
T.C.

SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

INTEGRATING SOFTWARE DEFINED
NETWORKING APPROACH INTO WIRELESS

MULTIMEDIA SENSOR NETWORKS

Ph.D. THESIS

 Ali Burhan ALSHAIKHLI

Department : COMPUTER AND INFORMATION

ENGINEERING

Supervisor : Prof. Dr. Celal ÇEKEN

November 2018

DECLERATION

I declare that all the data in this thesis was obtained by myself in academic rules, all

visual and written information and results were presented in accordance with academic

and ethical rules, there is no distortion in the presented data, in case of utilizing other

people’s works they were refereed properly to scientific norms, the data presented in

this thesis has not been used in any other thesis in this university or in any other

university.

Ali Burhan Al-Shaikhli

 21.11.2018

i

ACKNOWLEDGMENT

I would like to show gratitude and praise to Allah for his blessings and favors.

Secondly my thanks and appreciation go to my advisor Prof. Dr. Celal Çeken for his

unprecedented support and priceless advices from the first day we met. And I would

like to acknowledge Mohammed Hussein for his work with us in the project. All

people in the department and the institute were very helpful, I would like to thank them

for that.

Also, I would like to extend my gratitude to my father (may Allah grant mercy upon

him) for his support over the years, my mother for her kindness and prayers, my wife

for giving me a reason to keep moving forward, all friends and colleagues who backed

me up throughout my journey.

ii

TABLE OF CONTENTS

LIST OF SYMBOLS AND ABBREVIATIONS .. v

LIST OF FIGURES .. vii

LIST OF TABLES... ix

SUMMARY ... x

ÖZET.. xi

CHAPTER 1.

INTRODUCTION .. 1

1.1. Problem statement .. 1

1.2. The aim of the research .. 2

1.3. Research contributions ... 2

1.4. Motivation .. 3

1.5. Related work .. 4

1.6. Thesis outline ... 8

CHAPTER 2.

SOFTWARE DEFINED NETWORKING: CONCEPTUALIZATION AND

IMPACT .. 9

2.1. SDN essentials .. 9

2.1.1. SDN architecture ... 10

2.1.2. OpenFlow protocol stack ... 11

2.1.3. Planes of SDN paradigm ... 13

2.1.3.1. Data plane ... 13

2.1.3.2. Control plane .. 14

2.1.3.3. Application plane .. 15

2.2. SDN versus classical network (SDN-less network) 15

iii

2.3. SDN for wireless and mobile of networks ... 16

2.4. SDN vulnerability .. 16

2.5. SDN debate and viability for WSNs .. 17

CHAPTER 3.

VIDEO OVER WIRELESS SENSOR NETWORKS .. 18

3.1. Video traffic representation for network evaluation 18

3.1.1. FFMPEG platform ... 20

3.1.2. Video frame size trace file ... 23

3.1.3. Video traffic imitation model .. 25

3.2. Video streaming over Zigbee based network 28

3.2.1. Network topology and sequence diagram 28

3.2.2. Simulation and results ... 32

3.3. Conclusion and what SDN concept can offer 34

CHAPTER 4.

INTEGRATING SDN INTO WSAN ... 35

4.1. Introduction .. 35

4.2. Topology discovery and clustering... 36

4.3. SDN-oriented WSAN and WSANFlow interface protocol 39

4.3.1. SDN controller... 39

4.3.2. SDN-oriented end devices EDs ... 40

4.3.3. Network intelligence role .. 41

4.3.4. Flow tables layout and dissemination.................................... 42

4.4. Fuzzy model and Dijkstra algorithm .. 44

4.5. Simulation: parameters and system models ... 45

4.5.1. Demo number one ... 45

4.5.2. Demo number two ... 48

4.6. Network performance evaluation: results and discussion 51

4.6.1. Demo number one ... 51

4.6.2. Demo number two ... 53

4.7. Conclusion regarding simulation results .. 56

iv

CHAPTER 5.

PHYSICAL IMPLEMENTATION OF THE PROPOSED ARCHITECTURE 68

5.1. Introduction .. 57

5.2. TI ZigBee protocol stack .. 57

5.3. TIMAC protocol stack ... 59

5.4. Physical environment ... 60

5.5. Software environment .. 62

5.6. SDN layer on top of TIMAC .. 62

5.7. Experimental layout ... 64

5.7.1. Environmental conditions and data traffic 65

5.7.2. Parameter setting ... 66

5.7.3. Performance assessment and evaluation metrics 67

5.8. Results and discussion .. 69

5.9. Conclusion .. 71

CHAPTER 6.

OVERALL CONCLUSION AND PROBABLE FUTURE TRENDS 73

REFERENCES .. 75

RESUME .. 80

v

LIST OF SYMBOLS AND ABBREVIATIONS

SDN : Software Defined Networking

WSN : Wireless Sensor Networks

WMSN : Wireless Multimedia Sensor Networks

SDNC : SDN Controller

ED : End Device

WSAN : Wireless Sensor and Actuator Networks

MAC : Medium Access Control

TIMAC : Texas Instruments MAC

ISR : Interrupt Service Provider

ARM : Advanced RISC Machine

API : Application Programming Interface

TI : Texas Instruments

GoP : Group of Pictures

FFMPEG : Fast Forward Motion Picture Experts Group

PSNR : Peak Signal to Noise Ratio

SSIM : Structural Similarity

CODEC : Coding Decoding

LR-WPAN : Low Rate Wireless Personal Area Network

SO : Superframe Order

BO : Beacon Order

TDM : Topology Discovery Mechanism

CoG : Center of Gravity

MCU : Micro-Controller Unit

TIMAC : Texas Instrument Medium Access Control

ZAP : Zigbee Application Processor

vi

ZNP : Zigbee Network Processor

OSAL : Operating System Abstraction Layer

HAL : Hardware Abstraction Layer

UART : Universal Asynchronous Reciever/Transmitter

EED : End to End Delay

EVM : Evaluation Module

vii

LIST OF FIGURES

Figure 2.1. SDN architecture ... 10

Figure 2.2. OpenFlow architecture... 12

Figure 2.3. Packet flow in SDN enabled forwarding device.................................. 12

Figure 3.1. Video frame sequence and frame types ... 19

Figure 3.2. The use of FFMPEG libraries to produce a stream for evaluating the

network .. 20

Figure 3.3. Source traffic process module using FFMPEG libraries 21

Figure 3.4. Traffic sink using FFMPEG libraries .. 22

Figure 3.5. Video frame size generation and usage for network evaluation 24

Figure 3.6. OPNET traffic source process module using video frame size trace file25

Figure 3.7. Video traffic model OPNET source process module 27

Figure 3.8. Arrival rate of three approaches of video traffic production 27

Figure 3.9. Network topology of the tested network ... 29

Figure 3.10. Sequence diagram of network establishment and typical scenario ... 31

Figure 3.11. Numerical results for end to end delay and arrival rate for different

combination of video parameters as denoted with each graph 33

Figure 4.1. TDM flow chart ... 37

Figure 4.2. Network establishment sequence diagram... 38

Figure 4.3. Topology with clusters and parameters assignments........................... 39

Figure 4.4. protocol stack of WSANFlow in SDNC .. 40

Figure 4.5. SDN-enabled ED protocol stack .. 41

Figure 4.6. Network Intel role flow chart .. 43

Figure 4.7. Block diagram of the given fuzzy-logic model 44

Figure 4.8. Network topology for demo number one... 46

Figure 4.9. Riverbed node models and process models ... 47

Figure 4.10. Network topology of the proposed system in demo 2 48

viii

Figure 4.11. Riverbed node models and process models for demo number two ... 50

Figure 4.12. Simulation results for Demo 1 for different systems and different

metrics and parameters .. 52

Figure 4.13. Average end to end delay for different loads when SO=BO=3 for demo

1 ... 53

Figure 4.14. Time when the first ED dies for demo 2.. 54

Figure 4.15. Number of dead EDs versus time for demo 2.................................... 55

Figure 5.1. Protocol architecture for TI Z-stack .. 58

Figure 5.2. ZAP and ZNP interaction .. 59

Figure 5.3. protocol stack of a basic TIMAC... 60

Figure 5.4. TI CC2538 evaluation module... 60

Figure 5.5. SmartRF06EB development kit ... 61

Figure 5.6. A state diagram for event handling in SDNC 63

Figure 5.7. State diagram for event handling in ED .. 64

Figure 5.8. The experimented layout for a typical scenario 65

Figure 5.9. SmartRF06EB buttons location and usage in the demonstration 66

Figure 5.10. LCD displays printed content of a status packet received in SDNC . 68

Figure 5.11. A picture shows a webpage of received sensor values via UART

connection ... 68

Figure 5.12. EED results .. 69

Figure 5.13. Measuring drawn current ... 70

Figure 5.14. Current consumption results .. 71

ix

LIST OF TABLES

Table 4.1. Simulation parameters for demo number one 46

Table 4.2. Entries for the flow tables used packet switch module in demo one 48

Table 4.3. Simulation parameters for demo number two 49

Table 4.4. Flow tables of a demonstrated requests in demo two 51

x

SUMMARY

Keywords: WMSN, SDN, SDN Controller, Wireless Sensor Networks, Software-

Defined Networking, Embedded Systems.

This research study addresses some critical issues of wireless sensor networks and

comes up with a proposition for tackling these issues by means of a trending notion in

networks that is SDN. SDN standardization exertions are in progress through active

IEEE standards projects, since SDN has revealed new perspectives in managing

existing networks and apply its practicality and interoperability.

In this thesis, SDN is presented in a way it would be a highly suitable choice for WSAN

type of networks, concentrating on abstracting the network and simplifying

management for the sake of less overall energy consumption and application-specific

adaptation. The proposed architecture has been modeled and simulated using Riverbed

Modeler Software for performance evaluation. Additionally, the simulated

architecture was developed for experimental devices implementation. TI network

processor of ARM-based CC2538EVM module with an application processor of

smartRF06EB board was used in the development. The network processor is used

either as a stand-alone only-forwarding node or mounted on the application processor

to utilize existing sensor data, buttons and other interfaces in smartRF06EB.

In the developed architecture simulation, several demonstrations were carried out

using various types of traffic. Furthermore, the model included a centralized topology-

aware routing mechanism embedded in SDNC. At the same time, a traditional protocol

framework simulation was also conducted for comparison purposes. Results presented

a very good enhancement in power consumption aspect of view and slightly better

results in terms of delay and throughput.

xi

KABLOSUZ ÇOKLU ORTAM ALGILAYICI AĞLARINA

YAZILIM TANIMLI AĞININ YAKLAŞIMI

ÖZET

Anahtar kelimeler: WMSN, SDN, SDN Denetleyici, Kablosuz Algılayıcı Ağlar,

Yazılım Tanımlı Ağlar, Gömülü Sistemler.

Bu araştırma çalışması, kablosuz algılayıcı ağların bazı kritik konularını ele almakta

ve bu konuların çözümü için, bilgisayar ağlarında yeni bir kavram olarak ortaya çıkan

yazılım tanımlı ağ yaklaşımını önermektedir. Yazılım tanımlı ağ yaklaşımının mevcut

ağları yönetmede yeni bakış açısı ortaya koyması, pratiklik ve birlikte çalışabilirlik

özellikleri nedenleriyle, aktif IEEE standartları projelerine paralel olarak

standardizasyon çalışmaları devam etmektedir.

Bu tez çalışmasında, yazılım tanımlı ağ yapısının, daha az enerji tüketimi ve

uygulamaya özel adaptasyon için ağın soyutlanması ve yönetiminin

basitleştirilmesi özellikleri üzerine yoğunlaşılarak, kablosuz algılayıcı/eyleyici ağlara

uygun olduğu gösterilmiştir. Başarım değerlendirmesi için, önerilen mimarinin modeli

ve benzetimi Riverbed Modeler Yazılımı ile gerçekleştirilmiştir. Ayrıca, oluşturulan

modelin fiziksel olarak gerçeklemesi de yapılmıştır. Geliştirme çalışmasında ağ

işlemcisi olan ARM tabanlı CC2538EVM modülü smartRF06EB uygulama

işlemcisiyle birlikte kullanılmıştır. Oluşturulan topoloji içerisinde ağ işlemcisi hem tek

başına hem de, mevcut algılayıcılarının, butonlarının ve diğer arayüzlerinin

kullanılabilmesi için smartRF06EB borduyla birlikte kullanılmıştır.

Gelişmiş mimarinin benzetimi için çeşitli trafik türleri içeren senaryolar

gerçekleştirilmiştir. Oluşturulan mimari içerisinde yazılım tanımlı ağ denetleyicisine

gömülü merkezi bir topoloji-farkında yönlendirme mekanizması yer almaktadır. Aynı

zamanda, karşılaştırma amacıyla geleneksel bir protokolün benzetimi de

gerçekleştirilmiştir. Benzetim sonucunda, güç tüketimi açısından çok daha iyi,

gecikme ve verimlilik açısından biraz daha iyi gelişmeler elde edilmiştir.

CHAPTER 1. INTRODUCTION

This chapter presents an introduction to topics that are covered in the thesis. A problem

statement will specify the main issue this research is trying to tackle. The chapter

continues to state the aim of this study and the contributions to achieve research goals.

Furthermore, a number of related studies are presented then the organization of this

thesis is outlined at the end of this chapter.

1.1. Problem Statement

Wireless sensor networks (WSNs) struggle due to energy constraints since each device

in the network has limited battery capacity and, most of the time, a device battery is

unlikely to be replaced after being deployed[1][2][3].

The research work of this thesis is intended to investigate if wireless sensor networks

in some specific fields of applications would be better performing in case of integrating

a trending concept of Software-defined Networking. Traditional sensors have been

autonomous in terms of network decisions such as routing [4], resulting in a lot of

overhead traffic, unmeasured energy consumption and inaccurate decision leading to

unwanted delays. There has been plenty of research aiming at centralization

architectures for sensor networks to overcome these problems, this study targets a

promising trend of SDN and proposes a new architecture for sensor networks to

enhance its performance.

Applications and uses of wireless sensor networks require taking into account a

specific characteristic of the designated network. A number of these characteristics are

discussed here [5].

2

As the number of deployed sensors grows, sensors get more constraints in resources.

This makes sensors suffer from the lack of being loaded with more than one

application. This type of network can be called a stiff network. The approach presented

in this research work proposes a protocol of reprogramming sensor devices with a new

application according to network demands by means of flow tables. The result of that

is a demoted end device with minimal resources to act as forwarding nodes working

at the data plane as SDN paradigm states.

Another aspect of a large number of deployed sensors is the large amount of traffic

that can be produced and the accuracy in network decisions i.e. routing. A way to

overcome such an issue is by a protocol that demands a bird’s eye view of the whole

network for a greater ability to get most of the whole network resources. This would

be followed by overall power conservation and network life-prolonging in addition to

precision in network decision.

1.2. The Aim Of The Research

The research that conducts this thesis aims at achieving simplified network

configuration and management and accordingly, lower cost network. Also presenting

an adaptation to network/application change and application-based QoS support.

WSAN development tends to provide flexible enhanced network structures where

there will be no need of machine-human contact, instead of that, a network structure

where devices and machines communicate, collect data and create a knowledge base

to make decisions regarding network management.

1.3. Research Contributions

To accomplish the aim of our research, a new SDN controller protocol stack is

developed which contains network intelligence with the capability of establishing the

network and communicating with other sensor nodes. Beside that, a messaging

protocol is developed. And for creating and managing network intelligence, algorithms

3

are added to the protocol. The most important part of network intelligence is the

decision support system module. The algorithms in this unit will be used for the

resolution of multi-parameter decision-making problems.

The variables created by the proposed architecture will be modeled using a realistic

performance evaluation modeler (OPNET) for the performance evaluation. And for

the implementation of the simulation model, Libelium Waspmote and TI cc2538 Texas

instruments devices will be used to develop an experimental testbed.

1.4. Motivation

The rapid development in microelectronics and wireless communication technologies

has led to the production of small size, low cost, low power consumption, mobile and

multifunctional sensor nodes constructing Wireless Sensor Networks (WSN). At first,

WSN used only for environment monitoring but with the new actuator nodes, system

inspection took an even wider applications field that led to Wireless Sensor and

Actuator Networks (WSAN). Industrial, medical, military and environmental

monitoring, observing, collected data processing and decision-making functions

resulted from the use of WSAN has brought numerous applications to those fields.

One of the major problems in traditional WSAN structures is that they require

application specific and complex network design and management operations.

Despite the fact that WSNs are well known for their effortlessness of deployment and

low cost, it has been a tough task to manage them due to resource underutilization

characteristic. Nevertheless, with IoT envisioned to be a worldwide phenomenon,

sensor devices are anticipated to be deployed on a large scale. That requires new

emerging protocols to govern a network with such a size [6].

In the last few years, a new favorable trend, Software Defined Networking (SDN) has

been raised by computer networks communities as a new solution for abstracting

physical network structure from applications.

4

The SDN concept strategy to achieve extensible and easy to manage computer

networks is considered a strong motivation to apply the same principle to sensor

networks. Besides, SDN also is about utilizing the centralization concept in network

design which is proved to be a good way to improve sensor networks. Furthermore,

introducing some level of programmability as tools to give more authority to system

administrators and network engineers to better manage and optimize networks [7].

1.5. Related Work

Authors in [8] leverage SDN-WISE testbed to integrate switches networks with

sensors networks to build an IoT environment. The testbed was implemented for TI

CC2538 devices in addition to Mininet emulation modules. Results show that the

integrated approach results in less communication among the nodes.

A master thesis [4] proposed an SDN based protocol. It was compared with a

traditional routing protocol, Control Tree Protocol (CTP) that was implemented in

TinyOS. The thesis shows that SDN presents adaptability to variable conditions of

node operations in contrast to static reprogramming nodes to change behavior.

A journal article [9] uses SDN, network functioning virtualization NFV, and cloud

computing together with a 6LoWPAN gateway to add abstraction and liability to

network administration. This work took advantage of Arduino pico internet protocol

stack for 6LoWPAN protocol and MATLAB software for end-user app. Results

showed improvement in network lifetime and network discovery delay in contrast to

conventional 6LoWPAN nodes.

This article [10] presents an improved SD-WSN framework to merge WSN into

industrial IoT. Mininet emulator and Floodlight controller was used in this work.

Results revealed a good improvement over traditional WSN but a slight improvement

over traditional SDN in terms of energy and time delay.

5

This paper [11] uses SDN to reconfigure sensor nodes to identify probable attacks in

Mobile WSNs such as selective forwarding, with the aid of fog computing to recognize

intrusion patterns. CloudExp simulator was used to evaluate the presented model. The

approach showed a feasibility in stopping malicious sensor nodes with reasonable

network load overhead.

In [12], an improvement for an SDN-WISE framework is introduced using Fuzzy

Topology Discovery Protocol to enhance network performance in the aspects of packet

arrival, packet loss, and energy. A fuzzy protocol is used in the decision of selecting

the finest forwarding node for each node considering a number of neighbors, queue

length, and energy.

The thesis in [13] provides a power consumption model for WSN time slotted channel

hopping networks specifically for devices running OpenWSN which is a modular

ecosystem designed for IoT. The model considers network-related CPU state changes

to predict energy consumption, making this model suitable for simulations and

experimenting. The model can be accumulated to OpenSim simulator in OpenWSN.

Authors in [14] proposed an energy-efficient algorithm depending on multi-energy-

space for software-defined wireless sensor networks. The proposed platform is

simulated in MATLAB and compared with other traditional energy-efficient routing

algorithms such as Wireless Routing Protocol WRP, Energy-aware Temporarily

Ordered Routing E-TORA and Low Energy Adaptive Clustering Hierarchy

Centralized LEACH-C.

This paper [15] is one of the early attempts to explore the beneficialness of SDN

paradigm to networks like sensor networks that has particular design specifications. In

addition to investigating the possibilities of using SDN with IEEE 802.15.4 standard

protocols. It introduces a generic structure of SDWN with some design details and

parameters.

6

The paper in [16] proposes an IoT multi-network controller layout to deal with network

impairments resulted from heterogeneity and diverse applications. The research work

implemented a prototype using Qualnet simulation framework. An OpenFlow-like

protocol was inserted into the IP layer. For each scenario, one node acts as a controller,

all other nodes as controlled.

Another early exploratory proposition research study is brought up by [1]. Authors put

an argument for an untested base station structure for sensor networks based on

software-defined networking idea. The research includes explanations about structural

parts of the proposed layout with some discussions to tackle challenges and

opportunities, yet no demonstration of any type is presented.

Authors in [17] suggest a platform model as a complete software-defined solution for

IoT network called SDIoT. The solution consists of SDN, software-defined storage

SDStore, and Software-defined security SDSec. The model is meant to overcome

challenges in IoT structure to efficiently send, store, protect exchanged data in the IoT

network. The paper didn’t present an experimental layout of any kind.

A discussion has been held by [18] to look into standardization synergy between SDN

based WSN and IoT. This paper examines RPL [19] and before-mentioned TinySDN

protocols, investigate the feasibility of them inter-operating to facilitate the design and

establishment of IoT structures. Also, discusses particular issues like network

management, routing, and resource sharing.

[20] presents a multiple controllers structure of TinyOS SDN architecture. It takes

advantage of SDN based sensor node types which is end devices and switches. The

platform was tested in COOJA simulator and TelosB devices on TI MSP430 emulator.

Results are shown for the delay and memory usage.

The paper in [21] suggests a measurement layout for WSN called TinySDM which is

software defined. The research resulted in designing a C-like language to customize

7

measurement jobs. The study discussed: packet pathfinding, measuring delay and

metric gathering while demonstrating TinySDM architecture.

Authors in [3] came up with a routing algorithm that is claimed to be energy-efficient

for SDWSN. The network consists of a main control server, control nodes (cluster

heads) and other sensor nodes. The core contribution is cluster head selecting using

PSO algorithm to deal with it as an NP-hard problem. Simulations are done using

MATLAB compared with a conventional LEACH routing algorithm.

A sleep scheduling algorithm which is SDN-based is presented in [2], to extend the

lifetime of a network. Simulation results are compared with a classical EC-CKN

algorithm results. For a static environment, the proposed algorithms outperform the

transitional one, yet no dynamic conditions for WSN are tested.

Authors in [22] proposed a solution for WSNs to embed a MapReduce paradigm which

is a mass data processing framework by means of SDN concept. The basic work of the

research depends on a recent SDN-WISE platform to use its functionalities which

permit the dynamic loading and execution of user-defined MapReduce tasks in sensor

nodes.

A hardware-in-the-loop was utilized in [23] to transfer data from OPNET simulation

model to the internet using a SITL model. The system applies SDN concept to

emulation framework. The authors made the controller manages the hardware layer by

southbound interface of the cloud data center to control its router supporting SDN.

Authors in [24] put forward a routing protocol that is based on SDN notion for WSN.

The research concentrated on several aspects of conducting results: delay, power

usage, memory, and security. Results are compared with those of CTP and TinySDN

protocols.

A study [25] compares SDN based solution for WSN with other two solutions by terms

of delay and packet loss ratio in a static, quasi-static and dynamic conditions of WSN.

8

The study used complete hardware testbeds for all three solutions. The experiments

conducted using 53 nodes in the experimental platform of flextop.

Authors in [26] proposed an SDN-based protocol that is supposed to be traffic aware,

which means it suggests a solution for congestion control in WSNs. It takes advantage

of the SDN flow tables to dynamically reprogram the nodes on the fly. The framework

performance is evaluated in contrast to traditional network protocols.

Authors in [27] propose a load balancer for M2M networks with traffic identification

by the use of an SDN network (Controller and OpenFlow 1.0 switches) and sensor

network (relays and sensors). The aim is to collect sensor data from a sensor network

then transfer it to a normal network through an M2M gateway and tackle the load

balancing issues. The proposed solution focused on one-way traffic.

1.6. Thesis Outline

This thesis consists of six chapters, the first one introduces the topic this thesis is

dealing with in the aspects of the problem statement, the aim of research and

contributions with some literature survey. The second chapter goes beyond concepts

of SDN to see how SDN is good for sensor networks. The third chapter discusses a

case of video application through traditional sensor networks with some basics about

video traffics.

The fourth chapter presents the proposed SDN-based platform details, simulation

environment, results, and discussion with a conclusion regarding the simulation. The

fifth chapter talks about the implementation of the proposed platform in TI devices

and how the test bed was prepared then shows some results and discussion then

concludes accordingly. The last chapter is a small chapter with an overall conclusion

of the research word and expected future trends regarding the main topic.

CHAPTER 2. SOFTWARE DEFINED NETWORKING:

CONCEPTUALIZATION AND IMPACT

This chapter gives a clear explanation about SDN concept and underlying topics

regarding architecture, protocol stack, and planes. It also relates to how SDN can be a

suitable solution for sensor networks.

2.1. SDN Essentials

Classical IP networks normally consist of various network elements like routers,

switches and other devices that are specified by an application. Some vendor specific

instructions should be followed to manage and configure the network in this situation,

which imposes a setup cost plus maintenance. Therefore, managing huge size network

of such type would be a difficult task and susceptible to many errors.

Traditional networks, in some applications, can be perceived as suffering from crucial

drawbacks such as consistency, resiliency, scalability, and controllability. The growth

of the internet, its applications, social networking, cloud services, and virtualization,

demand and require networks with efficient bandwidth usage, efficient accessibility

and above all reliable in dynamic environments. The development towards these

network requirements has become an essential issue to adapt to the new application-

specific environments [28][29].

SDN is considered one of the rising trends in state-of-the-art networks as a solution

for the recent related issues and challenges faced by these networks. However, at the

time of these writings, researches still in progress for the most effective employment

of this concept, mostly because of its unconventionality in networks world. We can

define a network as a platform consists of interacted, attached or associated machines

and codes provided and handled by a person or a device. Thus, it is implied by the new

10

advanced networks to actualize a reliable network by means of computing paradigm

just as SDN [30].

2.1.1. SDN architecture

The basic idea of SDN is separating the control plane from the data plane and make

network managers dynamically administer a huge number of devices and applications.

To accomplish that, network administrators use APIs to handle services, traffic needs,

Quality of Service and packet forwarding policies. These APIs are written in high-

level programming languages and are suitable for multi-vendor heterogeneous

devices. Thus, SDN basic way of working can be depicted as three main components

or layers: data plane, control plane, and applications as it can be seen in Figure 2.1.

Figure 2.1. SDN architecture

According to the application needs, a specific API is determined and added to the

system which will specify a set of instructions. The control plane translates these

instructions into rules that are then transferred to the entities in the data plane. The

entities in the data plane are the devices that deal with data streams directly, and the

control plane is the SDN controllers that have services in accordance with the

application needs [31].

11

The control plane and the forwarding plane are continuously communicating. Open

Networking Foundation (ONF) has been maintaining a set of specifications regarding

OpenFlow as an instance of SDN architecture. OpenFlow is how the control plane

represented by the SDN controller and the data plane represented by forwarding

devices are interacting with each other.

Although this would seem to enhance the networking procedures and operations by

converting complicated networking tasks from forwarders to controllers, there are

some anticipated challenges and issues that are expected or seen probable in such

platforms such as: available frameworks stable transition to SDN platform, suitable

hardware for broad deployment and other issues that will be discussed in some detail

later on this chapter [32].

2.1.2. OpenFlow protocol stack

OpenFlow has been standardized by ONF [33] for the global network (internet) linking

controllers and forwarding devices. It comprises some of the often-employed

forwarding plane protocols of datalink, network and transport layers [34].

OpenFlow is a protocol in which it permits making changes to the forwarding plane

by SDN controller. As OpenFlow is considered flow based, forwarding devices in the

data plane retain a flow table that includes flow entries, and those decide how to deal

with incoming packets. a flow entry includes match rule field, actions, and statistics.

Figure 2.2. (OpenFlow architecture) illustrates the protocol and its basic

functionalities.

12

Figure 2.2. OpenFlow architecture

The match rule compares certain values determined by the SDN controller with values

obtained from incoming packets. According to what results from the match rule,

actions will be taken and executed consequently. For each incident, statistics will be

calculated and checked correspondingly for other actions to be made. In case of no

flow entry found for an incoming packet, action will be dropping the packet or send it

to SDN controller to set new rules for new flow entries [35]. Figure 2.3. shows a

flowchart of how SDN based forwarding devices deal with incoming packets.

Figure 2.3. Packet flow in SDN enabled forwarding device

Three types of messaging are specified by Openflow between controller and

forwarding devices, and they are: (1) controller to forwarding device, which might me

requests from controller, orders or other instructions to forwarding devices, (2)

Asynchronous, that are messages sent by devices to controller without inquiring, it can

be rule-requests, reports or errors, (3) symmetric messages in either way like

handshaking during network establishment [36].

13

2.1.3. Planes of SDN paradigm

As mentioned before, SDN essence is the dissociation between the control plane and

forwarding plane for the sake of building hardware unrelated to lower forwarding

entities. In classical networks, devices in the forwarding plane is in charge of receiving

packets, checking routes for them, altering packet headers then forwarding them to the

required port. whilst in SDN, this entity’s layer will be adjustable, therefore, it would

be able to do much more complex functions with traffic like controlling access, packet

header mapping, watching traffic, traffic-aware routing, events arrangement, deep

inspecting packets, and smart packet forwarding.

In addition to that, the control plane is created to have the intelligence of the network.

SDN controller at the control plane collects knowledge, details, and particulars

concerning devices in the network and how they are interconnected. In accordance

with that, it constructs flow tables as an output, of a decision derived from bird’s eye

view of the SDN controller over the whole network [37].

2.1.3.1. Data plane

Data plane located at the bottom of the SDN architecture illustration. It consists of

network components and what is called SDN Datapaths [38] which are logical entities

that interact with the control plane using Control-Data-Plane Interface (CDPI). The

management and admin plane have access to all planes of the SDN architecture

(application, control, and data planes) is in charge of installing network components

and mapping SDN Datapaths.

In sensor networks world, the basic entities of the forwarding plane’s infrastructure

are sensor devices. A sensor device is a combination of physical parts and programs.

Fundamentally, it includes a power source, a sensing module, and wireless module.

Programs are mainly codes reading sensing values, network processing, and in SDN,

SDN layer, which consists of instructions from SDN controller and codes for

interacting with SDN controller [35].

14

The principal task of the data plane is forwarding incoming packets. The modifiability

of data plane adds a plenty of potentials to the platform like deep packet inspection,

transcoding, detecting abnormalities, and traffic-oriented decision support algorithms

[29].

2.1.3.2. Control plane

The control plane is logically not necessarily physically centralized, and it’s detached

from the forwarding plane. it outlines an overall system status for administration and

converts application requests to data-level instructions. control plane could be

dispersed over several actual controllers in a way that they collaborate to accomplish

applications’ tasks. Control plane makes decisions based on an updated

comprehensive state of the network instead of a confined response of individual node

[38]. 

SDN controller communication through NorthBound Interface with the application

layer, and through SouthBound interface with the data plane layer. Hence, it

transforms application requests to lower-level instruction, and inversely, provide

upper layers with pertinent information to keep application plane updated about the

network [38].

From sensor networks point of view, the control plane contains a network intelligence

module, network topology mapper module, flow table module, and interfaces. The

basic tasks are: keeping an updated topology map, flow table creation, and managing

interfaces. For obtaining network state, it uses reporting messages to get sensor device

battery state, distances, neighbor list, link status, and other values. Mapper module

uses this information to produce a network topology map (bird’s eye view). Therefore,

the decision that is made based on such information would be as accurate as it can be

[35].

15

2.1.3.3. Application plane

SDN application layer is a collection of programs that require some network tasks

from the framework in a programmatic way to get the demanded network response.

For that purposes, it uses NorthBound Interfaces NBIs to send its demands to control

plane which in return will translate application layer requirements into lower-level

instructions to shape forwarding plane entities in the interest of achieving applications

plane demands. So, SDN application includes SDN application logic and a number of

NorthBound Interface drivers [38].

2.2. SDN versus classical network (SDN-less network)

The above-explained SDN based network paradigm is compared to some traditional

network paradigms in terms of working specifications, realization, administration,

control, originality, fault tolerance, maintenance, and setup.

SDN separation of control and forwarding planes made it effortlessly managed and

employed, while classical one’s coupling of data and control functions made them

rigid and complexly managed.

The easy and quick deployment of SDN network devices is recognized over the

classical networks which needed a lot of effort for deployment. Also, easily managed

and modified via APIs whereas traditional networks need to be managed individually.

New applications can be simply installed in case of new network demands in SDN

based platform, whilst a simple change in non-SDN networks may require a new

structural design.

As the control plane keeps an updated overall map of the network, network faults can

be detected quickly and be avoided or overcome efficiently. Faults need to be

addressed manually in SDN-less networks [39].

16

In spite of that, the decision of SDN deployment in the existing networks is hard to

take. Many issues still open for testing and research concerning interoperability of

multi-vender’s devices and security.

2.3. SDN For Wireless And Mobile Of Networks

SDN was introduced at first as a wired networks solution. The concept confirmed to

be effective in wired networks, what made researches look into applying it to other

types of networks such as but not limited to wireless, mobile, sensor networks. The

resulted outcomes from applying SDN was network coverage improvement,

connectivity, implementation cost-effective network upgrade [40].

One of the first pioneering projects to apply SDN to WLANs was OpenRoads [41]

from the University of Cambridge. SDN based solution was deployed in Cambridge

university campus network, focused on OpenFlow open source framework. For mobile

networks, CellSDN [42] claim that SDN can make cellular networks implementation

and control. At the same time, it addresses scalability challenges for SDN in cellular

networks structures.

2.4. SDN Vulnerability

SDN security is an important issue to be addressed in SDN network design. There has

not been a security risk management that specify SDN security issues and the effects

of its particular features. Salaheddine Zerkane et al [43] made vulnerability analysis in

order to address these deficiencies and estimate their influence.

A number of standardized and conditional issues that need to be dealt with in the

design of SDN based networks, such as infrastructure cost to support SDN, skills

required by network administrators, frameworks and software required and security

issues related to the network.

17

In addition to the risk transforming of the existing network structures from the previous

platform to the new SDN based one and initiating new protocols and action plans and

applications to harness the best of SDN. Thus, it is vital to comprehend every task

module involved in each part required to prepare a new technology deployment [44].

2.5. SDN Debate And Viability For WSNs

Targeting certain features that are associated with WSNs such as resource restriction,

process management, complicated patterns, distinct topologies, application-oriented

platforms, and routing priorities, SDN works toward getting appropriate control

algorithms to sensor networks. The SDN solution suggests simplified programmable

network management without the need for reconfiguring sensor devices. The most

important strategy to apply SDN solution is keeping an overall network structure

image at an intelligent centralized unit (e.g. SDN controller). That would add

important potentials to the network like easy network understanding, easy specific

network problem solving, easy providing future demands, easy resources access, and

improved computing procedures [31].

CHAPTER 3. VIDEO OVER WIRELESS SENSOR NETWORKS

This chapter presents a case study of a well-known protocol (ZigBee) based WSN

network with an application of multimedia stream type. Therefore, it starts with some

basics about multimedia streams and video, how to represent video data for network

evaluation. Then illustrates the case study with the topology and a sequence diagram

of the workflow. Results and discussion are presented and the conclusion is drawn at

the end of the chapter.

3.1. Video Traffic Representation For Network Evaluation

A video is a type of a widely used piece of information, it has some certain features

that made it hard to deal with when transmitted through networks. Its core contents are

a sequence of images like at least 25 images sequence in one second. Images are

converted to transmittable form by getting a number (or set of numbers) for each dot

in the image. The more dots we define in an image, the clearer the image would be.

So, a certain bandwidth is needed to transmit these numbers to get an image transferred

through a specific medium during a demanded time. For video, multiply that

bandwidth by a number of frames per second to get a video of the same image

properties during the same demanded time. The outcome is a huge amount of required

bandwidth which is most of the time expensive. Video compression techniques

mitigated/attenuated the situation by making the same video to be carried using much

less bandwidth without quality loss or with a reasonable quality loss [45].

There has been a lot of video compression concepts, the most known one is creating

three types of video frames from the original frames denoted as: I, P and B. I frame is

created by intra encoding the original frame without any reliance on other frames. P is

constructed by encoding the differences of the original corresponding frame and the

19

previous one, in addition to the intra encoding stage. The B frame is constructed the

same as P frame but the differences are encoded for the preceding and following

frames. The encoding is done in a way so that it can be decoded again on the other side

of the transmission. Therefore, there has to be at least one I frame to construct P frames

and one I or P frame to construct B frame [46]. Figure 3.1. illustrate how a video frame

sequence may be arranged in what is called Group of Pictures GoP, which is a pattern

of how frame types: I, P and B are arranged and how often it is repeated. The GoP

number is not related to the number of frames per second attribute of the video. Some

of the Famous video encoding standards are H.264/ MPEG-4 Part 10, H.262/MPEG-

2, MPEG-1 and H.261 [47].

Figure 3.1. Video frame sequence and frame types

For network evaluation purposes, there has been a number of approaches to prepare

data forms to be transmitted through the network to examine network behavior in the

state of transmitting video data. Thus, in order to do that, we explored three methods

to formulate a video data: using FFMPEG platform, video trace file, and video traffic

model. Some of these methods used real video streams to extract the data ready to be

transmitted, others are using video streams imitating algorithms to mimic a real video

data stream. At the end, the purpose is network performance evaluation.

I PPB BBB

20

3.1.1. FFMPEG platform

FFMPEG is a widely known tool utilized by popular platforms like Facebook, Google

Chrome, and YouTube to handle videos, HTML5 video support, and convert videos

[48]. In addition to that, it is an entirely open source, supports encoding/altering

video/audio/image formats and has an intensely detailed set of options. FFMPEG reads

contents of any number of inputs from memory then processes it according to the

entered parameters or program defaults and writes the results to any number of outputs.

Inputs and outputs can be computer files, pipes, network streams, grabbing devices,

etc. we are concerned with transcoding process in FFMPEG, demuxers from

libavformat library to read inputs and get from them packets with encoded data. Those

packets are sent through the network system to be sent then to the muxer and written

to the output stream. Figure 3.2. depicts how FFMPEG libraries are utilized for general

and specifically for network performance evaluation.

Figure 3.2. The use of FFMPEG libraries to produce a stream for evaluating the network

As it can be seen in Figure 3.2., it can be noticed that two types of statistics can be

collected from the system, we called them network statistics and video statistics.

Network statistics include end to end delay, throughput, packet/frame loss and jitter

that reflect the performance of the network itself with the existence of such a stream,

whilst video statistics include video quality measures like PSNR and SSIM that reflect

the effect of the network system on the video stream itself [49].

Input stream

Encoded data

packets

Output stream

Encoded data

packets

Demuxer

Sensor

Network

Muxer

Video

Statistic

Network

Statistics

21

From the three types of approaches for creating video traffic for network evaluation,

only the one using FFMPEG libraries can give an idea about the effects of the network

system on the video stream, i.e. its quality change.

We used FFMPEG libraries in our research work by embedding the libraries into

OPNET process module codes. Figure 3.3. shows the codes and their place in the

process module of the source node producing the stream from a real video file, and

Figure 3.4. shows the reception side of the video stream and how it’s decoded.

Figure 3.3. Source traffic process module using FFMPEG libraries

A simple source process module is used to develop a traffic source that produces

packets with payloads of video frames taken from a video stream injected into this

process. The init state would include some normal simple codes in addition to some

definitions of FFMPEG libraries and opening the video stream as a file to read, then a

recognizable video data will be searched, if found, the kernel would transit to generate

state. In the case of finding a recognizable video data, the generate state will call packet

 av_register_all();
avcodec_register_all();
pFormatCtx = NULL;
pFormatCtx = avformat_alloc_context();
const char *vfile = "rubikme.mov";
if(avformat_open_input(&pFormatCtx,
vfile, NULL, NULL) < 0)
{printf("unrecognized format\n");}
if(avformat_find_stream_info(pFormatCt
x, NULL)<0)
 {printf ("stream not found\n");}
av_dump_format(pFormatCtx, 0, vfile,
0); videoStream=-1;
for(i=0; i<pFormatCtx->nb_streams;
i++)
 if(pFormatCtx->streams[i]->codec-
>codec_type==AVMEDIA_TYPE_VIDEO) {
 videoStream=i;
 printf ("a video stream is found =%d
and number of available streams are
%d\n",i, pFormatCtx->nb_streams);
 break; }
if(videoStream==-1)
 {printf ("there is no video
stream\n");}

AVPacket * vpacket;
vpacket = (AVPacket *)
op_prg_mem_alloc (sizeof
(AVPacket));
pkptr = op_pk_create_fmt
(format_str);
if (av_read_frame(pFormatCtx,
vpacket)>=0)

if(vpacket-
>stream_index==videoStream)
{
op_pk_fd_set_ptr (pkptr,
op_pk_name_to_index
("ccAlohaData_ffmpegtest",
"vid_info"),
 vpacket, vpacket-
>size,
 op_prg_mem_copy_create
,
 op_prg_mem_free,
sizeof(vpacket));} else
{ printf("No more frames”);}
op_pk_send (pkptr,
SSC_STRM_TO_LOW);

State input procedure

Generate

packet

Function

22

generate function every inter-frame time (time between two consecutive frames)

obtained from the stream itself according to the CODECs used in the stream. The

packet generate function contains allocating memory for the video frame data to be

held in there, then a pointer to this memory is sent to the lower layers using a special

type packet to be a payload in the protocol packet to be received in the network sink

node.

Figure 3.4. Traffic sink using FFMPEG libraries

struct SwsContext *sws_ctx = NULL;

sws_ctx = sws_getContext(pCodecCtx->width,

pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width,

pCodecCtx->height, AV_PIX_FMT_RGB24, SWS_BILINEAR, NULL,

NULL, NULL);

pkpkptr = op_pk_get (op_intrpt_strm ());

AVPacket * rvpacket;

rvpacket = (AVPacket *) op_prg_mem_alloc (sizeof (AVPacket));

 op_pk_fd_get (pkpkptr, op_pk_name_to_index

("ccAlohaData_ffmpegtest", "vid_info"), &rvpacket);

 rvpacket->size, op_sim_time(),sizeof

(AVPacket),rvpacket->pos);

if(rvpacket->stream_index==videoStream) {

avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished,

rvpacket);

if(frameFinished) {

sws_scale(sws_ctx,(uint8_t const * const *)pFrame->data,

pFrame->linesize, 0, pCodecCtx->height, pFrameRGB->data,

pFrameRGB->linesize);

if(++u<=pFormatCtx->streams[videoStream]->nb_frames){

 SaveDestFrame(pFrameRGB, pCodecCtx->width,

pCodecCtx->height, u);}}}

void SaveDestFrame(AVFrame *pFramet, int width, int height,

int iFrame) {

 FILE *pFile;

 char szFilename[32];

 int y;

FIN (void SaveDestFrame(AVFrame *pFramet, int width, int

height, int iFrame));

 sprintf(szFilename, "AtDestFrame%d.ppm", iFrame);

 pFile=fopen(szFilename, "wb");

 if(pFile==NULL)

 {}

fprintf(pFile, "P6\n%d %d\n255\n", width, height);

 for(y=0; y<height; y++)

fwrite(pFramet->data[0]+y*pFramet->linesize[0], 1, width*3,

pFile);

 fclose(pFile);

FOUT;}

SaveDestFrame

function

23

The sink on the other hand in the sink node will receive this packet, do some scaling

then reconstruct the video frame contained in the packet using SaveDestFrame

function to save video frame as an image to be viewed later for comparison with the

original video stream and later for collecting some video quality measures like PSNR

and SSIM.

3.1.2. Video frame size trace file

The basic concept of video frame size traces is that without the use of real video data,

the system can use an array of video frame sizes with their time to create chunks of

random data with sizes obtained from the array which is provided by another platform.

The purpose is to test the network system with such sizes during a certain time.

In [50], Fitzek and Reisslein referred to a publicly accessible library of

frame size traces of various encoded video files, which have been generated

in Telecommunication Networks (TKN) group at technical university Berlin,

(the trace library was accessed in 2018 at http://www2.tkn.tu-

berlin.de/research/trace/trace.html).

The video frame size trace file can be produced for the same video stream file at

different quality level with different resolutions and frame rate that may lead to a

variety of video streams that are different in frame sizes and their associated times and

those can be used to evaluate network systems with a realistic type of data as an input

to the network. Figure 3.5. shows a simple idea on how these files are produced.

24

Figure 3.5. Video frame size generation and usage for network evaluation

Consequently, network system effect on video quality cannot be measured using the

approach, because no real video data is used, but it can efficiently test the network

framework performance and see its behavior when such stream with variable attributes

transferred through it.

Figure 3.6. shows an Riverbed traffic source process module using video frame size

trace file described earlier. The trace file contains frame sizes as integer numbers so

the process is simple as reading from text file number by number with intervals of

1/(frames per second) parameter (which is determined by the imported trace file

properties). With each time a number is read, a packet is created with its size set to the

number obtained from the trace file then sent to the lower layers. When the file is

finished the process simply will go to stop status probably would end the simulation.

25

Figure 3.6. OPNET traffic source process module using video frame size trace file

3.1.3. Video traffic imitation model

Based on the basics of video stream structures explained earlier in video traffic

representation, some researcher tried to model video stream by calculating number and

size of the three types of composed frames (I, P and B frames), measure their sizes and

the correlation among them. an estimation of the main video stream could be imitated

by decomposing the mainstream into three separated interfered steams [51].

Based on these researches, there are some attributes that define the shape of the

imitated video stream such as GoP, frame rate and frames pattern. For certain values

packet generate

fl = fopen
("Terse_Jurassic_h263
_vbr.dat","r");
 if(fl == NULL)
 { printf("Error:
can't open file to
read\n");
 } else {
 printf("File
opened successfully
to read.\n”);
 }
interFrameTime =
(1.0/25.0);

next_pk_evh =

op_intrpt_schedule_self

(op_sim_time () +

interFrameTime,

SSC_GENERATE);

if (fl) {if (fscanf(fl,

"%d",

&frSz)!=1){printf("ERROR::

No value could be obtained

from file

\n");

 op_intrpt_schedule_se

lf (op_sim_time (),

SSC_STOP);

}}

else { printf("ERROR:: no

file \n");

op_intrpt_schedule_self

The frSz in this link is

obtained from trace file

used in creating the packet

as its size.

26

for these attributes, high bandwidth demanding video streams can be produced, and

for various set of values, different video streams can be presented.

We vary those parameters values in different scenarios and examine their effects on

system performance. Different stream structures are introduced for various types of

frames with extremist specifications that will cause better video quality but may bring

network system to fail and vice versa.

Figure 3.7. shows Riverbed process module of the video traffic model as a traffic

source for the video source node module. We can see when start trigger is fired from

lower layer according to the time determined by the node attributes, the traffic source

process will go to mpeg_gen state that will control how I, P, and B video frames are

produced in accordance with video parameters set in the nodes attributes. For each

special interrupt, a different state transition is activated to produce a certain type of

video frame to be sent to the lower layers.

We executed the three approaches using Riverbed simulation tool as explained earlier,

and we conducted some results for comparing video streams produced by each

approach. The measured parameter illustrates the required specification of the network

to efficiently transmit such a stream.

27

Figure 3.7. Video traffic model OPNET source process module

Figure 3.8. shows the arrival rate of the three approaches with close video attributes to

show the difference among them. By observing these graphs, it can be noticed that

variability in video frame size is more apparent in the video streams produced using

trace file and ffmpeg libraries, whilst the video traffic model is not obvious.

Figure 3.8. Arrival rate of three approaches of video traffic production

packet

generate

B Packet

generate

Stop

Stop

Start

Disabled

Start MPEG

I Packet

generate

P Packet

generate

frame size trace file

Terse_Jurassic_HQ.dat

25 fps.

file length 60 min.

FFMPEG libraries

rubikme.mov

properties according to

file CODEC

file length 71 sec.

Video traffic model

20 fps, M=3, N=15

file length infinite.

Traffic sink. Traffic received (bits/sec)

Traffic sink. Traffic received (bits/sec)

Traffic sink. Traffic received (bits/sec)

28

As a summary, FFMPEG and video file trace approaches tends to be more realistic

than the video traffic model approach yet restricted to the parameters given or the

traces give, while the video traffic model is more controlled by the attributes that can

be set by the model given and construct different video streams to test the network

system. For that reason, we used video traffic model approach for testing the traditional

WSN framework in this chapter and the proposed network framework in the next

chapter.

3.2. Video Streaming Over Zigbee Based Network

In the interest of putting WSN to test, we used an Riverbed model of ZigBee based

WSN platform of ART-WiSe research group in Polytechnic Institute of Porto Portugal

[52] The original OPNET model was modified to work with video streams, thus an

MPEG2 data packets producing module was added [51]. Then the lower modules were

edited to receive such packets. The video data packets are produced with a video traffic

model that imitates a real video stream with the possibility of changing video

parameters [53]. The video stream producer module creates frame types explained

earlier with varying sizes. The lower modules segment these frames to WSN packet

sizes then forwarded to lower layers for transmission[45].

3.2.1. Network topology and sequence diagram

We introduce a network structure that is depicted in Figure 3.9, which shows a

coordinator and end devices as classified by the IEEE 802.15.4 standard [54]. We

added different types of data production modules to end devices such as EDs that

produce video streams, other EDs produce scaler data and other end devices that act

only as network sink.

29

Figure 3.9. The etwork topology of the tested network

One of the functions of the coordinator is transmission synchronization using beacons

and manage the network to be in a 96.8% sleep time to reserve energy. Besides that,

accept transmit requests from other nodes during wake time then respond with a grant

using beacons. Moreover, coordinator changes transmission timings according to the

data type of the transmission requests, i.e. if video source end device requested a

transmission grant the network goes to all wake up to deliver the requested

transmission, whilst in case of scaler source end device transmission request, the

network will keep on 96.8% sleep time.

At network establishment, the coordinator initiates the network by broadcasting a

beacon regularly specified by coordinator attributes which determine the inter interval

times of beacons and with parameters set by the beacon itself each end device will

learn when it can compete for transmitting scaler and request transmissions.

At this state of the network, the beginning of establishment with any transmission

requests, the network is considered in a sleep mode where 96.8% of the time the end

devices are not transmitting/receiving any type of packets. Any changes in these

parameters that would be stated by the coordinator will be conveyed to the end devices

by the beacons.

30

The network sink at the meantime informs the coordinator about being the network

sink during the 3.2% of the time that the network is awake in it. The coordinator, in

turn, encapsulate this piece of information in the beacon, and accordingly, all end

devices are aware of the network sink address.

As a typical scenario, one of the end devices sends a transmission request during the

time where end devices can send requests. The coordinator looks into the available

resources in terms of time slots, see if it’s not occupied by other transmitting end

devices and grant the request accordingly by means of the beacon. Thus, the next

beacon will contain the grant to the specific end device and at the same time the new

network parameters that will cause the network to change transmission timings. In the

case of not enough resources (time slots), the grant will be denied and the transmission

will not occur [45].

At all times scaler type of data can be transmitted using the devices and the

transmission requests are for video source end devices to allocate needed time slots

for the requested transmission. At the end of transmission, the end device informs

coordinator about transmission termination, and in turn, the coordinator sends a beacon

with default network parameters and restore the network to its previous state. Figure

3.10. shows a sequence diagram of network establishment and typical scenario of the

given framework.

31

Figure 3.10. Sequence diagram of network establishment and typical scenario

32

3.2.2. Simulation and results

We used Riverbed to test the given framework with the parameters specified by the

model. Riverbed is deemed to be a realistic tool for optimizing network frameworks.

The scenarios applied in the simulation were created by setting different parameters in

different situations. Network management parameters were set to defaults for ZigBee

based WSN such as BO and SO to 6 and 1 in no transmission state and 3 for both of

them in case of video transmission request, and a queue size of 1Mb.

The parameters that were varied for testing are video stream parameters. The frame

rate was set to 15, 21 and 22 frames per second. GoP where set to 3, 4 and 15. The

number of M which changes frame pattern is set to 0 or 3. The combination of M value

and GoP value will decide the resultant pattern of frames like for example for GoP=3

and M=0, the resultant pattern is IPPIPPIPP.. and for GoP=15 and M=3 the resultant

pattern is IBBPBBPBBPBBPBBIBBP.. and so on. Also, the sizes of I, P and B are

variable also with a distribution of Log-Normal function of different arguments for

each type of frame [45]. The given variety in video parameters results in extreme

different video streams to be produced.

To conduct numerical result to evaluate the system, performance metrics of end to end

delay and arrival rate, are used to measure how the system is reacting in such

conditions. Packet loss metric is not used as buffers have enough size and the

transmission medium is free space so there is no benefit from measuring this metric,

yet in case of extreme video parameters, acute degradation in data delivery is perceived

that yield to queue overflow and mass packet loss that can be spotted from arrival rate

and end to end delay results as shown in Figure 3.11.

33

Figure 3.11. Numerical results for end to end delay and arrival rate for a different combination of video

parameters as denoted with each graph

Other observations can be noticed from the graphs, the extreme value of frame types

patterns causes faster degradation in performance than the extreme value of frame rate.

The cause for this difference is that the change in frame rate results in more frames of

small size types of frames (i.e. P and B) to be inserted to stream, while the change in

frame type pattern leads to increase of big size frame types (i.e. I) to be inserted to

stream and consequently, with certain amount of these frames the buffer starts to

overflow and lose control of balancing between input and output streams.

Frame rate change effect on end to

end delay
Frame rate change effect on data arrival

rate at the destination

GoP and M parameters change effect on

end to end delay
GoP and M parameters change effect on

arrival rate at destination

34

3.3. Conclusion And What SDN Concept Can Offer

Video delivering network system was established using Zigbee based WSN. Video

stream shaping parameters were varied accordingly to test the system performance

under normal parameters and then under severe parameters. an overflow was observed

for a certain set of parameters.

Although some functionalities were used for the sake of lower energy consumption

like sleep periods management during no transmissions state of the network, there is

still a need for algorithms to lower down power consumption and simplify network

management, and here comes the role of SDN as a trending paradigm aiming at these

issues in WSN. The next two chapters introduce the SDN solution for WSN and

discuss its testbeds in both simulation platform and real practical platform.

CHAPTER 4. INTEGRATING SDN INTO WSAN

This chapter is about our main proposal for sensor networks which is an SDN-enabled

wireless sensor and actuator network framework with a proposed routing discovery

mechanism. In this chapter, a simulated version of the proposed platform is presented

with simulation environment details and results, as a real implementation of the

proposed system is introduced in the next chapter.

The sections of this chapter start with a brief introduction about how all components

are combined together to form the whole system, then, an algorithm for topology

discovery and clustering is described as an essential part of the system. The third

section explains the key interface protocol WSANFlow and its components. How

fuzzy and Dijkstra algorithms are used in the proposed routing mechanism is presented

in the fourth section. Other sections are about the simulation environment parameters,

scenario, results, discussion and lastly a conclusion regarding the results in this

chapter.

4.1. Introduction

Transferring data using devices that utilize shared medium like wireless with

topologies of cluster tree or mesh is an essential issue to consider in WSAN platforms.

Aspects of considerations include power drawing rate, QoS and application-specific

demands. Energy-aware algorithms for finding an optimal route from source to sink is

a key challenge designing protocols for WSAN systems [3][26][24].

A trending SDN paradigm is taken as a resolution for WSAN to tackle these issues

and put forward a new WSAN protocol for the new applications arose recently [1][55].

36

Thus, we present in this chapter a new protocol including a routing decision module

that is based on the SDN paradigm with the usage of fuzzy Dijkstra’s algorithm.

Development of the protocol model is done using Riverbed Modeler network

optimization tool along with performance evaluation in terms of specific aspects. The

key parts of the proposed protocol are SDNC, SDN-enabled ED, and WSANFlow.

SDNC is the controller node that holds the knowledge needed to manage the network

and algorithms that use this knowledge to make requested/required decisions. SDN-

enabled EDs are the data-plane devices that are instructed by SDNC to carry out their

specified tasks accordingly. The last one is the interface protocol (WSANFlow) that

maintain a reliable mutual understanding between SDNC and SDN-enabled EDs by

defining certain rules, packets formats and fields, control messages and managing flags

that can be comprehended by both SDNC and SDN-enabled EDs [31].

4.2. Topology Discovery And Clustering

In order to get neighbors list that is an important piece of information in the knowledge

base of the SDNC, which is used for grasping the big picture of the whole network.

The neighbor list consists of list neighboring devices of each device and their

associated link quality in terms of SNR values. TDM is the mechanism that facilitates

the creation of neighboring lists in EDs by designating clusters in the network in a

specific manner and initiating certain procedures that result in each ED to be aware of

its neighboring devices. Consequently, these lists are transmitted to SDNC in

procedural steps determined by SDNC in accordance with the WSANFlow protocol

for managing such transmissions.

TDM is initiated by SDNC by setting a flag in the beacon so that all EDs broadcasts

their own TDM beacon to be seen by other EDs and store address and SNR value

associated with the incoming TDM beacon. Figure 4.1. shows a flowchart of TDM.

37

Figure 4.1. TDM flow chart

TDM includes clustering of EDs which leads to idle periods for a number of devices

regularly for energy consumption purposes and for allowing other interfering clusters’

EDs to communicate and gather status information such as neighbors lists within the

scope of TDM. Idle periods and cluster heads are set and randomly chosen by SDNC

START

TDM initiation by

SDNC

1st tier EDs receives SDNC

beacon broadcast TDM beacon

EDs receives TDM beacon

TDM beacon

received before?

END

Src address exist in

neighbors list?

Add src address to

neighbors list

Add src address to

neighbors list
Applied

for

each

ED

38

using neighbors list information received according to a number of child devices a

certain ED has. The child device is an ED that reaches the SDNC only through another

ED that is considered its parent, which is chosen as a cluster head for another child

device/s. Figure 4.2. depicts a sequence diagram of establishing the network in our

proposed framework and it includes mostly the TDM procedures.

Figure 4.2. Network establishment sequence diagram

According to status transmission timers of each node, SDNC will be aware of topology

structure in a while. In a certain time, SDNC will be aware of that there are nodes with

no children node so no need for them to have their own beacon so they are being

assigned to not defined except for parent address stay as it is.

After completing the previous steps, the network would be as shown in Figure 4.3. that

shows a typical topology with parameters of SO, BO, Timer, and parent address that

are all set by default to not defined and then during simulation time were set to their

shown values by SDNC according to the network need. If the network suffers from

some types of changes, SDNC can easily adapt to the changes and modify those

parameters to work energy and time efficiently.

39

Figure 4.3. Topology with clusters and parameters assignments

4.3. SDN-oriented WSAN And WSANFlow Interface Protocol

This section put forward the proposed framework with a description of its parts and

how they interact to produce the demanded performance of the whole network system.

The platform consists of two kinds of network devices: SDNC and ED, and a

communication protocol that governs their interaction, referred to as WSANFlow. The

following sub-sections explain those parts individually with figures and tables. Also,

some specific tasks included in the WSANFlow protocol will be explained such as the

Network Intelligence role and Flow tables layout and formats.

4.3.1. SDN controller

The architecture of WSANFlow protocol is placed above a lower layer of IEEE

802.15.4 MAC layer, which is known standardized datalink and physical layer

designed for sensor networks [54]. The main modules of SDNC are Topology

discovery, Network Intel and knowledge base. The topology discovery includes codes

for initiating and managing TDM procedures stated in earlier sections. This unit uses

information stored in the knowledge base of statuses like neighbors lists and so to

make decisions regarding the topology of the network such as setting cluster heads and

setting their timings. Figure 4.4. illustrates the protocol stack of WSANFlow in SDNC.

40

Figure 4.4. The protocol stack of WSANFlow in SDNC

The Network Intel consists of algorithms and procedures for making route requests

decisions using updated knowledge base information. It finds the best route for the

incoming request according to EDs status information stored in knowledge base then

based on the resultant route, it creates appropriate flow tables for the related EDs to be

sent to them accordingly. Network Intel role in the protocol and flow table creation

and formats will be explained separately later in different sections.

4.3.2. SDN-oriented end devices EDs

The EDs layers protocols were designed and adjusted so that it would comply with the

rules of the WSANFlow protocol for communicating with SDNC and among each

others. The key modules of the SDN enabled ED is shown in Figure 4.5. The most

important parts are the status collector, flow tables and the packet switch. The status

collector keeps the updated values of the ED attributes such as battery level and

neighbor list so that it would be sent to SDNC regularly.

Network Intel.

SNs

statuses
Route

Discovery
Flow

tables

Data link layer

IEEE 802.15.4

Physical layer

IEEE 802.15.4

Management configurations

Topology Discovery Mechanism

41

Figure 4.5. SDN-enabled ED protocol stack

Upon requesting a transmission grant from SDNC from one of the EDs, flow tables

are distributed to certain individual EDs that are kept in the flow tables module in the

ED. Packet switching module is consulted for every incoming data packet, which in

turn looks for instructions in the flow table module regarding the incoming packet. It

modifies the packet’s header according to the related flow entry, then sends it to the

lower/upper layer accordingly.

4.3.3. Network intelligence role

When an ED intends to transmit data packets, it sends a transmission request to SDNC.

In SDNC, the Network Intel module receives this request then checks its available

network resources. At this time, the SDNC is supposed to be fully knowledgeable

about the network and its EDs statuses in a way it would make it uses some certain

algorithms to come up with the most proper decision for a route designated for the

current transmission request. Network Intel uses Dijkstra’s algorithm to find the

SDN layer

Status

collector
Packet

decision

Flow

tables

Data link layer

IEEE 802.15.4

Physical layer

IEEE 802.15.4

Applications

Statuses

42

optimal route, uses link’s quality as the cost to execute the algorithm. This information

is updated periodically by TDM and status transmission procedures carried out by the

collaboration between SDNC and EDs.

For a more efficient performance of the network, another attribute is added to Network

Intel module for more appropriate calculation of the cost value that enters the

Dijkstra’s algorithm which is the ED’s battery level. A popular decision-making

method is utilized to extract an accurate value for the cost for each link from the link

quality and ED’s battery level, this method is fuzzy logic. The output of the Dijkstra’s

algorithm will be a network state aware and power efficient decision of a route for the

requested transmission. Flow tables creation comes after this step. These flow tables

are then disseminated to route-involved EDs to start to transmit, receive or forward

packets related to the requested transmission. Figure 4.6. illustrates the Network Intel

role in the system with a flow chart.

4.3.4. Flow tables layout and dissemination

SDNC sends individual flow entries to their individual EDs via beacon to be stored in

flow tables module in ED. The ED that sent the transmission request at the first place

will trigger the application layer to start the data packets transmission.

The packet switch module in ED whether it’s the source ED in the route or an

intermediate ED or the sink one will be called upon every incoming packet from

upper/application or lower/MAC layers. The packet switch will extract the source

address from the packet header to look for its associated flow entry. Once it’s found,

it will go ahead in the flow entry to read the Action field of the flow entry to apply the

instruction there. When the Action field is forward, the packet switch module will

modify the packet’s header and change the destination address to the value taken from

the Next hop field of the flow entry. For EDs that are chosen to be cluster heads, the

packet switch should read the field of Cluster dir, which will decide the direction of

the current packet, 0 is child cluster direction, 1 is parent cluster direction.

43

Figure 4.6. Network Intel role flow chart

START

Transmission

request received

ED statuses knowledge base

Configuration &

specific rules

Setting admin-

configurations

and rules

Prepare needed

information from status

knowledge base

Initiate regular

Dijkstra’s algorithm

Is fuzzy

activated?

Initiate fuzzy-based

Dijkstra’s algorithm

A route is provided

Flow tables are created

according to the route

provided

Flow tables are

distributed to the

involved EDs via

beacons

END

44

4.4. Fuzzy Model And The Dijkstra Algorithm

The task assigned for the fuzzy-logic unit in the Network Intel module in SDNC is to

produce a value for each link cost in the network. To achieve that, we use fuzzy-based

model, put link quality and ED’s battery level as an input, the fuzzy model gives the

cost as an output after a number of procedures in the fuzzy logic model. Briefly, the

proposed fuzzy model does fuzzification for the input value then inference then

defuzzification. During that, it converts the given crisp values for the input to fuzzy

values using membership functions such as trapezoid and triangular. Then utilizes

some predefined IF-THEN rule base to produce a linguistic set of the fuzzy values.

Lastly, it uses the Mamdani model for defuzzification and the Center of Gravity CoG

method to extract the final result of the fuzzy model which is the crisp value of the

output cost [56]. Figure 4.7. depicts the fuzzy-logic model and its main parts.

Figure 4.7. Block diagram of the given fuzzy-logic model

Dijkstra’s algorithm is a recognized method for getting the shortest route in a number

of distributed nodes, so it uses the distances as the input. In our proposed platform, the

neighbor list in the knowledge base is used, and the distance between each two ED’s

is replaced with the cost which is calculated via the fuzzy model mentioned earlier.

45

The Dijkstra’s algorithm and relatively the fuzzy model are triggered each time a

transmission request is received by the SDNC, besides that, when an updated ED

battery level of a below threshold value would trigger a new route discovery

procedure, it consequently triggers Dijkstra’s and fuzzy models.

4.5. Simulation: Parameters And System Models

We had two articles published in prestigious journals [31][56]. In this section, we

would like to recall the two simulation demos we worked on, in the two articles.

The two simulation demos were carried out in the scope of this research. One of them

includes a topology of five devices including the SDNC, while the later one achieved

with near to 50 devices. Both of them executed in Riverbed modeler. The second one

is an upgraded version of the first one with the following key:

1. The utilization of multi-input data processing algorithms like fuzzy logic coupled

with Dijkstra’s approach to make a network management decision.

2. A sophisticated topology discovery mechanism was used for precise ED’s neighbor

list and link qualities.

3. Clustering was achieved using a dynamic parameters assignment using the neighbor

lists information stored in the SDNC. i.e. different clustering patterns would be

executed for different neighbors lists of the network.

4.5.1. Demo number one

The parameters of the first simulation demo are shown in Table 4.2. It is categorized

as general network settings, IEEE 802.15.4 settings, and data traffic parameters.

46

Table 4.1. Simulation parameters for demo number one

The topology of this demo is depicted in Figure 4.8, which shows 4 devices excluding

SDNC. As a preliminary model, the control plain links are considered single hop, i.e.

SDNC communicates with EDs in a star topology. while the data plain links are a multi

hop, which means, there can be a multi-hop route from source to destination.

Figure 4.8. Network topology for demo number one

47

Our proposed platform is achieved in Riverbed modeler. Thus, some of the important

node models and process models are shown below in Figure 4.9.

Figure 4.9. Riverbed node models and process models

The flow tables sample of a typical transmission request of the system in demo number

one are shown in Table 4.2. These flow tables are created in SDNC in Network Intel

module in accordance with the route created as a response to the current transmission

request, then sent to the involved EDs, where it will be stored in the packet switch

module inside the ED. It can be referred to the topology of demo number one

mentioned above.

SDNC ED

Packet switch

module

Status Collector Module

Network Intel

Module

48

Table 4.2. Entries for the flow tables used packet switch module in demo one

4.5.2. Demo number two

In the second demonstration, three scenarios were executed. The first two scenarios

are the proposed platform with the use of fuzzy based route discovery and regular

Dijkstra’s (without fuzzy). The third one is a traditional similar platform which is a

ZigBee based platform. The aim of that is to emphasize the effect of a fuzzy algorithm

usage and further show the general proposed system performance compared to a

traditional one.

We developed our system to be multi-hop layout in the control plane, i.e. how the

SDNC and ED’s are communicated. The topology of the second demo is shown in

Figure 4.10.

Figure 4.10. The network topology of the proposed system in demo 2

49

The simulation parameters for this demo is shown in Table 4.3. We used up to 50

nodes for different scenarios. The initial energy of the EDs is 5 joules, which is low

level to demonstrate the network in a low level of power to get the number of nodes

dying and compare them in different scenarios. Also, different scenarios for a different

number of simultaneous transmission requests denoted as applications in the table.

Table 4.3. Simulation parameters for demo number two

SDNC and ED node models that were developed in Riverbed modeler are shown in

Figure 4.11., beside some process models which play some important roles in the

system like topology discovery module, the packet switch and Network Intel modules.

50

Figure 4.11. Riverbed node models and process models for demo number two

For the flow tables in demo two, application id field is added to the flow entries, in

addition to cluster dir field which is needed a field for EDs that belongs to two

interfered clusters to forward the packet to the correct cluster. Flow tables of different

applications with the demonstrated transmission requests are shown in Table 4.4.

These flow entries are created upon requests from EDs as shown in the network

topology of demo 2 shown earlier in Figure 4.10.

SDNC

Topology Discovery

module

Routing decision and flow table

51

Table 4.4. Flow tables of a demonstrated requests in demo two

4.6. Network Performance Evaluation: Results And Discussion

4.6.1. Demo number one

The numerical results shown in this subsection are for the proposed system in its

preliminary state. They are compared with the results of a traditional ZigBee-based

WSAN system that uses a tree routing algorithm with similar simulation parameters

[31].

We tested the proposed platform under different network and load settings. Figure

4.12. show numerical results of three different metrics: throughput, energy

consumption and end to end delay. As shown in the graph, those results were fetched

during simulation time by re-running the simulation several times by changing

parameters of SO=BO, as shown in simulation parameters table of demo 1, for

different transmission and sleeping timings. Moreover, different load parameters are

changed during simulations, categorized as light load and heavy loads as shown in the

simulation parameters table of demo 1 in Table 4.1. Heavy loads imitate a multimedia

stream. Other simulation for a different system, which is ZigBee-based, was carried

out and its results were collected also several times with the change of SO=BO to

compare with our proposed one.

52

Figure 4.12. Simulation results for Demo 1 for different systems and different metrics and parameters

Looking at the throughput results of Figure 4.12., in spite the fact that these results

show a very small between the two systems in both light and heavy loads, SDN-based

system endures a little more than the ZigBee-based one in case of SO=BO=1 and 2.

If we observe end to end delay results of the same group of results, the average end to

end delay value is noticed degrading while increasing SO=BO value. The justification

for this is time slot durations getting long, which makes EDs waits longer than smaller

values of SO=BO, which may cause buffers overflows and starts dropping packets.

Yet SDN-based results are observed to be tolerating to these severe parameters better

than the ZigBee-based counterpart.

The most important metric to check out is the energy consumption rate. The average

power consumption of the routing device is shown in Figure 4.12. The routing devices

consume more power than other devices since they forward packets (receive/transmit).

It’s obvious from energy consumption results that the proposed SDN-based system

53

outperforms the ZigBee-based one in both light and heavy loads. The power

consumption of a heavy load traffic with SO=BO=7 is observed to be close to the same

in case of SDN-based and ZigBee-based. This can be justified by knowing that

sleeping periods of the proposed SDN-based system was removed for better usage of

the available resources, while the ZigBee-based system is using sleep periods and they

increase a lot by increasing SO=BO values. But, this causes a severe bad end to end

delay results as shown in end to end delay results in Figure 4.12. of demo 1.

For a better understanding of how our proposed SDN-based system perform compared

with a ZigBee-based system, Figure 4.13. is showing the average end to end delay for

different loads (as shown in Table 4.1. simulation parameters of demo 1) in the case

of SO=BO=3.

Figure 4.13. Average end to end delay for different loads when SO=BO=3 for demo 1

4.6.2. Demo number two

The results of a developed version of the proposed system from the preliminary version

of demo 1 are observed in this sub-section with comments on them. We will

concentrate on power consumption here as it is considered the main contribution of

the research. The metric used to show how our proposed system performs against

consuming power is the time when the first ED dies and the number of dead EDs. The

varying parameters to evaluate the performance are the number of simultaneous

applications and number of EDs.

54

Figure 4.14. shows the time of the death of any ED in the network versus the number

of simultaneous applications and number of EDs in two illustrating graphs with a

comparison between Fuzzy-based Dijkstra’s algorithm used in the route discovery

approach in one hand, and on the other hand is the regular Dijkstra’s algorithm usage.

The difference between these two approaches is mentioned earlier in the Fuzzy and

Dijkstra’s algorithms section.

Figure 4.14. The time when the first ED dies for demo 2

It can be observed that there is a decrease in the time when first ED dies, which means

more power is consumed that makes the EDs die fast. This is expected because the

more applications are granted by SDNC the more power resources of the EDs are

consumed. Also, the Fuzzy-based Dijkstra’s algorithm usage prolongs the EDs’ life

because it involves the battery level parameter to the calculation of the cost value that

will affect the Dijkstra’s algorithm output of the route. Looking at the graph of the

55

number of EDs, the more EDs available in the network the more route alternatives

available for the route discovery algorithm to choose. And that makes the SDNC

choose another route alternative in case of ED failure trigger. It is noticed that for

certain number of EDs, the network life is decreased unexpectedly and that is actually

justified by the fact that the simulation environment is random in nature, which makes

them produce random seed values that may cause the SDNC does not change the route

that will make the first ED dies quickly than normal.

Figure 4.15. displays a comparison of the two mentioned approaches in addition to a

ZigBee-based one in case of demonstrating a request of one application and the

topology of 50 EDs distributed as shown in Figure 4.10. of the topology of demo 2.

Figure 4.15. Number of dead EDs versus time for demo 2

It’s very obvious how our proposed system using its two approaches outperforms the

traditional ZigBee-based platform in terms of the number of EDs die over time. The

reason for it is that the ZigBee-based system uses static attributes with some predefined

and pre-calculated routes for any application without the ability to change it during

duty time as our system can do using both the fuzzy-based Dijkstra’s algorithm and

regular Dijkstra’s algorithm. In addition to the uneven distribution of loads over the

available resources of the network.

56

4.7. Conclusion Regarding Simulation Results

A software development of the proposed model was presented in this chapter, preceded

by some descriptions of the proposed platform units and modules. The key parts of the

proposed platform are topology discovery mechanism; including a dynamic clustering

of the network, WSANFlow interface protocol; which is how the SDNC and EDs,

communicate, and a route discovery approach; that utilize a Fuzzy-based Dijkstra’s

algorithm.

Two demonstration simulations were introduced; a preliminary one (demo 1) and an

advanced one (demo 2). Demo 1 demonstrated a total of 5 devices, a basic version of

interface protocol (WSANFlow) and single application at a time. Demo 2

demonstrated up to 50 devices, a sophisticated version of WSANFlow protocol and

multi-application served simultaneously.

The system tested with a variety of traffics categorized as light, and heavier to imply

a multimedia stream (details in earlier sections and simulation parameters tables). The

results in both demos showed an obvious improvement over the traditional counterpart

in terms of power consumption, and an acceptable enhancement in terms of delay and

throughput.

CHAPTER 5. PHYSICAL IMPLEMENTATION OF THE

PROPOSED ARCHITECTURE

5.1. Introduction

This chapter presents an implementation testbed that was designed and built based on

SDN paradigm using equipment and software modules originally created for sensor

networks based on classical standardized protocols. We used Texas Instruments

devices of system-on-chip CC2538 wireless MCU placed on CC2538EM evaluation

module with a development kit of smartrft06 evaluation board that is used for hardware

prototyping. an XDS100v3 debug probe is used for software debugging. Code

Composer Studio and IAR Embedded Workbench were used as the development

environment to develop and debug protocol codes running on the mentioned devices.

Texas Instruments TI provide some protocol suites compatible with low power MCUs

like CC2538. Z-stack and TIMAC are one of the protocol suites that are provided by

Texas Instruments TI, which can be uploaded to the device to working accordingly.

Both of the protocol suites are supported by IEEE 802.15.4 as data link/physical layer

standard protocol.

5.2. TI ZigBee Protocol Stack

Z-stack protocol is a protocol compliant suite provided by Texas Instruments for

wireless MCUs specialized for low power network devices to develop various sensor

networks applications for devices like CC2538. It is based on the popular traditional

ZigBee protocol which was designed for low data rate low energy consumption

networks. The stack includes ZigBee base device behavior for certain procedures like

serving applications, network searching, and network establishment.

58

The protocol stack can be depicted in Figure 5.1. ZigBee protocol is designed to

execute network layer tasks and functions that are placed on top of IEEE 802.15.4

MAC layer standard protocol. Thus Z-stack from TI is a full stack protocol from the

application layer to ZigBee based network layer to IEEE 802.15.4 based MAC/PHY

layer.

Figure 5.1. Protocol architecture for TI Z-stack

ZigBee stack protocol is developed and demonstrated using IAR Embedded

Workbench, which is an IDE with C/C++ build tools in addition to debugger

functionalities. Z-stack includes two processors ZAP (Zigbee Application Processor)

and ZNP (Zigbee Network Processor). In our case, SmartRF06EB is used as the ZAP

that contains different peripherals to be used to demonstrate applications. The ZAP

utilizes SoC-based ZNP like CC2538 (used in our research work) to communicate via

a ZigBee network [57].

Figure 5.2. depicts how ZAP interacts with SoC based ZNP to connect to a network

that is a ZigBee based. The ZAP which runs an application code that uses ZNP API

via UART/SPI interface functions to interact with, for example, CC2538-ZNP that

runs a full Z-stack and thus connect the application processor to the ZigBee and IEEE

802.15.4 radio network.

59

Figure 5.2. ZAP and ZNP interaction

5.3. TIMAC Protocol Stack

TIMAC protocol is an implementation of IEEE 802.15.4 Medium Access Control

software in TI wireless MCU devices. That’s why it is certified as an amenable

protocol to IEEE 802.15.4 standard. TIMAC is included partially in the Z-stack

protocol mentioned earlier. It only supports star topology, as it has very plain

experimental applications provided by TI.

TIMAC has no defined network functions in its stack except some simple functions

alongside some application layer functions in the given stack demo. So, an application

for SDN based network-application cross-layer platform is seen as an appropriate

choice to be developed on top of the TIMAC module.

The interface between the application layer and lower layers is achieved by OSAL that

is an Operating System Abstraction Layer. In the level of the application layer, two

main parts of the software are defining the operation of the program flow: initialization

and event handling/processing. The initialization part invokes the initiation of different

parts of the stack according to the application. The event handling/processing part is

defined by the developer/user, which its order must be identical to the task

initialization calls. Events may include MAC interrupt, network interrupt, HAL

interrupt, certain application interrupt, and special procedures interrupts like green

power or fragmentation. HAL is the Hardware abstract layer which is responsible for

interface drivers to access services like timers UART, ADC, LCD, LED, KEYS, and

I2C services. Figure 5.3. illustrates the layers of a basic TIMAC protocol stack.

60

Figure 5.3. The protocol stack of a basic TIMAC

5.4. Physical Environment

A practical testbed of our proposed framework is made by the use of a number of TI

devices. The core MCU is TI CC2538, which is ARM Cortex-M3 based powerful SoC.

A development kit of smartRF06EB is used to prepare an interface environment for

the testbed prototyping.

The TI CC2538 is mounted on an independent chip with an antenna as shown in Figure

5.4., while this chip can be attached to the smartRF06EB to use its peripherals as

shown in Figure 5.5.

Figure 5.4. TI CC2538 evaluation module

61

Figure 5.5. SmartRF06EB development kit

SmartRF06EB is equipped with a number of interfaces and features to get a proper

environment for various applications and communications abilities, in addition to

some debugging features. We may mention a number of features here:

1. TI XDS100v3 emulator for programming and debugging with a capability of adding

faster more advanced emulators like TI XDS200v3 and others.

2. High speed USP 2.0 interface that is an integrated serial port for the capability of

communicating with other devices like PC through UART channel.

3. LCD and LEDs for demonstrations and debugging as output ports, beside some

breakout pins as GPIO input/output ports

4. Accelerometer, light sensor, and buttons as input ports to use for demonstrations

and debugging.

5. Micro SD card slot for extra storage and over-the-air programming and more.

6. Various power source options like 1.5 V AAA Alkaline batteries, CR2032 coin cell

lithium batteries, USB port power and external independent pins for external power

supply.

62

In our testbed we used two types of physical nodes: one with a full smartRF06EB

board with the CC2538EM chip mounted on it as shown in Figure 5.5, and an

independent chip of CC2538EM with an independent power source. We used the

nodes equipped with smartRF06EB for debugging and providing an application for the

demo. The nodes without smartRF06EB (independent CC2538EM chips) are used as

extra nodes for forwarding traffics and extending the network.

5.5. Software Environment

To interact, program, debug and even determine the tasks and functions of the testbed

with the earlier mentioned devices as a human user, a software tool is needed. These

devices have been developed and designed using IAR Embedded Workbench IDE that

incorporates compiler, linker, text editor, librarian, assembler, project manager and

debugger, which makes it a proper tool for developing protocols and systems

There have been other options to develop such systems for sensor networks in

hardware environments such as Contiki which is an open source OS with libraries to

support a number of low-power devices for wireless networks, alongside protocols like

6loWPAN, IPv6, and RPL. It has been known for its large active community.

In our research work, we used the commercial IAR Embedded Workbench

environment for its robust set of debugging options and ready to use libraries, over the

non-commercial Contiki choice for its lack of proper debugging tools and a shortage

of need options.

5.6. SDN Layer On Top Of TIMAC

Our choice of protocol to put our developed protocol on top of it, was the TIMAC

IEEE 802.15.4 Medium Access Control (MAC) software stack. The reason for this

choice:

63

1. Its available library that supports low power sensor network devices MAC

protocols.

2. Its available simple application and network protocol testbeds that make it

appropriate for customization and development of new protocols for these layers.

3. Its online community of documentation and help desk provided by TI forums.

For these reasons and more, TIMAC was chosen to develop our proposed SDN-based

WSAN protocol set utilizing TI CC2538 ARM-based devices to create a testbed to

demonstrate and evaluate the developed protocols.

Our proposed SDN based protocol added a specialized layer to the available TIMAC

stack. Figure 5.6. shows the event handling state diagram of an SDNC specifically in

the layer between the application layer and MAC layer.

Figure 5.6. The state diagram for event handling in SDNC

64

Also, an event handling state diagram is shown in Figure 5.7. for an SDN enabled ED

to interact with the SDNC.

Figure 5.7. State diagram for event handling in ED

5.7. Experimental Layout

We consider a layout of five nodes including the SDNC. The layout looks like what is

shown in Figure 5.8., where the deployed devices are shown in a typical scenario. We

used smartRF06EB board nodes with the CC2538EM module attached to it, and the

CC2538EM board without any peripherals working just as a forwarder.

65

Figure 5.8. The experimented layout for a typical scenario

5.7.1. Environmental conditions and data traffic

For demonstration purposes, we used the built-in smartRF06EB data producing

sensors to test our proposed protocol. We used the light sensor and accelerometer

sensor, fetch their values then encapsulate them in a packet that will be transmitted

through the network with a period of 2 seconds between each consecutive fetched

value.

Also, we used the provided buttons in the smartRF06EB board in the SDNC node and

the ED nodes as shown in Figure 5.9.

66

Figure 5.9. SmartRF06EB buttons location and usage in the demonstration

The LEDs in the board were used in the main program to debug and check, for example

when the node connects to SDNC network and when there is a received packet, in

addition to other uses for debugging and demonstration purposes.

One of the uses of the USB port provided in the smartRF06EB board is the UART

communication channel with serial ports of a PC. We used this feature to send specific

values from the main program in CC2538 to the PC that the board is connected to. We

wrote a Node.js code that was executed in PC to listen to a serial port, get values when

available, and display them in a specialized view within a webpage which will be

shown in the performance evaluation section of this chapter.

5.7.2. Parameter setting

Several parameters need to be set before the main program is executed. Some of them

concern the TIMAC stack for the MAC layer and others concern the application and

network layer that have been customized extensively for our proposed protocol.

67

We set the BO and SO parameters to 1 and they were not changed in duty time. The

SDNC node where made to establish the network and start accepting EDs connections

after pressing the up button (HAL_KEY_SW_1), while the ED will start looking for

SDNCs after 3 seconds of turning on with a flag of joinWithoutButtons is true.

We set maximum devices to connect to SDNC to 20, the maximum number of devices

in the neighbor list for a single ED to 10, flow entries for a single ED to 8, and flow

entries for SDNC to 32.

Other parameters of MAC and physical layer are set to defaults of IEEE 802.15.4

standard protocol.

5.7.3. Performance assessment and evaluation metrics

In order to debug and examine different aspects of the demonstrated system, we used

different tools. Most of them are provided by the smartRF06EB board such as:

1. LEDs: four LEDs that can blink, turn on and off using specific instructions in the

program, with other LEDs for power on indication and program upload indication.

2. LCD: a 128 by 64-pixel LCD display that provides 8 lines of 8 pixels high to be

used to print integers, strings, and floats. Also, draw lines and specific pixels. The

LCD has been used extensively to monitor what is happening inside SDNC and ED.

3. UART connection that is provided in the USB port within the board: this feature has

been used to send certain values from the program executed in the devices to the serial

port of the PC that the device is connected to using the USB port.

For example, LCD has been used to print incoming status packet content in the SDNC

of neighbor list and battery level as shown in Figure 5.10.

68

Figure 5.10. LCD displays printed content of a status packet received in SDNC

Another example is the UART connection usage in the demonstration, as it has been

used to display values of sensor data of light and accelerometer sensors of a remote

source node. Then those values are transmitted through the network to be received at

the sink node that is connected to a PC via USB port to get and display the received

sensor values. An example of real-time acquirement of these values is shown in Figure

5.11. that shows a picture of the webpage that its varying values have been fetched and

injected to HTML page using Node.js codes.

Figure 5.11. A picture shows a webpage of received sensor values via UART connection

69

Two metrics were used to assess the proposed framework performance in the

implemented testbed, end to end delay EED, which gives an idea about timings in the

system from source to destination. The other metric is the current drawn by a single

node, which is an indication of how the power is consumed using the proposed

protocol. EED were collected using values sent via UART to the USB port of a PC

where it was stored for display. The drawn current is measured using an external

apparatus of multimeter attached to a specialized pin in the smartRF06EB board that

allow the measurement of the current drawn from the power source by the CC2538EM

module mounted on the board.

5.8. Results And Discussion

In this section, we show two kinds of performance measurement criteria which are the

end to end delay EED and the drawn current. The EED was measured by adding a

procedure of application-to-application acknowledgment and calculate the time of a

packet leaving the source node application layer, received at sink node application

layer, then coming back to the same source node application layer, divide that by 2 to

get the time needed for a packet to travel from source to sink. The EED values were

displayed on PC after being received from USB port that is connected to the source

device via UART connection. Figure 5.12. shows the results collected for a period of

200 seconds with 7 bytes payload + 7 bytes of packet’s header encapsulated with

headers from lower layers, and inter-arrival time of 2 seconds.

Figure 5.12. EED results

70

As a physical environment, it can be seen from the figure, that end to end delay results

are ranging from 18 to 27 milliseconds with several spikes over the tested period. The

demonstration was carried out in a way so that a multi-hop route is chosen and data

transmission is realized through it.

The drawn current results are collected using a current measurement header, J503, to

measure the current consumption of the CC2538 evaluation module EVM mounted on

smartRF06EB board. The header tips are attached by a jumper by default in the normal

case. If we put a multimeter probes’ heads, we get a current measurement. This

measurement should be considered as the current consumed by the EVM on the board.

Figure 5.13. shows our tested topology in the situation where we are measuring the

drawn current during the tested typical scenario.

Figure 5.13. Measuring drawn current

Values of the current shown in multimeter are captured and recorded second by

second. A 100 second period of time was recorded in terms of drawn current as it can

be observed in Figure 5.14.

71

Figure 5.14. Current consumption results

In our research project’s website:

http://www.iotlab.sakarya.edu.tr/Projects/Project1.html

accessed September 2018.

There is a video shows the scenario in which we collected the current collection results.

The multimeter probes are attached to the sink node. The results start at ~22 mA range

of consumption, then after 3 seconds, where an automatic join procedure starts in the

device to look for SDNCs in the covered area. At this time (3rd second), the

consumption jumps to ~40 mA. When connected to an SDNC the consumption

average stays stable, until a transmission request is granted from SDNC and this node

starts to receive packets, which requires extra power at nearly the 76th second of

node’s lifetime.

5.9. Conclusion

An implemented version of our proposed SDN-based WSAN framework was

presented in this chapter to observe how SDN-based network functions and modules

perform and interact in real devices platform. The proposed protocol modules were

placed above the TIMAC protocol that is provided from TI for low current

consumption devices. A topology discovery mechanism for neighbor list creation and

association was executed. Several procedures were developed and demonstrated like:

transmission permission requesting and granting, network-status based route finding,

http://www.iotlab.sakarya.edu.tr/Projects/Project1.html

72

nodes-aware flow table creating and distributing, and in-ED flow-entries based

incoming packet forwarding.

The extracted results show a reliable delivery of data packets from source to sink with

convenient delay results and considerable power consumption rates. The data

conveyed were scaler sensor values like light accelerometer in an indoor lenient

environment, but the framework is yet to be tested with more severe data patterns and

more acute indoor/outdoor environment.

CHAPTER 6. OVERALL CONCLUSION AND PROBABLE

FUTURE TRENDS

We conducted an investigation for an interdisciplinary research if we considered the

SDN paradigm existing research trends and sensor networks research trends are two

distinct disciplines that working together would unveil a new generation of networks

for the fast-paced demands of today’s applications. Multiple developments and

prototyping environments were employed to design and demonstrate the concept of

SDN applied to the core protocols of WSANs for the sake of conducting new behavior

and provoke better performances that precedent protocols at the same range of

applications. A simulation model was developed and an actual device was prototyped.

Results of both demonstrations showed a promising performance that can be

developed in wide scales, as the research in this thesis tackled some significant issues

for WSANs such as resource consumption, network complexity, and network

configurability. Also, it suggests the centralization of wide-scale, i.e. making SDNC

as dominant as it can be for a large number of EDs. Doing that provides both resource

management and the usage of as resourceful devices as it can to carry out big data

smart algorithms that cannot be put into effect using normal devices.

Probable future trends for our proposed framework might include but not confined:

1. Integration of multiple SDNCs in the same network with the ability to communicate

among each other and the usage of shareable resources and information.

2. As mentioned earlier, more advanced algorithms for a huge amount of EDs can be

considered in big data scope of processing.

74

3. Smarter topology discovery can be developed, and more status values can be

collected and be involved in routing decision, such as

REFERENCES

[1] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network

management based on software-defined networking,” 2014 27th Bienn. Symp.

Commun., pp. 71–75, 2014.

[2] Y. Wang, H. Chen, X. Wu, and L. Shu, “An energy-efficient SDN based sleep

scheduling algorithm for WSNs,” J. Netw. Comput. Appl., vol. 59, pp. 39–45,

2016.

[3] W. Xiang, S. Member, N. Wang, and Y. Zhou, “An Energy-Efficient Routing

Algorithm for Software-Defined Wireless Sensor Networks,” vol. 16, no. 20,

pp. 7393–7400, 2016.

[4] D. A. Babu, “SDN-based WSN Routing Protocol,” 2016.

[5] S. Sharma, R. K. Bansal, and S. Bansal, “Issues and Challenges in Wireless

Sensor Networks,” 2013 Int. Conf. Mach. Intell. Res. Adv., pp. 58–62, 2013.

[6] K. M. Modieginyane, B. B. Letswamotse, R. Malekian, and A. M. Abu-

Mahfouz, “Software defined wireless sensor networks application opportunities

for efficient network management: A survey,” Comput. Electr. Eng., vol. 66, pp.

274–287, 2018.

[7] M. Ndiaye, G. Hancke, and A. Abu-Mahfouz, “Software Defined Networking

for Improved Wireless Sensor Network Management: A Survey,” Sensors, vol.

17, no. 5, p. 1031, 2017.

[8] A. C. G. Anadiotis, S. Milardo, G. Morabito, and S. Palazzo, “Toward Unified

Control of Networks of Switches and Sensors Through a Network Operating

System,” IEEE Internet Things J., vol. 5, no. 2, pp. 895–904, 2018.

[9] B. R. Al-kaseem and H. S. Al-raweshidy, “SD – NFV as an Energy Efficient

Approach for M2M,” Ieee Internet Things J., vol. 4, no. 5, pp. 1–12, 2017.

[10] Y. Duan, W. Li, X. Fu, Y. Luo, and L. Yang, “A methodology for reliability of

WSN based on software defined network in adaptive industrial environment,”

IEEE/CAA J. Autom. Sin., vol. 5, no. 1, pp. 74–82, 2018.

76

[11] Q. Yaseen, F. Albalas, Y. Jararwah, and M. Al-Ayyoub, “Leveraging fog

computing and software defined systems for selective forwarding attacks

detection in mobile wireless sensor networks,” Trans. Emerg. Telecommun.

Technol., vol. 29, no. 4, pp. 1–13, 2018.

[12] N. Abdolmaleki, M. Ahmadi, H. T. Malazi, and S. Milardo, “Fuzzy topology

discovery protocol for SDN-based wireless sensor networks,” Simul. Model.

Pract. Theory, vol. 79, pp. 54–68, 2017.

[13] B. Van De Velde, “Elaborate Energy Consumption Modelling for OpenWSN,”

2017.

[14] L. Wenxing, W. Muqing, and W. Yuewei, “Design of multi-energy-space-based

energy-efficient algorithm in novel software-defined wireless sensor networks,”

vol. 13, no. 7, 2017.

[15] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software defined

wireless networks: Unbridling SDNs,” Proc. - Eur. Work. Softw. Defin.

Networks, EWSDN 2012, pp. 1–6, 2012.

[16] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian, “A

software defined networking architecture for the internet-of-things,” IEEE/IFIP

NOMS 2014 - IEEE/IFIP Netw. Oper. Manag. Symp. Manag. a Softw. Defin.

World, 2014.

[17] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk, and A.

Rindos, “SDIoT: a software defined based internet of things framework,” J.

Ambient Intell. Humaniz. Comput., vol. 6, no. 4, pp. 453–461, 2015.

[18] B. Trevizan de Oliveira, R. Cerqueira Afonso Alves, and C. Borges Margi

Universidade de São Paulo São Paulo, “Software-Defined Wireless Sensor

Networks and Internet of Things Standardization Synergism,” pp. 60–65, 2015.

[19] B. A. Klein, “RPL : IPv6 Routing Protocol for Low Power and Lossy

Networks,” Netw. Archit. Serv., no. July, pp. 59–66, 2011.

[20] B. Trevizan De Oliveira, L. Batista Gabriel, and C. Borges Margi, “TinySDN:

Enabling multiple controllers for software-defined wireless sensor networks,”

IEEE Lat. Am. Trans., vol. 13, no. 11, pp. 3690–3696, 2015.

[21] C. Cao, L. Luo, Y. Gao, W. Dong, and C. Chen, “TinySDM: Software Defined

Measurement in Wireless Sensor Networks,” 2016 15th ACM/IEEE Int. Conf.

Inf. Process. Sens. Networks, IPSN 2016 - Proc., 2016.

[22] A. C. G. Anadiotis, G. Morabito, and S. Palazzo, “An SDN-Assisted

Framework for Optimal Deployment of MapReduce Functions in WSNs,” IEEE

Trans. Mob. Comput., vol. 15, no. 9, pp. 2165–2178, 2016.

77

[23] L. Hu, J. Wang, E. Song, A. Ksentini, M. A. Hossain, and M. Rawashdeh,

“SDN-SPS: Semi-Physical Simulation for Software-Defined Networks,” IEEE

Sens. J., vol. 16, no. 20, pp. 7355–7363, 2016.

[24] R. Pradeepa and M. Pushpalatha, “SDN Enabled SPIN Routing Protocol for

Wireless Sensor Networks,” 2016 Int. Conf. Wirel. Commun. Signal Process.

Netw., vol. 10, no. 6, pp. 639–643, 2016.

[25] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani, S. Mijovic,

G. Morabito, and R. Verdone, “Testing protocols for the internet of things on

the EuWIn platform,” IEEE Internet Things J., vol. 3, no. 1, pp. 124–133, 2016.

[26] H. Fotouhi, M. Vahabi, A. Ray, and M. Bj, “SDN-TAP : An SDN-based Traffic

Aware Protocol for Wireless Sensor Networks,” 2016.

[27] Y. J. Chen, L. C. Wang, M. C. Chen, P. M. Huang, and P. J. Chung, “SDN-

enabled Traffic-aware Load Balancing for M2M Networks,” IEEE Internet

Things J., vol. 5, no. 3, pp. 1797–1806, 2018.

[28] J. A. Puente Fernández, L. Javier, G. Villalba, and T.-H. Kim, “Software

Defined Networks in Wireless Sensor Architectures,” pp. 1–24, 2018.

[29] R. Masoudi and A. Ghaffari, “Software defined networks: A survey,” J. Netw.

Comput. Appl., vol. 67, pp. 1–25, 2016.

[30] R. Friedman and D. Sainz, “An Architecture for SDN Based Sensor Networks,”

Proc. 18th Int. Conf. Distrib. Comput. Netw. - ICDCN ’17, pp. 1–10, 2017.

[31] A. B. A. C. C, “WSANFlow : An Interface Protocol Between SDN Controller

and End Devices for SDN-Oriented WSAN,” 2018.

[32] Y. Wei, X. Ma, N. Yang, and Y. Chen, “Energy-Saving Traffic Scheduling in

Hybrid Software Defined Wireless Rechargeable Sensor Networks,” Sensors,

vol. 17, no. 9, p. 2126, 2017.

[33] O. N. Foundation, “ONF SDN Evolution,” 2016.

[34] P. Goransson, C. Black, and T. Culver, Software Defined Networks: A

Comprehensive Approach - 2nd Ed. 2016.

[35] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A Survey on Software-

Defined Wireless Sensor Networks: Challenges and Design Requirements,”

IEEE Access, vol. 5, pp. 1872–1899, 2017.

[36] Open Networking Foundation, “OpenFlow Switch Specification 1.5.1,” 2015.

78

[37] S. V. Manisekaran and R. Venkatesan, “An analysis of software-defined routing

approach for wireless sensor networks,” Comput. Electr. Eng., vol. 56, pp. 456–

467, 2016.

[38] Open Networking Foundation, “SDN Architecture Overview,” 2013.

[39] J. Wang, Y. Miao, P. Zhou, M. S. Hossain, and S. M. M. Rahman, “A software

defined network routing in wireless multihop network,” J. Netw. Comput. Appl.,

vol. 85, no. November 2016, pp. 76–83, 2017.

[40] L. Tello-oquendo, I. F. Akyildiz, S. Lin, and V. Pla, “SDN-Based Architecture

for Providing Reliable Internet of Things Connectivity in 5G Systems,” 2018

17th Annu. Mediterr. Ad Hoc Netw. Work., pp. 1–8.

[41] K. Yap, M. Kobayashi, R. Sherwood, T. Huang, M. Chan, N. Handigol, and N.

Mckeown, “OpenRoads : Empowering Research in Mobile Networks,” ACM

SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 125–126, 2010.

[42] L. E. Li, Z. M. Mao, and J. Rexford, “Toward software-defined cellular

networks,” Proc. - Eur. Work. Softw. Defin. Networks, EWSDN 2012, pp. 7–12,

2012.

[43] S. Zerkane, D. Espes, P. Le Parc, and F. Cuppens, “Vulnerability Analysis of

Software Defined Networking,” in International Symposium on Foundations

and Practice of Security Springer, 2016, pp. 97–116.

[44] Z. Yao and Z. Yan, “A trust management framework for software‐defined

network applications,” Concurr. Comput. Pract. Exp., no. March, pp. 1–18,

2018.

[45] A. Jasim and C. Ceken, “Video streaming over wireless sensor networks,”

Wirel. Sensors (ICWiSe), 2015 IEEE Conf., pp. 63–66, 2015.

[46] Z. Bidai, “Interference-Aware Multipath Routing Protocol for Video

Transmission over ZigBee Wireless Sensor Networks,” Int. Conf. Multimed.

Comput. Syst., pp. 837–842, 2014.

[47] T. Wiegand, G. J. Sullivan, S. Member, G. Bjøntegaard, A. Luthra, and S.

Member, “Overview of the H . 264 / AVC Video Coding Standard,” vol. 13, no.

7, pp. 560–576, 2003.

[48] F. Korbel, FFmpeg Basics: Multimedia handling with a fast audio and video

encoder by Frantisek Korbel, 1st ed. CreateSpace Independent Publishing,

2012.

[49] A. Klein and J. Klaue, “Performance Evaluation Framework for Video

Applications in Mobile Networks,” 2009 Second Int. Conf. Adv. Mesh

Networks, pp. 43–49, 2009.

79

[50] F. H. P. Fitzek and M. Reisslein, “MPEG-4 and H.263 video traces for network

performance evaluation,” IEEE Netw., vol. 15, no. 6, pp. 40–54, 2001.

[51] F. Van Der Schueren, J. Doggen, and V. Der Schueren, “Design and Simulation

of a H.264 AVC Video Streaming Model,” Proc. Third Eur. Conf. Use Mod. Inf.

Commun. Technol. ECUMICT 2008, 2008.

[52] “OPEN ZigBee Poject.” [Online]. Available: www.open-zb.net.

[53] M. Krunz and H. Hughes, “‘A Traffic Model for MPEG-Coded VBR Streams,’”

Proc. SIGMETRICS, pp. 47–55, 1995.

[54] S. I. Society, “IEEE Standard for Local and metropolitan area networks — Part

15 . 4: Low-Rate Wireless Personal Area Networks (LR-WPANs),” 2011.

[55] K. Sood, S. Yu, and Y. Xiang, “Software-Defined Wireless Networking

Opportunities and Challenges for Internet-of-Things: A Review,” IEEE Internet

Things J., vol. 3, no. 4, pp. 453–463, 2016.

[56] M. Al-hubaishi, C. Çeken, and A. Al-shaikhli, “A novel energy‐aware routing

mechanism for SDN‐enabled WSAN,” Int J Commun Syst., 2018.

[57] T. Instruments, “Z-Stack User ’ s Guide For CC2530 ZigBee-PRO Network

Processor Sample Applications,” 2010.

RESUME

Ali Burhan Alshaikhli was born 1984 in Baghdad. He received his B.S. and M.S.

degrees in computer engineering from Nahrain University, Iraq, in 2006 and 2010,

respectively. He is currently pursuing his Ph.D. degree in computer and information

engineering at Sakarya University. He is expected to be graduated in 2018.

