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Abstract

In this study, we have considered the elliptical harmonic motion
which is the superposition of two simple harmonic motions in perpen-
dicular directions with the same angular frequency and phase difference
of π

2
. It is commonly recognized that a convenient formulation for prob-

lems in planar kinematics is obtained by using number systems. Here
the elliptical numbers are used to derive the Bobillier formula with two
different methods for aforesaid motion; the first method depends on the
Euler-Savary formula and the second one uses the usual relations of the
velocities and accelerations.

1 Introduction

In the planar motion of two conjugate curves on one another, Euler-Savary
formula gives the radius of curvature and center of path traced by a point,
[1, 2]. The complex number approach is an efficient technique which takes care
of signs automatically rather than combined graphical and analytical methods.
The complex number forms of Euler-Savary formula has been derived by [9].
Moreover, by using Müller’s method in complex plane Euler-Savary formula
has been given in [7]. From this aspect the generalization of Euler-Savary
formula in Euclidean, Lorentzian, and Galilean planes has been occurred in
[5]. Also, in [8] Euler-Savary formula in the case of elliptical harmonic motion
has obtained using the formalism of elliptic numbers.
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Here we aim to derive the Bobillier formula using the same formalism.
Bobillier formula gives the relation of curvatures of second order planar motion
which has been studied by [4] in two different ways and the complex number
technique has been applied to obtain this formula in [3]. Bobillier formula is an
analytical approach as Bobillier construction produces a geometric approach.
To introduce Bobillier’s construction in Euclidean plane consider the motion
of the moving centrode, as it rolls over the fixed centrode by utilizing a convex
concave contact and convex convex contact, momentarily rotating about the
instant center I. The path tangent and path normal are designed by t and n,
respectively. Now consider an inclined ray (θ−ray) through I. J1 (J2), which
is an inflection point, is a point of the plane which at the moment is going
through a point of inflection of its path with respect to the fixed plane. The
path of every inflection point, as a point of the mobile plane, has a second order
contact with its path tangent. X ′1 (X ′2) is the center of path curvature of an
arbitrary point X1 (X2) of the plane. The Bobillier construction is useful for
find the fourth point on a θ−ray, when any three of the following four points
are known: the instant center I, an arbitrary point X1 (X2) of mobile plane,
the inflection point J1 (J2) and the center of curvature X ′1 (X ′2) of the path
described by X1 (X2) in the fixed plane as the moving centrode rolls on the
fixed centrode; all are on the θ−ray. Bobillier’s construction for finding the
inflection point J1 (J2) when I, X1 (X2) and X ′1 (X ′2) are known on the ray
IX1 (IX2) is clearly shown on Figure 1 and the readers are referred to [9, 10].

Figure 1. Bobillier’s construction in Euclidean plane E2. In the special case of an ellipse with
zero eccentricity and frequency null.
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2 Preliminaries

This is a study expanding aspects of [8] which deals with superposition of two
simple harmonic motions in perpendicular directions with the same angular
frequency and phase difference of π/2. If a point has two component simple
harmonic motions in any directions with the same periods the resultant motion
of the point will be harmonic in an ellipse. Such motion is called elliptical
harmonic motion. A mass attached to end of a spring in two dimensions also
exhibit this feature depending on the initial velocity. On the contrary, although
planets around the Sun revolve in ellipses their motion is not harmonic.

In [8] authors represented elliptical harmonic motions in terms of elliptic
numbers and elliptical trigonometry.

Any elliptic number is given in the form of x+iy such that x, y ∈ R and it is
the special case of the generalized complex number when i2 = p < 0. If p = −1
then the elliptical number is reduced to ordinary complex number, [11]. The
norm of an elliptic number x+ iy is given by ‖x+ iy‖p = (x2 − py2)1/2. The
exponential of a purely elliptic number is given similar to the complex case as

eiθ = cosp θ + i sinp θ, (1)

however here elliptical versions of trigonometric functions are defined cosp θ =
cos(θ

√
|p|) and sinp θ = sin(θ

√
|p|)/

√
|p|, [6].

The cross product of two elliptic numbers u = ρue
iθp and v = ρve

iθv can
defined as

u× v = Im (u v) = ρuρv sinp(θv − θu) (2)

or in form of
u× v = ‖u‖p‖v‖p sinp(θv − θu) (3)

where an overbar denotes the usual complex conjugation. This definition will
be useful when we derive the Bobillier formula in the next section.

Also, the inner product of two elliptic numbers was given in [6] as follows:

〈u, v〉 = Re (u v) = ‖u‖p‖v‖p cosp(θv − θu). (4)

In [8] by considering these basic notions and handling the mobile elliptical
planes A, E and fixed elliptical planes E′ with coordinate systems {B; a1, a2},
{O; e1, e2} and {O′; e′1, e′2}, respectively, the Euler-Savary formula for ellip-
tical harmonic motions was given as follows.

Theorem 2.1. Let E and E be mobile and fixed elliptic planes. A point X
on E in a elliptical movement draws a trajectory in plane E′ for which the
curvature centre is at point X ′. In the reverse movement X ′ on E′ draws a



BOBILLIER FORMULA FOR THE ELLIPTICAL HARMONIC MOTION 106

trajectory in plane E for which the curvature centre is at point X. The relation
between points X and X is(

1

a′
− 1

a

)
e−i( α+2πft) = −i

(
1

r′
− 1

r

)
where f is the frequency of elliptical harmonic motion, r and r′ are the cur-
vatures of the pole curves. Also, a and a′ represent the distances from the
rotation pole to the point X and X ′, respectively, [8].

For that purpose φ and ψ were considered such as the elliptical angles that
correspond to initial phase differences of the motions A/E and A/E′. This
formula is satisfied when the abscissae of the fixed point X and the moving
point X ′ are coincident, that is, x1 = x′1.

In this study we need the general form of the Euler-Savary formula of
elliptical harmonic motion which can be derived by direct calculations as(

1

a′
− 1

a

)
sinp(α+ 2πft) =

1

r′
− 1

r
. (5)

The argument of the function sinp should be understood as an elliptical angle.
Particularly if i2 = −1 and t = 0, the equation (5) completely reduces to the
usual complex form of the Euler-Savary formula (see Figure 2).

Figure 2. Euler-Savary in Euclidean plane E2. In the special case of an ellipse with zero
eccentricity.

3 Derivation of the Bobillier formula

In this section, we use a method to derive Bobillier formula having regard to
the Euler-Savary formula (5) of elliptical harmonic motion. Let Xj and X ′j ,
j = 1, 2, 3, be points linked to the mobile elliptical plane E and fixed elliptical
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plane E′, respectively. Suppose that aj and a′j represent the distances from
the rotation pole I to the points Xj and X ′j , respectively. If the notation
1/ρj = 1/a′j − 1/aj is considered and the points Cj are given by

−→
ICj = Cj =

1

ρj
eiαjei2πft. (6)

then it is seen by virtue of Euler-Savary formula of elliptical harmonic motion
with frequency f and initial phase αj that the points Cj follows a linear orbit.

Since the vectors
−−−→
C1C2 = C2 − C1 and

−−−→
C2C3 = C3 − C2 should be linearly

dependent the cross product of the elliptic numbers vanishes as follows;

C2 × C3 + C3 × C1 + C1 × C2 = 0. (7)

Defining αjk = αj − αk and substituting (3) and (6) into the last equation
give us

sinp(α32 + 2πft32)

ρ2ρ3
+

sinp(α13 + 2πft13)

ρ1ρ3
+

sinp(α21 + 2πft21)

ρ1ρ2
= 0. (8)

If we product this equality by ρ1ρ2ρ3, we obtain the Bobillier formula for the
elliptic harmonic motion:

ρ1 sinp(α32 +2πft32)+ρ2 sinp(α13 +2πft13)+ρ3 sinp(α21 +2πft21) = 0. (9)

This formula exactly depends on Euler-Savary formula of elliptical har-
monic motion as well as the following method reproduces the same relation
directly.

4 Alternative Derivation of the Bobillier Formula

In this section, we give an alternative derivation of the Bobillier formula fol-
lowing the footsteps of [4].

eiαiei2πftj for j = 1, 2, 3 are unit vectors from the rotation pole I towards
the points Xj on the mobile planes for the second order elliptical harmonic
motion. Since every three vectors on a plane are linearly dependent there is
the following linear dependence between these vectors;

λ1e
iα1+2πft1 + λ2e

iα2+2πft2 + λ3e
iα3+2πft3 = 0.
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The consecutive cross products of the last equation with eiα3+2πft3 , eiα1+2πft1

and eiα2+2πft2 give the coefficients as follows;

λ1 = eiα2+2πft2 × eiα3+2πft3 = Im
(
eiα2+2πft2 , eiα3+2πft3

)
= sinp (α32 + 2πft32) ,

λ2 = eiα3+2πft3 × eiα1+2πft1 = Im
(
eiα3+2πft3 , eiα1+2πft1

)
= sinp (α13 + 2πft13) ,

λ3 = eiα1+2πft1 × eiα2+2πft2 = Im
(
eiα1+2πft1 , eiα2+2πft2

)
= sinp (α21 + 2πft21) .

Then the linear combination of these vectors can be written with respect to
the phase differences, frequency of the elliptical harmonic motion

sinp(α32 + 2πft32)eiα1+2πft1 + sinp(α13 + 2πft13)eiα2+2πft2

+ sinp(α21 + 2πft21)eiα3+2πft3 = 0. (10)

Let V (X1) and J(X1) be the velocity and acceleration vectors of point
X1 in the fixed elliptical plane E′, respectively. Then the following equation
holds;

1

a′1 − a1
=

〈
J (X1) , eiα1ei2πft1

〉
〈V (X1) , V (X1)〉

. (11)

Further, J(X1) can be decomposed to the trajectorywise invariant compo-
nent, tangential acceleration component and centripetal component as follows;

J(X1) = J(I) + ia1ω̇e
iα1ei2πft1 − a1ω2eiαiei2πft1 , (12)

where ω is the angular velocity of the elliptical harmonic motion E/E′ and
J(I) is “acceleration of the point on E′ that coincides instantaneously with
I.” Using the expansion (12) in (11) and using V (X1) = ωa1 we obtain:

〈J(I), eiα1ei2πft1〉
ω2

= ρ1. (13)

In a similar manner resembling equations can be found for X2, X3 and the
general result for j = 1, 2, 3 is given by

〈J(I), eiαjei2πftj 〉
ω2

= ρj . (14)

Finally, by the inner product of the equation (10) with J(I)/ω2 the following
theorem is given.
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Theorem 4.1. In the elliptical harmonic motion the relations between the
centers of curvatures is given by the equation

ρ1 sinp(α32+2πft32)+ρ2 sinp(α13+2πft13)+ρ3 sinp(α21+2πft21) = 0 (15)

which is called Bobillier Formula for the elliptical harmonic motion.

5 Conclusion

In this study, we derived the Bobillier formula for elliptical harmonic motion
in terms of elliptic numbers and elliptical trigonometry. This result is a con-
tribution to the analysis of oscillatory aspects in treating the phenomenon of
motion. As a by-product of our study, we defined cross product of two elliptic
numbers. We conclude that the form of outer product is a new contribution
to the literature.
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Nuno T. Sá Pereira

Nuno T. Sá PEREIRA,
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