J., Ivanova, B., Spiteller, M., Gas-phase CT-stabilized Ag(I) and Zn(II) metal-organic complexes-Experimental versus theoretical study. Polyhedron, 30, 2564-2573, 2011.
- [151] Avcı, D., Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: semiempirical analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82, 37-43, 2011.
- [152] Castet, F., Rodriguez, V., Pozzo, J.-L., Ducasse, L., Plaquet, A., Champagne, B., Design and characterization of molecular nonlinear optical switches. Accounts of Chemical Research, 46, 2656-2665, 2013.
- [153] Mahalakshmi, G., Balachandran, V., Molecular structure, vibrational spectra (FTIR and FT Raman) and natural bond orbital analysis of 4-

Aminomethylpiperidine: DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 587-598, 2014.

- [154] Kleinman, D., Nonlinear dielectric polarization in optical media. Physical Review, 126, 1977, 1962.
- [155] Kaatz, P., Donley, E.A., Shelton, D.P., A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements. The Journal of Chemical Physics, 108, 849-856, 1998.
- [156] Adant, C., Dupuis, M., Bredas, J., Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. International Journal of Quantum Chemistry, 56, 497-507, 1995.
- [157] Weinhold, F., Landis, C.R., Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, 2005.
- [158] Foster, J., Weinhold, F., Natural hybrid orbitals. Journal of the American Chemical Society, 102, 7211-7218, 1980.
- [159] Reed, A.E., Weinhold, F., Natural localized molecular orbitals. The Journal of Chemical Physics, 83, 1736-1740, 1985.
- [160] Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899-926, 1988.
- [161] Murray, J.S., Sen, K., Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam, 3, 1996.
- [162] Alkorta, I., Perez, J.J., Molecular polarization potential maps of the nucleic acid bases. International Journal of Quantum Chemistry, 57, 123-135, 1996.
- [163] Scrocco, E., Tomasi, J., Lowdin, P., Advances in quantum chemistry. Academic, New York, 1978.
- [164] Luque, F., Orozco, M., Bhadane, P., Gadre, S., SCRF calculation of the effect of water on the topology of the molecular electrostatic potential. The Journal of Physical Chemistry, 97, 9380-9384, 1993.
- [165] Šponer, J., Hobza, P., DNA base amino groups and their role in molecular interactions: Ab initio and preliminary density functional theory calculations. International Journal of Quantum Chemistry, 57, 959-970, 1996.
- [166] Gadre, S.R., Shrivastava, I.H., Shapes and sizes of molecular anions via topographical analysis of electrostatic potential. The Journal of Chemical Physics, 94, 4384-4390, 1991.
- [167] Weinstein, H., Maayani, S., Srebrenik, S., Cohen, S., Sokolovsky, M., A theoretical and experimental study of the semirigid cholinergic agonist 3acetoxyquinuclidine. Molecular Pharmacology, 11, 671-689, 1975.

- [168] Perutz, M., Electrostatic effects in proteins. Science, 201, 1187-1191, 1978.
- [169] Politzer, P., Laurence, P.R., Jayasuriya, K., Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environmental Health Perspectives, 61, 191-202, 1985.
- [170] Warshel, A., Electrostatic basis of structure-function correlation in proteins. Accounts of Chemical Research, 14, 284-290, 1981.
- [171] Scrocco, E., Tomasi, J., Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Advances in Quantum Chemistry, Elsevier, 11, 115-193, 1978.
- [172] Wang, Y., Ma, L., Li, Z., Du, Z., Liu, Z., Qin, J., Wang, X., Huang, Z., Gu, L., Chen, A.S., Synergetic inhibition of metal ions and genistein on αglucosidase. FEBS Letters, 576, 46-50, 2004.
- [173] Taha, M., Ismail, N.H., Lalani, S., Fatmi, M.Q., Siddiqui, S., Khan, K.M., Imran, S., Choudhary, M.I., Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. European Journal of Medicinal Chemistry, 92, 387-400, 2015.
- [174] Taha, M., Ismail, N.H., Baharudin, M.S., Lalani, S., Mehboob, S., Khan, K.M., Siddiqui, S., Rahim, F., Choudhary, M.I., Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 24, 1310-1324, 2015.
- [175] Zheng, J., Ma, L., Silver(I) complexes of 2,4-dihydroxybenzaldehyde–amino acid Schiff bases—Novel noncompetitive α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 25, 2156-2161, 2015.
- [176] Zheng, J.-W., Ma, L., Metal complexes of anthranilic acid derivatives: A new class of non-competitive α-glucosidase inhibitors. Chinese Chemical Letters, 27, 627-630, 2016.
- [177] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Öztürk, D., Dege, N., A new dinuclear copper (II) complex of 2, 5– Furandicarboxyclic acid with 4(5)-Methylimidazole as a high potential αglucosidase inhibitor: Synthesis, Crystal structure, Cytotoxicity study, and TD/DFT calculations. Applied Organometallic Chemistry, 33, e4725, 2019.
- [178] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Dege, N., A novel series of mixed-ligand M(II) complexes containing 2,2'-bipyridyl as potent α-glucosidase inhibitor: synthesis, crystal structure, DFT calculations, and molecular docking. JBIC Journal of Biological Inorganic Chemistry, Basımda, doi.org/10.1007/s00775-019-01688-9, 2019.

[179] Avcı, D., Altürk, S., Sönmez, F., Tamer, Ö., Başoğlu, A., Atalay, Y., Zengin Kurt, B., Dege, N., Novel Cu(II), Co(II) and Zn(II) metal complexes with mixed-ligand: Synthesis, crystal structure, α-glucosidase inhibition, DFT calculations, and molecular docking. Journal of Molecular Structure, Basımda, doi.org/10.1016/j.molstruc.2019.07.039, 2019.

ÖZGEÇMİŞ

Sümeyye Altürk, 01.08.1987 yılında Suveylıh/Ürdün'de doğdu. İlk, orta ve lise eğitimini Suveylıh'te tamamladı. 2013 yılında Dokuz Eylül Üniversitesi Fen Fakültesi Fizik Bölümü'nü bitirdi. Aynı yıl Sakarya Üniversitesi Fizik Anabilim Dalında yüksek Lisansa başladı ve 2015 yılında bitirdi. Yine 2015 yılında Sakarya Üniversitesi Fizik Anabilim Dalında Doktora eğitime başladı ve halen doktora eğitimine devam etmektedir.