
469

 Turk J Biol

36 (2012) 469-476

© TÜBİTAK

doi:10.3906/biy-1104-15

Copper bioremoval by novel bacterial isolates and their 

identifi cation by 16S rRNA gene sequence analysis

Elif ÖLMEZOĞLU2, Binnur KIRATLI HERAND1, Mehmet Salim ÖNCEL1, Kenan TUNÇ2, Melek ÖZKAN1

1Environmental Engineering Department, Gebze Institute of Technology, 41400 Gebze, Kocaeli - TURKEY

2Biology Department, Sakarya University, 54187 Sakarya - TURKEY

Received: 19.04.2011  ●  Accepted: 17.03.2012

Abstract: Copper-tolerant bacteria were isolated from soil samples taken from a region where metal industries 

are located. Aft er selecting 2 isolates with relatively higher bioremoval effi  ciency, the eff ects of increasing copper 

concentration, pH, and temperature on the bioremoval effi  ciency of the growing isolates were determined. Strain N1c 

and strain N5a showed maximal bioremoval effi  ciency of 82% and 75%, respectively, in 20 mg/L copper-containing 

medium at pH 6.8 and 30 °C. Although the isolates did not grow well at pH 5, a low amount of copper was removed at 

pH 5. Slow growth of N5a at pH 5 allowed for 26% copper removal at hour 80 of incubation. Optimal copper bioremoval 

of the cells occurred at pH 6.8 and 30 °C. When grown at 37 °C under aerated conditions, N1c showed 31.7% bioremoval 

in the presence of 100 mg/L copper, and N5a was much more resistant to copper compared to N1c and E. coli. Th e 

isolates were identifi ed by 16S rRNA gene sequence analysis. Th e 16S rRNA gene sequence of N5a showed 96%-97% 

similarity to Pseudomonas stutzeri and other Pseudomonas spp. Th e 16S rRNA gene sequence of N1c was 96% similar to 

Achromobacter sp., Alcaligenes sp., and a novel genus, Collimonas.
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Introduction

Industrial, agricultural, and domestic activities result 

in an increase in the heavy metal content of soil and 

water (1). When accumulated in soils, heavy metals 

such as copper, cadmium, lead, zinc, nickel, mercury, 

and chromium can reach concentrations that are 

toxic to living organisms (2). Human factors such 

as agricultural patterns of soil use, use of chemical 

fertilizers and pesticides, and industrial pollution 

aff ect the available copper content in soils (3). Th e 

average copper content of unpolluted soil samples 

was found to range between 1.6 and 7.5 mg/kg 

soil (4). Although some metals such as copper are 

essential to organisms, they are toxic to cells at high 

levels (5). 

Conventional methods such as chemical 

precipitation, fi ltration, ion exchange, electrochemical 

treatment, membrane technologies, adsorption 

on activated carbon, and evaporation are not very 

eff ective or economical when treating large amounts 

of water and wastewater with low concentrations 

of heavy metals. Th erefore, these methods cannot 

be used on a large scale (6,7). Metal removal by 

bacteria is generally achieved by chelation and 

surface adsorption (8). Live or dead microbial cells 

and their products are very effi  cient bioaccumulators 

of both soluble and particulate forms of metals (9-

12). Many studies show that soluble metal ions in the 

environment could be captured by microorganisms 

due to the negatively charged groups attached within 
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their cell wall structure (13). Bacteria, algae, and fungi 

or their separated components have been successfully 

used as biosorbents for heavy metal removal (14). 

Metal uptake is a complex process and it depends 

on factors such as the chemistry of the metal ions 

and specifi c surface properties of the organisms. 

Physiology of the cells and environmental factors 

such as pH, temperature, and metal concentration 

also aff ect metal uptake by the cells (15). Several 

microbial genera were used for copper removal 

processes. Among them, Pseudomonas has been 

shown to be relatively effi  cient in bioaccumulation 

of copper from polluted effl  uents in both an 

immobilized and mobilized state (16-18). 

In the present study, 2 diff erent bacterial species 

were isolated from an industrially polluted region in 

Kocaeli, Turkey. Th e isolates were characterized by 

16S rRNA sequence analysis, and the eff ects of copper 

concentration, pH, and temperature on the copper-

removing ability of the isolates were investigated. 

Materials and methods

Isolation of copper-resistant bacteria

Soil samples were collected from 5 diff erent locations 

in the industrially polluted region of Darıca (Kocaeli, 

Turkey). Th e samples were inoculated in lysogeny 

broth (LB) medium containing 200 mg/L Cu+2. Aft er 

incubation at 30 °C for a week, the cultures were 

used to inoculate fresh media containing 200 mg/L 

copper. Copper-tolerant bacteria were enriched by 

repeating the enrichment procedure 3 times. Th e 

mixed cultures obtained at the end of enrichment 

were analyzed for their copper-removing capacity 

using an atomic absorption spectrophotometer 

(AAS). Th e mixed cultures with relatively higher 

copper removal capacity were used for isolation of 

particular copper-resistant bacteria. Mixed culture 

(200 μL) was spread on Luria agar (LA) plates with 

200 mg/L copper, and individual colonies appearing 

aft er 2 days of incubation at 30 °C were streaked on 

fresh LA medium. 

Th e cells were incubated in an anaerobic cabinet 

under N
2
 atmosphere in order to determine whether 

they were fermentative. Sporulation ability of the cells 

was checked by heating the stationary phase culture 

to 90 °C for 15 min and spreading the appropriate 

amount of culture on LA. Th e appearance of colonies 

aft er incubation indicated regeneration of spores.

Eff ect of temperature, pH, and copper concentration 

on bioremoval and growth 

Th e eff ects of 3 diff erent temperatures (25, 30, and 

37 °C) and 3 diff erent pH values (5.0, 6.8, and 8.0) 

on the bioremoval effi  ciency of the bacteria were 

investigated by culturing in LB medium containing 

20 mg/L copper. Th e pH adjustment of the medium 

was done using NaOH or HCl solutions. LB 

media containing 0, 10, 20, 40, 70, 100, and 150 

mg/L copper(II) were inoculated by the bacterial 

isolates in order to investigate the eff ect of copper 

concentration on bioremoval. Cultures were 

grown for 160 h, and copper concentration in the 

supernatant was measured at hours 0, 20, 80, and 160 

of growth. Growth was monitored by measurement 

of optical density at 600 nm with a UV-Vis 

spectrophotometer (GBC-Cintra20). Th e amount of 

copper was determined spectrophotometrically on a 

PerkinElmer AAS (model 1100) at a wavelength of 

324.8 nm, and the amount of removed copper was 

calculated by taking the diff erence between the initial 

and fi nal concentrations measured. 

Comparison of the resistance and bioremoval 

capacities of the isolates with Escherichia coli

Resistance of the isolates and E. coli to 5 diff erent 

copper concentrations (20, 50, 100, 150, and 200 

mg/L) was determined in LB medium at 37 °C. Th e 

cultures were aerated by shaking at 130 rpm. Th e 

number of living cells at diff erent time intervals 

was determined by calculating CFU/mL for each 

strain. Th e following formula was used to calculate 

% resistance:

Th e % removal of copper at 37 °C was determined 
by measuring copper concentrations in the media 

( )

% Resistance
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CFU/mL[Cu ]
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containing 20 and 100 mg/L Cu+2. Medium containing 

the appropriate copper concentration, but no cells, 

was used as the control for calculation of % removal. 

Th e experiments were performed in duplicate. 

Gram staining

Th e Gram-Hücker staining method (RAL, Martillac, 

France) was used to stain the cells. Th e cells were 

examined under ×100 oil immersion objective with 

a trinocular phase contrast microscope (Carl Zeiss, 

Axio Scope model) equipped with an Axiocam Icc3 

3.3 Mp FireWire connection digital camera (Carl 

Zeiss).

RapID biochemical and oxidase test

RapID biochemical test and oxidase test were 

performed according to the manufacturer’s 

instructions (Remel, Kansas, USA). For the 

biochemical tests, the diluted bacterial cultures were 

inoculated into the biochemical reagent-containing 

wells of a plastic container provided in the kit. For 

the oxidase test, fresh bacterial cells were smeared on 

Whatman No. 1 fi lter paper, and a drop of RAPID 

oxidase solution was added to the cell smear. An 

oxidase positive reaction creates a dark purple color 

on the fi lter paper. 

16S rRNA sequence analysis

N1c and N5a, 2 copper-tolerant isolates, were grown 

in LB medium overnight. Genomic DNA of the cells 

was isolated using the Fermentas genomic DNA 

isolation kit, and the cells were used as a template 

for amplifying 16S rRNA genes by polymerase chain 

reaction (PCR). Th e eubacterial primers fD1, 5ʹ 
AGAGTTTGATCCTGGCTCAG 3ʹ (E. coli positions 

8 to 27) and rP2, 5ʹ ACGGCTACCTTGTTACGACTT 

3ʹ (E. coli positions 1494 to 1513) (19) were used for 

amplifi cation. PCR reaction mixtures contained 32 

μL of water, 5 μL of 10X PCR Mg+2 buff er, 50 pmol of 

each primer, 5 μL of 2 mM dNTP, 0.5 μg of genomic 

DNA, and 3 U of Taq DNA polymerase. PCR was 

carried out in 35 cycles: 1 min at 94 °C, 1 min at 58 

°C, and 2 min at 72 °C. Th e initial denaturation was 

carried out at 94 °C for 10 min. Th e fi nal extension 

was for 10 min at 72 °C. Reaction mixtures were run 

in a 0.9% agarose gel. PCR products were extracted 

from the gel with the QIAGEN gel extraction kit and 

then used for DNA sequencing.

DNA sequencing was carried out at İontek 
(İstanbul, Turkey) using the chain termination 
method with the dye-labeled dideoxy terminators 
of the Th ermo Sequenase II Dye Terminator 
Cycle Sequencing Kit (Amersham). Th e deduced 
nucleotide sequence of the data was compared with 
the National Center for Biotechnology Information 
(NCBI) database using the BLAST search available 
through the center’s website (http://www.ncbi.nlm.
nih.gov/BLAST). Th e 16S rRNA sequences were 
submitted to the Gene Bank using the BankIt service. 
Th e phylogenetic tree was constructed using the 
DNASTAR program. 

Results and discussion

From the 5 diff erent soil samples taken from heavy 
metal-contaminated areas of the Darıca district of 
Kocaeli, 9 diff erent copper-tolerant microbial strains 
were isolated. Among the 9 isolates, 2 strains, N1c and 
N5a, formed healthier colonies on solid medium and 
were found to be more effi  cient at copper bioremoval 
than the other isolates. 

Th e infl uence of diff erent cultural conditions on 
the copper bioremoval effi  ciency of N1c and N5a 
was investigated. In order to decrease the energy 
expenditure of the process, the isolates were grown at 
30 °C without shaking. Th e growth rate of the isolates 
was low under these conditions, especially due to the 
low aeration. Th e eff ect of copper concentration on 
the bioremoval capacity of N1c and N5a is shown in 
the Table. Bioremoval effi  ciency increased with time, 
and maximum effi  ciency was observed at 160 h of 
growth. Bioremoval effi  ciency was the highest in 10 

Table. Percent bioremoval of copper by N1c and N5a at 160 h of 

incubation at 30 °C.

Cu+2 co ncentration

(mg/L)
N1c N5a

0 0 0

10 50 50

20 35 50

40 25 15

70 15 10

100 0 0

150 0 0
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mg/L copper-containing medium for both isolates. 
When the concentration increased to 40 mg/L, the 
bioremoval capacity decreased to 18%. Bioremoval 
was negligible in 100 and 150 mg/L copper-
containing media. High copper concentration is 
toxic to cells, and their growth is retarded at elevated 
copper concentrations. In the study by Ong et al. (20), 
it was observed that when the copper concentration 
increased above 7 mg/L in activated sludge, the 
activity of the microorganisms decreased. In general, 
copper concentration in the activated sludge is kept 
below 50 mg/L, and bioremoval effi  ciency decreases 
at higher concentrations of copper (21-24).

For determination of optimum temperature and 
pH for copper bioremoval of the isolates, experiments 
were performed in 20 mg/L copper-containing LB 
media at 30 °C without shaking the cultures. Th is 
concentration was used in order to eliminate the 
precipitation problem that emerges under high copper 
concentrations. Although there was no remarkable 
diff erence between the growth rates obtained at 30 
and 37 °C, the isolates reached the highest OD

600
 

when they were grown at 30 °C (data not shown). 
Decreasing the incubation temperature to 25 °C 
resulted in a decreased growth rate, especially for 
N5a. Th e highest bioremoval effi  ciency was observed 
at 30 °C. At 80 h of growth, bioremoval effi  ciencies 
were measured as 82% and 89% for N1c and N5a, 
respectively (Figure 1). Optimum pH for maximum 
copper removal was 6.8 (Figure 2). Bioremoval 
effi  ciency decreased drastically as the pH changed 

to 5.0 or 8.0. N1c was aff ected by pH changes more 
than N5a. Biomass of the isolates did not show a 
remarkable increase at pH 5.0. Slow growth of strain 
N5a at pH 5 allowed 26% copper removal at 80 h of 
incubation. 

Aeration was shown to be an important parameter 
for the growth of N1c and N5a. When the cells were 
grown by shaking at 130 rpm, their growth rates 
increased remarkably. Th e resistance of the isolates 
to copper was compared with that of E. coli at 37 
°C under aerated conditions. Th e decrease in cell 
numbers in N1c, N5a, and E. coli cultures under 
increasing copper concentrations is seen in Figures 
3A, 3B, and 3C, respectively. Th e % resistance of the 
cells was calculated for 72 h of growth (Figure 3D). It 
was observed that the % resistance of N5a was higher 
than that of N1c and E. coli at high concentrations 
of copper. N5a was about 875 and 100 times more 
resistant than E. coli to 150 mg/L and 200 mg/L copper, 
respectively. At 20 mg/L copper-containing medium, 
1.32% of N1c and 8.5% of E. coli cells survived aft er 
72 h of incubation, while more than half of N5a cells 
survived at that concentration. E. coli was found to 
be as resistant to copper as N1c. Th e resistance of E. 
coli to high copper concentrations is not a surprising 
fi nding. In a study by Ibrahim et al. (25), growth 
inhibition for E. coli O157:H7 was negligible in the 
presence of 50 mg/L copper. E. coli is actually known 
to handle copper toxicity with its multiple systems 
under varying environmental conditions (26). One 
of these systems is the membrane-bound cupric-
reductase of E. coli, which has an important function 
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in mediating tolerance to low or high copper 

concentrations (27). Th e genes responsible for copper 

tolerance of the isolates remain to be determined in 

future studies. 

Th e copper removal capacities of N5a and N1c 

were compared with that of E. coli at 37 °C and 130 

rpm in the presence of 20 mg/L and 100 mg/L Cu+2 

in LB medium (Figure 4A). In 20 mg/L copper-

containing medium, the % bioremoval of N5a was the 

highest. N1c removed 31.7% of copper in 100 mg/L 

copper-containing medium, whereas bioremoval of 

N5a and E. coli was negligible at that concentration. 

Th erefore, the resistance level of a bacterial strain may 

not refl ect its bioremoval capacity. Although E. coli 

cells were found to be more resistant than N1c, when 

we look at the % bioremoval/cell values, individual 

N1c cells removed the highest amount of copper in 

100 mg/L copper-containing LB (Figure 4B). Specifi c 

surface properties and the physiological state of the 

microorganisms might have a role in metal uptake. 

Copper removal is drastically aff ected by medium 

composition and environmental conditions. Because 

of this, copper removal capacity of a bacterial strain 

has to be determined for each specifi c condition under 

which treatment or bioremoval will be performed. 

Reaching a high biomass is also important for better 

bioremoval. 

For the phylogenetic analysis of the bacteria 

16S rRNA genes were amplifi ed as described in 
the “materials and methods” section. About 1500-
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Figure 3. Growth of N1c (A), N5b (B), and E. coli (C) and % resistance (D) in LB with diff erent concentrations of Cu+2 at 37 °C and 

130 rpm. 
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bp PCR products were cut from the gel and used 
for DNA sequencing. Sequencing was performed 
using the forward and reverse primers used for PCR 
amplifi cation. Th e 16S rRNA gene sequences of 
N1c and N5a strains were submitted to GenBank. 
Th e accession numbers assigned to N1c and N5a 
are JN899140 and JN899141, respectively. A 
phylogenetic tree was prepared by comparing the 
conserved regions of 16S rRNA from the isolates 
with 16S rRNA gene sequences from 10 other genera 
(Figure 5). Comparison of 16S rRNA gene sequences 
revealed that N1c showed about 96% similarity 
to Achromobacter, Alcaligenes, and a novel genus, 
Collimonas (28). A 96% similarity in 16S rRNA gene 
sequences is a low value for identifi cation at species 
level. Th erefore, N1c may be a member of a novel 
bacterial species. Achromobacter and Alcaligenes are 

closely related genera (29), and both belong to the 
family Betaproteobacteria. Achromobacter is also 
known for its copper-containing nitrate reductase 
enzyme (30). Similar to N1c, strain R14C4 isolated 
from the biofi lm communities of a reactor by 
Zilouei et al. (31) was found to be equally related to 
Collimonas fungivorans, Achromobacter xylosoxidans, 
and various Alcaligenes spp. (98% similarity). R14C4 
was shown to degrade chlorophenols at high degrees. 

As a result of a BLAST search, 96% similarity was 
observed between the 16S rRNA gene sequence of 
N5a and P. stutzeri. Several other Pseudomonas spp. 
previously isolated from diff erent sources, such as 
metal-contaminated soil samples or vineyard soil, 
had diff erent bioremoval effi  ciencies (32,33). P. putida 
CZ1, isolated by Chen et al. (33), was also found to be 

effi  cient in zinc bioremoval. 
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As with any other Pseudomonas species, N5a cells 
were observed as gram-negative and rod-shaped 
bacteria under the microscope. It was also observed 
that the colony morphology of N5a was identical to 
that of P. stutzeri. Although Alcaligenes species and 
Achromobacter species are gram-negative bacteria, 
Gram stains of N1c cells revealed gram-variable 
reactions in our study. Th ere are some reports of 
gram-variable reactions in Alcaligenes (34) and 
Achromobacter species (35). Cells of N1c were rod-
shaped under the microscope, and RAPID oxidase 
test results indicated that both of the isolates were 
oxidase-positive. Th e other RAPID biochemical tests 
did not help to identify N1c and N5a. It was shown 
that the isolates were not spore-formers and were not 
able to grow in anaerobic conditions. Th ese results 
also supported the 16S rRNA gene sequence identity 
of the isolates. 

Th e present study reports the copper resistance 
level and bioremoval effi  ciency of 2 local isolates 
that were possible members of Achromobacter 
sp. and P. stutzeri, respectively. However, further 
characterization is necessary in order to provide 
genus and species names for the isolates investigated 
in this study. Th ese bacterial genera or species play 

an important role in waste treatment processes. 

Heavy metal tolerance is a desired property for a 

microorganism used in waste treatment processes. 

In this respect, N5a cells can be used for treatment 

of copper-rich wastes, and N1c cells are suitable for 

copper bioremoval in aerated sludges containing 

high amounts of copper. Th e capacity of N1c and 

N5a for denitrifi cation or degradation of hazardous 

pollutants will be determined in future studies.  
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