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Abstract: This paper is an introduction to disoriented knot theory, which is a generalization of the oriented
knot and link diagrams and an exposition of new ideas and constructions, including the basic de�nitions and
concepts such as disoriented knot, disoriented crossing and Reidemesiter moves for disoriented diagrams,
numerical invariants such as the linking number and the complete writhe, the polynomial invariants such as
the bracket polynomial, the Jones polynomial for the disoriented knots and links.
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1 Introduction
This paper gives an introduction to the subject of disoriented knot theory. We introduce the notion of a
disoriented crossing and explain how to adapt the fundamental concepts and invariants of the knot theory
to a setting in which we have disoriented crossing.

The disoriented knot and link diagrams arise when calculating the Jones [1, 2], HOMFLY [3] polynomials
etc., using the oriented diagram structure of the state summation for the oriented knot and link diagrams.
When we split a crossing of an oriented knot diagram using Kau�man’s bracket model [4, 5], one of the
occurring diagram is a disoriented diagram. Since the disoriented diagrams acquire orientations outside the
category of knot and link diagrams, only unoriented and oriented knot and link diagrams have previously
been considered in the literature for the development of knot theory.

In this paper, we put disoriented knot and link diagrams on the same footing as oriented knot and
link diagrams. We de�ne the concepts of a disoriented diagram and a disoriented crossing and give the
Reidemeister moves for disoriented diagrams. We see that most classic basic concepts of knot theory are
not invariant for the disoriented diagrams of a knot or link. Here, we rede�ne the linking number for the
disoriented link diagrams and prove that the linking number is a link invariant of the link. We de�ne a
new concept called complete writhe instead of the classic writhe that is not a regular isotopy invariant for
disoriented link diagrams. Thus, the normalized bracket polynomial (the Jones polynomial) by the complete
writhe for disoriented link diagrams will be an invariant of the link.

Thepaper is organized as follows. Section 2 gives thede�nitions of the disoriented knot and linkdiagrams
and disoriented crossing. In this section, we also give the brief description about of disoriented diagrams and
the Reidemeister moves on the disoriented diagrams.

Sections 3 and 4 contain some numerical invariants. In Section 3, we de�ne the linking number for the
disoriented link diagrams, prove that the linking number is a link invariant and give two examples. In Section
4, we adapt the writhe for the disoriented knot and link diagrams. We de�ne a new concept called complete
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writhe for the disoriented knot and link diagrams and prove that the complete writhe is invariant under the
Reidemeister moves RII and RIII for the disoriented diagrams.

Section 5 presents a review of the bracket polynomial [4–6] and the Jones polynomial for the disoriented
knot and link diagrams. We expand the bracket polynomial for disoriented diagrams of a knot (or link). So,
the normalized bracket polynomial can also be extended for the disoriented knot and link diagrams. Since
the normalized bracket polynomial (the Jones polynomial) is invariant under the �rst Reidemeister move for
oriented knot diagrams, it is a stronger invariant than regular isotopy invariant for the disoriented diagrams.
However, the Jones polynomial is not invariant under all the moves on disoriented diagrams. Therefore, it is
not an invariant for the disoriented knot and link diagrams. In this section, we rede�ne the Jones polynomial
for the disoriented knot and link diagrams by using complete writhe. This polynomial called the complete
Jonespolynomial is invariant under all themoves ondisorienteddiagrams. Thus it is a knot and link invariant.
Moreover, the complete Jones polynomial of each disoriented diagram of a knot is equal to the original Jones
polynomial of the knot. The last part of this section contains a few examples.

2 De�ning disoriented knots and links
A knot is an embedding of a circle in three dimensional space R3 (or S3). An oriented knot is a knot diagram
which has been given an orientation. Taking into account the facts about the embedding, we can also de�ne
an oriented knot as an embedding of an oriented circle in three dimensional space. In a similar way, we de�ne
a disoriented knot.

De�nition 2.1. A disoriented circle is a circle upon which we have chosen two points, and have chosen an
orientation of both of the arcs between those two points. We allow that the orientation of one of the arcs is the
reverse of the orientation of the other.

A few simple disoriented diagrams, a disoriented circle and their replacements have been illustrated in Fig. 1.
The basic reductionmove in Fig. 1 corresponds to elimination of two consecutive cusps on a simple loop. Note
that it is allowed to the cancelation of consecutive cusps along a loopwhere the cusps both points to the same
local region of the two local regions delineated by the loop but not allowed to the cancelation of a "zig-zag"
where two consecutive cusps point to opposite local sides of the loop. A zig-zag is represented an oriented or
disoriented virtual crossing of the oriented or disoriented diagram of a knot and link. Since we work on the
classical knot and link diagrams in this paper, we do not encounter a zig-zag. Thus, for we can easily draw
a disoriented knot or link diagram, we use the local disoriented curve of the form instead of the
cusp with two points of the form . Due to our present disclosure, a disoriented curve can be replaced
with an oriented curve. Likewise, a disoriented circle can be replaced with an oriented circle. For detailed
information about disoriented con�gurations, replacements and disoriented relations can be seen in [7–11].

Fig. 1. Simple Disoriented Diagrams and Replacements.
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De�nition 2.2. Adisoriented knot is an embedding of a disoriented circle in three dimensional spaceR3 (or S3).
A disoriented link of k-components is an embedding of a disjoint union of k circles in R3, where at least one of
circles is disoriented. Two disoriented knots equivalent if there is a continuous deformation of R3 taking one to
the other.

If K a disoriented knot (or link) in R3, its projection is π(K) ⊂ R2, where π is the projection along the z-axis
onto the xy-plane. The projection is said to be regular projection if the preimage of a point of π(K) consists of
either one or two points of K. If K has a regular projection, then we can de�ne the corresponding disoriented
diagram D by redrawing it with an arc near crossing (the place with two preimages in K) to incorporate the
overpass/underpass information.

De�nition 2.3. A crossing of a disoriented knot K is disoriented if the overpass and underpass arcs of the
crossing have opposite orientations. In other words, if A1 and A2 are the arcs of the disoriented circle of which
K is an embedding, then one of the underpass and overpass arcs is A1, and the other is A2. If a crossing of a
disoriented knot K is not disoriented, we say that it is oriented. An oriented knot is a disoriented knot with zero
disoriented crossing. For example, see Fig. 3.

De�nition 2.4. Let L be a link with exactly two components, K1 and K2. Choose a disorientation of both K1 and
K2. Denote the two arcs of K1 by A1

1 and A2
1, and denote the two arcs of K2 by A1

2 and A2
2. We say that a crossing

of L is disoriented if either of the following holds:
1. One of the underpass and overpass arcs of the crossings is A1

1, and the other is A1
2 or A2

2.
2. One of the underpass and overpass arcs of the crossings is A2

1, and the other is A2
2 or A1

2.
Otherwise, we say that the crossing is oriented.

Remark 2.5. Similar considerations apply to disoriented links with more than two components. We have not
discussed here to avoid going beyond the purpose of the paper.

Although the underpass and overpass of an oriented crossing are the same with the underpass and overpass
of a disoriented crossing, the sings of these crossings are not the same. Then, a disoriented crossing can not
be replaced with an oriented crossing. We illustrate oriented and disoriented crossings in Fig. 2.

Fig. 2. Disoriented and Oriented Crossings.

The Reidemeister moves on disoriented diagrams generalize the Reidemeister moves for the oriented knot
and link diagrams. We illustrate the Reidemeister moves on disoriented diagrams in Fig. 4, 5 and 6. The
Reidemeister moves of types II and III for oriented diagrams are expanded on disoriented diagrams. A new
disoriented curled move is added to Reidemeister move of type I for disoriented diagrams. Disoriented knot
and link diagrams that can be connected by a �nite sequence of thesemoves and their inversemoves are said
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to be equivalent. We list the equivalence of these Reidemesiter moves illustrated in Fig. 4, 5 and 6 as below:

Planar moves ∶ I′0 ↔ I0, I′′0 ↔ I0
The move RI ∶ I ↔ I0
The move RI′ ∶ I′ ↔ I1

The moves RII ∶ For i ∈ {0, 1, 2}, Ji ↔ K0, J′i ↔ K0,
Li ↔ K′0, L′i ↔ K′0

The moves RIII ∶ For i ∈ {0, 1, 2}, Ti ↔ Si , T′i ↔ S′i , T′′i ↔ S′′i .

Fig. 3. Disoriented Diagrams of the right-hand trefoil.

D0 D1 D2 D3

Fig. 4. Planar and First Reidemeister Moves for Disoriented Diagrams.

I0 I′0 I′′0

I I′ I1

Fig. 5. Second Reidemeister Moves for Disoriented Diagrams.

K0 K′0

J0 J′0 J′′0

J1 J′1

J2 J′2

L0 L′0 L′′0

L1 L′1

L2 L′2
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Fig. 6. Third Reidemeister Moves for Disoriented Diagrams.

T0 T′0 T′′0

T1 T′1 T′′1

T2 T′2 T′′2

S0 S′0 S′′0

S1 S′1 S′′1

S2 S′2 S′′2

Remark 2.6. Note that there are many other possible choices of the orientation of the arcs in Fig. 6.

We call regular isotopy to the equivalence relation generated by the moves RII and RIII (and the planar
moves), ambient isotopy to the equivalence relation generated by the moves RI, RII and RIII, and complete
ambient isotopy to the equivalence relation on disoriented diagrams that is generated by all the moves in
Fig. 4, 5 and 6. Since there is no disoriented crossing of an oriented diagram, the complete ambient isotopy
is equivalent to the ambient isotopy on the oriented diagrams. But, the complete ambient isotopy is more
powerful than the ambient isotopy for the disoriented knot and link diagrams.

3 Linking number
In this section, we de�ne the linking number for disoriented links and prove that the linking number of a
disoriented link is its invariant.

De�nition 3.1. Let L be a disoriented link with two components K1 and K2. The linking number lk(L) is de�ned
by formula

lk(L) = 1
2
∣ ∑
o∈K1⊓K2

ε(o) − ∑
d∈K1⊓K2

ε(d)∣

where K1 ⊓ K2 denotes the set of crossings of K1 with K2 (no self-crossings), where the �rst sum runs over the
oriented crossings of K1 ⊓K2, the second sum runs over the disoriented crossings of K1 ⊓K2, and ε(o) and ε(d)
denote the sign of an oriented crossing and the sign of a disoriented crossing of belonging to K1⊓K2, respectively.

The following theorem gives that the linking numbers of all the disoriented diagrams of a link are equal.

Theorem 3.2. The linking number lk(L) is an invariant of the link L.

Proof. Let D be a disoriented regular diagram of the link L with two components. We suppose that D′ is
another regular diagram of L. From our discussions so far, we know that we may obtain D′ by performing, if
necessary several times, the Reidemeister moves in Fig. 4, 5 and 6. Therefore, in order to prove the theorem,
it is su�cient to show that the value of the linking number remains unchanged after each of the Reidemeister
moves is performed on D.
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The move RI: At the crossings of D at which we intend to apply the move RI, every section (edge) of such
a crossing belongs to the same component. Therefore, applying themove RI does not a�ect the calculation of
the linking number. In the same way, the move RI′ does also not a�ect the calculation of the linking number.

The moves RII: We shall only examine the e�ects of the cases J′0, J′2, L′0 and L′1 of the moves RII in Fig.
5 to the calculation of linking number. The remaining cases of the moves RII can be examined in a similar
way. An application of the moves RII on D only has an e�ect on the linking number if A and B belong to
di�erent components, see Fig. 7. In the cases (a) and (c), the crossing c1 is disoriented and the crossing c2 is
oriented. Also, the crossings c1 and c2 have the same signs. By De�nition 3.1, we get ε(c1) − ε(c2) = 0. In the
cases (b) and (d), both crossings are disoriented. Since the crossings c1 and c2 have opposite signs, we get
ε(c1) + ε(c2) = 0. So, in each case, the linking number is unchanged under the second Reidemeister moves.

Fig. 7. Some Second Reidemeister Moves.

A B

A B A B

A B

A B

A B

A B

A B

(a)

(c)

(b)

(d)

c1

c2

c1

c2

c1

c2

c1

c2

The moves RIII: Finally, let us consider the e�ect of the moves RIII on D. We only consider the e�ect of the
cases T0 and S0, T′0 and S′0, T′′1 and S′′1 , T2 and S2 of the moves RIII in Fig. 6 to the calculation of linking
number. That is, we only examine the e�ect on the signs of the crossings c1, c2, c3 and c′1, c′2, c′3 in Fig. 8.

Fig. 8. Some Disoriented Third Reidemeister Moves.
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To be identical the e�ects of the cases Ti and Si, the following equations should always be hold:
If all crossings are oriented or disoriented,

ε(c1) = ε(c′1), ε(c2) = ε(c′3), ε(c3) = ε(c′2).

If one of the crossings c2 and c′3 is oriented while other is disoriented or one of the crossings c3 and c′2 is
oriented while other is disoriented

ε(c1) = ε(c′1), ε(c2) = −ε(c′3), ε(c3) = ε(c′2)

or
ε(c1) = ε(c′1), ε(c2) = ε(c′3), ε(c3) = −ε(c′2).
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If one of the crossings c2 and c′3 is oriented while other is disoriented and one of the crossings c3 and c′2 is
oriented while other is disoriented,

ε(c1) = ε(c′1), ε(c2) = −ε(c′3), ε(c3) = −ε(c′2).

If A, B and C belong to the same component for the only case in Fig. 8, then the linking number is una�ected.
So we suppose that A belong to a di�erent component than B and C. Then the parts that have an e�ect on
linking number is the sum of the signs of the crossings c1, c2 and c′1, c′3. Since the crossings are oriented in
the case (a), we have

ε(c1) + ε(c2) = ε(c′1) + ε(c′3)

by De�nition 3.1. Since the crossing c′3 is disoriented and others are oriented in the case (b), we have

ε(c1) + ε(c2) = ε(c′1) − ε(c′3).

Since the crossing c′3 is oriented and others are disoriented in the case (c), we have

ε(c1) + ε(c2) = ε(c′3) − ε(c′1).

Since the crossing c1 and c′1 are disoriented and others are oriented in the case (d), we have

ε(c2) − ε(c1) = ε(c′3) − ε(c′1).

Thus, none of the sums does cause any change to the linking number. The other cases, (i.e. the various
possibilities for the components that A, B and C belong to) can be treated in a similar manner. The remaining
cases of the moves RIII can be examined in a similar way. Hence, the linking number remains unchanged
when we apply the moves RIII.

We suppose now that L is a disoriented link with n components, K1, K2, ..., Kn With regard to two compo-
nents, Ki and Kj, i < j, we may de�ne as an extension of the linking number lk(L) = lk(Ki , Kj), 1 ≤ i < j ≤ n
This approach will give us n(n − 1)/2 linking numbers, and their sum,

lk(L) = ∑
1≤i<j≤n

lk(Ki , Kj)

is called the total linking number of K. One can show that, in fact, the total linking number of K is an invariant
of K.

Remark 3.3. The disoriented linking number is always equal to the oriented linking number, regardless of the
choice of disorientation. Indeed, if one can change the sign of an oriented crossing by making disoriented, then
it will be changed back again in the sum de�ning the linking number.

Example 3.4. 1. Let L be any disoriented diagram of unlink in Fig. 9. In the case (a), there are two oriented
crossings which have the opposite sign. So, ε(o) = 0. In the cases (b) and (c), there are a disoriented
crossing and an oriented crossing which have the same sign. So, ε(o) − ε(d) = 0. In the case (d), there are
two disoriented crossings which have the opposite sign. So, ε(d) = 0. Thus, in each case, we get lk(L) = 0.

2. Let L be any disoriented diagram of link in Fig. 10. In the case (a), there are two oriented crossings which
have the same sign. So, ε(o) = 2. In the cases (b) and (c), there are a disoriented crossing and an oriented
crossing which have the opposite sign. So, ∣ε(o) − ε(d)∣ = 2. In the case (d), there are two disoriented
crossings which have the negative sign. So, ε(d) = −2 and ∣ε(o) − ε(d)∣ = 2. Thus, in each case, we get
lk(L) = 1.
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Fig. 9. Some Disoriented Diagrams of Unlink

(a)

(c)

(b)

(d)

Fig. 10. Some Disoriented Diagrams of Hopf Link

(a)

(c)

(b)

(d)

4 Writhe
Recall that the classical writhe w(D) of a regular diagram D of a knot (or a link) is the sum of the signs of all
the crossings of D. This de�nition of the writhe can be also adapted to disoriented diagram D of a knot. The
classical writhe is not a knot invariant. However, regularly isotopic oriented knot diagrams have the same
writhe. It can be easily understood that the classical writhe is not invariant under the moves RII and RIII for
disoriented diagrams.

Now, we de�ne a newwrithe called complete writhe for a disoriented diagram of a knot or link and prove
that the complete writhes of all the disoriented diagram of a knot are equal.

De�nition 4.1. Let D be a disoriented regular diagram of a knot (or link) K. The complete writhe of D, cw(D),
is de�ned by formula

cw(D) = ∑
o
ε(o) −∑

d
ε(d),

where the �rst sum runs over the oriented crossings of D, the second sum runs over the disoriented crossings of
D and ε(o) and ε(d) denote the sign of an oriented crossing and the sign of a disoriented crossing of belonging
to D, respectively.

Theorem 4.2. The complete writhe cw(D) is a regular isotopy invariant of the disoriented diagram D.

Proof. If the proof of Theorem 3.2 is adopted for all crossings of the disoriented diagram D, it is easy to see
that the e�ects of themoves RII and RIII on the linking number are identical to those on the complete writhe
cw(D).

The complete writhe cw(D) of a disoriented diagram D is not invariant under the moves RI and RI′.

Theorem 4.3. The complete writhes of all the disoriented diagrams of a non-trivial knot (or non-trivial link)
are same.

Proof. Let K be non-trivial knot (or non-trivial link) of n crossings.We denote an oriented diagram of the knot
K by D0. Let cw(D0) = k, k ∈ Z. Let k1 be the sum of the positive signs of the crossings in the diagram D0 and
k2 be the sum of the negative signs of the crossings in D0. Then, we have

cw(D0) = k = k1 + k2.

Now, letD1 denotes adisorienteddiagramwithonedisoriented crossing. If the signof thedisoriented crossing
is negative, by de�nition of complete writhe

cw(D1) = (k1 − 1) + k2 + 1 = k.
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If the sign of the disoriented crossing is positive,

cw(D1) = k1 + (k2 + 1) − 1 = k.

Similarly, let Dm denotes a disoriented diagram of the knot K, where the sum of the signs of disoriented
crossings of Dm is m ≤ k. If m is positive,

cw(Dm) = k1 + (k2 +m) −m = k.

and if m is negative,
cw(Dm) = (k1 −m) + k2 +m = k.

Thus, for every disoriented diagram, D of the knot K, we have cw(D) = k, k ∈ Z.

Remark 4.4. It can be understood from the proof of Theorem 4.3 that the complete writhe of any disorientation
is equal to the classical writhe with respect to an orientation.

As shown in the following example, all the disoriented diagrams of a knot have the same complete writhe,
although each disoriented diagram of it has a di�erent writhe.

Example 4.5. For disoriented diagrams drawn in Fig. 3 of the right-hand trefoil, we have w(D0) = 3, w(D1) = 1,
w(D2) = −1, w(D3) = −3 and cw(Di) = 3, i ∈ {0, 1, 2, 3}.

5 Polynomial invariants for disoriented knot diagrams
In this section, we give the bracket polynomial and the normalized bracket polynomial for disoriented knots
and links. We show that the bracket polynomial is a regular isotopy invariant for disoriented knots and
links. But, the normalized bracket polynomial is not an invariant for disoriented knots and links. For the
normalized bracket polynomial to be an invariant of the disoriented knot we rede�ne the original normalized
bracket polynomial by considering the notion of disoriented crossing that we call the complete normalized
polynomial or the complete Jones polynomial. The construction of the complete normalized polynomial
invariant begins with the disoriented summation of the bracket polynomial. This means that each local
smoothing is either an oriented smoothing or a disoriented smoothing as illustrated in Fig. 11. The su�cient
information about these smoothings can be found in Kau�man’s works [7, 9]. The bracket expansion for the
crossings with both positive and negative sign in an oriented knot and link diagram can be written as an
oriented bracket state model:

⟨K+⟩ = A⟨K0⟩ + A−1⟨K∞⟩
⟨K−⟩ = A−1⟨K0⟩ + A⟨K∞⟩
δ = −A2 − A−2, ⟨◯ ⊔ D⟩ = δ⟨D⟩

(1)

where K+, K−, K0 and K∞ are diagrams in Fig. 11, ◯ and D is an oriented diagram with zero-crossing of
unknot and an oriented knot or link diagram, respectively and ⊔ denotes disjoint union.

Fig. 11. Crossings and Smoothings.

K+ K− K0 K∞

We can use this model for both oriented and disoriented crossings in a disoriented knot and link diagram.
We call the extended bracket polynomial which we have obtained polynomial from the model (1) for the
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disoriented knot and link diagrams. As in the standard bracket polynomial, in corresponding disoriented
state summation expansion of the extended bracket polynomial we have

⟨D⟩ = ∑
S
⟨D∣S⟩δ∣S∣−1

where S runs over the oriented and the disoriented bracket states of the disoriented diagram D, ⟨D∣S⟩ is the
usual product of vertex weights and ∣ S ∣ is the number of the circle in the state S.

Theorem 5.1. The extended bracket polynomial is a regular isotopy invariant for the disoriented knot and link
diagrams.

Proof. The proof is the same as oriented ones. The proof for oriented link diagrams given in [7].

The extended bracket polynomial is not an invariant of the moves RI and RI′ for the disoriented knot and
link diagrams. Its behavior under these moves is examined in the following lemma.

Lemma 5.2. ⟨I⟩ = (−A3)⟨I0⟩ and ⟨I′⟩ = (−A3)⟨I1⟩, where I, I0 ,I′ and I1 are local diagrams given Fig. 4.

Proof. From Fig. 12, we obtain easily ⟨I⟩ = (Aδ +A−1)⟨I0⟩ = (−A3)⟨I0⟩ and ⟨I′⟩ = (A−1 +Aδ)⟨I1⟩ = (−A3)⟨I1⟩.
Note that I and I′ have the opposite signs.

Fig. 12. Oriented and Disoriented First Reidemeister Move.

= A + A−1

= A−1 + A

The extended bracket polynomial is normalized to an invariant fD(A) of all oriented and disoriented moves
except the RI′ move by the formula

fD(A) = (−A3)−w(K)⟨D⟩

where w(D) is the writhe of the disoriented diagram D. The polynomial fD(A) is the extension of the normal-
ized bracket polynomial by Kau�mann [4, 5] to disoriented knot and link diagrams. The Jones polynomial,
VD(t) is given in terms of this model by the formula

VD(t) = fD(t−1/4).

This de�nition is a direct extension to the disoriented knot and link category of the state sum model for the
original Jones polynomial. It is straightforward to verify the invariances stated above, see [4, 5]. In this way,
we have the Jones polynomial for the disoriented knot and link diagrams. The original Jones polynomial is
not an invariant for the disoriented links. Indeed, it is not invariant under the RI′ move, see Example 5.7.

We now rede�ne the normalized bracket polynomial for the disoriented knot and link diagrams that we
call the complete normalized polynomial and show that the complete normalized polynomial is invariant
under all the moves of the disoriented knot and link diagrams.

De�nition 5.3. We de�ne a polynomial TK ∈ Z[A, A−1] for a disoriented diagram D of a knot (or link) K by the
formula

TK(A) = (−A3)−cw(D)⟨D⟩
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where cw(D) is the complete writhe of disoriented diagram D. We call TK the complete normalized polynomial
of the extended bracket polynomial by the complete writhe.

Theorem 5.4. The complete normalize polynomial is a complete ambient isotopy invariant for the disoriented
knot and link diagrams.

Proof. Since cw(D) is a regular isotopy invariant, so (−A3)−cw(D), and ⟨D⟩ is also a regular isotopy invariant,
it is follows that TK is a regular isotopy invariant. Thus we need check that TK is invariant under the moves
RI and RI′ on disoriented diagrams. Since cw(I) = ε(o) − ε(d) = 1− 0 = 1 and cw(I′) = 0− (−1) = 1, and so
cw(I) = 1 + cw(I0) and cw(I′) = 1 + cw(I1), where I, I′, I0 and I1 are diagrams given in Fig. 4, this follows
at once. Indeed,

TI(A) = (−A3)−cw(I)⟨I⟩ TI′(A) = (−A3)−cw(I
′)⟨I′⟩

= (−A3)−(1+cw(I0))(−A3)⟨I0⟩ = (−A3)−(1+cw(I1))(−A3)⟨I1⟩

= (−A3)−cw(I0)⟨I0⟩ = (−A3)−cw(I1)⟨I1⟩
= TI0(A) = TI1(A).

Finally, we have the particularly important behavior of the polynomials ⟨K⟩, fK and TK under mirror images:

Proposition 5.5. Let K∗ denotes the mirror image of the (disoriented) knot and link K that is obtained by
switching all the crossing of K. Then ⟨K∗⟩(A) = ⟨K⟩(A−1), fK∗(A) = fK(A−1) and TK∗(A) = TK(A−1).

Proof. Reserving all crossings exchanges the roles of A and A−1 in the de�nition of ⟨K⟩, fK and TK .

Next, we show that TK is the Jones polynomial via the complete writhe. We call this polynomial as complete
Jones polynomial for the disoriented knot and link diagrams and denote VK .

Theorem 5.6. The complete normalize polynomial TK yields the complete Jones polynomial, VK(t). That is,
TK(t−1/4) = VK(t).

Proof. Since the complete writhes of all the disoriented diagrams of K are equal by Theorem 4.3, we have that
the complete normalized polynomial are equal for all choice of disorientation. From Remark 4.4, we obtain
that the complete normalized polynomial of K is equal to the Kau�man polynomial of K. By Theorem 5.2.
in [5], TK(t−1/4) = VK(t).

Example 5.7. Let◯1 and◯2 denotes the oriented and the disoriented diagrams of the unknot illustrated in
Fig. 13, respectively. Then,

⟨◯1⟩ = −A3, ⟨◯2⟩ = −A3,

f◯1 = (−A3)−w(◯1)⟨◯1⟩ = 1, f◯2 = (−A3)−w(◯2)⟨◯2⟩ = A6,

T◯1 = (−A3)−cw(◯1)⟨◯1⟩ = 1, T◯2 = (−A3)−cw(◯2)⟨◯2⟩ = 1.

With A = t−1/4, V◯2 = t−3/2 and V◯2 = 1.

Fig. 13. An Oriented and a Disoriented Unknot Diagram With One Crossing.

Example 5.8. For the disoriented diagrams of the right hand trefoil in Fig. 3,

⟨Di⟩ = A−7 − A−3 − A5, i ∈ {0, 1, 2, 3},
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fD0 = (−A3)−w(D0)⟨D0⟩ = A−4 + A−12 − A−16,
fD1 = A2 + A−6 − A−10 = A6(A−4 + A−12 − A−16),
fD2 = A8 + 1 − A−4 = A12(A−4 + A−12 − A−16),
fD3 = A14 + A6 − A2 = A18(A−4 + A−12 − A−16).

With A = t−1/4,

VD0 = t + t3 − t4,
VD1 = t−1/2 + t3/2 − t5/2 = t−3/2(t + t3 − t4),
VD2 = t−2 + 1 − t = t−3(t + t3 − t4),
VD3 = t−7/2 + t−3/2 − t−1/2 = t9/2(t + t3 − t4).

TK = TDi = (−A3)−cw(Di)⟨Di⟩ = A−4 + A−12 − A−16 and VK = t + t3 − t4.

6 Discussion
In this paper, we have given an introduction to the subject of the disoriented knot theory and we have
explained how to adapt the Reidemeister moves, the linking number, the writhe, the bracket polynomial and
the Jones polynomial to the disoriented knot and link diagrams. We have based our work on disorientation.
We have de�ned a newwrithe called complete writhe and rede�ned the Jones polynomial for the disoriented
knots and links diagrams. This paper lays the foundation for future works on these ideas.

Acknowledgement: The author wishes to express his gratitude to the reviewers for the many helpful and
stimulating suggestions that improve the quality of this paper.
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