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Abstract  In public transportation literature, researchers increasingly tend to 
evaluate the service efficiency of bus transit units in addition to their operational 
efficiency. Evaluation of both operational and service efficiencies provides a more 
comprehensive performance analysis for decision-makers. This paper proposes a 
non-radial data envelopment analysis (DEA) approach to measure the operational 
and service efficiencies simultaneously. Benefits of the proposed approach are dem-
onstrated by applying the model to assess the performance of a bus transit com-
pany’s routes. The analysis results show that the proposed approach ensures optimal 
operational and service efficiency scores and provides applicable input targets for 
each route.

Keywords  Bus transit routes · DEA · Efficiency · Non-radial · Operational · 
Service

1  Introduction

Data envelopment analysis (DEA), which was first introduced by Charnes et  al. 
(1978), is a non-parametric mathematical method for assessing the relative effi-
ciency of decision-making units with multiple inputs and multiple outputs. These 
multiple inputs and outputs are used to construct a piecewise linear best-practice 
frontier by accepting the best-performing units as a reference point and evaluating 
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the other units’ efficiencies comparatively according to their distances from the effi-
cient frontier. Units located on the efficient frontier are classified as efficient and 
rated with an efficiency score of one. Units located below the efficient frontier are 
considered inefficient and rated with scores between zero and one. Therefore, DEA 
allows managers to distinguish between efficient and inefficient units and to measure 
the degree of inefficiency by assigning the best-practice units as benchmarks.

The main advantages of DEA that make it a suitable tool for estimating the effi-
ciency of public transportation systems are: (1) it can handle multiple inputs and 
outputs simultaneously; (2) it is unit invariant and not affected by the measurement 
units of inputs and outputs; (3) it does not require information on prices; and (4) 
it does not impose any functional form on the underlying technology. Because of 
these advantages, past studies have shown that DEA has been widely and effectively 
used for efficiency analysis of bus transit systems. In these studies, DEA is mainly 
used to measure the operational efficiency, which is related to financial and tech-
nical performance to convert bus transit units’ resources to outputs. In addition to 
operational efficiency, the service efficiency of bus transit systems, which pertains 
to the optimization of the service levels provided, has started attracting the attention 
of researchers. Therefore, multiple objectivity has emerged as an important issue in 
public transportation studies (Güner and Coşkun 2016).

To analyze the comprehensive efficiency of bus transit systems, Chu et  al. 
(1992) developed three distinct DEA models. Two were designed to assess the dif-
ferent aspects of operational efficiency and provide two means of managerial con-
trol, one by functional areas and one by budgetary objects. The third DEA model 
was designed to measure the service efficiency (or effectiveness) of transit agen-
cies. While the operational efficiency models include financial inputs (operational 
expenses, maintenance expenses, etc.) the service efficiency model includes input 
variables related to the provided service level (operating hours, population density, 
number of households without an automobile, and total financial support per pas-
senger). The total number of unlinked passenger trips was used to measure the out-
put consumed in this model. Kerstens (1999) developed two distinct DEA models 
for operational and service efficiency. Each model includes the same input param-
eters (average number of vehicles used, average number of employees, and total 
fuel consumption) but different output measures; the output parameter of the opera-
tional efficiency model is vehicle kilometers, and the output of the service efficiency 
model is the number of passengers carried. Similarly, Karlaftis (2004) and Karlaftis 
and Tsamboulas (2012) evaluated transit operators’ performances in terms of their 
operational and service efficiency using two distinct DEA models. In these studies, 
the authors used the same inputs for both models (labor, fuel, and capital) but used 
different outputs. Total annual vehicle mileage was the output of the operational effi-
ciency model, and total annual ridership was the output of the service efficiency 
model. In their study, Barnum et al. (2008) constructed a DEA model to estimate 
the service quality of bus transit routes. This model includes physical resources (seat 
kilometers and seat hours) as inputs and service quality indicators (ridership, span 
of service, average frequency, maximum frequency, and on-time performance) as 
outputs. Lao and Liu (2009) created two distinct DEA models to measure the opera-
tional efficiency and the spatial effectiveness of transit companies. The number of 
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passengers transported was determined to be the unique output for both models. The 
operational efficiency model was characterized by three input variables: operation 
time, round-trip distance, and number of bus stops. Spatial effectiveness was char-
acterized by three input variables: commuters who use buses, the 65 years and older 
population, and persons with disabilities within 0.25 miles of a bus stop. Sanchez 
(2009), on the other hand, added quality-related outputs such as frequency, acces-
sibility, comfort, and safety directly to his technical efficiency model. More recently, 
Güner and Coşkun (2016) developed two distinct DEA models to measure the oper-
ational and service efficiencies of bus transit routes. The average number of unlinked 
passenger trips per day was determined as the unique output for both models. The 
operational efficiency model included three input variables (number of buses, route 
distance, and fuel consumption) that reflected the technical performance. On the 
other hand, the service efficiency model included five input variables (frequency, 
service minutes, stops per km, deviation from shortest distance, and travel time) 
that reflected the effectiveness of the provided service level. The authors adopted 
the two-model approach, which was introduced by Shimshak and Lenard (2007), to 
determine the best-performing benchmarks for inefficient routes.

It is important to note that there are two methods of simultaneous investiga-
tion of the operational and service efficiencies of a public transportation unit. The 
first method aggregates the operational and service efficiency variables in a single 
model (see Barnum et al. 2008 and Sanchez 2009). This approach provides ease of 
implementation. However, it does not allow decision-makers to manage the trade-
offs between operational and service efficiencies (Sherman and Zhu 2006). Further-
more, aggregated models (which include indicators of more than one performance 
dimension) weaken the ability of a DEA model to distinguish the individual effects 
of these performance aspects (Klimberg and Puddecombe 1999).

The second method involves developing two distinct DEA models for operational 
and service efficiencies and evaluating them independently (see Chu et  al. 1992; 
Kerstens 1999; Karlaftis 2004; Lao and Liu 2009; Karlaftis and Tsamboulas 2012; 
and Güner and Coşkun 2016). This method allows managers to assess operational 
and service performances separately and provides a more comprehensive efficiency 
analysis. Moreover, it makes the tradeoffs more evident. Despite these advantages, it 
has some issues. First, undesirable benchmarking could occur, which improves the 
operational efficiency but worsens the service efficiency, and vice versa (Shimshak 
and Lenard 2007; Güner and Coşkun 2016). Furthermore, as discussed in detail in 
Sect. 2, this approach results in contradictory input targets for inefficient routes.

Therefore, this study proposes a non-radial DEA approach to simultaneously 
assess the operational and service efficiency models. The proposed approach con-
siders the mathematical interrelationships between these models and can determine 
optimal efficiency scores that provide applicable input/output targets for each bus 
transit route. To do this, several additional constraints are added to the basic non-
radial DEA model. It is expected that the proposed methodology will be used effec-
tively to conduct a more comprehensive efficiency analysis for public transportation 
systems. The research is based on a case study of Sakarya City Metropolitan Munic-
ipality Transportation Bureau (SMMTB), a public transit bus authority in Sakarya, 
Turkey.
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The remainder of the paper is organized as follows: Sect. 2 discusses the problem 
statement, and Sect. 3 introduces the non-radial DEA approach. Section 4 describes 
the demonstration and application of this approach, and Sect. 5 concludes the paper.

2 � Problem statement

DEA is designed to evaluate single efficiency models. It is unsuitable for evaluating 
decision-making units in multiple-efficiency environments; consequently, it behaves 
like a single objective method (Klimberg and Puddecombe 1999; Cook et al. 2000). 
However, in practice, managers evaluate multiple performance aspects of their 
organizations. As Charnes and Cooper (1985) have noted, although managerial 
performance can also be evaluated regarding propriety (i.e., the objectives pursued 
and methods used) and effectiveness (i.e., stating and attaining objectives), DEA 
focuses on a single efficiency aspect and overlooks other performance dimensions. 
This structure of DEA limits decision-makers to a single management performance 
assessment and deprives them of a comprehensive performance evaluation.

Along with the increasing importance of service efficiency in public transporta-
tion literature, researchers are developing two distinct DEA models to evaluate oper-
ational and service efficiencies independently. This approach overlooks the interrela-
tionships among the input variables of operational and service efficiency models and 
results in contradictory input targets for inefficient routes, making it impossible to 
implement DEA results in practice (Güner 2014).

Let us explain this situation by offering an example from the public transportation 
industry. Assume that two distinct models are constructed to estimate the operational 
and service efficiencies of a set of bus transit routes. The operational efficiency model 
includes two inputs: capacity and number of stops. The service efficiency model is 
characterized by three input variables: frequency, stops per km, and service hours. 
The unique output measure for both models is unlinked passenger trips. See Sect. 4.1 
for detailed explanations of these input/output variables and their uses.

To analyze the operational and service efficiencies, two distinct DEA models 
under variable returns to scale should be constructed as presented below.
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The initial model estimates the operational efficiency, where θ refers to the opera-
tional efficiency rating of the route being evaluated; J is the number of routes being 
compared; r is the route being evaluated; cj is the amount of capacity used by route 
j; cr is the amount of capacity used by the route being evaluated; sj is the number 
of bus stops used by route j; sr is the number of bus stops used by the route being 
evaluated; pj is the number of unlinked passenger trips provided in route j; pr is the 
number of unlinked passenger trips provided in the route being evaluated; and λj 
refers to the linear combinations of routes to compare to the route being evaluated. 
Therefore, the other routes with non-zero λ form the benchmark set for the route 
being evaluated.

The objective function (a) seeks efficiency by minimizing the operational effi-
ciency of the route being evaluated. The objective function is subjected to four con-
straints. The first constraint (b) emphasizes that the weighted sum of the capacity 
amount of the other routes is less than or equal to the route being evaluated. Simi-
larly, the second constraint (c) emphasizes that the weighted sum of the bus stops 
of the other routes is less than or equal to the route being evaluated. The third con-
straint (d) asserts that the weighted sum of the unlinked passenger trips of the other 
routes is greater than or equal to the route being evaluated. Finally, the fourth con-
straint is the convexity constraint (e), which ensures the variable returns to scale and 
implies that the route being evaluated is only compared to routes of roughly similar 
size.

The latter model estimates the service efficiency, where ϑ refers to the service 
efficiency rating of the route being evaluated; K is the number of routes being com-
pared; r is the route being evaluated; fk is the frequency of route k; fr is the frequency 
of the route being evaluated; s′

k
 is the number of bus stops per km in route k; s′

r
 is 

the number of bus stops per km in the route being evaluated; hk is the service hours 
in route k; hr is the service hours in the route being evaluated; pk is the number of 
unlinked passenger trips provided in route k; pr is the number of unlinked passenger 
trips provided in the route being evaluated. μk refers to the linear combinations of 
routes to compare to the route being evaluated. Therefore, the other routes with non-
zero μ form the benchmark set for the route being evaluated.

Please note that these models evaluate the operational and service efficiencies 
separately and may provide different efficiency scores for each bus transit route. 
For instance, a bus transit route could show high operational efficiency but service 
inefficiency, and vice versa. However, although operational and service efficiency 
models are constructed and evaluated independently, their input variables are closely 
interrelated (see Fig. 1). Accordingly, capacity and frequency are closely interrelated 

Fig. 1   Operational and service 
efficiency models
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because the capacity is the product of the frequency and vehicle capacity that oper-
ates on this route. A similar interrelationship also exists between the number of 
stops and stops per km because the number of stops is a product of stops per km 
and route distance. These interrelationships demonstrate the linear interdependence 
among capacity–frequency and number of stops–stops per km. Please see the appen-
dix for mathematical formulations of these interrelationships. Although these input 
variables appear in distinct DEA models, an increase or decrease in one of them will 
directly affect the other in a certain proportion.

Now, suppose that the operational efficiency of a route was estimated at 0.6 while 
its service efficiency was 1. This indicates that this route is fully service efficient but 
40% operationally inefficient. Its operational inputs, including capacity and number 
of stops, should be decreased by 40% to be considered fully operationally efficient. 
This reduction in capacity and number of stops will automatically reduce the fre-
quency and stops per km by 40%, respectively. However, since this route was con-
sidered fully service efficient, the service efficiency model suggests not decreasing 
the frequency and stops per km. In this case, the decision-makers face a dilemma, 
and the DEA results would not be applied to the practice.

To obtain applicable results, operational and service efficiency models should 
generate the same efficiency scores for each route because they would provide pro-
portional changes for capacity–frequency and number of stops–stops per km. How-
ever, since service hours are not interrelated with any operational efficiency input, 
it should be considered independently and needs non-proportional changes. To 
address these issues, we propose a methodology based on non-radial DEA in the 
next section.

3 � Non‑radial DEA model

3.1 � The need for non‑radial methodology

To address the aforementioned problems, operational and service efficiency models 
should be evaluated in a single linear model that considers the mathematical rela-
tionships among the input variables of both models. In this single model, equipro-
portionality of interrelated inputs (capacity–frequency and number of stops–stops per 
km) can be satisfied by equating the operational and service efficiency scores of each 
route. Thus, each route receives the same operational and service efficiency scores, 
and it is possible to find the optimal efficiency scores for both models, which provide 
proportional changes for capacity–frequency and number of stops–stops per km.

However, the problem is not limited to the proportionality of interrelated input 
variables. Distinct DEA models may include some input variables that are not inter-
related to another input of the latter model. For instance, in our case, service hours 
are not interrelated to any input variable of the operational efficiency model, which 
means that while capacity–frequency and number of stops–stops per km need to be 
considered together and require proportional changes (although they appear in dis-
tinct models), service hours should be considered independently and require a non-
proportional change.
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The original radial DEA model deals with the maximum proportional reduction 
in all inputs, and it is not able to provide individual efficiency scores for each input 
variable that appears in the same model. As a result, this approach entails radial (or 
proportional) changes for each input variable and does not allow measuring specific 
scores for independent variables. For instance, if the service efficiency score of a 
route is estimated as 0.8, the radial model suggests reducing all service inputs (fre-
quency, stops per km, and service hours) by 20%.

In contrast, the non-radial model that was first introduced by Färe and Lovell 
(1978) puts aside the proportionality assumption of radial models and attaches indi-
vidual efficiency scores to each input variable in the process (Athanassopoulos, 
1996). Thus, non-radial models provide non-proportional changes for each input 
variable, providing an efficiency indicator for each of the variables in the process. 
This property of non-radial DEA makes it an appropriate method to provide propor-
tional changes for interrelated inputs of operational and service efficiency models 
while providing non-proportional changes for independent input variables. Non-
radial DEA offers other advantages as well. First, non-radial DEA has a higher 
discriminating power compared to radial DEA in evaluating the efficiencies of a 
set of decision-making units (Barros et al. 2012). Second, it is able to incorporate 
preference structures that reflect decision-makers’ preferences by assigning differ-
ent weights to different input/output variables (Zhu 1996). Third, non-radial DEA 
models do not allow the existence of non-zero input/output slacks and provide more 
accurate efficiency scores that reflect the performance of the units more accurately 
(Tone 2001).

3.2 � Modeling the non‑radial DEA

Two independent non-radial DEA models for operational and service efficiency are 
presented below. Please note that these models generate specific efficiency scores 
for each input variable. θc and θs are the efficiency scores of capacity and number 
of stops, respectively, and �f  , �s′ and ϑh refer to the efficiency scores of frequency, 
stops per km, and service hours, respectively. 𝜃̂ refers to overall operational effi-
ciency.𝜃̂ is the average of θc and θs and calculated as [(θc + θs)/2]. On the other side, 
𝜗̂ refers to overall service efficiency. 𝜗̂ is the average of ϑf, �s′ and ϑh and calculated 
as 
[(

�f + �s� + �h
)

∕3
]

.
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Nevertheless, these two models are constructed separately and are still far 
from considering the relationships among capacity–frequency and number of 
stops–stops per km. To assess these two distinct DEA models simultaneously, 
the basic non-radial models need to be aggregated into a single linear program, 
which can be presented as follows:
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Simple additive weighting (SAW) is used to combine 𝜃̂ and 𝜗̂ . SAW is one 
of the most popular, simplest, and widest used multi-objective decision-making 
method, and it is based on the weighted average of decision outcomes. Using 
the SAW method, f1 indicates the new objective function, � = min

(

w1𝜃̂ + w2𝜗̂
)

 , 
where w1 is the priority assigned to 𝜃̂ and w2 is the priority assigned to 𝜗̂ . Finally, 
∅ is the composite score and refers to the weighted average of 𝜃̂ and 𝜗̂ . Therefore, 
∅ ensures the simultaneous investigation of operational and service efficiency 
models.

Each objective is given a weight, and the sum of all weights must be equal 
to 1. This ensures the composite score is between 0 and 1 

(

0 ≤ ∅ ≤ 1
)

 . In this 
study, 𝜃̂ and 𝜗̂ are considered to have equal importance and both received the 
same weight 

(

w1,w2 = 0.5
)

 . This can easily be changed depending on the prefer-
ence of the decision-makers. Similarly, each input variable 

(

�c, �s, �f , �s′ , �h
)

 is 
considered to have equal importance and received identical weights of unity in 
this study. In practice, some input/output variables may be preferable than others 
for decision-makers. To incorporate value judgments, structures that reflect the 
decision-makers’ preferences should be incorporated into the analysis. We refer 
to the paper by Zhu (1996) for a detailed discussion about specifying the prefer-
ence weights in the non-radial DEA method.

In the second step, efficiency scores of the interrelated input variables should 
be equated to ensure the optimal efficiency scores, which may provide propor-
tional changes. To ensure the proportional changes among θc − ϑf and �s − �s� , 
they are equated to each other and added as new constraints to the model. f2 
equates to the efficiency scores of capacity and frequency (θc = ϑf),  and f3 equates 
to the efficiency scores of the number of stops and stops per km (�s = �s� ) . There-
fore, f2 and f3 indicate that the optimal efficiency scores should respect the pro-
portionality between the interrelated input variables. This structure also ensures 
the independent evaluation of service hours (which is not interrelated to any oper-
ational efficiency input) and determines a measure-specific score.

4 � Case study

We will demonstrate the non-radial DEA approach using data from the Sakarya City 
Metropolitan Municipality Transportation Bureau (SMMTB). SMMTB is a public 
transportation authority operating 30 routes in the Sakarya metropolitan area. For 
this study, each route is treated as a decision-making unit. To measure the perfor-
mance of each route, we defined two major objectives for SMMTB: operational effi-
ciency and service efficiency. Operational efficiency is defined as the optimization 
of physical resources (capacity and number of stops) for a given number of unlinked 
passenger trips. Service efficiency is defined as the optimization of the provided 
service level (frequency, stops per km, and service hours) for a given number of 
unlinked passenger trips. Data are from the year 2012, and approximately 6.6 mil-
lion passenger trips were provided on these routes.
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In this case, two different analyses were applied to the same dataset. First, we 
used the original radial DEA model that was presented in Sect. 2. This initial model 
evaluated the operational and service efficiency models independently and ignored 
the relationships between their input variables. This provided contradictory and 
inapplicable input targets for inefficient routes. In this step, we presented the results 
of the initial analysis and demonstrated the contradictory input targets.

In the second step, we applied the modified non-radial DEA model to the same 
dataset that was proposed in Sect. 3. This approach simultaneously investigates the 
operational and service efficiency models and considers mathematical relationships. 
Analysis results show that this approach defines the optimal efficiency scores for 
each route and overcomes contradictory input targets.

In these analyses, we utilized input orientation for both models because unlinked 
passenger trips do not display much variation, and SMMTB cannot control the num-
ber of passengers. Instead, as a public entity, resource utilization is more important 
for SMMTB. In addition, both models were analyzed under variable returns to scale 
to avoid the negative impacts of scale differences on the analysis results (Banker 
et al. 1984).

4.1 � Model input and output measures

To measure the operational efficiency (θ) and service efficiency (ϑ) of SMMTB, the 
average unlinked passenger trips per day are used as the unique output measure. An 
unlinked passenger trip (p) refers to a trip on one transit vehicle regardless of the 
type of fare paid or transfer presented (APTA). It is a good measure of service effi-
ciency because it represents the total number of passengers served (Chu et al. 1992; 
Karlaftis 2004; Lao and Liu 2009). At the same time, it is a good surrogate measure 
for total revenues and an ideal output for operational efficiency (Karlaftis 2003; Bar-
num et al. 2008; Lao and Liu 2009).

We selected two inputs to measure the operational efficiencies of transit routes: 
capacity and number of stops. Capacity (c) refers to the total passenger capacity of 
each route during service hours in a day, and it is calculated by multiplying vehicle 
capacities with frequency. For instance, if there is only one bus operating with a 
66-passenger capacity for each trip with a total of 10 trips in a work day, the capac-
ity of this route is calculated as 660.

SMMTB has three types of buses that have 66, 104, and 150 passenger capaci-
ties, which is different from other studies in the literature (Chang and Kao 1992; 

Table 1   Statistical summary of 
operational inputs

Capacity (c) Number of 
stops (s)

Mean 2124.20 63.17
Median 1723 59
Standard deviation 1579 22
Minimum 528 35
Maximum 8070 133
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Karlaftis 2003, 2004; Sanchez 2009). We decided to use “capacity” rather than 
“number of buses” as an input variable for operational efficiency. Since the bus 
capacities differ in this case, “number of buses” is an insufficient variable to reflect 
the real capacities of routes. While some routes operate with 150-passenger capacity 
buses, others operate with only 66-passenger capacity. Thus, considering the num-
ber of buses means that both low- and high-capacity buses are evaluated equally and 
the capacity differences are ignored. On the other hand, there are some routes that 
operate with only one bus. If these routes are considered inefficient, DEA results 
will suggest decreasing the number of buses to fewer than one. Since the number of 
buses is already at the minimum level, this suggestion is inapplicable.

The same problem also exists for “number of seats” and “bus capacity.” Since 
public transport vehicles are also designed for standing passengers, the total capac-
ity of the bus will be ignored if only the number of seats is considered. Similarly, 
the total capacity of the bus is not applicable because if a route is operating with a 
passenger capacity of 66, it is not possible to decrease this number if it is considered 
inefficient. Thus, in our study, using “capacity” instead of “number of buses,” “num-
ber of seats” and “bus capacity” will provide more applicable results for decision-
makers, who can adjust the capacity easily by decreasing either bus capacities or 
frequency.

Another input variable of operational efficiency is the number of stops (s), which 
refers to the total number of bus stops on a round-trip route. This input is used to 
balance the number of bus stops with the number of passengers transported in a day. 
All bus stops should be determined and signalized by SMMTB. The statistical sum-
mary of operational inputs is listed in Table 1.

Three inputs were defined for the service efficiency model: frequency, stops per 
km, and service hours. Frequency (f) is related to scheduling while service hours (h) 
are related to the length of service operation in a day. Stops per km (s′) is obtained 
by dividing the length of the round-trip route by the number of bus stops and refers 
to the accessibility of the route. The statistical summary of service inputs is shown 
in Table 2.

4.2 � Initial analysis

In this step, two distinct DEA models were constructed for operational and service 
efficiency, and they were evaluated independently using radial DEA models as pre-
sented in Sect. 2. Table 3 presents the operational and service efficiency scores of 

Table 2   Statistical summary of service inputs

Frequency (f ) Stops per km (s′ ) Service hours (h)

Mean 25.77 2.39 941.33
Median 24 2 993
Standard deviation 13.13 0.74 131.69
Minimum 8 1 585
Maximum 63 5 1230
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each route. Accordingly, eight routes are considered operationally efficient (#6, #7, 
#12, #14, #15, #24/H, #24/K, and #26), while only six routes are considered service 
efficient (#12, #15, #21/H, #24/H, #24/K, and #26). The average service efficiency 
score (0.815) is slightly higher than the average operational efficiency score (0.813). 
Table 3 also presents the input targets for inefficient routes.

Since operational and service efficiency models were analyzed independently, 
each route received different operational and service efficiency scores. This struc-
ture is useful for evaluating the various performance aspects of bus transit routes 

Table 3   Efficiency scores and targets with radial DEA

No. Route no. � Targets ϑ Targets

c s f s
′

h

1. #2 0.844 1837.755 40.501 0.805 16.930 1.748 748.57
2. #3 0.764 2066.485 47.382 0.733 19.057 2.020 769.59
3. #4 0.753 1889.233 69.302 0.769 29.212 2.029 784.12
4. #5 0.888 1054.350 39.050 0.808 11.905 1.560 812.21
5. #6 1.000 990.000 41.000 0.842 12.635 1.748 694.91
6. #7 1.000 1518.000 57.000 0.849 19.521 2.086 738.39
7. #9 0.799 949.109 42.342 0.601 10.814 1.939 594.76
8. #10 0.809 801.368 57.472 0.713 10.695 2.033 613.15
9. #12 1.000 594.000 54.000 1.000 9.000 1.333 935.00
10. #14 1.000 1188.000 35.000 0.800 13.247 1.725 691.58
11. #15 1.000 5826.000 57.000 1.000 50.000 2.533 1.015.00
12. #17 0.664 1051.770 46.480 0.730 16.065 1.880 623.81
13. #18 0.749 1186.534 38.952 0.746 13.030 1.651 760.96
14. #19 0.763 1562.091 37.411 0.709 17.764 1.829 659.49
15. #19/K 0.807 2266.467 51.657 0.784 21.174 1.984 815.60
16. #20 0.923 974.259 41.517 0.699 11.189 1.868 618.87
17. #20/A 0.538 959.538 42.000 0.701 8.000 2.000 585.00
18. #21/A 0.513 1333.186 65.121 0.750 18.752 1.732 795.10
19. #21/B 0.499 1244.897 66.335 0.732 17.573 1.771 765.15
20. #21/H 0.908 838.798 54.467 1.000 14.000 1.840 600.00
21. #22/A 0.708 1447.613 39.622 0.874 12.606 1.515 886.93
22. #22/B 0.718 1469.443 42.374 0.914 14.029 1.669 781.12
23. #23 0.826 763.469 52.055 0.771 10.793 1.592 790.19
24. #24 0.749 2725.764 53.916 0.899 25.945 1.685 934.55
25. #24/H 1.000 528.000 69.000 1.000 8.000 2.000 585.00
26. #24/K 1.000 1664.000 75.000 1.000 16.000 1.531 1.005.00
27. #26 1.000 8070.000 41.000 1.000 63.000 1.981 1.015.00
28. #27 0.891 882.000 44.545 0.807 12.103 1.739 677.77
29. #28 0.604 1890.517 35.612 0.614 13.987 1.692 755.07
30. #29 0.660 1476.147 38.915 0.811 13.364 1.619 807.33
Mean 0.813 0.815
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and defining areas that need improvement. For instance, analysis results show that 
#6, #7, and #14 are operationally efficient but service inefficient. This demonstrates 
a need to adjust the provided service levels on these routes. In addition, #21/H is 
service efficient but operationally inefficient, so the physical resources of this route 
should be adjusted.

However, different operational and service efficiency scores suggest different pro-
portions of input reductions for inefficient routes in terms of capacity–frequency and 
number of stops–stops per km. Since these input variables are closely interrelated, 
analysis results may provide inapplicable input targets.

Take #6 as an example: #6 is considered fully operationally efficient. Based on 
this, it does not need to decrease its capacity or number of stops. However, #6 is ser-
vice inefficient (0.842) and does need to decrease its service inputs (frequency, stops 
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per km, and service hours) by 15.8% to become service efficient. This reduction in 
frequency and stops per km entails a 15.8% reduction in operational inputs (capac-
ity and number of stops) because of the bilateral relationships. In such a situation, 
decision-makers will face two contradictory results. While the operational efficiency 
model proposes remaining at the same input level, the service efficiency model sug-
gests a decrease of 15.8%.

This problem is not limited to #6 and can be observed in other routes that have 
different operational and service efficiency scores. Figures 2, 3, 4, and 5 demonstrate 
the contradictions in operational and service targets. Continuous lines represent the 
original input targets, which were obtained with DEA. Dotted lines, on the other 
hand, represent the dependent input targets, which were calculated indirectly from 
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the interrelated input variables. Note that the lines overlap each other if the route 
being evaluated received the same operational and service efficiency scores. For 
instance, #12, #15, #24/H, #24/K, and #26 are both operational and service efficient, 
and there is no contradiction in their input targets. However, the contradictions are 
as large as the difference of each route’s operational and service efficiency scores.

4.3 � Demonstration of the non‑radial DEA

To provide applicable input targets for inefficient routes, the non-radial DEA meth-
odology that was presented in Sect. 3 is used for the same dataset. The results are 
listed in Table 4 and illustrate that the non-radial DEA methodology provided the 
same optimal efficiency scores for capacity–frequency (θc and ϑf) and number of 
stops–stops per km (θs and �s′ ), which suggests an input reduction at a certain pro-
portion. Additionally, the model evaluated the service hours (ϑn) independently and 
provided non-proportional changes. Thus, the proposed methodology could provide 
applicable input targets for each route.

Let us examine the applicability of input targets for route #2. In the current situ-
ation, the frequency and vehicle capacity of #2 is 33 and 66, respectively. Since the 
capacity is the product of frequency and vehicle capacity operating on this route, 
the total capacity of #2 is calculated as 2178 (33 × 66 = 2178). The non-radial DEA 
results show that the capacity efficiency of #2 is 0.681. If the decision-makers were 
to implement the operational efficiency results for #2, they would decrease the capac-
ity by 31.9%. Thus, the capacity will decrease from 2178 to 1482.822. In this condi-
tion, since the vehicle capacity operating in #2 will not change, the frequency should 
be reduced by 31.9% and decreased from 33 to 22.467 (1482.822/66 = 22.467).

On the other hand, if the decision-makers were to implement the service effi-
ciency results for #2, they would obtain the same results. As can be seen in Table 4, 
the frequency target for #2 is already 22.467. If the frequency is reduced to 22.467, 
the capacity will automatically be 1482.822 (22.467 × 66 = 1482.822). Since both 
operational and service efficiency models generated the same capacity and fre-
quency targets, the contradiction was eliminated.

The contradiction between number of stops and stops per km was also eliminated. 
Route #2 is considered fully efficient in terms of the number of stops, so decision-
makers should keep the number of stops at 48. Accordingly, the stops per km must 
remain constant. On the other hand, #2 is considered fully efficient in terms of stops 
per km, so decision-makers should not reduce the stops per km. As a result, both 
models generated the same number of stops and stops per km. Please note that #2 
is just an example among 30 routes, and other examples can be observed from other 
routes.

Based on analysis results, several managerial implications can be suggested for 
SMMTB. Nine routes (#6, #7, #12, #14, #15, #21/H, #24/H, #24/K, and #26) are 
considered operationally efficient, but only six routes (#12, #15, #21/H, #24/H, 
#24/K, and #26) are considered service efficient. Three operationally efficient routes 
(#6, #7, and #14) are considered service inefficient because of their surplus in ser-
vice hours. Therefore, only six routes received a score of ∅ = 1, which indicates full 
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operational and service efficiency. In total, the analysis results suggest a reduction 
in the capacity and frequency by 23.9%, the number of stops and stops per km by 
13.2%, and service hours by 18.6%. In addition, results demonstrate that bus transit 
routes received higher average efficiency scores in terms of θs and �s′ than θc and 
ϑf (0.868 and 0.761, respectively). Thus, decision-makers should give more consid-
eration to improve the capacity and frequency performance rather than bus stops 
because analysis results show that surpluses in capacity and frequency are the most 
important sources of operational and service inefficiency.

5 � Conclusion

Multidimensional performance analysis, which allows units (such as transit oper-
ators and transit routes) to be evaluated from different perspectives, is an impor-
tant issue in public transportation literature. Indeed, many researchers consider the 
operational and service efficiencies of public transportation systems together. To 
do this, researchers tend to develop two distinct DEA models for each performance 
dimension and evaluate them independently. Despite its advantages, this methodol-
ogy ignores the mathematical interrelationships among the input variables of opera-
tional and service efficiency models, which have the potential to affect each other 
and result in contradictory input targets.

In this study, we proposed a non-radial DEA methodology to simultaneously investi-
gate the operational and service efficiencies of bus transit routes, which takes the math-
ematical interrelationships between operational and service efficiency models into con-
sideration. To do this, the basic non-radial DEA model is modified by adding several 
additional constraints. The proposed approach is then applied to the transit routes of 
a local bus authority. It was demonstrated that the proposed approach provides opti-
mal efficiency scores and proportional changes for interrelated input variables of the 
distinct DEA models. It also evaluates independent input variables separately and pro-
vides non-proportional changes for them.

Consequently, it is proven that this methodology can be used effectively to inves-
tigate multiple DEA models simultaneously when any interdependency exists among 
the input/output variables. The main benefit of the proposed approach to the bus transit 
systems is to provide a more comprehensive performance analysis that allows moni-
toring both operational and service efficiencies. A secondary benefit is that the pro-
posed methodology optimizes the physical and service resources for each bus transit 
route simultaneously and generates non-contradictory and applicable input targets for 
inefficient routes. It is also important to note that although the proposed methodology 
was demonstrated in the public transportation industry in this research, its application 
may not be limited to public transportation and can be applied to other industries where 
there is a need for simultaneous investigation of multiple DEA models.
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Appendix

Capacity is the product of frequency and vehicle capacity that operates on this route. 
The relationship between capacity and frequency can be formulated as follows:

where cr amount of capacity used by the route being evaluated; fr  frequency of the 
route being evaluated; c′

r
 vehicle capacity of the route being evaluated.

Frequency can also be calculated from the following formulation:

The number of stops is a product of stops per km and route distance, and it can be 
formulated as shown below:

where sr number of bus stops used by the route being evaluated; s′
r
 number of bus 

stops per km in the route being evaluated; dr total round trip route distance of the 
route being evaluated.

To calculate the stops per km of each route, the formulation should be modified as 
below:
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