T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DEFORME ÇEKİRDEKLERDE DEV DİPOL REZONANSLARIN İNCELENMESİ

DOKTORA TEZİ Nilüfer DEMİRCİ SAYĞI

Enstitü Anabilim Dalı : FİZİK

Tez Danışmanı

: Prof. Dr. Filiz ERTUĞRAL YAMAÇ

Temmuz 2018

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DEFORME ÇEKİRDEKLERDE DEV DİPOL REZONANSLARIN İNCELENMESİ

DOKTORA TEZİ

Nilüfer DEMİRCİ SAYĞI

Enstitü Anabilim Dalı :

FİZİK

Bu tez 09/07/2018 tarihinde aşağıdaki jüri tarafından oybirliği/oyçokluğu ile kabul edilmiştir.

Prof. Dr. Recep AKKAYA

Prof. Dr. Elsen VELI Jüri Başkanı F

Üye

Prof. P. T. Ertigral yourac

Üyer

Prof. Dr. F. Gökay KAY

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Nilüfer DEMİRCİ SAYĞI 09.07.2018

TEŞEKKÜR

Doktora çalışmamda danışmanlığımı üstlenen, bilgi ve tecrübelerini benimle paylaşan, destek olan, çalışmamın tamamlanmasında büyük emeği olan Sayın Prof. Dr. Filiz ERTUĞRAL YAMAÇ'a, teşekkürlerimi sunarım.

Katkı ve yardımlarından dolayı Sayın Prof. Dr. Ali KULİEV, Dr. Emre TABAR, Doç. Dr. Hakan YAKUT, Doç. Dr. Ekber GULİYEV, Prof. Dr. Recep AKKAYA, Prof. Dr. Soley ERSOY, Huseyngulu QULİYEV, Sevinj ALİYEVA, Gamze HOŞGÖR, Elif KEMAH'a, bilgi ve tecrübelerinden istifade ettiğim Fizik bölümünün bütün hocalarına teşekkür ederim.

I like to dedicate following lines to Prof. Dr. Andrea VITTURI from University of Padua, Italy and I like to thank him, grazie mille. I have worked with you in a really limited short time, however I am feeling luck enough that I had a chance to meet with you, to discuss physics topics, broadened my research horizon and altered my perspective over the research items.

Benim için hiçbir fedakârlıktan kaçınmayan, hayatım boyunca maddi ve manevi desteklerini hep hissettiğim, onlar olmasa yapamayacağım, sevgili ailem Serpil, İsmail, Yasemin, Süleyman, Emine ve Emir DEMİRCİ'ye, en büyük şanslarım eşim Dr. Bahadır SAYGI, oğlum Gökalp SAYGI'ya sonsuz teşekkür ederim.

Bu tez çalışmasının maddi açıdan desteklenmesine olanak sağlayan Sakarya Ünversitesi Bilimsel Araştırma Projeler Koordinatörlüğüne ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Komisyon Başkanlığına (Proje No:117F245) teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vii
TABLOLAR LİSTESİ	xiii
ÖZET	xvi
SUMMARY	xvii

BÖLÜM 1.

GİRİŞ	1

BÖLÜM 2.

TEORİ	12
2.1. Çekirdek Modelleri	12
2.1.1. Sıvı damla modeli	12
2.1.2. Kabuk model	14
2.1.3. Ortalama alan tabanlı mikroskobik teoriler	20
2.1.4. Süperakışkan model	22
2.1.5. Kuaziparçacık rastgele faz yaklaşımı	30
2.2. Nükleer Uyarılmalar	
2.2.1. Makas mod	39
2.2.2. Kuadrupol-oktupol mod	40
2.2.3. Cüce dipol rezonans	41
2.2.4. Dev rezonans	43
2.2.4.1. Dev monopol rezonans	51
2.2.4.2. Dev dipol rezonans	53

2.2.4.2.1. İzovektör dev dipol rezonans	57
2.2.4.2.2. İzoskaler dev dipol rezonans	59

BÖLÜM 3.

ÇİFT-ÇİFT KÜTLE NUMARALI DEFORME ÇEKİRDEKLERİN ELEKTRİK	
DİPOL UYARILMALARININ ARAŞTIRILMASI	62
3.1. Simetri Kırınımları, Sahte Haller ve Etkin Kuvvetler	62
3.2. Deforme Çekirdeklerde Elektrik Dipol Uyarılmaları	63
3.3. Çift-Çift Deforme Çekirdekler İçin QRPA Metodu	65
3.3.1. Öteleme ve Galileo değişmez olmayan QRPA model	66
3.3.2. Öteleme değişmez QRPA model	71
3.3.3. Galileo değişmez QRPA model	75
3.3.4. Öteleme ve Galileo değişmez QRPA model	79

BÖLÜM 4.

ÇİFT-ÇİFT	DEFORME	ÇEKİRDEKLERİN	BAZI	NÜKLEER	
ÖZELLİKLE	RİNİN ARAŞTIR	RILMASI			83
4.1. D	ipol Fotoabsorbsi	yon Tesir Kesiti			83
4	.1.1. Elektrik dipo	l dev rezonans'ın deform	nasyon ile y	arılması	87
4.2. T	oplam Kuralları				89
4.3. İr	ntegre Edilmiş Tes	sir Kesitleri			93
4.4. R	adyasyon Kalınlığ	ğı			95

BÖLÜM 5.

JLGULAR	8
5.1. Çift-Çift ¹⁴²⁻¹⁵² Nd İzotop Zincirine Ait Bulgular 10	1
5.2. Çift-Çift ¹⁴⁴⁻¹⁵⁴ Sm İzotop Zincirine Ait Bulgular 112	3
5.3. Çift-Çift ¹⁵²⁻¹⁶⁴ Gd İzotop Zincirine Ait Bulgular 12	5
5.4. Çift-Çift ¹⁵⁶⁻¹⁶⁸ Dy İzotop Zincirine Ait Bulgular 13.	5
5.5. Çift-Çift ¹⁸⁰⁻¹⁹⁰ W İzotop Zincirine Ait Bulgular 14	1
5.6. Çift-Çift ²³⁶⁻²³⁸ U İzotop Zincirine Ait Bulgular 14	9

BÖLÜM 6.	
TARTIŞMA VE ÖNERİLER	159
KAYNAKLAR	163
EKLER	176
ÖZGEÇMİŞ	224

SİMGELER VE KISALTMALAR LİSTESİ

β	: Çekirdeğin deformasyon parametresi
Δ	: Gap parametresi
δ	: Ortalama alan potansiyelinin deformasyon parametresi
λ	: Kimyasal potansiyel
π	: Parite
$\alpha^+(\alpha)$: Kuaziparçacık üretme (yok etme) operatörü
σ_{abs}	: Fotoabsorbsiyon tesir kesiti
Γ_0	: Dipol radyasyon kalınlığı
Γ_0^{red}	: İndirgenmiş dipol radyasyon kalınlığı
А	: Kütle numarası
a ⁺ (a)	: Parçacık üretme (yok etme) operatörü
B(<i>E</i> 1)	: İndirgenmiş elektrik dipol uyarılma ihtimali
Dy	: Disporsiyum
Gd	: Gadalinyum
GI	: Galileo değişmez
HS	: Harmonik salınıcı
Ι	: Spin
J	: Açısal momentum operatötrü
Κ	: Toplam açısal momentumun simetri eksenindeki izdüşümü
Ν	: Nötron sayısı
Nd	: Neodmiyum
NRF	: Nüklear rezonans flüoresans
NTGI	: Öteleme ve Galileo değişmez olmayan
$Q^+(Q)$: Fonon üretme (yoketme) operatörü
QRPA	: Kuaziparçacık rastgele faz yaklaşımı

R	: Nükleer yarıçap
RPA	: Rastgele faz yaklaşımı
Sm	: Samaryum
sp	: Tek parçacık
sqp	: Tek kuaziparçacık
TDA	: Tamm-Dancoff yaklaşımı
TGI	: Öteleme ve Galileo değişmez
TI	: Öteleme değişmez
W	: Tungsten
WS	: Woods-Saxon potansiyeli
Ζ	: Atom numarası
σ	: Spin operatörü
τ	: İzotopik spin operatörü

ŞEKİLLER LİSTESİ

Şekil 1.1.	Atomik çekirdek tablosu	3
Şekil 2.1.	Sıvı Damla Modeli tarafından hesaplanan bağlanma enerjileri ile	
	deneysel olarak ölçülen bağlanma enerjileri arasındaki fark	13
Şekil 2.2.	Deforme çekirdekler için asimptotik kuantum numaraları	16
Şekil 2.3.	Nükleer potansiyeller	17
Şekil 2.4.	Schrödinger dalga denkleminin soldan sağa sırasıyla Woods-Saxon	
	potansiyeli ve Woods-Saxon'a yapılan spin-orbit düzeltmesi ile	
	çözüldüğünde elde edilen enerji kabuklarının sıralaması	19
Şekil 2.5.	⁵⁰ Sn izotoplarının uyarılma spektrumu	23
Şekil 2.6.	İzovektör E1 ve M1 modlarına yol açan nötronların protonlara karşı	
	kollektif titreşimlerinin klasik iki akışkan olarak gösterimi	38
Şekil 2.7.	Nükleer dipol uyarılma spektrumu	38
Şekil 2.8.	Oktupol dipol modun makroskopik yorumu	40
Şekil 2.9.	PDR uyarılması	41
Şekil 2.10.	Atomik çekirdeğinin enerji (w) ve momentum (q) transferinin bir	
	fonksiyonu olarak karakteristik cevabı (tesir kesiti, σ)	43
Şekil 2.11.	Küresel ve deforme çekirdeklerde dev rezonans	44
Şekil 2.12.	Bothe ve Genter deney seti	45
Şekil 2.13.	Çekirdeğin dev rezonans modları	47
Şekil 2.14.	Mikroskpik tasvirde dev rezonans	48
Şekil 2.15.	E1 ve E2 nin shell model seviyeleri arasındaki tek parçacık	
	geçişlerinin şematik gösterimi	49
Şekil 2.16.	²⁰⁸ Pb çekirdeği için dev rezonans multipollerinin şematik gösterimi	50
Şekil 2.17.	¹¹⁶ Sn ve ²⁰⁸ Pb için ISGMR güç dağılımı deneysel verileri ve verilerin	
	Lorentz dağılımı ile fit edilmesi	51

Şekil 2.18.	Sıkıştırma modülü olan K_A nın K_∞ bir fonksiyonu olarak	
	gösterilmesi	52
Şekil 2.19.	Goldhaber ve Teller modeline göre GDR titreşiminin şematik	
	gösterimi	55
Şekil 2.20.	Abartılmış bir ayrılma uzaklığı ile gösterilmiş dev dipol rezonansın	
	Goldhaber-Teller modelinde geometrik varsayımın bir temsili	56
Şekil 2.21.	Steinwedel Jensen modeline göre GDR titreşiminin şematik	
	gösterimi	56
Şekil 2.22.	Rezonans enerjisinin kütle numarasıyla değişimi	57
Şekil 2.23.	ISGQR güç dağılımı	61
Şekil 4.1.	Ağır kütleli çekirdeklerde tesir kesitlerinin enerjiye göre değişimi	84
Şekil 4.2.	Çift-çift ¹⁴⁴⁻¹⁵⁴ Sm izotoplarında K=0 ve K=1 dalları için bulunan güç	
	fonksiyonunun kullanılmasıyla bulunan dipol fotoabsorbsiyon tesir	
	kesitinin enerjiye göre değişiminin teorik ve deneysel değerlerinin	
	karşılaştırılması	87
Şekil 4.3.	Deforme çekirdeklerde K=0 ve K=1 için proton-nötron ötelenme	
	salınım modları	88
Şekil 4.4.	²⁰⁸ Pb, ¹³² Sn, ¹²⁰ Sn çekirdeklerinin EWSR kümülatif değerlerinin	
	enerjiye göre değişim grafiği	92
Şekil 4.5.	Dipol radyasyon kalınlığı ve spin	95
Şekil 5.1.	Çift-çift ¹⁴²⁻¹⁵² Nd izotop zinciri çekirdeklerinin K=0 ve K=1	
	dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş	
	geçiş olasılığı değerlerinin karşılaştırılması	104
Şekil 5.2.	Çift-çift ¹⁴⁴⁻¹⁵² Nd izotoplarının K=0 ve K=1 dallarındaki toplam	
	B(E1) değeri oranlarının karşılaştırılması	105
Şekil 5.3.	Çift-çift 150Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA,	
	NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması .106	
Şekil 5.4.	Çift-çift ¹⁴²⁻¹⁵² Nd izotop zinciri çekirdeklerinin toplam	
	fotoabsorbsiyon tesir kesitlerinin TGI QRPA ile elde edilen teorik	
	değerleri ve deneysel verilerin karşılaştırılması	107
Şekil 5.5.	Çift-çift ¹⁴²⁻¹⁵² Nd izotop zinciri çekirdeklerinin E1 ve E2 değerlerinin	
	deneysel verilerle karşılaştırılması	109

Şekil 5.6.	Çift-çift 142-152Nd izotop zinciri çekirdeklerinin TGI QRPA modelde		
	izovektör ve izoskaler katkılarının enerjiye bağlı dağılımı	111	
Şekil 5.7.	Çift-çift ¹⁴²⁻¹⁵² Nd izotop zinciri çekirdeklerinin K=0 ve K=1 dalları		
	için elektrik dipol enerji ağırlıklı toplamlarının yüzdelik dağılımının		
	gösterilmesi	112	
Şekil 5.8.	Çift-çift ¹⁴⁴⁻¹⁵⁴ Sm izotoplarının TGI-QRPA modelinden elde edilen		
	K=0 ve K=1 dallarının $\Sigma B(E1)$ değerlerinin karşılaştırılması	115	
Şekil 5.9.	Çift-çift ¹⁴⁶⁻¹⁵⁴ Sm izotoplarının TGI-QRPA modelinden elde edilen		
	K=0 ve K=1 dallarının $\Sigma B(E1)$ değerleri oranlarının karşılaştırılması.	116	
Şekil 5.10.	Çift-çift ¹⁴⁴⁻¹⁵⁴ Sm izotop zinciri çekirdeklerinin toplam		
	fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri		
	ile deneysel değerlerin karşılaştırılması	117	
Şekil 5.11.	Çift-çift ¹⁴⁴⁻¹⁵⁴ Sm izotop zinciri çekirdeklerinin toplam		
	fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri		
	ile deneysel değerlerin karşılaştırılması	118	
Şekil 5.12.	Çift-çift 144-154Sm izotop zinciri çekirdeklerinin enerjiye bağlı		
	radyasyon kalınlığı Γ_0 değerlerinin karşılaştırılması	119	
Şekil 5.13.	Çift-çift 144-154Sm izotop zinciri çekirdeklerinin enerjiye bağlı		
	olmayan radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması	120	
Şekil 5.14.	Çift-çift 144-154Sm izotop zinciri çekirdeklerinin izovektör ve		
	izoskaler katkılarının elektrik dipol enerji diyagramında gösterilmesi.	121	
Şekil 5.15.	Çift-çift ¹⁴⁴⁻¹⁵⁴ Sm izotop zinciri çekirdeklerinin K=0 ve K=1 dalları		
	için elektrik dipol enerji ağırlıklı toplamlarının yüzdeliklerinin		
	gösterilmesi	122	
Şekil 5.16.	Çift-çift ¹⁵⁴ Sm çekirdeğinin fotoabsorbsiyon tesir kesitinin		
	hesaplanmasında Lorentz ve Kuliev-Salamov fonksiyonlarının		
	karşılaştırılması	123	
Şekil 5.17.	Çift-çift ¹⁵²⁻¹⁶⁴ Gd izotop zinciri çekirdeklerinin K=0 ve K=1		
	dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş		
	geçiş olasılığı değerlerinin karşılaştırılması	127	
Şekil 5.18.	Çift-çift ¹⁵²⁻¹⁶⁴ Gd izotoplarının TGI-QRPA modelinden elde edilen		

K=0 ve K=1 dallarının $\Sigma B(E1)$ değerleri oranlarının karşılaştırılması. 128

- Şekil 5.20. ¹⁶⁰Gd çekirdeğinin öteleme değişmez modelde hesaplanan 1⁻1 uyarımlarına karışan sahte hallerin dağılımı 131

- Şekil 5.25. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının $\Sigma B(E1)$ değerleri oranlarının karşılaştırılması. 138
- Şekil 5.26. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının B(E1) değerlerinin karşılaştırılmaşı 139

- Şekil 5.29. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının $\Sigma B(E1)$ değerleri oranlarının karşılaştırılması. 144

Şekil 5.31.	¹⁸⁰ W izotopu için TGI QRPA model ile hesaplanan iki kuaziparçacık	
	seviyelerinin katkısının 2-4 MeV, 4-8 MeV ve 8-20 MeV enerji	
	aralıklarındaki dağılımı	147
Şekil 5.32.	¹⁹⁰ W izotopu için TGI QRPA model ile hesaplanan iki kuaziparçacık	
	seviyelerinin katkısının 2-4 MeV, 4-8 MeV ve 8-20 MeV enerji	
	aralıklarındaki dağılımı	148
Şekil 5.33.	Çift-çift ²³⁶⁻²³⁸ U izotop zinciri çekirdeklerinin K=0 ve K=1	
	dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş	
	geçiş olasılığı değerlerinin karşılaştırılması	151
Şekil 5.34.	Çift-çift ^{236,238} U izotop zinciri çekirdeklerinin toplam	
	fotoabsorbsiyon tesir kesitlerinin TGI QRPA ile elde edilen teorik	
	değerleri ve deneysel verilerin karşılaştırılması	152
Şekil 5.35.	¹⁵⁶ Sm ve ¹⁶⁴ Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile	
	hesaplanan $\boldsymbol{\sigma}_0$ integre edilmiş tesir kesitleri sonuçlarının deneysel	
	verilerle karşılaştırılması	153
Şekil 5.36.	¹⁵⁶ Sm ve ¹⁶⁴ Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile	
	hesaplanan σ_{-1} integre edilmiş tesir kesitleri sonuçlarının deneysel	
	verilerle karşılaştırılması	153
Şekil 5.37.	¹⁵⁶ Sm ve ¹⁶⁴ Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile	
	hesaplanan σ_{-2} integre edilmiş tesir kesitleri sonuçlarının deneysel	
	verilerle karşılaştırılması	154
Şekil 5.38.	$^{142-152}$ Nd, $^{144-150}$ Sm, $^{152-164}$ Gd, $^{156-168}$ Dy, $^{180-190}$ W izotoplarının K=0 ve	
	K=1 dallarının TGI QRPA ile hesaplanan $\sum_{B(E1)}$ değerlerinin	
	karşılaştırılması	155
Şekil 5 39.	$^{142-152}$ Nd, $^{144-150}$ Sm, $^{152-164}$ Gd, $^{156-168}$ Dy, $^{180-190}$ W ve $^{236-238}$ U	
	izotoplarının K=0 ve K=1 dallarının TGI QRPA ile hesaplanan	
	maksimum <i>B</i> (<i>E</i> 1) değerlerinin karşılaştırılması	156
Şekil 5.40.	¹⁴²⁻¹⁵² Nd, ¹⁴⁴⁻¹⁵⁰ Sm, ¹⁵²⁻¹⁶⁴ Gd, ¹⁵⁶⁻¹⁶⁸ Dy, ¹⁸⁰⁻¹⁹⁰ W izotoplarının K=0 ve	
	K=1 dallarının TGI QRPA ile hesaplanan enerji ağırlıksız ve enerji	
	ağırlıklı radyasyon kalınlığı Γ_0^{red} ve Γ_0 değerlerinin karşılaştırılması	157

Şekil 5.41 Deforme $^{144-152}$ Nd, $^{146-150}$ Sm, $^{152-164}$ Gd, $^{156-168}$ Dy, $^{180-190}$ W izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının $\Sigma B(E1)$ değerleri oranlarının karşılaştırılması 158

TABLOLAR LİSTESİ

Tablo 2.1.	Tek parçacık seviyelerinin çekirdeğin şekline göre bağlı bulunduğu		
	özelliklerin karşılaştırılması	15	
Tablo 2.2.	2. Bazı ortalama alan teorileri		
Tablo 2.3.	Parçacık-boşluk uyarılmaları olarak çok kutuplu uyarılmalar		
Tablo 2.4.	Nükleer uyarılmalar ve özellikleri 5		
Tablo 4.1.	İntegre edilmiş tesir kesitlerinin deneysel değerleri		
Tablo 5.1.	Çift-çift ¹⁴²⁻¹⁵² Nd izotoplarının süperakışkan model çiftlenim		
	korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2		
	deformasyon parametreleri	101	
Tablo 5.2.	Çift-çift 142-152Nd izotop zinciri çekirdeklerinin, 8-20 MeV enerji		
	bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo		
	değişmez ve kırınımlı modele göre K=0 ve K=1 durumları için		
	hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması	103	
Tablo 5.3.	Çift-çift $^{142-152}$ Nd izotoplarının E_1 ve E_2 değerlerinin deneysel veriler		
	ile karşılaştırılması	109	
Tablo 5.4.	Çift-çift 144-154 Sm izotoplarının süperakışkan model çiftlenim		
	korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 ,		
	δ_2 deformasyon parametreleri	113	
Tablo 5.5.	Çift-çift 144-154 Smizotop zinciri çekirdeklerinin, 8-20 MeV enerji		
	bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo		
	değişmez ve kırınımlı Brown modeline göre K=0 ve K=1 durumları		
	için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması.	114	
Tablo 5.6.	Çift-çift 144-154Sm izotop zinciri çekirdeklerinin, 8-20 MeV enerji		
	bölgesindeki Lorentz eğrisi parametreleri	124	

- Tablo 5.8. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve kırınımlı modele göre K=0 ve K=1 durumları için hesaplanan $\sum_{B(E1)}, \sum_{B(E1)\omega}, \overline{\omega}$ değerlerinin karşılaştırılması 126
- Tablo 5.10. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve kırınımlı modele göre K=0 ve K=1 durumları için hesaplanan $\sum_{B(E1)}$, $\sum_{B(E1,i)\omega_i}$, $\overline{\omega}$ değerlerinin karşılaştırılması 136
- Tablo 5.12. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve kırınımlı modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1,i)\omega_i$, $\overline{\omega}$ değerlerinin karşılaştırılması 142

- Tablo 5.15. Çift-çift ²³⁶⁻²³⁸U izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve kırınımlı modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1,i)\omega_i$, $\overline{\omega}$ değerlerinin karşılaştırılması 150
- Tablo 5.16.¹⁵⁴Sm ve ¹⁵⁶Gd izotoplarına ait integre edilmiş tesir kesiti (σ_0 , σ_{-1} , σ_{-2}) değerlerinin TGI QRPA ve deneysel sonuçlarının karşılaştırılması . 152

ÖZET

Anahtar kelimeler: Çift-çift deforme çekirdek, QRPA, elektrik dipol geçiş, dev dipol rezonans

Bu tez çalışmasında çift-çift deforme çekirdekler için spini ve paritesi $I^{\pi} = 1^{-}$ olan durumların Dev Dipol Rezonans (Giant Dipole Resonance-GDR) uyarılmaları, Kuazi Parçacık Rastgele Faz (QRPA) yaklaşımı çerçevesinde incelenmiştir. Bu yaklaşımla ortalama potansiyelin kırılan simetrisinin restorasyonu için izoskaler ve izovektör ayrılabilir etkileşmeler özuyumlu olarak belirlenmiştir. İzovektör dipol-dipol etkileşmesinin tek bir parametresini içeren model, GDR'nin deforme çekirdeklerde yarılmasını, K=0 ve K=1 dalları için enerjilerini, deneysel verilere uygun bir şekilde açıklamaktadır. Model (TGI) ile, QRPA yaklaşımında restorasyonun gerçekleşmediği (NTGI), yalnız öteleme değişmezliğin (TI) ve yalnız Galileo değişmezliğin (GI) restore edilmesiyle elde edilen yaklaşımlarla, gerçekleştirilen restorasyonların spektruma karışan sıfır enerjili sahte hallerin (Goldstone modu) ayrılmasına katkısı incelenmiştir. Hesaplamalar restorasyon kuvvetlerinin Hamiltoniyen'e eklenmesiyle B(E1) gücünün parçalandığını ve bu durumun enerji spektrumunun dağılımını değiştirdiğini göstermiştir.

Çift-çift deforme ve geçiş çekirdeklerinden ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁴Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W, ²³⁶⁻²³⁸U izotoplarının $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişleri için indirgenmiş geçiş olasılıkları (B(E1)) ve enerji (ω_i) değerleri model çerçevesinde hesaplanmıştır. Bununla birlikte aynı büyüklükler küresel ²⁰⁸Pb çekirdeği için de hesaplanmıştır. İncelenen tüm çekirdekler için GDR bölgesinde $\Delta K=1$ dalının baskın olduğu görülmüştür. Deforme çekirdekler için hesaplanan toplam fotoabsorbsiyon tesir kesitinin (σ_{abs}) K=0 ve K=1 dallarından gelen, sırasıyla 11-12 MeV ile 15-16 MeV enerji aralıklarında bulunan pik değerlerinin spektrumda oluşturduğu hörgüçlü yapı deneysel ve diğer teorik çalışmaların verileriyle uyumlu sonuçlar vermiştir. Ayrıca elektrik dipol geçişlerinin bazı karakteristik özelliklerinden, asimptotik kuantum numaraları [$Nn_z \Lambda \Sigma$], radyasyon kalınlıkları $\Gamma(E1)$, indirgenmiş radyasyon kalınlıkları $\Gamma_{red}(E1)$ ve integre edilmiş tesir kesitleri σ_0 , σ_{-1} , σ_{-2} araştırılmıştır.

INVESTIGATIONS OF GIANT DIPOLE RESONANCE IN DEFORMED NUCLEI

SUMMARY

Keywords: Even-even deformed nuclei, QRPA, electric dipole transition, giant dipole resonance

Giant dipole resonance (GDR) excitation of $I^{\pi} = 1^{-}$ states in even-even deformed nuclei were investigated in the framework Quasi Random Phase Approximation (QRPA) in this thesis. Isoskaler and isovector interactions for the restoration of broken symmetries in the mean-field potential have been determined selfconsistently. The model including a single parameter of isovector dipole-dipole interaction explains the splitting of GDR in deformed nuclei, the energies of K=0 and K=1 branches in coherent with experimental observables. In this thesis, we have looked into details the effect of zero energy spurious state on the spectrum using the cases of QRPA with no restoration (NTGI), only restoration of Translational Invariance (TI), only restoration of Galileo Invariance (GI) and restoration of both Translational Invariance and Galileo Invariance. The calculations have revealed that splitting of the B(E1) strength and distribution of energy spectrum have been shifted when restoration forces added to Hamiltonian.

The B(E1) reduced transition probabilities of $I^{\pi}K = 1^{-1}$ and $I^{\pi}K = 1^{-0}$ and (ω_i) energies have been calculated for the ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁴Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W and ²³⁶⁻²³⁸U isotopes using the model. The same quantities are also calculated for the spherical ²⁰⁸Pb isotope. $\Delta K=1$ branch in the GDR region was observed that is dominant. Calculated photo absorption cross section (σ_{abs}) is in good agreement with experimental data for deformed nuclei where the peaks in the range of 11-12 MeV and 15-16 MeV comes from K=0 and K=1 branch for deformed nuclei. Furthermore, $[Nn_z\Lambda\Sigma]$ asymptotic quantum numbers, $\Gamma(E1)$ decay width, reduced transition probabilities $\Gamma_{red}(E1)$ and integrated cross section σ_0 , σ_{-1} , σ_{-2} have been investigated using some of the feature of electric dipole transitions.

BÖLÜM 1. GİRİŞ

Nükleer yapının çeşitli özelliklerini ve nükleonlar arasındaki temel etkileşmeleri yansıtması bakımından kolektif uyarılmalar, nükleer fizikte teorik ve deneysel olarak incelenen en önemli konulardan biri olmuştur (Harakeh ve Woude 2001; Ring ve Schuck, 2004). Kolektif uyarılmaların güncel nükleer elektromanyetik uyarılma spektrumunda sırasıyla, düşük uyarılma enerjilerinde makas mod (Scissor Mode-SM), kuadrupol-oktopol (Quadrupole Octupole-QOC) mod, nötron bağlanma enerjisine yakın enerjilerde cüce dipol rezonans (Pygmy Dipole Resonance-PDR) ve yüksek uyarılma enerjilerinde dev dipol rezonans (Giant Dipole Resonance-GDR) yer almaktadır (Habs, 2013).

Kolektif uyarılmalar içerisinde bulunan dipol titreşimler özel bir öneme sahiptir. Dipol rezonanslar, çekirdekteki nükleonların kolektif hareketi ve tek parçacık geçişleriyle tanımlanabilen uyarılmalar olarak bilinmektedirler (Van der Woude, 1991). Dipol uyarılmalar paritelerine göre ikiye ayrılmaktadır. Bunlardan spini ve paritesi I^{π}=1⁺ olanlar manyetik dipol (*M*1), spini ve paritesi I^{π}=1⁻ olanlar ise elektrik dipol (E1) özelliktedir. Nötron ve proton sayısının sihirli sayılardan uzaklaşmasıyla birlikte küresel simetrisi bozulan eksenel simetrik deforme çekirdekler için $I^{\pi}=1^{-1}$ titreşimlerinin K=±1 ve K=0 gibi iki bağımsız dalı bulunmaktadır (Okamoto 1958). Bu dallar, deforme cekirdeklerin eksenel simetriden dolayı toplam açısal momentumlarının z ekseni üzerindeki izdüşümü olan jz=K kuantum sayısının korunması ile ilişkilidir. K=±1 ve K=0 dalları sırasıyla, çekirdekteki simetri eksenine dik ve simetri eksenine paralel olan titreşimlere karşı gelmektedirler. Bu yüzden, eksenel simetrik deforme çekirdeklerin elektrik dev dipol özelliklerinin incelenmesinde, nükleonlar arasındaki etkileşmelerin karakterinin ve güç parametrelerinin belirlenmesinde, modellerin test edilmesinde kullanılan teoride bu dallar göz önünde bulundurulmaktadır.

Nükleer yapının temel yapı taşlarından biri olan, "Dev Rezonans Fiziği" (Bertrand, 1981) olarak da ifade edilebilen (kapsamlı, ayrı bir alan olan) dev rezonanslar atomik çekirdeklerde nükleon ayırma enerjisinden (8-10 MeV) daha büyük uyarılma enerjilerinde, açısal momentum (Δ L), spin (Δ S), izospin (Δ T) ve parite kuantum sayılarına göre farklılaşan rezonans durumlarıdır (Baldwin ve Klaiber, 1947; Goldhaber ve Teller, 1948; Bortignon ve ark., 2003; Poltoratska ve ark., 2014;). Elektrik dipol uyarılmalar tarafından üretilen önemli bir fenomen olan dev dipol rezonans (GDR), makroskopik açıdan çekirdekteki nötronların protonlara karşı titreşimleri, mikroskobik açıdan pek çok parçacık-boşluk (p-h) seviyelerinin uyumlu süperpozisyonu olarak ifade edilebilmektedir (Varlamov ve ark., 1999; Harakeh ve Woude, 2001; Oishi, ve ark., 2016).

Nükleer titreşim modlarının incelenmesi, çekirdeğin yapısı ve nükleer bağlanma konularında değerli bilgiler sağlamaktadır. Kolektif serbestlik dereceleri nükleer yapının birçok yönünü karakterize etmektedir. Bir çekirdeğin dış etkiye (pertürbasyon) verdiği tepki, sıklıkla kolektif modlarla ilişkili bir sonuç sergilemektedir: dönmeler ve titreşimler. Tüm nükleonların tutarlı salınımıyla karakterize edilen en temel uyarılmalar olan dev titreşimler veya dev rezonanslar ile genel nükleer özellikler olan boyut, şekil, protonların ve nötronların dağılımları, nükleer maddenin sıkışabilirliği gibi konular derinlemesine incelenmektedir. Yalnızca genel özellikler için değil aynı zamanda, nükleon-nükleon etkileşimlerinin özelliklerinin detayları ve rezonans sönümleme mekanizmasını belirleyen dağılma süreçlerindeki farklı serbestlik dereceleri arasındaki etkileşimler gibi daha karmaşık süreçlerin incelenmesinde de kullanılmaktadırlar. Dev rezonansların uyarılma enerjileri ve bozunum özellikleri çoğunlukla β-kararlılık çizgisinde olan çekirdekler (Şekil 1.1.) için ölçülmüştür (Paar ve ark., 2007). Bu ölçümlerin kararsız (deforme) çekirdek bölgelerine uzatıldığı çalışmalar oldukça seyrektir.

β-kararlılık çizgisinden çok uzakta bulunan çekirdeklerin çok kutuplu tepkileri ve egzotik uyarılma modlarının olası oluşumu, hızla büyüyen bir araştırma alanını sunmaktadır (Paar ve ark., 2007). Radyoaktif iyon demetleri üretilebilir olana kadar fizik deneyleri, kararlı çekirdekler veya uzun ömürlü kararsız çekirdeklerle kısıtlıdır.

Yeni hızlandırıcıların ortaya çıkmasıyla günümüzde nötron zengini deforme çekirdeklere de erişmek mümkündür.

Şekil 1.1. Atomik çekirdek tablosu. Çekirdekler, nötron sayısına (apsis) ve proton sayısına (ordinat) göre sınıflandırılır. β-Kararlılık vadisi siyah kutular olarak gösterilir. Diğer kararsız çekirdekler üretim mekanizmalarına bağlı olarak farklı renklerde gösterilir, hafif-iyonla indüklenen reaksiyonlar (yeşil), parçalanma işlemleri (koyu mavi), füzyon aktarma reaksiyonları (yeşil) ve radyoaktif bozunma zincirleri (eflatun). Gri bölgedeki çekirdekler tahmin edilmekle birlikte henüz gözlemlenmemiştir. Çekirdeklerin varlığının sınırları, pembe alan (proton damla hattı ve nötron damla hattı) ile gösterilir.

Deforme bir çekirdeğin yapısı ve özellikleri, nükleer fizikteki temel sorulardan biri olmayı sürdürmektedir. Bununla birlikte dev rezonans kolektif modları, nükleer alanda önemli araştırma konularındandır. Deforme çekirdeklerde dev rezonanslar, süpernova patlamalar, nötron yıldızları oluşumu gibi bazı astrofizik olayları anlamak için önemlidir. Kararlı çekirdekler için oldukça çalışılan bir alan olan dev rezonansların, farklı davranışlar sergilemeleri nedeniyle deforme çekirdekler için de çalışılmasına gerek duyulmaktadır. Dev rezonanslar hakkındaki bilgimizi kararlılık bölgesinden deforme çekirdeklere doğru genişletmek gerekmektedir (Bagchi, 2015).

Çekirdeğin temel uyarılmaları ve onların anlaşılmasında mikroskopik nükleer teorinin temel taşını oluşturan dev rezonanslar ilk kez Migdal tarafından 1944 yılında

teorik olarak öngörülmüş ve deneysel olarak 1947 yılında Baldwin ve Klaiber tarafından 15 MeV civarında enerjiye sahip fotonların, uranyum hedef çekirdeği ile (γ,n) reaksiyonunda fotoabsorbsiyon tesir kesitinde keskin bir artışın gözlenmesi ile keşfedilmiştir. Bu çalışma, GDR'nin özelliklerinin çalışıldığı fotoabsorbsiyon deneylerinin başlangıcı olmuştur. Çift-çift deforme çekirdeklerde GDR ile ilgili yapılan deneysel çalışmalar ile enerji, toplam fotoabsorbsiyon tesir kesitleri, integre edilmiş tesir kesitleri ve rezonans genişliği (width) ile ilgili deneysel veriler elde edilmiş ve tartışılmıştır. Toplam fotoabsorbsiyon tesir kesitleri deforme cekirdeklerden; ¹⁴⁸Nd (Vasilijev ve ark., 1969), ¹⁵⁰Nd (Vasilijev ve ark., 1969), ¹⁵⁰Sm (Vasilijev ve ark., 1969), ¹⁵²Sm (Vasilijev ve ark., 1969), ¹⁵⁴Sm (Gurevich ve ark., 1980; Vasilijev ve ark., 1969), ¹⁵⁶Gd (Gurevich ve ark., 1980), ¹⁶⁸Er (Gurevich ve ark., 1980), ¹⁷⁴Yb (Gurevich ve ark., 1980), ¹⁷⁸ Hf (Gurevich ve ark., 1980; Goryachev ve ark., 1976), ¹⁸⁰ Hf (Gurevich ve ark., 1981), ^{182, 184, 186} W (Gurevich ve ark., 1980), ²³² Th (Gurevich ve ark., 1976), ²³⁸ U (Gurevich ve ark., 1976) için arastırılmıştır. Bununla birlikte integre edilmiş tesir kesitleri; 186, 188, 190, 192 Os (Berman ve ark., 1979), ¹⁵⁴Sm (Gurevich ve ark., 1981), ¹⁵⁶Gd (Gurevich ve ark., 1981), ¹⁶⁰Gd (Berman ve ark., 1969) ¹⁸⁶ W (Berman ve ark., 1969), ¹⁶⁸Er (Gurevich ve ark., 1981), ¹⁷⁴Yb (Gurevich ve ark., 1981), ¹⁷⁸Hf (Gurevich ve ark., 1981), ¹⁸⁰Hf (Gurevich ve ark., 1981), ^{182, 184, 186} W (Gurevich ve ark., 1981), ²³² Th (Gurevich ve ark., 1976; Veyssiere ve ark., 1973; Caldwell ve ark., 1980), ²³⁴U (Gurevich ve ark., 1976). ²³⁸U (Gurevich ve ark., 1976; Veyssiere ve ark., 1973; Caldwell ve ark., 1980), 238, 240 Pu (Gurevich ve ark., 1976), 238 U (Gurevich ve ark., 1976), 208 Pb (Harvey ve ark., 1964; Veyssiere ve ark., 1970), ²³⁴U (Berman ve ark., 1986) çekirdekleri için verilmiştir. Dev dipol rezonanasın karakteristik özelliklerinden olan, toplam rezonans genişliği de deforme çekirdeklerden ¹⁷⁸ Hf (Gurevich ve ark., 1976; Gurevich ve ark., 1981), ¹⁸⁰ Hf (Gurevich ve ark., 1976; Gurevich ve ark., 1981), ¹⁸² W (Gurevich ve ark., 1976; Gurevich ve ark., 1981), ¹⁸⁴W (Gurevich ve ark., 1978; Gurevich ve ark., 1981), ¹⁸⁶W (Gurevich ve ark., 1978; Gurevich ve ark., 1981), ¹⁴²Nd (Youngblood ve ark., 1976), ¹⁴⁴Sm (Youngblood ve ark., 1976; Horen ve ark., 1974), ¹⁴⁸Sm (Youngblood ve ark., 1976), ¹⁵⁴Sm (Youngblood ve ark., 1976, Horen ve ark., 1974; Gurevich ve ark., 1978; Gurevich ve ark., 1981), ¹⁷⁴Yb (Youngblood ve ark., 1976), ²⁰⁸Pb (Youngblood ve ark., 1976), ¹⁵⁶Gd (Gurevich ve ark., 1978;

Gurevich ve ark., 1981), ¹⁶⁸Er (Gurevich ve ark., 1978), ¹⁷⁴Yb (Gurevich ve ark., 1978; Gurevich ve ark., 1981), ^{186, 188, 190, 192} Os (Berman ve ark., 1979),), ²³⁴U (Berman ve ark., 1986), ^{236, 238} U (Caldwell ve ark., 1980), ²³² Th (Caldwell ve ark., 1980) izotopları için araştırılmıştır. Bu çalışmalarda, deneysel zorluklardan dolayı seviyelerin özelliklerinin genellikle toplam değerleri verilmektedir. Bu durum, dev dipol modun özelliklerinin A kütle sayısının veya deformasyon parametresinin bir fonksiyonu gibi sistematik analizinde zorluklara neden olmaktadır. Deneysel çalışmalardan elde edinilen dev rezonanslar hakkındaki bilgi, hızlandırıcılar, yeni araçlar ve dedektör sistemlerinin gelişimi ile yakından ilişkilidir. Deneysel nükleer fizik araştırmalarında bu sistemlerin gelişimi ile birlikte kararsız çekirdek demetlerini kullanmak üzerine büyük bir eğilim olacağı, dev rezonansların bu yeni alanda önemli derecede rol alacağı düşünülmektedir (Woude, 1996).

Deneysel olarak gözlemlenen sonucların daha iyi anlasılabilmesi için teorik modeller kritik önem taşımaktadır. Bu nedenle periyodik tablo boyunca ağırdan hafife kadar pek çok çekirdeğe ait deneysel verilerin açıklanmasında çok sayıda farklı teorik model önerilmiştir. Deforme çekirdeklerin dev dipol rezonans özellikleri teorik olarak mikroskobik modeller kullanılarak incelenmiştir. Ortalama alan (mean field) yaklaşımında 1 parçacık 1 boşluk uyarılmaları açıklanabilirken çift parçacık (two body) uyarılmaları, kohorent uyarılmalar, kolektiflik ve rezonans genişliği (width) açıklanamamaktadır (Ring ve Schuck, 1980; Lacroix, Ayik ve Chomaz, 2004). Dev rezonansların incelendiği diğer bir yaklasım olan Tamm-Dancoff'da sadece uyarılmış durumların kuazi parçacık etkileşimi hesaba katılmıs, taban durumuna değinilmemiştir. Taban durumundaki etkileşmelerin göz ardı etmesi bu yöntemin eksik yönlerinden biri olmuştur. Diğer bir yaklaşım olan rastgele faz yaklaşımında (RPA) ise bu durum düzeltilerek kuazi parçacıkların etkileşimleri göz önüne alınmıştır. Bu yaklaşımın ardından çiftlenimi ve deformasyonu göz önünde bulunduran yaklaşım kuaziparçacık rastgele faz yaklaşımı (QRPA) geliştirilmiştir. Enerji merkezleri, kolektif seviyeler, rezonans genişliği ve deformasyon etkisini açıklaması bakımından QRPA dev rezonansları en kapsamlı şekilde açıklayan mikroskopik yaklaşımlardan biridir. Bu yaklaşım temelli teorik çalışmalardan biri, Yoshida ve Nakatsukasa (2011)'nın Neodinyum ve Samaryum çekirdeklerinin K=0

ve K=1 için fotoabsorbsiyon tesir kesitlerini QRPA metoduyla Hartree-Fock-Bogoliubov yaklaşımı temelinde ve Skyrme enerji yoğunluk fonksiyonu kullanılarak incelendiği çalışmadır. Oishi ve ark. (2016) tarafından gerçekleştirilen bir diğer calışmada ise Skyrme nükleer yoğunluk fonksyon teorisi cercevesinde ve sonlu genlik metodu (finite amplitude method) kullanılarak K=0 ve K=1 için çift çift 152-164 Gd, ¹⁵⁶⁻¹⁶⁴ Dy, ¹⁶²⁻¹⁷⁴ Er, ¹⁶⁸⁻¹⁷⁸ Yb, ¹⁷⁴⁻¹⁸⁴ Hf, ¹⁸⁰⁻¹⁹⁰ W izotopları için fotoabsorbsiyon tesir kesitleri hesaplanmıştır. Kuliev ve ark. (2001) Galileo değişmezlik içeren öteleme değişmez dev dipol rezonans modelinde Pyatov-Salamov metodu kullanarak deformasyon limitindeki küresel çekirdekler 128 Te, 140 Ce, 138 Ce için integre edilmiş tesir kesitleri ve B(E1) değerlerini hesaplamışlardır. 208Pb, 120Sn ve 132Sn çekirdekleri için fonon çiftlenimli QRPA metodu kullanılan bir diğer çalışmada (Sarchi ve ark., 2004) bulunan fotoabsorbsiyon tesir kesitleri deneysel değerler ile karsılaştırmıştır. Ayrıca bu çalışmada aynı çekirdeklerin merkezi enerjileri QRPA ve QRPA-PC kullanarak karsılaştırılmıştır. Son yıllarda çekirdeklerin elektrik dipol geçiş olaşılığı, GDR kalınlığı, integre edilmiş tesir kesitleri hesaplamaları ile ilgili sayılı çalışma yapılmış olsa da bu çalışmalarda ya tez çalışmamızda kullandığımız yaklaşımdan farklı yaklaşımlarla GDR ve PDR özellikleri ele alınmış ya da farklı sınıftaki dev rezonanslar (dev monopol, dev kuadrupol) incelenmiştir. Bu nedenle çift-çift deforme çekirdeklerin elektrik dipol özellikleri ile ilgili deneysel verilerin açıklanabilmesi veya gelecekte yapılması planlanan deneysel çalışmalara öngörü oluşturabilmesi için, birçok deneysel çalışmada da belirtildiği üzere, GDR modu ile ilgili teorik çalışmalara ihtiyaç duyulmaktadır. (Paar ve ark., 2007; Kapitonov, 2015; Scheck ve ark., 2016).

Bu çalışmada kapalı kabuk yakınındaki, iyi deforme, nötronu eksik veya fazla olan deforme ve geçiş çift-çift çekirdeklerin spini ve paritesi $I^{\pi} = 1^{-}$ olan durumlarının yüksek enerjili GDR modunun sistematiği ve özellikleri ilk kez QRPA model çerçevesinde, ortalama potansiyelin kırılan simetrisinin restorasyonu için izoskaler ve izovektör ayrılabilir etkileşmelerin özuyumlu olarak seçilmesiyle serbest parametre içermeyen bir yaklaşım kullanılarak incelenmiştir. QRPA temelinde yer alan Hartree-Fock-Bogolyubov (HFB) yaklaşımından ötürü, ortalama alan potansiyeli ile ilişkili olarak kendiliğinden tek parçacık hamiltoniyeni simetrilerilerinin kırılması var olan titreşim seviyelerinin içerisine, titreşim hareketinin dışında sıfır enerjili farklı seviyelerin (sahte haller) karışmasına neden olmaktadır. Sahte haller içermesinden dolayı 1⁻ dipoller çekirdeğin iç uyarılmalarını tam karşılamamaktadır (Feifrlik ve ark., 1968). Bu yüzden, bu sahte hallerin enerji spektrumundan çıkarılması için çeşitli yaklaşımlar kullanılmıştır. Bu yaklaşımlardan biri Marshalek ve Weneser (1969)'in metodlarının Pyatov ve Chernej (1972) tarafından geliştirilmesiyle ileri sürülmüştür (Pyatov, 1974; Kuliev ve Pyatov, 1968; Pyatov ve Salamov, 1977). Bu sahte hallerin giderilmesi hamiltoniyenin restorasyonu ile mümkündür. Bu çalışmada, QRPA bazında restorasyonun gerçekleşmediği (NTGI), yalnız öteleme değişmezliğin (TI), yalnız Galileo değişmezliğin (GI) ve hem öteleme hem Galileo değişmezliğin (TGI) restore edildiği dört model elde edilmiştir. Modellerle gerçekleştirilen restorasyonların, spektruma karışan sıfır enerjili sahte hallerin (Goldstone modu) ayrılmasına katkısı incelenmiştir. Bu modeller ile çekirdeklerin indirgenmiş geçiş olasılıkları, enerjileri hesaplanarak karşılaştırılmıştır. İncelenen çekirdeklerin elektrik dipol uyarılmalarının bazı karakteristik özelliklerinin incelenmesinde Öteleme ve Galileo (Lorentz) Değişmez (Translational Galilean Invariant-TGI) Kuaziparcacık Rastgele Faz Yaklasımı modeli kullanılmıştır (Quasiparticle Random Phase Approximition-QRPA) (Kuliev ve ark., 2000). Bu teori daha önce düşük enerjili seviyelerin özelliklerinin incelenmesinde kullanılmıştır. Bu çalışmada teorik temelin bu şekilde seçilmesinin nedenlerinden biri daha önce bu bölge üzerinde bu teori ile yapılmış herhangi bir çalışmanın gerçekleştirilmemiş olması, bir diğeri ise daha önce aynı model kullanılarak düşük enerjili elektrik dipol uyarılmaları için gerçekleştirilmiş olan çalışmanın başarısıdır (Kuliev ve ark., 2010). Öteleme ve Galileo değişmez QRPA modelinin geliştirildiği ve makas mod enerji bölgesinde (4 MeV'e kadar) birkaç elektrik dipol uyarılmanın gözlenebileceğinin öngörüldüğü bu çalışma, Amerika Triangle Universitesi Nükleer Laboratuvarında Nükleer Rezonans Floresans tekniği kullanılarak²³²Th çekirdeği için yapılan deney sonucunda ilk kez gözlenmiştir. Teorik ve deneysel sonuçlar arasında başarılı bir örtüşme sağlanmıştır (Kuliev ve ark., 2010; Adekola ve ark., 2011). Bu sonuç, düşük enerji bölgelerini açıklamakta başarı sağlayan Öteleme ve Galileo Değişmez QRPA modelin GDR bölgesi için de uygun sonuçlar verebileceği

öngörüsünü oluşturarak bu çalışmanın modeli olarak seçilmesinin motivasyonunu oluşturmuştur.

Modern nükleer yapı teorisi çalışmaları zaman içerisinde, kararlı çekirdeklerin makroskopik ve mikroskopik incelemelerinden egzotik bölgeye, kararlılık vadisinden kısa ömürlü çekirdeklere ve nükleer astrofizik uygulamalarına dönüşmüştür. Temel sorun, nükleer özelliklerin, nükleer uyarılmaların ve reaksiyonların birleşik tanımını sağlayacak tutarlı bir mikroskopik teorik çerçeve oluşturmaktır (Paar ve ark., 2007). Bu bağlamda, bu çalışmada kullanılan mikroskobik teorik çerçeveyi oluşturan TGI QRPA modelinde ortalama alan ve çiftlenim potansiyellerinin neden olduğu öteleme ve Galileo değişmezliğin kırınımını restore edildiği bir hamiltoniyen kullanılmıştır. Bu hamiltoniyenin NGI, GI ve TI modellerinden farkı ortaya konmaya çalışılmıştır. Bu hamiltoniyende restore eden kuvvetlerin ayrılabilir bir şekilde özuyumlu seçilmesi modelin serbest parametre içermemesini sağlamıştır. Kullanılan model ile ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁰Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W ve ²³⁶⁻²³⁸U izotop zincirlerinde bulunan geçiş ve deforme çekirdeklerin dev dipol rezonans özellikleri araştırılmıştır.

İkinci bölümde kolektif uyarılma modlarının, teorik ve deneysel incelenmesinde kullanılan yaklaşımlar ve çekirdek modelleri hakkında bilgiler sunulmuştur. Bu bölümde, incelenen çekirdekler için diğer çekirdek potansiyellerine göre daha gerçekçi ve uygun olan, tek parçacık enerjileri ve dalga fonksiyonlarının hesaplanmasında kullanılan Woods-Saxon potansiyelinin özellikleri ortaya konmuştur. İncelenen çekirdeklerin süperakışkan özelliklerinden dolayı temel alınan süperakışkan model parametrelerinin elde edildiği denklemlere yer verilmiştir. Çalışmanın modelini oluşturan QRPA'nın temel denklemleri verilmiştir. Bu bölümde ayrıca, kolektif uyarılma modlarına, bu modlardan elektik dipol geçişlerine ve bu geçişlerin özelliklerine yer verilmiştir. Özellikle elektrik dipol uyarılmalarından olan dev dipol rezonansın temel özellikleri incelenmiştir.

Üçüncü bölümde ortalama alan potansiyellerinin neden olduğu kırılmış simetriler, kırılan bu simetrilerin restorasyonunu sağlamak için ortalama alan potansiyeli ile özuyumlu olarak seçilen etkin kuvvetler ve bu restorasyonu sağlayan kuantum mekaniksel Pyatov yöntemi ele alınmıştır. Söz konusu yöntem QRPA model çerçevesinde, deforme çift-çift çekirdekler için, yalnızca öteleme değişmezlik (TI), yalnızca Galileo değişmezlik (GI) ve hem öteleme hem de Galileo değişmezliği (TGI) restore etmekte kullanılmıştır. Elde edilen analitik ifadelere yer verilmiştir.

Dördüncü bölümde, elektrik dipol geçişin karakteristik özelliklerinden olan fotoabsorbsiyon tesir kesitleri ve radyasyon kalınlıkları verilmiştir. Fotoabsorbsiyon tesir kesitlerinin elde edilmesinde kullanılan enerji ağırlıklı ve enerji ağırlıksız toplam kuralları, güç fonksiyonu ifadelerine yer verilmiştir. Deforme çekirdeklerin fotoabsorbsiyon tesir kesitlerinde görülen yarılma ve Lorentz parametreleri incelenmiştir.

Beşinci bölümde çift-çift ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁴Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W ve ²³⁶⁻²³⁸U izotopları için elde edilen sayısal sonuçlar verilmiştir. 150<A<190 çift-çift deforme çekirdek bölgesinde bulunan $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişleri için indirgenmiş geçiş olasılıkları (B(E1)) ve enerji (ω_i) değerleri, K=0 ve K=1 dalları için toplam fotoabsorbsiyon tesir kesiti sonuçları sunulmuştur. Bununla birlikte karşılaştırma yapmak için daha ağır deforme çekirdeklerden A>220 bölgesinde bulunan ²³⁶⁻²³⁸U izotopları için elde edilen sonuçlara yer verilmiştir. Ayrıca elektrik dipol geçişlerinin bazı karakteristik özelliklerinden, asimptotik kuantum numaraları ($[Nn_z\Lambda\Sigma]$), radyasyon kalınlıkları Γ (E1), indirgenmiş radyasyon kalınlıkları Γ_{red} (E1) ve integre edilmiş tesir kesitleri sonuçları verilmiştir. Verilen tüm sonuçlar diğer deneysel ya da teorik çalışmalar ile karşılaştırılmıştır.

Altıncı bölümde tez çalışmasından elde edilen sonuçlar sunulmuş, deneysel ve teorik çalışmalar için öngörülerde bulunulmuştur.

Bu tez çalışmasında aşağıdaki araştırma sorularına cevap aranmıştır:

1. Nükleer dipol uyarılma spektrumunun GDR enerji bölgesinde, spin ve paritesine göre (I^{π}) hangi dipol mod (1⁻elektrik ya da 1⁺ manyetik) daha

baskındır? Bu modların K=0 ve K=1 dallarında enerji ağırlıklı toplamlarına katkıları ne şekildedir?

- 2. Dipol uyarılmaların karakteristik büyüklüklerinin elde edilmesinde öteleme ve Galileo değişmezliğin restore edildiği modelin (TGI QRPA), öteleme ve Galileo değişmezliğin restore edilmediği (NTGI QRPA), sadece Galileo değişmezliğin restore edildiği (GI QRPA) ve sadece öteleme değişmezliğin restore edildiği (TI QRPA) yaklaşımların sonuçları arasındaki farklılıklar nelerdir? Restorasyonların, B(E1) gücüne ve enerji spektrumunun dağılımına bir etkisi bulunmakta mıdır?
- 3. Dev dipol rezonans bölgesindeki uyarılmalarda, TGI QRPA'da yer alan izoskaler ve izovektör etkin kuvvetlerin uyarılma spektrumundaki dağılıma katkısı ne şekildedir?
- 4. GDR enerji bölgesindeki toplam B(E1) değerleri için K'nın hangi dalı baskındır? K=0 ve K=1 dallarının enerji ağırlıklı toplamlarına katkıları ne şekildedir?
- Düşük enerji seviyelerinde 10-20.10⁻³ e²fm² olduğu bilinen (Zilges ve ark., 1991) indirgenmiş geçiş olasılığının GDR bölgesindeki değeri yaklaşık olarak kaç e²fm² dir?
- 8-20 MeV enerji aralığında K=0 ve K=1 dallarının toplam B(E1) değerlerinin oranları SB(E1,K=1)/SB(E1,K=0) nasıl değişmektedir?
- GDR enerji bölgesinde K=0 ve K=1 dallarının toplam B(E1) değerleri, deformasyonun değişimiyle nasıl değişmektedir?
- 8. 8-20 MeV enerji aralığında K=0 ve K=1 dallarında oluşan maksimum B(E1) değerleri nasıl değişmektedir?
- 9. Dev dipol rezonans bölgesinde teorik olarak elde ettiğimiz elektrik dipolün karakteristik özeliklerine (fotoabsorbsiyon tesir kesiti ve enerji değerleri) ait sonuçların deneysel çalışmalarla elde edilen verilerden farklılığı var mıdır?
- 10. Dipol fotoabsorbsiyon tesir kesitlerinin hesaplanmasında kullanılan Lorentz ve Kuliev-Salamov fonksiyonlarının farklılıkları nedir?
- 11. GDR enerji bölgesinde, elektrik dipol enerji ağırlıklı radyasyon kalınlığı $(\Gamma_0(E1))$ ve enerji ağırlıksız radyasyon kalınlığı $(\Gamma_0^{red}(E1))$ değerleri, K=0 ve K=1 dalları için hangi aralıkta değişmektedir?

- 12. Fotoabsorbsiyon tesir kesiti enerji grafiğinde yer alan, GDR'nin karakteristik büyüklükleri olan tesir kesiti (σ), rezonans genişliği (Γ) ve enerjinin (E) TGI QRPA ile bulunan teorik değerlerinin deneysel verilerin yorumlanmasına katkısı nedir?
- 13. TGI QRPA yaklaşımıyla teorik olarak elde edilen integre edilmiş tesir kesiti $(\boldsymbol{\sigma}_{0}, \boldsymbol{\sigma}_{-1} \text{ ve } \boldsymbol{\sigma}_{-2})$ sonuçlarının deneysel verilerin yorumlanmasına katkısı nedir?
- 14. Deforme çekirdeklerin GDR enerji bölgesindeki enerji spektrumlarında iki kuaziparçacık yapısı (nötron-nötron ya da proton-proton çiftlenimleri-nn-pp) nasıl dağılım göstermektedir?

BÖLÜM 2. TEORİ

Bu bölümde çekirdek modelleri ve dipol uyarılamalarına ait bilgilere yer verilmiştir.

2.1. Çekirdek Modelleri

İnsanlık, tarihsel süreç içerisinde içinde var olduğu evreni anlamak için çabalamaktadır. Bu çaba öncelikle etrafında var olan maddeyi anlama gayreti ile başlamış, değişen zaman, zarifleşen zihin yapısı ve gelişen teknoloji ile birlikte kuarklara kadar ilerlemiştir. Tarihsel gelişim içerisinde nükleer fizik ve nükleer fiziği içeren olaylar önemli bir yer tutmaktadır. 19. yy sonlarında radyoaktivitenin keşfi ile başlayan nükleer fizik 1930'lu yıllarda gelişen matematik özellikle de kuantum mekaniği yardımı ile temellerine kavuşmuş ve teorik felsefenin bir dalı olarak tarihte yerini almıştır. Nükleer yapı fiziğinde yapılan deneylerin teknolojinin gelişimine paralel olarak ilerlemesi ile birlikte artan deneysel verileri açıklama gerekliliği nükleer modellere olan ilgiyi giderek artırmıştır. Bu bağlamda Sıvı Damla Modeli ve Nükleer Kabuk Modeli genel olarak kabul edilen iki modeldir. Sıvı Damla Modeli çekirdeği bir sıvının damlası ile analoji yaparak açıklamaya çalışırken, Nükleer Kabuk Modeli nötron ve protonların kuantum boyutunda davranışlarını ele almaktadır (Hans, 2011). Bu bölümde çekirdeği anlamak için ortaya atılan bu çekirdek modelleri ve bu iki modelden türetilen modellerden bahsedilecektir.

2.1.1. Sıvı damla modeli

Sıvı Damla Modeli (SDM) tarihsel olarak ilk ortaya atılan çekirdek modelidir. Bu modelde Niel Bohr'un "çekirdeğin içerisine giren bir nükleon burada yer alan ve oldukça etkili olan nükleer etkileşme nedeni ile kendisine has özelliklerini kaybeder" birleşik çekirdek fikrinden esinlenilmiştir. Sıvı damla modelinde nükleonların

bireysel hareketi önemini yitirmekte, nükleer madde yüklü bir sıvı damlası gibi hareket etmektedir. Bu hareket tarzı moleküler fizikteki van der Waals etkileşimine benzetilmektedir çünkü ele alınan bir sıvı damlasını da bir arada tutan kuvvet kısa menzillidir. Bu model yarı deneysel bir model olmakla birlikte nükleer bağlanma enerjisini nötronlar ve protonların bir fonksiyonu olarak tanımlamaktadır. Ayrıca, çoğu çekirdeğin kararlılığını incelemek için de etkili bir yoldur. Weiszacker (1935) tarafından geliştirilen sıvı damla modelinde, nükleonların bağlanma enerjisi,

$$B(N,Z) = a_h A - a_y A^{\frac{2}{3}} - a_C \frac{Z(Z-1)}{A^{\frac{1}{3}}} - a_{sim} \frac{(A-2Z)^2}{A} - \frac{a_e}{A^{3/4}}$$
(2.1)

formülü ile hesaplanmaktadır (Bethe ve Bacher, 1935). Burada a_h, a_y, a_C, a_{sim} ve a_ç sırasıyla hacim, yüzey, Coulomb, simetri ve eşlenme katsayılarını ifade etmektedir ve deneysel olarak elde edilmektedirler. Sıvı damla modeli tarafından ortaya konan nükleer bağlanma enerjileri deneysel sonuçlara oldukça yakın değerler üretmektedir. Bu model nükleer ayrışma reaksiyonlarını açıklamakta oldukça başarılı olmuştur.

Şekil 2.1. Sıvı Damla Modeli tarafından hesaplanan bağlanma enerjileri ile deneysel olarak ölçülen bağlanma enerjileri arasındaki fark (Zelevinsky, 2017).

Diğer yandan, SDM çekirdeklerin bağlanma enerjisini açıklamakta yetersiz kalmaktadır. Bazı çekirdeklerin bağlanma enerjileri sıvı damla modelinin tahmin ettiği değerlerden sistematik sapmalar sergilemektedirler. Bağlanma enerjilerinde meydana gelen bu sapmalar sadece belirli proton ya da nötron sayılarında meydana gelmektedir. Şekil 2.1.'de SDM tarafından hesaplanan bağlanma enerjileri ile deneysel olarak ölçülen bağlanma enerjileri arasındaki fark gösterilmektedir. Bu eksikliğin giderilmesi için yapılan çalışmalar yeni sonuçlar doğurmuştur. Son hali olan kollektif (ortak) model Rainwater (1950), A. Bohr ve B. Mottelson (1953) tarafından çekirdekteki vibrasyon (titreşim) ve rotasyon (dönme) hareketlerinin anlaşılmasına yardımcı olunarak geliştirilmiştir

2.1.2. Kabuk model

Atom çekirdeğinin homojen bir sıvı damlası gibi olmadığı ve atom gibi kabuk yapısına sahip olduğunun ortaya çıkmasıyla kabuk model gelişmeye başlamıştır. Çekirdeğin kabuk modelinin oluşturulmasında Pauli dışarlama ilkesi temel bir role sahiptir. Buna göre, protonlar ve nötronlar (elektronların yanı sıra) yarım spinlere sahiptir ve Fermi–Dirac istatistiklerine uymak zorundadırlar. Atom çekirdeğinin kabuk modeli, spin (J) ve parite (P) gibi nükleer taban durumlarının kuantum karakteristiklerini ve ayrıca bazı uyarılmış durumların doğasını açıklamakta başarılı olmuştur. Bununla birlikte, çekirdeklerdeki özdeş nükleonların eşlenmesi ve nükleer kabukların oluşumundaki spin-yörünge etkileşiminin önemli rolü gibi olayları da açıklamıştır (Ishkanov ve Kapitanov, 2015). 1950'lerin başında çalışılmaya başlandıktan (bağımsız olarak Mayer ile Haxel, Jensen ve Suess tarafından) sonra, nükleer kabuk modeli nükleer yapının anlaşılmasında önemli bir rol oynamıştır.

Sıvı damla modeli ile hesaplanan, bağlanma enerjilerinde sapmalar meydana gelen çekirdekler atom fiziğindeki soygazlara benzetilebilir. Geleneksel olarak bağlanma enerjilerinde sapmaların meydana geldiği proton ya da nötron sayıları 2, 8, 20, 28, 50, 82 ve 126 olarak verilir ve bu sayılar sihirli sayılar olarak adlandırılır (Iskhanov ve Kapitanov, 2015). Bu durumu açıklamak için Schrödinger dalga denklemi farklı nükleer potansiyeller ile çözülmüş ve sihirli sayılar elde edilmeye çalışılmıştır. Bu

amaçla kullanılan ilk potansiyel analitik çözümleri elde edilebilen kare kuyu potansiyelidir, fakat bu potansiyel ilk üç sihirli sayı dışındaki sayıları türetememiştir (2, 8, 20, 34, 58, ...) (Soloviev, 1976). Harmonik Osilatör potansiyeli bir diğer potansiyel olarak ele alınmıştır, lakin bu potansiyel de isteneni vermemiştir. Harmonik Osilatör potansiyeli ile elde edilen sihirli sayı adayları şöyledir 2, 8, 20, 40, 70, 112 ve 168. Bir diğer potansiyel Nilsson potansiyelidir. Küresel bir çekirdek için başlayan çalışmalar (Nilsson, 1955) deforme bir alanda meydana gelen çiftlenimin hesaba katılmasıyla tek parçacık spektrumları hesaplanarak devam etmiştir (Meng, 2016). Öncelikle küresel harmonik osilatör içerisindeki tek parçacık hareketi, nükleonların kendine özgü hareketinin seviye spektrumu hesaplanmıştır. Deforme nükleer alan içerisindeki parçacık hareketi çiftlenim ve spin-orbit ayrımı ile silindirik simetrili bir harmonik osilatör potansiyelinden meydana gelen tek parçacık hamiltoniyeni tarafından yönetilmektedir. Çekirdeğin tek parçacık seviyelerinin sınıflandırılması ortalama potansiyelin simetrisine bağlıdır. Bu seviyelerin sınıflandırılması bazı özelliklere bağlıdır. Bu özellikler çekirdeğin şekline göre değişim gösterebilmektedir (Tablo 2.1.).

Tablo 2.1. Tek parçacık seviyelerinin çekirdeğin şekline göre bağlı bulunduğu özelliklerin karşılaştırılması

Küresel çekirdekler	Eksenel simetrik elipsoidal çekirdek
Enerji	Enerji
Parite	Parite
Toplam açısal momentum j ve onun izdüşümü Ω	Tüm açısal momentumun nükleer simetri eksenindeki izdüşümü K

Tablo 2.1.'de görüldüğü gibi eksenel simetrik deforme çekirdeklerde tek parçacık seviyelerinin sınıflandırılmasında j geçerli bir kuantum sayısı değildir. Bununla birlikte çekirdek eksenel simetrik değilse j ile birlikte K kuantum sayısının da önemini yitirmektedir (Soloviev, 1976).

Şekil 2.2. Deforme çekirdekler için asimptotik kuantum numaraları (Kurchatov Institute- High Energy Physics Division http://dbserv.pnpi.spb.ru/)

Yukarıda ifade edildiği gibi eksenel simetrik potansiyeldeki bir parçacığın hareketi Nilsson tarafından tanımlanmıştır. Buna göre potansiyel, anizotropik harmonik osilatör şekline sahiptir ve spin-orbit çiftlenimi ile birlikte potansiyelin üst kısmını düzleştirip kare kuyuya yaklaştırmayla orantılı olan l² katsayısını içermektedir. Bu durumda gerekli işlemler yapıldıktan sonra elde edilen enerji özdeğerleri $r(Nn_z \Lambda \Sigma)$ 'dir ve boyutsuz matrisin köşegenleştirilmesiyle elde edilmiştir. Tek parçacık özfonksiyonu ise $\varphi_K(Nn_z \Lambda \Sigma) = \sum_{I\Lambda} a_{I\Lambda} |NI\Lambda\Sigma\rangle$ ile verilmektedir. Tek parçacık dalga fonksiyonları, yukarıda görüldüğü üzere kompakt formdaki asimptotik Nilsson kuantum sayılarıyla etiketlenmiştir (Meng, 2016). Nilsson kuantum numarası $[Nn_z\Lambda\Sigma]$ 'dır. Burada N baş kuantum sayısı, nz simetri ekseni boyunca osilatör kuantum sayısı, Λ ve Σ sırasıyla parçacığın orbital açısal momentum ve spininin simetri ekseni üzerindeki izdüşümleridir (Morse ve ark., 1972). Şekil 2.2.'de bazı kuantum sayılarının gösterimi bulunmaktadır. K ve π kuantum numaraları tek
parçacık seviyelerini tümüyle temsil etmemektedir bu eksikliği gidermek için asimptotik kuantum numaraları kullanılmaktadır.

Tek parçacıklı bir sistemi tanımlamak için kullanılan bir diğer potansiyel Woods-Saxon potansiyelidir. Woods-Saxon potansiyeli Haxel ve ark. (1949) ile Mayer (1950) tarafından geliştirilip spin-orbit etkileşimlerinin eklenmesi ile gerçekçi nükleer potansiyel olarak elde edilmiştir. Nükleon saçılma deneylerinden elde edilen sonuçla nükleer potansiyelin, nükleer madde dağılımına benzediği ve Şekil 2.3.'de gösterilen sonlu derinlikte ve küresel simetrik olan Woods-Saxon potansiyeli ile temsil edilebileceği anlaşılmıştır. Nilsson potansiyeli yüksek duvarlıdır bu nedenle nükleer potansiyel yaklaşım için iyi bir yaklaşım değildir. Ancak asimptotik kuantum numaraları her iki potansiyel için geçerlidir.

Şekil 2.3. Nükleer potansiyeller (Heyde, 1994)

Şekil 2.3.'deki R nükleer yarıçaptır. Woods-Saxon potansiyelinin yüzey etrafındaki kısmı saçılma reaksiyonlarında önem arz etmektedir. Çekirdek içerisinde nükleonların yoğunluk dağılımını çok iyi ifade eden Woods-Saxon potansiyeli çekirdek dışında üstel (eksponansiyel) olarak sıfıra gitmektedir. Potansiyel iki kısımdan oluşmaktadır: birinci kısım nükleonların ürettiği izoskaler ve izovektör ortalama alan potansiyeli iken ikinci kısım ise spin-orbital potansiyelidir (Soloviev, 1976). Hamiltonyen operatörü aşağıdaki gibidir:

$$H = \frac{\hbar}{2m} \nabla^2 + \frac{-V_0^{\tau}}{1 + \exp((r - R)/a)} - V_{l.s}(r) ls.$$
(2.2)

Denklem 2.2'nin ikini ve üçüncü ifadesindeki V_0^{τ} ve V_{ls} açıkça şu şekilde verilir:,

$$V_0^{\tau} = V_0 + V_1^{\tau} \tag{2.3}$$

$$V_0(r) = -\frac{V_0}{1 + \exp[(r - R_0)/a]}$$
(2.4)

$$V_1^{\tau} = \tau_z \eta \frac{N - Z}{A} V_0 \quad ; \qquad \eta = \frac{V_1}{4V_0}$$
(2.5)

$$V_{ls}(r) = -\xi \frac{1}{r} \frac{dV(r)}{dr}$$
(2.6)

Woods-Saxon potansiyelinin izovektör (V_l) kısmından dolayı nötron ve proton sistemlerinin derinliği birbirinden farklıdır:

$$V_0^N = V_0(r) \left[1 - 0.63 \frac{N - Z}{A} \right]$$
 ve $V_0^Z = V_0(r) \left[1 + 0.63 \frac{N - Z}{A} \right]$ (2.7)

Burada $V_0=53 \text{ MeV}$, $R_0=r_0A^{1/3}$, $r_0=1.24x10^{-13}\text{ cm}$, yüzey kalınlığı $a=0.63x10^{-13}\text{ cm}$, spin-yörünge etkileşme parametresi $\xi=0.263\times[1+2(N-Z/A] (10^{-13}\text{ cm})^2)$ 'dir (Kuliev ve Pyatov, 1968). Eşitlik 2.2.'deki potansiyel ifadelerine yüzey etkisinin ihmal edildiği aşağıdaki gibi verilen Coulomb potansiyeli eklenmelidir:

$$V_{c}(r) = \frac{(Z-1)e^{2}}{r} \begin{cases} \frac{3r}{2R_{0}} - \frac{1}{2}(r/R_{0})^{3} & , \quad r \leq R_{0} \\ 1 & , \quad r > R_{0} \end{cases}$$
(2.8)

Denklem 2.2.'de verilen Hamiltonyen ile Schrödinger dalga denklemi çözüldüğünde Şekil 2.4.'te de görüldüğü üzere küresel çekirdekler için sihirli sayılar elde edilmiştir.

Şekil 2.4. Schrödinger dalga denkleminin soldan sağa sırasıyla Woods-Saxon potansiyeli ve Woods-Saxon'a yapılan spin-orbit düzeltmesi ile çözüldüğünde elde edilen enerji kabuklarının sıralaması (Krane, 1987)

Deforme Kabuk Model: Nükleonların ortalama bir alan içerisinde bağımsız olarak hareket etmesi üzerine olan varsayım kabuk modeli ve diğer tüm mikroskobik teorilerin temelini oluşturmaktadır. Bu ortalama alanı oluşturan potansiyel nükleonlar ve nükleonların yapmış olduğu etkileşimler tarafından üretilmektedir. En basit şekli ile ele aldığımızda bu potansiyel kuyusu küreseldir. Fakat bu kapalı kabuklara sahip ya da kapalı kabuk komşuluğunda doğru olan bir durumdur. Kapalı kabuk bölgesinden uzaklaşmaya başlandığı andan itibaren artık potansiyelin de küresellikten sapacağını hesaba katma zorunluluğu ortaya çıkmaktadır. Deforme potansiyel düşüncesi birçok deneysel gözlemi açıklamak için önem arz etmektedir. Bu deneysel gözlemler dönme bantlarının varlığı, çok büyük dört kutuplu momentler, büyük dört kutuplu geçiş olasılıkları, 16 kutuplu matris elemanları ve fisyon izomer olarak sıralanabilir. Bir önceki bölümde Woods-Saxon potansiyelinin küresel çekirdekleri açıklamaktaki başarısından bahsetmiştik, o halde Woods-Saxon potansiyelini deforme çekirdekler için genelleştirmek akla uygun olacaktır (Faessler ve Sheline, 1966; Ring ve Schuck, 2004).

$$V(r,\beta,\phi) = -V_0 \left[1 + exp\left(\frac{r - R(r,\beta,\phi)}{a(\beta,\phi)}\right) \right]^{-1}$$
(2.9)

$$V_{ls}(r,\beta,\theta) = 2\xi(\boldsymbol{p} \times \boldsymbol{s})gradV(r,\beta,\theta)$$
(2.10)

Burada, β deformasyon parametresi, p çizgisel momentumdur (Soloviev, 1976).

2.1.3. Ortalama alan tabanlı mikroskobik teoriler

Yalnızca taban seviyesinin özelliklerini değil aynı zamanda uyarılmış seviyelerin de mikroskobik yapısını ve seviye şemalarını başarılı bir şekilde tanımlamaktadırlar (Harakeh ve Woude, 2001). Bu yaklaşımlar aşağıda sıralanmıştır.

 Hartree-Fock Öz Uyumlu Alan: Temelde bu metot etkileşim halinde olan çokcisim problemini, iki-cisim potansiyelini girdi olarak kullanarak, bir alan içerisinde etkileşmeyen parçacıklar problemine indirger. Kütlesi yaklaşık A = 20 olan hafif çekirdekler için bu metot tüm çekirdeğe uygulanabilir. Bu modelde, nükleonlar Pauli prensibine uygun olarak, mevcut en düşük tek parçacık hallerini doldurur. Orta ve ağır çekirdekler için ise bu metot çekirdeğin dışında kalan zayıf ya da valans nükleonlar arasındaki etkileşim hesaba katılarak kullanılabilir. Bu metot her ne kadar hesaplamalarda kolaylık sağlasa da nükleonlar arası kuvvetin uzun menzil bileşenini (rezidüel etkileşim) ihmal etmektedir. Yakın zamanda yapılan hesaplamaların çoğunda bu etkileşim ele alınmaya çalışılmıştır. Bu girişimler arasında kayda değer olanları kuazi-parçacık ya da BCS'dir.

- Tamm-Dancoff Yaklaşımı: Nükleer uyarılmaların gerçekçi mikroskobik yaklaşımla ele alan en basit yöntemdir, HF yaklaşımına temellendirilmiştir.
- Zamana Bağımlı Hartree-Fock Yaklaşımı: Hartree-Fock teorisinin değişik varyasyonlarından birisi de zamana bağımlı Hartree-Fock yöntemidir. Bu yöntem zaman bağımlı fenomenlerin örneğin uyarılmış seviyelerin hesaplaması için kullanılır.
- Rastgele Faz Yaklaşımı: Zamana bağımlı Hartree-Fock Yaklaşımının bir alternatif metodudur. Plazma salınımdan esinlenilmiştir ve Bohm ve Pines tarafından geliştirilmiştir. Bu teori Zamana Bağlı Hartree-Fock teorisinden daha düşük dereceli çözümler üretir.
- Etkileşen Bozon Modeli: Çift açısal momentum taşıdıkları ve çiftlenmiş nükleonların bozonları oluşturduğu varsayılır.
- BCS Metodu: Bu yaklaşım nükleer kuvvetin kısa menzil etkileşimini hesaba katar ve uzun menzili pertürbasyon metodu ile ele alır. Bu teori Bardeen-Cooper-Schrieffer (BCS) tarafından süper iletkenlik için geliştirilen yöntemden esinlenilmiştir.

Bu ve benzeri daha genelleştirilmiş teoriler deforme çekirdekler için geliştirilmiş ve uygulanmıştır (Hans, 2011). Tablo 2.2.'de nükleonlar arası etkileşmeleri içeren ve içermeyen bazı ortalama alan teorilerinin dinamik ve statik olma durumlarına göre gruplandırılmaları verilmiştir.

	Statik	Dinamik
Eşleşme yok	Hartree-Fock (HF)	Zaman Bağımlı HF (TDHF, RPA)
BCS eşleşmesi varken	HF+BCS	TDHF+BCS
Eşleşme varken	Hartree-Fock-Bogoliubov (HFB)	TDHFB (QRPA)

Tablo 2.2. Bazı ortalama alan teorileri (Ebata ve Nakatsukasa, 2013)

RPA: Random Phase Approximation; QRPA Quasi-particle RPA)

Nükleonlarda bulunan kuarkların bağlanmasından güçlü etkileşimler sorumlu olmasına rağmen, nükleonların bağlanması etkin kuvvetler ile açıklanabilir. Nükleonların çekirdek içerisindeki hareketlerini doğru bir şekilde tanımlayabilmek için çekirdeği, nükleonların nükleer kuvvet ile etkileşime giren bir fermiyonik çok cisimli kuantum sistem olarak tanımlamak gerekir. Genel olarak, Schrödinger denklemi çözülmelidir, burada Hamiltoniyen bir kinetik terim ve iki cisimli, üç cisimli ve daha yüksek dereceli etkileşim terimlerini içermelidir.

2.1.4. Süperakışkan model

Önceki bölümlerde ele alınan kabuk modeli ve genelleştirilmiş model, çekirdeklerin birçok özelliğini açıklamayı ve çekirdeklerin yükleri ve kütle sayıları değiştikçe genel eğilimlerini ortaya koymayı mümkün hale getirmiştir. Bununla birlikte, kabuk modeli veya genelleştirilmiş model çerçevesinde açıklanamayan belirli özellikler vardır. Bu durum, çekirdeklerin taban ve uyarılmış durumlarının özelliklerinin tanımlanmasında farklı bir yaklaşıma ihtiyaç olduğunu göstermektedir. Bu özellikler ve eğilimler arasındaki en önemlilerden bazıları:

- Çift ve tek kütleli çekirdeklerin kütleleri arasındaki fark,
- Çift-çift çekirdeklerin uyarılmış seviyelerinin spektrumlarında bir enerji boşluğunun varlığı, tek ve tek-tek çekirdeklerin spektrumlarında böyle bir boşluğun olmaması (Şekil 2.5.),
- Tek parçacık seviyelerinin yoğunluğu,
- Çekirdeklerin denge deformasyonları ve kütle sayısına bağlılığı,
- Kollektif hareketler durumunda çekirdeklerin eylemsizlik parametrelerinin değerleridir (Sitenko ve Tartakovski, 1997; Ring ve Shuck, 2004).

Şekil 2.5. ⁵⁰Sn izotoplarının uyarılma spektrumu. Çift-çift izotoplarda (A=116, 118, 120) seviyeler arasında boşluk bulunurken, tek kütleli izotoplarda (A=115, 117, 119,121) bu boşluk bulunmamaktadır (Ring ve Shuck, 2004)

Yukarıda bahsedilen var olan modellerin açıklayamadığı durumlar süperakışkan modelin gelişimine neden olmuştur. Rezidüel kısa menzilli kuvvetlerin doğası iki nükleon arasında, açısal momentumun sıfıra eşit olduğu, çok güçlü bir etkileşime (çiftlenim etkisi) neden olur. Çekirdeklerin süperakışkanlık özelliği, nükleon-nükleon çifti korelasyonlarından kaynaklanır ve bu korelasyonlar nükleonlar arasındaki rezidual etkilesimin bir tezahürüdür. Bu nedenle, bu korelasyona genellikle süper iletken çifti korelasyonları denir. Çekirdeklerin özelliklerinin açıklanmasında özellikle önemli bir rol oynayan kısa menzilli çiftlenim etkileşiminin rezidüel etkileşimden ayrılması mümkündür. Bazı deneysel veriler (örneğin, hafif çekirdeklerde son nötronun bağlanma enerjisi, taban durumlarındaki çift-çift cekirdeklerin sıfır spinleri vs.), bu cekirdek nükleonlarının, toplam açısal momentumun bileşenleri haricinde aynı enerji ve aynı kuantum sayılarına sahip seviyelerde olduğu zaman, iki nükleon arasında güçlü bir korelasyon bulunduğuna işaret etmektedir. Modelde, rezidüel etkileşim daha rafine yöntemlerle tamamen farklı olarak hesaba katılmaktadır. Nükleonlar arasındaki rezidüel etkileşimi, yani nükleonlar arasındaki korelasyonu dikkate almak kabuk model çerçevesinde çok zahmetli bir iş olduğu için genellikle, kabuk modelinde korelasyon hesabı yapılmaz,

yani çekirdeğin kendine has bir alanda (öz uyumlu-self consistent) bağımsız olarak hareket ettiği varsayılır. Süper akışkan modeldeki kuazi parçacıklara geçiş, kuazi parçacıklar arasındaki etkileşim ihmal edildiyse bile korelasyon etkilerinin önemli bir bölümünü hesaba katmamızı sağlamaktadır.

Çekirdeğin süper-akışkan modeli, bağımsız-parçacık modelinin öz uyumlu ortalama alanına dayanır, bununla birlikte, süperiletkenliğin çift korelasyonlarına neden olan, nükleon-nükleon etkileşimlerinin kısa menzilli kısmı hesaba katılır. Süperakışkan model, çekirdek yapısının mikroskobik bir tanımını verir. Süperakışkan model hesaplamalarında, aynı zamanda öz uyumlu ortalama alan gibi uzun menzilli etkileşimle ilişkili olan çok kutuplu kuvvetler de göz önünde bulundurulur. Çekirdeğin yapısını incelemek için kullanılan yaygın ve etkili yöntemlerden biri olan yaklaşımda bu uzun menzilli kalıcı etkileşim hesaba katılmaktadır. Böylece, süperiletkenliğin çift korelasyonlarına izin verilmesi çekirdeklerin bazı önemli özelliklerini açıklamayı mümkün kılmış ve çekirdeğin süperakışkan modelinin geliştirilmesine yol açmıştır (Sitenko ve Tartakovski, 1997).

Süperakışkan modelde, çekirdeğin içindeki bağımsız nükleonların, bağımsızparçacık modelinde olduğu gibi aynı tek parçacık halleri ile karakterize edildiği varsayılmaktadır. Nükleonların çiftlenmesi bu nedenle, bağımsız-parçacık modelinin kuantum sayıları vasıtasıyla tarif edilebilir. Örneğin, bir nükleon, n, l, j ve m kuantum sayıları kümesi tarafından tanımlanırsa, çiftlenmiş nükleon, kuantum sayıları n, l, j ve -m kümesiyle tanımlanmalıdır. Nükleon çiftini ayırmak için belirli bir enerjiye ihtiyaç duyulur ve bu durum tüm nükleonların çiftlendiği çift-çift çekirdeklerde taban durumu ile ilk uyarılmış durum arasında bir enerji boşluğunun ortaya çıkmasına yol açar (ve çekirdeğin toplam açısal momentumu böylece sıfıra eşittir). Benzeri bir enerji boşluğu, diğer fermiyon sistemlerinin enerji spektrumlarında, örneğin metallerdeki elektronlarda da görülür. Spektrumdaki boşluğun varlığı nedeniyle, sistem harici pertürbasyonlara karşı belirli bir istikrar gelistirerek süper iletkenlik fenomenine neden olur. Bu fenomen, es bozonlardan oluşan süper akışkan sistemlerin özelliğiyle ilgilidir çünkü, belirli koşullar altında metallerdeki elektronlar gibi çekirdekteki nükleonlar da çiftler halinde bir araya

gelirler ve bu çiftlerin toplamı, her çift tamsayılı spine sahipmiş gibi, bir Bose gazı örneği olarak kabul edilebilir. Düşük sıcaklıklarda bu Bose gazı, süperakışkanlığa sahip olabilir. Metallerde elektronların süper iletkenlik fenomeni teorisi çift kavramını kullanarak bu şekilde yapılandırılmıştır (Bardeen ve ark., 1957; Bogolyubov, 1958; Bogolyubov ve ark., 1958). Çekirdek durumunda benzer özellik genellikle süperiletkenlik yerine süper akışkanlık olarak adlandırılır. Deforme çekirdeklerin enerji spektrumunda enerji aralığının (gap) olması ile süperiletken metallerin enerji spekrumlarında da enerji aralığının olması benzerliği, çekirdekler için süperakışkan modelin Bogolyubov tarafından kuantum mekaniksel olarak geliştirilmesi ile sonuçlanmıştır. Bogolyubov parçacık uzayını kuazi parçacık uzayını genişleterek bağımsız parçacıklar modelini bağımsız kuazi parçacık modeline dönüştüren Hartree-Fock-Bogolyubov (HFB) yaklaşımını geliştirmiştir. Barden, Cooper, Schieffer (BCS teorisi) tarafından, Bogolyubov'un çalışmaları süperiletkenlik olayını açıklamak için kullanılmıştır. Süperiletkenlik özelliğinin çekirdeğe uygulanmasıyla ortaya çıkan bu model süperakışkan model olarak isimlendirilmistir.

Süperakışkan calışmalarının temelinde yatan metod ikinci kuantulama formalizmidir. Bu formalizmde fermion sistemine ait herhangi bir dalga fonksiyonu otomatik olarak anti-simetriktir. Olağan gösterimde, fonksiyon hesaplamalara uygun olmayan bir formda yazılırken, yeni gösterim çok basit bir form olup bu gösterim hesaplamalar için elverişlidir. Üretme ve yok etme operatörleri (Hamiltoniyen ve dalga fonksiyonlarında görünür), sırasıyla belirli bir seviyedeki nükleonları biraraya getirerek sayısını artırır ya da azaltır. Bu üretme ve yok etme operatörlerinin doğrusal bir kanonik dönüşümü vasıtasıyla, yeni operatörler meydana gelebilirken, genel durumda, bireysel nükleonların değil, belirli kuazi-parçacık türlerinin üretilmesi ve yok edilmesinden sorumludur ve bu kuazi-parçacıklar, nükleon ve boşluk seviyelerinin üstüste bindirilmesidir. $a_{s\sigma}^+$ ve $a_{s\sigma}$ operatörleri, s durumunda parçacık üretme ve yok etme operatörleri olmak üzere, aşağıdaki anti-komütasyon bağıntılarına uyarlar.

$$a_{s\sigma}^{+}a_{s'\sigma'} + a_{s'\sigma'}a_{s\sigma}^{+} = \delta_{ss'}\delta_{\sigma\sigma'}$$

$$a_{s\sigma}a_{s'\sigma'} + a_{s'\sigma'}a_{s\sigma} = 0$$

$$a_{s\sigma}^{+}a_{s'\sigma'}^{+} + a_{s'\sigma'}^{+}a_{s\sigma}^{+} = 0$$
(2.11)

Süperakışkan modelde parçacık üretme ve yok etme operatörleri kuaziparçacık tasvirinde aşağıdaki gibi ifade edilir.

$$a_{s\sigma} = u_{s}\alpha_{s,-\sigma} + \sigma v_{s}\alpha_{s\sigma}^{+}$$

$$a_{s\sigma}^{+} = u_{s}\alpha_{s,-\sigma}^{+} + \sigma v_{s}\alpha_{s\sigma}$$
(2.12)

Burada $\alpha_{s\sigma}^+$ ve $\alpha_{s\sigma}$ operatörleri kuaziparçacık üretme (yok etme) operatörleridir. (2.13) ifadesindeki şart sağlandığında, tüm reel u_s ve v_s reel fonksiyonları için (2.12) ifadesindeki operatörler fermiyonları temsil eden operatörler olarak kullanılmaktadır.

$$\eta_s = u_s^2 + v_s^2 - 1 = 0 \tag{2.13}$$

Üretme ve yok etme operatörleri açısından ifade edilen Hamilton operatörü, kanonik dönüşümün katsayılarına da bağlı olacaktır. Bu katsayılar, varyasyon prensibi kullanılarak taban durumunda sistemin enerjisini en aza indirgeyerek bulunabilir. Burada, çekirdeğin Hamiltonyeninin özfonksiyonlarını ve özdeğerlerini bulma problemi, Hamiltoniyenın sayısal köşegenleştirmesine ve nükleonların iki parçacık etkileşimlerinden rezidüel etkileşimi ayırma problemine indirgenmektedir. Süper akışkan modelde rezidüel etkileşimlerin ele alınmasında yeni yöntemler kullanılır, bunun sayesinde çok parçacıklı sistemin özelliklerini incelemek daha kolaydır. Süperakışkan nükleer modelin temel eşitlikleri pekçok yolla türetilebilinir. Burada varyasyon prensibine dayalı bir yol izlenecektir. Çiftlenme korelasyonlarını ele alan metot çok geneldir ve bu korelasyonlar ortalama alanın simetri özelliklerine veya açık bir biçimine bağlı değildir. Dolayısıyla ilk önce temel denklemler genel biçimde türetilir ve daha sonra küresel veya deforme çekirdeklere uygun gelen özel bir formu elde edilebilmesi için bu denklemler düzenlenir. Süperakışkan model çerçevesinde Hamiltoniyen şu şekilde yazılmaktadır;

$$H_0 = H_{ortalama} + H_{cifilenim} \tag{2.14}$$

Bu ifadedeki terimler sırasıyla, parçacıkların ortalama bir potansiyel alan içerisindeki bağımsız hareketlerini ve parçacıkların çiftlenim etkileşmelerini ifade etmektedir. Çiftlenim etkileşmelerini ifade eden terim aşağıdaki gibi gösterilebilir.

$$H_{cifilenim} = -\sum_{qq'} G(q+, q-; q'-, q'+) a_{q+}^{+} a_{q-}^{+} a_{q-}^{-} a_{q'+}$$
(2.15)

Çiftlenme korelasyonlarına sebep olan kuvvetler, kısa menzilli kuvvetlerdir. Bu kuvvetler, çiftlenme kuvvetlerinin momentum gösteriminde sabit olurken, farklı tek parçacık durumları için matris elemanlarında yaklaşık olarak aynıdırlar. Bu yüzden, G(q+,q-;q'-,q'+) matris elemanını q ve q''den bağımsız olarak görülebilir. Bu durumda matris elemanı şu şekilde ifade edilir:

$$G(q+,q-;q'-,q'+) = G$$
 (2.16)

Orta ve ağır çekirdeklerdeki süperakışkan çiftlenim korelasyonlarına yol açan, rezidüel nükleon-nükleon etkileşiminin kısa menzilli kısmı aşağıdaki gibi ifade edilebilir.

$$H_{cifilenim} = -G_N \sum_{ss'} a_{s^+}^+ a_{s^-}^+ a_{s^-}^- a_{s^+}^- - G_Z \sum_{tt'} a_{t^+}^+ a_{t^-}^+ a_{t^-}^+ a_{t^-}^- a_{t^+}^+$$
(2.17)

Burada G_N nötron, G_Z ise proton için çiftlenim etkileşmesi sabitlerini ifade etmektedir. Nötron ve protonlar için, ayrı ayrı çözüm elde edilebileceği için süperakışkan modelde nötron ve proton sistemlerinin Hamiltoniyenleri ayrı ayrı ele alınabilir.

$$H_0 = H_0(n) + H_0(p) \tag{2.18}$$

İkinci kuantumlanma notasyonu ve (2.17) ifadesi göz önüne alınarak Hamiltoniyenler şu şekilde yazılabilir.

$$H_{0}(n) = \sum_{s\sigma} \{E_{0}(s) - \lambda_{n}\}a_{s\sigma}^{+}a_{s\sigma} - G_{N}\sum_{ss'}a_{s+}^{+}a_{s-}^{+}a_{s'-}a_{s'+}$$

$$H_{0}(p) = \sum_{t\sigma} \{E_{0}(t) - \lambda_{p}\}a_{t\sigma}^{+}a_{t\sigma} - G_{Z}\sum_{tt'}a_{t+}^{+}a_{t-}^{+}a_{t'-}a_{t'+}$$
(2.19)

Burada $E_0(s)$ ve $E_0(t)$ nükleonların ortalama alan potansiyelindeki tek parçacık enerjileridir. Lagrange çarpanı olan λ_n ve λ_z kimyasal potansiyel olarak ifade edilmektedir. Çiftlenim korelasyonlarının tanımında kullanılan matematiksel yaklaşımlar parçacık sayısının korunmamasına neden olmaktadır. Bu durumun ortadan kaldırılması için, ele alınan seviyelerin ortalamalarının alındığını gösteren (2.20) eşitliklerinin geçerli olduğu, yani ortalama parçacık sayısının korunduğunu ele alalım.

$$N = \sum_{s\sigma} \left\langle \left| a_{s\sigma}^{+} a_{s\sigma} \right| \right\rangle \qquad Z = \sum_{t\sigma} \left\langle \left| a_{t\sigma}^{+} a_{t\sigma} \right| \right\rangle \tag{2.20}$$

Bunun için (2.19) ifadesine eklenen lagrange çarpanları ile $(-\lambda_n N \text{ ve } -\lambda_z Z)$ tek parçacık enerjilerinin sıfırdan değil kimyasal potansiyel olarak adlandırılan, fermi enerji düzeyine yakın olan, enerji değerlerinden $(\lambda_n \text{ ve }\lambda_z)$ başladığı kabul edilmektedir. Tek kuazi-parçacık hamiltoniyeninin elde edilmesi için (2.19) hamiltoniyenin kuazi-parçacık tasvirinde ifade edilip beklenen değeri alınmalıdır. Bu gösterimde, çift sayıda nötron ve protona sahip bir sistemin taban durumu kuazi parçacık vakumu olarak tanımlanır. Bu duruma karşı gelen dalga fonksiyonu ψ_0 , tüm $s\sigma$ ve $t\sigma$ durumları için geçerli olan şu eşitliklerle belirlenebilir:

$$\alpha_{s\sigma}\psi_{0} = 0$$

$$\alpha_{t\sigma}\psi_{0} = 0$$

$$\psi_{0}^{*}\alpha_{s\sigma}^{+} = 0$$

$$\psi_{0}^{*}\alpha_{t\sigma}^{+} = 0$$
(2.21)

(2.11)-(2.13) ifadeleri göz önüne alınırsa (2.19) hamiltoniyenin beklenen değeri şu şekilde ifade edilir;

$$\left\langle \psi_{0} \mid H_{o}(n) \mid \psi_{0} \right\rangle = 2 \sum_{s} \left\{ E(s) - \lambda_{n} \right\} v_{s}^{2} - G_{N} \left(\sum_{s} u_{s} v_{s} \right)^{2}$$
(2.22)

$$\left\langle \psi_{0} \mid H_{o}(p) \mid \psi_{0} \right\rangle = 2 \sum_{t} \left\{ E(t) - \lambda_{p} \right\} v_{t}^{2} - G_{Z} \left(\sum_{s} u_{t} v_{t} \right)^{2}$$

$$(2.23)$$

Burada varyasyon prensibi uygulanırsa,

$$\delta\left\{\left\langle\psi_{0} \mid H_{o}(n) \mid\psi_{0}\right\rangle + \sum_{s}\mu_{s}\eta_{s}\right\} = 0$$
(2.24)

$$\delta\left\{\left\langle\psi_{0} \mid H_{o}(p) \mid\psi_{0}\right\rangle + \sum_{t}\mu_{t}\eta_{t}\right\} = 0$$
(2.25)

Bu ifadelerin çözümünden, süperakışkan model için aşağıdaki temel eşitlikler elde edilir.

$$v_{s}^{2} = \frac{1}{2} \left\{ 1 - \frac{E(s) - \lambda_{n}}{\varepsilon(s)} \right\} \quad u_{s}^{2} = \frac{1}{2} \left\{ 1 + \frac{E(s) - \lambda_{n}}{\varepsilon(s)} \right\}$$
$$v_{t}^{2} = \frac{1}{2} \left\{ 1 - \frac{E(t) - \lambda_{p}}{\varepsilon(t)} \right\} \quad u_{t}^{2} = \frac{1}{2} \left\{ 1 + \frac{E(t) - \lambda_{p}}{\varepsilon(t)} \right\}$$
$$\varepsilon_{s} = \sqrt{(E_{s} - \lambda_{n})^{2} + \Delta_{n}^{2}} \quad \varepsilon_{t} = \sqrt{(E_{t} - \lambda_{p})^{2} + \Delta_{p}^{2}}$$
(2.26)

Burada ε nükleonların tek kuaziparçacık enerjisidir. Δ , nükleonlar arası çiftlenim gücünün ölçüsü olan gap parametresidir (Literatürde C_n olarak da gösterilmektedir). Nötron ve proton sistemlerinin gap parametreleri için (2.27) eşitliği elde edilir.

$$\Delta_n = G_N \sum u_s v_s \qquad \Delta_p = G_Z \sum u_t v_t \qquad (2.27)$$

Ayrıca,

$$N = 2\sum_{s} v_{s}^{2} \qquad Z = 2\sum_{s} v_{t}^{2} \qquad (2.28)$$

bulunur. Burada $2v_s^2$ ve $2v_t^2$ nötron ve proton seviyelerinin parçacık yoğunluğunu ifade ederken, $2u_s^2 = 2(1-v_s^2)$ ifadesinden $2u_s^2$ ve $2u_t^2$ nötron ve proton seviyelerinin boşluk yoğunluklarını göstermektedir (Soloviev, 1976).

2.1.5. Kuaziparçacık rastgele faz yaklaşımı

Nükleer uyarılmaları incelemek için rastgele faz yaklaşımı (RPA) iyi kurulmuş ve hızlı hesaplama yapılabilen bir yöntemdir. Bu yöntemdeki esas fikir, çekirdeğin uyarılmış seviyelerini basit bir bağımsız parçacık modeli dalga fonksiyonu temelinde genişleterek, elde etmeye çalışmaktır. Temel, bir parçacığın bir boşluk bırakarak izin verilen boş bir yörüngeye hareketi olarak adlandırılan parçacık-boşluk durumlarından oluşmaktadır. Bununla birlikte, Fermi seviyesi etrafındaki parçacıklar arasında hareket eden bir artık (rezidüel) etkileşim ortaya çıkmaktadır. Bu etkileşim parçacık-boşluk temelinde diyagonalize edilebilir ve daha sonra uyarılmış durumların doğru bir şekilde tanımlanması sağlanabilmektedir. Bu stratejiye Tamm-Dancoff yaklasımı (TDA) veya basit parçacık-bosluk teorisi denmektedir (Rowe, 1970). TDA ilk olarak Tamm tarafından kuantum alan teoriside formüle edilmiş, ardından Dancoff tarafından geliştirilmiştir. TDA süperakışkan ciftlenim korelasyonlarını içermemektedir. Uyarılmış seviyelerdeki kuazi-parçacık etkileşimlerinin dikkate alındığı yaklaşımda taban durumu etkileşimleri etki etmemektedir. Bu nedenle, çift-çift çekirdeğin taban durumu kuazi-parçacık boşluğudur (vacuum). TDA'nın ana eksikliği, taban ve uyarılmış durumların asimetrik davranışıdır (Soloviev, 1976). TDA'nın önemli bir eksikliği toplam kurallarını karsılamamasıdır bu durum da düsük enerjili kolektif uyarılmaların hafife alınmasına neden olmaktadır (Rowe, 1970). Bunun için artık etkileşimin taban seviyesinin kendisinin üzerindeki etkisi hesaba katılmalıdır bu parçacık-boşluk hallerinin üst üste gelmesidir. Bu prosedüre rastgele faz yaklaşımı (Random Phase Approximation-RPA) denmektedir. TDA'daki eksiklik kuazi-parçacık etkileşimlerini içeren tüm seviyelerde RPA ile düzeltilmiştir. Başlangıçta Bohm ve Pines (1953) tarafından elektron gazlarında plazma titreşimlerini tanımlamak için kullanılmıştır. RPA terimi, keyfi fazlara sahip olacağı ve böylece ortalama olarak birbirlerini sönümlediği varsayımıyla kolektif alandan farklı frekanslı modların ihmal edilmesine işaret etmektedir. Nükleer uygulamalarda birbirini sönümlediği varsayılan fazlar fermiyon değiş tokuş korelasyonlarıdır ve ilgili operatörlerin bozon olarak ele alınmasına olanak sağlamaktadır.

Standart RPA denklemleri, taban durumu çekirdeğinin kapalı bir kabuk yapısına sahip olduğunu varsayar. Fermi seviyesinin altındaki tüm tek parçacık yörüngeleri tamamen işgal edilmiştir. Bu oldukça kısıtlayıcı bir durumdur ve sadece sınırlı sayıdaki çekirdeklerin ele alınmasına izin vermektedir. Açık kabuklu çekirdeği incelemek için, bunun yerine kuazi-parçacık RPA (Quasiparticle Random Phase Approximation-QRPA) yöntemi kullanılabilir. Bu metotta hem ortalama alan katkılarını hem de eşleşmeyi içeren bir bağımsız parçacık yaklaşımından yola çıkılır (Rowe, 1970; Ring ve Shuck, 2000). Eşleşmenin, açık kabuk çekirdeği için özellikle önemli olduğu bilinmektedir. Bununla birlikte, bu, aynı zamanda, kuaziparçacıklar(parçacık ve boşluk süperpozisyonları) arasındaki etkin kuvvetleri içeren bir artık etkileşimi de gerektirmektedir. Hartree-Fock Bogoluybov çözümlerinin üzerine inşa edilen Kuaziparçacık Rastgele Faz Yaklaşımı (Quasiparticle Random Phase Approximation-QRPA) tutarlı bir yaklaşımdır. QRPA, herhangi bir elektromanyetik (dipol, kuadropol, oktopol, vb.) uyarımdan kaynaklanan düşük kollektif titreşim durumlarından dev rezonanslara kadar pek çok sayıdaki nükleer fenomeni tanımlamayı sağlamaktadır. Ortalama alan yaklasımına dayanarak, son gelişmeler sayesinde tek çekirdekli dahil olmak üzere neredeyse tüm nüklitlere uygulanabilmektedir (Versteegen ve ark., 2016)

QRPA, nükleer titreşimlerin mikroskobik açıdan incelenmesinin temelini oluşturan ikinci kuantumlama (second quantization) metodunun etkili formülasyonlarından

biridir. İkinci kuantumlama yönteminin, özuyumlu alan metodu ile karşılaştırıldığında belirli avantajları vardır. Komütasyon ilişkileri ile ilgili normalleşme koşulu, titreşim durumlarının dalga fonksiyonlarını daha açık bir şekilde ifade etmesi bunlardan bazılarıdır (Soloviev, 1976).

Süperakışkan çekirdekler için RPA nın QRPA' ya genelleştirilmesiyle Hamiltoniyen Hartree-Bogolybov ikinci kuantumlanma tasvirinde

$$H = H_{sqp} + H_{v} \tag{2.29}$$

şeklinde yazılır (Rowe, 2010). Burada H_{sqp} kuaziparçacık hareketin, H_{v} incelenen kolektif modun Hamiltoniyenini ifade etmektedir. Bu terimler,

$$H_{sqp} = \sum_{q} \varepsilon_{q}(\tau) \alpha_{q}^{+}(\tau) \alpha_{q}(\tau)$$
(2.30)

$$H_{\nu} = -\frac{1}{4} \sum_{qq'} G(q+, q-; q'-, q'+) a_{q^+}^+ a_{q^-}^+ a_{q^-}^- a_{q'^+}$$
(2.31)

şeklindedir. (2.30) ifadesindeki $\varepsilon_s(\tau)$ nükleonların tek-kuaziparçacık enerjisidir.

$$H\psi_i = E\psi_i \tag{2.32}$$

(2.32) genel Schrödinger denkleminde, kuazi-parçacık çiftlerinin süperpozisyonu olarak görülen uyarılma durumlarının QRPA'da ifade edildiği tek fononlu dalga fonksiyonu

$$|\psi_{i}\rangle = Q_{i}^{+} |\psi_{0}\rangle = \sum_{\mu,\tau} [\psi_{qq'}^{i}(\tau) A_{qq'}^{+}(\tau) - \varphi_{qq'}^{i}(\tau) A_{qq'}(\tau)] |\Psi_{0}\rangle$$
(2.33)

ile verilmektedir (Soloviev, 1976). Burada Q_i^+ fonon üretme operatörü, $|\psi_0\rangle$ ise çekirdeğin taban durumuna karşı gelen fonon vakumudur yani $Q_i\psi_0 = 0$ 'dır. $\psi_{qq'}^i$

ve $\varphi_{qq'}^{i}$ birimleme koşulunu sağlayan katsayılardır ve $A_{qq'}^{+} = \left\{ \alpha_{\tilde{q}}^{+} \alpha_{q'}^{+} \right\}_{I^{\pi}K}$ ve $A_{qq'} = \left\{ \alpha_{q'} \alpha_{\tilde{q}} \right\}_{I^{\pi}K}$ ile verilen operatörlerdir. (2.32) ve (2.33)'den,

$$HQ_{i}^{+} | \psi_{0} \rangle = EQ_{i}^{+} | \psi_{0} \rangle$$
(2.34)

elde edilir.

$$HQ_i^+ = \left[H, Q_i^+\right] + Q_i^+ H \tag{2.35}$$

olduğundan, (2.35) denklemi (2.34)'de yerine yazılırsa,

$$\left[H, Q_{i}^{+}\right]|\psi_{0}\rangle + Q_{i}^{+}H|\psi_{0}\rangle = EQ_{i}^{+}|\psi_{0}\rangle$$
(2.36)

elde edilir. $Q_i^+H | \psi_0 \rangle = Q_i^+E_0 | \psi_0 \rangle$ olduğundan (2.36) ifadesi,

$$\left[H, Q_i^+ \right] | \psi_0 \rangle = \left(E_i - E_0 \right) Q_i^+ | \psi_0 \rangle = \omega_i Q_i^+ | \psi_0 \rangle$$
(2.37)

dir. Burada ω_i uyarılma enerjisidir. Böylelikle (2.32) denklemi çift-çift çekirdekler için aşağıdaki operatör denklemine (hareket denklemi) dönüşmüş olur.

$$\left[H,Q_i^+\right] = \omega_i Q_i^+ \tag{2.38}$$

Yukarıdaki ifadelerde yer alan $Q_i^+(Q_i)$ fonon üretme (yok etme) operatörleri,

$$Q_{i} = \frac{1}{2} \sum_{i} (X_{qq'}^{i} A_{qq'} - Y_{qq'}^{i} A_{qq'}^{+})$$

$$Q_{i}^{+} = \frac{1}{2} \sum_{i} (X_{qq'}^{i} A_{qq'}^{+} - Y_{qq'}^{i} A_{qq'})$$
(2.39)

şeklinde tanımlanmaktadır (Soloviev, 1976). Burada $A_{qq'}^+(A_{qq'})$ elektrik uyarılmalar ve geçişler için kuaziparçacık çifti üretme (yok etme) operatörü olup q ve q' tek parçacık enerji seviyelerine karşılık gelmektedir. (q,q') çiftleri belirli seçim kuralları ile ilişkili iki kuaziparçacık durumunu, i=1,2,3,...ise uyarılmış hallerin dizisini belirlemektedir. İki kuaziparçacık genlikleri olan $X_{qq'}^i$ ve $Y_{qq'}^i$ katsayıları kare matristirler ve fonon operatörlerinin Bozon tipi komütasyon koşullarından çıkan, birimleme koşulunu sağlamaktadırlar.

$$\sum_{qq'} \left[X_{qq'}^{i^{2}} - Y_{qq'}^{i^{2}} \right] = 1$$
(2.40)

dir. $A_{qq'}^+(A_{qq'})$ kuaziparçacık çiftlenim operatörlerinin komutasyon koşulları aşağıdaki gibidir.

$$[A_{qq'}, A^{+}_{q_{2}q'_{2}}] = \delta_{qq_{2}} \delta_{q'q'_{2}} + \delta_{qq'_{2}} \delta_{q'q_{2}} - \frac{1}{2} (\delta_{qq_{2}} B_{q_{2}'q'} + \delta_{q'q'_{2}} B_{q_{2}q} + \delta_{qq'_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q_{2}q'} + \delta_{q'q_{2}} B_{q'q_{$$

(2.41) eşitliklerindeki $B_{qq'}$ operatörleri kuaziparçacık sayısına karşılık gelmektedir ve aşağıdaki gibi gösterilmektedir:

$$B_{qq'} = \sum_{q} \alpha_q^+ \alpha_{q'} \tag{2.42}$$

Çift-çift çekirdeklerin uyarılmış halleri taban durumundaki etkileşmelerden etkilendiği için, QRPA yaklaşımında çekirdeğin taban durumundaki kuaziparçacık sayısı sıfırdan farklıdır. Ancak taban haldeki kuaziparçacık sayısı çekirdeğin nükleon sayısından oldukça küçük olmasından dolayı (2.42) ifadesinin yaklaşık değeri

$$\langle \alpha_{q\rho}^{+}\alpha_{q'\rho'} \rangle \approx 0 \tag{2.43}$$

olmaktadır. Bu yaklaşımla (2.41) ifadesinde eşitliğin sağındaki ikinci terim ihmal edilebilir. Böylelikle $A_{q_2q'_2}^+$ ve $A_{qq'}$ operatörleri bozon komütasyon bağıntıları ile tanımlanmış olmaktadır (Eşitlik 2.44). Bu yüzden bu yönteme kuazibozon yaklaşımı da denmektedir.

$$[A_{qq'}, A^{+}_{q_2q'_2}] = \delta_{qq_2} \delta_{q'q'_2} + \delta_{qq'_2} \delta_{q'q_2}$$
(2.44)

Fonon operatörlerinin bozon komütasyon bağıntılarını gerçekleştirmesi ile çekirdeğin taban ve uyarılmış durumlarının dalga fonksiyonlarının diklik ve birimleme koşulları sağlanmaktadır.

$$[Q_i, Q_{i'}] = [Q_i^+, Q_{i'}^+] = 0$$
(2.45)

$$[Q_i, Q_{i'}^+] = \delta_{ii'} \tag{2.46}$$

(2.45) ve (2.46) komütasyon bağıntılarının sağlanmasında

$$\sum_{q,q'} (X_{qq'}^{i} X_{qq'}^{i'} - Y_{qq'}^{i} Y_{qq'}^{i'}) = 2\delta_{ii'}$$

$$\sum_{q,q'} (X_{qq'}^{i} Y_{qq'}^{i'} - X_{qq'}^{i'} Y_{qq'}^{i}) = 0$$

$$\sum_{i} (X_{qq'}^{i} X_{q_2q_2'}^{i'} - Y_{qq'}^{i} Y_{q_2q_2'}^{i'}) = \delta_{qq_2} \delta_{q'q'_2} + \delta_{qq'_2} \delta_{q'q_2}$$
(2.47)

ifadeleri kullanılır. (2.46) ifadesi bu eşitliklerden hareketle,

$$\begin{split} & [Q_{i},Q_{i}^{+}] = \frac{1}{2} \bigg[(X_{qq'}^{i}A_{qq'} - Y_{qq'}^{i}A_{qq'}^{+}), (X_{qq'}^{i}A_{qq'}^{+} - Y_{qq'}^{i}A_{qq'}^{-}) \bigg] \\ & [Q_{i},Q_{i}^{+}] = \frac{1}{2} \begin{cases} X_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{+} - X_{qq'}^{i}Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} - X_{qq'}^{i}Y_{qq'}^{i}A_{qq'}^{+}A_{qq'}^{+} + Y_{qq'}^{i}A_{qq'}^{+}A_{qq'}^{-} - \bigg] \\ & \bigg[X_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{i} - X_{qq'}^{i}Y_{qq'}^{i}A_{qq'}^{+}A_{qq'}^{+} - X_{qq'}^{i}Y_{qq'}^{i}A_{qq'}^{-}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{i}A_{qq'}^{-} + Y_{qq'}^{i}A_{qq'}^{i$$

(2.44) ifadesinin yardımıyla, $[Q_i, Q_{i'}] = \delta_{ii'}$ elde edilmiş olur. (2.47) bağıntılarının yardımıyla $A_{qq'}^+$ ve $A_{qq'}$ operatörlerinin fonon operatörleri cinsinden karşılıkları

$$A_{qq'} = \sum_{i} (X^{i}_{qq'}Q_{i} + Y^{i}_{qq'}Q^{+}_{i})$$
(2.49)

$$A_{qq'}^{+} = \sum_{i} \left(X_{qq'}^{i} Q_{i}^{+} + Y_{qq'}^{i} Q_{i}^{-} \right)$$
(2.50)

şeklindedir. QRPA genellikle matris formunda formüle edilmektedir. Elde edilen büyüklükler,

$$\begin{pmatrix} F & E \\ E & F \end{pmatrix} \begin{pmatrix} X^i \\ Y^i \end{pmatrix} = \omega_i \begin{pmatrix} X^i \\ -Y^i \end{pmatrix}$$
(2.51)

eşitliğini sağlamaktadırlar. Bu eşitlikteki F ve E ifadeleri aşağıdaki gibi verilmektedir:

$$F = \langle \psi_0 | \left[A, \left[H, A^+ \right] \right] | \psi_0 \rangle$$

$$E = - \langle \psi_0 | \left[A, \left[H, A \right] \right] | \psi_0 \rangle$$
(2.52)

 $X_{qq'}^{i}$ ve $Y_{qq'}^{i}$ kuaziparçacık genliklerinin ve ω_{i} enerjilerinin belirlenmesi için elde edilen matris denklemleri çözülmelidir.

2.2. Nükleer Uyarılmalar

Çekirdeğin incelendiği en eski yollardan biri kuantum sıvı damlası yaklaşımıdır. Burada, bir sıvıyı oluşturan parçacıkların görmezden gelindiği gibi, çekirdeği oluşturan protonlar ve nötronlardan ziyade bunların oluşturduğu sistem göz önünde bulundurulur. Bu şekilde çekirdek akışkan olarak resmedildikten sonra çekirdeğin şekli hakkında varsayımlarda bulunurken, deneysel verilerden kapalı kabuk çekirdeklerin denge şeklinin küresel olduğu, nötron ve proton sayısı sihirli sayılardan uzaklaştıkça şeklin küresellikten kayda değer ölçüde uzaklaştığı, taban durumunun eksenel deforme (prolate ya da oblate) olduğu bilinmektedir. Nükleer yapının sıkıştırılamayacak akışkan özelliğinden dolayı çekirdek üzerindeki dinamik uyarımlar, çekirdeğin şeklinin dalgalanmaması ile sonuçlanacaktır. Kollektif titreşimler ele alındığında, çekirdeğin şekli yüzey parametrelerinin irdelenmesiyle incelenebilir. Yüzeyin açısal momentumuna göre tarif edilecek olursa,

- Monopol (L=0): nükleer akışkanının boyutunun salındığı, yani çekirdeğin sıkıştırılamazlığını gösteren yüksek enerjili moddur.
- Dipol (L=1): nükleer akışkanın merkezinin genel bir ötelenmesine karşılık gelmektedir. nötron ve proton akışkanlarının birbirlerine karşı titreştiği kollektif izovektör mod bunun örneğidir (Şekil 2.6.). Taban durumunun üzerinde monopol rezonansa yakın meydana gelmesi bu modda, nötron ve proton akışkanlarının birbirlerine çok sıkı bir şekilde yapıştıklarını ve ayrılmalarının zor olduğunu göstermektedir.
- Kuadropol (L=2): hemen hemen tüm çekirdeklerde baskın bir titreşim özelliğidir.
- Oktopol(L=3): oktopol seviye genellikle en düşük uyarılmış seviyedir ve pek çok çekirdekte gözlenmektedir (Walet, 2010).

Parite göz önünde bulundurulduğunda iki farklı dipol uyarılması mevcuttur. Spin seviyesi ve paritesine göre $I^{\pi} = 1^+$ olanlar manyetik (M1), $I^{\pi} = 1^-$ olanlar elektrik dipol (E1) karakterlidir (Bohr ve Mottelson, 1997). Bunlardan, hem M1 hem de E1 uyarılmaları, nükleer yapı modellerinin sıkı bir şekilde test edilmelerini sağlamaktadırlar (Pietrella ve ark., 1997).

Şekil 2.6. İzovektör E1 ve M1 modlarına yol açan nötronların protonlara karşı kollektif titreşimlerinin klasik iki akışkan olarak gösterimi (Iudice, 1992).

Çekirdeklerin elektrik dipol (E1) modları, parçacık emisyon eşiğinin üzerinde bulunan, yüksek uyarımlı kollektif mod olan dev dipol rezonans tarafından belirlenmektedir (Berman ve Fultz, 1975). Bunun nedeni, bu modun özelliklerinin deneysel ve teorik olarak uzun yıllardır çalışılıyor olmasıdır. Bununla birlikte, GDR modunun altında, nötron bağlanma enerjisine yakın bölgede yer alan cüce rezonans, kuadropol-oktopol (spin orbital mod) ve daha düşük enerji bölgesinde manyetik dipol karakterli makas mod uyarılmaları mevcuttur (Şekil 2.7.).

Şekil 2.7. Nükleer dipol uyarılma spektrumu (Habs, 2013).

2.2.1. Makas mod

Temel düşük enerjili manyetik ve elektrik dipol modlarının özellikleri son yıllarda nükleer yapı fiziğinde ilgi çeken konulardır. Bu ilgi, Iudice ve Palumbo (1978) tarafından deforme olmuş çekirdeğin yörüngesel M1 makas modunun tahmin edilmesi ve daha sonra ağır deforme çekirdeklerde kollektif M1 modunun Bohle ve ark., (1984) tarafından keşfedilmesiyle artmıştır. Iudice ve Palumbo (1978) tüm çekirdeklerde bulunduğu bilinen elektrik dipol dev rezonansının izovektör kollektif uyarım olduğu ve protonların nötronlara karşı translasyonel salınımı olarak yarıklasik bir yorumu bulunmasından dolayı iki akışkan olarak resmedilen proton ve nötron hareketinin deforme olmuş çekirdeklerde ek uyarma modlarının varlığını öndördüğünü belirterek, nötron ve proton akışkanlarının, ortak bir eksen etrafında ters fazlı döner salınımlar yaparak bir izovektör manyetik rezonansı oluşturabileceğini ifade etmişlerdir. Deforme olmuş çekirdeklerdeki makas modu, nükleer valans kabuğunun oldukça kolektif izovektör uyarımlarının en belirgin örneğidir, etkileşen bozon modeline göre (IBM-2) karışık simetri seviyeleri olarak tanımlanmaktadır ve proton-nötron serbestlik derecelerine göre tamamen simetrik olmayan durumları belirtmektedir (Kneissl ve ark., 2006).

Atom çekirdeğinin içerisinde hareket eden nükleonlar doğal olarak yörünge ve spin manyetizmasını üretirler. Bazı kütle bölgelerinde -özellikle kapalı kabuklar arasındaki çekirdekler için- yörünge manyetizması birçok nükleonun ortak etkisine neden olabilmektedir. Kolektif modlardan, proton ve nötronların faz dışı hareketinden ve elektromanyetik problarla uyarılan oldukça düşük enerjilerde manyetik dipol modlarından kaynaklananlar (makas mod) en belirgin olanlardan biridir. Bunların yanı sıra, daha yüksek uyarım enerjilerinde, işbirlikli etkiler, kolektif spin-flip modlarına ve hatta daha şimdiye kadar doğrudan deneylerde bile görülmeyen daha yüksek sahte kolektif dipol modlarına yol açabilmektedir (Heyde ve ark., 2010). Atomik çekirdekteki düşük enerjili kolektif modlar, hem küresel hem de deforme olmuş çekirdekler için, nükleer yoğunluklu salınımlar sergilemektedir. Bu modlarda, proton yoğunluğu ve nötron yoğunluğu hem simetrik hem de simetrik olmayan şekilde hareket gerçekleştirmektedirler. Simetrik olmayan kollektif manyetik dipol modda proton nötron yoğunluğuna karşı rotasyonel salınım gerçekleşmektedir (Richter, 1983).

Orbital manyetik dipol uyarımı, deforme olmuş protonun ve nötron sıvılarının birbirine karşı makas benzeri titreşimine geometrik, makroskopik bir resme karşılık gelir (Iudice, 1997). Bu nedenle bu Ml modu Makas Modu olarak adlandırılır. Proton ve nötron cisimlerinin çekirdeğin simetri eksenine dik veya dik olarak titreştiği elektrikli Dev Dipol Rezonansının (GDR) manyetik analoğudur (Kneissl ve ark., 1995). Bu manyetik mod, Richter ve meslektaşları tarafından yüksek çözünürlüklü elektron saçılım deneylerinde keşfedildi (Bohle, ve ark., 1984) Bu arada çok sayıda elektron ve foton saçılma deneyinde incelenmiştir.

2.2.2. Kuadrupol-oktupol mod

Düşük enerji seviyelerindeki elektrik dipol uyarılmaları Iachello (1984) tarafından çekirdekteki yeni bir kolektif mod grubu olarak önerilmiştir. Buna göre bu mod, asimetrik şekillerin bir yansıması olarak görülebilir. Çekirdeğin oktupol uyarılmaları araştırılmalarında, statik veya dinamik oktupol deformasyonların nadir toprak bölgesi ve aktinit bölgesinin çekirdeklerinde sıklıkla gözlenen güçlü elektrik dipol geçişlerini açıklayabileceği önerilmiştir (Cottle ve Bromley, 1986).

Şekil 2.8. Oktupol dipol modun makroskopik yorumu (Spieker ve ark., 2015).

Kuvvetli şekilde deforme olmuş çekirdeklerde, oktopol titreşimi, kuadrupol deforme çekirdek ile eşlenir (Şekil 2.8.). Bu durum $J^{\pi}=1^{-}$ kuantum sayısıyla ifade edilir. Küresel çekirdeklerde de J = 1 durumlarından nispeten güçlü E1 taban durumu geçişleri gözlemlenmiştir. Kuadrupol oktupol dipol uyarılmalarının, oktopol 3^{-}

titreşimi ile kuadrupol 2⁺ titreşiminin birleşmesinden dolayı ortaya çıktığı öne sürülmüştür (Herzberg ve ark., 1995b)

İki fonon halleri çekirdeklerde ilginç bir fenomendir. Bir süre için çift kuadrupol $2^+ \otimes 2^+$ multipleti bir dizi çekirdekte gözlenirken, çift oktopol $3^- \otimes 3^-$ durumları için deneysel kanıtlar son zamanlara kadar oldukça seyrek olmuştur. Karışık kuadrupol oktupol $2^+ \otimes 3^-$ multipletleri, ¹⁴⁴Sm çekirdeğinde gözlenmiştir. Ayrıca aynı kütle bölgesinde iki fonon-parçacık uyarımı gözlemlenmiştir (Herzberg ve ark., 1995a). Geometrik modelde, deforme olmuş çekirdeklerdeki oktupol titreşim bantları, oktupol fononun kuadrupol deforme olmuş çekirdeğe bağlanması olarak yorumlanmaktadır (Pietrella ve ark., 1997).

2.2.3. Cüce dipol rezonans

70'li yılların sonunda nükleer fizik alanında yapılan deneylerde GDR'nin kuyruğunda bir yumru gözlendi (Şekil 2.9.) ve yapılan teorik çalışmalar (Soloviev ve ark., 1978) ile bu yapıya cüce dipol rezonans (pygmy dipol rezonans) adı verildi.

Şekil 2.9. PDR uyarılması (Şahin, 2009)

Cüce dipol rezonans (Pygmy dipol rezonans-PDR), nükleon emisyon eşiğine yakın olan enerjilerde yer alan bir elektrik dipol uyarımıdır ve gücü, dev dipol rezonansının (GDR)kinden çok daha küçük olduğu için soft E1 ya da pygmy olarak adlandırılmaktadır (Paar ve ark., 2007; Ponomarev, 2014). Pygmy dipol rezonansının fenomenolojik olarak, N=Z koruna karşı nötron fazlalığının titreşiminden

kaynaklanabileceği öngörülmektedir (Avdeenkov ve Kamerdzhiev, 2008; Wieland ve Bracco, 2011). Bu yüzden deneysel ve teorik araştırmalar bu dipol cevabını anlamak için genelde nötron zengini çekirdekler ile çalışmalara başlamıştır (Savran ve ark., 2013).

PDR'nın doğası son zamanlarda araştırmacıların ilgisini çeken bir konudur (Yoshida ve Nakatsukasa, 2011). PDR'nin varlığına olan ilginin nedenleri üç kategoride toplanabilir.

- Nükleer Astrofizik: Nötronca zengin çekirdeklerdeki PDR varlığı, nötron yakalama tesir kesitini arttıracaktır böylelikle nükleosentez r-sürecinin oranı da artacaktır (Daoutidis ve Goriely, 2012). Bu etki, simülasyonlar ve güneş sistemindeki orta-ağır çekirdeklerde gözlenen bolluk arasındaki mevcut çelişkiyi açıklığa kavuşturabilir (Arnould ve ark., 2007).
- PDR ve bazı fiziksel değerler arasındaki ilişki: Cüce rezonansın varlığı ile nükleer madde simetri enerjisinin ve dolayısıyla nötron kabuk (skin), statik dipol polarizasyonu ve Landau'nun etkin nükleon-nükleon etkileşiminin parametreleri değerleri arasındaki ilişkiden PDR'ye olan ilgiyi oluşturan nedenlerden bir diğeridir (Carbone ve ark., 2010; Reinhard ve Nazarewicz, 2010).
- PDR ile ilgili duyulan gerçek bir merak: Bu uyarının açıklığa kavuşturulması gereken birçok yönü vardır. Bunlardan biri, PDR'ler tüm orta ve ağır çekirdeklerde mi mevcuttur? veya bu uyarma türü sadece nötron zengin çekirdeklerde mi bulunur? Yanıtlanması gereken bir başka soru da, bu rezonansların GDR'nin düşük enerji kuyruğu mu yoksa yoksa farklı bir uyarım tipini mi temsil ettikleridir. PDR'lerin kollektif nükleer hareketler tarafından üretilmesi veya nötron fazlalığı, yani N>Z ile çekirdeklerin spesifik kabuk yapısı ile ilgili tek parçacık (s.p.) uyarımları ile üretilmesi durumunda açıklığa kavuşturulmaya devam edilecektir (Co' ve ark., 2013).

Yukarıda sıralanan amaçlar doğrultusunda GDR'den düşük enerjilerde yer alan PDR'nin yapısını anlamak için son yıllarda birçok çalışma gerçekleştirilmiştir. Farklı

teorik yaklaşımlar ile özellikleri incelenen PDR ile ilgili hem teorik hem de deneysel olarak daha fazla çalışma yapılmalıdır.

2.2.4. Dev rezonans

Bir sistemin özelliklerini incelemek için kullanılabilecek en güçlü yöntemlerden biri, onu zayıf dışsal bir pertürbasyona tabi tutmak ve tepkisini incelemektir. Atomik çekirdeğin foton absorbsiyon ya da bir parçacık saçılması sonucundaki cevabı Şekil 2.10.'da sisteme aktarılan enerjinin ve doğrusal momentumun bir fonksiyonu olarak verilmektedir (Harakeh ve Woude, 2001).

Şekil 2.10. Atomik çekirdeğinin enerji (w) ve momentum (q) transferinin bir fonksiyonu olarak karakteristik cevabı (tesir kesiti, σ). Şekillerden altta olanı foton absorbsiyonu, üstte olanı parçacık saçılmasını q≠w göstermektedir. (Harakeh ve Woude, 2001)

Şekilde alt eğri, foton absorpsiyonu için cevabı (tesir kesiti) gösterir, bu durumda momentum aktarımı enerji transferine eşittir. Yaklaşık 10 MeV'a kadar çekirdek, çoğunlukla yalnızca bir veya birkaç parçacık içeren nispeten basit durumların uyarılması yoluyla tepki verir. 10-30 MeV enerji aralığında sistem geniş rezonans cevabı sergiler. Buna dev rezonanslar denir. Üst eğride yaklaşık 100 MeV'lik bir enerji aktarımının etrafında bulunan, geniş rezonans, çekirdeğin içindeki tek bir nükleon merminin yarı esnek dağılımına karşılık gelirken, D33 rezonansı nükleon uyarımından kaynaklanmaktadır. (Harakeh ve Woude, 2001). Dev rezonanslar, çekirdeğin içindeki tüm olmasa da çoğu parçacığın kollektif hareketine karşılık gelmektedir. Bu kollektif hareketin varlığı kuantum çok-cisimli sistemlerin ortak özelliğidir. Kuantum-mekaniksel olarak rezonans, taban durumu ile kollektif durum arasındaki geçişe karşılık gelmektedir ve gücü geçiş genliği ile tanımlanmaktadır. Geçiş gücünün, sistemin temel özelliklerine (örneğin; parçacık sayısı, sistemin büyüklüğü gibi...) bağlı olduğu öngörülmektedir. (Harakeh & Woude, 2001).

Dev rezonans, yüksek frekanslı, sönümlü, nükleer sistemin denge yoğunluğu/şekli çevresinde (yaklaşık) harmonik yoğunluk/şekil titreşimi olarak görülebilir. Dev rezonans üç gözlenebilir büyüklük tarafından tanımlanmaktadır: enerji, genişlik, güç. Küresel ve deforme çekirdekler için dev rezonansa tipik birer örnek Şekil 2.11.'de verilmiştir (Harakeh & Woude, 2001).

Şekil 2.11. Küresel (sol) ve deforme (sağ) çekirdeklerde dev rezonans (Berman ve Fultz, 1975)

Şekil 2.11.'de küresel ⁶⁰Ni çekirdeği için fotonların fotoabsorbsiyon tesir kesitleri foton enerjisinin bir fonksiyonu olarak verilmiştir. Eğri, Lorentz rezonans dağılımına uymaktadır. Deforme ²³⁸U çekirdeği için fotonükleer kesit iki tepe noktasına sahiptir; biri deformasyon ekseni boyunca ve diğeri deformasyon eksenine dik bir dipol titreşimine karşılık gelmektedir. Bu tür kesit, deforme olmuş çekirdekler için tipiktir. Bu titreşim, fotonların elektromanyetik dipol alanı tarafından uyarılan dev dipol rezonansı olarak bilinir. Diğer birçok titreşim modları mümkündür. Dev rezonans, tüm nükleonların ortak bir hareketi olduğundan, karakteristik özellikleri çekirdeğin toplu yapısına bağlıdır. Dev rezonans çalışmalarında tarihsel gelişim ele alınacak olursa, dev rezonans tanımlaması ilk kez Bothe ve Günter (1937)'in yaptıkları deneysel çalışmanın makalesinde yer almıştır. Deney setleri Şekil 2.12.'de verilen çalışmalarında Li (p,γ) reaksiyonundan elde ettikleri γ radyasyonu ile uyarılmış Cu, P, Te, Mo... vb. gibi elementlerin radyoaktivitelerinin ölçüm sonuçları bulunmaktadır. Deneyde, su ile soğutulan bir Faradaykap'ın bir parçası olarak Li hedef, Cockroft-Walton gaz sisteminden elde edilen 300 keV'luk proton demeti ile bombardıman edilmiştir. Entegre gama yoğunluğu Li-hedeften biraz uzakta bulunan bir Geiger sayacı ile ölçülmüştür. (Woude, 1996). Tesir kesiti ölçümleri beklenenden büyük çıkmıştır (~17 MeV). Çalışmalarında bu durumu "*mümkün rezonans durumlar burada belirleyici bir rol oynamaktadır*" şeklinde yorumlamışlardır. Deney düzenekleri Şekil 2.12.'deki gibidir.

Şekil 2.12. Bothe ve Genter deney seti (Bothe ve Gentner, 1937).

GDR'nin varlığı teorik olarak ilk kez Migdal (1945) tarafından tahmin edilmiştir. 1947'de, sürekli bremsstrahlung spektrumu kullanılarak Baldwin ve Klaiber tarafından deneysel olarak varlığı doğrulanmıştır (Woude, 1996; Ishkhanov ve Troshchiev, 2011;). (γ ,n) foto-dizentegrasyonun yanı sıra foto-fisyon reaksiyonları ile yüksek frekanslı rezonans varlığı gözlemlenmiştir (Goldhaber ve Teller, 1948). Bowman ve ark. (1964), güçlü deforme çekirdekler için normal olan, fisil çekirdeklerin dev dipol rezonanslarının iki maksimuma sahip olduğunu ilk kez gözlemlemişlerdir (Gurevich ve ark., 1976). Yapılan bu ilk çalışmaların ardından GDR'nin en hafif olanlar dışındaki bütün çekirdekler için genel bir özellik olduğu ve biçim ile genişliğinin nükleer kütle numarası A ile düzgün bir şekilde değiştiği belirlenmiştir (Goeke ve Speth, 1982). Çalışmalar sonucunda dev dipol rezonansların yanı sıra farklı rezonanslar da bulunmuştur. Nötron eşiğinin üzerindeki inelastik elektron saçılması 1971 (Pitthan ve Wlacher) ile 1972 (Fuduka ve Torizuka) ve inelastik proton saçılması 1972 (Lewis ve Bertrand) yıllarında yapılan çalışmalar sonucunda izoskaler dev kuadropol, bunu takiben 1977'de (Youngblood et all.) izoskaler dev monopol rezonanslar keşfedilmiştir. (Goeke ve Speth, 1982; Woude, 1996). 1980'de sıcak çekirdeklerde dev rezonanslar, 1985'de multifonon DGDR, DGQR ve 2000'lerde cüce dipol rezonanslar ile ilgili yapılan çalışmalar dev rezonans tarihi için önemli çalışmalardır. Deneysel çalışmaların teknolojinin gelişimine paralel olarak gelişmesiyle dev rezonans modları ve özellikleri ile ilgili yenilikler bulunmaya devam etmektedir.

Dev rezonansların pek çok modu bulunmaktadır. Bu modlar makroskopik ve mikroskobik olarak sınıflandırılabilinir. Bu modların sınıflandırılmasını kısaca ele alalım. Makroskopik tasvirde dev rezonans modları kutup (L), spin (S) ve izospin (T) kuantum numaralarına bağlı olarak sınıflandırılmaktadırlar. Çeşitli dev rezonansların uyarılmasından kaynaklanan titreşim örnekleri ilk üç çokkutupluluğa ($\Delta L=0,1,2$) göre şematik olarak Şekil 2.13.'de gösterilmektedir (Poltoratska ve ark., 2014).

Şekil 2.13. Çekirdeğin dev rezonans modları (Van der Woude, 1991).

Bu sınıflandırmada nötron ve protonun aynı fazda titreşimi izoskaler, zıt fazda titreşimleri izovektör mod olarak ifade edilmektedir. Benzer şekilde elektrik (skaler) ve manyetik (vektörel) modlar ise çekirdekteki spin yukarı ve spin aşağınının sırasıyla aynı fazda ve zıt fazda titreşmesidir (Harakeh, 2018).

- $\Delta S=0$ ve $\Delta T=0$ elektrik moddur. İzoskaler titreşimler çok kutuplu yapıya göre $\Delta L=0,2,...$ ile tanımlanır ve protonlar nötronlar ile eş fazda salınım yapar. $\Delta L = 1$ titreşimi mevcut değildir. Birinci derecede, bu durum çekirdeğin bir bütün olarak öteleme hareketine karşılık gelmektedir ve dolayısıyla içsel bir nükleer uyarım değildir. Bununla birlikte, daha yüksek derecede bir $\Delta L = 1$ titreşimi bulunmaktadır.
- Δ S=0 ve Δ T=1 elektrik moddur. İzovektör titreşimler çok kutuplu yapıya göre Δ L ile tanımlanır, proton ve nötronlar birbirlerine göre zıt fazda titreşim yapmaktadırlar. Aynı multipol mod için nötron ve proton dağılımının ayrılması için daha fazla enerji gerektiğinden izovektör olan izoskaler olandan daha yüksek uyarılma enerjisidir.

- ΔS=1 ve ΔT=0 manyetik moddur. İzoskaler titreşimlerde spini ↑ olan nükleonlar, spini ↓ olan nükleonlara karşı titreşirler ve çok kutuplu yapıya göre ΔL ile tanımlanırlar
- $\Delta S=1$ ve $\Delta T=1$ manyetik moddur. İzovektör modlarda spini $\downarrow(\uparrow)$ olan protonlar, spini $\uparrow(\downarrow)$ olan nötronlara karşı titreşirler.

Şekil 2.14. Mikroskpik tasvirde dev rezonans. Ortalama alanda dolu olan taban seviyesi(soldaki), bir parçacık-bir boşluk durumu (ortadaki) ve iki parçacık-iki boşluk durumu (sağdaki)

Mikroskopik olarak dev rezonanslar, parçacık-boşluk uyarılmalarının uyumlu bir süperpozisyonu olarak tanımlanabilir (Şekil 2.14.). Bu durum, bir tek cisim operatörünün çekirdeğin taban durumuna etkisi ile açıklanabilir (Frascaria, 1993).

$$\left|\Psi_{GR}^{\lambda,\sigma,\tau}\right\rangle = O^{\lambda,\sigma,\tau} \left|\Psi_{g.s.}\right\rangle \tag{2.53}$$

Burada λ (L) rezonansın çok kutupluluğunu σ ve τ ise spin ve izospin yapısını göstermektedir. Geçiş operatörü çok kutupluluğu $(\sum_{m,i} r_i^{\lambda} Y_m^{\lambda})$ ve uygun spin-izospin operatörlerini içermektedir. Geçiş operatörünün ikinci kuantumlama formaliziminde,

$$O_{\nu}^{\lambda,\sigma,\tau} = \sum_{m,i} C_{\nu}^{m,i} \left[a_m^+ a_i \right]^{\lambda,\sigma,\tau}$$
(2.54)

olarak verilmektedir. a_m^+ ve a_i sırasıyla tek parçacık üretme ve tek parçacık yok etme (tek boşluk üretme) operatörleridir. Kabuk modeli yardımıyla mikroskobik açıdan dev rezonansların nicel özellikleri Şekil 2.15.'de gösterilmiştir.

Şekil 2.15. E1 ve E2 nin shell model seviyeleri arasındaki tek parçacık geçişlerinin şematik gösterimi (Van der Woude, 1991)

Buna göre, takip eden kabukların tek parçacık dalga fonksiyonlarının paritesi N, N+1, N+2,...ve onların enerji farklılıkları hw olarak değişmektedir. Buna göre dev rezonans mikroskobik sınıflandırılması Tablo 2.3.'de verilmiştir.

Monopol	λ=0	0hw		2hw		
Dipol	$\lambda = 1$		1hw			
Kuadropol	$\lambda = 2$	0hw		2hw		
Oktopol	λ=3		1hw		3hw	
Hexadekapol	λ=4	0hw		2hw		4hw

Tablo 2.3. Parçacık-boşluk uyarılmaları olarak çok kutuplu uyarılmalar (Harakeh ve Woude, 2006)

Daha detaylı olarak dipol uyarılmaların sınıflandırılması ve genel özellikleri Tablo 2.4.'de verilmiştir. Bu tabloda çekirdeğin rezonans türleri kutup, spin ve izospinlerine göre sınıflandırılmış, rezonansların uyarılma enerjileri, rezonans genişlikleri, bunlar için kullanılan yöntemler ve diğer rezonanslardan ayıran belirgin farklılıkları verilmiştir.

Rezonans	Karaktar	ΔŢ	15	۸T	Uyarılma	Genişlik	Kullanılan	Avricaliăi
Türü	Karakter	ΔL	Δ 3	$\Delta 1$	enerjisi	(MeV)	Yöntem	Ayncangi
ISGMR	E0	0	0	0(IS)	80A ^{-1/3}	3-5	(α, α')	Nükleer sıkıştırılabilirlik
IVGMR	E0	0		1(IV)	59A ^{-1/6}	10-15	Yük değiş tokuşu	
ISGDR	M1	1	1	0(IS)				
IVGDR	E1	1	1	1(IV)	31.2A ^{-1/3} +20A ^{-1/6}	4-8	Fotoabsorbsiyon	İlk keşfedilen 1937
ISGQR	E2	2	0	0(IS)	64.7A ^{-1/6}	90A ^{-2/3}	(p,p') (e,e')	
IVGQR	E2	2	0	1(IV)	130A ^{-1/3}	5-15		
ISGOR	E3	3	0	0(IS)	41A ^{-1/3}			Düşük enerji LEOR
ISGOR	E3	3	0	0(IS)	108A ^{-1/3}	140A ^{-2/3}		Yüksek enerji HEOR
GT	M1	0	1	1(IV)	5-10		(p,p')(p,n)(n,p)	eta bozunumu
Pigme Rezonans	E1	1	0	1(IV)	9-12	2-4	(p,n) (³ He,t)	Nötron kabuk, simetri enerjisi
Makas Mod	M1	1	1	1(IV)	sabit ≈ 3		(e,e')	Rotasyonel bileşen

Tablo 2.4. Nükleer uyarılmalar ve özellikleri (Paetz gen. Schieck, 2014)

Kurşun (208) çekirdeği için yukarıda bahsedilen dev rezonans modlarının gösterimi Şekil 2.16.'da verilmiştir.

Şekil 2.16. ²⁰⁸Pb çekirdeği için dev rezonans multipollerinin şematik gösterimi. (E1)₁:İzovektör dev elektrik dipol rezonans, (M1)₀: izoskaler dev manyetik dipol rezonans, (M1)₁: izovektör dev manyetik dipol rezonans, (E2)₀:İzoskaler dev elektrik kuadropol rezonans, (E2)₁:İzovektör dev elektrik kuadropol rezonans (Schumacher ve ark., 1994).

Şekil 2.16.'dan ²⁰⁸Pb çekirdeği için 8-20 MeV aralığında baskın olan dev rezonanas modunun izovektör dev dipol rezonans olduğu görülmektedir. Bununla birlikte şekilde manyetik dipol uyarılmalarının yaklaşık 10 MeV'e kadar olduğu, kuadrupol modların da enerji spektrumunda yer aldığı gösterilmektedir.

2.2.4.1. Dev monopol rezonans

Nükleer yoğunluğun denge noktası etrafındaki küçük dalgalanmalardır. Nükleer maddenin sıkıştırılamazlığının potansiyel olarak etkilediği nükleer özellikler arasında "solunum modu (breathing mode)" frekansı en hassas olanlarındandır (Blaizot, 1980). Bu mod dev monopol rezonans (GMR) olarak adlandırılmaktadır ve Youngbloood ve diğ. (1977) tarafından gerçekleştirilen deneyle iyi bir şekilde tanımlanmıştır. Nükleer sıkışmaları incelemek için en iyi bilinen solunum modu basit yapısından dolayı iyi bir araç olan izoskaler GMR'dir (Treiner ve ark., 1981). Protonların nötronlar dışarıya doğru hareket ederken içe doğru hareket ettikleri ya da bunun tersinin geçerli olduğu izovektör dev monopol rezonans nükleer maddenin hacim ve yüzey simetri enerjisi ile doğrudan ilişkili olup, nükleer yapının ve Coulomb etkisinin anlaşılmasında öneme sahiptir (Glendening, 1988).

Şekil 2.17. ¹¹⁶Sn ve ²⁰⁸Pb için ISGMR güç dağılımı deneysel verileri ve verilerin Lorentz dağılımı ile fit edilmesi (Patel ve ark., 2014)

GMR'nin ilişkili olduğu nükleer sıkıştırılamazlık (K_{∞}) doyma yoğunluğunda nükleer maddenin hal denkleminin eğriliğinin bir ölçüsüdür (Bohr ve Mottelson, 1998). Nükleer sıkıştırılamazlık;

$$K_{\infty} = 9\rho_B \left| \frac{\partial^2 E / A}{\partial \rho_B^2} \right|_{\rho_B}$$
(2.55)

ile verilir ρ nükleonların doyma yoğunluğu, E nükleer maddenin toplam enerjisi, A kütle numarasıdır. K_{\pi} direkt olarak ölçülememektedir (Vesely ve ark., 2012). Çoğunlukla mikroskopik hesaplamalara dayanan çeşitli teorik analizler, 30 MeV tahmini belirsizliği ile nükleer madde sıkıştırma modülü için K_{\pi} ~ 210 MeV gibi bir değer elde edilmiştir (Blaizot ve ark., 1995).

Şekil 2.18. Sıkıştırma modülü olan K_A nın K∞ bir fonksiyonu olarak gösterilmesi. Burada iki büyüklük arasında lineer bir ilişki olduğu görülmektedir (Blaizot, 1995)

İzoskaler dev monopol rezonansının (ISGMR) merkezcil enerjisi, sonlu nükleer maddenin nükleer sıkıştırılamazlığı K_{∞} ile ilişkili olan, çekirdek sıkıştırma modülü (K_A) ile doğrudan ilişkilidir (Şekil 2.18.) ki bu K_∞ hakkında ve dolayısıyla GMR'nin
uygulama alanları olan süpernova patlamaları ve nötron yıldızı dinamiği hakkında değerli bilgiler vermektedir (Patel ve ark., 2014).

2.2.4.2. Dev dipol rezonans

Atomik çekirdek, etkileşen nükleonların karmaşık bir kuantum sistemidir. Kısmen dolmuş kabuklara sahip parçacıkların düşük frekanslı geçişlerine ait çalışmaların yoğun bir şekilde çalışıldığı dönemde, nükleer dinamikteki yeni bakış kapalı kabukların uyarılması ile ilgili çalışmalar olmuştur. Bu kolektif uyarılmalar ile ilgili klasik örnek Dev Dipol Rezonans (Giant Dipole Resonance-GDR)'dir (Mottelson, 1976). Atomik çekirdeğin yapısını anlamada foton içeren reaksiyonlar önemli katkı yapmıştır. Periyodik tablo boyunca birçok çekirdek için foto-nükleer reaksiyonlar gerçekleştirilmiştir (Berman ve Flutz, 1975). Bu reaksiyonlarda, istisnasız tüm çekirdeklerin fotoabsorbsiyon tesir kesitlerinde, nükleon eşik enerjisinin üzerindeki enerji aralığında (8-30 MeV) geniş bir maksimum (GDR) gözlenmiştir (Ishkhanov ve Troshchiev, 2011). Bununla sonuçla birlikte GDR sistematiğini tasvir etmek üzere pekçok çalışma gerçekleştirilmiştir.

Fotonlarla GDR özelliklerinin araştırıldığı çalışmaların sağladığı bazı avantajlar bulunmaktadır. Her şeyden önce γ ışınlarının özellikleri kapsamlı olarak araştırılmıştır ve bu çalışmalarda çekirdeklerle, iyi bilinen elektromanyetik etkileşim söz konusudur. Elektromanyetik etkileşim nükleer olana göre nispeten zayıftır, bu da pertürbasyon teorisi tekniğinin kullanılmasını mümkün kılmaktadır. Fotonlarla, nispeten küçük pertürbasyonların bir çekirdeğe uygulanması nükleer yapıyı araştırmak için en uygun araçlardandır. Bu nedenle, foton dalga boyu ($\lambda \approx 10-20$ Fermi) E1 dev rezonansının enerji bölgesinde nükleer boyutlarını aşar; bu, γ -geçiş olasılığı için geçerli olan uzun dalga yaklaşımıdır. Sonuç olarak, ilk önce elektrik dipol salınımları uyarılır. Farklı bir çokkutupluluğun kollektif hareketi bastırılır, bu da dev dipol rezonansının özelliklerini saf biçimde incelemeyi mümkün kılmaktadır (Masur ve Mel'nikova, 2006). GDR deneysel ve teorik fotonükleer reaksiyon çalışmalarında daima ilgi odağı olmuştur. GDR'nin teorik tanımlamasının ilk denemeleri sıvı damlası modeli kullanılarak gerçekleştirilmiştir (Masur ve Mel'nikova, 2006) Bir bütün olarak hareket eden cekirdek tarafından elektrik dipol radyasyonunun emilimi için temel frekansa karşılık gelir ve en basit şekilde çekirdekteki tüm protonların tüm nötronlara karşı kollektif (toplu) titreşimi olarak ifade edilebilir (Oishi ve ark., 2016). Bu tanım Goldhaber ve Teller'in yarı-klasik hidrodinamik modeli (1948)'ne aittir. Bu tanıma alternatif. kabuk modeline dayalı olarak. parçacık-boşluk durumlarının süperpozisyonu olmasıdır. Aslında, Wilkinson (1956)'nın dev rezonansın bağımsız parçacık modeli tanımını temel alan parçacık-boşluk teorisi, büyük oranda Brown ve Bolsterli (1959) tarafından dev rezonansa ilişkin detayları açıklamak için geliştirilmiştir. Bu yaklaşım, dev rezonans durumlarının bozunma modlarının (dallanma oranları, acısal dağılımları, polarizasyonları ve benzerleri) hesaplanmasında, özellikle hafif çekirdekler için uygundur (Berman, 1975).

Dev dipol rezonans (GDR), elektrik dipol (E1) fotonlar ile atomik çekirdek arasındaki etkileşimden kaynaklanmaktadır ve 40-50 MeV'a kadar çekirdeklerin fotonları absorbsiyon tesir kesitlerinde hakimdir. Elektrik dipol uyarılmalar tarafından üretilen önemli bir fenomendir. Bu fenomenin incelendiği yaklaşık 70 yıl, yüksek enerjili nükleer uyarılmaların dinamiklerini anlamada temel rol oynadığını göstermiştir (Kapitanov, 2015). GDR'nin en önemli özelliklerinden biri şeklidir (fotoabsorpsiyon kesitinin enerjiye bağımlılığı). Farklı laboratuvarlarda, bremsstrahlung ve kuasi-monokromatik radyasyon ile gerçekleştirilen deneysel araştırmalara bağlı olarak, periyodik tablo üzerinde pekçok izotop için fotonükleer tesir kesitlerde veri birikimi sağlanmıştır (Varlamov ve ark., 2008). Bu nükleer veriler nükleer fizik ve mühendislik için büyük öneme sahiptir (Shibata, 2015). Foto uyarılmaların temel bir şekli olan GDR ile çekirdekler incelenebilir (Rhine ve ark., 2015). Bu nedenle GDR makroskopik ve mikroskobik olarak teorik açıdan incelenmiş, incelenmeye de devam edilmektedir.

Makroskopik açıdan GDR'nin, kolektif model içerisindeki yorumunun altında yatan temel teorik fikir proton ve nötron kütle merkezlerinin birbirlerinden ayrılmasıdır. Bu

ayrılma sayesinde çekirdekte büyük bir dipol moment meydana gelmektedir (Greiner, 1996). Jensen tarafından ortaya atılan fikri takiben bu fenomeni ilk formüle eden Goldhaber ve Teller (1948)dir bu bilim insanlarını Steinwedel ve Jensen (1950) takip etmiştir. Bu makroskopik modelleri kısaca ele alalım.

Goldhaber-Teller Modeli: Goldhaber ve Teller (1948) dev rezonansın ilk teorik açıklamasını yapmışlardır. Protonların nötronlara göre olan hareketini tanımlayarak, bu hareketin dev rezonansa sebep olduğunu ileri sürmüşlerdir (Şekil 2.19.)

Şekil 2.19. Goldhaber ve Teller modeline göre GDR titreşiminin şematik gösterimi (Chomaz, 1997)

Bu duruma neden olacak 3 temel olasılık olduğu ortaya konulmuştur:

- Protonlar ve nötronlar geri çağırıcı bir kuvvet altında yer değiştirme hareketi yaparlar ve bu kuvvet yer değiştirmenin kendisi ile orantılıdır, bu yer değiştirme çekirdeğin büyüklüğünden bağımsızdır. (Bu durum geçerliğini ilk yitirenlerden birisidir çünkü bu durumda A kütle numarasından bağımsız rezonans enerjisi ortaya çıkmaktadır).
- Çekirdeğin yüzeyinde protonlar ve nötronlar arasında bir fark yoktur, fakat içeride yoğunluklar arasında bir fark vardır. Geri çağrıcı kuvvet bu yoğunluk farkı arasındaki gradyent ile orantılıdır.
- 3. Proton ve nötronların her biri birbiri içine nüfuz eden küresel bir sistem oluştururlar, fakat birbirlerine karşı konumlanmışlardır, Şekil 2.20. bu durumu görsel hale getirmektedir. Açıkçası bu saf dipol durumdur ve günümüzde Goldhaber-Teller modeli olarak bilinen yaklaşımın temelidir.

Şekil 2.20. Abartılmış bir ayrılma uzaklığı ile gösterilmiş dev dipol rezonansın Goldhaber-Teller modelinde geometrik varsayımın bir temsili

Bu yaklaşımda, harmonik potansiyel ile birlikte dev rezonansın frekansı A^{-1/6} ile orantılıdır.

$$\hbar\omega = \hbar \sqrt{\frac{3a_{sim}}{4\epsilon m}} \sqrt{\frac{A^2}{ZNR}} \approx \frac{45 \, MeV}{A^{1/6}} \tag{2.56}$$

Steinwedel-Jensen Modeli: Steinwedel-Jensen (1950) Modelinde, dev dipol rezonans çekirdeğin toplam yoğunluğu değişmezken nötron ve protonların yerel oranlarında meydana gelen değişimle birlikte dinamik olarak kutuplanması olarak hesaplanır (Şekil 2.21.). Bu dinamik ele alış, sıvı damla modelindeki potansiyel enerji ve hidrodinamik dönmez akışkan için kinetik enerji varsayımına dayanır.

Şekil 2.21. Steinwedel Jensen modeline göre GDR titreşiminin şematik gösterimi (Chomaz, 1997)

Bu yaklaşımda, dev rezonansın frekansı A^{-1/3} ile orantılıdır. Bu sonuç deneysel olarak elde edilen sonuçlara yakınlık göstermektedir.

$$\hbar\omega = \sqrt{\frac{4ZN}{A^2}} \, \frac{76,5 \, MeV}{A^{1/3}} \tag{2.57}$$

Şekil 2.22.'de, gözlemlenen rezoans enerjileri ile kütle numarası A arasındaki ilişkinin saf bir Goldhaber-Teller ya da saf bir Steinwedel-Jensen modeli ile tutarsız olduğunu göstermektedir.

Şekil 2.22. Rezonans enerjisinin kütle numarasıyla değişimi (Myers, 1977)

Atom numarası küçük çekirdekler için $A^{1/6}$, büyük olanlar için $A^{1/3}$ ile orantılı bir geçiş olduğu görülmüştür. Bu bağlamda teori ile olan temel anlaşma GDR centroid enerjisi için,

$$E_m = 31,2 \,A^{-1/3} + 20,6A^{-1/6} \tag{2.58}$$

ifadesiyle sağlanmıştır (Berman ve Futz, 1975).

2.2.4.2.1. İzovektör dev dipol rezonans

Dev rezonanslar çekirdekte kolektif modların en iyi örneğini temsil etmektedirler. Rezonans parametrelerinin kütle-sayısı bağlılığı nükleer dev rezonansların karakteristiğidir ve bu parametreler yardımıyla kararlı olmayan dinamikler ve çekirdeğin kütle özellikleri hakkında bilgi elde edilmektedir (Harakeh ve Woude, 2006). En eski ve en bilinen dev rezonans, fotoabsorpsiyon deneylerinden izovektör E1 uyarımı için yüksek seçicilik nedeniyle izovektör dev dipol rezonans (Isovector Giant Dipole Resonance-IVGDR)'dir. IVGDR'nin özellikleri, özellikle Lepretre ve ark., (1976) tarafından Saclay, Berman ve Flutz (1975) tarafından Livermore laboratuvarlarında (γ , xn) tipi deneyler kullanılarak kapsamlı bir şekilde çalışılmıştır. Bu laboratuvarlardaki deney düzenekleri, nötron bağlanma enerjisinin üzerindeki, büyük ölçekli astrofizik reaksiyon ağları, reaktör tasarımı, nükleer atık transmutasyonu gibi uygulamalarla ilgili istatistiksel reaksiyon hesaplamalarında kullanılan önemli bir nicelik olan γ güç fonksiyonları ile ilgili önemli bilgi kaynaklarıdır. Bir diğer deney tekniği realistik Coulomb uyarımı ile çekirdeklerde elektrik dipol-gücü dağılımlarının çıkarılması için Tamii ve ark., (2009) ve Neveling ve ark., (2011) tarafından geliştirilmiştir. Her ne kadar bu deneyler, nötron eşiğinin çevresindeki kuvveti ve dipol polarizasyonuna olan katkısı etrafında odaklansa da, bu veriler aynı zamanda IVGDR enerji bölgesindeki foto-absorpsiyon kesitleri hakkında bilgi sağlamışlardır. Yakın zamanda Donaldson ve ark., (2018) tarafından, Güney Afrika iTemba laboratuvarında proton inelastik saçılma deneyiyle de IVGDR özellikleri incelenmiş ve diğer deney türleriyle elde edilen sonuçlarla karşılaştırma yapılmıştır.

IVGDR mikroskobik nükleer teori açısından, fotoabsorbsiyon deneylerinden ilk gözlemlenen olduğu ve tanımı için birçok temel teorik kavramın geliştirilmesini tetiklediği için merkezi bir rol oynamıştır. (Poltoratska ve ark., 2014; Hashimoto ve ark., 2015). Genişliği farklı sönümleme mekanizmalarıyla ilişkili iken, merkezi enerji değeri(centroid) nükleer kütle ile ilgilidir (Bortignon ve ark., 1998; Harakeh ve Woude, 2006). IVGDR, yaklaşık 15 MeV'lik bir enerjiyle bir gama ışını kullanarak fotoabsorbsiyon deneylerinde gözlemlenebilir. Mermi olarak gönderilen gama ışınının enerjisinden dolayı ($h_{W_v} \approx 15 MeV$) ilgili dalga boyu, nükleer yarıçaptan (R=5-7fm) daha büyüktür. Bu nedenle, çekirdek bir bütün olarak sabit elektrik alanında bulunur. Sonuç olarak, protonlar E yönünde hareket ederlerken, nötronlar, kütlenin merkezinin sabit kalması ve momentumu korumak için ters yönde hareket ederler. Öte yandan çekici nükleer kuvvet, nötronların ve protonların hareketini tersine çeviren bir restorasyon kuvveti olarak işlev görür (Ceruti, 2016). IVGDR'nin gerçekleştirilen deneyşel çalışmaların derlendiği (Berman ve Flutz 1975; Bergere 1977; Dietrich ve Berman, 1988) ya da farklı teorik yaklaşımlarla özelliklerinin incelendiği çalışmalara göre, IVGDR'nin daha önce de bahsedilen genel özelliklerini su sekilde sıralayabiliriz:

- IVGDR fenomeni oldukça geneldir ve hafif ⁴He çekirdeğinden ağır ²³⁸U'a kadar tüm çekirdeklerde görülür (Masur ve Mel'nikova, 2006).
- Hafif çekirdeklerde IVGDR güç dağılım piki daha dar iken, ağır küresel çekirdekler için bu dağılım Lorentz dağılımı şeklindedir.
- Deforme çekirdeklerde IVGDR güç dağılımı iki eğriden oluşmaktadır. Düşük ve yüksek değerlerde olan bu eğriler nötronun protona karşı hareketinin gerçekleştiği eksenlerle ilgilidir.
- IVGDR'nin uyarılma enerjisi, A ile oldukça iyi bir şekilde elde edilebilir.

$$E_m = 31, 2A^{-1/3} + 20, 6A^{-1/6}$$

- IVGDR gücü Thomas-Reiche-Kuhn(TRK) toplam kuralı ile ifade edilebilir.

$$\int_{E_{\min}}^{E_{\max}} \sigma_{\gamma}^{abs} dE = \frac{60NZ}{A} (1+\kappa)$$

 κ tüm izovektör rezonansların mezon değişim katkılarına bağlı bir faktördür A)100 çekirdekleri için bu değer 0.1 ile 0.2 rasında bir değer almaktadır. E_{min} nötron koparma enerjisi, E_{max} 25 MeV'dir. (Harakeh ve Van der Woude, 2006).

- IVGDR tesir kesiti verisine göre oluşturulan eğrinin genişliğinin bulunması için genel eğilim, Lorentz fitinin kullanılmasıdır. Buna göre genişlik kapalı kabuklarda yaklaşık 4MeV civarında olurken, kabuklar arasında bulunan ve deforme çekirdekler için bu değer artmaktadır.
- IVGDR şekli spesifik nükleer yüzey özellikleri ile ilişkilidir.

2.2.4.2.2. İzoskaler dev dipol rezonans

Dev monopol rezonansı (GMR) gibi izoskalar dev dipol rezonansı (Isoscalar Giant Dipole Resonance-ISGDR) da uyarılma enerjileri, çekirdek içerisindeki nükleonun hareketinin tanımlanmasında çok önemli bir rol oynayan nükleer eşitliğin önemli bir bileşeni ve aynı zamanda tip II süpernova patlamaları ile ilgili olan nükleer maddenin sıkıştırılamazlığı ile doğrudan ilişkili olduğu için ilgi çeken modlardan biridir (Itoh ve ark., 2002).

Şekil 2.15.'de ²⁰⁸Pb çekirdeği için dev rezonans modlarının gösteriminde de görülmektedir ki E1 multipolü için izoskaler bileşen tüm çekirdeğin Thomson saçılması ile özdeştir ve bu nedenle ayrı bir uyarım modu olarak görülmemektedir (Hütt ve ark., 2000). ISGDR geçiş operatörü, çekirdeğin kütle merkezinin ötelenmesini uyarmaktadır ve bu durum içsel bir nükleer uyarıma yol açmamaktadır. Bununla birlikte, ikinci mertebeden bu operatör, içsel 1 hw ve 3 hw nükleer uyarılmalarına yol açabilir ki isoskaler dipol gücü çoğunlukla, 3 hw uyarımında bulunmaktadır ve 3 hw izoskaler dipol modu bir sıkıştırma modu olarak görülmektedir.

ISGDR ile ilgili durum aşağıdaki gibi özetlenebilir:

- 3 hw ISGDR gücü $24 \le A \le 208$ aralığında birçok çekirdekte yer almaktadır.
- A≥90 çekirdekleri için nükleer güç dağılımının merkezi (centroid) enerji değeri ≈120A^{-1/3} MeV; A ≤ 90 için gözlemlenen nükleer güç dağılımının merkezi sürekli olarak azalır (A = 24'te yaklaşık 60A^{-1/3} MeV).
- A≥90 çekirdekleri için, güç yaklaşık 10 ila 15 MeV arasında geniş bir aralıkta dağılırken, E1 EWSR'nin% 100'üne yakındır.
- Mikroskopik HF-RPA hesaplamaları, skyrme etkileşimlerini kullanarak merkezdeki enerjileri tahmin etmektedir.
- Bir dizi çekirdekte 1hw izoskaler dipol gücü gözlenmiştir. HF-RPA hesaplamaları da bu kadar düşük gücü öngörmektedir (Harakeh ve Woude, 2006).

2.2.4.3. Dev kuadrupol rezonans

İnelastik elektron saçılması (Pitthan ve Wlacher, 1971; Fuduka ve Torizuka 1972; Nagao ve Torizuka, 1973) ve inelastik proton saçılması (Lewis ve Bertrand, 1972) deneyleri sonucunda keşfedilen dev kuadropol rezonans (Giant Quadrupole Resonance-GQR), izovektör dev dipol rezonanstan sonra deneysel olarak keşfedilen ikinci kollektif moddur. ISGQR'nin güç dağılımına örnekler Şekil 2.23.'de verilmiştir.

Şekil 2.23. ISGQR güç dağılımı. ¹¹⁶Sn ve ²⁰⁸Pb için deneysel verilerin Lorentz dağılımı ile fit edilmesi (Patel ve ark., 2014)

Düşük enerjili kuadropol uyarılmalarının özellikleri kapalı kabukların dışındaki parçacıkların sayısına bağlı iken (nötronca zengin çekirdeklerin izoskalar dipol tepkisinde görülen düşük enerjili pik için olana benzer bir şekilde) yüksek enerjili modların kütle numarası A ile düzgün bir şekilde değişmesi beklenir. ISGQR durumunda, uyarılma enerjisi tahmin edilebilir -harmonik osilatör dikkate alındığında- kabuk enerji aralığı ve eğer nükleer efektif etkileşim hıza bağlıysa, nükleon efektif kütle yani $\sqrt{m/m^*}$ ile orantılı olur. Bu orantı nedeniyle, mikroskopik öz-uyumlu hesapların ISGQR üzerindeki deneylerle karşılaştırılması, nükleer ortamda gömülü olan nükleonları karakterize eden en önemli niceliklerden biri olan m * değeri hakkında değerli bilgiler sağlamıştır (Roca-Maza ve ark., 2018).

BÖLÜM 3. ÇİFT-ÇİFT KÜTLE NUMARALI DEFORME ÇEKİRDEKLERİN ELEKTRİK DİPOL UYARILMALARININ ARAŞTIRILMASI

3.1. Simetri Kırınımları, Sahte Haller ve Etkin Kuvvetler

Nükleer kuvvetlerin karmaşıklığı ve çok sayıda bağımsız dereceye sahip sistemlerin detaylı tarifinde doğan zorluklar nedeniyle nükleer seviyelerin simetri özellikleri açısından ve koruma yasalarının uygulanmasıyla karakterize edilmeleri, nükleer olayların analizinde belirgin bir rol oynamaktadır. Nükleer fizikte simetri yasaları, kısmen, uzay-zaman koordinat sisteminin dönüşümleri ile olan etkileşimlerin değişmezliğinden kaynaklanmaktadır. Sürekli dönüşümler (öteleme, dönme ve Lorentz) altındaki değişmezlik evrensel geçerliliğe sahip olarak görülmektedir. Nükleer olayların incelenmesi, bu simetrilerin geçerlilik derecesinin aydınlatılmasında önemli bir katkı sağlamıştır (Bohr and Mottelson, 1997). Doğa içinde simetriler, karmaşık bir fiziksel sistemi basit bir şekilde tarif etmemize ve davranışını daha iyi anlamamıza yardımcı olmaktadırlar. Aslında, simetriler, kuantum mekaniğinde sistemin tanımlanması için belirleyici kuantum sayılarına dönüşen korunma yasaları ile kuvvetli şekilde ilişkilidir. Bir nükleer sistemde birçok simetri varlığı tanımlanmıştır. Simetrileri araştırmak, fizik biliminin tüm alanlarında temel bir hedeftir. Bununla birlikte, olası bir simetri kırılması, farklı ve yeni durumların oluşmasına neden olmaktadır (Ceruti 2016).

Simetri kırılmalarına neden olan durumlardan biri çekirdeğin incelendiği yaklaşımın özelliğidir. Bu çalışmanın konusu olan çift-çift deforme çekirdeklerin mikroskobik olarak incelendiği yaklaşım Kuaziparçacık Rastgele Faz Yaklaşımıdır (QRPA). QRPA temelinde yer alan Hartree-Fock-Bogolyubov (HFB) yaklaşımından ötürü tek parçacık hamiltoniyeni simetrileri kırılmaktadır. Bu simetri kırınımları, ortalama alan potansiyeli ile ilişkili olarak kendiliğinden oluşmakta ve incelenen çekirdeğin var olan titreşim seviyelerinin içerisine, titreşim hareketinin dışında sıfır enerjili farklı seviyelerin (Goldstone modu) karışmasına neden olmaktadır. Gerçek tireşim seviyeleri arasına karışan bu seviyeler sahte haller olarak ifade edilmektedirler.

Simetri kırınımının neden olduğu sahte haller çekirdeğin teorik olarak incelenen enerji spektrumu değerleri ile ilgili sonuçların doğruluktan sapmasına neden olmaktadır. Hesaplamaların daha sağlıklı sonuçlar vermesi için kırılan simetriler yüzünden çekirdek enerji spektrumuna karışan bu sahte hallerin ayrılması gerekmektedir. Bu işlem Pyatov ve Chernej (1972) tarafından gerçekleştirilmiştir. Bu calışmada, sahte hallerin ayrılması (restorasyon) için ortalama alanda radyal kısmı ayrılan etkin kuvvetler izoskaler olarak seçilmiştir. Sahte hallerin ayrılması için kullanılan başka bir yaklaşım Kuliev ve ark., (2000) tarafından gerçekleştirilmiştir. Kuliev ve ark., (2000) yaklaşımında, ortalama alandaki izovektör ve coulomb potansiyellerini göz ardı ederek etkin kuvvetleri yalnızca izoskaler alan Pyatov'un yaklaşımını geliştirerek izovektör terim katkısı yapmıştır. Bu yaklaşım Ertuğral (2007)'ın çalışmasında, geçiş ve nadir toprak bölgelerinde bulunan çift-çift deforme 2-4 MeV enerji bölgesinde, elektrik dipol özelliklerinin çekirdeklerin, incelenmesinde Galileo değişmezliğin kırınımının (süperakışkan çekirdeklerde çift etkileşme potansiyellerinin sebep olduğu) restorasyonunu sağlayan etkin kuvvetlerin seçilmesinde uygulanmıştır. Bu çalışmada, izoskaler ve izovektör restore edici kuvvetlerin iki-kuaziparçacık eşik enerjisinin altındaki düşük enerjilerde $I^{\pi}=1^{-1}$ hallerinin yeni bir dalını ürettiği gösterilmiştir. Kuliev ve ark., (2000) yaklaşımı hem elektrik hem de manyetik dipol uyarılmalarının incelendiği çalışmalarda uygulanmış, başarılı sonuçlar elde edilmiştir (Kuliev ve ark., 2002; Guliyev ve ark., 2006, 2009a, 2009b, 2013; Ertuğal ve ark., 2009).

3.2. Deforme Çekirdeklerde Elektrik Dipol Uyarılmaları

Elektrik dipol geçişlerinin en karakteristik büyüklüklerinden biri indirgenmiş geçiş ihtimalidir. Bu büyüklük 1⁻ uyarılmalar için B(E1) olarak ifade edilmektedir ve aşağıdaki şekilde verilmektedir.

$$B(E1, I_i K_i \to I_f K_f) = \sum_{\mu} \langle I_i 1 K_i \mu | I_f K_f \rangle^2 | M(0^+ \to 1^- K) |^2$$
(3.1)

Burada $\langle I_i 1 K_i \mu | I_f K_f \rangle$ Clebsh-Gordon katsayıları, $M(0^+ \to 1^- K)$ ise uyarılma matris elemanıdır (Bohr ve Mottelson 1997). Denklem (2.29)'da $(|\psi_i\rangle = Q_i^+ |\psi_0\rangle = \sum_{\mu,\tau} [\psi_{qq'}^i(\tau) A_{qq'}^+(\tau) - \phi_{qq'}^i(\tau) A_{qq'}(\tau)] |\Psi_0\rangle$ verilen QRPA

metodunda 1[°] seviyelerinin tek fononlu dalga fonksiyonları ifadesi kulanılarak, 1[°] seviyeleri için tek fononlu taban durumundan uyarılma matris elemanı, şu şekilde yazılmaktadır ($Q_i | \Psi_0 >= 0$ olduğundan):

$$M(0^{+} \to 1^{-} \mathrm{K}) = \langle \Psi_{0} | Q_{n}^{+} M(E1, \mu) | \Psi_{0} \rangle$$
(3.2)

Burada M(E1) elektrik dipol operatörü olup

$$M(E1,\mu) = e_p \sqrt{\frac{4\pi}{3}} \sum_{i=1}^{Z} (rY_{1\mu})_i$$
(3.3)

ile verilmektedir. Bu ifadedeki e_p protonun elektrik yüküdür. Elektrik dipol geçiş operatörleri, deney ve teorik sonuçların karşılaştırılması ile elde edilen, efektif yükler kullanılarak ifade edilebilir (Bohr ve Mottelson, 1997).

$$M(E1,\mu) = -\frac{1}{2} \sum_{\tau=n,p} e_{eff}^{\tau} \sum_{i=1}^{A} \tau_{z}^{i} r_{\mu}^{i}$$
(3.4)

Dipol uyarılma matris elemanı, incelenen çekirdeklerin süperakışkanlık özelliğinden dolayı Bogolyubov dönüşümleri altında farklı betimlenebilmektedir:

$$M(E1) = \sum_{qq'} r_{qq'} (u_q u_{q'} - v_q v_{q'}) B_{qq'} + \sum_{qq'} r_{qq'} (u_q v_{q'} + u_{q'} v_q) (A_{qq'}^+ + A_{q'q})$$
(3.5)

Burada ilk terim kuazibozon, ikinci terim kuaziparçacık özelliklerini içermektedir. Denklem düzenlenip komutasyon özelliklerinden yararlanılıp nötron ve proton için ayrı yazıldığında, elektrik dipol geçiş matris elemanı aşağıdaki olur:

$$M(0^{+} \to 1^{-} K) = -\frac{e_{eff}^{p}}{2} \sum_{ss'} r_{ss} u_{ss'} g_{ss'} - \frac{e_{eff}^{n}}{2} \sum_{vv'} r_{vv} u_{vv'} g_{vv'}$$
(3.6)

İndirgenmiş geçiş olasılığının belirlenmesi için elektrik dipol geçiş matris elemanının elde edilmesinde kullanılan terimler, aşağıda QRPA metodunun farklı yaklaşımlar altında restore edilmesiyle, elde edilmiştir.

3.3. Çift-Çift Deforme Çekirdekler İçin QRPA Metodu

Bu çalışmada geçiş ve nadir toprak bölgesinde yer alan çift-çift deforme çekirdeklerin QRPA model çerçevesinde 1[°] seviyelerinin tek fononlu elektrik dipol özellikleri, nötron bağlanma enerjisinin yukarısında bulunan enerji bölgesindeki özellikleri incelenmiştir. QRPA modeli kullanılarak yapılan hesaplamalarda simetri kırınımlarının neden olduğu sahte hallerin yalıtılması Kuliev ve ark., (2000) yaklaşımı ile gerçekleştirilmiştir. Restore edici kuvvetlerin eklenmesinin elektrik dipol rezonansın öteleme ve Galileo değişmezliğine etkisini belirlemek amacıyla QRPA yaklaşımı hesaplamaları dört başlık altında gerçekleştirilmiştir.

- Hiçbir restorasyonun olmadığı yaklaşım:
 Öteleme ve Galileo değişmez olmayan QRPA model (NTGI QRPA)
- Yalnızca öteleme değişmezliğin restore edildiği yaklaşım:
 Öteleme değişmez QRPA model (TI QRPA)
- Yalnızca Galileo invaryantlığın restore edildiği yaklaşım: Galileo değişmez QRPA model (GI QRPA)
- Hem öteleme hem de Galileo değişmezliğin restore edildiği yaklaşım:
 Öteleme ve Galileo değişmez QRPA model (TGI QRPA)

Yapılan analitik hesaplamalarda öncelikle her yaklaşım için Hamiltoniyenler elde edilmiştir. Hamiltoniyenlerin özdeğer ve özfonksiyonlarını bulmak için QRPA'nın bilinen yöntemleriyle $[H, Q_i^+] = \omega_i Q_i^+$ hareket denklemi çözülmüş ve 1 seviyelerinin enerjisi olan ω_i kökleri ve dalga fonksiyonunun $g_{qq'} = \psi_{qq'} + \phi_{qq'}$ ve $w_{qq'} = \psi_{qq'} - \phi_{qq'}$ genlikleri elde edilmiştir. QRPA hareket denklemleri dört yaklaşım için çözülmüş, 1[°] seviyelerinin enerjisi olan ω_i kökleri ve dalga fonksiyonunun $\psi^i_{qq'}$ ve $\phi^i_{qq'}$ katsayıları bulunmuştur. Bu işlemler aşağıda ayrı ayrı verilmiştir.

3.3.1. Öteleme ve Galileo değişmez olmayan QRPA model (NTGI QRPA)

Spini ve paritesi I^{π}= 1⁻ olan uyarılmalar için, öteleme ve Galileo değişmez olmayan QRPA model hamiltoniyeni şu şekilde ifade edilir (Pyatov ve Salamov, 1977);

$$H = H_{sqp} + W_{dip} \tag{3.7}$$

Bu ifadedeki ilk terim olan H_{sqp} tek-kuazi parçacık hareketinin Hamiltoniyeninin temel formunu ifade etmektedir (ikinci kuantumlanma metodu yaklaşımı kullanılarak) (Pyatov ve Salamaov, 1977).

$$H_{sqp} = \sum_{\gamma} \varepsilon_{\gamma} \alpha_{\gamma}^{+} \alpha_{\gamma}$$
(3.8)

Bu ifadedeki α^+ ve α operatörleri daha önce bahsedilen Bogolyubov dönüşümlerinin fermiyonlar için kuazi parçacık üretme ve yok etme operatörleri, ε_{γ} tek parçacık ortalama alanı üzerinden alınmış nükleonların tek-kuaziparçacık enerjisidir. Üretme ve yok etme opertörlerinin B operatörü ifadesindeki yerleri aşağıdaki gibidir (Soloviev, 1976)

$$B(q,q') = \sum_{\sigma} \alpha_{q\sigma}^{+} \alpha_{q'\sigma}$$
(3.9)

Burada $\sigma = \pm 1$ zaman dönüşümü işlemi ile igili durumları göstermektedir. Kuazi parçacık sayısına karşılık gelen B operatörü genel olarak,

$$B_{qq}(\tau) = \sum_{q\tau} \alpha_q^+(\tau) \alpha_q(\tau) + \alpha_{q\phi}^+(\tau) \alpha_{q\phi}(\tau)$$
(3.10)

olarak ifade edilmektedir. Burada, kuantum numaralarından q hem proton hem nötron seviyelerini ifade etmektedir. Böylelikle, H_{sqp} aşağıdaki genel forma dönüşmektedir (Soloviev, 1976).

$$H_{sqp} = \sum_{q\tau} \varepsilon_q(\tau) \Big\{ \alpha_q^+(\tau) \alpha_q(\tau) + \alpha_{\phi}^+(\tau) \alpha_{\phi}(\tau) \Big\}$$
(3.11)

(3.7) ifadesindeki ikinci terim olan W_{dip} nötron ve protonların dipol titreşimlerini temsil etmektedir (Pyatov ve Salamov, 1977). Öteleme değişmez dipol-dipol etkileşimleri için aşağıdaki izovektör form kullanılacaktır.

$$W_{dip} = \frac{3}{2\pi} \chi_1 \left(\frac{NZ}{A}\right)^2 \left(\frac{\mathbf{R}}{R_N} - \frac{\mathbf{r}}{R_Z}\right)^2$$
(3.12)

Burada, χ_1 izovektör dipol-dipol çiftlenim sabiti, R_N ve R_Z proton ve nötron sistemlerinin kütle merkezinin koordinatıdır. Burada tüm sabit sayıları bir yerde toplarsak κ_1 aşağıdaki şekilde yazılır.

$$\kappa_1 = \frac{3}{2\pi} \chi_1 \left(\frac{NZ}{A}\right)^2 \tag{3.13}$$

Bu durumda W_{dip} nötron ve protonların izovektör dipol-dipol etkileşimi

$$W_{dip} = \kappa_1 \left(\stackrel{\mathbf{r}}{R_N} - \stackrel{\mathbf{r}}{R_Z} \right)^2 \tag{3.14}$$

olur. (3.14) ifadesindeki R kütle merkezinin genel hali aşağıdaki şekilde yazılır.

$$R_{\mu} = \sum_{qq'} r_{qq'}^{\mu} \left\{ a_{q}^{+} a_{q'}^{+} + a_{q'}^{+} a_{q'}^{-} \right\}$$
(3.15)

(3.15) ifadesindeki μ indisi deforme çekirdekler için $\mu=0$ olduğunda K=0 uyarılmalarını, $\mu=\pm 1$ ise K=1 uyarılmalarını üretmektedir. Bu ifadede *a* parçacık

operatöründen α quasi parçacık operatörüne geçelim. Burada aşağıdaki kuaziparçacık operatörlerini kullanırsak

$$A^{+}_{qq'} = \alpha^{+}_{q'} \alpha^{+}_{q'}$$

$$A_{q'q} = \alpha^{-}_{q'} \alpha^{+}_{q'} = -\alpha^{-}_{q'} \alpha^{-}_{q'}$$
(3.16)

yarıçap ifadesi (3.17)'deki gibi bulunmuş olur.

$$R_{\mu} = \sum_{qq'} r_{qq'}^{\mu} \ u_{qq'} \left(A^{+}_{qq'} + A_{qq'} \right)$$
(3.17)

Bu ifadedeki parantez içini fonon operatörleri kullanarak düzenleyelim (Soloviev, 1976)

$$Q_{i} = \frac{1}{2} \sum_{q,q'} \left\{ \psi_{qq'}^{i} A(q,q') - \varphi_{qq'}^{i} A^{+}(q,q') \right\}$$
(3.18)

$$Q_{i}^{+} = \frac{1}{2} \sum_{q,q'} \left\{ \psi_{qq'}^{i} A^{+}(q,q') - \varphi_{qq'}^{i} A(q,q') \right\}$$
(3.19)

(3.18) ve (3.19) ifadeleriyle yapılan işlemler sonucunda

$$A(q,q') = \sum_{i} \left\{ \psi^{i}_{qq'} Q_{i} + \varphi^{i}_{qq'} Q_{i}^{+} \right\}$$

$$A^{+}(q,q') = \sum_{i} \left\{ \psi^{i}_{qq'} Q_{i}^{+} + \varphi^{i}_{qq'} Q_{i} \right\}$$
(3.20)

bulunur. (3.20) ifadeleri taraf tarafa toplanır ve $g_{qq'} = \psi^i_{qq'} + \phi^i_{qq'}$ olarak alınırsa,

$$A(q,q') + A^{+}(q,q') = \sum_{i} \sqrt{2} g_{qq'}(Q_{i} + Q_{i}^{+})$$
(3.21)

olur. (3.21) ifadesi (3.17)'de yerine yazıldığında yarıçap ifadesinin fonon operatörleri cinsinden genel hali elde edilmiş olur.

$$R_{\mu} = \sum_{qq'} r_{qq'}^{\mu} u_{qq'} \sum_{i} \sqrt{2} g_{qq'} \left(Q_i + Q_i^+ \right)$$
(3.22)

Nötron ve proton arasındaki etkileşim dikkate alınarak $\left(\begin{matrix}\mathbf{r} & \mathbf{r} \\ R_N - R_Z\end{matrix}\right)^2$ hesaplandığında

$$W_{dip} = 2\kappa_1 \sum_{q_1q_1, q_2q_2} r_{q_1q_1} u_{q_1q_1} g_{q_1q_1} r_{q_2q_2} u_{q_2q_2} g_{q_2q_2} \sum_{ij} \left(Q_i + Q_i^+ \right) \left(Q_j + Q_j^+ \right)$$
(3.23)

olur. $W_{q_1q_1} = r_{q_1q_1}u_{q_1q_1}g_{q_1q_1}$ ve $W_{q_2q_2} = r_{q_2q_2}u_{q_2q_2}g_{q_2q_2}$ olmak üzere W_{dip} ifadesi,

$$W_{dip} = 2\kappa_1 \sum_{q_1 q_1, q_2 q_2} W_{q_1 q_1} W_{q_2 q_2} \sum_{ij} \left(Q_i + Q_i^+ \right) \left(Q_j + Q_j^+ \right)$$
(3.24)

Genel haliyle bulunur. $B_{qq'}(\tau) = (\psi_{qq'}^2 + \varphi_{qq'}^2)Q_i^+Q_i$ olduğundan

$$H_{sqp} = \sum_{qq'\tau} \varepsilon_{qq'}(\tau) B_{qq'}(\tau) = \sum_{qq'} \varepsilon_{qq'}(\psi_{qq'}^2 + \varphi_{qq'}^2) Q_i^+ Q_i$$
(3.25)

bulunur. İfadelerdeki notasyon karışıklığı engellenerek en genel haliyle NTGI model için hamiltoniyen ifadesi,

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^2 + \varphi_{qq'}^2 \right) Q_i^+ Q_i + 2\kappa_1 \sum_{q_1 q_1 \cdot q_2 q_2 \cdot} W_{q_1 q_1} W_{q_2 q_2 \cdot} \sum_{jj'} \left(Q_j + Q_j^+ \right) \left(Q_{j'} + Q_{j'}^+ \right)$$
(3.26)

dir. Tek fononlu durumlar için (2.34)'de belirtilen hareket denklemi ifadesini kullanalım:

$$[H, Q^+] = [H_{sqp}, Q^+] + [W_{dip}, Q^+] = \omega_i Q^+$$
(3.27)

Bu ifadedeki ω_i 'ler 1⁻ hallerin enerjileridir. Denklem (3.26) ifadesinde bulduklarımızı yerine koyarak enerji özdeğerlerini hesaplayalım. $g_{qq'} = \psi_{qq'} + \varphi_{qq'}, w_{qq'} = \psi_{qq'} - \varphi_{qq'}$ ve $W_{qq'} = r_{qq} u_{qq'} g_{qq'}$ olmak üzere;

$$[H, Q_{i}^{+}] = \frac{1}{2} \sum_{qq'} \varepsilon_{qq'} \left(g_{qq'}^{2} + w_{qq'}^{2} \right) Q_{i}^{+} + 2\kappa_{1} \left\{ W_{q_{1}q_{1}} W_{q_{1}q_{1}} - W_{q_{1}q_{1}} W_{q_{2}q_{2}} + W_{q_{2}q_{2}} W_{q_{1}q_{1}} + W_{q_{2}q_{2}} W_{q_{2}q_{2}} \right\} \left(Q_{j} + Q_{j}^{+} \right)$$

$$\omega_{i} = \sum_{qq'} \varepsilon_{qq'} \left(g_{qq'}^{2} + w_{qq'}^{2} \right) + 2\kappa_{1} \left\{ W_{q_{1}q_{1}} W_{q_{1}q_{1}} - W_{q_{1}q_{1}} W_{q_{2}q_{2}} + W_{q_{2}q_{2}} W_{q_{1}q_{1}} + W_{q_{2}q_{2}} W_{q_{2}q_{2}} \right\}$$
(3.28)

Burada,

$$\psi_{qq'} = \frac{g_{qq'} + w_{qq'}}{2} \qquad \qquad \varphi_{qq'} = \frac{g_{qq'} - w_{qq'}}{2} \tag{3.29}$$

eşitlikleri göz önünde bulundurularak denklem ψ ve φ cinsinden tekrar ifade edilirse hamiltoniyenin özfonksiyonlarını hesaplamak için dalga fonksiyonunun birimleme koşulunu sağlayan (3.30) ve (3.31) ile verilen $g_{qq'}$ ve $w_{qq'}$ genlikleri ile $\psi_{qq'}$ ve $\varphi_{qq'}$ katsayıları

$$\sum_{ss'} g_{ss'} w_{ss'} + \sum_{vv'} g_{vv'} w_{vv'} = 1$$
(3.30)

$$\sum_{qq'\tau} [\psi_{qq'}^{i^{2}}(\tau) - \varphi_{qq'}^{i^{2}}(\tau)] = 1$$
(3.31)

elde edilmiştir.

$$g_{qq'} = -\tau_z \frac{1}{N_\tau} \frac{4\kappa_1 r_{qq'} u_{qq'} \varepsilon_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W_1 \; ; \; w_{qq'} = -\tau_z \frac{1}{N_\tau} \frac{4\kappa_1 r_{qq'} u_{qq'} \omega_i}{\varepsilon_{qq'}^2 - \omega_i^2} W_1 \; (3.32)$$

$$\psi_{qq'} = -\tau_z \frac{1}{N_\tau} \frac{2\kappa_1 r_{qq} u_{qq'}}{\varepsilon_{qq'} - \omega_i} W_1 ; \qquad \varphi_{qq'} = -\tau_z \frac{1}{N_\tau} \frac{2\kappa_1 r_{qq'} u_{qq'}}{\varepsilon_{qq'} + \omega_i} W_1$$
(3.33)

Burada $W_1 = W_n - W_p$ 'dir. Seküler denklem yazılıp denklemler katsayılar matrisi haline getirilerek çözüm yapılırsa

$$D(\omega_i) = 1 + 2\kappa_1 \left(\frac{F_n}{N^2} + \frac{F_p}{Z^2}\right) = 0$$
(3.34)

denklemi elde edilir. Burada $F_{\tau} = \sum_{qq'}^{\tau} \frac{2\varepsilon_{qq'} r_{qq'}^2 u_{qq'}^2}{\varepsilon_{qq'}^2 - \omega_i^2}$ şeklindedir. Bu elde edilen

seküler denklemin çözümü ile uyarılma enerjileri bulunur. Bununla birlikte dalga fonksiyonun katsayıları da elde edildiğinden taban durumundan 1⁻ seviyelerine elektrik dipol geçişlerinin hesaplanması için kullanılacak olan elektrik geçiş operatörü,

$$M(0^+ \to 1^- K) = \left\langle \psi_0 | \left[Q_i^+, M(E1) \right] | \psi_0 \right\rangle$$
(3.35)

biçiminde yazılır. Burada $M(E1) = -\frac{1}{2} \sum_{\tau=n,p} e_{eff}^{\tau} \sum_{i=1}^{A} \tau_{z}^{i} r_{\mu}^{i}$ elektrik dipol geçiş operatörü, e_{eff}^{τ} nötron ve protonların efektif elektrik yükleri ve $|\psi_{0}\rangle$ fonon vakumudur.

3.3.2. Öteleme değişmez QRPA model (TI QRPA)

1⁻ uyarılmaları için, öteleme değişmezliğin restorasyonu için, eşitlik (3.7) ile verilen öteleme ve Galileo değişmez olmayan QRPA model hamiltoniyenine h_0 terimi eklenmektedir.

$$H = H_{sqp} + W_{dip} + h_0 (3.36)$$

 h_0 terimi ortalama alan potansiyeli ile kırılan öteleme değişmezliğini restore etmek için kullanılan izoskaler etkin kuvvet terimidir (Pyatov ve Salamov, 1977);

$$h_0 = -\frac{1}{2\gamma} \sum_{\mu} \left[H_{sqp}, P_{\mu} \right]^+ \left[H_{sqp}, P_{\mu} \right]$$
(3.37)

Burada γ çiftlenim parametresidir ve ortalama alan potansiyeli parametreleri ile belirlenmektedir.

$$\gamma_{\mu} = <0|[P_{\mu}^{+}, [H_{sqp}, P_{\mu}]]|0>$$
(3.38)

(3.38) ifadesindeki P_{μ} kütle merkezi hareketinin çizgisel momentumu zamana bağlı olduğu için farklı simetri kuralları geçerlidir. Bu simetri kurallarını kullanarak ve kuaziparçacık tasviri ile P_{μ} şu şekilde elde edilir:

$$P_{\mu} = \sum_{qq'} v_{qq'} B_{qq'} + p_{qq'} L_{qq'} (A_{qq'}^{+} - A_{q'q})$$
(3.39)

$$H_{sqp} = \sum_{qq'\tau} \varepsilon_{qq'}(\tau) B_{qq'}(\tau) \text{ olduğundan,}$$
$$\left[H_{sqp}, P_{\mu}\right] = \sum_{qq'} \varepsilon_{qq'} p_{qq'} L_{qq'} \left(A_{qq'}^{+} + A_{qq'}\right)$$
(3.40)

$$\left[H_{sqp}, P_{\mu}\right]^{+} = \sum_{qq'} \varepsilon_{qq'} p_{qq'} L_{qq'} \left(A_{qq'} + A_{qq'}^{+}\right)$$
(3.41)

olarak elde edilir. Buradan çiftlenim parametresi;

$$\gamma_{\mu} = <0|[P_{\mu}^{+}, [H_{sqp}, P_{\mu}]]|0> = \left[p_{qq'}L_{qq'}(A_{qq'}^{+} - A_{q'q}), \varepsilon_{qq'}p_{qq'}L_{qq'}(A_{qq'}^{+} + A_{qq'})\right] = 2\sum_{qq'}\varepsilon_{qq'}p_{qq'}^{2}L_{qq'}^{2}$$
(3.42)

olur. Buradan h_0 ;

$$h_{0} = -\frac{1}{2\gamma} \sum_{q_{1}q_{1}'} \varepsilon_{q_{1}q_{1}'} p_{q_{1}q_{1}'} L_{q_{1}q_{1}'} \left(A_{q_{1}q_{1}'} + A_{q_{1}q_{1}'}^{+} \right) \sum_{q_{2}q_{2}'} \varepsilon_{q_{2}q_{2}'} p_{q_{2}q_{2}'} L_{q_{2}q_{2}'} \left(A_{q_{2}q_{2}'}^{+} + A_{q_{2}q_{2}'}^{+} \right)$$
(3.43)

(3.20) eşitliklerini kullanarak (3.43)'deki $(A_{q_1q_1'} + A_{q_1q_1'}^+)$ ve $(A_{q_2q_2'}^+ + A_{q_2q_2'}^+)$ ifadeleri fonon operatörleri cinsinden yazılırsa,

$$h_{0} = -\frac{1}{\gamma} \sum_{q_{1}q_{1}} \varepsilon_{q_{1}q_{1}} p_{q_{1}q_{1}} L_{q_{1}q_{1}} g_{q_{1}q_{1}} \sum_{q_{2}q_{2}} \varepsilon_{q_{2}q_{2}} p_{q_{2}q_{2}} L_{q_{2}q_{2}} g_{q_{2}q_{2}} \sum_{k} \sum_{l} \left(Q_{k} + Q_{k}^{+} \right) \left(Q_{l} + Q_{l}^{+} \right)$$
(3.44)

olur. $G_{\tau} = \sum_{qq'}^{\tau} \mathcal{E}_{qq'} p_{qq'} L_{qq'} g_{qq'}$ olarak alınırsa ifade aşağıdaki gibi olur.

$$h_{0} = -\frac{1}{\gamma} GG' \sum_{k} \sum_{l} \left(Q_{k} + Q_{k}^{+} \right) \left(Q_{l} + Q_{l}^{+} \right)$$
(3.45)

Böylelikle TI için (3.36)'da verilen Hamiltoniyenin açık halini elde etmek için W_{dip} ve H_{sqp} için daha önce verilen (3.24), (3.25) ve (3.45) eşitliğindeki terimler yerine yazılırsa,

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^{2} + \varphi_{qq'}^{2} \right) Q_{i}^{+} Q_{i} + 2\kappa_{1} \sum_{q_{1}q_{1}q_{2}q_{2}} W_{q_{1}q_{1}} W_{q_{2}q_{2}} \sum_{jj'} \left(Q_{j} + Q_{j}^{+} \right) \left(Q_{j'} + Q_{j'}^{+} \right) - \frac{1}{\gamma} GG' \sum_{k} \sum_{l} \left(Q_{k} + Q_{k}^{+} \right) \left(Q_{l} + Q_{l}^{+} \right)$$
(3.46)

elde edilir. Hamiltoniyen (3.47) hareket denkleminde yerine yazılarak

$$\begin{bmatrix} H, Q^+ \end{bmatrix} = \begin{bmatrix} H_{sqp} , Q^+ \end{bmatrix} + \begin{bmatrix} W_{dip}, Q^+ \end{bmatrix} + \begin{bmatrix} h_0 , Q^+ \end{bmatrix} = \omega_i Q^+$$
(3.47)

gerekli işlemleri yapıldıktan sonra sistem denklemleri elde edilir.

$$g_{qq'} = \frac{2}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G - \tau_z 4\kappa_1 \frac{1}{N_\tau} \frac{\varepsilon_{qq'} r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widehat{W}$$
(3.48)

$$w_{qq'} = \frac{2}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \omega_i G - \tau_z 4\kappa_1 \omega_i \frac{1}{N_\tau} \frac{\varepsilon_{qq'} r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widehat{W}$$
(3.49)

$$\psi_{qq'} = \left(1 + \omega_i\right) \left[\frac{1}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G - \tau_z 2\kappa_1 \frac{1}{N_\tau} \frac{\varepsilon_{qq'} \left(r_\mu\right)_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W} \right]$$
(3.50)

$$\varphi_{qq'} = \left(1 - \omega_i\right) \left[\frac{1}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G - \tau_z 2\kappa_1 \frac{1}{N_\tau} \frac{\varepsilon_{qq'} (r_\mu)_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W} \right]$$
(3.51)

Burada $\widetilde{W} = W_n - W_p$ ve $\widetilde{W} = \frac{1}{N_{\tau}} \sum_{qq'} r_{qq'} u_{qq'} g_{qq'}^{\tau}$ şeklindedir. (3.48) ve (3.49) ifadeleri kullanılarak katsayılar matrisi bulunur. Determinant sıfıra eşitlenerek TI QRPA model için seküler denklem elde edilir. Elde edilen seküler denklemden bu model için 1⁻ uyarılmalarının geçiş özellikleri için sayısal sonuçlar elde edilir.

Denklem (3.48) ile gösterilen dalga fonksiyonunun $g_{qq'}$ katsayısı (3.35) ifadesinde yazılırsa, indirgenmiş B(E1) geçiş ihtimali için

$$M(0^+ \to 1^- K) = -\frac{1}{\sqrt{\omega_i Y}} \left\{ \frac{e_{eff}^p}{\sqrt{2}} \left(M_p + \kappa_1 \bar{L}_i \frac{F_p}{Z} \right) + \frac{e_{eff}^n}{\sqrt{2}} \left(M_n - \kappa_1 \bar{L}_i \frac{F_n}{N} \right) \right\}$$
(3.52)

elde edilir.

Öteleme dönüşümlerinin, ortalama alan potansiyellerinden dolayı değişmez olmamasından dolayı toplam momentum korunmamaktaydı (Eşitlik 3.53).

 $[\mathbf{H}_{sqp}, \mathbf{P}_{\mu}] \neq 0 \tag{3.53}$

Çekirdeğin 1⁻ uyarılma titreşimlerine, çekirdeğin kütle merkezinin titreşimlerinin de katılması ile oluşan sahte halleri restore etmek için hamiltoniyene h_0 ayrılabilir izoskaler etkin kuvvet (Eşitlik 3.44) eklenmesiyle;

$$\begin{bmatrix} H, P_{\mu} \end{bmatrix} = \begin{bmatrix} H_{sqp} + h_0, P_{\mu} \end{bmatrix} + \kappa_1 \begin{bmatrix} \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ R_N - R_Z \end{pmatrix}^2, P_{\mu} \end{bmatrix} = 0$$
(3.54)

komutasyon şartı sağlanmıştır. Momentum operatörüyle komutasyonunun sıfır olması, (3.36) eşitliği ile verilen Hamiltoniyenin öteleme değişmezliğinin restore edildiğini göstermiştir.

3.3.3. Galileo değişmez QRPA model (GI QRPA)

Bir sistem üzerine herhangi bir dış alan etki etmezse, Hamiltoniyen koordinat sisteminin ötelenmesi, uzay, zaman, koordinat eksenlerinin dönmesi ve sistemin tekdüze hareketi (Galilean veya Lorentz değişmezlik) bakımından değişmezdir. Çizgisel momentumu sıfır olmayan (P=P₁-P₂) sistemlerin özellikleri Galileo değişmezlik ile belirlenmektedir. Galileo değişmezlik, etkileşimlerin ve hareket denklemlerinin bir özelliğidir (Bohr ve Mottelson, 1998). Bu değişmezlikte göreli hızlar parçacıklar arasındaki tüm etkileşmelerde etkilidir. Kuazi parçacık ortalama alanının hız bağımlılığı çok kutuplu kuvvetlerin ortaya çıkmasını indüklemektedir. Bu kuvvetler QRPA'da, çok kutuplu eşleşme kuvvetleri ile aynı etkileri üretmektedirler. Bu nedenle, Galileo değişmezliğinin kırılması, olağan artık etkileşimlerine atfedilemeyen, sahte çok kutuplu uyarımların yapısı üzerinde kesin bir etkiye sahiptir (Civitarese, Faessler ve Licciardo, 1992). Bu nedenle çiftlenim etkileşmesinin kırılan Galileo değişmezliğinin restorasyonu önem arz etmektedir.

1⁻ uyarılmaları için, Galileo (Lorentz) değişmezliğin restorasyonu için, eşitlik 3.25 ile verilen öteleme ve Galileo değişmez olmayan QRPA model hamiltoniyenine h_{Δ} terimi eklenmektedir (Kuliev, Selam ve Küçükbursa, 2001);

$$H = H_{sqp} + W_{dip} + h_{\Delta} \tag{3.55}$$

 h_{Δ} terimi çiftlenim etkileşmesinin kırılan Galileo değişmezliğini restore etmek için kullanılan terimdir (Gabrakov, Pyatov ve Salamov, 1977).

$$h_{\Delta} = -\frac{1}{2\beta} \sum_{\mu} \left[U_{\text{gift}}, R_{\mu} \right]^{+} \left[U_{\text{gift}}, R_{\mu} \right]$$
(3.56)

Burada, çiftlenim potansiyeli olan Uçift

$$U_{\text{sift}} = -\frac{\Delta}{2}(\Gamma^+ + \Gamma) \tag{3.57}$$

ile verilmektedir (Kuliev ve ark., 2010). Δ enerji boşluğu, Γ^+ ve Γ parçacık üretme ve yok etme operatörleri cinsinden, $\Gamma = \sum_{\nu} a_{\tilde{\nu}} a_{\nu}$ ve $\Gamma^+ = \sum_{\nu} a_{\tilde{\nu}}^+ a_{\nu}^+$ 'dır. R_{μ} ise (3.22)'de verilen çekirdeğin kütle merkezinin koordinatıdır. Çiftlenim potansiyelinden belirlenen çiftlenim parametresi; $\beta = <0 | R_{\mu}^+, [U_{cift}, R_{\mu}] | 0>$ ile verilmektedir (Pyatov ve Salamov, 1977). *a* parçacık operatörü cinsinden yazılan Γ^+ ve Γ operatörlerini kuaziparçacık tasvirinde yazalım (Soloviev, 1976):

$$a_{s}^{+} = u_{s} \alpha_{g_{0}^{+}}^{+} + v_{s} \alpha_{s}$$

$$a_{g_{0}^{+}}^{+} = u_{s} \alpha_{s}^{+} - v_{s} \alpha_{g_{0}}$$

$$a_{s} = u_{s} \alpha_{g_{0}^{+}} + v_{s} \alpha_{s}^{+}$$

$$a_{s'}^{-} = u_{s'} \alpha_{g_{0}^{+}} + v_{s'} \alpha_{s'}^{+}$$

$$a_{g_{0}^{+}}^{+} = u_{s'} \alpha_{s'}^{-} - v_{s'} \alpha_{g_{0}^{+}}$$

$$a_{g_{0}^{+}}^{+} = u_{s'} \alpha_{s'}^{+} - v_{s'} \alpha_{g_{0}^{+}}$$
(3.58)

ifadeleri yerine yazılıp qq' notasyonu ile genel bir şekilde ifade edilirse, (3.59) eşitlikleri elde edilir.

$$\Gamma^{+} = u_{q}u_{q'}\alpha_{q}^{+}\alpha_{q\flat}^{+} - v_{q}v_{q'}\alpha_{d\flat}\alpha_{q'}$$

$$\Gamma = u_{q}u_{q'}\alpha_{q}\alpha_{d\flat} - v_{q}v_{q'}\alpha_{d\flat}^{+}\alpha_{q'}^{+}$$
(3.59)

Bu ifadeler (3.60)'da yerine yazılarak, (3.61) elde edilir.

$$\left[U_{\text{gift}}, R_{\mu}\right] = -\frac{\Delta}{2} \left\{ \left[\Gamma, R_{\mu}\right] + \left[\Gamma^{+}, R_{\mu}\right] \right\}$$
(3.60)

$$\left[U_{cift}, R_{\mu}\right] = -\Delta \sum_{qq'} \left\{u_{q} u_{q'} + v_{q} v_{q'}\right\} r_{qq'} \left(A_{qq'}^{+} - A_{q'q}\right) = -\Delta \sum_{qq'} M_{qq'} r_{qq'} \left(A_{qq'}^{+} - A_{qq'}\right)$$
(3.61)

(3.61) eşitliğinde $M_{qq'} = u_q u_{q'} + v_q v_{q'}$ dir. (3.20) eşitliklerini kullanarak $A_{qq'}^+ - A_{qq'}$ eşitliği fonon operatörleri cinsinden yazılarak (3.61)'de yerine yazılırsa,

$$h_{\Delta} = -\frac{1}{\beta} \sum_{\mu} \sum_{q_3 q_3'} \Delta_{q_3 q_3'} M_{q_3 q_3'} W_{q_3 q_3'} r_{q_3 q_3'} \Delta_{q_4 q_4'} M_{q_4 q_4'} W_{q_4 q_4'} r_{q_4 q_4'} \left(Q_k - Q_k^+ \right) \left(Q_l^+ - Q_l \right)$$
(3.62)

olur. (3.55)'de verilen Hamiltoniyenin açık halini elde etmek için W_{dip} ve H_{sqp} için daha önce verilen (3.24) ve (3.25) ile (3.62) eşitlikleri yerine yazılırsa,

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^{2} + \varphi_{qq'}^{2} \right) Q_{i}^{+} Q_{i} + 2\kappa_{1} \sum_{q_{1}q_{1},q_{2}q_{2}} W_{q_{1}q_{1}} W_{q_{2}q_{2}} \sum_{jj'} \left(Q_{j} + Q_{j}^{+} \right) \left(Q_{j'} + Q_{j'}^{+} \right) - \frac{1}{\beta} \sum_{\mu} \sum_{q_{3}q_{3}} \sum_{q_{4}q_{4}} \Delta_{q_{3}q_{3}} M_{q_{3}q_{3}} W_{q_{3}q_{3}} R_{q_{3}q_{3}} \Delta_{q_{4}q_{4}} M_{q_{4}q_{4}} W_{q_{4}q_{4}} R_{q_{4}q_{4}} \left(Q_{k} - Q_{k}^{+} \right) \left(Q_{l}^{+} - Q_{l} \right)$$

$$(3.63)$$

elde edilir. Nötron ve proton sistemleri için ifade ayrı yazılır ve aşağıdaki sadeleştirmeler yapılırsa,

$$D = D_n + D_p \qquad D_{\tau} = \Delta_{\tau} \sum_{qq'} M_{qq'} r_{qq'} w_{qq'}^{\tau}$$
(3.64)

$$\widetilde{W} = W_n - W_p \qquad \widetilde{W} = \frac{1}{N_\tau} \sum_{qq'} r_{qq'} u_{qq'} g_{qq'}^{\tau}$$
(3.65)

Hamiltoniyen;

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^{2} + \varphi_{qq'}^{2} \right) Q_{i}^{+} Q_{i} + 2\kappa_{1} \sum_{jj'} WW \left(Q_{j} + Q_{j'}^{+} \right) \left(Q_{j'} + Q_{j'}^{+} \right) - \frac{1}{\beta} \sum_{\mu} \sum_{k,l} DD' \left(Q_{k}^{+} - Q_{k} \right) \left(Q_{l} - Q_{l}^{+} \right)$$
(3.66)

şeklinde bulunmuş olur. Hareket denkleminde

$$\begin{bmatrix} H, Q^+ \end{bmatrix} = \begin{bmatrix} H_{sqp} , Q^+ \end{bmatrix} + \begin{bmatrix} W_{dip}, Q^+ \end{bmatrix} + \begin{bmatrix} h_{\Delta} , Q^+ \end{bmatrix} = \omega_i Q^+$$
(3.67)

yerine yazılırsa, varyasyon işlemleri yapıldıktan sonra

$$g_{qq'} = \frac{2\Delta_{\tau}}{\beta} \frac{r_{qq'}M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \omega_i D - \tau_z 4\kappa_1 \frac{1}{N_{\tau}} \frac{\varepsilon_{qq'}r_{qq'}u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}$$
(3.68)

$$w_{qq'} = \frac{2\Delta_{\tau}}{\beta} \frac{\varepsilon_{qq'} r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 4\kappa_1 \omega_i \frac{1}{N_{\tau}} \frac{r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}$$
(3.69)

$$\psi_{qq'} = \left(\varepsilon_{qq'} + \omega_i\right) \left[\frac{\Delta_{\tau}}{\beta} \frac{r_{qq'}M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 2\kappa_1 \frac{1}{N_{\tau}} \frac{r_{qq'}u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}\right]$$
(3.70)

$$\varphi_{qq'} = \left(-\varepsilon_{qq'} + \omega_i\right) \left[\frac{\Delta_{\tau}}{\beta} \frac{r_{qq'}M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D + \tau_z 2\kappa_1 \frac{1}{N_{\tau}} \frac{r_{qq'}u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}\right]$$
(3.71)

sistem denklemleri elde edilir. (3.68) ve (3.69) ifadelerini (3.64) ve (3.65)'de yerine yazarak katsayılar matrisi bulunur. Determinant sıfıra eşitlenerek GI QRPA model için seküler denklem elde edilir.

$$D(w_n) = \begin{vmatrix} -w_i^2 M_{\tau} & 2\kappa_1 w_i^2 \tilde{F} \\ w_i^2 \tilde{F} & -(1+2\kappa_1 F) \end{vmatrix} = 0$$
(3.72)

Elde edilen seküler denklemden bu modelin 1⁻ uyarılmalarının geçiş özellikleri için sayısal sonuçlar elde edilir. Başlangıçta, çiftlenim etkileşmesinden dolayı kırılmış olan Galileo değişmezlik komutasyon şartını sağlamamaktaydı.

$$[U_{cift}, \overset{\nu}{R}_{\mu}] \neq 0 \tag{3.73}$$

Galileo değişmezliği restore etmek için eklenen h_{Δ} ayrılabilir etkin kuvveti ile

$$\left[U_{\varsigma ift} + h_{\Delta}, R_{\mu}\right] = 0 \tag{3.74}$$

komutasyon şartının sağlanması, Galileo değişmezliğin restore edildiğini göstermiştir.

3.3.4. Öteleme ve Galileo değişmez QRPA model (TGI QRPA)

Elektrik dipol 1⁻ seviyelerinin tek parçacık ortalama alan potansiyelinde çiftlenim etkileşmesi yapan bir sistemde Öteleme ve Galileo değişmez QRPA model Hamiltonyeni; tek parçacık hamiltoniyeni H_{sqp} , restore edici h_0 ve h_{Δ} etkin kuvvetler ve dipol-dipol etkileşmesini ifade eden W_{dip} terimlerinden oluşmaktadır

$$H = H_{sqp} + h_0 + h_\Delta + W_{dip} \tag{3.75}$$

Buradaki her bir ifade için bulunmuş olan (3.24), (3.25), (3.45) ve (3.62) eşitlikleri yerine yazılırsa Hamiltoniyen açık şekilde:

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^{2} + \varphi_{qq'}^{2} \right) Q_{i}^{+} Q_{i} + 2\kappa_{1} \sum_{jj'} W W \left(Q_{j} + Q_{j}^{+} \right) \left(Q_{j'} + Q_{j'}^{+} \right) - \frac{1}{\gamma} GG' \sum_{k} \sum_{l} \left(Q_{k} + Q_{k}^{+} \right) \left(Q_{l} + Q_{l}^{+} \right) - \frac{1}{\beta} \sum_{\mu} \sum_{m,n} DD' \left(Q_{m}^{+} - Q_{m} \right) \left(Q_{n} - Q_{n}^{+} \right)$$
(3.76)

şeklinde olur. Enerji özdeğerlerini bulmak için ifade hareket denkleminde yerine yazılırsa,

$$\begin{bmatrix} H, Q^+ \end{bmatrix} = \begin{bmatrix} H_{sqp} , Q^+ \end{bmatrix} + \begin{bmatrix} h_{\Delta} , Q^+ \end{bmatrix} + \begin{bmatrix} h_0 , Q^+ \end{bmatrix} + \begin{bmatrix} W_{dip}, Q^+ \end{bmatrix} = \omega_i Q^+$$
(3.77)

gerekli ara işlemler uygulandıktan sonra,

$$g_{qq'} = \frac{2}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G + \omega_i \frac{2\Delta_\tau}{\beta} \frac{r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 4\kappa_1 \frac{1}{N_\tau} \frac{\varepsilon_{qq'} r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}$$
(3.78)

$$w_{qq'} = \frac{2\omega_i}{\gamma} \frac{\varepsilon_{qq'} p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G + \frac{2\Delta_{\tau}}{\beta} \frac{\varepsilon_{qq'} r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 4\kappa_1 \omega_i \frac{1}{N_{\tau}} \frac{r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}$$
(3.79)

$$\psi_{qq'} = \left(\varepsilon_{qq'} + \omega_i\right) \left[\frac{1}{\gamma} \frac{\varepsilon_{qq'} p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G + \frac{\Delta_{\tau}}{\beta} \frac{r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 2\kappa_1 \frac{r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W}\right]$$
(3.80)

$$\varphi_{qq'} = \left(\varepsilon_{qq'} - \omega_i\right) \left[\frac{1}{\gamma} \frac{\varepsilon_{qq'} p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G - \frac{\Delta_{\tau}}{\beta} \frac{r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 2\kappa_1 \frac{r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \widetilde{W} \right]$$
(3.81)

elde edilir. Buradan seküler denklemi elde etmek için nötron ve proton sistemleri için ayrı ayrı sistem denklemleri elde edilir.

$$\widetilde{W} = W_n - W_p \qquad \qquad W_{\tau}^{0} = \frac{1}{N_{\tau}} \sum_{qq'} r_{qq'} u_{qq'} g_{qq'}^{\tau}$$
(3.82)

$$G=G_n+G_p \qquad G_{\tau} = \sum_{qq'} \varepsilon_{qq'} p_{qq'} L_{qq'} g_{qq'}^{\tau}$$
(3.83)

$$D=D_{n}+D_{p} \qquad D_{\tau} = \Delta_{\tau} \sum_{qq'} r_{qq'} M_{qq'} w_{qq'}^{\tau}$$
(3.84)

(3.78) ve (3.79) ifadelerini (3.82), (3.83) ve (3.84) eşitliklerinde yerine yazalım. Burada, aşağıda verilen kısaltmaları göz önünde bulunduralım.

$$P_{\tau} = 2\sum_{qq'} \frac{\varepsilon_{qq'}^{3} p_{qq'}^{2} L_{qq'}^{2}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad M_{\tau} = 2\sum_{qq'} \frac{\varepsilon_{qq'}^{2} p_{qq'} L_{qq'} r_{qq'} u_{qq'}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}}$$

$$Y_{\tau} = 2\sum_{qq'} \frac{r_{qq'}^{2} M_{qq'} u_{qq'}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad \gamma = 2\sum_{qq'} \varepsilon_{qq'} p_{qq'}^{2} L_{qq'}^{2}$$

$$F_{\tau} = 2\sum_{qq'} \frac{\varepsilon_{qq'} \left(r_{\mu}\right)_{qq'}^{2} u_{qq'}^{2}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad S_{\Delta} = 2\Delta \sum_{qq'} \frac{\varepsilon_{qq'} p_{qq'} L_{qq'} r_{qq'} M_{qq'}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad S_{\Delta} = 2\Delta \sum_{qq'} \frac{\varepsilon_{qq'} p_{qq'} L_{qq'} r_{qq'} M_{qq'}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}}$$
(3.85)

Buna göre nötron (n) ve proton (p) için ayrı yazıp işlemler yapıldığında,

$$\frac{1}{\gamma} M_{\tau} G + \frac{1}{\beta} \omega_{i} \mathcal{YD} - 2\kappa_{1} F_{\tau} \vec{W} = 0$$

$$\frac{1}{\gamma} P_{\tau} G + \frac{1}{\beta} \omega_{i} S_{\Delta} D - 2\kappa_{1} \mathcal{N} \psi \vec{W} = 0$$

$$\frac{1}{\gamma} \omega_{i} S_{\Delta} G + D_{\Delta} D + 2\kappa_{1} \mathcal{Y} \psi \vec{W} = 0$$
(3.86)

sistem denklemleri elde edilir. $\gamma - P = -\omega_i^2 M_\tau$; $D_{\Delta} = (1 - \frac{R_{\Delta}}{\beta})$; $\tilde{M} = \omega_I^2 \tilde{F}$; $\tilde{Y}_{\Delta np} = \frac{\Delta n}{N} Y_n - \frac{\Delta p}{P} Y_p$; $R_{\Delta} = R_n \Delta_n^2 + R_p \Delta_p^2$; $F = \frac{Z^2}{A^2} F_n + \frac{N^2}{A^2} F_p$; $F_{np} = \frac{F_n}{N} + \frac{F_p}{Z}$; $F_{n^2 p^2} = \frac{F_n}{N^2} + \frac{F_p}{Z^2}$ kısaltmaları kullanılarak (3.86) denklemleri düzenlenir. Bu denklemlerden elde edilen katsayılar matrisi, çözümlerin sıfırdan farklı olması için, determinantın sıfıra eşit olması gerektiğinden;

$$D(\omega_n) = -\omega^2 \begin{vmatrix} M(\omega_i) & -S_{\Delta} & 2 \kappa_1 \omega_i F_{np}^{\prime 0} \\ S_{\Delta} & \beta - R_{\Delta} & 2 \kappa_1 Y_{\Delta np}^{0} \\ -\omega_i F_{np}^{\prime 0} & \omega_i Y_{\Delta np}^{\prime 0} & -(1 + 2 \kappa_1 F_{n^2 p^2}) \end{vmatrix} = 0$$
(3.87)

olur. Buradan determinant sıfıra eşitlenerek TGI QRPA modelin seküler denklemi elde edilmiştir.

Öteleme ve Galileo değişmez modelde indirgenmiş geçiş ihtimali için (3.35) ifadesini göz önüne alırsak, bu ifade (3.78) ifadesinden elde edilen dalga fonksiyonunun genlik katsayısı $g_{qq'}$ yerine yazılırsa (3.88) ifadesine ulaşılır.

$$M(0^{+} \rightarrow 1^{-} K) = -\frac{1}{\sqrt{\omega_{i} Y}} \left\{ \frac{e_{eff}^{p}}{\sqrt{2}} \left(\frac{M_{p}}{2} + \frac{1}{2} \omega_{i} \frac{\overline{L_{i}}}{\beta} \Delta_{p} K_{p} + \frac{1}{2} \kappa_{1} \overline{L_{i}} \frac{F_{p}}{Z} \right) + \frac{e_{eff}^{n}}{\sqrt{2}} \left(\frac{M_{n}}{2} + \frac{1}{2} \omega_{i} \frac{\overline{L_{i}}}{\beta} \Delta_{n} K_{n} - \frac{1}{2} \kappa_{1} \overline{L_{i}} \frac{F_{n}}{N} \right) \right\} = 0$$

$$(3.88)$$

TGI-QRPA model için B(E1) değeri bulunurken, (3.1) eşitliğinde, elde edilen (3.88) matris elemanı yerine yazılmıştır. Elde edilen ifadeler yardımıyla 1⁻ uyarılmaların geçiş özellikleri hakkında sonuçlara ulaşılmıştır. Bu sonuçlar bulgular bölümünde verilmiştir.

BÖLÜM 4. ÇİFT-ÇİFT DEFORME ÇEKİRDEKLERİN BAZI NÜKLEER ÖZELLİKLERİNİN ARAŞTIRILMASI

Bu bölümde çift çift deforme çekirdeklerin nükleer özelliklerinden olan fotoabsorbsiyon tesir kesiti, toplam kuralları, integre edilmiş tesir kesitleri ve radyasyon kalınlığı konuları yer almaktadır.

4.1. Dipol Fotoabsorbsiyon Tesir Kesiti

Atom çekirdeğinin özelliklerinin anlaşılmasında fotonlar ile yapılan deneylerin (fotonükleer etkleşmeler) sonuçları önemli katkılar sağlamıştır. Bu katkılar, çekirdeğin fotonlar ile elektromanyetik etkileşiminin kuantum elektrodinamiği (QED) çerçevesinde iyi tanımlanmış olması ve fotonlarla yapılan nükleer deneylerin, atom çekirdeğinin yapısının neden olduğu reaksiyonların spesifik özelliklerini açıkça ortaya koymasından kaynaklanmaktadır (Iskhanov ve Kapitanov, 2015).

Özellikle E1 rezonans bölgesindeki fotonükleer etkileşmelerin ayrıntılı incelenmesi, çekirdeğin temel özellikleri ile ilgili anlamlı bilgiler sağlamaktadır. Bu alanda dev dipol E1 rezonans özelliklerinin (GDR) kütle numarasına göre değişimi özellikle ilgi çekici bir konudur. Bu amaçla pek çok ağır çekirdek için fotoabsorbsiyon tesir kesiti çalışmaları yapılmıştır (Gurevich ve ark., 1974, 1976a, 1978, 1980, 1981; Carlos ve ark., 1974). Bu ölçümlerin genel olarak amacı GDR parametrelerinin A kütle sayısı ile nasıl değiştiğini gözlemlemektir (Kuznetsov ve ark., 2017).

Şekil 4.1. Ağır kütleli çekirdeklerde tesir kesitlerinin enerjiye göre değişimi (Gurevich ve ark., 1980 (sol); Carlos ve ark., 1974 (sağ)).

Şekil 4.1.'de, ağır çekirdeklerle yapılmış deneysel çalışmalardan elde edilmiş olan tesir kesitlerinin enerjinin bir fonksiyonu olarak gösterimi verilmektedir. Zayıf bir P dış alanında uyarılmış bir çekirdeğin dipol fotoabsorpsiyon tesir kesiti $\sigma_{E1}(E)$ aşağıdaki gibi ifade edilebilmektedir (Ring ve Shuck, 2004).

$$\sigma_{E1}(E) = \frac{4\pi^2 e^2}{hc} (E_f - E_0) \sum \left| \left\langle \Psi_f \left| M \right| \Psi_0 \right\rangle \right|^2 \delta \left(E_f - E_0 \right)$$
(4.1)

Burada M, bölüm 3'de verilmiş olan indirgenmiş geçiş matris elemanı, $\delta(E_f - E_0)$ ağırlık fonksiyonudur. Bu fonksiyon, $\delta(E_f - E_0) = \delta(\eta_i - \eta)$ notasyonu ile

$$\delta(\eta_i - \eta) = \frac{1}{2\pi} \frac{\Delta}{(\eta_i - \eta)^2 + (\frac{1}{2}\Delta)^2}$$
(4.2)

olarak gösterilmektedir (Malov ve Soloviev, 1976; Bohr ve Mottelson, 1997; Hinohara ve ark., 2013). Bu ağırlık fonksiyonu Lorentz fonksiyonu olarak isimlendirilebilir. M1 uyarılmaları için yapılan bir çalışmada ağırlık fonksiyonu farklı bir gösterimle (Kuliev ve Salamov, 1984) şu şekilde ifade edilmiştir.

$$\rho_2(\omega - \omega_i) = \frac{1}{4\pi} \frac{\Delta^3}{\left[\left(\omega - \omega_i\right)^2 + \left(\Delta/2\right)^2\right]^2}$$
(4.3)

(4.2) ve (4.3) ifadelerinde, ortalama enerji aralığı olan Δ hesaplama sonuçlarının sunum şeklini belirlemektedir (Malov ve ark., 1985). Uyarılmış çekirdeğin spektrumunu düzgün bir şekilde elde etmek için, enerji değişkeninin, sonlu hayali bir parçası olarak Δ parametresi kolaylık sağlamak adına yer almaktadır. Bu parametre, her uyarılma için ek bir yapay genişlik anlamına gelmektedir. ($\eta_i - \eta$) ya da ($\omega - \omega_i$) uyarılmış ve taban seviyeleri arasındaki enerji farkıdır.

Eşitlik (4.1)'de bulunan geçiş matris elemanı, indirgenmiş geçiş olasılığı $\{B(E1;0^+ \rightarrow 1^-) = B(\lambda, \eta)\}$ ifadesinde şu şekilde yer almaktadır (Ring ve Shuck, 2004):

$$B(\lambda,\eta) = \frac{1}{2I_i + 1} \left| \left\langle \Psi_f \left| \mathbf{M} \right| \Psi_0 \right\rangle \right|^2$$
(4.4)

Güç fonksiyonu $(b(\lambda,\eta))$ genel olarak;

$$b(\lambda,\eta) = \sum_{n} \delta_{\Delta}(\eta - \eta_{\Delta}) B(\lambda,\eta)$$
(4.5)

olarak verilmektedir (Malov ve Soloviev, 1976; Bohr ve Mottelson, 1997; Hinohara ve ark., 2013). Yukarıdaki eşitliklerden hareketle güç fonksiyonu E1 uyarılmaları için aşağıdaki gibi yazılabilir (Soloviev ve ark., 1980; Malov ve ark., 1985).

$$S_{E1}(E) = b(E1,\eta) = \frac{1}{2\pi} \sum_{i}^{\infty} \frac{\Delta}{(\eta_i - \eta)^2 + (\frac{1}{2}\Delta)^2} B(E1;0^+ \to 1^-)$$
(4.6)

O halde fotoabsorbsiyon tesir kesitinin güç fonksiyonuna bağlı olarak aşağıdaki gibi olur (Khuong ve ark., 1979; Ponomarev ve ark., 1994; Litvinova ve ark., 2018).

$$\sigma_{E1}(E) = \frac{16\pi^3 e^2}{9hc} ES_{E1}(E)$$
(4.7)

Bu ifadede $\sigma_{E1}(E)$ fotoabsorbsiyon tesir kesiti, E enerji, $S_{E1}(E)$ güç fonksiyonunu göstermektedir. Bu ifadedeki sabit değerler yerine yazılırsa (hc = 197, 3Mev.fm, $e^2 = 1.44MeV.fm$) en sade haliyle;

$$\sigma_{E1}(E) = 0,402ES_{E1}(E) \tag{4.8}$$

olur (Ponomarev ve ark., 1994; Bohr ve Mottelson, 1997; Oishi ve ark., 2016). Eşitlik (4.8), bir model çevresinde kullanılan teori ile bulunan değerlerin, yapılmış olan deneysel çalışmalar ile karşılaştırılmasında yararlanılan bir eşitliktir. Bu şekilde bulunan fotoabsorbsiyon tesir kesitine bir örnek Şekil 4.2.'de verilmiştir.

Fotonların çekirdeklerle etkileşiminin absorpsiyon kesitindeki temel rezonans şekli, Şekil 4.2.'de verildiği gibi bir Lorentz eğrisinin şeklidir (Steinwedel ve Jensen, 1950; Danos, 1958; Berman ve Fultz, 1975). Şekil 4.2.'deki gibi, incelenen çekirdek için elde edilen fotoabsorbsiyon tesir kesiti değerleri grafiğe döküldüğünde, bu bilgilerin temsil ettikleri noktaların birleşimi iki nokta arasında çizilen yol gerçek ölçümden çıkan sonuca en yakın yerden geçmesini sağlayan eğri uygunluğuna bakıldığında, Lorentz eğrisinin uygun olduğu görülmektedir.

Şekil 4.2. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotoplarında K=0 ve K=1 dalları için bulunan güç fonksiyonunun kullanılmasıyla bulunan dipol fotoabsorbsiyon tesir kesitinin enerjiye göre değişiminin teorik ve deneysel değerlerinin karşılaştırılması (Oishi ve ark., 2016)

Lorentz eğrisinin üç parametresi (E_m , σ ve Γ) bulunmaktadır. E_m , σ ve Γ sırasıyla rezonans enerjisi, tepe (pik) tesir kesiti ve yarı maksimumun tam genişliğidir. Bu değerler fotoabsorbsiyon tesir kesitlerinin yorumlanmasında kullanılan parametrelerdir.

4.1.1. Elektrik dipol dev rezonans'ın deformasyon ile yarılması

Dipol fotoabsorbsiyon tesir kesitinin, enerjiye göre değişim grafiğinde çekirdeğin küresel ya da deforme olmasına göre GDR pikinin şekli değişmektedir (Reswani ve ark., 1970) Küresel çekirdekler için grafik bir Lorentz çizgisinden (Goldhaber ve Teller, 1948; Steinwedel ve Jensen, 1950) oluşurken, deforme çekirdekler için iki Lorentz eğrisinin üst üste yerleştirilmesi ile oluşmaktadır (Okamoto, 1956; Danos, 1958).

GDR ile ilgili yoğun olarak gerçekleştirilen deneysel çalışmalarda deforme çekirdeklerin tesir kesiti enerji grafiklerinde birden fazla pikli yapı görülmekteydi. Deforme çekirdeklerde, E1 dev rezonansının iki ayrı pike yarıldığı teorik olarak Okamato (1958) ve Danos (1958) tarafından gösterilmiştir. Bu yarılmanın açıklanmasında ölçeklendirme yolu kullanılmaktadır (Iudice, 2000). GDR'de nötron ve proton yoğunluklarının titreşimlerinin dalgalanma yoğunluğunu genellikle sürekli dalgalar olarak görülmektedir. Bu yüzden özdeğerlerin dalga boylarının $\lambda_i \sim R^i$ yarıçap ile orantılı olması öngörülmektedir. Özfrekansların dalga boyu ile olan $\omega_i \sim R^{-1}$ iliskisi düşünüldüğünde, özfrekanslar vaklasık olarak ile ölceklendirilebilirler. Deforme çekirdeklerde yarıçap, çekirdeğin titreşim ekseni ile ilişkilidir. Deforme çekirdeklerde iki çeşit dipol titreşimi görülmektedir. Bunlardan biri simetri eksenine paralel yönde oluken bir diğeri simetri eksenine diktir (Ring ve Shuck, 2004). Bu nedenle deforme olmuş nükleer sistemin ana eksenler boyunca yarıçap değişiminden etkilenen bir frekans kayması meydana gelmektedir (Şekil 4.5.). Bu kayma K=0 ve iki katlı K= 1 değerlerine göre rezonansın ikiye bölünmesidir (Krane ve Steffen, 1970; Iudice, 2000; Bortignon, 2003). Bu yüzden deforme çekirdeklerde frekansın, dolayısı ile dalgaboyunun, yarıçap (R_{\perp}) ve (R_{\parallel}) arttıkça farklılaşabileceği beklenmektedir.

Şekil 4.3. Deforme çekirdeklerde K=0 ve K=1 için proton-nötron ötelenme salınım modları (Iudice, 2000)

Elektrik dev dipol rezonans yarılması yaklaşık olarak aşağıdaki gibi verilir:

$$\frac{\omega_{\perp} - \omega_{\rm P}}{\omega} \approx \frac{R_{\perp} - R_{\rm P}}{R} = \delta \tag{4.9}$$
Eğer çekirdekler rastgele bir yönelme gösterirlerse, toplam absorbsiyon tesir kesiti aşağıdaki gibi verilir

$$\sigma = \frac{1}{3}\sigma_{\rm P} + \frac{2}{3}\sigma_{\perp} \tag{4.10}$$

burada σ_{\parallel} ve σ_{\perp} sırasıyla simetri eksenine paralel ve dik (ekvatoral düzlem) polarize olmuş fotonlar için tesir kesitleridir. İstatistiksel çarpan, ekvatoral düzlemde meydana gelen salınım modlarında meydana gelen eş-enerjililik durumuna açıklama getirmektedir. $\sigma_{\parallel} \simeq \sigma_{\perp}$ olduğundan dolayı, prolate çekirdekler için yarılmış olan eğrinin üst kısmı alt kısmın iki katı entegre edilmiş tesir kesitini içermektedir.

Şimdiye kadar var olan deneysel verilerden elde edilen sistematik, enerjide meydana gelen bu yarılmada deneysel gözlem ile teorik hesaplamalar arasında uyumluluk olduğunu göstermektedir ve gözlenen bu iki pikli yapı (hörgüç) sadece deforme çekirdeklere has bir özelliktir. Bu iki pikten yüksek enerjili olanı düşük enerjili olanın yaklaşık iki katı şiddete sahip olmaktadır (Iudice, 2000).

$$\frac{B(E1,0^+ \to K^{\pi} = 1^-)}{B(E1,0^+ \to K^{\pi} = 0^-)} = 2\frac{w_{\rm II}}{w}; \ 2(1-\delta); \ 1.5$$
(4.11)

Eşitlik (4.11) bize deforme çekirdeklerde K=1 ve K=0 modlarında oluşan indirgenmiş geçiş olasılığı oranlarının yaklaşık olarak 1.5 olduğunu göstermektedir (Iudice, 2000).

4.2. Toplam Kuralları

Dev rezonansların spektrumlarının analizinde, geçiş operatörleri ve hamiltoniyen veya bunların güçleri arasındaki matematiksel ilişkilerden türetilen toplam kuralların kullanılması oldukça faydalıdır. Çekirdeklerdeki elektromanyetik geçişlerin analizi için önemli olan toplam kuralları Levinger ve Bethe (1950) ile Gell-Mann ve Telegdi (1953) tarafından türetilmiştir. Özellikle Levinger ve Bethe tarafından verilen toplam

kurallarının hesaplanması ile ilk olarak GDR'nin γ ışınlarının elektrik dipol absorbsiyonuna bağlı olduğu kesin olarak belirtilmiştir (Baranger ve Vogt, 1969). Bu toplam kuralları, belirli bir çokkutuplu geçişin başlangıç durumundan uyarılmış seviyenin diğer tüm nükleer seviyelerine geçişlerinin toplam gücünü vermektedir.

GDR tesir kesitleri hesaplanırken toplam kuralları kolektif uyarılmaların teorisinde önemli bir yere sahiptir. Toplam kuralı hesaplamaları γ absorbsiyon tesir kesitinin çeşitli zamanlardaki değerlerini vererek, tesir kesitinin gerçek şeklinin belirlenmesini sağlamaktadır. Tesir kesitinin şekline yönelik olarak kullanılan bu yaklaşım, içerdiği parçaların kesin hesaplanmasındaki zorluk nedeniyle çok verimli olmamıştır. Tesir kesitinin şekli ile ilgili daha detaylı varsayımlarda bulunabilmek için modellerin kullanılması gerekmektedir (Baranger ve Vogt, 1969). Toplam kuralları farklı yaklaşım ve modellerle elde edilen genel özelliklerin test edilmesini sağlaması nedeniyle mikroskopik yaklaşımlarda kullanılmaktadır (Ring ve Shuck, 2004). Deneysel olarak, dev dipol rezonansının toplam kuralın yaklaşık % 80-90'ını tükettiği, böylece dipol gücüne yol açan en baskın uyarım mekanizması açık bir sekilde görülmüştür (Greiner ve Maruhn, 1996). Toplam kuralları, verilen bir uyarılmış seviyenin kolektiflik derecesinin niceliğinin hesaplanmasında önemli kolaylık sağlamaktadır. Genellikle iki toplam kuralı kullanılmaktadır: enerji ağırlıklı toplam kuralı (Energy Weighed Sum Rule-EWSR) ve enerji ağırlıklı olmayan toplam kuralı (Non Energy Weighed Sum Rule-NEWSR).

EWSR genel terimleriyle matematiksel olarak şu şekilde açıklanabilmektedir:

$$S(F)_{EWSR} = \sum_{n} w_{n} |\langle n|F|0\rangle|^{2} = \frac{1}{2} \langle 0|F^{+}[H,F]|0\rangle$$
(4.12)

Burada, H mikroskobik Hamiltoniyen, F geçiş matris operatörü, $\langle n | ve | 0 \rangle$ ise sırasıyla çok cisimli bir sistemin uyarılmış ve taban durumu dalga fonksiyonlarıdır. E1 dipol uyarılmaları için indirgenmiş matris elemanı M(E1), kütle merkezi koordinatının tanımı kullanılarak;

$$M(E1) = e \sum_{k=1}^{A} \left(\frac{N-Z}{2A} - t_{zk} \right) \vec{r}_k$$
(4.13)

şeklinde verilir. Burada nötronlar için $t_z = +1/2$, protonlar için $t_z = -1/2$ dir. Nötron ve proton geçişleri için efektif yük sırasıyla -eZ/A, eN/A dır. Böylelikle EWSR;

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = \frac{\hbar^2}{8\pi m} 9 \left(Z e_{peff}^2 + N e_{neff}^2 \right)$$
(4.14)

 E_0 ve E_n taban ve uyarılmış seviyelerin enerjileri olmak üzere, efektif yükler yerine yazılırsa, EWSR

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = \frac{\hbar^2}{8\pi m} 9 \left[Z \left(\frac{N}{A} \right)^2 e^2 + N \left(\frac{Z}{A} \right)^2 e^2 \right] = \frac{9\hbar^2}{8\pi m} \frac{NZ}{A} e^2$$
(4.15)

olur (Harakeh, 2006). Burada $\hbar = 197.3 \, MeV. fm/c$; m=939,51 MeV/c² sabitleri yerine yazılırsa elektrik dipol EWSR aşağıdaki gibi bulunur.

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = 14.8 \frac{NZ}{A} e^2 f m^2 MeV$$
(4.16)

(4.15) ifadesinde yük alışverişi ve hıza bağlı etkileşimler ihmal edilmiştir. Ancak elektrik dipol geçişlerinde nükleon-nükleon etkileşiminde yük değişimi söz konusu olduğunda bu ifadeye bir katkı gelmektedir (Bohr ve Mottelson, 1998).

Denklem (4.15) elektrik dipol geçişlerinde, modelden bağımsız olarak, modellerin çok parçacık sistemlerinde kullanılırlığının test edilmesini sağlayan toplam kuralıdır. EWSR toplam değerlerinin enerjiye göre değişimini gösteren bir örnek Şekil 4.4.'de verilmiştir. Bu tez çalışmasında incelenen çekirdekler için EWSR yüzdelik değerlerinin enerjiye göre değişim grafikleri, bulgular ve ekler bölümlerinde yer almaktadır.

Şekil 4.4. ²⁰⁸Pb, ¹³²Sn, ¹²⁰Sn çekirdeklerinin EWSR kümülatif değerlerinin enerjiye göre değişim grafiği (Sachi ve ark., 2004)

Bir diğer toplam kuralı olan NEWSR matematiksel olarak;

$$S(F)_{NEWSR} = |\langle n|F|0\rangle|^2 = \langle 0|F^+F|0\rangle$$
(4.17)

dir. Dalga fonksiyonunun antisimetrisi bir düzeltme faktörü z üzerinden hesaba katılırsa,

$$S(F)_{NEWSR} = (2\lambda + 1)\frac{Ze^2}{4\pi} \langle r^{2\lambda} \rangle Z$$
(4.18)

olur, z; $\frac{1}{2}$ ile 1 arasında değer almaktadır. Bu toplam kuralı $\Delta T=0$ ve $\Delta T=1$ uyarılmalarını içermektedir. Bu ifade dalga fonksiyonuna, seçilen uzaya ve geçiş operatörünün karakteristiğine bağlıdır (Suhonen, 2007). NEWSR bu özelliklerinden dolayı model bağımlıdır. Modelden bağımsız olması ve güvenilir sonuçlar vermesinden ötürü genellikle EWSR tercih edilmektedir (Rowe, 2010).

4.3. İntegre Edilmiş Tesir Kesitleri

Başlangıç seviyesinin taban durumu olması durumda toplam kuralları, foton enerjisinin çeşitli katları tarafından ağırlıklandırılan, fotoabsorbsiyon için integre edilmiş tesir kesitleri ile doğrudan ilişkilidir (Cannata ve Überall, 1980). Dipol absorbsiyon için toplam tesir kesiti, tüm son haller üzerinden toplam alınarak ve enerji üzerinden integre edilerek elde edilmektedir (Ring ve Shuck, 2004).

$$\sigma_n = \int E^n \sigma(E) dE \tag{4.19}$$

(4.19) ifadesi enerji ağırlıklı dipol toplamı olarak ifade edilmektedir. Dipol fotoabsorbsiyon için integre edilmiş (enerji ağırlıklı) tesir kesitleri aşağıdaki gibi ifade edilebilir (Pyatov ve Salamov, 1977)

$$\sigma_n = \int E^n \sigma_{\gamma}(E) dE = \frac{16\pi^3}{9hc} e^2 \sum_{\gamma} w_{\gamma}^{n+1} B(E1, 0 \to 1)_{\gamma}$$
(4.20)

Bu ifadede dipol toplamı Thomas-Reiche-Kuhn (TRK) toplam kuralı (Thomas, 1925; Kuhn,1925; Reiche ve Thomas, 1925) ya da diğer bir deyişle "klasik dipol toplam kuralı" olarak ifade edilmektedir (Überall, 1971; Harakeh ve Woude, 2006). TRK toplam kuralı, fotoabsorbsiyonunun geçiş gücü ile orantılı olmasıyla, nükleer uyarılmalarda çeşitli dipol seviyelerinin kollektif özelliklerini yorumlamakta yaygın bir şekilde kullanılmaktadır (Au ve ark., 1997; Raduta ve ark., 2009). (4.20) ifadesinde n=0 alınmasıyla, dev dipol rezonans için toplam klasik enerji ağırlıklı toplam kuralı (integre edilmiş tesir kesiti) elde edilir.

$$\sigma_0 = \frac{16\pi^3}{9hc} e^2 \sum w B(E1) \text{ (MeV.barn)}$$
(4.21)

Bu eşitlik yukarıda bahsedilen TRK toplam kuralı ile ilişkilidir. Böylelikle (4.21);

$$\sigma_0 = \frac{16\pi^3}{9hc} e^2 \left\{ \frac{9}{4\pi} \frac{h^2}{2m} \frac{NZ}{A} \right\} = \frac{2\pi^2 e^2 h}{mc} \frac{NZ}{A} \text{ MeV.barn}$$
(4.22)

sonucunu vermektedir (Uberall, 1971; Rowe, 2010). (4.20) ifadesinden diğer integre edilmiş tesir kesitleri;

$$\sigma_{-2} = \frac{16\pi^3}{9hc} e^2 \sum w^{-1} B(E1) \text{ (MeV}^{-1}.\text{barn)}$$
(4.23)

$$\sigma_{-1} = \frac{16\pi^3}{9hc} e^2 \sum B(E1) \text{ (barn)}$$
(4.24)

$$\sigma_{+1} = \frac{16\pi^3}{9hc} e^2 \sum w^{+2} B(E1) \text{ (MeV}^2\text{.barn)}$$
(4.25)

$$\sigma_{+2} = \frac{16\pi^3}{9hc} e^2 \sum w^{+3} B(E1) \,(\text{MeV}^3.\text{barn})$$
(4.26)

elde edilir (Masur ve Mel'nikova, 2006; Schreder, 2015). Ağır çekirdekler için yapılmış deneysel çalışmalardan elde edilmiş integre edilmiş tesir kesitlerine örnekler Tablo 4.1.'de verilmiştir.

Tablo 4.1. İntegre edilmiş tesir kesitlerinin deneysel değerleri

	σ_0 (MeV.b)	σ_{-1} (mb)	σ_{-2} (MeV ⁻¹ mb)	Çalışma
²³² Th	2.50±0.25	198±20	16±2	Veyssiere ve ark., 1973
	2.92±0.32	231±24	19±2	Gurevich ve ark., 1976a
238 T I	2.98±0.15	235±15	19±1.5	Veyssiere ve ark., 1973
0	2.95±0.29	229±22	18±1.8	Gurevich ve ark., 1976a
116 Sn	1.86	113	7.15	Leprtre ve ark., 1974
118 Sn	1.69	107	7.0	Leprtre ve ark., 1974
120 Sn	2.14	128	8.1	Leprtre ve ark., 1974
¹²⁴ Sn	1.62	104	6.9	Leprtre ve ark., 1974

İntegre edilmiş tesir kesitleri elde edilen teorik sonuçların deneysel veriler ile karşılaştırılmasını sağlayan nükleer özelliklerden biridir. Bu çalışmada incelenen çekirdekler için hesaplanan integre edilmiş tesir kesitlerinin deneysel değerlerle karşılaştırılması Bölüm 5'de verilmiştir.

4.4. Radyasyon Kalınlığı

Atomik çekirdeğin elektrik ya da manyetik karakterli dipol uyarılmalarını araştırmak için esas olarak kullanılan yöntem Nükleer Rezonans Floresans (NRF) yöntemidir (Romig ve ark., 2015). NRF'de fiziğin en çok çalışılıp ve anlaşılmış alanlarından olan elektromanyetik etkileşmeler kullanılmaktadır. Buna göre, çekirdeğin seviyelerinden birinin elektromanyetik radyasyon ile uyarılması ve ardından bu seviyenin radyasyon salınımı yaparak bozunmasıyla seviyenin, herhangi bir modelden bağımsız olarak, enerji, spin ve pariteleri belirlenmektedir (Kneissl ve ark., 1996; Pitz ve ark., 1990).

Basit bir şekilde Şekil 4.5.'de gösterilen bu yöntemde L₁ ya da L₁' çokkutuplu radyasyon durumları ile çekirdek, spini J₀ olan ilk seviyeden (taban durumu) J olan orta seviyeye ve J_f olan son seviyeye uyarılır. Orta seviyeden son seviyeye geçişte L₂ ya da L₂' çokkutuplu radyasyon salınımı gerçekleşir. Burada Γ_0 ve Γ_f sırasıyla taban durumun ve son durumun dipol radyasyon kalınlığıdır.

Şekil 4.5. Dipol radyasyon kalınlığı ve spin (Kneissl ve ark., 1996)

Dipol radyasyon kalınlığı, enerjiye bağlı diferansiyel tesir kesiti ile belirlenebilmektedir. NRF deneylerinin çoğunda sürekli foton kaynağı (Bremsstrahlung) kullanılmaktadır. Bu nedenle enerjiye bağlı diferansiyel tesir kesiti $(I_{\rm s})$ saçılan fotonların spektrumundan

$$I_{s} = \frac{2J_{0} + 1}{2J + 1} \left(\pi \frac{hc}{E_{x}} \right)^{2} \frac{\Gamma_{0} \Gamma_{f}}{\Gamma} \frac{W(\Theta)}{4\pi}$$

$$(4.27)$$

ile elde edilir. Burada W açısal dağılım, Γ toplam dipol radyasyon kalınlığıdır. Esnek saçılmalarda ($\Gamma_0 = \Gamma_f$) olacağından, saçılma tesir kesiti Γ_0^2 / Γ ile orantılı olacaktır.

Γ dipol radyasyon kalınlığının deneysel olarak belirlenebileceği bir diğer yol uyarılmış seviyenin yarı ömür ölçüm sonuçlarının kullanılmasıdır (Kneissl ve ark., 1996). Dipol radyasyon kalınlığı ile yarı ömür arasındaki ilişki eşitlik (4.28)' de verilmiştir.

$$\Gamma = \frac{\eta}{\tau} \tag{4.28}$$

Burada, h Planck sabiti ve deneysel olarak elde edilen yarı ömür (τ) büyüklükleri kullanılarak radyasyon kalınlığı belirlenebilmektedir.

Radyasyon kalınlığı (taban durumu Γ_0 olan) aynı zamanda dipol geçişlerin karakteristik özelliklerinden olan indirgenmiş geçiş olasılıkları ile orantılıdır.

$$\Gamma_{0} = 8\pi \sum_{\Pi L=1}^{\infty} \frac{(L+1)(E_{\gamma}/\eta c)^{2L+1}}{L[(2L+1)!!]^{2}} \frac{2J_{0}+1}{2J+1} B(\Pi L, E_{\gamma}) \uparrow$$
(4.29)

(4.29) ifadesinde, $B(\Pi L, E_{\gamma} \uparrow)$ ($\Pi = E$ (elektrik) veya M (manyetik)) indirgenmiş geçiş olasılıklarıdır. Çift çift çekirdekler için elektrik dipol geçişlerdeki geçiş kalınlığı ve indirgenmiş geçiş olasılığı

$$B(E1) \uparrow = 2,866.10^{-3} \cdot \frac{\Gamma_0}{E_{\gamma}^3} \qquad e^2 fm^2$$
(4.30)

eşitliği ile verilmektedir. Burada $g = \frac{2J_0 + 1}{2J + 1}$ istatistiksel oranı spin faktörüdür ve E_{γ} uyarılma enerjisi MeV, Γ_0 dipol radyasyon kalınlığı ise meV birimlerindedir. Teorik olarak yapılan hesaplamalar ile deneysel verilerin karşılaştırılmasını sağlamak amacıyla E1 geçişleri için, enerji ağırlıklı ($\Gamma_0(E1)$) ve enerji ağırlıksız olarak ($\Gamma_0^{red}(E1)$) elektrik dipol radyasyon kalınlığı için,

$$\Gamma_0(E1) = 0,349 \ w_i^3 [MeV] B(E1) [10^{-3} e^2 fm^2] \ meV$$
(4.31)

$$\Gamma_0^{red}(E1) = 0,349B(E1) \left[10^{-3} e^2 fm^2 \right] meV / MeV^3$$
(4.32)

eşitlikleri kullanılabilir (Soloviev ve ark., 1997; Guliyev ve ark., 2010).

BÖLÜM 5. BULGULAR

Atomik çekirdek tablosunda yer alan, küreselikten deformeye ya da deformeden küreselliğe geçiş bölgesinde yerleşen çekirdekler, geçiş; son kabukları yarı dolmuş ya da yarı dolmuşa yakın olan çekirdekler, deforme çekirdeklerdir. Bu bölümde geçiş ve deforme çift-çift ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁴Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W ve ²³⁶⁻²³⁸U izotopları için elektrik dipol uyarılmalarının incelenmesinde yapılan sayısal hesaplamaların sonuçları yer almaktadır. Önceki bölümlerde matematiksel ve teorik olarak açıkladığımız büyüklükler için yapılan hesaplamalar sonucu türetilen analitik ifadeler Fortran programlama dilinde yazılmış, hesaplama sonuçları elde edilmiştir. Çalışmamızda elektrik dipol uyarılmalarının aşağıda verilen karakteristik özelliklerinin dev dipol rezonans bölgesindeki sonuçları yer almaktadır.

1. QRPA metodu hesaplamaları

QRPA metodunun simetri kırınımlarının neden olduğu sahte hallerin Kuliev ve ark., (2000) ile öteleme ve Galileo değişmezliklerinin restore edildiği ve edilmediği, Bölüm 3'de analitik ifadelerine detaylı olarak yer verilen durumlar araştırılmıştır. NTGI, TI, GI, TGI model sonuçları karşılaştırılmıştır.

İndirgenmiş geçiş olasılıkları
 Kullanılan NTGI, TI, GI ve TGI QRPA yaklaşımlarına göre her çekirdeğin

indirgenmiş dipol geçiş oranı B(E1) değerleri hesaplanmıştır.

3. Enerji

Her bir yaklaşıma göre tüm izotopların enerji spektrumları oluşturulmuştur. Tek parçacık enerjileri deforme Woods-Saxon potansiyelinden hesaplanmıştır (Dudek ve ark., 1984).

 Fotoabsorbsiyon tesir kesiti (FATK)
 İzotopların toplam elektrik dipol FATK'ları TGI QRPA yaklaşımı ile teorik olarak hesaplanmış, deneysel değerlerle karşılaştırılmıştır. Deforme çekirdeklerde toplam FATK'ye K=0 ve K=1 dallarının katkısını incelemek için tüm izotopların her iki dallarının FATK'ları ayrı ayrı hesaplanmış ve buna göre grafikler çizilerek diğer teorik ve deneysel çalışmalarla karşılaştırma yapılmıştır.

5. Nilsson asimptotik kuantum numaraları

Her izotop için hesaplanan enerji seviyelerinde yer alan nötron-nötron (nn) ya da proton-proton (pp) çiftlerinin oluşturduğu seviyelerin asimptotik kuantum numaraları hesaplanmıştır. Bu seviyelerin sayısı oldukça fazla olduğu için yalnızca deforme ¹⁵⁰Nd izotopu için tüm seviyelerin sonuçları verilmiş (EK 2), diğer izotoplarda ise K=0 ve K=1 dallarından gelen yalnızca indirgenmiş geçiş olasılığı en büyük olan seviyenin nn, pp yapılarının genlik değerleri 0.2'den büyük olan seviyelerin asimptotik kuantum sayıları verilmiştir.

6. Radyasyon kalınlığı

Tüm izotopların enerji ağırlıklı ve enerji ağırlıksız indirgenmiş dipol radyasyon kalınlıkları hesaplanmış ve şekillerle gösterilmiştir. Bulgular bölümünde tüm izotopların değerlerinin bulunduğu toplam bir şekil ve Sm çekirdeği izotopları için ayrı bir şekil verilmiştir. Diğer tüm çekirdeklerin izotopları için ayrı şekiller EK 1'de verilmiştir.

Bu hesaplamalarda kullanılan parametreler aşağıda verilmiştir. Buradaki parametreler serbest parametrelerle karıştırılmamalıdır. Bu parametreler deneysel veriler ve teorik işlemler sonucunda elde edilen belirli kaynaklarda aralıkları belirlenmiş fiziksel niceliklerdir.

1. Süperakışkan modelin Δ ve λ parametreleri

Süperakışkan çekirdek modeli bölümünde detaylı incelenen bu iki parametre, Soloviev (1976), Oishi ve ark. (2016), Los Alamos National Laboratory (http://t2.lanl.gov/nis/data/astro/molnix96/paidat.html) tarafından yayınlanan değerlerden elde edilmiş aralıklardan seçilmiş ve tüm izotoplar için tablolarda gösterilmiştir.

2. Deformasyon parametresi

Deforme çekirdeklerin elektrik dipol özelliklerinin hesaplamalarında şüphesiz kullanılacak parametrelerden bir tanesi deformasyon parametresidir. Kullanılan deformasyon parametreleri; çekirdek ortalama alan deformasyon parametresi δ_2 (potansiyelden gelen) ile deneysel kuadropol momentten bulunan β_2 (deformasyondan gelen)'dir. Çekirdeğin elektriksel yük dağılımına karşılık gelen kuadropol momentin deformasyon parametresi β_2 ile olan ilişkisi

$$Q_0 = \frac{3}{\sqrt{5\pi}} Z R_0^2 \beta_2 (1 + 0.36\beta_2)$$
(5.1)

ile verilmektedir. Bu ifadede yer alan Z çekirdekteki proton sayısını, R_0 ise çekirdek yarıçapını temsil etmektedir ($R_0 = 1, 2 A^{1/3} fm$). İki deformasyon parametresi arasındaki ilişki;

$$\delta_2 = 0.945 \beta_2 \left[1 - 2.56 A^{-2/3} \right] + 0.34 \beta_2^2$$
(5.2)

dir (Bohr ve Motelson, 1997). Bu çalışmada, nükleer data merkezi (https://www.nndc.bnl.gov/chart/), Raman ve ark. (2001), Möller ve ark. (1995), Oishi ve ark. (2016), Gurevich ve ark. (1976a) gibi çalışmalardan β_2 deformasyon parametrelerinin alınıp (5.2) eşitliğinde yerine yazılmasıyla δ_2 deformasyon parametresi elde edilmiştir. Her iki parametreye ait değerler tüm izotoplar için tablolarda verilmiştir.

3. Güç parametresi

Çekirdeklerin elektrik dev dipol rezonanslarının enerjilerini ve geçiş özelliklerini açıklamakta kullanılan parametrelerden biri de χ güç parametresidir. Bu çalışmada, araştırılan izovektör dipol-dipol uyarılmaları için güç parametresi,

$$\chi = \wp A^{-5/3} fm^{-2} MeV \tag{5.3}$$

ile verilmektedir (Pyatov ve Salamov, 1977). İzovektör simetri potansiyeli ile bağlantılı olan χ güç parametresinde yer alan $\wp = 100-600$ aralığında (Pyatov ve Salamov, 1977; Guliyev ve ark., 2002; Linneman ve ark., 2003) değer alan sabit bir sayı iken A çekirdeğin kütle numarasını vermektedir. Bu çalışmada, \wp 'ye 300-600 aralığında değerler verilmiştir.

5.1. Çift-Çift ¹⁴²⁻¹⁵² Nd İzotop Zincirine Ait Bulgular

Nd çekirdeğinin 142-152 kütle numaralı izotoplarına ait elektriksel dev dipol rezonans özelliklerinin incelenmesinde kullanılan parametreler Tablo 5.1.'de verilmiştir. Bu tabloda verilen süperakışkan model çiftlenim korelasyon parametresi değerleri, Soloviev (1976), Los Alamos National Laboratory Nükleer ve Parçacık fiziği sisteminden (http://t2.lanl.gov/) alınan değerler arasında yer almaktadır. Bununla birlikte her bir izotop için güç parametresi $300-500A^{-5/3}fm^{-2}MeV$ aralığında değer almıştır.

Çekirdek	Δ_n (MeV)	λ_n (MeV)	$\Delta_{\rm p}$ (MeV)	λ_p (MeV)	eta_2	δ_{2}
$^{142}_{60}Nd$	0,76	-8,336	0,99	-5,957	0,001	0,001
$^{144}_{60} Nd$	0,86	-6,914	1,02	-6,626	0,110	0,095
$^{146}_{60}Nd$	0,98	-6903	1,10	-7,487	0,180	0,147
$^{148}_{60}Nd$	1,16	-6,606	1,14	-8,236	0,206	0,178
$^{150}_{60}Nd$	1,18	-6,627	1,16	-9,306	0,320	0,278
$^{152}_{60}Nd$	1,12	-6,304	0,97	-9,89	0,330	0,287

Tablo 5.1. Çift-çift ¹⁴²⁻¹⁵²Nd izotoplarının süperakışkan model çiftlenim korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2 deformasyon parametreleri

Nd çekirdeği çift-çift 142-152 izotop zincirinin 8-20 MeV enerji aralığında TGI, GI, TI ve NTGI QRPA yaklaşımlarıyla toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplamları ve ortalama enerji değerleri $I^{\pi}K=1^{-1}$ ve $I^{\pi}K=1^{-0}$ dipol uyarılmaları için

bulunmuş, Tablo 5.2.'de verilmiştir. Burada, ortalama enerji değerleri GDR bölgesindeki E1 geçiş matris elemanlarının enerji ağırlıklı ve enerji ağırlıksız toplam kurallarından elde edilmiştir.

$$\overline{\omega} = \sum_{i} \omega_{i} B(E1) / \sum_{i} B(E1)$$
(5.4)

		Öteleme +Galileo			Öteleme			Galileo			Öteleme +Galileo			
		Ι	Değişmez Model		Ι	Değişmez Model			Değişmez Model			Değişmez Olmayan Model		
А	K	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	
142	0	7,3	89,8	12,4	9,4	110,1	11,7	1,0	106,3	11,6	9,4	111,2	11,9	
142	1	19,9	279,3	14,0	20,4	286,0	14,0	19,9	286,4	14,4	20,4	300,0	14,7	
144	0	9,6	111,8	11,5	9,7	112,5	11,6	9,6	109,7	11,4	9,5	108,7	11,5	
144	1	18,8	298,5	15,8	19,1	284,4	14,9	18,7	284,4	15,6	18,7	281,6	15,0	
146	0	10,8	121,6	11,2	11,1	124,8	11,3	10,9	121,7	11,1	10,8	120,9	11,2	
	1	19,3	296,8	15,4	19,5	280,6	14,4	19,2	292,7	15,3	19,1	278,8	14,5	
148	0	10,96	124,7	11,4	11,1	127,0	11,4	11,0	12,5	11,3	11,0	125,5	11,4	
110	1	18,8	276,1	14,7	18,7	273,8	14,6	18,5	290,3	15,7	18,4	291,1	15,8	
150	0	12,4	150,3	12,2	12,3	150,4	12,3	12,5	151,6	12,1	12,4	149,6	12,1	
100	1	18,7	28,1	15,0	19,3	291,1	15,1	19,7	301,2	15,3	19,9	305,5	15,4	
152	0	12,9	145,6	11,3	12,9	145,8	11,3	12,9	145,7	11,2	12,9	144,2	11,2	
152	1	19,7	301,1	15,3	19,6	302,6	15,4	19,3	310,7	16,1	19,3	310,8	16,1	

Tablo 5.2. Çift-çift ¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve öteleme+Galileo değişmez olmayan modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması

Tablo 5.2.'den görüldüğü üzere elektrik dipol uyarılmalarının K=1 dalının değerleri K=0 dalından oldukça fazladır. Bu durum, her iki dal için TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişim grafiği ile aşağıda ayrıca verilmiştir.

Şekil 5.1. Çift-çift ¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş olasılığı değerlerinin karşılaştırılması.

Şekil 5.1.'den çift-çift Nd izotop zincirinin GDR enerji bölgesinde K=1 dalının K=0 dalına göre daha baskın olduğu görülmektedir. K=0 dalında deformasyonun artmasıyla birlikte indirgenmiş geçiş olasılığı değerinde artış gözlenmektedir. Deforme çekirdekler için K=0 ve K=1 dallarının B(E1) değerleri arasındaki oranın yaklaşık olarak 1,5 olduğu eşitlik 4.11'de verilmiştir (Iudice, 2000). Buna göre, Nd izotopları için K=0 ve K=1 dallarının toplam indirgenmiş geçiş olasılıklarının oranı hesaplanmıştır. Bu oranlar Şekil 5.2.'de verilmiştir.

Şekil 5.2. Çift-çift ¹⁴⁴⁻¹⁵²Nd izotoplarının K=0 ve K=1 dallarındaki toplam B(E1) değeri oranlarının karşılaştırılması.

İncelenen Nd çekirdeğinin 144 kütle numaralı izotopundan 152 kütle numaralı izotopuna doğru gidildikçe deformasyon artmaktadır. Özellikle 150 ve 152 kütle numaralı izotoplar iyi deformedir (deformasyon parametreleri 0,3'den büyüktür). Şekil 5.2.'den TGI QRPA ile yapılan hesaplamalardan elde edilmiş olan toplam indirgenmiş geçiş olasılıklarının oranının deformasyonun artmasıyla azalıp, iyi deforme çekirdeklerde 1,5 değerine yakın sonuçlar verdiği görülmüştür. TGI QRPA'dan elde edilen teorik sonuçlar, eşitlik (4.11) kullanılarak elde edilen değerlerle benzerlik göstermektedir.

QRPA modelinde deforme alanda kırılan simetrilerin restore edilmesi için, efektif olarak ayrılabilen etkin kuvvetlerin eklenmesiyle, elde edilen dört yaklaşımın etkisini K=0 ve K=1 dalları için karşılaştırmak amacıyla, B(E1) değerleri hesaplanmıştır. Elde edilen bulgular, her bir izotop için ayrı ayrı şekillerle gösterilmiştir. Aşağıda yalnızca deforme çift-çift ¹⁵⁰Nd izotopu için çizilen şekil yer almaktadır (Şekil 5.3.). Diğer çekirdeklere ait şekiller EK 1'de verilmiştir. Şekillerle NTGI, GI, TI ve TGI QRPA modellerinden elde edilen sonuçlar karşılaştırılmıştır.

Şekil 5.3. Çift-çift ¹⁵⁰Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil 5.3.'den, 8-20 MeV enerji aralığındaki dev dipol rezonans bölgesinde her dört yaklaşımda da iki büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 16,65 MeV enerjili ve B(E1)=3,98 e²fm² indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 16,71 MeV enerjisine ve B(E1)=4,7 e²fm² indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 16,71 MeV enerjisinde ve B(E1)=4,9 e²fm² iken, öteleme değişmez modelde (TI) enerji 16,65 MeV ve B(E1)=4,26 e²fm² dir. Öteleme ve Galileo değişmezliğin restorasyonu ile enerji dağılımının değiştiği, aynı zamanda dev rezonansa en büyük katkıyı sağlayan seviyenin B(E1) değerinin %15,3 oranında azaldığı bulunmuştur. Goldstone dalının hem öteleme hem de Galileo değişmezlik restorasyonu ile B(E1) gücü azalmış ve sahte haller yalıtılmıştır. Bununla birlikte, yalnızca Galileo değişmezliğin restorasyonu dev rezonansın enerji ve gücünde önemli bir değişiklik meydana getirmezken, yalnızca öteleme değişmezliğin restorasyonu B(E1) gücünün % 9,4 oranında azalmasına neden olmuştur. Buradan

sahte hallerin yalıtılması için yalnızca öteleme değişmezliğin değil, öteleme değişmezlikle birlikte Galileo değişmezliğin de restorasyonunun gerekli olduğu görülmektedir.

¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin öteleme+Galileo değişmez model kullanılarak, eşitlik 4.8 ile, dev dipol rezonans için karşılaştırılabilir en temel büyüklük olan toplam fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçların deneysel sonuçlarla karşılaştırılması Şekil 5.4.'de verilmiştir. Bu hesaplamada, ağırlık fonksiyonu olarak Kuliev-Salamov fonksiyonu kullanılmıştır. Bu ifadede bulunan ortalama enerji aralığı parametresi (Δ) olarak 1.0 ile 2.0 MeV arasındaki değerler kullanılmıştır.

Şekil 5.4. Çift-çift ¹⁴²⁻¹⁵² Nd izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI QRPA ile elde edilen teorik değerleri ve deneysel (Carlos ve ark., 1974) verilerin karşılaştırılması.

Yukarıda ifade edildiği gibi incelediğimiz Nd çekirdeklerinde 150 ve 152 kütle numaralı izotoplar iyi deforme olduklarından toplam fotoabsorbsiyon tesir kesitlerinin enerjiye bağlı olarak çizildiği grafikte iki pikli (hörgüçlü) yapının olduğu, Nd'nin diğer izotopları geçiş çekirdekleri olduğundan bu izotopların toplam fotoabsorbsiyon tesir kesitlerinde tek pikli yapının gözlendiği bilinmektedir. Şekil 5.4.'den görüldüğü gibi, 142, 144, 146 ve 148 kütle numaralı Nd çekirdeklerinin deneysel olarak gözlenen tek pikli yapısına, teorik olarak bulunan değerler paralellik göstermiştir. Bu çekirdeklerde fotoabsorbsiyon tesir kesitine K=0 dalından gelen katkı oldukça düşüktür, iyi deforme olan çekirdeklere doğru gidildikçe K=0 dalından gelen katkı gittikçe artmaktadır. Bu çekirdeklerin fotoabsorbsiyon tesir kesiti grafiklerinde oluşan tek pike K=1 dalından gelen katkı çok büyüktür. İyi deforme 150 kütle numaralı Nd çekirdeğinde ise her iki daldan katkı gelmekte ve K=0 ve K=1 dallarının oluşturduğu değerlerin toplamı, deneysel sonuç ile örtüşmektedir. Deneysel sonucu bulunmayan 152 kütle numaralı Nd çekirdeği için bulunan teorik değerle, bu çekirdeğin yaklaşık olarak tesir kesitinin hangi değerde olabileceği ile ilgili olarak deneysel çalışmalara öngörüde bulunulabilmesi mümkündür. Çift-çift Nd izotoplarının teorik olarak bulunan tesir kesiti değerlerinin deneysel değerler ile uyum içerisinde çıkması, teorik olarak kullandığımız model ile elde ettiğimiz sonuçların doğruluğunun bir göstergesidir.

Fotoabsorbsiyon tesir kesiti-enerji grafiğinin pikli yapısında, toplam fotoabsorbsiyon tesir kesitinin en yüksek olduğu andaki enerji değerleri (E_{max}), kullanılan teoriden elde edilen sonuçlar ile deneysel sonuçları karşılaştırmak için kullanılacak verilerden bir diğeridir. E_{max} 'ın küresel ya da geçiş çekirdeklerinin fotoabsorbsiyon tesir kesiti grafiklerinin tek pikli olmasından dolayı tek enerji değeri (E_1) bulunurken, deforme çekirdeklerin hörgüçlü olmasından dolayı iki enerji değeri (E_1 ve E_2) bulunmaktadır. Nd çekirdekleri için teorik olarak elde edilen ve deneysel olarak bulunan değerler Tablo 5.3.'de verilmiştir.

Nd		E_1			E_2	
Δ	Teori	Deney ^a	Deney ^b	Teori	Deney ^a	Deney ^b
11	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
142	14,748	$14{,}95\pm0{,}1$	-	-	-	-
144	15,677	$15{,}05\pm0{,}1$	$15{,}64\pm0{,}01$	-	-	-
146	14,878	14,8 ±0,1	$15{,}69\pm0{,}02$	-	-	-
148	15,059	14,7 ± 0,15	$15,52 \pm 0,01$	-	-	-
150	11,96	12,3 ± 0,15	$11,\!97\pm0,\!1$	16,659	$16 \pm 0,\!15$	$15{,}67 \pm 0{,}04$
152	11,20	-	-	15,827	-	-

Tablo 5.3. Çift-çift ¹⁴²⁻¹⁵²Nd izotoplarının E₁ ve E₂ değerlerinin deneysel (^aCarlos ve ark., 1971; ^bDonaldson ve ark., 2018) veriler ile karşılaştırılması

Tablo 5.3. kullanılan teorinin deneysel verilere yakın sonuçlar verdiğini göstermiştir. Bu tablodaki değerler ayrıca Şekil 5.5.'de verilmiştir.

Şekil 5.5. Çift-çift 142-152Nd izotop zinciri çekirdeklerinin E1 ve E2 değerlerinin deneysel verilerle karşılaştırılması

Şekil 5.5.'den TGI QRPA ile ulaşılan E_1 ve E_2 enerji değerlerinden, çift-çift 142-148 kütle numaralı çekirdekler için bulunan değerlerin (E_1) deneysel veriler ile örtüştüğü

görülmektedir. Buradan, deformasyon parametresi düşük olan geçiş çekirdekleri için, elektrik dipol geçiş özelliklerinin incelenmesinde TGI QRPA modelinin deneysel verileri açıklamakta başarılı olduğu görülmüştür (Linneman ve ark., 2003). Bununla birlikte, 150 kütle numaralı Nd çekirdeği için E_1 ve E_2 teorik değerlerinin deneysel veriler ile karşılaştırılmasında sonuçların deneysel hata çerçevesinde uyumlu olduğu görülmektedir. 152 kütleli iyi deforme Nd izotopu için karşılaştırma yapılacak bir deneysel veri bulunmamaktadır. Elde ettiğimiz sonuçları kullanarak, bundan sonra yapılabilecek deneysel çalışmalara bu izotop için öngörümüz, iki pikli hörgüçlü yapıda olduğu ve E_1 ile E_2 'nin sırasıyla yaklaşık olarak 11-12 MeV ve 15-16 MeV enerjileri civarında olacağıdır.

Dev dipol rezonans bölgesindeki uyarılmalarda, TGI QRPA'da yer alan izoskaler ve izovektör etkin kuvvetlerin uyarılma spektrumundaki dağılıma katkısının ne şekilde olduğunu belirlemek için (3.87) determinantı kullanılmıştır. Bu determinanttan elde edilen seküler denklemdeki Δ alt indisli tüm ifadeler kapatılarak dipol-dipol etkileşimlerin saf izovektör kuvvetleri kaldırılmış (κ =0) ve izoskaler dalın enerjileri elde edilmiştir. Çift-çift Nd izotopları için hesaplanan izoskaler ve izovektör katkılar Şekil 5.6.'da verilmiştir.

Şekil 5.6. Çift-çift ¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin TGI QRPA modelde izovektör ve izoskaler katkılarının enerjiye bağlı dağılımı

GDR'nin makroskopik açıdan proton ve nötron kütle merkezlerinin birbirlerine karşı hareketi olduğu, kütle merkezlerinin aynı yönde (izoskaler) ya da zıt yönde (izovektör) olduğu iki hareket türünün bulunduğu bilinmektedir. Yapılan çalışmalar göstermektedir ki (Şekil 2.16.) GDR enerji bölgesinde baskın olan izovektör moddur. Şekil 5.6.'dan, TGI QRPA yaklaşımında kullanılan hamiltoniyende bulunan izoskaler kuvvetlerin enerji spektrumunda 8-10 MeV enerji bölgesinde yoğunlaşan değerler verdiği, izovektör kuvvetlerin olduğu durumda ise 8-20 MeV enerji aralığında yayılan bir spektrum elde edildiği görülmektedir. İzoskaler kuvvetlerin katkısı nötron bağlanma enerjisine yakın olan PDR'ye yakın bir bölgede yoğunlaşmıştır. Paar ve

Horvat (2014)'ın ¹³²Sn için yaptıkları çalışmada gösterdikleri gibi izoskaler katkının 8-10 MeV enerji aralığında yoğunlaştığı bir bölge bulunmaktadır. Şekil 5.6.'dan ayrıca izoskaler ve izovektör kuvvetler ile ilgili önemli başka bir sonuç daha çıkmaktadır: izovektör kuvvetler izoskaler kuvvetler üzerinde yıkıcı bir girişime sahiptirler.

Bu çalışmada incelenen bir diğer özellik çift-çift ¹⁴²⁻¹⁵²Nd izotoplarının K=0 ve K=1 dallarının elektrik dipol enerji ağırlıklı toplam kurallarına katkılarının incelenmesidir. Bunun için, $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişlerindeki her seviye için hesaplanan enerji ağırlıklı toplamların (EWSR), toplam EWSR'ye oranının yüzdelik değerleri hesaplanmıştır. Elde edilen sonuçlar Şekil 5.7.'de verilmiştir.

Şekil 5.7. Çift-çift ¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin K=0 ve K=1 dalları için elektrik dipol enerji ağırlıklı toplamlarının yüzdelik dağılımının gösterilmesi.

Şekilden görüldüğü gibi dev rezonans bölgesinde, I^{π}K=1⁻⁰ seviyelerinin toplam kuralına asıl katkısı (%70) 11-13 MeV enerjisine kadar sağlanmışken, I^{π}K=1⁻¹ seviyelerinin katkısı 15-16 MeV civarında önemli derecede artmaktadır (%80-90). Buradan, daha önceden de ifade edildiği üzere, dev dipol rezonans bölgesi enerji spektrumunda Δ K=0 seviyelerinin 11-13 MeV, Δ K=1 seviyelerinin 15-16 MeV aralığında iki maksimum gösterdikleri sonucu çıkmaktadır.

5.2. Çift-Çift ¹⁴⁴⁻¹⁵⁴Sm İzotop Zincirine Ait Bulgular

Çift-çift Sm çekirdeğinin 144-154 kütle numaralı izotoplarına ait elektriksel dev dipol rezonans özelliklerinin incelenmesinde kullanılan parametreler Tablo 5.4.'de verilmiştir.

Çekirdek	Δ_n (MeV)	λ_n (MeV)	Δ _p (MeV)	λ _p (MeV)	eta_2	δ_2
$^{144}_{62}Sm$	0.98	-8.967	1.22	-5.032	0.0010	0.0010
$^{146}_{62}Sm$	1.05	-7.889	1.22	-5.721	0.1400	0.121
$^{148}_{62} Sm$	1.01	-7.427	1.22	-6.423	0.1610	0.139
$^{150}_{62} Sm$	1.15	-7.199	0.97	-7.148	0.1933	0.167
$^{152}_{62}Sm$	1.16	-7.126	0.97	-7.948	0.2785	0.242
$^{154}_{62} Sm$	1.01	-6.820	1.01	-8.604	0.3000	0.260

Tablo 5.4. Çift-çift ¹⁴⁴⁻¹⁵⁴ Sm izotoplarının süperakışkan model çiftlenim korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2 deformasyon parametreleri

Sm çekirdeği izotop zincirinin 8-20 MeV enerji aralığında TGI, GI, TI ve NTGI QRPA modelleri kullanılarak hesaplanan toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplam kuralı ve ortalama enerji değerleri $I^{\pi}K=1^{-1}$ ve $I^{\pi}K=1^{-0}$ dipol uyarılmaları için bulunmuş, Tablo 5.5.'de verilmiştir

		Öteleme +Galileo			Öteleme			Galileo			Öteleme +Galileo		
		Değişmez Model			Değişmez Model			Değişmez Model			Değişmez Olmayan Model		
A	K	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)
144	0	9,536	112,553	11,802	9,825	116,665	11,874	9,490	112,069	11,808	9,710	117,184	12,067
144	1	20,653	295,738	14,319	20,997	300,609	14,317	20,596	300,361	14,583	21,035	312,215	14,842
146	0	10,162	116,406	11,4545	10,470	121,157	11,5729	10,255	11,712	11,420	10,371	120,384	11,607
140	1	20,081	294,542	14,6676	20,178	294,087	14,6042	20,395	304,201	14,915	20,906	315,510	15,092
140	0	10,576	121,885	11,5246	11,179	129,606	11,593	11,033	12,264	11,440	11,146	128,949	11,569
140	1	20,436	298,081	14,586	20,873	302,561	14,495	20,713	307,911	14,865	20,962	315,244	15,039
150	0	11,184	125,092	11,1847	11,118	124,058	11,580	11,233	125,314	11,155	11,229	125,411	11,168
150	1	20,486	215,041	14,041	20,430	294,603	14,494	20,794	308,085	14,816	20,831	308,670	14,818
150	0	11,963	140,240	11,7224	12,035	141,432	11,7516	12,030	141,027	11,722	12,033	141,052	11,721
132	1	19,389	294,952	15,2125	19,174	293,270	15,2945	19,080	303,533	15,908	19,119	304,704	15,936
154	0	12,074	139,419	11,546	11,819	136,497	11,549	12,050	139,172	11,549	12,025	139,055	11,563
154	1	20,083	303,607	15,117	19,872	301,438	15,169	19,475	312,112	16,025	19,398	310,828	16,023

Tablo 5.5. Çift-çift ¹⁴⁴⁻¹⁵⁴ Smizotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve öteleme+Galileo değişmez olmayan modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması

Sm çekirdeği için elde edilen sonuçlardan elektrik dipol uyarılmalarının K=1 dalındaki değerlerin K=0 dalından fazla olduğu görülmektedir. Bu durum, TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişim grafiği Şekil 5.8.'de verilmiştir.

Şekil 5.8. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının ΣB(E1) değerlerinin karşılaştırılması

Şekil 5.8.'den 8-20 MeV enerji aralığında K=1 dalının K=0 dalından baskın olduğu ve K=0 dalının katkısının deforme çekirdeklere doğru gidildikçe arttığı gözlenmektedir. Toplam B(E1) değerlerinin bu iki dal için oranları Şekil 5.9.'da verilmiştir.

Şekil 5.9. Çift-çift ¹⁴⁶⁻¹⁵⁴Sm izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının ΣB(E1) değerleri oranlarının karşılaştırılması

Şekilden görüldüğü gibi deforme çekirdeklerde K=1 ve K=0 dallarının toplam indirgenmiş geçiş olasılıkları oranları yaklaşık olarak 1,6 değerinden deformasyonun azaldığı çekirdeklere doğru gidildikçe 2 değerine yaklaşmaktadır. Eşitlik 4.11'den deformasyon azaldıkça bu değerlere ulaşılması beklenen bir sonuçtur.

Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin öteleme+Galileo değişmez model verileri kullanılarak eşitlik (4.8) ile dev dipol rezonans için en temel büyüklük olan toplam fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçların deneysel verilerle karşılaştırılması Şekil 5.10.'da verilmiştir. Burada, kullanılan ortalama enerji aralığı parametresi (Δ) için 1.0 ile 2.0 arasındaki değerler kullanılmıştır. Ağırlık fonksiyonu olarak Kuliev-Salamov (1984) fonksiyonu kullanılmıştır.

Şekil 5.10. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri ile deneysel (Carlos, 1974) değerlerin karşılaştırılması

Şekil 5.10.'dan görüldüğü gibi, 144-150 arasındaki izotopların tek pikli yapısının TGI QRPA model teorik sonuçları ve deneysel verileri uyum içerisindedir. 152 ve 154 kütle numaralı izotopların deforme özelliklerinden ötürü hörgüçlü yapılarının gözlenmesinde de teorik sonuçlar ve deneysel veriler paralellik göstermişlerdir. Deforme çekirdeklerin iki pikli yapısında K=1 dalından gelen katkı oldukça büyüktür. Çift-çift Sm izotoplarının teorik olarak bulunan tesir kesiti değerlerinin deneysel veriler ile uyum içerisinde çıkması, teorik olarak kullandığımız modelin uygunluğunu göstermektedir.

Şekil 5.11. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri ile deneysel değerlerin karşılaştırılması

Fotoabsorbsiyon tesir kesiti-enerji şekillerinin tek pikli olanlarının maksimum enerjileri (E₁) ile deforme çekirdeklerin maksimum enerjilerinin (E₁ ve E₂) teorik olarak elde edilen sonuçları ve deneysel verilerin karşılaştırılması Şekil 5.11.'de verilmiştir. Şekil 5.11.'den Sm'un 144-148-150 kütle numaralı izotopları için TGI QRPA ile elde edilen E₁ enerjileri, deneysel verilerle örtüşmektedir. Buradan daha önce de ifade edildiği üzere TGI QRPA'nın geçiş çekirdeklerinin özelliklerini açıklamakta başarılı olduğu sonucu çıkmaktadır. 152 kütle numaralı deforme çekirdek için K=0 dalından gelen katkının daha fazla olduğu E₁ ile verilen teorik değerin deneysel değerler ile örtüştüğü, K=1 dalından gelen katkının daha fazla olduğu E₂'nin teorik sonucunun iki deneysel değerin arasında yer aldığı gözlenmiştir. 154 kütle numaralı Sm izotopunun E₂ enerji değeri deneysel veri ile örtüşürken, E₁ değeri deneysel veri ile hata çerçevesinde yakın çıkmıştır. Buradan, TGI QRPA ile elde edilen teorik fotoabsorbsiyon tesir kesiti değerlerinin deneysel verileri uygun bir şekilde açıkladığı görülmektedir.

Bu çalışmada araştırılan nükleer özelliklerden bir diğeri radyasyon kalınlığıdır. İndirgenmiş geçiş olasılığı ve enerji ile ilişkili bir büyüklük olan radyasyon kalınlığı ile enerjiye bağlı olmayan indirgenmiş radyasyon kalınlığı değerleri bu tez çalışmasındaki tüm izotoplar için araştırılmıştır. Bulgular bölümünde yalnızca Sm çekirdeği izotopları için bulunan değerlere yer verilmiştir. Diğer izotoplara ait bulgular EK 1'de verilmiştir. Sm çekirdeği izotopları için K=0 ve K=1 dallarının Γ_0 radyasyon kalınlığı ve Γ_{red} indirgenmiş radyasyon kalınlığı değerleri Şekil 5.12. ve Şekil 5.13.'de verilmiştir.

Şekil 5.12. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin enerjiye bağlı radyasyon kalınlığı Γ_0 değerlerinin karşılaştırılması

Şekil 5.13. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin enerjiye bağlı olmayan radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması

Radyasyon kalınlığı değerleri enerji ve B(E1) değerleri ile ilişkili olduğu için K=1 dalı için elde edilen değerlerin K=0 dalı için elde edilenlerden daha büyük çıkması beklenen bir sonuçtur.

Dev dipol rezonans bölgesindeki uyarılmalarda, TGI QRPA'da yer alan izoskaler ve izovektör etkin kuvvetlerin uyarılma spektrumundaki dağılıma katkısının ne şekilde olduğunun belirlendiği Nd çekirdeği izotopları verilen sonuçların (Şekil 5.6.) başka bir çekirdek için de benzerlik gösterip göstermediğini belirlemek için aynı hesaplamalar Sm izotopları için de elde edilmiştir. Teorik hesaplamalarda, dipoldipol etkileşimlerin saf izovektör kuvvetlerinin kaldırılması yoluyla izoskaler dalın enerjileri elde edilmiştir. Bu şekilde bulunan izoskaler ve izovektör katkılar Şekil 5.14.'de verilmiştir.

9 8

Şekil 5.14. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin izovektör ve izoskaler katkılarının elektrik dipol enerji diyagramında gösterilmesi

Şekil 5.14.'den Sm ve Nd izotopları için bulunan sonuçların benzerlik gösterdiği görülmektedir. İzovektör kuvvetlerin katkılarının 8-20 MeV aralığında dağıldığı, izoskaler kuvvetlerin dağılımının 8-10 MeV civarında yoğunlaştığı ve izovektör kuvvetlerin izoskaler kuvvetler üzerinde yıkıcı girişim oluşturduğu sonuçları elde edilmiştir.

Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotoplarının K=0 ve K=1 dallarının elektrik dipol enerji ağırlıklı toplam kurallarına katkılarının incelenmesiyle Şekil 5.15. elde edilmiştir.

Şekil 5.15. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin K=0 ve K=1 dalları için elektrik dipol enerji ağırlıklı toplamlarının yüzdeliklerinin gösterilmesi

Buna göre, dev rezonans bölgesinde, I^{π}K=1⁻⁰'ın %70 katkısı 11-13 MeV'e kadar sağlanmışken, I^{π}K=1⁻¹ için %90 katkının keskin bir artışla 15-16 MeV civarında olduğu bulunmuştur. Buradan, daha önceden de ifade ettiğimiz üzere, deforme çekirdekler için dev dipol rezonans bölgesi enerji spektrumunda Δ K=1 geçişinin 15-16 MeV, Δ K=0 geçişinin 11-12 MeV değerlerinde toplam kurallarının büyük bir oranını karşıladıkları sonucu çıkmaktadır.

Toplam elektrik dipol fotoabsorbsiyon tesir kesiti hesaplamalarında teorik olarak kullanılan modelden elde edilen sonuçları deneysel verilerle karşılaştırılmak için bu çalışmada (4.1) eşitliği kullanılmıştır. Denklem (4.1)'de bulunan $\delta(w - \Omega_i)$ ağırlık fonksiyonu, genel olarak literatürde (4.2) eşitliği ile verilen Lorentz fonksiyonu şeklinde kullanılmaktadır. Ağırlık fonksiyonu için kullanılabilecek bir diğer fonksiyon Kuliev-Salamov (Denklem 4.3) fonksiyonudur. Bu çalışmada bu iki fonksiyonun fotoabsorbsiyon tesir kesiti hesaplamalarındaki etkileri araştırılmıştır. Lorentz ve Kuliev-Salamov fonksiyonlarının deforme ¹⁵⁴Sm izotopu için, aynı Δ değeri kullanılarak, K=0 ve K=1 dallarına göre fotoabsorbsiyon tesir kesitleri için verdiği sonuçlar karşılaştırılmıştır (Şekil 5.16.).

Şekil 5.16. Çift-çift ¹⁵⁴Sm çekirdeğinin fotoabsorbsiyon tesir kesitinin hesaplanmasında Lorentz ve Kuliev-Salamov fonksiyonlarının karşılaştırılması

Şekil 5.16.'dan görüldüğü üzere K=0 ve K=1 dalları için. Kuliev-Salamov fonksiyonu kullanılarak elde edilen sonuçlar da Lorentz fonksiyonunda olduğu gibi deforme çekirdeklerin fotoabsorbsiyon tesir kesitlerindeki hörgüçlü yapıyı göstermektedir. Şekilden Kuliev-Salamov fonksiyonu ile hesaplanan değerler ile Lorentz fonksiyonundan hesaplanan değerlerin benzer dağılım gösterdikleri, Kuliev-Salamov fonksiyonunun deneysel verilerle daha iyi bir uyum sergilediği görülmüştür. Lorentz fonksiyonu ile güç fonksiyonunun kolay elde edilmesi hesaplamalarda bir avantaj sağlarken enerji arttıkça çok dik bir şekilde azalması dezavantajlı yanıdır. Bu durum, hesaplamaların doğruluğunun azalmasına neden olabilmektedir. Bunu engellemek için Kuliev-Salamov fonksiyonunu bazen kullanmak uygundur (Soloviev, 1992). Bu çalışmada da bu yüzden Kuliev-Salamov fonksiyonu kullanılarak sonuçlar elde edilmiştir.

Fotoabsorbsiyon tesir kesitlerinin enerjiye bağlı grafikleri oluştulurken kullanılan en önemli parametrelerden bir tanesi rezonans genişliğidir (Γ). Rezonans genişliği değeri, sembolleri aynı olan elektrik dipol radyasyon kalınlığı ile karıştırılmamalıdır. Rezonans genişliği Lorentz eğrisi parametrelerinden biri olup, rezonans pikinin yarı maksimumunun genişliğidir. Aşağıda, teorik olarak elde edilen sonuçlardan ulaşılan fotoabsorbsiyon-enerji grafiğinin (Şekil 5.10.) Lorentz eğrisi ile fit edilmesiyle

	E ₁	σ1	Γ_1	Γ _{1 deney}	E ₂	σ ₂	Γ_2	$\Gamma_{2 \text{ deney}}$
А	(MeV)	(mb)	(MeV)	(MeV)	(MeV)	(mb)	(MeV)	(MeV) ^a
144	15.154	384.521	2.435		-	-	-	
146	15.834	354.897	3.153		-	-	-	
148	15.622	365.479	3.412	5.15 ^a	-	-	-	
150	15.599	425.635	3.752	6.03 ^a	-	-	-	
152	12.420	177.638	4.539	3.12 ^a 4.73±0.65 ^b	16.080	444.075	3.95	4.87 ^a 6.36±0.14 ^b
154	11.584	197.400	4.233	3.05 ^a	16.015	428.239	3.77	4.95ª

Tablo 5.6. Çift-çift ¹⁴⁴⁻¹⁵⁴Sm izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesindeki Lorentz eğrisi parametreleri

bulunan. rezonans genişliği değerleri ve deneysel veriler ile karşılaştırılması

^a Carlos ve ark., 1974; ^bDonaldson ve ark., 2018

verilmiştir.

Tablo 5.6.'ya göre, Γ_1 için 148 ve 150 kütle numaralı izotopların teorik değerleri deneysel (Carlos ve ark., 1974) değerlere göre daha düşüktür. Bununla birlikte deforme olan 152 kütle numaralı Sm çekirdeği için verilen iki deneysel veriden biri olan Carlos ve ark. (1974)'dan büyük, Donaldson ve ark. (2018)'in hata aralığında değere sahiptir. ¹⁵⁴Sm izotopu için elde edilen sonuç deneysel veriden büyüktür. Γ_2 için her iki deforme çekirdeğin de teorik rezonans genişliği değeri deneysel verilerden düşük çıkmıştır. Deforme çekirdekler için; Γ_1 değeri 2018'de yapılan deney ile örtüşürken 1974'de yapılan deney yaklaşık 1 MeV büyük çıkmaktadır. Bu değer için bir deney sonucunun uyumlu, diğerinin farklı çıkması 1974'deki deney sonuçlarının duyarlılığının düşük olabileceğini düşündürmektedir. Γ_2 değeri her iki çekirdek için düşük çıkmıştır. Bu değerlerin ufak da olsa farklılıklarınının nedeninin deneysel çalışmalarda tesir kesiti grafiğinin toplam olarak çizilmiş olmasından kaynaklandığı düşünülmektedir. Bu çalışmada deneysel çalışmalardan en önemli farklılığımızı oluşturan K=0 ve K=1 dallarından gelen katkıları ayrı ayrı verilmesi, bu değerlerin olduğundan daha küçük bulmamıza neden olabilmektedir.
5.3. Çift-Çift ¹⁵²⁻¹⁶⁴Gd İzotop Zincirine Ait Bulgular

Gd çekirdeğinin 152-164 kütle numaralı izotoplarına ait elektriksel dev dipol rezonans özelliklerinin incelenmesinde kullanılan parametreler Tablo 5.7.'de verilmiştir.

Çekirdek	Δ _n (MeV)	λ _n (MeV)	Δ_p (MeV)	λ _p (MeV)	eta_2	δ_2
$^{152}_{64}Gd$	1.16	-8.046	1.01	-6.159	0.235	0.204
$^{154}_{64}Gd$	1.16	-7.825	0.97	-6.821	0.3105	0.270
$^{156}_{64}Gd$	1.10	-7.525	0.92	-7.408	0.340	0.296
$^{158}_{64}Gd$	1.12	-7.188	0.84	-7.990	0.3484	0.303
$^{160}_{64}Gd$	1.04	-6.828	1.17	-8.603	0.349	0.304
$^{162}_{64}Gd$	1.04	-6.433	1.18	-9.178	0.358	0.312
$^{164}_{64}Gd$	1.06	-6.000	1.19	-9.750	0.358	0.312

Tablo 5.7. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotoplarının süperakışkan model çiftlenim korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2 deformasyon parametreleri

Gd çekirdeği izotop zincirinin 8-20 MeV enerji aralığında TGI, GI, TI ve NTGI QRPA yaklaşımlarıyla toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplam kuralı ve ortalama enerji değerleri $I^{\pi}K=1^{-1}$ ve $I^{\pi}K=1^{-0}$ dipol uyarılmaları için bulunmuş, Tablo 5.8.'de verilmiştir.

		Ö	teleme +Galilec)		Öteleme			Galileo		Ĉ)teleme +Galile	0	
		D	eğişmez Model		Γ	Değişmez Model	mez Model Değişmez Model					Değişmez Olmayan Model		
А	K	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	
152	0	12.268	148.170	12.077	12.328	149.46	12.123	12.533	152.132	12.138	12.508	151.782	12.134	
132	1	22.747	314.764	13.837	22.803	315.618	13.841	22.947	321.758	14.021	23.422	327.499	13.982	
154	0	13.062	155.417	11.897	13.004	154.500	11.880	13.123	156.561	11.929	13.111	156.636	11.946	
134	1	22.985	318.270	13.846	22.562	313.778	13.907	22.939	324.395	14.141	23.059	325.646	14.122	
156	0	13.172	153.439	11.648	12.147	144.225	11.873	13.132	153.268	11.670	13.100	153.108	11.687	
150	1	20.486	318.026	15.524	20.149	315.280	15.647	20.069	324.660	16.176	20.122	325.393	16.170	
150	0	13.182	150.860	11.443	13.226	151.449	11.450	13.127	150.427	11.459	13.067	150.468	11.514	
130	1	21.131	315.684	14.939	21.078	317.471	15.061	20.933	327.470	15.643	21.089	329.690	15.632	
160	0	13.413	156.489	11.666	13.696	160.101	11.689	13.519	157.777	11.670	13.517	157.984	11.687	
100	1	22.332	323.454	14.483	22.362	322.796	14.434	21.958	334.246	15.222	21.786	332.217	15.248	
1(2	0	13.584	156.276	11.504	13.772	158.474	11.506	13.506	155.351	11.501	13.591	156.874	11.541	
102	1	21.567	316.463	14.673	21.669	316.088	14.587	21.245	330.199	15.542	21.317	333.389	15.639	
164	0	13.791	157.268	11.403	13.329	153.384	11.507	13.727	156.710	11.416	13.759	157.755	11.465	
104	1	20.811	303.912	14.603	21.893	315.721	14.420	21.400	331.045	15.468	21.616	336.470	15.565	

Tablo 5.8. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve öteleme+Galileo değişmez olmayan modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması.

Gd çekirdeği için elde edilen sonuçlardan elektrik dipol uyarılmalarının K=1 dalındaki değerlerinin K=0 dalından fazla olduğu görülmektedir. Bu durum, TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişim grafiği (Şekil 5.17.) ile aşağıda verilmiştir.

Şekil 5.17. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş olasılığı değerlerinin karşılaştırılması

Şekil 5.17.'den de 8-20 MeV enerji aralığında K=1 dalının K=0 dalından baskın olduğu ve K=0 dalının katkısının deformasyon arttıkça arttığı gözlenmektedir. K=0 ve K=1 dallarının toplam B(E1) değerleri arasındaki oranın Gd izotopları için hesaplanan değerleri Şekil 5.18.'de verilmiştir.

Şekil 5.18. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının ΣB(E1) değerleri oranlarının karşılaştırılması

Şekil 5.18.'den deforme çekirdeklerde K=1 ve K=0 dallarının toplam indirgenmiş geçiş olasılıkları oranlarının 2-1,5 değerleri arasında değiştiği görülmektedir. Şekilde, kütle numarası 156 ve 158 olan Gd izotoplarının, diğer izotopların oluşturduğu sistematikten sapması söz konusudur. Guliyev ve ark. (2009) tarafından gerçekleştirilen çift-çift Gd izotoplarının B(E1) değerlerinin incelendiği çalışmada, düşük enerji bölgesinde bu oranın çift çift ¹⁵⁸Gd izotopunda düşük çıktığı görülmüştür. Çalışma, düşük enerji bölgesinde elde edilen sonucun yüksek enerjilerde de var olduğunu göstermiştir.

QRPA modelinde deforme alanda kırılan simetrilerin restore edilmesi için efektif olarak ayrılabilen etkin kuvvetlerin eklenmesiyle elde edilen dört yaklaşımın etkisini karşılaştırmak için, her bir izotop için dört yaklaşıma göre K=0 ve K=1 dallarının B(E1) değerleri bulunmuştur. Elde edilen bulgular, her bir izotop için ayrı ayrı şekillerle gösterilmiştir. Aşağıda yalnızca ¹⁶⁰Gd izotopu için çizilen şekil (Şekil 5.19.) yer almaktadır. Gd çekirdeğinin diğer izotoplarına ait bulgular EK 1'de verilmiştir.

Şekil 5.19. 160Gd çekirdeğinin TGI, TI, GI, NTGI modellerinde B(E1) değerlerinin karşılaştırılması

Şekil 5.19.'dan, 8-20 MeV enerji aralığındaki dev dipol rezonans bölgesinde her dört yaklaşımda da iki büyük seviye gözlenmektedir. ¹⁶⁰Gd izotopu için öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de K=0 dalında 10.912 MeV enerjili B(E1)=2.81 $e^2 fm^2$ indirgenmiş geçiş olasılıklı, K=1 dalında 16,315 MeV enerjili B(E1)=3.194 $e^2 fm^2$ indirgenmiş geçiş olasılıklı seviyeler bulunmaktadır. Galileo değişmez (GI) modelde bu seviyeler K=0 dalında 10.533 MeV enerjili B(E1)=1.26 $e^2 fm^2$ indirgenmiş geçiş olasılıklı, K=1 dalında 16.31 MeV enerjisinde indirgenmiş geçiş olasılığı B(E1)=3.30 $e^2 fm^2$ değerlerine sahiptir. Öteleme değişmez modelde (TI) enerji K=0 dalında 9.169 MeV iken indirgenmiş geçiş olasılığı B(E1)=1.14 $e^2 fm^2$, K=1 dalında enerji 15.3239 MeV ve B(E1)=1.56 $e^2 fm^2$ olan seviyelerdir. Öteleme ve Galileo değişmez model (TGI) sonuçları, K=0 dalında 10.53 MeV enerjili B(E1)=1.445 $e^2 fm^2$, K=1 dalında 15.3218 MeV enerjili B(E1)=1.54 $e^2 fm^2$ dir. Bu değerlerin, restorasyon yapılmasıyla birlikte NTGI'e göre hem K=0 hem K=1 dallarında maximum B(E1) değerleri veren seviyelerin enerjilerinin azaldığı görülmektedir. Bununla birlikte maximum B(E1) değerlerinde de azalma gözlenmiştir. NTGI sonuçları içerisinde bulunan sahte haller restorasyon etkisiyle giderilmiştir. TGI QRPA'da gerçekleştirilen hem öteleme hem de Galileo değismezliğin restorasyonu ile dev rezonansa en büyük katkıyı sağlayan K=1 dalı seviyesinin B(E1) değerini % 48,5 oranında azalma bulunmuştur. Bunla birlikte K=0 dalında bu azalma oranı % 51.8 olmuştur. Goldstone dalının hem öteleme hem de Galileo değişmezlikle yalıtılması, B(E1) gücünün azalmasına, seviyelerin yayılmasına neden olmuştur. Yalnızca Galileo değişmezlik restorasyonu dev rezonansın K=1 dalının enerji ve gücünde önemli bir değişiklik meydana getirmemiş, K=0 dalında enerjide önemli bir değişiklik olmazken B(E1) gücünü azaltmıştır. Yalnızca öteleme değişmezliğin restorasyonu ile hem K=0 hem de K=1 dallarının enerjilerinde küçük oranda, B(E1) güçlerinde ise belirgin bir azalmaya neden olmuştur. Buradan sonuçlar üzerinde belirgin fark oluşturduğu için sahte hallerin valıtılmasının önemli olduğu, daha önce de belirtildiği gibi 1⁻ elektrik dipol geçişlerinde yalnızca öteleme değişmezliğin değil, öteleme değişmezlikle birlikte Galileo değişmezliğin de restore edilmesinin uygun olduğu görülmüştür.

Kırılan simetrili her uyarılmada sıfır enerjili hallerin olduğunu ve restorasyonun bu halleri ortadan kaldırarak B(E1) gücünde ve enerjilerde değişim meydana getirerek dah doğru bir spektrumun elde edilmesini sağladığını yukarıda elde ettiğimiz sonuçlara göre belirtmiştik. Peki B(E1)-enerji spektrumuna karışan sahte hallerin spektrumu nasıldır? 1⁻ uyarılmalarına karışan sahte halleri belirlemek için tek fononlu durumlar ile sahte K^{π}=1⁻1 arasındaki örtüşen integraller (OI) hesaplanmıştır (Kuliev ve ark., 2010). Öteleme ve Galileo değişmez QRPA ile hesaplanan değerlere restorasyonlar yapılmasa dahil olacak sahte haller bulunmuştur. OI'in karelerinin toplama göre yüzdelik değerlerinin enerji spektrumundaki dağılımı ¹⁶⁰Gd çekirdeği için Şekil 5.20.'de verilmiştir.

Şekil 5.20. ¹⁶⁰Gd çekirdeğinin öteleme değişmez modelde hesaplanan 1⁻¹ uyarımlarına karışan sahte hallerin dağılımı.

Şekil 5.20.'den sahte durumların birçok seviyeye yayıldığı ve katkılarının büyük oranda 5 MeV ile 15MeV arasındaki aralıkta yer aldığı bulunmuştur. PDR ve GDR enerji bölgesinde sahte hallerin yoğun bir şekilde bulunması, bu bölgelerde yapılacak çalışmalarda doğru bir enerji spektrumunun elde edilebilmesi için restorasyonlar ile sahte hallerin yalıtılmasının kaçınılmaz bir yaklaşım olduğunu göstermektedir. Enerji spektrumunda 5MeV'den daha az olan 1⁻ durumları için sahte hallerin etkisi küçük çıkmıştır. Bu sonuç. Kuliev ve ark., (2010)'nın ²³⁶U çekirdeği için buldukları sonuç ile örtüşmektedir.

Çift-çift ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin öteleme+Galileo değişmez model verileri kullanılarak eşitlik (4.8) ile dev dipol rezonans için temel büyüklüklerden olan toplam fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçların başka teorik ve deneysel çalışmaların sonuçlarıyla karşılaştırılması Şekil 5.20.'de verilmiştir. Burada, kullanılan ortalama enerji aralığı parametresi (Δ) için 1.0 ile 2.0 arasındaki değerler kullanılmıştır. Karşılaştırma yapılacak olan teorik çalışmada fotoabsorbsiyon tesir kesiti değerlerinin toplamı gösterildiği için Gd çekirdeği izotopları için K=0 ve K=1 dallarının katkıları ayrı ayrı gösterilmemiş, her ikisinin toplamı olan değerler ile şekil elde edilmiştir.

Şekil 5.21. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri ile başka teorik ve deneysel değerlerin karşılaştırılması. (Teori^a: Bu çalışma sonuçları, Teori^b: Oishi ve ark. (2016), Deney^a: Gurevich ve ark., 1981, Deney^b: Berman ve ark., 1969, çalışmalarının sonuçlarını göstermektedir)

Şekil 5.21.'den görüldüğü gibi, TGI QRPA model çerçevesinde elde edilen teorik sonuçlar, diğer teorik ve deneysel çalışmaların sonuçları ile uyum içerisindedir. Çiftçift Gd izotoplarının teorik olarak bulunan tesir kesiti değerlerinin deneysel değerler ile uyum içerisinde çıkması, teorik olarak kullandığımız model ile elde ettiğimiz sonuçların doğruluğunun bir göstergesidir.

Dipol uyarılmalarının elektrik (1⁻) ya da manyetik (1⁺) olarak iki türü bulunmaktadır. İncelediğimiz GDR enerji bölgesinde bunlardan hangisinin daha baskın olduğunu göstermek için ¹⁵⁴Gd çekirdeği seçilmiştir. Şekil 5.22.'de, ¹⁵⁴Gd çekirdeğinin manyetik dipol özellikler için dönme değişmez QRPA (Kuliev ve ark., 2000) ve elektrik dipol özellikler için öteleme ve Galileo değişmez QRPA kullanılarak 8-20 MeV enerji aralığındaki elektrik dipol indirgenmiş geçiş olasılığı B(E1) ve manyetik dipol indirgenmiş geçiş olasılığı B(M1) değerleri hesaplanmış, enerjiye göre dağılımı gösterilmiştir. Elektrik ve manyetik dipol geçişlerinin $[B(\Pi 1)]$ sonuçlarının karşılaştırılmasının kolay yapılabilmesi için geçiş ihtimalleri Bohr magnetonu μ_N^2 (1 μ_N^2 =11,06·10⁻³ e²fm²) birimlerinde verilmiştir.

Şekil 5.22. ¹⁵⁴Gd çekirdeğinin dönme değişmez QRPA ve öteleme-Galileo değişmez QRPA kullanılarak 8-20 MeV aralığında hesaplanan B(Π1) değerlerinin gösterilmesi. Şekilde, Π hem elektrik (Π=E elektrik dipol) hem de manyetik dipolü (Π=M manyetik dipol) μ_N^2 birimlerinde vermektedir. 8-20 MeV aralığında, elektrik dipol K=1 (Turkuaz), elektrik dipol K=0 (yeşil), manyetik dipol K=1 (mavi), manyetik dipol K=0 (kırmızı) dallarının katkıları gösterilmiştir. Solda B(Π1) 200 μ_N^2 , sağda B(Π1) 2 μ_N^2 değerlerine kadar gösterilmiştir. Soldaki grafikte görünmeyen manyetik dipol seviyelerini gösterebilmek için grafik 100 kat büyük ölçekle sağda çizilmiştir.

Şekilden, 8-20 MeV enerji aralığında, dönme değişmez QRPA ve TGI QRPA modellerinin kullanılması sonucunda, 1⁻ durumlarını daha geniş bölgede ve çok yüksek değerlerde yayılmış olduğu, manyetik dipolün bu bölgedeki katkısının yok sayılacak kadar az olduğu görülmektedir. Şekilde, sol tarafta görülmeyen manyetik dipol katkısının (kırmızı elips arasında kalan bölge) incelenmesi için şekil oldukça büyük ölçekte çizilmiştir (sağdaki şekil). Manyetik dipol katkısının 8-11 MeV aralığında oldukça az olduğu bu şekilde görülmüştür. Bu bulgulardan hareketle dipol uyarılmaların enerji ağırlıklı toplam kuralına katkıları incelenmiştir. ¹⁵⁴Gd çekirdeği için 8-20 MeV enerji aralığındaki dipol uyarılmaların K=0 ve K=1 dallarının toplam kurallarına katkıları sırasıyla $I^{\pi}K=1^{-1}$, 1⁺1, 1⁻0, ve 1⁺0 için hesaplanmış ve sonuçlar Şekil 5.23.'de verilmiştir.

Şekil 5.23. ¹⁵⁴Gd çekirdeğinin 8-20 MeV enerji aralığında, elektrik ve manyetik dipol uyarılmalarının, dönme değişmez QRPA ve TGI-QRPA modelleri ile K=0 ve K=1 dalları için hesaplanan enerji ağırlıklı toplam kuralına katkılarının karşılaştırılması

Şekil 5.23.'den görüldüğü üzere dipol toplam kuralına en büyük katkı elektrik K=1 dalından gelmektedir, ardından gelen büyük katkı elektrik K=0 dalındandır. Manyetik K=0 ve K=1 dallarının katkıları grafikte ayırt edilemeyecek kadar küçüktür. ¹⁵⁴Gd izotopu için elektrik ve manyetik dipol K=0 ve K=1 dallarının toplam kuralına katkıları sırasıyla $I^{\pi}K=1^{-1}$, 1⁻⁰, 1⁺¹ ve 1⁺⁰ için %63,7, %36, %0,2, ve %0,1 bulunmuştur. Elde edilen bu sonuçlara göre 8-20 MeV enerji aralığında elektrik

dipol uyarılmalarının baskın olduğu, manyetik dipol uyarılmaların göz ardı edilecek kadar küçük olduğu görülmektedir. Elektrik dipol uyarılmalardan K=0 dalının enerji ağırlıklı toplam kuralına katkısı K=1 dalından oldukça küçüktür. Bu sonuçlardan 8-20 MeV enerji aralığındaki dipol uyarılmalarının elektrik dipol özelliklerinin araştırılmasının uygun olduğu, Şekil 5.6. ve Şekil 5.14.'den elde edilen sonuçlarla birleştirilirse bu enerji bölgesinde elektrik dipol uyarılmalarının izovektör özellikte baskın olduğu görülmüştür. 8-20 MeV enerji aralığında diğer dipol uyarılmaların göz ardı edilecek kadar küçük olduğu, bu bölgedeki özellikler incelenirken elektrik izovektör dev dipol rezonansın göz önünde bulundurulmasının uygun olduğu sonucu çıkmaktadır.

5.4. Çift-Çift ¹⁵⁶⁻¹⁶⁸Dy İzotop Zincirine Ait Bulgular

Dy çekirdeğinin çift çift 156-168 kütle numaralı izotoplarına ait elektriksel dev dipol rezonans özelliklerinin incelenmesinde kullanılan parametreler Tablo 5.9.'da verilmiştir.

Çekirdek	Δ_n (MeV)	λ_n (MeV)	$\Delta_{\rm p}$ (MeV)	λ _p (MeV)	eta_2	δ_2
$^{156}_{66}Dy$	1.17	-8.378	0.98	-5.629	0.289	0.251
$^{158}_{66}Dy$	1.13	-8.088	1.03	-6.229	0.320	0.278
$^{160}_{66}Dy$	1.10	-6.882	0.82	-7.400	0.336	0.293
$^{162}_{66}Dy$	1.09	-7.404	0.78	-7.411	0.344	0.300
$^{164}_{66}Dy$	1.05	-6.994	0.73	-7.995	0.347	0.303
$^{166}_{66}Dy$	1.11	-6.553	0.71	-8.570	0.349	0.305
$^{168}_{66}Dy$	1.01	-6.093	0.95	-9.108	0.350	0.306

Tablo 5.9. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotoplarının süperakışkan model çiftlenim korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2 deformasyon parametreleri

		Ċ	Dteleme +Galileo)		Öteleme			Galileo			Öteleme +Galileo	
		I	Değişmez Model			Değişmez Model			Değişmez Model		Deği	şmez Olmayan Mo	del
А	K	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)
156	0	12.320	151.533	12.299	12.285	151.094	12.298	12.330	152.002	12.327	12.342	152.113	12.320
130	1	21.116	302.509	14.326	21.011	302.343	14.389	21.086	312.102	14.801	21.246	314.303	21.116
150	0	12.881	159.303	12.371	12.856	159.418	12.399	12.867	159.908	12.358	12.861	159.806	12.881
158	1	21.333	312.473	14.647	21.682	318.123	14.672	21.688	324.615	14.967	21.739	325.435	21.333
1(0	0	11.572	139.381	12.044	12.610	150.141	11.906	12.352	147.680	11.956	12.525	149.672	11.572
160	1	18.740	250.515	15.557	17.368	271.695	15.643	17.337	286.671	16.535	17.699	293.315	18.740
162	0	12.440	146.513	11.167	13.179	147.199	11.167	13.060	146.619	11.194	12.991	145.947	12.440
102	1	19.195	271.907	14.165	19.011	272.747	14.346	19.619	299.512	15.266	19.598	298.863	19.195
164	0	12.221	141.335	11.564	12.871	149.341	11.603	12.749	148.184	11.623	12.771	149.088	12.221
104	1	20.458	303.854	14.852	20.459	305.814	14.947	20.491	315.547	15.398	20.207	311.571	20.458
166	0	12.755	146.214	11.463	12.839	147.394	11.4802	12.756	146.383	11.475	12.771	147.171	12.755
100	1	20.441	297.425	14.550	19.052	280.976	14.7471	20.576	313.523	15.234	20.570	313.636	20.441
160	0	13.139	152.264	11.589	12.894	150.179	11.647	13.142	152.601	11.611	13.128	152.564	13.139
108	1	20.916	305.251	14.594	20.749	305.157	14.707	20.894	321.296	15.377	21.022	323.643	20.916

Tablo 5.10. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve kırınımlı modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1,i)\omega_i$, $\overline{\omega}$ değerlerinin karşılaştırılması

Dy çekirdeği izotop zincirinin 8-20 MeV enerji aralığında TGI, GI, TI ve NTGI QRPA yaklaşımlarıyla toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplam kuralı ve ortalama enerji değerleri I^{π}K=1⁻¹ ve I^{π}K=1⁻⁰ dipol uyarılmaları için bulunmuş, Tablo 5.10.'da verilmiştir. Tablo 5.10.'dan, elektrik dipol uyarılmalarının K=1 dalında K=0 dalından fazla olduğu görülmektedir. Bu durum, TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişimi Şekil 5.24.'de verilmiştir.

Şekil 5.24. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş olasılığı değerlerinin karşılaştırılması

Şekil 5.24.'den 8-20 MeV enerji aralığında K=1 dalının K=0 dalından baskın olduğu gözlenmektedir. K=0 ve K=1 dallarının toplam B(E1) değerleri arasındaki oranın Dy izotopları için hesaplanan değerleri Şekil 5.25.'de verilmiştir.

Şekil 5.25. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının ΣB(E1) değerleri oranlarının karşılaştırılması

Şekil 5.25.'den tamamı iyi deforme olan Dy izotop zincirinin K=1 ve K=0 dallarının toplam indirgenmiş geçiş olasılıkları oranlarının yaklaşık 1.5 civarında değiştiği görülmektedir.

Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotoplarının TGI QRPA ile elde edilen B(E1) değerlerinin enerji diyagramında gösterimi Şekil 5.26.'da verilmiştir. Şekilden tüm izotopların spektrumunda, iki pikli yapı görülmektedir. Bu piklerden ilki K=0 dalından gelen ve 10-12 MeV aralığında bulunan bir maksimumdur. Diğeri K=1 dalından gelen ve 16-18 MeV aralığında bulunan maksimumdur. Elde edilen bulgular TGI QRPA ile deforme çekirdekler için karakteristik olan iki pikli yapıya uygun sonuçların elde edildiğini göstermiştir.

Şekil 5.26. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının B(E1) değerlerinin karşılaştırılması

Çift-çift ¹⁵⁶⁻¹⁶⁸Gd izotop zinciri çekirdeklerinin TGI QRPA verileri kullanılarak toplam fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçlarının başka bir teorik çalışma sonuçlarıyla karşılaştırılması Şekil 5.27.'de verilmiştir.

Şekil 5.27. Çift-çift ¹⁵⁶⁻¹⁶⁸Dy izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri ile başka teorik (Oishi ve ark., 2016) sonuçların karşılaştırılması

Burada, kullanılan ortalama enerji aralığı parametresi (Δ) için 1.0 ile 2.0 arasındaki değerler kullanılmıştır. Dy çekirdeği izotopları için K=0 ve K=1 dallarının katkıları gösterilmiş, başka bir teorik çalışmanın değerleri ile karşılaştırılmıştır. Şekilden, ulaşılan sonuçların diğer teorik çalışma ile paralellik gösterdiği, yalnızca K=0 için bu çalışmada bulunan sonuçların küçük bir farkla sola kaydığı görülmektedir.

5.5. Çift-Çift ¹⁸⁰⁻¹⁹⁰W İzotop Zincirine Ait Bulgular

W çekirdeğinin 180-190 kütle numaralı izotoplarına ait elektriksel dev dipol rezonans özelliklerinin incelenmesinde kullanılan parametreler Tablo 5.11.'de verilmiştir.

Çekirdek	Δ _n (MeV)	λ _n (MeV)	Δ _p (MeV)	λ _p (MeV)	eta_2	δ_2
$^{180}_{74}W$	1.12	-7.449	1.09	-5.627	0.275	0.241
$^{182}_{74}W$	1.11	-7.029	1.02	-6.174	0.269	0.236
$^{184}_{74}W$	1.15	-6.670	0.959	-6.720	0.263	0.230
$^{186}_{74}W$	1.14	-6.350	1.00	-7.278	0.255	0.224
$^{188}_{74}W$	0.90	-6.185	0.96	-8.013	0.218	0.191
$^{190}_{74}W$	1.03	-6.068	1.10	-8.682	0.185	0.162

Tablo 5.11. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotoplarının süperakışkan model çiftlenim korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2 deformasyon parametreleri

W çekirdeği izotop zincirinin 8-20 MeV enerji aralığında TGI, GI, TI ve NTGI QRPA yaklaşımlarıyla toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplam kuralı ve ortalama enerji değerleri $I^{\pi}K=1^{-1}$ ve $I^{\pi}K=1^{-0}$ dipol uyarılmaları için bulunmuş, Tablo 5.12.'de verilmiştir.

		Öt	teleme +Galileo	1		Öteleme			Galileo		Ċ	teleme +Galileo	
		D	eğişmez Model		D	eğişmez Model		D	eğişmez Model		Değiş	mez Olmayan M	odel
А	K	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)
180	0	15.188	169.997	11.192	15.318	172.156	11.238	15.003	169.022	11.265	14.956	169.227	11.314
100	1	21.832	304.611	13.951	21.775	302.640	13.897	21.766	322.759	14.828	22.073	330.292	14.963
182	0	15.086	166.573	11.041	15.106	167.068	11.059	14.784	164.153	11.103	14.713	163.925	11.140
102	1	21.654	296.016	13.670	21.414	291.931	13.632	21.809	320.377	14.689	22.064	326.068	14.778
18/	0	15.054	165.728	11.008	15.173	166.696	10.986	14.670	162.565	11.081	14.694	162.851	11.082
104	1	22.720	313.565	13.800	22.312	307.941	13.801	22.821	342.597	15.011	23.169	349.301	15.076
186	0	14.402	165.234	11.472	14.537	166.363	11.443	14.183	163.257	11.510	14.221	164.075	11.537
100	1	21.971	311.991	14.199	21.332	302.266	14.169	21.718	341.112	15.706	22.119	349.958	15.821
199	0	14.066	157.291	11.182	13.793	156.104	11.317	13.901	156.116	11.230	13.940	157.601	11.305
100	1	21.566	293.871	13.626	21.229	288.026	13.567	21.216	325.057	15.320	21.937	339.803	15.489
100	0	14.052	159.875	11.377	14.135	161.900	11.453	13.825	157.811	11.414	14.064	161.737	11.499
190	1	21.296	283.560	13.314	21.531	286.017	13.283	22.055	338.075	15.328	22.279	346.559	15.555

Tablo 5.12. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve öteleme+Galileo değişmez olmayan modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1,i)\omega_i$, $\overline{\omega}$ değerlerinin karşılaştırılması.

Tablo 5.12.'den görüldüğü üzere elektrik dipol uyarılmaları K=1 dalında K=0 dalından fazladır. Bu durum, her iki dal için TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişim grafiği ile aşağıda ayrıca verilmiştir.

Şekil 5.28. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş olasılığı değerlerinin karşılaştırılması

Şekil 5.28.'den W izotop zincirinde GDR enerji bölgesinde K=1 dalının K=0 dalına göre daha baskın olduğu görülmektedir. K=0 dalında deformasyonun azalmasıyla birlikte indirgenmiş geçiş olasılığı değerinde de azalma gözlenmiştir. K=0 ve K=1 dallarının toplam B(E1) değerleri arasındaki oranın W izotopları için hesaplanan değerleri Şekil 5.29.'da verilmiştir.

Şekil 5.29. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının ΣB(E1) değerleri oranlarının karşılaştırılması

Şekil 5.29.'den deforme olan W izotop zincirinin K=1 ve K=0 dallarının toplam indirgenmiş geçiş olasılıkları oranlarının yaklaşık 1.5 civarında değiştiği görülmektedir.

Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin TGI verileri kullanılarak toplam fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçların yapılan diğer çalışmaların sonuçlarıyla karşılaştırılması Şekil 5.30.'da verilmiştir. Burada, kullanılan ortalama enerji aralığı parametresi (Δ) için 1.0 ile 2.0 arasındaki değerler kullanılmıştır. W çekirdeği izotopları için K=0 ve K=1 dallarının katkıları ayrı ayrı gösterilmiş, deneysel verilerle karşılaştırılmıştır.

Şekil 5.30. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI QRPA ile elde edilen teorik değerleri ile deneysel (Deney^a: Gurevich ve ark., 1981; Deney^b: Berman ve ark., 1969) verilerin karşılaştırılması.

Şekil 5.30.'dan ulaşılan sonuçların deneysel veriler ile paralellik gösterdiği, K=0 için bu çalışmada bulunan sonuçların küçük bir farkla sola kaydığı görülmektedir.

Parçacık seviyeleri arasındaki elektrik indirgenmiş geçiş olasılıklarıi Bölüm 2'de verilen dalga fonksiyonu kullanılarak Nilsson (1955) tarafından hesaplanmıştır. Buna göre tek parçacık seviyesi $(I_i K_i^{\pi_i} [N_i n_{zi} \Lambda_i])$ ve $(I_f K_f^{\pi_i} [N_f n_{zf} \Lambda_f])$ arasındaki

indirgenmiş geçiş olasılıkları iki tek parçacık enerji seviyesinin asimptotik kuantum numaraları yardımıyla bulunabilmektedir. Buradan görüldüğü üzere her tek parçacık seviyesi karakterizasyonu $[Nn_z\Lambda]\Sigma$ kuantum numaraları seti ile olmaktadır. Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zincirinin deformasyonu en büyük (¹⁸⁰W) ve en küçük (¹⁹⁰W) izotoplarının, E1 uyarılmalarının K=0 ve K=1 dallarına ait en büyük katkıyı yapan seviyelerin enerjileri, indirgenmiş geçiş olasılıkları, tek parçacık asimptotik Nilsson kuantum sayıları $[Nn_z\Lambda]\Sigma$ ve kuaziparçacık genlikleri (ψ) Tablo 5.13.'de verilmiştir.

Tablo 5.13. Çift-çift ^{180,190}W çekirdeklerinin 1⁻⁰ ve 1⁻¹ uyarılmalarının, TGI QRPA ile hesaplanan en büyük B(E1) değerlerinin elektrik dipol karakteristiklerinin (enerji, B(E1), Nilsson kuantum sayıları ve genlik ([$Nn_z\Lambda\Sigma$], $\psi_{ss'}^i$) değeri) karşılaştırılması. Burada, fonon dalga fonksiyonuna katkısı %2'den daha büyük olan iki kuaziparçacık seviyelerinin yapıları ($\psi \ge 0,2$) verilmiştir.

Çekirdek	Seviye	E (MeV)	B(E1) (e ² fm ²)	Seviye Yapısı $[Nn_z\Lambda]\Sigma$	Genlik ψ
				nn 550↑-631↓	-0.5468
				nn 532↑-642↑	0.2119
	1-0	11.05	1.70	nn 752↑-633↓	-0.3546
				pp 550↑-651↓	-0.5199
^{180}W				pp 530 ↑-66 0↑	0.2601
-				nn 532↓-633↓	0.2678
				nn 422↑-514↓	-0.4209
	1-1	15.47	3.648	nn 404↓-505↓	-0.3174
				pp 523↑-613↓	-0.6326
				nn 523↓-633↓	-0.5901
				pp 411↑-512↑	0.3229
	1-0	10.582	2.046	pp 301↓-411↓	0.2786
				pp 301↑-402↓	0.2165
^{190}W				pp 303↓-402↑	-0.3622
-				nn 532↓-633↓	0.2940
	1-1	15.020	2 700	pp 651↓-532↓	-0.4667
	1-1	15.028	2.700	pp 541↓-642↓	0.3891
				pp 631↑-752↑	-0.2215

Buna göre Tablo 5.13'den, her iki çekirdek için K=0 ve K=1 dallarında en büyük B(E1) değerini veren seviyelerin çok sayıda iki kuaziparçacık (nn-pp) seviyesine

sahip olduğu, burada çok fazla yer kaplamaması için yalnızca en büyük genlikteki değerlerinin verildiği, görülmektedir. Deforme olmuş çekirdeklerdeki tek parçacık elektromanyetik geçişleri için Mottelson ve Nilsson (1959) tarafından verilen asimptotik kuantum sayıları seçim kurallarına uyarak iki kuaziparçacık seviyeleri, elde edilmiştir. İki kuaziparçacık yapısı (nötron-nötron ya da proton-proton çiftlenimleri-nn-pp) herhangi bir çekirdeğin enerji spektrumunda nasıl bir dağılım göstermektedir? Bunu belirlemek için her iki çekirdeğin K=0 ve K=1 dallarının TGI QRPA model hesaplamaları ile elde edilen seviyelerin nn-pp yapıları 2-4 MeV, 4-8 MeV ve 8-20 MeV enerji aralıklarında incelenmiştir. W çekirdeğinin 180 ve 190 kütle numaralı izotopları için iki kuaziparçacık yapıları ile ilgili sonuçlar Şekil 5.31.-Şekil 5.32.'de verilmiştir:

Şekil 5.31. ¹⁸⁰W izotopu için TGI QRPA model ile hesaplanan iki kuaziparçacık seviyelerinin katkısının 2-4 MeV, 4-8 MeV ve 8-20 MeV enerji aralıklarındaki dağılımı

Şekil 5.32. ¹⁹⁰W izotopu için TGI QRPA model ile hesaplanan iki kuaziparçacık seviyelerinin katkısının 2-4 MeV, 4-8 MeV ve 8-20 MeV enerji aralıklarındaki dağılımı

Sekil 5.31. ve Sekil 5.32.'den, ¹⁸⁰W ve ¹⁹⁰W cekirdeklerinin hem K=0 hem de K=1 dalları için 2-4 MeV enerji aralığında, herhangi bir enerji seviyesinde tek iki kuaziparçacık seviyesi bulunduğu görülmektedir. İki kuaziparçacık seviyesinin genliğinin (ψ) 1 değerini almış olması orada tek iki kuaziparçacık olduğunu başka bir seviyenin olamayacağını göstermektedir. Kuaziparçacık seviyesinin nötronnötron ya da proton-proton katkılı olma durumu incelendiğinde ise bu bölgede her ikisinin de bulunma sayılarının yaklaşık olarak aynı olduğu görülmektedir. Bu özellikler 4-8 MeV enerji aralığında da benzerlik göstermektedir. Yalnızca deformasyon parametresi daha düşük olan ¹⁹⁰W çekirdeğinin enerji spektrumunda bulunan 8 MeV civarındaki birkaç enerji seviyesi birden çok iki kuaziparçacık seviyesinden oluşmaktadır. Genellikle bu enerji aralığında da bulunan her bir enerji seviyesi tek iki kuaziparçacık yapısına sahiptir ve bu yapıların nn ya da pp olmaları yaklaşık olarak aynıdır. Ancak 8-20 MeV enerji aralığına gelindiğinde diğer enerji aralıklarında görülen yapı farklılaşmaktadır. Burada, enerji seviyeleri pek çok iki kuaziparçacık seviyesinden meydana gelmektedir. Bu seviyelerin nn ya da pp sayılarında önemli bir farklılık bulunmamaktadır. 8-20 MeV enerji aralığındaki enerji

seviyelerinin çok sayıda iki kuaziparçacık konfigürasyonuna sahip olmaları, bu bölgenin güçlü kolektif yapıda olduğunu göstermektedir.

5.6. Çift-Çift ²³⁶⁻²³⁸U İzotop Zincirine Ait Bulgular

U çekirdeğinin 236-238 kütle numaralı izotoplarına ait elektriksel dev dipol rezonans özelliklerinin incelenmesinde kullanılan parametreler Tablo 5.14.'te verilmiştir.

Tablo 5.14. Çift-çift ²³⁶⁻²³⁸U izotoplarının süperakışkan model çiftlenim korelasyonu parametresi değerleri ile K=0 ve K=1 dalları için β_2 , δ_2 deformasyon parametreleri

Çekirdek	Δ _n (MeV)	λ _n (MeV)	Δ _p (MeV)	λ _p (MeV)	β_2	δ_2
$^{236}_{92}U$	0.66	-6.307	0.86	-6.317	0.2821	0.250
$^{238}_{92}U$	0.56	-6.096	0.86	-6.712	0.2863	0.254

U çekirdeği izotoplarının 8-20 MeV enerji aralığında TGI, GI, TI ve NTGI QRPA yaklaşımlarıyla toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplam kuralı ve ortalama enerji değerleri I^{π}K=1⁻¹ ve I^{π}K=1⁻⁰ dipol uyarılmaları için bulunmuş, Tablo 5.15.'de verilmiştir

A	K	Öt De	eleme +Galileo eğişmez Model		Öteleme Değişmez Model			Galileo Değişmez Model			Öteleme +Galileo Değişmez Olmayan Model		
		$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV})$	ω (MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV})$	ω (MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV})$	ω (MeV)	$\frac{\sum B(E1)}{(e^2 fm^2)}$	$\frac{\sum B(E1)\omega}{(e^2 fm^2 MeV)}$	(MeV)
	0	13.8	109.9	7.9	13.9	112.2	8.0	16.8	142.1	8.5	17.3	149.6	8.6
236	1	32.6	372.8	11.4	32.3	374.4	11.6	32.6	374.6	11.5	32.8	3796	11.6
	0	6.6	51.9	7.9	6.5	52.1	7.9	14.6	120.6	8.3	5.5	134.0	8.6
238	1	32.1	363.5	11.3	32.6	374.3	11.5	32.1	364.3	11.4	32.7	374.8	11.5

Tablo 5.15. Çift-çift ²³⁶⁻²³⁸U izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgelerinde Öteleme+Galileo değişmez, öteleme değişmez, Galileo değişmez ve Öteleme+Galileo değişmez olmayan modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)$, $\sum B(E1)$, $\overline{\omega}$ değerlerinin karşılaştırılması.

Tablo 5.15.'den görüldüğü üzere elektrik dipol uyarılmaları K=1 dalında K=0 dalından oldukça fazladır. Bu durum, her iki dal için TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişim grafiği ile aşağıda ayrıca verilmiştir.

Şekil 5.33. Çift-çift ²³⁶⁻²³⁸U izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş olasılığı değerlerinin karşılaştırılması

Şekil 5.33.'den U izotoplarında GDR enerji bölgesinde K=1 dalının K=0 dalına göre daha baskın olduğu görülmektedir. K=0 dalında deformasyonun artmasıyla birlikte indirgenmiş geçiş olasılığı değerinde de azalma gözlenmiştir.

Çift-çift ²³⁶⁻²³⁸U izotoplarının TGI verileri kullanılarak toplam fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçların yapılan diğer çalışmaların sonuçlarıyla karşılaştırılması Şekil 5.34.'de verilmiştir. Burada, kullanılan ortalama enerji aralığı parametresi (Δ) için 1.0 ile 2.0 arasındaki değerler kullanılmıştır. U çekirdeği izotopları için K=0 ve K=1 dallarının katkıları ayrı ayrı gösterilmiş olup, deneysel verilerle karşılaştırılmıştır.

Şekil 5.34. Çift-çift ^{236,238} U izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI QRPA ile elde edilen teorik değerleri ve deneysel (Deney^a: Caldwell ve ark., 1980; Deney^b: Guverich ve ark., 1974; Deney^c: Veyssiere ve ark., 1973) verilerin karşılaştırılması.

Şekil 5.34.'den TGI QRPA ile ulaşılan teorik sonuçların deneysel verilerle paralellik gösterdiği görülmektedir.

Dipol fotoabsorbsiyon tesir kesitlerinin, tüm son haller üzerinden toplamlarının alınıp, enerji üzerinden integre edilmesiyle elde edilen, enerji ağırlıklı toplam değerleri yani integre edilmiş tesir kesitleri GDR'nin araştırılan bir diğer nükleer özellikleridir. ¹⁵⁶Sm ve ¹⁶⁴Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle (Gurevich ve ark., 1981) karşılaştırılması Tablo 5.16.'da verilmiştir.

Tablo 5.16. ¹⁵⁴Sm ve ¹⁵⁶Gd izotoplarına ait integre edilmiş tesir kesiti (σ_0 , σ_{-1} , σ_{-2}) değerlerinin TGI QRPA ve deneysel sonuçlarının karşılaştırılması

А		σ_0 (MeV.b)				σ.	-1 (mb)		σ_{-2} (MeV ⁻¹ mb)			
Α	K=0	K=1	Toplam	Deney	K=0	K=1	Toplam	Deney	K=0	K=1	Toplam	Deney
¹⁵⁴ Sm	0.57	1.20	1.77	1.94±0.06	49.73	79.88	129.61	117±3.5	4.48	5.46	9.94	9.1±0.3
¹⁵⁶ Gd	0.68	1.35	2.03	2.07±0.07	56	97	153	143±4.6	4.6	6.6	11.2	10.5±0.4

Tablo 5.16.'dan teorik olarak elde edilen integre edilmiş σ_{0} , σ_{-1} ve σ_{-2} tesir kesiti değerlerinin deneysel sonuçlara yakın değerler verdiği görülmüştür. Her iki çekirdek için bu karşılaştırma Şekil 5.35-5.37. ile gösterilmiştir.

Şekil 5.35. ¹⁵⁶Sm ve ¹⁶⁴Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan σ_0 integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle (Gurevich ve ark., 1981) karşılaştırılması

Şekil 5.35.'den K=0 dalına ait $\boldsymbol{\sigma}_0$ değerinin K=1 dalından daha küçük olduğu görülmektedir. ¹⁶⁴Gd çekirdeği için teorik ve deneysel veri çakışırken ¹⁵⁴Sm için teorik sonuç deneysel veriye yakın bir değer almıştır.

Şekil 5.36. ¹⁵⁶Sm ve ¹⁶⁴Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan σ_{-1} integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle (Gurevich ve ark., 1981) karşılaştırılması

Şekil 5.36. incelendiğinde, σ_0 'da olduğu gibi σ_{-1} integre edilmiş tesir kesitinin K=1 dalına ait değeri K=0 dalına ait olanından daha büyüktür. Her iki çekirdek için de teorik sonuçlar deneysel veriye yakın değerler almıştır.

Şekil 5.37. ¹⁵⁶Sm ve ¹⁶⁴Gd izotopları için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan σ_{-2} integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle (Gurevich ve ark., 1981) karşılaştırılması

Şekil 5.37.'den, integre edilmiş σ_{-2} tesir kesitinin K=1 dalına ait değerinin K=0 dalından büyük olduğu ve iki çekirdek için de teorik sonuçların deneysel veriye yakın değerler aldığı görülmüştür.

Çalışmamızda incelediğimiz 150<A<190 bölgesindeki izotopların K=0 ve K=1 dallarının $\sum B(E1)$ değerleri ile ilgili bir sistematik bir yönelimin olup olmadığının belirlemek için Şekil 5.38. verilmiştir.

Şekil 5.38. ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁰Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W izotoplarının K=0 ve K=1 dallarının TGI QRPA ile hesaplanan $\sum B(E1)$ değerlerinin karşılaştırılması

Şekile göre, 150<A<190 deformasyon bölgesinde bulunan çift çift izotopların 8-20 MeV enerji aralığında toplam elektrik dipol indirgenmiş geçiş olasılığı değerlerinin K=0 dalında 9-15 e²fm², K=1 dalında yaklaşık 18-24 e²fm² aralıklarında değiştiği görülmektedir.

GDR enerji bölgesindeki özellikleri incelenen tüm izotopların K=0 ve K=1 dallarından gelen B(E1)- ω grafiğinde yer alan B(E1)'in maksimum değerlerinin değişimi Şekil 5.39.'da verilmiştir.

Şekil 5 39. ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁰Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W ve ²³⁶⁻²³⁸U izotoplarının K=0 ve K=1 dallarının TGI QRPA ile hesaplanan maksimum B(E1) değerlerinin karşılaştırılması

Şekil 5.39'dan, 150<A<190 ve A>220 deformasyon bölgelerinde bulunan çift çift izotopların 8-20 MeV enerji aralığında elektrik dipol indirgenmiş geçiş olasılığı maksimum pik değerlerinin K=0 dalında yaklaşık 1-3 e²fm², K=1 dalında yaklaşık 1.5-7 e²fm² aralığında değiştiği görülmektedir.

Çalışmamızda incelediğimiz bir diğer büyüklük enerji ağırlıklı ve enerji ağırlıksız elektrik dipol radyasyon kalınlığıdır. 150<A<190 bölgesindeki tüm izotoplara ait değerler Şekil 5.40.'ta verilmiştir.

Şekil 5.40. ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁰Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W izotoplarının K=0 ve K=1 dallarının TGI QRPA ile hesaplanan enerji ağırlıksız ve enerji ağırlıklı radyasyon kalınlığı Γ_0^{red} ve Γ_0 değerlerinin karşılaştırılması

Şekilden, enerji ağırlıksız radyasyon kalınlığının K=0 dalı için 3-5 10^3 meV/MeV³, K=1 dalı için 6-8 10^3 meV/MeV³ arasında değiştiği, enerji ağırlıklı radyasyon kalınlığının K=0 için 5-10 10^6 meV, K=1 dalı için 20-30 10^6 meV değerleri arasında değiştiği bulunmuştur.

150<A<190 arasında bulunan deforma çekirdekler için bulunan K=1 ve K= dallarının $\sum_{B(E1)}$ değerlerinin oranlarının değişiminin teorik (içi dolu daire) ve eşitlik (4.11) ile hesaplanan değerlerinin (içi boş çember) değişimi Şekil 5.41'de verilmiştir.

Şekil 5.41 Deforme ¹⁴⁴⁻¹⁵²Nd, ¹⁴⁶⁻¹⁵⁰Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının ΣB(E1) değerleri oranlarının karşılaştırılması

Şekil 5.41'den deforme ¹⁴⁴⁻¹⁵²Nd, ¹⁴⁶⁻¹⁵⁰Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W izotopları için teorik olarak bulunan sonuçları ile formülden elde edilen sonuçlar arasında benzerlik bulunduğu görülmektedir.

BÖLÜM 6. TARTIŞMA VE ÖNERİLER

Bu çalışmada, çekirdeğin kolektif elektrik dev dipol rezonansın 8-20 MeV enerji bölgesindeki özelliklerinin arastırılmasında mikroskobik QRPA modeli kullanılmıştır. Bu modelin temelinde kullanılan HFB yaklaşımdan kaynaklanan, ortalama alanpotansiyeli ile ilişkili, Hamiltoniyenin öteleme ve Galileo simetri kırılmalarını restore etmek ve simetri kırılmaları sonucunda ortaya çıkan sahte halleri ayırmak için Kuliev ve ark. (2000) tarafından geliştirdiği yöntem kullanılmıştır. Buna göre, ortalama alan potansiyelinde simetri kırınımlarına neden olan izoskaler ve izovektör terimlerin restorasyonu için, kolektif uyarılmaları meydana getiren etkin kuvvetler, ayrılabilir şekilde ortalama alan ile özuyumlu olarak seçilmiştir. Bu şekilde serbest parametre içermeyen, öteleme ve Galileo değişmezliğin restore edildiği bir model geliştirilmiştir (TGI QRPA). Geliştirilen model ile elde edilen sonuçlar, restore edilmemiş hamiltoniyen kullanılan model (NGI QRPA), yalnızca Galileo değişmezliğin restore edildiği model (GI QRPA), yalnızca öteleme değişmezliğin restore edildiği model (TI QRPA) sonuçları ve deneysel çalışma verileriyle karşılaştırılmıştır. Yapılan karşılaştırmalar öteleme ve Galileo değişmez hamiltoniyen kullanılarak geliştirilen modelin çift-çift deforme çekirdeklerin elektrik dipol uyarılmaları hakkında güvenilir sonuçlar verdiğini göstermiştir. Enerji spektrumunda yer alan sadece sıfir enerjili sahte hallerin bulunduğu spektrum, spektruma karışan sahte hallerin 8-20 MeV aralığında ne kadar fazla olduğunu, hem öteleme hem de Galileo değişmezliğin restore edilmesinin (TGI QRPA) gerekli olduğunu ve TGI QRPA ile elde edilen sonuçların güvenilirliğinin bir kanıtı olduğunu göstermektedir.

8-20 MeV enerji aralığında oluşan dev dipol uyarılmaların elektrik ve manyetik karakterleri dönme değişmez QRPA ile öteleme ve Galileo değişmez QRPA model çerçevesinde incelenmiştir. K=0 ve K=1 dalları için enerji ağırlıklı toplam kuralına

katkıları araştırılmış olan bu modlardan GDR enerji bölgesinde baskın olanının elektrik karakterli olduğu, manyetik dipolün ihmal edilecek kadar küçük olduğu görülmüştür. Bu enerji bölgesindeki uyarılmaların izovektör katkılı olması ile iceleme yaptığımız bölgenin, literatürde bilinen izovektör GDR (IVGDR) olduğu kendi kullandığımız teorik yaklaşımla da elde edilmiştir.

Öteleme ve Galileo değişmezlik yaklaşımıyla Goldstone dalının yalıtıldığı teori cercevesinde cift-cift deforme Neodmiyum, Samaryum, Gadalinyum, Disporsiyum, Wolfram ve Uranyum izotop zinciri çekirdeklerinin özellikleri incelenmiştir. Enerjisi sıfır olan Goldstone dalının yalıtılmasının elektrik dipol modunun parçalanmasını arttırdığı, $I^{\pi} = 1^{-}$ seviyelerinin yarılmasına neden olduğu görülmüştür. Yapılan hesaplamalar kırınımlı hamiltoniyenler kullanılan modellerin toplam dipol indirgenmiş geçiş olasılığı güçlerinin restorasyonlu model sonuçlarından fazla olduğunu ve B(E1) gücünün dağılımının değiştiğini göstermiştir. Hamiltoniyende eş zamanlı olarak üç etkileşmenin (h₀, h_Δ, W_{dip}) hesaba katılması sonucu oluşan toplam B(E1) gücünün onların katkılarının ayrı-ayrı hesaplanan değerlerinin toplamından daha küçük olması bu etkileşmeler arasındaki girişimin önemini göstermiştir. Etkin h_0 ve h_{Δ} restorasyon kuvvetleri E1 geçişlerinin enerji ağırlıklı toplam kuralının kuaziparçacık modelin öngördüğü ve deformasyonun sorumlu olduğu teriminin katkısını hem K=0 hem de K=1 dalı için azalttığı görülmüştür. Bu durum dipol titreşimlerinin incelenmesinde güvenilir sonuçlar elde etmek için Öteleme değişmez hamiltoniyenlerin, Galileo değişmez ortalama alan potansiyellerinin kullanılmasının ve Goldstone dalının yalıtılmasının ne kadar önemli olduğunu göstermiştir. Hesaplamalar, Galileo değişmez ciftlenim etkileşimlerinin, dev rezonansın maksimum enerjisini veya integre edilmiş tesir kesitlerini fark edilir şekilde etkilemediğini göstermiştir (Gabrakov ve ark., 1977).

Teori, incelenen deforme çekirdekler için 11-12 MeV ve 15-16 MeV enerji aralığında iki tane, geçiş çekirdekleri için 14-16 MeV enerji aralığında bir tane güçlü 1⁻ seviyesinin varlığını göstermektedir. Seviyelerin spektrumdaki varlıklarının foton saçılma deneylerinde de gözlenmesi bu durumların geçiş ve deforme çekirdeklerin karakteristik özellikleri olduğunu göstermiştir. Tüm incelenen çekirdeklerde yüksek
enerjili dipol uyarılmalarının çoğunlukla $\Delta K=1$ karakterli olduğu tespit edilmiştir. Deneysel olarak bilinen iyi deforme çekirdeklerde iki pikli hörgüçlü yapının ve geçiş çekirdekleri için tek pikli yapının oluştuğu teorik hesaplamalar sonucu incelenen çekirdekler içinde bulunan bir sonuç olmuştur.

K=1 ve K=0 dallarının toplam B(E1) değerlerinin oranlarının iyi deforme çekirdeklerde yaklaşık 1,5 değeri civarında değiştiği, deforme çekirdeklerden küresel cekirdeklere doğru gidildikçe bu oranın 2 civarında değiştiği görülmüştür. Düşük enerji seviyelerinde 10-20.10⁻³e²fm² olduğu bilinen indirgenmiş geçiş olasılığının, GDR enerji bölgesinde 150<A<190 cekirdekleri icin K=0 dalı icin 10-15 e²fm², K=1 dalı için 18-24 e²fm² değerlerinde olduğu bulunmuştur. 150<A<190 deforme bölgesindeki çekirdeklerde GDR bölgesinde K=0 ve K=1 dallarından gelen birer maksimum B(E1) değeri ile B(E1)-w grafiğinde iki baskın pikli yapı gözlenmiştir. Bu piklerden K=0 dalından gelenlerin 1-3 e²fm², K=1 dalından gelenlerin 1,5-6 e²fm² değerleri arasında değiştiği görülmüştür. Elektrik dipol fotoabsorbsiyon tesir kesitienerji grafiklerinin karakteristik büyüklüklerine ait deneysel verileri açıklamak için teorimiz başarılı sonuçlar vermiştir. Enerji ağırlıklı ve enerji ağırlıksız toplam radyasyon kalınlıkları değerleri 8-20MeV aralığındaki yaklaşık değerleri verilerek gelecekte vapılacak deneysel ve teorik çalışmalar için öngörü oluşturulmuştur. Enerji seviyelerinin asimptotik kuantum sayıları ve genliklerinin hesaplanması ile elde edilen sonuçlar ile GDR için bilinen 8-20 MeV enerji aralığındaki uyarılmaların güçlü kollektifliği bu çalışmada gösterilmiştir.

Sonuç olarak, dev dipol rezonans uyarılmalarının deneysel çalışmalarda gözlemlenen seviyelerin yorumlaması için teorik olarak incelenmesi bu çalışmanın özgün yanını oluşturmaktadır. Teorik çalışma öngörülerinin deneysel çalışma yapanlara motivasyon oluşturarak, yapılacak yeni çalışmalara ve yeni teknolojilerin geliştirilmesine olanak sağladığı bilinmektedir. Bu çalışmanın da bu tür gelişmelere katkı sağlayacağı düşünülmektedir.

Bu tez çalışmasının temelini oluşturan çalışmalar, TFD 33. Uluslararası Fizik Kongresi, 2017; 4th International Conference on Computational and Experimental

Science and Engineering (ICCESEN 2017); International Conference on Mathematics and Engineering ICOME 2017; DAKAM 2017 International Congress on Engineering, Technology and Natural Sciences; 16th International Balkan Workshop on Applied Physics and Materials Science IBWAP 2016 konferanslarında sunulmuş, ACTA PHYSICA POLONICA A (2016) dergisinde yayınlanmıştır.

KAYNAKLAR

- Adekola, A. S., Angell, C. T., Hammond, S. L., Hill, A., Howell, C. R., Karwowski, H. J., Kelley, J. H., Kwan, E. 2011. Discovery of Low-Lying E1 and M1 Strengths in 232Th. Phys. Rev. C. 83: 034615.
- Arnould, M., Goriely, S., Takahashi, K. 2007. The reprocess of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450: 97.
- Au, J. W., Burton, G. R., Brion, C. E. 1997. Quantitative Spectroscopic Studies of The Valence-Shell Electronic Excitation of Freons (CFCl3, CF2Cl2, CF3Cl, and CF4) in The VUV and Soft X-Ray Regions, Chem. Phys. 221: 151.
- Avdeenkov, A. V., Kamerdzhiev, S. P. 2008. Pygme dipole resonance in nuclei. Phys. Atom. Nucl. 72: 1332.
- Bagchi, S. 2015. Study of compression modes in ⁵⁶Ni using an active target (Groningen): University of Groningen.
- Baldwin, G. C., Klaiber, G. S. 1947. Photo-fission in heavy elements. Phys.Rev. 71: 3-10.
- Baranger, M., Vogt, E., 1968. Advances in Nuclear Physics. ISBN 978-1-4684-8345-1, ISBN 978-1-4684-8343-7 (eBook).
- Bardeen, J., Cooper, L. N., Schrieffer, J. R. 1957. Theory of Superconductivity. Phys. Rev. 108: 1175.
- Bergere, R. 1977. Photonuclear Reactions I. Lect. Notes Phys., 61, 1-222.
- Berman, B. L. Kelly, M. A. Bramblett, R. L. Caldwell, J. T. Davis, H. S. Fultz, S. C. 1969. Giant Resonance in deformed nuclei: photoneutron cross sections for ¹⁵³Eu, ¹⁶⁰Gd, ¹⁶⁵Ho and ¹⁸⁶W. Phys. Rev. 185 (4), 1576-1590.
- Berman, B. L., Fultz, S. C. 1975. Measurements of The Giant Dipole Resonance with Monoenergetic Photons. Rev. Mod. Phys. 47: 713.
- Bertrand, F. E. 1981. Giant Multipole Resonances Perspectives After Ten Years. Nucl. Phys. A 354(1-2): 129-156.
- Bethe, H. A., Bacher, R. F. 1935. Nuclear physics A. Stationary state on nuclei. Rev. Mod. Phys. 8: 82.
- Blaizot, J. P. 1980. Nuclear Compressibilities. Phys. Rep. 64: 171.
- Blaizot, J. P., Berger, J. F., Decharge, J., Girod, M. 1995. Miscorscopic and Macroscopic Determinations of Nuclear Compressibility. Nucl. Phys. A591: 435.

- Bogoliubov, N. N, Tolmachev, V. V., Shirkov, D. V. 1958. New Method in The Theory of Superconductivity, Publ. Dept. USSR Acad. of Science, Moscow, Consultants Bureau, Chapman and Hall, New York - London, 1959, Vol.YII.
- Bogolyubov, N. N. 1958. A New Method in The Theory of Superconductivity. Sov. Phys. JETP 7: 41.
- Bohle, D., Richter, A., Steffen, W., Dieperink, A. E. L., Iudice, N. Lo, Palumbo, F., Scholten, O. 1984. New magnetic dipole excitation mode studied in the heavy deformed nucleus 156Gd by inelastic electron scattering. Phys. Lett. 137B: 27.
- Bohm, D., Pines, D. 1953. A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas. Phys. Rev. 92, 609.
- Bohr, A., Mottelson, B. R. 1952. Physica 18, 1066 (VI B, VI C İi, VII D İ)
- Bohr, A., Mottelson, B. R. 1953. Collective and Indiviual-Particle Aspects of Nuclear. Structure. Mathematisk-fysiske meddelelser. 27: 16.
- Bohr, A., Mottelson, B. R. 1997. Single-Particle Motion V-I, World Scientific, 1-246.
- Bohr, A., Mottelson, B. R. 1998. Nuclear Deformations V-II, World Scientific, 1-386.
- Bortignon, P. F. 2003. "A Review of: "Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation"", Nuclear Physics News, 13 (3), 29-30.
- Bortignon, P. F., Barranco F., Broglia R. A., Cow, G., Gori, G., Vigezzid, E. 2003. Collective aspects of pairing interaction in nuclei. Nuclear Physics A722 379-382.
- Bortignon, P. F., Bracco, A., Broglia, R. A. 1998. Giant Resonance Nuclear Structure at Finite Temperature, Harwood Academic, 1-290.
- Bothe, W., Günter, W. 1937. Atommumwandlungen durchy gamma-strahlen. Z. Phys. 106: 236.
- Bowman, C. D., Auchampaugh, G.F., Fultz, S.C. 1964. Photodisintegration of U235. Phys. Rev. 133: B676.
- Brown, G. E., Bolsterli, M. 1959. Dipole state in nuclei. Phys. Rev. Lett. 3: 472
- Caldwell J. T., Dowdy, E. J., Bcrman, B. L., Alvarez, R. A., Meyer, P. 1980. Giant resonance for the actinide nuclei: Photoneutron and photofission cross sections for ²³³U, ²³⁶U ²³⁸U and ²³²Th. Physical Review C, 21(4), 1215-1231.
- Cannata, F., Uberall, H. 1980. Giant Resonance Phenomena in Intermediate-Energy Nuclear Reactions, Springer-Verlag, 1-120.
- Carbone, A. Colo, G., Bracco, A., Cao, L-G., Bortignon P. F., Camera, F., Wieland, O. (2010). Constraints on The Symmetry Energy and on Neutron Skins from The Pygmy Resonances in 68Ni and 132Sn. Phys. Rev. C 81 041301.
- Carlos, P., Bergere, R., Beil, H., Lepretre, A., Veyssiere, A., 1974. A Semi-Phenomenological Description of The Giant Dipole Resonance Width. Nucl. Phys., A219, 61.

- Ceruti, S. 2014. Test of isospin symmetry via giant dipole resonance gamma decay. Milano Üniversitesi, Fizik Bölümü, Doktora Tezi.
- Chomaz, P. 1997. Collectives excitations in nuclei. Ecole thematique. Ecole Joliot Curie "Structure nucleaire: un nouvel horizon" Maubuisson, (France), du 8-13 septembre 1997:16eme session <cel-00652714>.
- Civitarese, O., Faessler, A., Licciardo, M. C. 1992. Symmetry breaking of the Galilean invariance in superfluid nuclei and its connection with quadrupole pairing interactions. Nucl. Phys. A542: 221.
- Co' G., De Donno, V., Anguiano, M., Lallena, A. M. 2013.Pygmy and Giant Electric Dipole Responses of Medium-Heavy Nuclei in a Self-Consistent Random Phase Approximation Approach with Finite-range Interaction. Phys. Rev. C 87 034305.
- Cottle, P. D., Bromley, D. A. 1986. Possible unified interpretation of low-lying parity states in lanthanide and actinice regions. Phys. Lett. B182: 129.
- Danos, M. 1958. On The Long-Range Correletation Model of The Photonuclear Effect. Nucl. Phys. A5: 23.
- Danos, M., Greiner, W. 1965. Shell-model treatment of nuclear reactions. Phys. Rev. 138: B93.
- Daoutidis, I., Goriely, S. 2012. Large-Scale Continuum Random-Phase Approximation Predictions of Dipole Strength for Astrophysical Applications. Phys. Rev. C86: 034328.
- Dietrich, S. S, Berman, B. L. 1988. Atlas of the photoneutron cross section obtained with monoenergetic photons. Atom. Data and Nucl. Data Tab. 38: 199.
- Donaldson, L. M, Bertulani C. A, Carter J, Nesterenko V. O, von Neumann-Cosel P, Neveling R, Ponomarev V. Yu, Reinhard P-G, Usman, I. T, Adsley, P., Brummer, J. W, Buthelezi, E. Z, Cooper, G. R. J., Fearick, R. W., Förtsch, S. V., Fujita, H., Fujita, Y., Jingo, M., Kleinig, W., Kureba, C. O., Kvasil, J., Latif, M., Li, K.C.W., Mira, J. P., Nemulodi, F., Papka, P., Pellegri, L., Pietralla, N., Richter, A., Sideras-Haddad, E., Smit, F. D., Steyn, G. F., Swartz, J. A., Tamii, A. 2018. Deformation dependence of the isovector giant dipole resonance: the Neodymium isotopic chain revisited. Phys. Lett. B776: 133.
- Dudek, J., Nazarewicz, W., Faessler, A. 1984. Theoretical analysis of the singleparticle states in the secondary minima of fissioning nuclei. Nucl. Phys. A, 412, 61-91.
- Ebata, S., Nakatsukasa, T. 2013. Time-dependent mean field theory including pairing correlation, and applications to linear response calculation. ECT workshop, Advances in time-dependent methods for quantum many-body system, Torento.
- Ertuğral, F., Guliyev, E., Kuliev, A. E. 2002. ¹⁶⁶⁻¹⁶⁸Hf ve ¹⁸⁰⁻¹⁸⁶W izotopların kuadrupol momentleri ve deformasyon parametreleri. Sakarya Univ. Fen Bil. Enst. Der. 6: 33.

- Ertuğral, F., Guliyev, E., Kuliev, A. E. 2007. 232Th çekirdeğinde elektrik dipol uyarılmalarına öteleem değimezliğin etkisi. Anadolu Univ. J. Sci. and Tech. 8:223.
- Ertuğral, F; Guliyev, E; Kuliev, A; Yildirim, Z. 2009. Fine structure of the dipole excitations of the even-even ¹⁶⁰Gd nucleus in the spectroscopic region. Central European Journal Of Physics, Vol.7, 731-737.
- Faessler, A., Sheline, R. K. 1966. Eigenfunctions for a spherical and a deformed Saxon-Woods Potantial. Phys. Rev. 148: 1003.
- Feifrlik, V., Rizek, J. ve Vogel, P. 1968 ."Dipole States In Deformed Nuclei", Nuclear Physics A, 119(1), 1-13.
- Frascaria, N. 1993. Multiphonon Excitations in Nuclei Built with Giant Resonances. Proc. of the Gull Lake Nucl. Phys. Conference-(USA).
- Fukuda, S., Torizuka, Y. 1972. Giant multipole resonance in ⁹⁰Zr observed by inelastic electron scattering. Phys. Rev. Lett. 29: 1109.
- Gabrakov, S. I., Pyatov, N. I., Salamov, D. I. 1977. Effects of breaking the translational and Galilean Invariences of Nuclear Model Hamiltonians. International Atomic Energy Agency and United Nation Educational Scientific and Cultural Organization.
- Gell-Mann, M., Telegdi, V. 1953.Consequences of charge independence for nuclear reactions involving photons. Phys. Rev. 91: 169.
- Glendenning, N. 1988. Equation Of State From Nuclear and Astrophysical Evidence. Phys. Rev. C37, 2733-2743.
- Goeke, K., Speth, J. 1982. Theory of giant resonance. Ann. Rev. Nucl. Part. Sci. 32: 65.
- Goldhaber, M., Teller, E. 1948. On nuclear dipole vibration. Phys.Rev. 74, 1046-1049.
- Goryachev, B. I., Kuznetsov, Y. V., Orlin, V. N., Pozhidaeva, N. A., Shevchenko, V. G. 1976. Giant Resonance in the Strongly Deformed Nuclei. ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁶Er, and ¹⁷⁸Hf. Yad. Fiz., 23, 1145.
- Greiner, W., Maruhn, J. A. 1996. Nuclear Models. Springer, 1-399.
- Guliev, E., Kuliev, A. A., Güner, M. 2010. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei. Cent. Eur. J. Phys., 8(6), 961-969.
- Guliyev, E., Ertuğral, F., Kuliev, A. A. 2006. Low lying magnetic dipole strength distribution in the γ-soft even-even ¹³⁰⁻¹³⁶Ba. Eur. Phys. J. A, 27, 313–320.
- Guliyev, E., Kuliev, A. A., Ertuğral, F. 2009. Low-lying dipole excitations in the deformed even-even isotopes ¹⁵⁴⁻¹⁶⁰Gd. Acta Physica Polonica B, Vol.40, 653-656.
- Guliyev, E.; Kuliev, A. A.; Ertuğral, F. 2009. Low-lying magnetic and electric dipole strength distribution in the ¹⁷⁶Hf nucleus. European Physical Journal A Vol.39, 323-333.

- Gurevich, G. M, Lazareva, L. E, Mazur, V. M., Solodukhov, G. V. 1974. Total cross section for the absorption of gamma quanta by Th²³², U²³⁵, U²³⁸, and Pu²³⁹ in the region of dipole giant resonance. Zh. E. T. F. Pis. Red. 20: 741.
- Gurevich, G. M, Lazareva, L. E., Mazur, V. M., Merkulov, S. Y., Solodukhov, G. V, Tyutin, V. A. 1978. Width of E1 giant resonance of deformed nucle in the 150 <A<186 region. Pis'ma Zh. Eksp. Teor. Fiz. 28: 168.
- Gurevich, G. M. 1976b. Width of giant resonance in the absorption for the cross section of gamma rays by nuclei in the region 150<A<200. Pis'ma Zh. Eksp. Teor. Fiz. 23: 411.
- Gurevich, G. M., Lazareva, L. E., Mazur, V. M., Merkulov, S. Y., Solodukhov, G. V. 1980. Total photoabsorption cross section for high-Z elements in the energy range 7-20 MeV. Nucl. Phys. A338: 97.
- Gurevich, G. M., Lazareva, L. E., Mazur, V. M., Solodukhov, G. V., Tulupov, B.A. 1976a. Giant resonance in the total photoabsorbtion crosss sectin of $Z \sim 90$ nuclei. Nucl. Phys. A273: 326.
- Gurevich, G. M., Lazareva, L. E., Mazur, V. M., Merkulov, S. Yu, Solodukhov, G. V. 1981. Total nuclear photoabsorption cross sections in the region 150<A<190. Nucl. Phys. A351: 257.
- Habs, D. 2013. γ Optics and Nuclear Photonics. İçinde: Encyclopedia of Nuclear Physics and Its Applications. 1. Baskı, Wiley-VCH, 271-298.
- Hans, H. S. 2011. Nuclear Physics Experimental and Theoretical 2. Baski, New Academic Science Limited, 1-767.
- Harakeh, M. N. 2018. The Euroschool on Exotic Nuclei V5 İçinde: Giant Resonance: Fundamental Modes and Probes of Nuclear Properties. Springer, 31-64.
- Harakeh, M. N., van der Woude A. 2001. Giant Resonances, Oxford University Press, 1-656.
- Harakeh, M. N., van der Woude, A. 2006. Giant Resonances Fundamental High-Frequency Modes of Nuclear Excitation. Oxford science publication, New York, USA.
- Harvey, R. R., Caldwell, J. T., Bramblett, R. L., Fultz, S. C. 1964. Photoneutron Cross Sections of Pb206 Pb207 Pb208 and Bi209. Physical Review, 136, 1B, 126-131.
- Hashimoto, T., Krumbholz, A. M, Reinhard, P.-G., Tamii, A., von Neumann-Cosel, P., Adachi, T., Aoi, N. 2015. Dipole polarizability of ¹²⁰Sn and nuclear energy density functionals. Phys. Rev. C92: 031305(R).
- Haxel, O., Jensen, J. H. D., Suess, H. E. 1949. On the magic numbers in nuclear structure. Phys. Rev. 75: 1766.
- Herzberg, R. D., Bauske, I., von Brentano, P., Eckert, Th., Ficher, R., Geiger, W., Kneissl, U., Margraf, J., Maser, H., Pietralla, N., Pitz, H. H., Zilges, A. 1995a. Lifetimes of two-phonon 1⁻ states in even N = 82 nuclei. Nucl. Phys. A592: 211.

- Herzberg, R. D., Zilges, A., Oros, A. M., von Brentano, P., Kneissl, U., Margraf, J., Pitz, H. H., Wesselborg, C. 1995b. Observation of dipole transitions to a 2⁺ x 3⁻ particle multiplet in ¹⁴³Nd. Phys. Rev. C51: 1226.
- Heyde, K. 1994. Basic Ideas and Concepts in Nuclear Physics: An Introductory Approach, Third Edition (Series in Fundamental and Applied Nuclear Physics, ISBN-13: 978-0750309806.
- Heyde, K., von Neuumann-Cosel, P., Richter, A. 2010. Magnetic dipole excitations in nuclei: elementary modes of nucleonic motion. Rev. Mod. Phys. 82: 2365.
- Hinohara, N., Kortelainen, M., Nazarewicz, W. 2013. Low-energy collective modes of deformed superfluid nuclei within the finite-amplitute method. Phys. Rev. C87: 064309.
- Horen, D. J., Bertrand, F. E., Lewis, M. B. 1974. Comparison of the inelastic scattering of protons by Sm-144, Sm-154 in the region of giant resonances. Phys.Rev. C9, 1607-1610.
- Hütt, M. T., L'vov, A. I., Milstein, A. I., Schummacher, M. 2000. Compton scattering by nuclei. Phys. Rep. 323:457.
- Iachello, F. 1984. Local Versus Global Isospin Symmetry in Nuclei. Physics Letters Volume 160B, number 1, 2, 3.
- Ishkhanov, B. S., Kapitonov, I. M. 2015 The Configurational Splitting of Giant Dipole Resonance. Moscow University Physics Bulletin, 2015, Vol. 70, No. 2, pp. 75–88.
- Ishkhanov, B. S., Kapitonov, I. M., Kuznetsov, A. A., Orlin, V. N., Yoon, D. H. 2014. Photonuclear reactions on molybdenum isotopes. Phys. Atom. Nucl. 77: 1365.
- Ishkhanov, B. S., Troshchiev, Y. S. 2011. Giant dipole resonance in heavy deformed nuclei. Moscow Univ. Phys. Bull. 66: 325.
- Itoh, M., Sakaguchi, H., Uchida, M., Ishikawa, T., Kawabata, T., Murakami, T., Takeda, H., Taki, T., Terashimaa, S., Tsukahara, N., Yasudaa, Y., Yosoi, M., Garg, U., Hedden, M., Kharrajab, B., Koss, M., Nayak, B.K., Zhub, S., Fujimurac, H., Fujiwara, M., Harac, K., Yoshida, H. P., Akimune, H., Harakeh M. N., Volkerts, M. 2002. Compressional mode giant resonances in deformed nuclei. Phys. Lett. B549: 58.
- Iudice, N. L. 1992. Low lying magnetic collective states in deformed nuclei: unified description of the scissor mode. İçinde: New trends in theretical and experimental nuclear physics. World scientific publishing section.
- Iudice, N. L. 1997. Magnetic dipole excitations in deformed nuclei. N. Phys. Part. Nucl. 28, 556-585.
- Iudice, N. L. 2000. Collective Excitations in Deformed Nuclei, Rıvısta Del Nuovo Cimento Vol. 23, N. 9.
- Iudice, N. L., Palumbo, F. 1978. New isovector collective modes in deformed nuclei. Phys. Rev. Lett. 41: 1532.

- Iudice, N. L., Palumbo, F. 1978. New isovector collective modes in deformed nuclei. Phys. Rev. Lett. 41: 1532.
- Kapitonov, I. M. 2015. Width of the giant dipole resonance in medium and heavy nuclei. Bulletin of the russian Academy of Sciences, Physics 79: 526-531.
- Khuong, C. Z., Soloviev, V. G., Voronov, V. V. 1979. Description of the substructure in the radiative strength function of 117Sn and 119Sn. J. Phys. G: Nucl. Phys. 5: L79.
- Kneissl, U., Pietralla, N., Zilges, A. 1995. Investigation of nuclear structure by resonance fluorescence scattering. Prog. Part. Nucl. Phys. 37: 349.
- Kneissl, U., Pietralla, N., Zilges, A. 2006. Low-energy dipole modes in vibrational nuclei studied by photon scattering. J. Phys. G: Nucl. Part. Phys. 32: R217.
- Krane K. S., Steffen, R. M. 1970. Phys. Rev. C 2, 724.
- Krane, K. S. 1987. Introductory to Nuclear Physics, John Wiles & Sons, 1-864.
- Kuhn, W. 1925. On the total strength of the absorption lines emanating from a state. Z. für Physik 33: 408.
- Kuliev A. A., Salamov D. I. 1984. Azerbaycan SSR Elmler Akademisi Haberleri No:2(1984)60-69.
- Kuliev, A. A., Akkaya, R., Ilhan, M., Guliyev, E., Salamov, C., Selvi, S. 2000. Rotational-invariant model of the states with $K\pi$ =1+and their contribution to the scissors mode. Int. J. Mod. Phys. E, 9(3):249-261.
- Kuliev, A. A., Guliyev, E., Ertuğral, F., Özkan, S. 2010. The lw-energy dipole structure of 232Th, 236U and 238U actinide nuclei. Eur. Phys. J A 43: 313-321.
- Kuliev, A. A., Guliyev, E., Gerçeklioğlu, M. 2002. The Dependence of The Scissors Mode on The Deformation in The 140-150Ce Isotopes, J. Phys G. Nucl. Particle Physics 28, 407.
- Kuliev, A. A., Pyatov, N. I. 1968. Effect of the spin-quadrupole force on the rate of decay to collective states of even deformed nuclei. Nuclear Phys. A 1006 (3): 689-696.
- Kuliev, A. A., Selam, C., Küçükbursa, A. 2000. The effect of the Galileo invariance pairing on the 1- state in spherical nuclei. Math. and Comp. App. 6: 103-111.
- Kuznetsov V., Merkulov S., Solodukhov G., Sorokin Y., Turinge, A. 2008. Total And Nuclear, Photoabrorption Cross Sections of 52Cr In The Energy Range of 8-70 MeV. arXiv:0812.4652v1[nucl-ex].
- lachello, F. 1984. New Class of Low-Lying Collective Modes in Nuclei. Phys. Rev Lett. 3, 1427-1429.
- Lacroix, D., Ayik S. ve Chomaz, P.H. 2004. Prog. in Part. and Nucl. Phys., 52, 497.
- Lepretre, A., Beil, H., Bergere, R., Carlos, P., Fagot, J., De Miniac, A., Veyssiere, A., Miyase, H. 1976. A study of the giant dipole resonance in doubly even tellurium and cerium isotopes. Nuclear Physics, Section A, 258, 2, 350-364.

- Levinger, J. S., Bethe, H. A. 1952. Neutron yield from the nuclear photo-effect. Phys. Rev. 85: 577.
- Lewis, M. B., Bertrand, F. E. 1972. Nucl. Phys. A196: 337.
- Linnemann, A., Von Brentano, P., Eberth, J., Enders, J., Fitzler, A., Fransen, C., Guliyev, E., Herzberg, R. D., Käubler, L., Kuliev, A. A. 2003. Change of the dipole strength distributions between the neighbouring γ-soft nuclei ¹⁹⁴Pt and ¹⁹⁶Pt, Phys. Lett. B, 554, 15-20.
- Litvinova, E., Ring, P., Tselyaev, V. 2008. Relativistic quasiparticle time blocking approximation: dipole response of open-shell nuclei. Phys. Rev. C78: 014312.
- Malov, L. A., Meliev, F. M., Soloviev, V. G. 1985. Description of radiative strength functions in deformed nuclei. Z. Phys. A. Atom and Nuclei 320: 521.
- Malov, L. A., Soloviev, V. G. 1976. Fragmentation of single-particle states and neutron strength functions in deformed nuclei. Nucl. Phys. A270: 87.
- Marshalek, E. R., Weneser, J. 1969. Nuclear Rotation and Random-Phase Approximation. Ann. Phys., 53(3), 569–624.
- Masur, V. M., Mel'nikova, L. M. 2006. Giant dipole resonance in absorption and emission of gamma rays by medium and heavy nuclei. Phys. Par. Nucl..37: 923.
- Mayer, M. G. 1950. Nuclear configurations in the spin-orbit coupling model I. Phys. Rev. 78: 16.
- Meng, J. 2016. Relativistic Density Functional for Nuclear Structure, World Scientific, 1-714.
- Migdal, A. B. 1945. Zh. Eksp. Teor. Fiz. 15 81.
- Morse, P. M, Feld, B. T., Feshbach, H. 1972. Nuclear, Particle and Many Body Physics, Academic Press, 1-707.
- Mottelson, B. R. 1976. Elementary Modes of Excitation in The Nucleus. Science, 193, 4250, 287-294. DOI: 10.1126/science.193.4250.287.
- Mottleson, B. R., Nilsson, S. G. 1959. The shape of the nuclear photo-resonance in deformed nuclei. Nucl. Phys. A13: 281.
- Möller, P., Nix, J. R., Myers, W. D., Swiatecki, W. J. 1995. Nuclear ground-state masses and deformations. Atom. Data and Nucl. Data Tables 59: 185.
- Myers, W. D., Swiatecki, J., Kodama, T., El-Jaick, J., Hilf, E. R. 1976. Droplet model of the giant dipole resonance Physical Review C 15 (6).
- Nagao, M., Torizuka, Y. 1973. Electroexcitation of giant resonances in 208Pb. Phys. Rev. Lett. 30: 1068.
- Nilsson, S. G. 1955. Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd. 29: 1.
- Nilsson, S. G., Tsang, C. F., Sobiczewski, A., Szymanski, Z., Wycech, S., Gustafson C., Lamm I. L., Möller P., Nilsson, B. 1969. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A131: 1.

- Oishi, T., Kortelainen, M., Hinohara, N. 2016. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei. Phys. Rev. C 93: 034329.
- Okamoto, K. 1956. Relation between the Quadrupole Moments and the Widths of the Giant Resonance of Photonuclear Reaction. Progress of Theoretical Physics, 15 (1), 75–77.
- Okamoto, K. 1958. Relation between the quadrupole moments and the widths of the giant resonance of photonuclear reaction. Prog. Theo. Phys. 15: 75.
- Paar, N., Horvat, A. 2014. Probing the neutron skin thickness in collective modes of excitation. EPJ Web of Conferences (INPC 2013, International Nuclear Physics Conference) Volume 66.
- Paar, N., Vretenar, D., Khan, E., Colo, G. 2007. Exotic modes of excitation in atomic nuclei far from stability. Rep. Prog. Phys. 70: 691-793.
- Paetz gen. Schieck, H. 2014. Nuclear Reactions. Intermediate Structures, Part of the Lecture Notes in Physics book series (LNP, volume 882), pp 1-365.
- Patel, D., Garg, U., Itoh, M., Akimune, H., Berg, G. P. A., Fujiwara, M., Harakeh, M. N., Iwamoto, C., Kawabata, T., Kawase, K., Matta, J. T., Murakami, T., Okamoto, A., Sako, T., Schlax, K. W., Takahashi, F., White, M., Yosoi, M. 2014. Excitation of giant monopole resonance in ²⁰⁸Pb and ¹¹⁶Sn using inelastic deuteron scattering. Phys. Lett. B735: 387.
- Pietralla, N., Beck, O., Besserer, J., von Brentano, P., Eckert, T., Fischer, R., Fransen, C., Herzberg, R. D., Jager, D., Jolos, R. V., Kneissl, U., Krischok, B., Margraf, J., Maser, H., Nord, A., Pitz, H. H., Rittner, M., Schiller, A., Zilges, A. 1997. The scissors mode and other magnetic and electric dipole excitations in the transitional nuclei ^{178,180}Hf. Nucl. Phys. A 618:141.
- Pitthan, R., Walcher, T. 1971. Inelastic electron scattering in the giant resonance region of La, Ce and Pr. Phys. Lett. B36: 563.
- Pitz, H. H., Heil, R. D., Kneissl, U., Lindenstruth, S., Seemann, U., Stock, R., Wesselborg, C., Zilges, A., Brentano, P. V., Hoblit, S. D., Nathan, A. M. 1990. Low-energy photon scattering off ^{142,146,148,150}Nd: An investigation in the mass region of a nuclear shape transition. Nuclear Physics, Section A, 509(3), 587-604.
- Poltoratska, I., Fearick, R. W., Krumbholz, A. M., Litvinova, E., Matsubara, H., von Neumann-Cosel, P., Ponomarev, V. Yu., Richter, A., Tamii, A. 2014. Fine structure of the isovector dipole resonance in 208Pb: Characteristic scales and levels densities. Phys. Rev. C 89: 054322.
- Ponomarev, V. 2014. Pgym dipole resonance. Journal of Phys: Conference Series 553: 012028
- Ponomarev, V. Yu., Vigezzi, E., Bortignon, P. F., Broglia, R. A., Colo, G., Lazzar, G., Voronov, V. V., Baur, G. 1994. Microscopic origin of the giant resonance structure. Volume 569, Issue 1-2, 333-342.
- Pyatov, N. I., Salamov, D. I. 1977. Conservation laws and collective excitations in nuclei. Nukleonika 22: 127.

- Pyatov, N.I. 1974. "Invariance Principle And Effective Forces", Jinr Reports, P4-8380.
- Pyatov, N.I. ve Chernej, M.I. 1972. "Rotational Invariance, Inertia and 1+ State Moments In Deformed Nuclei", Sov. J. Nucl. Phys., 16(5), 931–940.
- Raduta, A. A., Budaca, R., Raduta, A. H. 2009. Collective dipole excitations in sodium clusters. Phys. Rev. A79: 023202.
- Raduta, A. A., Delion D. S., Ursu I. I. 1992. New trends in theretical and experimental nuclear physics. World scientific publishing section: Low lying magnetic collective states in deformed nuclei: unified description of the scissor mode N. Lo Iudice
- Rainwater, J. 1950. Nuclear energy levels argument for a spheroidal nuclear model. Phys. Rev. 79(3): 432-434.
- Raman, S., Nestor, C. W., Tikkanen, P. 2001. Transition probability from the ground to the first excited 2+ state of even-even nuclides. Atom. Data and Nucl. Data Tables 78: 1.
- Reiche, F., Thomas, W. 1925. Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind. Z. für Physik 34: 510.
- Reinhard, P. G., Nazarewicz, W. 2010. Information content of a new observable: the case of the nuclear neutron skin. Phys. Rev. C81: 0501303(R).
- Rezwani, V., Gneuss, G., Arenhövel, H. 1970. Dynamic collective model of the giant resonance. Phys. Rev. Lett. 25: 1667.
- Rhine Kumar, A. K., Arumugam, P., Dinh Dang, N, 2015. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei. Physical Review C 91, 044305.
- Richter, A. 1983 Proceedings of the International Conference on Nuclear Physics, Florence, Italy, Blasi, P., Ricci, R.A. (eds.), Vol. II, p. 189. Bologna: Tipografia Compositori
- Ring P., Shuck P., 2004. The Nuclear Many Body Problem, 1980 by Springer Verlag New York Inc. Printed in the United Statet of America. ISBN:0-387-09820-8 Springer Verlag New York 1-718.
- Roca-Maza, X., Brenna, M., Agrawal, B. K., Bortignon, P. F., Col'o, G., Cao, L. G., Paar, N., Vretenar D. 2018. Giant quadrupole resonances in ²⁰⁸Pb, the nuclear symmetry energy, and the neutron skin thickness. Phys. Rev. C87: 034301.
- Romig, C., Savran, D., Beller, J., Birkhan, J., Endres, A., Fritzsche, M., Glorius, J., Isaak, J., Pietralla, N., Scheck, M., Schnorrenberger, L., Sonnabend, K., Zweidinger, M. 2015. Direct determination of ground-state transition widths of low-lying dipole states in ¹⁴⁰Ce with the self-absorption technique, Phys. Lett. B 744 369-374.
- Rowe, D. J. 1970. How do deformed nuclei rotate? Nucl. Phys. A152, 273.
- Rowe, D. J. 2010. Nuclear collective Motion Models and Theory, World Scientific Publishing, 1-373.

- Sarchi, D., Bortignon, P. F., Colò, G. 2004. Dipole states in stable and unstable nuclei, Physics Letters B 601 27–33.
- Savran, D., Aumann, T., Zilges, A. 2013. Experimental studies of the pygmy dipole resonance. Prog. Part. Nucl. Phys. 70, 210.
- Scheck, M., I., Mishev, S., Ponomarev, V. Y., Ponomarev, R., Chapman, P., Gaffney, L. G., Gregor, E. T., Pietralla, N., Spagnoletti, P., Savran, D., Simpson, G. S. 2016. Investigating the Pygmy Dipole Resonance Using β Decay. Phys. Rev. Lett. 116: 132501.
- Schröder, H. P. 2015. The energy-weighted sum rule and the nuclear radius. Eur. Phys. J. 51: 109.
- Schumacher, M., Milstein, A. I., Falkenberg, H., Fuhrberg, K., Glebe, T., Hager, D., Hütt, M. 1994. The enhancement of giant-dipole strength and its consequences for the effective mass of the nucleon and the electromagnetic polarizabilities and quadrupole sum-rule of the nucleus, Nuclear Physics A 576, 603-625.
- Shibata, K. 2015. Evaluation of neutron nuclear data on tantalum isotopes Journal of Nuclear Science and Technology, http://dx.doi.org/10.1080/00223131.2015.1083492.
- Sitenko, A., Tartakovskii, V. 1997. Theory of Nucleus Nuclear Structure and Nuclear. Springer 1-629.
- Soloviev, V. G. 1976. Theory of Complex Nuclei, Pergamon Press, 1-468.
- Soloviev, V. G. 1992. Theory of atomic nuclei: Quasiparticles and phonons, Institute of Physics Publishing Bristol and Philadelphia, 1-333.
- Soloviev, V. G., Stayanov, C., Voronov, V. V. 1978. On the enhancement of M1transitions from neutron resonances in the Ba and Ce isotopes. Phys. Lett. B 79: 187.
- Soloviev, V. G., Stoyanov, C., Vdovin, A. I. 1980. The description of fragmentation of one-quasiparticle states in spherical nuclei. Nucl. Phys. A342: 261.
- Spieker, M., Pascu, S., Zilges, A., Iachello, F. 2015. Origin of low-lying enhanced E1 strenght in rare-earth nuclei. Phys. Rev. Lett. 114: 192504.
- Steinwedel, H., Jensen, H. J. D., Jensen, P. 1950. Nuclear dipole vibrations. Phys. Rev. 79: 1019.
- Suhonen, J. 2007. From Nucleons to Nucleus Concept of Microscopic Nuclear Theory, Springer, 1-655.
- Şahin, E. 2009. Nötron bakımından zengin atom çekirdeklerinde Dev ve Cüce rezonansların incelenmesi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Fizik Bölümü, Yüksek lisans tezi.
- Tamii, A., Fujita, Y., Matsubara, H., Adachi, T., Carter, J., Dozono, M., Fujita, H., Fujita, K., Hashimoto, H., Hatanaka, K., Itahashi, T., Itoh, M., Kawabata, T., Nakanishi, K., Ninomiya, S., Perez-Cerdan, A. B., Popescu, L., Rubio, B., Zenhiro, J. 2009. Nucl. Instrum. Methods Phys. Res., Sect. A 605, 3.

- Thomas, W. 1925. Über die zahl der dispersionselektronen, die einem stationären zustande zugeordnet sind. Naturwissenchaften 13:627.
- Treiner, J., Krivine, H., Bohigas, O., Martorell, J. 1981. Nuclear incompressibility: from finite nuclei to nuclear matter. Nucl. Phys. A371: 253.
- Uberall, H. 1971. Electron Scattering From Complex Nuclei Part B. Academic Press, 1-869.
- Van der Woude, A. 1991. The Electric Giant Resonances İçinde: Electric and Magnetic Giant Resonances in Nuclei. 1. Baskı, World Scientific, 99-232.
- Van der Woude, A. 1996. Past, present and future of giant resonance or nearly 60 years of giant resonance research. Nucl. Phys. A 599: 393.
- Varlamov, A. V., Varlamov, V. V., Rudenko, D. S., Stepanov, M. E. 1999. Atlas of Giant Dipole Resonances Parameters and Graphs of Photonuclear Reaction Cross Section. IAEE, 1-328.
- Varlamov, V. V., Ishkhanov, B. S., Kapitonov, I. M. 2008. Photonuclear Reactions. Modern Status of Experimental Data, Moscow: Knizhn. Dom Univ.
- Vasilijev, O. V., Zalesny, G. N., Semenko, S. F. ve Semenov, V. A. 1969. "The Giant Dipole Resonance in the Transition Region From Spherical To Deformed Nuclear Shapes", Physics Letters, 30B(2), 97-99.
- Versteegen, M., Denis-Petit, D., Meot, V., Bonnet, T., Comet, M., Gobet, F., Hannachi, F., Tarisien, M., Morel, P., Martini, M., Peru, S. 2016. Low-energy modification of the γ strength function of the odd-even nucleus ¹¹⁵In. Phys. Rev. C 94: 044325.
- Vesel'y, P., Toivanen, J., Carlsson, B. G., Dobaczewski, J., Michel, N., Pastore, A. 2012. Giant monopole resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions Physical Review C 86, 024303.
- Veyssiire, A., Beil, H., Bergere, R., Carlos, P. ve Lepretre, A. 1973. "A Study Of The Photofission and Photoneutron Processes in the Giant Dipole Resonance of ²³²Th, ²³⁸U and ²³⁷Np. Nuclear Physics A, 199, 45-64.
- Walet, N. 2010. Nuclear and Particle Physics http://oer.physics.manchester.ac.uk/NP/Notes/ Notes.pdf.
- Weizsäcker, C. F. 1935. The teory of nuclear masses. Z. Phys. 96: 431.
- Wieland, O., Bracco, A. 2011. The pygmy dipole resonance in ⁶⁸Ni and the neutron skin. Progress in Particle and Nuclear Physics, 66 (2), 374-378.
- Wilkinson, D. H. 1956. Nuclear photodisintegration. Physica, 22, 6–12, 1039-1061.
- Woude, A., 1996. "Past, Present and Future of Giant Resonances or Nearly 60 Years Of Giant Resonance Research", Nuclear Physics A, 599, 393-399.
- Yoshida, K., Nakatsukasa, T. 2011. Dipole responses in Nd and Sm isotopes with shape transitions. Phys. Rev. C 83: 021304(R).
- Yoshida, K., Nakatsukasa, T. 2013. Shape evolution in Nd and Sm isotopes. Phys. Rev. C 88: 034309.

- Youngblood, D. H., Bacher, A. D., Brown, D. R., Bronson, J. D., Moss, J. M., Rozsa, C. M. 1977. Particle decay from the giant resonance region of ⁴⁰Ca. Phys. Rev. C15: 246.
- Zelevinsky, V. 2017. Physics of Atomic Nucleus, WILEY-VCH, 1-688.
- Zilges, A., Brentano, P. Yon., Friedrichs, H.,. Hell, R. D., Kneissl U., Lindenstruth, S., Pitz, H. H., Wesselborg, C. 1991.Z. Phys. A Hadrons and Nuclei 340, 155.

EKLER

EK 1: ¹⁴²⁻¹⁵²Nd, ¹⁴⁴⁻¹⁵⁴Sm, ¹⁵²⁻¹⁶⁴Gd, ¹⁵⁶⁻¹⁶⁸Dy, ¹⁸⁰⁻¹⁹⁰W ve ²³⁶⁻²³⁸U İzotop Zincirlerine Ait Bulgular

Şekil E.1. 142-152Nd izotop zinciri çekirdeklerinin TGI-QRPA Modelinde B(E1) değerlerinin karşılaştırılması

Şekil E.2. ¹⁴²Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.3. ¹⁴⁴Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.4. ¹⁴⁶Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1)değerlerinin karşılaştırılması

Şekil E.5. ¹⁴⁸Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.6. ¹⁵²Nd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.7. ¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin enerjiye bağlı radyasyon kalınlığı Γ değerlerinin karşılaştırılması

A Şekil E.8. ¹⁴²⁻¹⁵²Nd izotop zinciri çekirdeklerinin enerjiye bağlı olmayan radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması

Şekil E.9. 144-154Sm izotop zinciri çekirdeklerinin TGI-QRPA modelinde B(E1) değerlerinin karşılaştırılması

Şekil E.10. ¹⁴⁴Sm çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.11. ¹⁴⁶Sm çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.12. ¹⁴⁸Sm çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.13. ¹⁵⁰Sm çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.14. ¹⁵²Sm çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.15. ¹⁵⁴Sm çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.16. ¹⁵²Gd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.17. ¹⁵⁴Gd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.18. ¹⁵⁶Gd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.19. ¹⁵⁸Gd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.20. ¹⁶²Gd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.21. ¹⁶⁴Gd çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.22. $^{152-164}$ Gd izotop zinciri çekirdeklerinin enerjiye bağlı radyasyon kalınlığı Γ değerlerinin karşılaştırılması

Şekil E.23. ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin enerjiye bağlı olmayan radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması

Şekil E.24. ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin izovektör ve izoskaler katkılarının elektrik dipol enerji diyagramında gösterilmesi

Şekil E. 25. Çift-çift ¹⁵²⁻¹⁶⁴Gd izotop zinciri çekirdeklerinin K=0 ve K=1 dalları için elektrik dipol enerji ağırlıklı toplamlarının yüzdeliklerinin gösterilmesi

Şekil E.26. ¹⁵⁶Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.27. ¹⁵⁸Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.28. ¹⁶⁰Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.29. ¹⁶²Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.30. ¹⁶⁴Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.31. ¹⁶⁶Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.32. ¹⁶⁸Dy çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.33. ¹⁵⁶⁻¹⁶⁸Dy izotop zinciri çekirdeklerinin enerjiye bağlı olmayan radyasyon kalınlığı Γ değerlerinin karşılaştırılması

Şekil E.34. Dy¹⁵⁶⁻¹⁶⁸ izotop zinciri çekirdeklerinin enerjiye bağlı radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması

Şekil E.35. ¹⁵⁶⁻¹⁶⁸Dy izotop zinciri çekirdeklerinin izovektör ve izoskaler katkılarının elektrik dipol enerji diyagramında gösterilmesi

Şekil E.36. Çift-çift ¹⁴⁴⁻¹⁵⁴Dy izotop zinciri çekirdeklerinin K=0 ve K=1 dalları için elektrik dipol enerji ağırlıklı toplamlarının yüzdeliklerinin gösterilmesi

Şekil E.37. ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin TGI-QRPA Modelinde B(E1) değerlerinin karşılaştırılması

Şekil E.38. ¹⁸⁰W çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.39. ¹⁸²W çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.40. W¹⁸⁴ çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.41. ¹⁸⁶W çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.42. ¹⁸⁸W çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.43. W¹⁹⁰ çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.44. W¹⁸⁰⁻¹⁹⁰ izotop zinciri çekirdeklerinin enerjiye bağlı radyasyon kalınlığı Γ değerlerinin karşılaştırılması

Şekil E.45. W¹⁸⁰⁻¹⁹⁰ izotop zinciri çekirdeklerinin enerjiye bağlı olmayan radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması

Şekil E.46. W¹⁸⁰⁻¹⁹⁰ izotop zinciri çekirdeklerinin izovektör ve izoskaler katkılarının elektrik dipol enerji diyagramında gösterilmesi

Şekil E.47 . Çift-çift ¹⁸⁰⁻¹⁹⁰W izotop zinciri çekirdeklerinin K=0 ve K=1 dalları için elektrik dipol enerji ağırlıklı toplamlarının yüzdeliklerinin gösterilmesi

Şekil E 48. ²³⁶⁻²³⁸U izotop zinciri çekirdeklerinin TGI-QRPA Modelinde B(E1) değerlerinin karşılaştırılması

Şekil E.49. Çift-çift ²³⁶U çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.50 Çift-çift ²³⁸ U çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil E.51. Çift-çift ²³⁶⁻²³⁸ U izotop zinciri çekirdeklerinin enerjiye bağlı olmayan radyasyon kalınlığı Γ_{red} değerlerinin karşılaştırılması

Şekil E.52. Çift-çift $^{236-238}$ U izotop zinciri çekirdeklerinin enerjiye bağlı radyasyon kalınlığı Γ_0 değerlerinin karşılaştırılması

Bu başlık altında, 8-20 MeV enerji aralığında K=0 ve K=1 dalları için hesaplanan enerji seviyelerinde yer alan nn ve pp etkileşmelerinin asimptotik kuantum numaraları ve ψ genliğine ait bulgular yer almaktadır. Bu veriler oldukça yer kapladığı için burada yalnızca deforme ¹⁵⁰Nd izotopunun tüm verileri verilmiş, diğer Nd izotopları Sm izotoplarının yalnızca en yüksek geçiş olasılığı değerinin K=0 ve K=1 dallarının asimptotik kuantum numaraları verilmiştir. Tüm bu tablolarda K=0 için $\psi \ge 0.1$ ve K=1 için ise $\psi \ge 0.2$ olan seviyeler verilmiştir.

E (M	eV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
		nn 550↑-640↑	0,425	
		nn 530↑-651↓	0,247	
		nn 541↑-651↑	-0,158	
			pp 541↓-640↑	0,249
8,3794	0,177	pp 541↑-651↑	-0,275	
	0,0771		pp 431↑-532↓	0,419
			pp 532↓-642↓	0,427
		pp 422↑-523↓	0,311	
			pp 413↑-514↓	0,272
			nn 550↑-660↑	0,102
	0.114		nn 550↑-651↓	0,658
			nn 530↑-651↓	-0,136
			nn 640↑-761↓	-0,187
9.1		0,110	nn 532↑-642↑	0,303
),1	17		nn 521↑-642↓	-0,372
			nn 310↑-420↑	0,204
			pp 440↑-541↓	-0,325
			pp 532↓-642↓	0,204
			pp 550↑-660↑	0,102
			nn 550↑-651↓	0,265
			nn 521↑-642↓	0,151
			pp 523↓-622↑	0,779
915	14	0.172	pp 541↓-640↑	0,145
2,15	17	0,172	pp 440↑-541↓	0,383
			pp 431↑-532↓	0,118
			pp 541↑-651↑	-0,136
		pp 532↓-642↓	-0,177	

Tablo E.1. Nd¹⁵⁰ izotopunun K=0 dalının asimptotik kuantum numaraları,

E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
		nn 550↑-651↓	-0,206
		nn 532↑-642↑	0,446
		pp 310↑-420↑	-0,629
		pp 541↓-640↑	0,124
9,4105	0,147	pp 440↑-541↓	-0,462
		pp 431↑-532↓	0,137
		pp 420↑-521↓	-0,118
		pp 541↑-651↑	-0,121
		pp 532↓-642↓	-0,172
		nn 521↓-640↑	0,157
		nn 411↑-512↓	-0,107
		nn 532↑-642↑	-0,128
		nn 651↑-752↓	0,272
		nn 523↓-622↑	-0,107
		pp 310↑-420↑	0,438
9,6261	0,302	pp 541↓-640↑	0,138
		pp 440↑-541↓	-0,159
		pp 431↑-532↓	0,285
		pp 420↑-521↓	-0,539
		pp 541 ⁺ -651 ⁺	-0,127
		pp 303↓-402↑	0,376
		pp 532↓-642↓	-0,122
		nn 521↓-640↑	0,317
		nn 420↑-521↓	-0,131
		nn 411↑-512↓	0,171
		nn 651↑-752↓	0,121
		pp 310↑-420↑	0,192
		pp 301↓-400↑	-0,119
0.8122	0.407	pp 541↓-640↑	0,133
9,8122	0,407	pp 440↑-541↓	-0,118
		pp 431↑-532↓	0,468
		pp 420↑-521↓	0,489
		pp 541↑-651↑	-0,123
		pp 422↑-523↓	-0,113
		pp 303↓-402↑	-0,434
		pp 532↓-642↓	-0,116
		nn 422↑-523↓	0,177
		pp 310↑-420↑	0,142
		pp 301↓-400↑	0,270
		pp 541↓-640↑	0,105
		pp 431↑-532↓	-0,367
10,3581	0,407	pp 312↓-422↓	-0,575
		pp 312↓-411↑	-0,466
		pp 541↑-651↑	-0,102
		pp 422↑-523↓	-0,234
		pp 532↓-642↓	-0,112
		pp 523↑-633↑	-0,210
		pp 310↑-411↓	0,140
10 5002	0 105	pp 431↑-532↓	-0,187
10,5903	0,195	pp 312↓-422↓	0,621
		pp 422↑-523↓	-0,692

Tablo E.1. (Devamı)

E (MeV)	BE1 ($e^2 fm^2$)	Seviye Yapısı nn-pp	Genlik ψ
10,7911		pp 310↑-411↓	-0,193
	0.200	pp 312↓-422↓	-0,327
	0,209	pp 422↑-523↓	-0,463
		pp 523↑-633↑	0,769
		nn 413↑-503↑	-0,246
10 982	0 173	nn 642↑-743↓	0,856
10,982	0,175	nn 514↓-404↓	-0,301
		pp 310↑-411↓	0,239
		nn 411↑-501↑	0,251
11,3288	0,250	nn422↑-512↑	0,923
		pp523↑-633↑	-0,117
		nn 422↑-512↑	0,263
		nn 642↑-743↓	0,140
		nn 514↓-404↓	-0,232
		nn 505↓-624↑	0,149
		pp 310↑-420↑	0,108
		pp 310↑-411↓	-0,274
		pp 541↓-640↑	0,188
11 3803	2,939	pp 440↑-530↑	0,108
11,3895		pp 431↑-532↓	-0,209
		pp 431↓-521↓	-0,308
		pp 312↓-422↓	0,211
		pp 301↑-402↓	0,264
		pp 541↑-651↑	-0,174
		pp 422↑-523↓	0,306
		pp 532↓-642↓	-0,144
		pp 523↑-633↑	0,357
		nn 550↑-660↑	-0,731
		nn 431↑-521↑	-0,433
11,7071	0,214	nn 422↑-512↑	-0,104
		pp 431↓-521↓	-0,409
		pp 301↑-402↓	0,155
		nn 550↑-660↑	-0,382
		nn 431↑-521↑	-0,129
		pp 541↓-640↑	0,106
11 89/18	1 283	pp 431↓-521↓	0,427
11,0040	1,205	pp 301↑-402↓	-0,688
		pp 422↑-523↓	0,109
		pp 422↓-512↓	0,134
		pp 523↑-633↑	0,119
12 30/19	0 365	pp 431↑-532↓	0,291
12,3049	0,505	pp 422↓-512↓	0,929
		nn 411↑-501↑	0,121
		nn 532↑-622↑	0,179
13,9497	0,690	pp541↓-660↑	-0,913
		pp 303↓-413↓	0,145
		pp 514↓-624↓	-0,134

Tablo E.1. (Devamı)

E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
		nn 411↑-501↑	-0,143
		nn 532↑-622↑	0,106
		pp 321↓-411↓	-0,876
14,1042	0,240	pp 541↓-660↑	0,167
		pp 440↑-530↑	0,298
		pp 514↓-624↓	-0,182
		pp 411↑-501↑	-0,143
		nn 431↑-521↑	0,103
		nn 532↑-622↑	0,109
		pp 321↑-431↑	-0,103
14 1682	0.217	pp 321↓-411↓	0,451
14,1082	0,217	pp 541↓-660↑	0,182
		pp 440↑-530↑	0,761
		pp 303↑-404↑	0,115
		pp 514↓-624↓	-0,303
	0 583	nn 431↑-521↑	0,104
14 3258		pp 440↑-530↑	0,364
14,5250	0,505	pp 303↑-404↓	-0,123
		pp 514↓-624↓	0,892
		nn 431↑-521↑	0,194
14 6997	0 193	pp 321↑-431↑	0,941
14,0777	0,175	pp 310↑-400↑	0,164
		pp 514↓-624↓	-0,124
		nn 431↑-521↑	-0,414
14,8958	0,163	pp 321↑-431↑	0,108
		pp 321↓-411↓	-0,895
		nn 550↑-640↑	0,129
		nn 440↑-521↓	0,203
15,0591	0,245	nn 431↑-521↑	-0,273
		pp 422↓-512↓	0,111
		pp 541↑-651↑	0,902

Tablo E.1. (Devamı)

E (MeV)	BE1 ($e^2 fm^2$)	Seviye Yapısı nn-pp	Genlik ψ
		nn 521↓-642↓	0,6359
9,05581	0.202	nn 411↑-512↑	0,3246
	0,203	pp 440↑-541↑	0,2789
		pp 422↓-523↓	0,2219
		nn 530↑-640↑	0,4535
		nn 411↑-512↑	0,3973
9,99264	0 101	nn 521↓-422↓	-0,213
	0,101	nn 422↓-523↓	0,2536
		nn 413↑-514↑	0,5909
		nn 404↓-505↓	0,2365
		pp 431↓-532↓	-0,2008
		pp 420↑-312↓	-0,6831
10,37004	0,131	pp 411↓-312↓	0,3485
		pp 402↑-303↑	-0,393
		pp 312↓-413↓	-0,2089
		pp 310↑-411↑	0,6534
11,12714	0,183	pp 301↑-402↑	-0,2842
		pp 422↓-523↓	0,3607
	0,112	nn 660↑-541↑	-0,3832
11,25119		nn 5127-4117	-0,785
		nn 402↓-503↓	-0,3317
		nn 622↑-523↑	-0,2169
	0,249	nn 550 \downarrow -660	0,2789
11,63610		nn $431 \downarrow -521$	-0,1882
		nn 411 -501 \downarrow	0,1025
		1000000000000000000000000000000000000	0,1455
		$nn 422 -512 \downarrow$	0,151
11 62610	0.240	1111 0.051 -5.52	0,037
11,03010	0,249	$111413 -303\downarrow$	-0,113
		111022 -323	0,158
		$\frac{1111404 - 303 \sqrt{100}}{100}$	0.244
		nn / 31 .522	-0,244
12 01763	0.207	1114314-5324 nn 6221-5231	-0,208
12,01705	0,207	nn 404 505	0,777
		111 + 04 = 503	-0,217
		pp +11 + 512 + nn 431 - 532 +	-0.166
		nn 431^{-332}	0,100
12,24409	0,108	pp 310 + 411 + 11 + 12 + 523 + 523	0.081
		pp + 22 + -525 + $pp 413^{-514}$	0.1416
		nn 541 \uparrow -651	-0.3964
12,56215	0.319	nn 501 \uparrow -411	0.8127
,_ 0_10		pp 402 ⁺ -303 ⁺	-0,1981
		$nn 512^{-642}$	-0.2428
12,62565	0.286	nn 501↑-411↓	-0,5346
,		pp 402↑-303↑	-0,2468

Tablo E.2. Nd¹⁵⁰ izotopunun K=1 dalının asimptotik kuantum numaraları,

E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
		nn 301↑-400↑	0,4582
		nn 541↑-651↓	-0,3601
10 50500	0.045	nn 413↑-514↑	0,2074
12,73583	0,345	pp321↑-420↑	-0,476
		pp 402↑-303↑	0.3917
		pp 312↓-413↓	0,2103
		nn 301^-400^	0.3831
		nn $651\uparrow$ -541 \downarrow	0.8393
12,93803	0,262	nn 541 \uparrow -651	0.1901
		nn 532 ⁺ -622	0.1239
		$nn 420\uparrow-512\downarrow$	0.1988
		nn $651\uparrow$ -541 \downarrow	-0.3337
		nn $301^{-402^{+1}}$	0 1935
		nn 512^{-422}	0 1958
		nn $642\uparrow_{-}532\downarrow$	-0 2647
13,26540	0,886	$nn 532^{+}622^{+}$	0 5734
		111.327-0221	0,2791
		1114137-5141	0,2791
		pp 400 -332	-0,2079
		pp 512 - 415 + 415 + 112 + 514 + 514 + 5	0,1977
		pp 413 -514	0,2031
	0,191	111 550 -051	0,2329
12 51101		nn 301 -402	0,5141
13,51191		nn 512 -422 \downarrow	-0,4555
		nn 642↑-532↓	-0,3643
		nn 532 ⁺ -622	-0,4735
		nn 4001-3011	0,833
		pp 3011-4021	-0,3101
13,86007	0,316	nn 642↑-532↓	0,1611
		nn 503↑-413↓	-0,1524
		pp 312↓-413↓	0,2646
		nn 400↑-301↑	0,192
14 03056	0 382	pp 541↑-660↑	0,6297
14,05050	0,302	pp 413↑-514↑	-0,3525
		pp 402↑-303↑	0,4985
		nn 400↑-301↑	-0,1995
		nn 541↑-642↑	-0,3178
14,11807	0,568	nn 402↑-303↑	0,4643
		nn 303↑-642↑	0,2285
		pp 321↑-411↓	0,6303
		nn 541↑-642↑	-0,227
		nn 402↑-303↑	0,3407
14,12308	0,229	nn 303↑-642↑	0,3119
		pp 321↑-411↓	-0,764
		pp 303↓-404↓	0,2198
		nn 541↑-642↑	-0,1487
14 10077	0.100	nn 402↑-303↑	0,2547
14,12955	0,108	nn 303↑-642↑	-0,9217
		nn 303 - 404	0 1094

Tablo E.2. (Devamı)

E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
		nn 541↑-642↑	-0,4583
14 22522	0.900	nn 521↑-431↑	-0,165
14,22523	0,800	nn 402↓-503↓	-0,7364
		pp 514↓-624↑	-0,2151
		nn 541↑-642↑	0,3013
1471415	0.107	nn 512↑-422↓	-0,884
14,/1415	0,107	pp 321↓-431↑	0,1719
		pp 413↑-503↓	0,2463
		nn 431↑-523↓	0,1618
		pp 420↑-321↑	-0,3968
14,87185	0,173	pp 321↑-411↓	0,8015
		pp 651↓-532↓	0,1633
		pp 303↓-404↓	0,1944
		pp 420↑-321↑	-0,7437
14,90260	0,125	pp 321↑-411↓	-0,5576
		pp 651↓-532↓	0,1637
		nn 501↑-422↑	0,5708
14,97915	0,294	pp 420↑-321↑	0,4186
		pp 651↓-532↓	0,5918
		pp 420↑-321↑	0,1827
15 06162	0.208	pp 321↓-422↓	-0,4058
13,00102	0,508	pp 541↑-651↓	0,7110
		pp 651↓-532↓	-0,4162
		nn 541↑-642↑	0,1138
15 10161	0.180	pp 420↑-321↑	0,1172
15,10101	0,100	pp 321↓-422↓	-0,7008
		pp 541↑-651↓	-0,6290
		nn 550↓-640↑	0,4104
		nn 541↑-642↑	0,1758
15,20993	0,800	nn 413↑-514↑	0,3045
		pp 321↓-422↓	0,3443
		pp 521↑-431↑	-0,6602
		nn 550↓-640↑	0,4929
15,22714	0,383	nn 503↑-413↓	0,3833
		pp 521↑-431↑	0,7095
		nn 550↓-640↑	-0,2938
15,33417	0,159	nn 431↑-512↑	-0,9227
		nn 503↑-413↓	-0,1536
		nn 541↑-422↑	0,9582
15,41954	0,118	nn 761↑-642↑	-0,1143
		pp 512↑-422↓	-0,1211
		nn 550↓-640↑	-0,2114
		nn 541↑-422↑	-0,2243
15,45267	1,323	nn 761↑-642↑	-0,3242
		nn 651↓-541↑	-0,6847
		pp 512↑-422↓	-0,2377
		nn 440↑-532↓	0,6772
15,53317	1,552	pp 400↑-312↓	-0,2313
		pp 651↓-541↑	0,5135

Tablo E.2. (Devamı)

E (MeV)	BE1 ($e^2 fm^2$)	Seviye Yapısı	Genlik ψ
		nn-pp	0.0000
		nn 550↓-640	-0,2002
		nn 440↑-532↓	-0,6707
15,62333	3,873	nn 541↑-642↑	0,233
		pp 651↓-541↑	0,331
		pp 303↓-404↓	0,1844
		nn 422↑-514↓	-0,9309
16,02239	0,212	pp 431↑-523↓	-0,307
		pp 312↑402↓	-0,1187
16 09291	0.119	nn 422↑-514↓	-0,1322
10,08381	0,118	pp 312↑-402↓	0,983
16 57704	0,681	nn 422↓-523↓	-0,4874
10,37724		pp 411↑-512↑	-0,853
	0,265	nn 400↑-312↓	-0,1234
17,39983		pp 200↑-301↑	0,797
		pp 402↓-503↓	-0,5229
		nn 303↓-404↓	-0,5151
10 06725	0.150	pp 550↑-651↑	0,4727
18,80755	0,130	pp 431↓-312↓	0,4391
		pp 505↓-615↓	0,5205
		nn 303↓-404↓	-0,4119
18,89426	0,101	pp 550↑-651↑	0,1818
		pp 431↓-312↓	-0,8743
		nn 431↓-532↓	-0,1723
10 21170	0.110	nn 402↑-303↑	0,163
19,311/9	0,110	nn 303↓-404↓	-0,18
		pp 202↓-303↓	-0,9432

Tablo E.2. (Devamı)

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 530↑-640↑	-0,1521
				nn 431↑-532↓	0,1676
				nn 440↑-501↓	-0,2353
				nn 441↑-512↓	0,3059
				nn 521↑-631↑	-0,1485
	K=0	10,6352	1,419	nn 422↑-523↓	0,1488
				nn 412↓-503↓	0,1203
¹⁴² Nd				nn 532↑-642↑	-0,1408
				nn 413↑-514↓	-0,1145
				nn 523↑-633↑	-0,1285
				pp 330↓-400↓	0,7551
				nn 301↑-400↑	-0,1941
	K -1	14 67167	6 1838	nn 301↑-411↓	-0,3503
	K -1	14,07107	0,4030	pp 402↓-503↓	-0,2124
				pp 303↓-404↓	0,1927
				pp 550 ↑-66 0↑	0,1069
				pp 530↑-620↑	0,1935
				pp 541↑-651↑	-0,1015
				pp 512↑-622↑	-0,1411
	K=0	10,6852	1,243	pp 523↓-622↑	0,1399
				pp 503↑-613↑	0,1969
				pp 310↑-411↓	0,3618
¹⁴⁴ Nd				pp 431↑-532↓	-0,1424
110				pp 301↑-402↓	-0,1432
				pp 422↑-523↓	0,3477
				pp 523↑-633↑	0,6656
				nn 422↓-523↓	0,2025
			2,463	pp 330↑-431↑	-0,2619
	K=1	15,282		pp 310↑-411↑	0,2039
				pp 422↓-523↓	0,2682
				pp 422↑-503↑	-0,6989
				nn 301↓-400↑	-0,1195
				nn 422↑-512↑	0,5219
				nn 5231-6331	-0,1889
				pp 310↑-420↑	0,1177
	K=0	9,9462	1,018	pp 301↓-400↑	0,1459
				pp 431↑-532↓	-0,1586
146				pp 541↑-631↑	0,1072
¹⁴⁶ Nd				pp 422↑-512↑	-0,592
				pp 532↑-642↑	-0,3479
				nn 301↑-400↑	0,2094
				nn 422↑-514↓	-0,2009
	K=1	14,95068	3,438	pp 321↑-400↑	-0,3427
				pp 5301-660↓	0,2029
				pp 660 ⁺ -541 ⁺	-0,2976
				pp 321↓-422↓	0,5692

Tablo E.3. ¹⁴²⁻¹⁵²Nd izotoplarının K=0 ve K=1 dalının asimptotik kuantum numaraları,

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 512↓-651↑	-0,6392
				pp 310↑-431↓	-0,3354
				pp 310↑-411↓	-0,1673
	K=0	11,0051	0,953	pp 431↑-532↓	-0,2224
				pp 312↑-422↑	-0,5083
¹⁴⁸ Nd				pp 301↑-402↓	-0,1199
				pp 422↑-512↑	0,1639
				nn 301↑-400↑	-0,2631
	K=1	15,07239	4,686	nn 413↑-514↑	-0,3005
				pp 431↑-512↑	-0,2774
				pp 321↓-422↓	-0,4798
	K=0	10,9729	1,921	nn 413↑-503↑	0,6413
				pp 310↑-411↓	0,4167
				pp 541↓-640↑	-0,1093
				pp 431↑-532↓	-0,1317
				pp 312↑-422↑	0,1209
				pp 541↑-651↑	-0,1016
¹⁵² Nd				pp 422↑-523↓	0,2495
				pp 303↓-422↑	0,1226
-				pp 523↑-633↑	0,3551
				nn 541↑-642↑	0,2714
	V_{-1}	15,827	6.040	nn 422↑-514↓	-0,2828
	N =1		0,940	pp 431↑-523↓	0,2048
				pp 303↓-404↓	0,301

Tablo E.3. (Devamı)

Tablo E.4. 144-154Sm izotoplarının K=0 ve K=1 dalının asimptotik kuantum numaraları,

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 530↑-640↑	0,1624
				nn 431↑-532↓	0,1677
			1,733	nn 440↑-501↓	0,2893
				nn 440↑-511↓	-0,3011
	K=0	10,7028		nn 523↑-633↑	0,1372
				nn 514↑-624↑	0,1174
				pp 330↑-440↑	0,4285
144 Sm				pp 330↑-400↑	0,3393
				pp 301↑-402↓	0,4794
-				nn 301↑-400↑	-0,6917
				nn 422↓-523↓	0,0732
	IZ 1	15 29054	4 0000	nn 402↓-503↓	0,0764
	K=1	15,28054	4,0808	nn 413↑-514↑	0,0845
				nn 404↓-505↓	0,0958
				nn 613↑-51 <u>4</u> ↑	0,0867

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı	Genlik ψ
				$nn 512\uparrow-622\uparrow$	0,2293
	V O	11.00.50	0.073	pp 312↓-411↑	-0,4924
	K =0	11,0052	0,972	pp 301↑-402↓	-0,6471
				pp 413↑-514↓	0,3955
-				nn 301↑-400↑	-0,2116
				nn 301↑-402↑	0,2242
^{146}Sm				nn 541↑-642↑	-0,3962
				nn 501↑-611↓	0,439
	K=1	15,72182	2,735	nn 431↓-532↓	-0,253
				pp 400↑-501↑	0,1522
				pp 321↓-422↓	0,1871
				pp 651↓-532↓	0,1695
				pp 422↑-503↑	0,1172
				nn 521↓-651↓	0,7338
	K=0	11,1526	1,035	pp 301↑-402↓	-0,3537
_				pp 413↑-514↓	0,2562
148 Sm	K=1	15,910	3,362	nn 301↑-400↑	-0,212
				nn 541↑-611↓	0,2327
				pp 422↑-503↑	0,2092
				nn 422↓-523↓	-0,7189
		10,754	1,205	pp 310↑-411↓	0,2446
	K=0			pp 431↑-521↑	0,2202
				pp 422↑-512↑	0,3476
-				pp 413↑-514↓	-0,7044
150 Sm		15,86	2,649	nn 301↑-400↑	0,2659
				nn 422↓-523↓	0,2716
	K=1			pp 503↓-413↓	0,4948
				nn 541↑-611↓	-0,2007
				<u>nn 541↑-642↑</u>	-0,2797
				nn 413↑-503↑	-0,582
			1,963	pp 310↑-420↑	-0,2281
				pp 310↑-411↓	0,3837
	K=0	10,895		pp 431↑-532↓	0,1817
				pp 431↑-521↑	0,2574
				pp 301↑-402↓	0,1671
-				pp 422↑-523↓	-0,261
150				nn 301↑-402↑	0,0978
¹⁵² Sm				nn 761↑-642↑	0,2692
				nn 422↑-503↑	-0,2179
				nn 402↑-303↑	0,0931
	K=1	16.071	3.459	nn 422↓-523↓	0,1473
		10,071	2,107	nn 404↓-505↓	0,0923
				pp 431↑-512↑	0,1008
				pp 541↑-642↑	0,1724
				pp 761↑-422↑	0,1354
				pp 303↓-404↓	0,1462

Tablo E.4. (Devamı)

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
¹⁵⁴ Sm —	K=0	10,85	1,926	nn $550^{+}651\downarrow$ nn $530^{+}651\downarrow$ nn $422^{+}523\downarrow$ nn $422^{+}512^{+}$ pp $310^{+}420^{+}$ pp $310^{+}411\downarrow$ pp $530^{+}640^{+}$ pp $431^{+}532\downarrow$ pp $312^{+}422^{+}$ pp $541^{+}651^{+}$ pp $532\downarrow$ - $642\downarrow$ pp $523\downarrow$ - $633\downarrow$	-0,1211 0,1011 0,1333 -0,1083 -0,6771 0,2143 -0,3958 0,1312 0,1415 -0,1195 -0,1230 0,2167 -0,1082 -0,1159
	K=1	15,39	1,970	nn $541^{-}642^{+}$ nn $752^{+}622^{+}$ pp $321^{+}431^{+}$ pp $420^{+}321^{+}$ pp $411^{+}512^{+}$ pp $651^{+}541^{+}$ pp $321^{+}411^{+}$ pp $312^{+}402^{+}$ pp $312^{+}402^{+}$ pp $312^{+}402^{+}$ pp $402^{+}-503^{+}$ pp $303^{+}-404^{+}$	0,1743 0,2414 -0,2672 0,2351 -0,2593 0,1878 0,1501 -0,1946 0,1435 0,1101 -0,1063 -0,5030 0,1978

Tablo E.4. (Devamı)

Tablo E.5. ¹⁵²⁻¹⁶⁴Gd izotoplarının K=0 ve K=1 dalının asimptotik kuantum numaraları.

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 521↓-640↑	-0,2987
				nn 651↑-752↓	0,1812
	<i>V</i> _0	11 2192	1466	pp 310↑-420↑	-0,4826
	K =0	11,5162	1400	pp 301↑-402↓	0,2367
¹⁵² Gd				pp 422↓-512↓	-0,4514
				pp 514↓-624↓	-0,3802
				nn 532↓-633↓	-0,3630
	K=1	15,53693	1,6613	pp 530↑-651↑	-0,4997
				pp 651↓-541↑	0,1805
				pp 532↑-622↓	0,5578
	K-0	11,5262	1648,573	nn 422↑-512↑	0,1706
				pp 310↑-420↑	0,5692
				pp 431↓-521↓	0,5094
	IX =0			pp 301↑-402↓	0,312
				pp 413↑-514↓	-0,1874
¹⁵⁴ Gd				pp 514↓-624↓	0,1704
				nn 541↑-642↑	0,0867
				nn 532↓-633↓	-0,2713
	K=1	16,07878	1,8622	nn 422↓-523↓	0,1169
				pp 550↑-651↑	-0,4507
				pp 541↓-642↓	0,8014

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				pp 310↑-411↓	0,4502
				pp 550↑-640↑	0,1636
				pp 440↑-541↓	-0,1631
	V_{-0}	10 7221	1777 012	pp 431↑-532↓	0,2578
	K =0	10,7221	1777,915	pp 312↓-411↑	-0,184
				pp 541↑-651↑	-0,1551
¹⁵⁶ Gd				pp 422↑-523↓	-0,5639
04				pp 523↓-402↑	-0,1905
				nn 431↑-512↑	-0,2435
				nn 532↓-633↓	0,2757
	K=1	15,83710	1,8368	nn 422↑-514↓	0,2165
				pp 532↑-622↓	-0,8018
				pp 622↓-532↑	0,2415
		10,7014	1785,756	nn 422↑-523↓	0,2234
				nn 512↑-633↓	0,2418
				pp 310↑-420↑	0,1591
	K -0			pp 310↑-411↓	0,3966
				pp 550 ↑-640 ↑	0,1561
				pp 431↑-532↓	0,2507
¹⁵⁸ Gd				pp 312↓-411↑	-0,211
_				pp 422↑-523↓	-0,5659
				nn 532↑-431↑	0,5561
				nn 532↓-633↓	-0,2307
	K=1	16,27338	2,0792	pp 640↑-761↑	-0,1773
				pp 541↓-642↓	0,5390
		K=0 10,7014 1785,756 K=1 16,27338 2,0792 K=0 10,5296 1445,41	pp 202↑-532↓	-0,1862	
				pp 310↑-411↓	0,316
				pp 530↑-400↑	-0,3943
	K=0	10,5296	1445,41	pp 431↑-532↓	-0,218
				pp 312↓-411↑	-0,3884
				pp 422↑-523↓	-0,5381
160 Gd				nn 532↓-633↓	0,3641
				nn 503↑-413↓	-0,3158
	K=1	15.32180	1.5387	pp 512↑-422↓	0,2480
	•	,-=100	-,- 00,	pp 642↓-532↓	-0,5479
				pp 532↑-622↓	-0,2545
				pp 622↑-523↑	-0,2435

Tablo E.5. (Devamı)

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				pp 310↑-420↑	-0,1823
				pp 310↑-411↓	0,2781
				pp 550 ↑-640 ↑	-0,1548
	K-0	10 6413	2217 408	pp 431↑-532↓	-0,2405
	K =0	10,0413	2217,408	pp 312↓-411↑	0,2279
162 C d				pp 431↑-532↓	0,1926
Gu				pp 422↑-523↓	0,625
_				pp 411↑-512↑	-0,1815
	K=1	16,27105	2,4407	nn 532↓-633↓	0,2243
				nn 512↑-422↓	-0,5408
				pp 312↑-402↓	-0,5535
				pp 402↓-503↓	-0,4665
				nn 541↑-651↑	-0,443
	K-0	10 5524	1712 615	pp 431↑-532↑	-0,1821
	K =0	10,5554	1712,015	pp 422↑-523↓	-0,6076
_				pp 411↑-512↑	0,4034
¹⁶⁴ Gd				nn 402↑-303↑	0,2321
				nn 532↓-633↓	0,1808
	K=1	16,26841	1,9342	nn 413↑-514↑	0,1964
				pp 541↓-642↓	0,5702
				pp 402↓-503↓	0,6548

Tablo E.5. (Devamı)

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 422↑-512↑	-0,3907
				nn 514↑-404↑	0,4029
				pp 530↑-640↑	0,1048
				pp 440↑-541↓	0,2635
				pp 431↑-532↓	0,1055
				pp 431↓-521↓	0,1931
				pp 312↓-411↑	0,4189
	K=0	11.412	1.208	pp 301↑-402↓	-0,1858
				pp 301↓-651↓	0,3837
				pp 541↓-651↓	0,1113
¹⁵⁶ Dy				pp 422↑-523↓	-0,1111
				pp 422↓-512↓	0,1414
				pp 532↓-642↓	0,1006
				pp 413↑-514↓	0,1100
				pp 514↓-624↓	0,1223
				nn 550↓-640↑	0.1585
	V -1	15.752	2.691	nn 541↑-651↓	-0.1666
				nn 512↑-422↓	0.1116
	$\mathbf{N} - 1$			pp 321↑-420↑	0.2476
				pp 550↓-651↓	-0.8363
				pp 400↑-512↓	-0.1021
				nn 512↑-633↓	-0.222
				nn 514↑-404↑	0.104
				pp 310↑-411↓	-0.2014
				pp 541↑-640↓	0.1376
				pp 431↑-532↓	0.1507
				pp 431↑-521↑	-0.1242
	K=0	11 1022	1 271	pp 312↓-411↑	-0.1363
		11.1025	1.271	pp 301↑-402↓	-0.6093
				pp 541↓-651↓	0.129
				pp 422↑-523↓	0.1743
1580				pp 532↑-642↑	-0.1162
Dy				pp 413↑-514↓	0.2938
				pp 514↑-624↑	-0.4288
				nn 440↑-532↓	0.3537
				nn 420↑-761↑	-0.2025
				nn 541↑-422↑	0.2177
				nn 532↑-633↑	-0.2397
	K=1	16 151	2 971	nn 422↑-514↓	0.1222
		10.154	2.8/1	pp 301↑-402↑	0.1499
				pp 422↓-523↓	-0.2065
				pp 413↑-514↑	-0.1653
				pp 404↓-505↓	0.601

Tablo E.6.¹⁵⁶⁻¹⁶⁴Dy izotoplarının K=0 ve K=1 dalının asimptotik kuantum numaraları.

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				pp 310↑-411↓	0.154
				pp 550↑-640↑	0.1337
				pp 431↑-532↓	-0.1401
				pp 312↓-411↑	0.6552
	K-0			pp 301↑-402↓	0.3826
	R =0	11.054	1.405	pp 541↓-651↓	0.1259
				pp 422↑-523↓	-0.1596
				pp 5321-6421	0.1138
				pp 413↑-514↓	0.2358
				pp 5141-6241	-0.3416
160 Dy				nn 301↑-400↑	0,2172
				nn 301↑-402↑	0,1032
				nn 422↓-523↓	0,1352
				pp 330↑-420↓	0,4559
				pp 4201 - 532↓	-0,1180
	K=1	15.006	2.273	pp 321↓-422↓	0,2307
				pp 532 -431	0,1166
				pp 431 - 512 + 502 + 412 + 502 + 412 + 502 + 412 + 502 + 412 + 502 + 5	0,4299
				pp $503 - 413$	0,3829
				pp $503 - 404 = 12$	0,1473
				pp 5054-4154	-0,1099
				Nn 550↑-640↑	-0.1719
				Nn 420↑-521↓	0.415
				Nn 4221 -523↓	0.3011
				pp 312↓-411↑	-0.1692
		10.81	1.450	pp 550 -640	0.1032
	K=0	10.01	11100	pp 431 -532↓	0.1096
				pp 312↓-411	0.2297
				pp $431 -532 \downarrow$	-0.1054
				pp $422 -523\downarrow$	-0.1343
162-				$pp 413 -514 \downarrow$	-0.3763
¹⁶² Dy				pp 514+-624+	0.5463
				nn 4001-3011	-0.1463
				nn 5411-6421	-0.1806
				nn 512 \uparrow -422 \downarrow	-0.1773
				pp 640 -761	-0.3433
	K=1	15.276	1.632	pp 761 -422	0.6623
				pp 501↓-411↓	0.2447
				pp $642 + 532 \downarrow$	-0.1324
				pp $532 -622 \downarrow$	-0.2346
				pp $402 \neq -503 \neq$	0.1508
				pp 303 ↓- 404↓	-0.126

Tablo E.6. (Devamı)

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 550↑-640↑	-0.2551
				nn 514↓-613↑	0.6376
				pp 310↑-411↓	-0.1706
				pp 550↑-640↑	0.1338
				pp 550 ↑-66 0↑	-0.1167
				pp 431↑-532↓	-0.1418
	<i>V</i> _0	10 905	1 631	pp 312↓-411↑	-0.224
	K =0	10.905	1.051	pp 301↑-402↓	0.1692
				pp 541↓-651↓	0.1263
				pp 431↑-532↓	0.1187
				pp 422↑-523↓	0.1665
164 D				pp 532↑-642↑	-0.1142
Dy				pp 413↑-514↓	-0.3032
				pp 514↑-624↑	-0.2858
				nn 541↑-642↑	-0.1048
				nn 521↑-431↑	0.1179
			4.671	nn 402↓-503↓	-0.1047
				nn 532↑-633↑	0.2603
	IZ 1	16.298		nn 523↓-613↑	0.1019
	K=1			pp 541↑-642↑	-0.201
				pp651↓-752↓	0.7658
				pp 532↑-622↓	0.121
				pp 512↑-422↓	0.1031
				pp 303↓-404↓	0.1425
				nn 541↑-651↑	0.5017
				pp 310↑-420↑	0.1175
				pp 310↑-411↓	-0.2006
				pp 550 ↑-6 40↑	0.1602
				pp 550 ↑-66 0↑	-0.1959
				pp 431↑-532↓	0.1674
				pp 312↓-411↑	0.1947
	K=0	10 8918	2 356	pp 301↑-402↓	-0.1895
		10.0910	2.550	pp 541↓-651↓	0.1516
				pp 431↑-532↓	0.1916
				pp 422↑-523↓	-0.196
				pp 532↑-642↑	0.138
166 D v				pp 413↑-514↓	-0.3658
Dy				pp 5231-6331	-0.1099
				pp 5141-6241	-0.363
				nn 431↓-532↓	0.1805
				nn 400↑-301↑	-0.2906
				nn 301↑-402↑	-0.1377
				nn 541↑-642↑	-0.103
				nn 431↑-512↑	0.2886
	K=1	16 196	2 005	nn 532↑-633↑	-0.2663
		10.130	3.905	nn 413↑-514↑	0.1589
				pp 541↑-642↑	-0.201
				pp 532↑-622↓	-0.6247
				pp 512↑-422↓	0.1109
				pp 303↓-404↓	0.119

Tablo E.6. (Devamı)

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
1685	K=0	10.946	1.928	$\begin{array}{c} nn-pp\\ nn 550^{+}.660^{+}\\ nn 532^{+}.642^{+}\\ pp 310^{+}.411^{+}\\ pp 550^{+}.640^{+}\\ pp 550^{+}.660^{+}\\ pp 431^{+}.532^{+}\\ pp 312^{+}.411^{+}\\ pp 301^{+}.402^{+}\\ pp 541^{+}.651^{+}\\ pp 431^{+}.532^{+}\\ pp 422^{+}.523^{+}\\ pp 532^{+}.642^{+}\\ \end{array}$	-0.1172 0.1062 0.1741 0.1293 -0.1235 0.1267 0.6077 -0.129 -0.1227 0.1836 -0.1467 0.1111
¹⁶⁸ Dy	K=1	15.966	3.201	$\begin{array}{c} pp \ 413\uparrow-514\downarrow\\ pp \ 514\uparrow-624\uparrow\\ nn \ 301\uparrow-400\uparrow\\ nn \ 301\uparrow-402\uparrow\\ nn \ 301\downarrow-651\uparrow\\ nn \ 532\uparrow-633\uparrow\\ nn \ 413\uparrow-514\uparrow\\ pp \ 312\uparrow-402\downarrow\\ pp \ 651\downarrow-752\downarrow\\ pp \ 312\uparrow-402\downarrow\\ pp \ 532\uparrow-622\downarrow\\ pp \ 512\uparrow-422\downarrow\\ pp \ 503\downarrow-404\downarrow\\ \end{array}$	0.1111 -0.4909 -0.1912 -0.337 0,2015 0,3069 0,2548 -0,1078 0,1061 0,218 0,2974 0,1234 -0,4124 -0,1032

Tablo E.6. (Devamı)

Tablo E.7.¹⁸⁰⁻¹⁹⁰W izotoplarının K=0 ve K=1 dalının asimptotik kuantum numaraları.

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
				nn 550↑-631↓	-0.5468
				nn 532↑-642↑	0.2119
	K=0	11.05	1.700	nn 752↑-633↓	-0.3546
180117				pp 550↑-651↓	-0.5199
vv				pp 530↑-660↑	0.2601
			3.648	nn 532↓-633↓	0.2678
	K=1	15.47		nn 422↑-514↓	-0.4209
				nn 404↓-505↓	-0.3174
				pp 523↑-613↓	-0.6326
				nn 532↑-642↑	0,5628
				nn 413↑-514↑	0,2036
	K=0	11.212	1.454	pp 550↑-651↑	0,4475
18211				pp 530↑-660↓	-0,4837
vv				pp 422↑-523↓	-0,2618
				nn 532↓-633↓	-0.2230
	K=1	15.394	2.055	pp 503↓-413↓	0.4508
				pp 523↑-613↓	0.7321

Çekirdek	Seviye	E (MeV)	$\frac{BE1}{(e^2 fm^2)}$	Seviye Yapısı nn-pp	Genlik ψ
				pp 550 ⁺ -660 ⁺	-0.3867
	<i>V</i> -0	10.51	1 066	pp 411↑-512↑	-0.2021
	K =0	10.31	1.900	pp 301↓-411↓	0.2331
184117				pp 301↑-402↓	0.7080
vv				nn 420↑-521↑	-0.3233
	V-1	15 37	3 008	nn 422↓-523↓	-0.3783
	K =1	15.57	5.008	nn 532↓-633↓	0.2472
				pp 523↑-613↓	-0.6401
				nn 550↑-640↑	-0.3125
	K=0			pp 550↑-660↑	0.6310
		10.77	1.925	pp 514↓-633↑	-0.3015
^{186}W				nn 420↑-521↑	0.2367
	K=1	15.46	4.358	nn 532↓-633↓	-0.2844
	K I			nn 413↑-505↓	0.3822
				pp 523↑-613↓	-0.6322
				nn 523↓-633↓	0.4163
			2.599	pp 411↑-512↑	-0.3089
	K=0	10.506		pp 301↓-411↓	0.2517
				pp 301↑-402↓	0.3459
^{188}W				pp 422↑-523↓	-0.5093
				nn 431↑-501↓	0.4092
	K=1	15 003	2.827	nn 532↓-633↓	-0.2734
		10.000	2:027	nn 413↑-505↓	0.4422
				pp 541↓-642↓	-0.6112
				nn 523↓-633↓	-0.5901
				pp 411↑-512↑	0.3229
	K=0	10.582	2.046	pp 301↓-411↓	0.2786
100				pp 301↑-402↓	0.2165
¹⁹⁰ W				pp 303↓-402↑	-0.3622
				nn 532↓-633↓	0.2940
	K=1	15 028	2 700	pp 651↓-532↓	-0.4667
		10.020	2.700	pp 541↓-642↓	0.3891
				pp 631↑-752↑	-0.2215

Tablo E.7. (Devamı)

Tablo E.8.^{236,238}U izotoplarının K=0 ve K=1 dalının asimptotik kuantum numaraları.

Çekirdek	Seviye	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn-pp	Genlik ψ
	K=0	7.444	1.727	pp 505↓-624↑	-0,994
²³⁶ U	<i>V</i> _1	13 710	3 905	nn 505↑-606↑	0,650
	N -1	15.710	5,905	pp 622↓-523↓	0,320
	K=0			nn 521↑-631↑	0,192
				nn 514↑-624↑	-0,123
		7.351	1,974	pp 633↑-734↓	0,286
²³⁸ U				рр 541↓-660↑	0,721
-				pp 532↑-642↑	-0,571
	K=1	13 600	3 9 9 5	nn 505↑-606↑	0,620
		15.090	5,885	pp 622↓-523↓	0,320

ÖZGEÇMİŞ

Nilüfer Demirci Sayğı İstanbul'da doğdu. İlk orta ve lise öğrenimini İstanbul'da tamamladı. Lisans öğrenimini Sakarya Üniversitesi Fen Edebiyat Fakültesi Fizik bölümünde tamamladıktan sonra yüksek lisans öğrenimlerini İstanbul Üniversitesi Fen Bilimleri Enstitütüsü Fizik Öğretmenliği ve Sakarya Üniversitesi Fen Bilimleri Enstitütüsü Fizik anabilim dalında tamamlamıştır. Marmara Üniversitesi Eğitim Bilimleri Enstitütüsü, Matematik ve Fen Bilimleri Eğitimi Bölümü, Fen Bilgisi Eğitimi Anabilim dalında doktora öğrenimini tamamladı. Bu doktora öğrenimi sırasında Sakarya Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümünde araştırma görevlisi olarak göreve ve Sakarya Üniversitesi Fen Bilimleri Enstitüsü Fizik bölümünde ki görevine devam etmektedir.