T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOLGU DUVARLARIN ASMA KATLI ÇERÇEVELİ BETONARME YAPILARIN DAVRANIŞI ÜZERİNDEKİ ETKİSİ

YÜKSEK LİSANS TEZİ

Vessam ALMANNAA

İnşaat Mühendisliği Anabilim Dalı

Yapı Bilim Dalı

Mayıs 2024

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DOLGU DUVARLARIN ASMA KATLI ÇERÇEVELİ BETONARME YAPILARIN DAVRANIŞI ÜZERİNDEKİ ETKİSİ

YÜKSEK LİSANS TEZİ

Vessam ALMANNAA

İnşaat Mühendisliği Anabilim Dalı

Yapı Bilim Dalı

Tez Danışmanı: Doç. Dr. Muhammet Zeki ÖZYURT

Mayıs 2024

Vessam ALMANNAA tarafından hazırlanan "DOLGU DUVARLARIN ASMA KATLI ÇERÇEVELİ BETONARME YAPILARIN DAVRANIŞI ÜZERİNDEKİ ETKİSİ" adlı tez çalışması 24.05.2024 tarihinde aşağıdaki jüri tarafından oy birliği/ oy çokluğu ile Sakarya Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim DalıYapı Bilim Dalı'nda Yüksek Lisans teziolarak kabul edilmiştir.

Tez Jürisi

Jüri Başkanı :	Doç. Dr. Tahir AKGÜL Sakarya Uygulamalı Bilimler Üniversit	tesi
Jüri Üyesi :	Doç. Dr. Muhammet Zeki ÖZYURT Sakarya Üniversitesi	(Danışman)
Jüri Üyesi :	Dr. Öğretim Üyesi Necati MERT Sakarya Üniversitesi	•••••

ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ

Üniversitesi Fen Bilimleri Eğitim-Öğretim Sakarya Enstitüsü Lisansüstü Yönetmeliğine ve Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesine uygun olarak hazırlamış olduğum "DOLGU DUVARLARIN ASMA KATLI ÇERÇEVELİ BETONARME YAPILARIN DAVRANIŞI ÜZERİNDEKİ ETKİSİ" başlıklı tezin bana ait, özgün bir çalışma olduğunu; çalışmamın tüm aşamalarında yukarıda belirtilen yönetmelik ve yönergeye uygun davrandığımı, tezin içerdiği yenilik ve sonuçları başka bir yerden almadığımı, tezde kullandığım eserleri usulüne göre kaynak olarak gösterdiğimi, bu tezi başka bir bilim kuruluna akademik amaç ve unvan almak amacıyla vermediğimi ve 20.04.2016 tarihli Resmi Gazete'de yayımlanan Lisansüstü Eğitim ve Öğretim Yönetmeliğinin 9/2 ve 22/2 maddeleri gereğince Sakarya Üniversitesi'nin abonesi olduğu intihal yazılım programı kullanılarak Enstitü tarafından belirlenmiş ölçütlere uygun rapor alındığını çalışmamla ilgili yaptığım bu beyana aykırı bir durumun ortaya çıkması halinde doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi beyan ederim.

(24/05/2024)

(imza)

Vessam ALMANNAA

TEŞEKKÜR

Tezin her aşamasında bana rehberlik eden ve derin bilgilerinden yararlandığım değerli hocam Dr. Muhammet Zeki Özyurt'a katkılarından ve sabrından dolayı sonsuz teşekkürlerimi sunuyorum.Bu süreçte ayrıca, tezimin gerçekleştirilmesinde bana büyük bir destek olan babam Mohameed Ayman Almanna, annem Maysaa Daboul, kardeşlerim Yasin, Firas ve Enes'e de içtenlikle teşekkür etmek istiyorum. Sizlerin sürekli motivasyonu, sevgisi ve güçlü desteği sayesinde bu tezi tamamlama fırsatı buldum. Her zaman benim yanımda olduğunuz için size sonsuzminnettarım. Tezimde kullanılan bilimsel çalışmaların yazarlarına ayrıca teşekkür etmek istiyorum. Bu çalışmalar, tezimin temelini oluşturdu ve araştırmalarıma yön verdi. Tezimin temelini oluşturan bu çalışmaların yazarlarına minnettarlığımı sunuyorum.

Vessam ALMANNAA

İÇİNDEKİLER

<u>Sayfa</u>

ETİK İLKE VE KURALLARA UYGUNLUK BEYANNAMESİ	v
TEŞEKKÜR	vii
İÇİNDEKİLER	ix
KISALTMALAR	xi
SİMGELER	xiii
TABLO LISTESI	xvii
ŞEKIL LISTESI	xix
OZET	. xxiii
SUMMARY	XXV
1. GIRIŞ	1
1.1. Çalışma Amacı ve Kapsamı	l
1.2. Literatür Taramasi	3
2. DOLGU DUVARININ MODELLENMESI VE YAPISAL DAVRANIŞ	
UZERINDEKI ETKILERI	11
2.1. Yapısal Sistemlerde Dolgu Duvar Hakkında Giriş	11
2.2. Deprem Etkisi Altındaki Dolgu Duvarlı Çerçeveler	11
2.2.1. Dolgulu duvarların yük taşıma kapasitesi	11
2.2.2. Rijitlik	12
2.2.3. Enerji yutma özelliği	14
2.3. Dolgu Duvarın Özellikleri	14
2.3.1. Tuğla dolgu duvar elastisite modülü	14
2.3.2. Dolgu duvarların basınç dayanımı	14
2.3.3. Tuğla ve harç dayanımının etkisi	15
2.4. Dolgu Duvarların Hasar Biçimleri	15
2.5. Dolgu Duvar Modelleme ve Hesaplama Şekli	16
2.5.1. Eşdeğer basınç çubuğu yöntemi	17
3. BİNA PERFORMANS HEDEFLERİ VE TASARIM YAKLAŞIMLARI	21
3.1. Türkiye Bina Deprem Yönetmeliği'ne Göre Performans Hedefi Belirlem	ek
İçin Dikkate Alınan Faktörler	21
3.1.1. Bina kullanım sınıfları ve bina önem katsayıları (BKS)	21
3.1.2. Deprem tasarım sınıfları (DTS)	22
3.1.3. Bina yüksekliği (H _N)	22
3.1.4. Bina yükseklik sınıfları (BYS)	23
3.1.5. Deprem yer hareketi düzeyleri	23
3.2. Bina Performans Düzeyleri	24
3.2.1. Kesintisiz kullanım (KK) performans düzeyi	24
3.2.2. Sınırlı hasar (SH) performans düzeyi	25
3.2.3. Kontrollü hasar (KH) performans düzeyi	25
3.2.4. Göçmenin önlenmesi (GÖ) performans düzeyi	26

3.3. BinaDeprem Etkisi Altında Bina Performans Hedefleri ve Uygulanacak	
Tasarım Yaklaşımları	27
3.3.1. Bina performans nederleri.	27
2.2.2.1 Descention of the formula (DCT) see 1-1 server	28
3.3.2.1. Dayanima gore tasarim (DG1) yakiaşımı	28
2.4. Dennem Ethici Altundo Düzensiz Dinolon	29
3.4. Deprem Eukisi Alunda Duzensiz Binalar	29
3.4.1. Çalışmada oluşan düzensizlikler	31
3.4.1.1. AI – buruima duzensiziigi	31
3.4.1.2. B2 – Komşu katlar arası rijitlik düzensizliği (Yumuşak Kat)	13 22
4. HESAF YUNTEMLER	33
4.1. ModBineştime Tontenin'ne Depieni nesabi (Tepki Spektrumu)	
4.1.1. Hesada Kathacak yeterii titeşiin modu sayısı	37
4.2. Statik func Analizi (Fusilovei Analysis)	30 40
4.2.1. Tabah Keshe Kuvven ne çan kat yerdeğiştirmesi mşkisi	4 0 /1
4.2.2. Treuer yerdegiştirmesi	۲+ 12
4.2.3. Tapisai cicinanin plastik maisanaşınası	+2 AA
4.2.4. Dinanarin sistifik performans degenendirmest	דד
5 SAVISAL IIVGIILAMALAR	47
5. SAYISAL UYGULAMALAR	 47 47
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 	 47 47 47
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulmaşı 	 47 47 47 54
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 	 47 47 47 54 55
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının 	 47 47 54 55
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 	 47 47 54 55 61
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 5.3.3. Respons spectrum ve pushover yükleri tanımlamak 	 47 47 54 55 61 63
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 5.3.3. Respons spectrum ve pushover yükleri tanımlamak 5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları 	47 47 54 55 61 63 70
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 5.3.3. Respons spectrum ve pushover yükleri tanımlamak 5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları 5.5. Pushover Yöntemi Modelleri ve Analiz Sonuçları 	47 47 54 55 61 63 70 82
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 5.3.3. Respons spectrum ve pushover yükleri tanımlamak 5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları 5.5. Pushover Yöntemi Modelleri ve Analiz Sonuçları 5.5.1. Yapısal elemanlarda oluşan mafsallar 	47 47 54 55 61 63 70 82 99
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 5.3.3. Respons spectrum ve pushover yükleri tanımlamak 5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları 5.5. Pushover Yöntemi Modelleri ve Analiz Sonuçları 5.5.1. Yapısal elemanlarda oluşan mafsallar 	47 47 54 55 61 63 70 82 99 .119
 5. SAYISAL UYGULAMALAR 5.1. Giriş 5.2. Bina Modelleri Hakkında Bilgiler 5.3. Yapısal Modelin Oluşturulması 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması 5.3.3. Respons spectrum ve pushover yükleri tanımlamak 5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları 5.5. Pushover Yöntemi Modelleri ve Analiz Sonuçları 5.5.1. Yapısal elemanlarda oluşan mafsallar 6. SONUÇLAR VE TARTIŞMA 6.1. Sonuçlar 	47 47 54 55 61 63 70 82 99 . 119
 5. SAYISAL UYGULAMALAR	47 47 54 55 61 63 70 82 99 . 119 . 119
 5. SAYISAL UYGULAMALAR	47 47 54 55 61 63 70 82 99 . 119 . 119 . 120
 5. SAYISAL UYGULAMALAR	47 47 54 55 61 63 70 82 99 . 119 . 119 . 120 . 122
 5. SAYISAL UYGULAMALAR. 5.1. Giriş. 5.2. Bina Modelleri Hakkında Bilgiler. 5.3. Yapısal Modelin Oluşturulması. 5.3.1. Malzeme ve kesitlerin tanımı 5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması. 5.3.3. Respons spectrum ve pushover yükleri tanımlamak. 5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları 5.5. Pushover Yöntemi Modelleri ve Analiz Sonuçları 5.5.1. Yapısal elemanlarda oluşan mafsallar 6. SONUÇLAR VE TARTIŞMA 6.1. Sonuçlar. 6.1.2. B ve C tipi bina 6.2. Tartışma. 	47 47 54 55 61 63 70 82 99 . 119 . 119 . 119 . 120 . 122 . 127

KISALTMALAR

: Afet ve Acil Durum Yönetimi Başkanlığı
: Applied Technology Council
: Bina Kullanım Sınıfları
: Bina yükseklik sınıfları
: Collapse Prevention
: Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
: Deprem Yer Hareketi Düzeyi
: Dayanıma Göre Tasarım
: Deprem Tasarım Sınıfları
: Extended 3D Analysis of Building Systems
: Finite Element Analysis
: Federal Emergency Management. Agency
: Göçmenin Önlenmsi
: Bina Yüksekliği
: Immediate Occupancy
: Kontrollü Hasar
: Kesinitsiz Kullanım
: Life Safety
: Çoklu Serbestlik Derecesi
: Reinforced Concrete
: Structural Analysis Program
: Eşdeğer Tek Serbestlik Dderecesi
: Safety Factor
: Sınırlı Hasar
: Square Root of the Sum of the Squares
: Şekil Değiştirmeye Göre Değerlendirme ve Tasarım
: Türkiye Deprem Bina Yönetmeliği
: Betonarme Yapıların Tasarım ve Yapım Kuralları"
: Ultimate Limit State

xii

SİMGELER

a	: 3 metre asma kat yüksekliği
a	: Eşdeğer basınç çubuğuKalınlığı [m]
A(Tr)	: r'inci titreșim moduna ait spektral ivme katsayısı olarak tanımlanmıştır.
b	: 4 metre asma kat yüksekliği
c	: 5 metre asma kat yüksekliği
cm	: Santimetre
d	: Birinci kat 3 metrelik yüksekliği
e	: Birinci kat 4.5 metrelik yüksekliği
Ε	: Elasitite modülü
Ec	: Kolonun elastisite modülü
Ei	: Dolgu duvarın elastisite modülü
f	: Birinci kat 5.5 metrelik yüksekliği
F	: Çubuğun en kesit alanı
\mathbf{F}_1	: 1.0 saniye periyot için Yerel Zemin Etki Katsayısı
Fixn ^{(x)=}	: deprem yer hareketi etkisialtında n'inci titreşim modunda i'inci kata x doğrultusunda etkiyen modal deprem yükü'nün zamana göre değişimi [kN]
Fs	: Kısa periyot bölgesi için Yerel Zemin Etki Katsayısı
g	: Birinci kat 6.5 metrelik yüksekliği
G	: Toplam ölü yük
g	: Yerçekimi ivmesi
g	: Yerçekimi ivmesi
h	: Birinci kat 7.5 metrelik yüksekliği
h	: Kolonun yüksekliği
Н	: Toplam Bina Yükekliği [m]
h1	: Zeminkat +AsmakatToplam yüksekliği[m]
ha	: Asma kat yüksekliği[m]
hcol	: Kolun yüksekliği[m]
hinf	: Dolgu duvar yüksekliği[m]
$\mathbf{H}_{\mathbf{N}}$: Bina yüksekliği[m]
hz	: Zemin kat yüksekliği[m]

Ι	: Bina Önem Katsayısı
Ic	: Kolon atalet momenti
k	: Birim uzama rijitliği
K	: Yatay rijitliği
KN	: Kilonewton
1	: Kirişin uzunluğu
Ld	: Çubuğun uzunluğu
Linf	: Dolgu duvar genişliği [m]
m	: Sistemin kütlesi
m	: Metre
Μ	: Mod birleştirme yöntemi
Μ	: Moment [kN·m]
m ²	: Metrekare
mi	: i 'inci katın toplam kütlesi
mixn ^(X)	:(X) deprem doğrultusu için binanın x ekseni doğrultusunda n'inci doğal titreşim
miyn ^(X)	: (X) deprem doğrultusu için binanın y ekseni doğrultusunda n'inci doğal titreşim moduna ait i'inci kat modal etkin kütlesi
miθ	: i 'inci katın kütle eylemsizlik moment
miθn ^(X)	: (X) deprem doğrultusu için binanın z ekseni etrafında n'inci doğal titreşim moduna ait
mm	: Milimetre
Moxn,max ^(x)	: En büyük taban devrilme momenti
Мра	: MegaPascal
n	: Hareketli yük katılım katsayısı
Р	: İtme (pushover) analiz yöntemi
Р	: Yatay Kuvveti[kN]
PGA	: En büyük yer ivmesi[g]
PGV	: En büyük yer hızı[cm/sn]
q	: Eşdeğer çubuğun yatayla yaptığı açı
Q	: Toplam hareketli yükü
Ra(Tr)	: r'inci titreşim modunda deprem yükü azaltma katsayısı olarak tanımlanmıştır
rinf	: Eşdeğer basınç çubuğuuzunluğu[m]
S_1	: 1.0 saniye periyot için harita spektral ivme katsayısı
Sae(Tr)	: r'inci titreșim moduna ait elastik spektral ivme

SaR(Tr)	: r'inci titreșim modunda gözönüne alınacak ivme spektrum değeri
S _{DS}	: Periyot Tasarım Spektral İvme Katsayısı
sn	: Saniye
Ss	: Kısa periyot harita spektral ivme katsayısı
Τ	: Periyot [sn]
T1	: Yapının birinci doğal titreşim periyodu
TA, TB, Ta	: Spektrum karakteristik periyotları
tinf	: Dolgu duvar kalınlığı[m]
Тр	: Titreșim Periyodu
V	: Taban Kesme kuvveti [kN]
\mathbf{V}_{tE}	: Eşdeğer Deprem Yükü Yöntemi'ne göre hesaplanan toplam eşdeğer deprem yükünü
Vtx(X)	: X doğrultusunda elde edilen toplam eşdeğer deprem yükünü (taban kesme kuvvetini) ifade eder
Vtxn,max ^(X)	[÷] x ekseni doğrultusunda en büyük modal taban kesme kuvveti
W	: ToplamBina ağırlığı [kN]
<u>Υ</u> Ε	: Katsayıdır
$\Gamma n^{(x)}$: Modal katkı çarpanı
Δ	: Kat ötelemesi, kesitin toplam uzama miktarı
ηbi	: i'inci Katta Tanımlanan Burulma Düzensizliği Katsayısı
ηki	: i'inci Katta Tanımlanan Rijitlik Düzensizliği Katsayısı
θ	: Açı[Derece]
θp	: Plastik mafsal dönmesi
θt	: Toplam eğrilik
Φixn	: i'inci katta x ekseni doğrultusunda n'inci doğal titreşim mod şekli genliği
Фiyn	: i'inci katta y ekseni doğrultusunda n'inci doğal titreşim mod şekli genliği
Φiθn	: i'inci katta z ekseni etrafında dönme olarak n'inci doğal titreşim mod şekli genliği
βtE	: Eşdeğer deprem yükü yöntemine göre hesaplanan toplam eşdeğer deprem yükünü ifade eder

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 3.1. Bina kullanım sınıfları ve bına önem katsayıları (BKS) tablosu	.23
Tablo 3.2. Deprem tasarım sınıfları (DTS) tablosu.	.23
Tablo 3.3. Bina yükseklik sınıfları ve deprem tasarım sınıflarına göre	
tanımlanan bina yükseklik aralıkları	.23
Tablo 3.4. Deprem tasarım sınıflarına göre yeni yapılacak veya mevcut binalar	
için performans hedefleri ve uygulanacak değerlendirme/tasarım	
yaklaşımları	. 28
Tablo 3.5. Düzensiz binalar.	. 31
Tablo 5.1. Model isimlendirilmesinde kullanılan semboller ve açıklaması.	. 49
Tablo 5.2.Çalışma1: Tip A bina model isimleri.	.53
Tablo 5.3. Çalışma1: Tip B ve C binaların model isimleri.	.53
Tablo 5.4.Donatı çeliklerine ait bilgiler.	. 55
Tablo 5.5. Kullanılan beton sınıfı ve dayanımı.	.55
Tablo 5.6.Eşdeğer basınç çubuğunun genişliği hesabı.	. 59
Tablo 5.7. DD2 deprem verileri.	. 63
Tablo 5.8. Türkiye deprem tehlike haritaları raporu 2/5.	. 64
Tablo 5.9. Türkiye deprem tehlike haritaları raporu 3/5.	65
Tablo 5.10. Türkiye deprem tehlike haritaları raporu 4/5.	65
Tablo 5.11. Mod birleştirme yöntemi ile modellenen 1-10 binalarına ait analiz	
sonuçları	.71
Tablo 5.12. Mod birleştirme yöntemi ile modellenen 11-22 binalarına ait	
analiz sonuçları	.75
Tablo 5.13. Mod birleştirme yöntemi ile modellenen 23-34 binalarına ait analiz	
sonuçları.	.79
Tablo 5.14. Pushover yöntemi ile modellenen 35-44 binalarına ait analiz	
sonuçları	. 83
Tablo 5.15.Pushover yöntemi ile modellenen 45-56 binalarına ait analiz	
sonuçları	.85
Tablo 5.16. Pushover yöntemi ile modellenen 57-68 binalarına ait analiz	
sonuçları	. 90
Tablo 5.17.35-39 modellerin çatı kat deplasmanı ve taban kesme kuvveti	. 88
Tablo 5.18. 40-44 modellerin çatı kat deplasmanı ve taban kesme kuvveti	. 90
Tablo 5.19.45-50 modellerin çatı kat deplasmanı ve taban kesme kuvveti	.92
Tablo 5.20. 51-56 binaların çatı kat deplasmanı ve taban kesme kuvveti	.94
Tablo 5.21.57-62 binaların çatı kat deplasmanı ve taban kesme kuvveti	00
Tablo 5.22.63-68 binaların çatı kat deplasmanı ve taban kesme kuvveti	. 97
Tablo 5.23. Modellerde oluşan mafsal sayısı.	.99
Tablo 5.24. Modellerde oluşan plastik mafsallar sayısı ve risk göstergesi 1	104
Tablo 6.1. Dolgu duvarı isimlendirilmesinde kullanılan semboller ve	
açıklaması1	124

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 1.1. Kocaeli depreminde yumuşak kat ve zayıf kat nedeniyle oluşan	
hasar	6
Şekil 2.1. Çeşitli çerçevelerin yük-tepe yerdeğiştirme eğrileri	12
Şekil 2.2. Rijitliğin dolgu duvar etkisinin analitik olarak modellenmesi	13
Şekil 2.3. Yatay derzlere paralel etkiyen yükler altında yığma duvarlarda	
kırılma biçimleri	17
Şekil 2.4. a. Eksenel basınçtan oluşabilecek çatlaklar b. Eşdeğer basınç çubuğu.	19
Şekil 2.5. Dolgu duvarın çözümleme modelinde temsil edilmesi.	19
Şekil 3.1. Binanın performans düzeylerin grafiği ve göçme aşamaları	
TBDY 2018	27
Şekil 4.1. Doğal titreşim periyoduna bağlı olarak yerçekimi ivmesi [G]	
cinsinden yatay elastik tasarım spektral ivmeleri	36
Şekil 4.2. Doğal titreşim periyoduna bağlı olarak ivme spektrum değeri	36
Şekil 4.3. Çerçeve elemanının beklenen kapasite eğrisi	40
Şekil 4.4. Yapısal elemanın SDOF plastik mafsallaşması	46
Şekil 4.5. Risk gösterge eğrisi	47
Şekil 4.6. FEMA 273/356 performans seviyeleri	47
Şekil 5.1. Modellerde kullanılan kesitler ve donatıları A) Kiriş kesiti B) Kolon	
kesiti	48
Şekil 5.2. Çalışmada modellenen A bina tipi. A) Dolgusuz duvar model	
B) Dolgulu duvar model C) a-a kesitii	50
Şekil 5.3. Çalışmada modellenen B bina tipi. A) Dolgusuz duvar model	
B) Dolgulu duvar model C) b-b kesiti.	51
Şekil 5.4. Çalışmada modellenen C Bina tipi. A) Dolgusuz duvar model	
B) Dolgulu duvar model C) c-c kesiti	52
Şekil 5.5. Etabs yazılımı kullanarak oluşturlan 3d modelleri. A) Duvarsız	
modelleri B) Duvarlı modeller	55
Şekil 5.6. Tanımlanan malzemelerin ve özellikleri A) Beton malzeme,	
B) Donatı çeliği malzeme.	59
Şekil 5.7. Etabs'te C25 beton sınıfı için malzeme modeli	59
Şekil 5.8. Etabs'te B420C donatı çeliği için malzeme modeli.	60
Şekil 5.9. Etabs'te sargılı ve sargısız beton için gerilme-şekildeğiştirme	
grafikleri.	60
Şekil 5.10. Etabs'te A) Kolon özellikleri tanımlanması, B) Kiriş özellikleri	
tanımlanması.	58
Şekil 5.11. Yapısal elemanlarda etkin eğilme rijitliği katsayıları girilmesi. A)	-
Kolonlarda B) Kırışlerde.	58
Şekil 5.12. Dolgu duvar genişliği temsil eden skeç	59
Şekil 5.13. Eşdeğer basınç çubuğu malzeme tanımı	60
Şekil 5.14. Eşdeğer basınç çubuğu kesit tanımı	60

Şekil 5	5.15.	Section designer özelliği kullanarak eşdeğer basınç çubuğu kesitleri	- 1
~			61
Şekil 5	5.16.	Etabs programında plastik matsal yük-detormasyon davranışını belirleyen A, B, C, D, E, noktaları	61
Solvil 5	5 17	Etabe'ta kirislarda plastik mafsal tanımlanması	62
Şekii 3 Sabil 4	5.17. 5 10	Etabo'te kinişlerde plaştik maisar tanımlanması.	62
ŞEKII 3	5.10.	Etaos te kinișterul plastik dolinile înșkist tanimianinasi	62
Şekii t	5.19.	Tindrige demons to bling how to bling the second of the second se	.03
Şekii t	5.20.	Turkiye deprem tehliha havitaları raporu 1/5	.04
Şekil 5 Sabil 6	5.21.	P'ingi titragim modune git electile angletral jume	.03
ŞEKII 3	5.22.	R inci uireșim modunda al clasuk spektral îvine	.00
Şekii 3 Salvil 4	5.25. 5.71	Tasarım spektrumu doğorləri yəri giriş	70
Şekii 3 Salvil 4	5.24. 5.25	Pasansa spactrum load assa tanımlanması	68
Şekil a	5.25.	Dügay yüldəri doğruşal almayan alarak "arayity" laad aaşa	.00
ŞEKII S	5.20.	tanımlanması	68
Sekil 5	5.27.	Pushover load case tanımlanması.	.69
Şekil 5	5.28.	X Doğrultusu itme noktası ve ver değistirme miktarının	0)
ş • •		helirlenmesi	.69
Sekil 5	5.29.	Tanımlanan itme yüklerinin model üzerindeki gösterilmesi.	.70
Şekil 5	5.30.	Bina modelleri 1-10 ait ilk perivodun sonucları.	.72
Şekil 5	5.31.	Bina modelleri 1-10 ait cati kat öteleme (X) vönünde (Mm) sonuclari	.72
Sekil 5	5.32.	Bina Modelleri 1-10 ait nki vumusak düzensizliği sonucları.	.73
, Sekil 5	5.33.	Bina modelleri 1-10 ait Hbi burulma kat düzensizliği sonucları	.73
, Sekil 5	5.34.	Bina modelleri 1-10 Ait V/W Vs. Δ5/H5 grafiği sonuclari.	.74
, Sekil 5	5.35.	Bina modelleri 11-22 ait ilk periyodun sonuçları.	.79
Şekil 5	5.36.	Bina modelleri 11-22 ait çatı kat öteleme (X) yönünde (Mm)	
		sonuçları	.79
Şekil 5	5.37.	Bina modelleri 11-22 ait Hki yumuşak düzensizliği sonuçları	.80
Şekil 5	5.38.	Bina modelleri 11-22 ait Hbi burulma kat düzensizliği sonuçları	.80
Şekil 5	5.39.	Bina modelleri 11-22 Ait V/W Vs. $\Delta 5/H5$ grafiği sonuçları	78
Şekil 5	5.40.	Bina modelleri 23-34 ait ilk periyodun sonuçları.	.80
Şekil 5	5.41.	Bina modelleri 23-34 ait çatı kat öteleme (X) yönünde (Mm)	
		sonuçları	.80
Şekil 5	5.42.	Bina modelleri 23-34 ait Hki yumuşak düzensizliği sonuçları	.81
Şekil 5	5.43.	Bina modelleri 23-34 Ait Hbi burulma kat düzensizliği sonuçları	.81
Şekil 5	5.44.	Bina modelleri 22-34 Ait V/W Vs. $\Delta 5/H5$ grafiği sonuçları	.82
Şekil 5	5.45.	Bina modelleri 35-44 ait maksimum çatı kat ötelemesi (Mm)	0.4
G . I31 6	- 10	Sonuçları.	. 84
Şekii t	5.40.	Bina modelleri 35-44 alt maksimum taban kesme kuvveti (Kn)	Q /
Sekil 5	5 47	Bina modelleri 45-56 ait maksimum cati kat ötelemesi (Mm)	04
ŞUKII .	J. - 77.	sonucları	85
Sekil 4	5 4 8	Bina modelleri 45-56 ait maksimum taban kesme kuvveti (Kn)	05
şenne		sonucları.	.86
Şekil 5	5.49.	Bina modelleri 57-68 ait maksimum çatı kat ötelemesi (Mm)	-
, -		sonuçları	.90
Şekil 5	5.50.	Bina modelleri 57-68 ait maksimum taban kesme kuvveti (Kn)	
		sonuçları	.87
Şekil 5	5.51.	35-39 modellerin çatı kat deplasmanı ve taban kesme kuvveti grafiği	. 89
Şekil 5	5.52.	40-44 modellerin çatı kat deplasmanı ve taban kesme kuvveti grafiği	.91

Şekil 5.53. 45-50 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği.	93
Şekil 5.54. 51-56 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği	i 95
Şekil 5.55. 57-62 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği	i 97
Şekil 5.56. 63-68 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği	i 97
Şekil 5.57. A3dp modellerinde oluşan plastik mafsallar.	101
Şekil 5.58. A3ep modellerinde oluşan plastik mafsallar.	101
Şekil 5.59. A3fp modellerinde oluşan plastik mafsallar	102
Şekil 5.60. A3gp modellerinde oluşan plastik mafsallar.	102
Şekil 5.61. A3hp modellerinde oluşan plastik mafsallar.	103
Şekil 5.62. Atdp modellerinde oluşan plastik mafsallar.	103
Şekil 5.63. Atep modellerinde oluşan plastik mafsallar.	104
Şekil 5.64. Atfp modellerinde oluşan plastik mafsallar	104
Şekil 5.65. Atgp modellerinde oluşan plastik mafsallar.	105
Şekil 5.66. Athp modellerinde oluşan plastik mafsallar.	105
Şekil 5.67. B3ap modellerinde oluşan plastik mafsallar	106
Şekil 5.68. B3bp modellerinde oluşan plastik mafsallar.	106
Şekil 5.69. B3cp modellerinde oluşan plastik mafsallar	107
Şekil 5.70. C3ap modellerinde oluşan plastik mafsallar	107
Şekil 5.71. C3bp modellerinde oluşan plastik mafsallar.	108
Şekil 5.72. C3cp modellerinde oluşan plastik mafsallar	108
Şekil 5.73. Btap modellerinde oluşan plastik mafsallar	109
Şekil 5.74. Btbp modellerinde oluşan plastik mafsallar.	109
Şekil 5.75. Btcp modellerinde oluşan plastik mafsallar	110
Şekil 5.76. Ctap modellerinde oluşan plastik mafsallar	110
Şekil 5.77. Ctbp modellerinde oluşan plastik mafsallar.	111
Şekil 5.78. Ctcp modellerinde oluşan plastik mafsallar	111
Şekil 5.79. B1ap modellerinde oluşan plastik mafsallar	112
Şekil 5.80. B1bp modellerinde oluşan plastik mafsallar.	112
Şekil 5.81. B1cp modellerinde oluşan plastik mafsallar	113
Şekil 5.82. C1ap modellerinde oluşan plastik mafsallar	113
Şekil 5.83. C1bp modellerinde oluşan plastik mafsallar.	114
Şekil 5.84. C1cp modellerinde oluşan plastik mafsallar	114
Şekil 5.85. B2ap modellerinde oluşan plastik mafsallar	115
Şekil 5.86. B2bp modellerinde oluşan plastik mafsallar.	115
Şekil 5.87. B2cp modellerinde oluşan plastik mafsallar	116
Şekil 5.88. C2ap modellerinde oluşan plastik mafsallar	116
Şekil 5.89. C2bp modellerinde oluşan plastik mafsallar.	117
Şekil 5.90. C2cp modellerinde oluşan plastik mafsallar	117

DOLGU DUVARIN ASMA KATLI ÇERÇEVELİ BETONARME YAPILARIN DAVRANIŞI ÜZERİNDEKİ ETKİSİ

ÖZET

Anahtar kelimeler: Dolgu duvar, Asma kat,düzensizlikler, Taban kesme kuvveti, Çatı deplasmanı, Periyot, Sonlu elemanlar yöntemi ,TBDY2018

Bu çalışma, zemin ve dört katlı betonarme çerçevelibirbinanın davranışını inceleyerek, dolgu duvarların basınç elemanı olarak modellenmesinin etkilerini araştırmaktadır. Aynı zamanda, çalışma asma kat ve yumuşak kat düzensizliklerini de içererek analizi genişletmeyi hedeflemektedir.

Asma kat düzensizliği, binanın yapısında ortaya çıkan asimetri veya katlar arasındaki rijitlik farklılıklarını temsil ederken, yumuşak kat düzensizliği farklı katlar arasında yer alan değişken rijitlikli elemanları ifade etmektedir. Bu düzensizlikler, gerçek dünyadaki yapıların davranışını daha iyi anlamamızı ve analiz etmemizi sağlar.

Bununla birlikte, çalışmanın bir diğer odak noktası, dolgu duvarların yerlerinin değiştirilmesinin temel performans parametreleri üzerindeki etkisini incelemektir. Aynı tip dolgu duvarları kullanarak farklı konumlarda yer alan dolgu duvarlarının binanın genel davranışı üzerindeki etkisi değerlendirilmektedir. Dolgu duvarların yerlerinin değiştirilmesi, binanın rijitlik, dayanıklılık ve titreşim tepkileri gibi performans özelliklerini etkileyebilir.

Bu çalışma, yapı mühendisliği alanında önemli bir konuyu ele almakta olup, dolgu duvarların basınç elemanı olarak modellenmesinin ve yapıdaki düzensizliklerin yapısal davranış üzerindeki etkilerini araştırmaktadır. Elde edilen bulgular, yapısal tasarımda dolgu duvarların doğru şekilde dikkate alınmasını sağlayabilir ve yapıların güvenli ve sağlam olmasını destekleyebilir.

Ayrıca, bina modelleri farklı yüksekliklere (15 m, 16,5 m, 17,5 m, 18,5 m ve 19,5 m) sahiptir ve zemin kat yüksekliğinde değişiklikler yapılmıştır. Sonuçlar, dolgu duvarların basınç elemanları olarak modellenmesinin binanın rijitliğini önemli ölçüde arttırdığını, buna bağlı olarak binanın doğal periyodunda bir azalmaya ve taban kesme kuvvetinde bir artışa neden olduğunu göstermektedir.

Ayrıca, çalışma asma kat ve yumuşak kat düzensizliklerinin bina davranışı üzerindeki etkilerini de incelemektedir. Bu düzensizlikleri içeren analiz, betonarme çerçeveli binaların sismik performansı hakkında önemli bilgiler sağlamaktadır. Ayrıca, dolgu duvar tipini sabit tutarak dolgu duvarlarının farklı yerlerinin incelenmesi, dolgu duvarlarının tasarımı ve bunların 2018 Türk Deprem Yönetmeliği'ne göre yumuşak kat ve burulma düzensizliklerinin hesaplanmasına etkisi açısından önemli bilgiler sunmaktadır.

Sonuç olarak, bu çalışma dolgu duvarların basınç elemanları olarak modellenmesinin etkilerini, asma kat etkisini inceleyerek ve değişen dolgu duvar yerlerinin etkisini araştırarak betonarme çerçeve binaların sismik davranışının anlaşılmasına katkıda bulunmaktadır. Bu çalışmanın elde ettiği sonuçlar, yapısal tasarımda ve uygulamada önemli bir rehberlik sağlayabilir.

EFFECT OF THE INFILL WALL OF STRUCTURE WITH MEZZANINE FLOOR ON STRUCTURAL BEHAVIOUR

SUMMARY

Keywords: Infill Wall,Mezzanine floor,irregularities, Base shear, Roof displacement, Period, Finite element method, TEC2018

This groundbreaking thesis represents a comprehensive and rigorous investigation that delves deep into the intricate behavior of reinforced concrete frame buildings, with a particular emphasis on the profound impact of modeling infill walls as strut elements. The research methodology employed in this study encompasses two key methods: pushover analysis and mode superposition. By harnessing the power of advanced finite element analysis techniques, the buildings' response is meticulously scrutinized under a diverse array of scenarios, taking into meticulous consideration varying heights, configurations, and seismic factors.

The pushover analysis method assumes a pivotal role in assessing the structural response of the buildings. This method involves subjecting the structure to progressively increasing lateral loads until the point of collapse, thereby unraveling valuable insights into the global behavior and capacity of the building. Through this meticulous analysis, an in-depth understanding of the structural response under the most extreme loading conditions can be attained, facilitating the formulation of robust conclusions.

In addition to the indispensable pushover analysis, the study incorporates the mode superposition method, which duly acknowledges the dynamic characteristics inherent to the structure. This method aptly captures the effects of different vibration modes on the overall response of the building. By accounting for these dynamic properties, a more holistic assessment of the structure's behavior under seismic excitation is achieved, enabling a comprehensive evaluation of the building's integrity and stability.

To ensure the utmost reliability and robustness of the findings, an extensive range of models is meticulously constructed, taking into profound consideration an array of parameters such as building heights and ground floor variations. This meticulous approach facilitates the attainment of a comprehensive understanding of the behavior of reinforced concrete frame buildings and the precise impact of modeling infill walls as strut elements. The breadth and depth of the models employed contribute to the reliability and generalizability of the research outcomes.

The results of the profound analysis conducted in this study unequivocally demonstrate the substantial influence of modeling infill walls as strut elements on several crucial aspects, including the stiffness, natural period, and base shear force of the buildings. The presence of infill walls significantly enhances the overall stiffness of the structure, consequently leading to a reduction in its natural period. This reduction in the natural period, in turn, exerts a profound effect on the building's response to seismic forces, thereby necessitating the meticulous consideration of this impact in the design and assessment of reinforced concrete frame buildings with infill walls.

Furthermore, the heightened stiffness resulting from the meticulous modeling of infill walls amplifies the base shear force experienced by the structure. The base shear force serves as a critical factor in determining the overall stability and load-bearing capacity of the building. Therefore, the accurate and meticulous modeling of infill walls as strut elements assumes paramount significance in precisely estimating the base shear force and ensuring the structural integrity and resilience of the building.

Moreover, the thesis expands its investigative scope to examine the effects of mezzanine stories and soft story irregularities on the seismic performance of reinforced concrete frame buildings. The inclusion of mezzanine floors introduces additional complexities to the structural system, such as alterations in vertical load distribution and potential disruptions in lateral load paths. A meticulous understanding of the behavior of buildings with mezzanine stories provides invaluable insights into their influence on the overall seismic performance, thereby enriching the body of knowledge in the field of structural engineering.

Additionally, the research delves into exploring the effects of altering the locations of infill walls while maintaining a consistent infill wall type. This meticulous analysis provides profound insights into optimizing the placement of infill walls, thereby enhancing the seismic performance of reinforced concrete frame buildings. By examining and evaluating different infill wall locations, engineers can make informed decisions aimed at augmenting the structural response and improving the safety, reliability, and resilience of reinforced concrete frame buildings.

The findings emanating from this comprehensive thesis carry substantial implications for engineering practice. The profound understanding of the seismic behavior of reinforced concrete frame buildings attained through this research directly informs the design and improvement of such structures. Engineers can seamlessly incorporate the invaluable recommendations and insights gleaned from this study into their practices, thereby ensuring the creation of safer, more resilient, and structurally sound buildings.

Moreover, this research significantly contributes to the broader field of structural engineering by augmenting our understanding of the intricate behavior of reinforced concrete frame buildings. The insights gained from this meticulous study can serve as an invaluable compass for future design practices, facilitating the development of more advanced, efficient, and sustainable structural systems that can withstand the challenges posed by seismic activities.

In summary, this comprehensive thesis encompasses an exhaustive investigation into the intricate behavior of reinforced concrete frame buildings, with a particular emphasis on the profound impact of modeling infill walls as strut elements. The research seamlessly integrates advanced finite element analysis techniques, including pushover analysis and mode superposition, to holistically evaluate the structural response under an array of diverse scenarios. The meticulous analysis conducted in this study sheds light on the significant influence of infill walls on stiffness, natural period, and base shear force. Furthermore, the thesis expands its horizon to encompass mezzanine stories and soft story irregularities, unraveling their effects on seismic performance. Additionally, the research delves into the optimization of infill wall locations for enhanced structural response. Through its findings and recommendations, this meticulously conducted research makes a substantial contribution to the field of structural engineering, providing practical guidance and valuable insights for designing resilient, robust, and sustainable structures that can withstand seismic events and ensure the safety of occupants.

By integrating advanced analysis techniques, this thesis offers a comprehensive understanding of the behavior of reinforced concrete frame buildings. It highlights the critical role of infill walls as strut elements, showcasing their influence on stiffness, natural period, and base shear force. The meticulous modeling of infill walls leads to a significant enhancement in the overall stiffness of the structure, which is crucial for its seismic performance. The reduction in the natural period resulting from the presence of infill walls necessitates careful consideration during the design and assessment stages of reinforced concrete frame buildings.

Furthermore, the research explores the impact of mezzanine stories and soft story irregularities on the seismic performance of buildings. The inclusion of mezzanine floors introduces additional complexities to the structural system, requiring a thorough understanding of their effects on vertical load distribution and lateral load paths. By studying these aspects, the thesis contributes to the knowledge base of structural engineering, enabling engineers to design more resilient and stable structures.

The optimization of infill wall locations is another area of focus in this thesis. By examining different placement options while maintaining a consistent infill wall type, the research provides valuable insights into maximizing the seismic performance of reinforced concrete frame buildings. Engineers can use this information to make informed decisions that enhance the structural response and improve the safety, reliability, and resilience of buildings.

The findings of this thesis have significant implications for engineering practice. The comprehensive understanding of the seismic behavior of reinforced concrete frame buildings, gained through meticulous analysis and modeling, can be directly applied to the design and improvement of such structures. Engineers can incorporate the recommendations and insights from this research into their practices, leading to the construction of safer and more resilient buildings.

Moreover, this research contributes to the broader field of structural engineering. By expanding our knowledge of the intricate behavior of reinforced concrete frame buildings, it paves the way for the development of more advanced and efficient structural systems. The insights gained from this study can inspire future design practices, enabling the creation of sustainable structures that can withstand the challenges posed by seismic activities and contribute to the overall safety and wellbeing of society.

In conclusion, this thesis represents an extensive and thorough investigation into the behavior of reinforced concrete frame buildings, focusing on the influence of modeling infill walls as strut elements. Through the utilization of advanced analysis techniques, such as pushover analysis and mode superposition, the research comprehensively evaluates the structural response under various scenarios. The results highlight the significant impact of infill walls on stiffness, natural period, and base shear force, emphasizing the need for accurate modeling. The exploration of mezzanine stories, soft story irregularities, and infill wall optimization further enriches our understanding of seismic performance. This research contributes to the field of structural engineering,

offering practical guidance and valuable insights for designing resilient and efficient reinforced concrete frame buildings.

1. GİRİŞ

Türkiye'nin deprem riski taşıyan bir bölgede bulunması nedeniyle, mevcut ve inşa edilecek yapıların depreme dayanıklı bir şekilde tasarlanması gereklidir. Bu gerekliliği yerine getirebilmek için, yapıların statik hesaplarında kullanılan varsayımların ve ihmal edilen noktaların gerçek durumu yansıtması önemlidir. Betonarme yapılar için yaygın olarak kullanılan dolgu duvarların, yapıların davranışını önemli ölçüde etkilediğini gösteren birçok deneysel ve teorik çalışma bulunmaktadır. Deprem benzeri yükler altında dolgu duvarların dinamik davranışını anlamak için, duvarın yapımında kullanılan malzemelerin ve üzerine uygulanan sıvanın etkilerini belirlemek önemlidir.

Türkiye'de birçok yapının temel yapısı çoğunlukla çerçeve sistemlerden oluşur. Bu yapılar, tasarım aşamasında genellikle taşıyıcı elemanlar olan kolonlar, kirişler ve döşemeler gibi rijit elemanlarla analiz edilir. Bu analizlerde mimari öneme sahip duvarlar gibi ara bölme elemanları da göz ardı edilir. Ancak bu bölme duvarları, özellikle deprem gibi büyük yatay kuvvetlerin etkisi altındaki binalarda, taşıyıcı çerçeve sistemlerin davranışını etkileyebilir ve bu etki hem olumlu hem de olumsuz olabilir.

Deprem sonrası yapılan incelemelerde, bölme duvar elemanlarının büyük yer değiştirmelere neden olduğu ve bu nedenle sistemin hasar görmesinde etkili olduğu görülmüştür. Son yıllarda yapılan araştırmalar, bu duvarların taşıyıcı sistemlerin davranışını değiştirebileceğini göstermiş ve bu nedenle yapı tasarım aşamasında duvarların analize dahil edilmesi gerektiğine dair bir farkındalık oluşmuştur.

1.1. Çalışma Amacı ve Kapsamı

Bu çalışma, binalardaki dolgu duvar yerinin deprem etkisi altında bina davranışını ve aynı zamanda binanın zemin kat yüksekliği nasıl etkilediğini incelemeyi amaçlamaktadır.

Bu amaç doğrultusunda, zemin ve dört katlı bir betonarme bina tasarlanmış ve TBDY2018 Deprem Yönetmeliği'ne uygun bir şekilde boyutlandırılmıştır. Bina performansları, hem doğrusal elastik mod birleştirme yöntemi hem de doğrusal olmayan itme (Pushover) yöntemi kullanılarak modellenmiş ve karşılaştırılmıştır.

Dolgu duvarların modellenmesi ve kesit etkilerinin hesaplanması ETABS V16 programı ile gerçekleştirilmiştir. Hesaplamalar sonucunda farklı bina performansları arasındaki farklar detaylı bir şekilde incelenmiştir.

Çalışma içinde normal kat yükseklikleri 3 metre olarak kabul edilmiş ve zemin katın yüksekliği 3, 4.5, 5.5, 6.5 ve 7.5 metre olarak değişkenlik göstermiştir. Binanın birinci kat planı3 farklı şekilde tasarlanmıştır.

A tipi bina asma kat içermeyen bir plana sahipken, B ve C tipi farklı asma kat planlarını içerecek şekilde tasarlanmıştır. Bu farklı yapı tipleri dört farklı dolgu duvar tanımı altında incelenmiştir.

İlk olarak, A tipinde bina, dolgu duvarlar tüm çerçevelerde (iç ve diş aksanlar) eşdeğer diyagonal basınç çubuk yöntemi kullanarak tüm çerçeve sisteminde tanımlanmıştır. A tipinde de dolgu duvarların taşıyıcı sisteme dahil edilmediği ve sadece ağırlıklarının hesaba katıldığı bir model oluşturulmuş ve bu modelin sonuçları diğer dolgu duvar modellerine bir referans olarak kullanılmıştır.

B ve C model tiplerinde birinci katta farklı tasarım şekillerine sahip asma kat bulunmaktadır. Dolgu duvarların yerlerini temsil etmek için dört ayrı model kullanılmıştır. İlkinde dolgu duvarlar tüm eksenlerde basınç elemanları olarak modellenmiştir; ikincisinde dolgu duvarları, birinci durumdan yalnızca 1-1 eksenlerinde kaldırılır; üçüncüsünde ise dolgu duvarları, birinci durumdan A-A eksenlerindeki dolgu duvarlar kaldırılır. Sonuncusu, dolgu duvarların taşıyıcı sistemlere yüklediği yükü ortaya çıkarmıştır ve dolgu duvarlarını herhangi bir eksende basınç elemanları olarak modellememiştir.

Analiz sonuçları, Analiz sonuçları yardımıyla ETABS V16 de incelenen yapı modellerinin yapısal davranışları karşılaştırılacaktır.

1.2. Literatür Taraması

Önceki yıllarda, dolgu duvarların yapısal davranışı ve performansı üzerindeki etkiler, çeşitli deneysel ve analitik yöntemlerle birçok açıdan araştırılmıştır.

Sezen ve arkadaşları, (2003) tarafından gerçekleştirilen çalışmada, 17 Ağustos 1999 Marmara depremi sonrasında deprem bölgesinde bulunan betonarme yapıların performanslarını analiz etmiştir. Bu araştırmada, betonarme yapıların rijitlik ve yıkılma sebeplerini belirleyerek, yapı sistemleri ve detaylarındaki hataları incelemişlerdir. Ayrıca, basınç çubuğu elemanı olarak adlandırılan ve sıkıştırma yükü taşıyan elemanların kullanılması durumunda yapıların dayanımını etkilediğini ve kat kesme kuvveti olarak adlandırılan yanal kuvvetin yapıya zarar verdiğini örneklerle ortaya koymuşlardır [1].

Smith (1962), tarafından gerçekleştirilen çalışmada, dolgu duvarını bir eşdeğer diyagonal basınç çubuğu olarak modellenerek bu konuyu ayrıntılı bir şekilde incelenmiştir. Dolgu duvarlı sistemlerin yatay yükler altındaki davranışını belirlemek amacıyla hem analitik hem de deneysel çalışmalar gerçekleştirilmiştir. Dolgu duvarlı çerçevelerin rijitlik ve dayanımının yalnızca fiziksel özelliklere ve boyutlara değil, aynı zamanda dolgu ve dolguyu çevreleyen çerçeve ile olan temas yüzeyine de bağlı olduğunu ortaya koymuştur. Ayrıca, temas uzunluğunun dolgu ve çerçevenin karşılıklı rijitlikleri ile değiştiğini belirterek, dolgu duvar davranışını belirleyen göreli rijitlik parametresini tanımlamıştır. Yaptığı çalışmada, basınç çubuğu genişliğinin çerçeve boyutlarına (yükseklik/açıklık oranları) bağlı olarak diyagonal uzunluğunun 1/4 ile 1/11 arasında değiştiği sonucuna ulaşmıştır [2].

Zarnic ve arkadaşları (1962), çalışmalarında, dolgu duvarların yapılar üzerindeki etkilerini inceledikleri ve bu duvarların hem yararlı hem de zararlı etkilere sahip olduğunu belirledikleri görülmektedir. Bu nedenle, yapı inşası ve hesaplama aşaması için önerdikleri iki yöntem bulunmaktadır. İlk olarak, dolgu duvarların ikinci derece yapı elemanları olarak kabul edilmesi ve yeterli miktarda derz kullanılarak sistemden ayrılması gerektiği ifade edilmektedir. Bu sayede, deprem anında yapının serbest deformasyonu sağlanabilir. İkinci olarak, dolgu duvarların yapının önemli bileşenleri olarak inşa edilmesi durumunda, hesaplama aşamasında dolgu duvarlar ile çerçeveler arasındaki kuvvet dağılımının uygun bir şekilde dikkate alınması gerektiği vurgulanmaktadır.[3].

Baran (2011), tarafından gerçekleştirilen çalışmada, Türkiye'de betonarme çerçeveli yapılar genellikle tuğla dolgulu bölme duvarlarla inşa edilir. Tuğla dolguların yapıların dayanım ve rijitliği üzerinde olumlu etkileri olduğu deneysel çalışmalar ve depremlerden sonra ortaya çıkmıştır. Bu çalışmada, boşluklu tuğla dolgulu betonarme çerçevelerin dayanım ve davranışları deneysel olarak incelenmiştir. Test sonuçlarına göre tuğla dolgu duvarın varlığı, çerçevenin yanal yük taşıma kapasitesini 3.5 kat artırmıştır. Sıvanmış dolgu duvarlar ise bu artışı 4.5 kata çıkarmıştır. Sıva uygulaması, taşıma kapasitesini artırmış ancak sünekliği azaltmıştır. Kuramsal çalışmalar, tuğla dolgu duvarların basitçe modellenebileceğini ve yapısal analizlerde kullanılabileceğini göstermektedir. Önerilen yöntem, yapıların gerçekçi sonuçlarla modellenebilmesine olanak sağlamaktadır [4].

Mert (2015), tarafından gerçekleştirilen çalışmada, farklı kat sayılarına ve burulma katsayılarına sahip çerçeve sistem modellerini, dolgu duvarlı ve dolgu duvarsız olmak üzere, artımsal eşdeğer deprem yükü yöntemiyle analiz etmiş ve elde ettiği sonuçları karşılaştırmıştır [5].

Öztürkoğlu (2016), tarafından gerçekleştirilen çalışmada, farklı kat ve açıklık sayılarına sahip düzlem çerçeveleri dolgu duvarsız, kısmi boşluklu dolgu duvarlı ve tam dolgulu olarak modellenmiş; ayrıca, dolgu duvarlar üzerinde farklı konum ve boyutlardaki kısmi boşlukların, betonarme çerçevelerin deprem davranışına olan etkilerini incelemiştir [6].

Durmazgezer (2013), tarafından gerçekleştirilen çalışmada, dolgu duvar modellemesinde sonlu eleman ağ modeli ile eşdeğer diyagonal basınç çubuğu modelini kıyaslamış ve bu kıyaslama kapsamında tek çubuklu, üç çubuklu ve beş çubuklu gibi farklı versiyonlarını içeren eşdeğer diyagonal basınç çubuğu yöntemini değerlendirmiştir [7].

Tetik (2007), tarafından gerçekleştirilen çalışmada, dolgu duvarların yapıların rijitliğini önemli ölçüde arttırdığını ve bu nedenle yapı periyodunu azalttığını tespit etmiştir. Dolgu duvarlardaki boşlukların rijitlik kaybına sebep olduğu azalmayı inceledi ve bu boşluksuz durumda %56 seviyesinde olan periyot azalma oranının %37'ye düştüğünü hesapladı. İncelenen binalarda, dolgu duvarların yapı periyotlarında genellikle %50 ila %70 arasında bir azalmaya yol açtığını gözlemledi [8].

Dowrick (1987), çalışmasında;dolgu duvarların yapı davranışı üzerindeki etkilerin belirlenmesi amacıyla bir dizi araştırma yapıldığını ifade etmektedir. Genel olarak özetlemek gerekirse, bu etkiler aşağıda sıralanmıştır: Yapının rijitliği artar ve doğal periyodu azalır. Deprem etkisiyle meydana gelen yanal kuvvetler artar. Plan ve kesitteki yük dağılımı değişir. Deprem kuvvetlerinin bir kısmı, duvarlar yük taşıma kapasitelerine ulaşana kadar duvarlar tarafından taşınır, bu da yapı taşıyıcı sistemine gelen yük düzeyini azaltır. Yapının enerji yutma kapasitesi artar. Yumuşak kat oluşumuna neden olabilir. Kısa kolon oluşumuna sebep olabilir. Bu çalışmada, rijitlik ve dayanım düzensizliklerinin oluşum nedenlerinin belirlenmesi ve bu oluşumları engelleyecek tasarım ilkelerinin açıklanması hedeflenmiştir. Bu bağlamda, C, D, E, F ve G isimleriyle adlandırılan 10 katlı 5 farklı yapı için eşdeğer deprem yükü yöntemi kullanılarak deprem hesapları yapılmış ve rijitlik ve dayanım düzensizliklerinin oluşumu ile bu düzensizliklerin yapı davranışı üzerindeki etkileri detaylı bir şekilde incelenmiştir [9].

Durmuş ve arkadaşları (2013) tarafından yapılan bir çalışmada, binalarda zayıf kat düzensizliği olmasının, zemin katın yanal kuvvetlere karşı direncini azaltarak, deprem sırasında daha fazla hasara neden olduğu belirtilmiştir. Bu durum, özellikle Kocaeli depremi sonrasında incelenen hasar görmüş yapı örneklerinde belirgin bir şekilde görülmüştür.

Zayıf kat düzensizliği, binaların katlarının yapısal olarak eşit olmaması veya etkili kesme bölgelerinde farklılıkların olması durumunu ifade eder. Bu durumda, zemin kattaki kesme bölgeleri diğer katlara göre daha zayıf olabilir ve bu da zemin katın yanal ötelenmeye karşı daha hassas hale gelmesine yol açar. Deprem sırasında, zemin kat daha fazla yanal kuvvete maruz kalır ve diğer katlara göre daha fazla hasar görme riski taşır. [10].

Şekil 1.1. Kocaeli depreminde yumuşak kat ve zayıf kat nedeniyle oluşan hasar [10].

Bob ve arkadaşları (2016), tarafından yapılan araştırmaya göre, tuğla dolgu bulunduğunda RC çerçeveli binaların farklı davrandığı sonucuna varılmıştır çünkü bu rijitlği ve kesme direncini artırır. Kompozit sistemde deprem anlarında iyi enerji yayılımı gösterilmektedir. Dolgulu bir RC çerçevede ilk çatlaklar maksimum dayanıklılığını verir ve ardından kesme dayanıklılığı giderek artar. Diğer değişkenler ve ULS testi üzerinde daha fazla araştırma yapmak gereklidir, ancak yatay kuvvet ve rijitlik için teorik formülasyonlar deneysel verilerle iyi bir uyum göstermektedir [11].

Zhai ve arkadaşları (2018), tarafından yapılan çalışmaya göre tuğla dolgu duvarların düzlem dışında nasıl davrandığını incelemek için bir 3 boyutlu mikro FE modeli oluşturdu . Model, çatlak desenlerini, harç birleşim noktalarının başarısızlığını ve yük taşıma kapasitesinin tümü model tarafından doğrulukla tahmin edildi. Güçlü kemerleme etkisine sahip kalın dolgulu duvarlar, yükleri direnmede faydalı olmuş. Düzlemdışı direnç için daha basit bir formülün önerilmesi ve doğrulanmasıyla, RC çerçevelerdeki tuğla dolgulu duvarlar için doğru değerlendirmeler mümkün hale gelmiştir [12].

Wang ve arkadaşları (2019), tarafından yapılan araştırma, tuğla dolgulu RC çerçeveler üzerine yapılan çalışmalarda, dolgu duvarların çerçevenin rijitliğini ve yük direncini artırdığını, ancak deformasyon kapasitesini azalttığını ortaya koymuştur. Çerçevenin dayanimi, dolgu duvarlardaki açıklıklar tarafından artırılmış olup, eksantrik kapı açıklıklarına göre konsantrik pencere açıklıklarının daha fazla zarar verici olduğu görülmüştür. Daha yüksek dayanim değerine sahip tuğla duvarlar, enerji yayılımını, rijitlik azalmasini ve yük direncini artırmış. Dolgulu çerçevelerin yanal dayanimi, diyagonal basınç çubuğu içeren analitik bir model kullanılarak etkin bir şekilde değerlendirilmiştir; daha kesin değerlendirmeler için sonlu eleman modelleri önerilmiştir [13].
Dautaj ve Kabashi (2019), tarafından yapılan çalışmaya göre, geçmişte betonarme yapıların dolgu duvarlari yapısal olmayan malzemeler olarak göz ardı edilmiştir. Mevcut modeller, tuğla malzemeyle doldurulmuş betonarme çerçevelerin kesme göçmesine ve plastik mafsalların oluşumu durumundaki davranışını açıklamada yetersiz kalmaktadır. Deneyler yapıldıktan sonra, araştırma, tuğla dolgulu betonarme çerçevelerin davranışını etkili bir şekilde öngörmek için kesme göçmesi, yanal yük aktarımı ve nihai göçme mekanizmaları da dahil olmak üzere birçok unsuru dikkate alan bir önerilen model oluşturmuştur. Önerilen model, tuğla dolgulu bloklardan yapılmış betonarme çerçevelerin tasarımı ve incelenmesine yönelik faydalı uygulamalarıyla önerilen model, inşaat sektörüne önemli bilgiler sunmaktadır [14].

Ramachandra ve arkadaşları (2020), tarafından yapılan araştırmaya göre, dolgulu duvarların etkisi: Dolgulu duvarlar, yapılar üzerindeki deprem etkisini azaltabilir. Bunun nedeni, dolgulu duvarların yapıların rijitliğini artırması ve deprem kuvvetlerine karşı direnç sağlamasıdır. Bununla birlikte, dolgulu duvarlar çatıdan temele iletilen kat kesme kuvvetini artırabilir. Dolgulu duvarlara bağlı olarak artan kat kesme kuvveti, deprem tasarımında dikkate alınmalıdır.. Mühendisler, dolgulu duvarlara sahip yapıları tasarlarken bunu göz önünde bulundurmalıdır. süneklik oranının, dolgulu duvardaki açıklık yüzdesinin ve yapısal düzensizliğin etkisi incelenmelidir. süneklik oranı, bir yapının çökmeden önce ne kadar şekil değiştirebileceğinin bir ölçüsüdür. Dolgulu duvardaki açıklık yüzdesi, duvarın malzeme ile doldurulmayan kısmının miktarıdır. Yapısal düzensizlik, bir yapının ne ölçüde simetrik olmadığıdır. Bu faktörler, dolgulu duvarlara sahip bir yapının deprem performansını etkileyebilir [15].

Dorji ve Thambiratnam (2009), Araştırmacılar, "Deprem Yükleri Altında Dolgulu Çerçeve Yapıların Modelleme ve Analizi" başlıklı çalışmada dolgulu çerçeve yapıların deprem tepkisini incelemiştir. Dolgulu çerçeve yapılar, deprem açısından aktif bölgelerde bile sıklıkla kullanılmaktadır. Ne yazık ki, mevcut yönetmelikler dolgulu çerçeve yapıların modellemesi, analizi ve tasarımı için yeterli rehberlik sağlamamaktadır. Dolgu rijitliğinin, açıklıkların ve yumuşak kat olgusunun etkisi, çeşitli deprem kayıtları altında sonlu eleman , time history analizler kullanılarak incelenmiştir. Sonuçlar, temel periyot, göreli kat ötelemesi oranı ve kat kesme kuvveti açısından sunulmaktadır [16]. Mahmud ve arkadaşları (2010), Araştırma projesi, çeşitli parametrik değişikliklerin etkisi altında tuğla dolgulu betonarmeçerçevelerin davranışını incelemeye odaklanmıştır. Bu dolgulu paneller, estetik çekicilikleri ve işlevsel amaçları nedeniyle iç ve dış duvarlarda yaygın olarak kullanılmaktadır. Özellikle, belirli bir katta dolgulu duvarlar göz ardı edildiğinde, yapıdaki diğer katlara göre görece daha rijit olmayan bir yumuşak katın oluşmasına neden olur. Bu çalışma aynı zamanda, rüzgar veya deprem kuvvetlerinden kaynaklanan yatay yüklere maruz kaldığında yumuşak katların çerçeve yapılar üzerindeki etkisini araştırmayı amaçlamıştır. Araştırmanın sonuçları, bir yapıda açıklık sayısını arttırmanın yanal yükler altında deformasyonun azalmasına neden olduğunu göstermiştir. Dahası, bir bina çerçevesindeki kat sayısı arttıkça, yanal yükler nedeniyle deformasyonun da orantılı olarak arttığı belirlenmiştir [17].

Kodur ve arkadaşları (1995), tarafından yapılan araştırmada "Duvarlu duvar çerçeveler'ın deprem tasarımı ve analizi" ne odaklanmış olup pratik mühendislerin deprem tasarımında kullanabilecekleri basit bir analitik yöntemi sunmaktadır. Bu analitik prosedür, mevcut deneysel ve analitik çalışmalardan elde edilen bilgileri içermekte olup, dolguların üç kritik aşamadaki etkilerini kapsamaktadır: sismik yükleme hesabı, dolgulu çerçeve tepkilerinin tahmini ve dolgulu çerçeve dayanımının belirlenmesi. Sismik yükün hesaplanması yapısal dinamik özelliklere bağlıdır. Çalışma, dolgulu çerçeve gösterimlerinin seçilmesi, yapısal sönüm oranları, deprem tasarım spektrumları, yapısal düzensizliklerin değiştirilmesi ve hesaplama araçlarının kullanılması için öneriler sunmaktadır. Bu analitik prosedürün pratik bir tasarım senaryosunda uygulanmasını göstermek için, çerçevelerin sismik tasarımında dolguların tasarım sürecinin rutin bir parçası olarak etkili bir şekilde dikkate alınabileceğini gösteren sayısal bir örnek sunulmaktadır [18].

Dolsek ve Fajfa (2008), tarafından gerçekleştirilen bir çalışmada, dört katlı dolgu duvarlı betonarme bir çerçevenin deprem davranışı incelenmiştir. Çalışmada, modeller dolgu duvarsız, boşluksuz dolgu duvarlı ve boşluklu dolgu duvarlı olacak şekilde oluşturulmuştur. Yapılan çözümlemelerde doğrusal olmayan yöntemler kullanılmış ve elde edilen sonuçlar incelendiğinde, dolgu duvarların yapıdaki hasar dağılımını tamamen değiştirdiği gözlemlenmiştir [19].

Yakut ve arkadaşları (2013), tarafından yapılan araştırmaya göre, dolgu duvarların bina deprem davranışı üzerindeki etkisi analitik bir yaklaşımla incelenmiştir.

Türkiye'nin çeşitli bölgelerinde bulunan yaklaşık 28 betonarme binanın üç boyutlu modellenmesi, SAP 2000 programı kullanılarak gerçekleştirilmiştir. Yapılan itme analizi sonucunda, binaların kapasite eğrileri elde edilmiştir. Her iki ana doğrultuda gerçekleştirilen analizlerde, dolgu duvarlı ve duvarsız modeller kullanılmıştır. Dolgu duvarları, literatürdeki önerilere uygun olarak eşdeğer çapraz çubuk elemanlarıyla modellenmiştir. Analiz sonuçları, bina taban kesme kuvveti, bina periyodu ve bina rijitliğindeki değişiklikleri, dolgu duvar alanına bağlı olarak karşılaştırmalı bir şekilde incelemiştir [20].

Meral ve İnel (2016), araştırmasında, çeşitli beton dayanımları, donatı sınıfları ve yönetmelik parametrelerinin, düşük ve orta yükseklikteki binaların yerdeğiştirme talepleri ile bina periyodu gibi çeşitli yapısal parametreler üzerindeki etkisi detaylı bir şekilde incelenmiştir. Ayrıca, hesaplamalara dolgu duvar katkısı, yumuşak kat ve kapalı çıkma düzensizlikleri de dahil edilmiştir [21].

Furtado ve arkadaşları (2017), tarafından gerçekleştirilen araştırmada, deprem bölgelerinde yer alan betonarme binalardaki hasarların büyük bir kısmının dolgu duvarlardan kaynaklandığı belirtilmiştir. Dolgu duvarların, binanın deprem davranışını önemli ölçüde etkilediği ve binada çeşitli göçme mekanizmalarına neden olduğu vurgulanmaktadır. Bu nedenle, çalışmada düzlem içi ve düzlem dışı dolgu duvar hasarlarını gözlemleyebilmek amacıyla deneysel bir çalışma gerçekleştirilmiştir [22].

Morfidis ve Kostinakis (2017), tarafından gerçekleştirilen araştırmada, dolgu duvarlarının üç boyutlu betonarme binaların deprem tepkisi ve hasar dağılımı üzerindeki etkileri detaylı bir şekilde incelenmiştir. Bu çalışma kapsamında, farklı yüksekliklere, çeşitli yapısal sistemlere ve çeşitli dolgu duvar yerleşimlerine sahip toplam 54 adet üç boyutlu yapısal model oluşturulmuştur. Bahsi geçen binalar, çeşitli açılarda uygulanan ivme kayıtları kullanılarak lineer olmayan zaman tanım alanında hesap yöntemi kullanılarak analiz edilmiştir. Elde edilen sonuçlar, dolgu duvarlı binaların deprem hasarının, boş çerçeveli binalara göre daha az olduğunu ortaya koymaktadır [23].

Cavaleri ve arkadaşları (2017), tarafından gerçekleştirilen araştırmada, betonarme bir okul binasına ait dolgu duvarlar, eşdeğer basınç çubuğu modeli kullanılarak simüle edilmiştir. Çalışmada, kolonlarda meydana gelen ilave kesme kuvveti, eksenel yükün bir oranı olarak ifade edilmiş ve dolgu duvarların oluşturduğu kolon elemanlarındaki ilave kesme kuvveti talebinin belirlenmesi için yeni bir modelleme ve işlem prosedürü önerilmiştir [24].

Karasu ve arkadaşları (2011), tarafından gerçekleştirilen araştırmada, bina performansı üzerindeki etkileri incelemek amacıyla yumuşak kat düzensizliği üzerinde odaklanılmıştır. Bu kapsamda, betonarme binalar, dolgu duvar eksikliğiyle tasarlananlar, ikinci ve üçüncü katlarda dolgu duvar kullanılanlar ve tüm katlarda dolgu duvarlarla donatılanlar olarak farklı senaryolarla modellenmiştir. Yapılar, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (DBYBHY, 2007)'de belirtilen eşdeğer deprem yükü yöntemi ve artımsal eşdeğer deprem yükü yöntemi kullanılarak performans analizine tabi tutulmuş ve elde edilen sonuçlar karşılaştırılmıştır. Yapılan karşılaştırmalar neticesinde, dolgu duvarların bina performansını önemli ölçüde artırdığı belirlenmiştir [25].

2. DOLGU DUVARININ MODELLENMESİ VE YAPISAL DAVRANIŞ ÜZERİNDEKİ ETKİLERİ

2.1. Yapısal Sistemlerde Dolgu Duvar Hakkında Giriş

Yapı analizlerinde, dolgu duvarsadece yapı ağırlığının hesaplanmasında statik yük olarak dikkate alınırken, tasarım ve analiz aşamalarında, kolonlar, kirişler, perdeler ve döşemeler gibi yapı elemanlarının modellendiği bir çerçeve kullanılır. Ancak, deprem sırasında meydana gelen bina hasarları üzerinde yapılan gözlemler ve araştırmalar, duvarlarda büyük ve kalıcı şekil değişikliklerinin meydana geldiğini göstermektedir. Bu kalıcı şekil değişiklikleri, duvarların yapısal davranışını etkileyebileceği fikrini destekleyerek çeşitli çalışmalara yol açmıştır. Son yıllarda yapılan deneysel çalışmalar, dolgu duvarların taşıyıcı sistemin davranışını (periyot, rijitlik, yük taşıma kapasitesi, süneklik, hasar mekanizması, enerji emme kapasitesi vb.) büyük ölçüde değiştirebileceği hipotezini desteklemektedir [26].

2.2. Deprem Etkisi Altındaki Dolgu Duvarlı Çerçeveler

Deprem etkisi altındaki dolgu duvarlı çerçeveler, yapıların deprem dayanıklılığını artırmak için kullanılan önemli bir tasarım yöntemidir. Dolgu duvarlar, yapıya ekstra rijitlik sağlayarak deprem kuvvetlerine karşı daha iyi bir direnç gösterir. Ayrıca, dolgu duvarlar yanal kuvvetleri dağıtarak yapıyı daha dengeli hale getirir ve enerji yutma kapasitesini artırarak yapıya daha fazla güvenlik sağlar. Bu unsurlar, yük taşıma kapasitesi, rijitlik, ve enerji yutma kapasitesi gibi temel kavramlar üzerinde yapı sistemlerinin davranışını olumlu veya olumsuz yönde etkiler. Dolgu duvarlı çerçeveler, depreme dayanıklı yapıların tasarımında dikkate alınması gereken önemli bir bileşendir.

2.2.1. Dolgulu duvarların yük taşıma kapasitesi

Dolgulu duvarlar, yapıların yük taşıma kapasitesini artıran bileşenlerdir ve yapıya ekstra dayanıklılık ve stabilite sağlarlar. Yatay yüklerin güvenli bir şekilde taşınmasını sağlayarak yapıya direnç kazandırırlar. Dolgulu duvarların yük taşıma kapasitesi, doğru boyutlandırma ve uygun malzeme seçimiyle optimize edilir. Yapı modellemesi

sırasında dolgu duvarlar genellikle taşıyıcı elemanlar olarak düşünülmez, ancak yapıların taşıma kapasitesine önemli katkılarda bulunabilirler. Farklı dolgu duvar modellerinin yapıların yatay yükler altındaki tepki değişiklikleri üzerinde incelendiğinde, dolgu duvarların taşıma kapasitesine önemli bir şekilde katkı sağladığı görülmektedir (Şekil 2.1) [27].

Şekil 2.1. Çeşitli çerçevelerin yük-tepe yerdeğiştirme eğrileri [27].

Govindan ve Santhakumar (1986) benzer özelliklere sahip iki betonarme çerçeveyi, biri dolgu duvarlarla diğeri ise basit bir yapı olarak seçerek deneysel çalışmalar yaptı. Her iki çerçevenin de teorik olarak hesaplanandan daha büyük yüklere dayanabildiği görüldü. Dolgu duvarlı çerçevenin, basit çerçeveye göre yaklaşık iki kat daha fazla yatay yük taşıma kapasitesine sahip olduğu belirlendi. Bu önemli farklılık, dolgu duvarlarının katkısına bağlanmaktadır [28].

2.2.2. Rijitlik

Dolgu duvarlar, betonarme yapıların rijitliğini ve kütlesini artırmak için önemli bir rol oynar. Bu katkı, dolgu duvarın kalınlığı, birim ağırlığı ve yapının içindeki dolgu duvar sayısı gibi faktörlere bağlı olarak değişebilir [29]. Betonarme bir çerçevenin yatay rijitliği tanımında, çerçevenin tepesindeki herhangi bir noktanın birim yer değiştirmesi için gereken kuvvetle ifade edilir. Dolgu duvarlar, binaların yanal rijitliğini ve dayanıklılığını artırarak, kat ötelemelerini iyi bir dercede azaltırlar [30].

Şekil 2.2. Rijitliğin dolgu duvar etkisinin analitik olarak modellenmesi [30].

Yanı bina tepesindeki br P kuvveti uygulanıyor ise, bu kuvvet tepede oluşan öteleme neticesinde θ açısı θ' ile aynı kabul edilirse, dolgu duvarın yatay rijitliğini temsil eden diyagonal çubuktaki kısalma $\Delta = \cos \theta$ olarak hesaplanır.

Elasitite modülü 'E', çubuğun en kesit alanı 'F' ve çubuğun uzunluğu 'Ld' olarak tanımlanır. Bu durumda birim uzama rijitliği 'k', k = EF / Ld formülü ile hesaplanır.

Betonarme çerçeve sisteminin birim yer değiştirmesi için gerekli eksenel kuvvet, şu formül ile hesaplanır:

$$\mathbf{k}.\Delta = (\mathbf{EF} / \mathbf{Ld}).\cos \theta. \tag{2.1}$$

Kuvvet değerinin yatay bileşeni, dolgu duvarların çerçevenin yatay rijitliğine katkısını gösteren bir ifade olarak hesaplanabilir. Bu ifade şu şekildedir:

$$K = (E.F/Ld).\cos^2\theta.$$
(2.2)

Daha önce yapılan teorik ve deneysel çalışmalar, dolgu duvarların sistemdeki rijitliğe önemli bir katkı sağladığını göstermiştir. Sayın ve Kaplan tarafından gerçekleştirilen bir çalışmada, dolgu duvarlar, deneysel sonuçlara dayalı olarak, iki boyutlu bir çerçeve üzerinde diyagonal basınç elemanları olarak modellendi ve yatay yükler altında, dolgu duvarlı çerçevenin duvarsız çerçeveye göre daha yüksek bir rijitlik sergileyebildiği bulunmuştur [26].

2.2.3. Enerji yutma özelliği

Enerji yutma özelliği veya sönümleme, bir sisteme uygulanan yüklemeler sırasında yük-deplasman diyagramındaki eğrilerin altında kalan enerji miktarını ifade eder. Dolgu duvarlı çerçevelerin dayanımı, dolgu duvarsız çerçevelerin dayanımından daha fazladır, bu da dolgu duvarlı çerçevelerin daha yüksek bir sönüm kapasitesine sahip olduğunu gösterir. Sönüm kapasitesi, yapıya uygulanan yüklerin etkisi altında enerjiyi emme ve dağıtma yeteneği anlamına gelir. Dolgu duvarlar, bu enerji emme kapasiteleri sayesinde yapıya daha fazla dayanıklılık sağlar ve deprem gibi dinamik yüklemelere karşı daha iyi bir koruma sunar.

2.3. Dolgu Duvarın Özellikleri

2.3.1. Tuğla dolgu duvar elastisite modülü

Dolgulu duvarların çerçeve sistemlere etkisi incelenirken, dolgu duvarın rijitliğini belirleyen duvar elastisite modülünün önemi büyük bir rol oynamaktadır. Dolgu duvarlar homojen olmayan bir malzeme olduğundan, elastisite modülleri yatay, düşey ve çapraz yönlere bağlı olarak farklılık gösterebilir. Bu durum, dolgu duvarın çerçeve sistemine olan etkisini ve yapıya katkısını belirlemede önemli bir faktördür. Dolgu duvarların elastisite modülü değerlerinin dikkate alınması, yapı analizleri ve tasarımlarında doğru sonuçlara ulaşmak için gereklidir.

Dolgu duvarların elastisite modülü, bir dizi faktöre bağlı olarak değişebilir. Bu faktörler arasında tuğla yüksekliği, tuğla basınç dayanımı, harç tabakası yüksekliği, harç tabakası basınç dayanımı ve duvarın sıvalı veya sıvasız olma durumu bulunur. Ayrıca, sıva kalınlığı da elastisite modülünü etkileyebilir. Em basınç altındaki duvarın elastisite modülü, fm duvarın basınç dayanımı olmak üzere, Em=750 fm.

Bu elastisite modülü genellikle düşük gerilme seviyelerine karşı başlangıçta daha yüksektir, ancak artan gerilme seviyeleriyle birlikte azalır. Bazı durumlarda, gerilmeşekil değiştirme grafiği, önce azalan sonra artan değerler gösterebilir. Bu dalgalanma, duvar malzemelerinin dayanım özelliklerine bağlı olarak ortaya çıkar [31].

2.3.2. Dolgu duvarların basınç dayanımı

Dolgu duvarlar, tuğla, beton briket gibi yapay taşlardan oluşur ve yapılarında çekme ve basınç dayanımları gibi faktörlere bağlı olarak harç ve yapay taşlar arasındaki yapışma dayanımına, derz kalınlığına, yapay taş birimlerinin boyutlarına, harcın tazeliğine ve yapay taşın su emme kapasitesine bağlı olarak değişiklik gösterebilir. Bu

faktörlerin çoğu yapı tasarım aşamasında bilinmeyebilir ve sayısal modelleme içerisinde tam olarak yansıtılamayabilir.

Genellikle, harç ve tuğladan oluşan malzemelerin elastik olduğu ve aralarında tam bir aderans olduğu varsayılır. Düşey yükler altında, tuğla ve harç arasındaki deformasyonlar karşılaştırıldığında, daha elastik bir malzeme olan harç, yatay yönde daha fazla uzama gösterecektir. Bu durumda, tuğlada çekme gerilmesi oluşurken, harçta basınç gerilmesi ve yatay kısalma meydana gelir, dolayısıyla tuğlada yatay uzama oluşur.

2.3.3. Tuğla ve harç dayanımının etkisi

Tuğla duvarların basınç dayanımı, yapıda kullanılan tuğla veya benzer malzemenin basınç dayanımının belirli bir yüzdesi olarak hesaplanır. Bu yüzde, genellikle 0.25 ile 0.50 arasında değişir, ancak bu değerler yapı tasarımı ve kullanılan malzemelerin özelliklerine bağlı olarak farklılık gösterebilir. Tuğla duvarın basınç dayanımı, birçok faktöre bağlı olarak değişebilir. İlk olarak, kullanılan tuğlanın kendisinin basınç dayanımı önemlidir. Farklı tuğla tipleri farklı basınç dayanım değerlerine sahip olabilir. Örneğin, yüksek yoğunluklu tuğlalar genellikle daha yüksek basınç dayanımına sahiptir. Ayrıca, bağlayıcı harcın basınç dayanımı da etkilidir. Harç, tuğlalar arasında bağlantı sağlar ve duvarın bütünlüğünü sağlar. Harcın basınç dayanımı, kullanılan malzemelere ve harcın bileşimine bağlı olarak değişebilir.Harç ile tuğla arasındaki aderans da tuğla duvarın basınç dayanımını etkileyen önemli bir faktördür. İyi bir aderans, tuğlaların birbirine sıkıca bağlanmasını sağlar ve duvarın dayanıklılığını artırır.

2.4. Dolgu Duvarların Hasar Biçimleri

Betonarme çerçeveli dolgu duvarlı yapıların deprem sırasındaki davranışı belirli özelliklere sahiptir. Deprem hasarı genellikle sıva çatlaklarıyla başlar, özellikle sıva kalınlığının ince olduğu bölgelerde bu tür çatlaklar daha sık görülür. Daha sonra, kirişduvar ve kolon-duvar birleşim bölgelerinde yine sıva çatlakları ortaya çıkar. Ancak, bu çatlaklar genellikle yapının betonarme taşıyıcı elemanlarında, yani kolon ve kirişlerde hasara neden olmaz.

Depremin etkisi altındaki duvar elemanları, iki ana duruma bağlı olarak hasar gösterebilir: harç ve tuğla dayanımına ve dikey yükler ile yatay yükler arasındaki orana bağlı olarak.

Eğer harç, tuğladan daha zayıf ise, hasar genellikle derzlerde yatay kesme veya diyagonal çekme şeklinde ortaya çıkar. Eğer tuğlanın basınç dayanımı harçtan daha düşükse, kırılma yine diyagonal çekme şeklinde gerçekleşir, ancak çatlaklar tuğlaların içinden geçebilir. Şekil 2.3'e göz atarak, bu iki farklı durumu daha iyi anlayabilirsiniz [30].

Şekil 2.3. Yatay derzlere paralel etkiyen yükler altında yığma duvarlarda kırılma biçimleri.

Şiddetli depremlerde, dolgu duvarlarının yapısına bağlı olarak hasar meydana gelir. Bu duvarlar genellikle tuğla veya daha az dayanıklı boşluklu malzemelerden oluşur. Depremin etkisiyle, duvar yüzeyinde derin çatlaklar oluşur ve bu çatlaklar genellikle kırık X şeklinde izlenir. Hasar ilerledikçe, duvarlar taşıyıcı elemanlardan ayrılır ve tuğla veya briket parçaları dökülmeye başlar. Duvarlar tamamen parçalandığında, özellikle kiriş ve kolon birleşim bölgelerine yakın bölgelerde kirişlerde ve kolonlarda çatlamalar meydana gelebilir. [32].

2.5. Dolgu Duvar Modelleme ve Hesaplama Şekli

Dolgu duvarları oluşturulurken, iki temel prensip dikkate alınır. İlk olarak, tuğla elemanlar arasında boşluk olmaması ve bu elemanların sıkıca harç ile birbirine bağlanması gerekmektedir. Bu, dolgu duvarının dayanıklılığını ve bütünlüğünü sağlamak için önemlidir. İkinci olarak, yüklerin etkili bir şekilde aktarılabilmesi için çerçeve sistemi ile dolgu duvarı arasındaki bağlantı sağlam ve doğru bir şekilde yapılmalıdır. Bu, yapıyı stabil tutmak ve deformasyonları dağıtmak için gereklidir.

Bağlantı noktalarının güçlü ve doğru bir şekilde yapılmaması durumunda, dolgu duvarı yeterince desteklenmeyebilir ve yapıya zarar verebilecek hasarlar ortaya çıkabilir. Bu nedenle, dolgu duvarı inşası sırasında bu prensiplerin dikkate alınması önemlidir.

Modellemede iki temel yöntem bulunmaktadır. İlk yöntem, dolgu duvarların sonlu elemanlar kullanılarak ayrıntılı bir mikro modelleme yaklaşımıdır. Diğer yöntem ise dolgu duvarın bir tek bütün yapı elemanı olarak ele alındığı daha yüksek seviyeli bir makro modelleme yöntemidir. Bu çalışmada, dolgu duvarların modellenmesi için eşdeğer basınç çubuğuyla idealleştirilen bir makro modelleme yöntemi kullanılmıştır. Bu yöntem, dolgu duvarın özelliklerini basitleştirerek anlamak için tercih edilmiştir.

2.5.1. Eşdeğer basınç çubuğu yöntemi

Dolgu duvarların davranışını modellemek için kullanılan yöntemler arasında, çerçevenin etkilerini doğru bir şekilde yansıtabilmek adına çeşitli yaklaşımlar bulunmaktadır.

Bu yaklaşımlardan biri, eşdeğer basınç çubuğu yöntemidir ve uzun yıllardır geniş bir kabul görmektedir. Eşdeğer basınç çubuğu yöntemi, dolgu duvarların etkilerini hesaplamak için çerçeve modeline eklenen hayali diyagonal çubuklar aracılığıyla çalışır. Bu hayali çubuklar, yalnızca basınç kuvvetlerine maruz kalacak şekilde tasarlanır. Eşdeğer basınç çubuğunun elastisite modülü ve kalınlığı, dolgu duvarının temsilinde kullanılan en önemli parametrelerdir [33].

Betonarme çerçeve ve dolgu duvarın etkileşimi söz konusu olduğunda, yatay kuvvetlerin düşük olduğu durumlarda bu iki yapı birlikte hareket eder. Ancak, yatay yer değişimleri arttıkça çerçeve eğilme eğilimindeyken dolgu duvar bu hareketi engeller.

Çerçeve elemanları eğilmeye çalıştıkça, dolgu duvar kayma eğilimi gösterir; yani çerçeve elemanları eğilirken, dolgu duvarı kayar. Yüklerin artmasıyla birlikte çerçeve ve dolgu duvar birleşiminde açılmalar meydana gelir. Bu açılmalar öncelikle karşılıklı iki köşe

civarındaki çekme kirişlerinde başlar ve yük seviyesi yükseldikçe genişler. Ayrıca, dolgu duvarın basınç kuvvetlerinin etkili olduğu bir çapraz basınç bölgesi oluştuğu gözlenir [30].

Şekil 2.5. Dolgu duvarın çözümleme modelinde temsil edilmesi.

Smith ve Mainstone tarafından yapılan araştırmalar, diyagonal bir çubuğun etkili genişliğinin çerçeve ve dolgu duvarlarının göreceli rijitliklerine bağlı olarak değiştiğini açıkça göstermektedir. Aynı kalınlığa sahip dolgu duvarlar için çubuğun etkili genişliği, kolonun rijitliği ve dolgu duvarının yükseklik/genişlik oranıyla doğru orantılı bir ilişki gösterirken, dolgu duvarının elastisite modülü ve yük seviyesiyle ters orantılıdır. Bu bağlamda, Mainstone, dolgu duvarları için düzlem içi rijitlik kavramını tanımlayan " λ h" terimini kullanmıştır [34].

$$\lambda = \sqrt[4]{\frac{E_i.t.sin2\theta}{4.E_c.I_c.h_c}}$$
(2.3)

$$a = 0.175. (\lambda h)^{-0.4} \sqrt{h^2 + l^2}.$$
(2.4)

$$K = \frac{E_{i}.w.t.cos^2\theta}{\sqrt{h^2 + l^2}} \tag{2.5}$$

Bu bağıntılarda,

Ei: dolgu duvarın elastisite modülü,

Ec: kolonun elastisite modülü,

t_{inf}: dolgu duvar kalınlığı,

q: eşdeğer çubuğun yatayla yaptığı açı,

Ic: kolon atalet momenti,

h: kolonun yüksekliği,

l: kirişin uzunluğu

3. BİNA PERFORMANS HEDEFLERİ VE TASARIM YAKLAŞIMLARI

2018 Türkiye Deprem Bina Yönetmeliği (TBDY) tarafından belirlenen depremde, bina performansının doğrusal elastik ve doğrusal elastik olmayan hesap yöntemleri kullanılarak değerlendirilmesi ve böylece bina deprem performans düzeyinin belirlenmesini sağlar.

Bina performans düzeyleri 4 ana başlık altında belirlenebilir bunlar kesinitsiz kullanım (KK), sınırlı hasar (SH), Kontrollü hasar (KH) ve Göçmenin önlenmsi (GÖ).

Bir binanın performans hedefi belirlemek için TBDY2018 binanın özelliklerine ve kullanım amaçına bağlı olarak performans hedefi belirlenir [31].

3.1. Türkiye Bina Deprem Yönetmeliği'ne Göre Performans Hedefi Belirlemek İçin Dikkate Alınan Faktörler

2018 Türkiye bina deprem yönetmeliği'ne göre performans hedefi belirlemek içinBina Kullanım Sınıfları (BKS), deprem tasarım sınıfları (DTS), bina yüksekliği (HN), deprem yer hareketi düzeyleri ve deprem yer hareketi düzeyleri dikkate alınan en önemli faktörlerdir.

3.1.1. Bina kullanım sınıfları ve bina önem katsayıları (BKS)

Bina Kullanım Sınıfları (BKS), deprem tasarımı sürecinde yapıların kullanım amacına bağlı olarak belirlenen sınıflardır. Bu sınıflar, Tablo 3.1'de ayrıntılı bir şekilde tanımlanmıştır ve yapıların deprem etkilerine karşı ne kadar dayanıklı olması gerektiğini belirlemek için kullanılır. Bina Kullanım Sınıfları, yapıların farklı amaçlarla kullanıldığı alanlara göre gruplandırılır.

Bu sınıfların her biri, depreme karşı farklı bir önem düzeyi gerektirebilir. Bu nedenle, Tablo 3.1'de aynı zamanda her Bina Kullanım Sınıfı için belirli bir Bina Önem Katsayısı (BÖK) da belirlenmiştir. BÖK, deprem tasarımı sürecinde yapıların önem düzeyini belirlemek için kullanılır.

Bina Kullan	ım Binanın Kullanım Amacı	Bina Önem
Sınıfı		Katsayısı (I)
BKS=1	Deprem sonrası kullanımı gereken binalar, insanların uzun süreli ve yoğun olarak bulunduğu binalar, değerli eşyanın saklandığı binalar ve tehlikeli madde içeren binalar: a) Deprem sonrasında hemen kullanılması gereken binalar (Hastaneler, dispanserler, sağlıkocakları, itfaiyebinavetesisleri, PTT ve diğer berleşme tesisleri, ulaşım istasyonları ve terminalleri, enerji üretim ve dağıtım tesisleri, vilayet, kaymakamlık ve belediye yönetimbinaları, ilk yardım ve afet planlama istasyonları. b) Okullar, diğer eğitim bina ve tesisleri, yurt veya takhaneler, askerikışlalar, ceza evleri, vb. c) Müzeler d) Toksik, patlayıcı, parlayıcı, vb. Özellikleri olan Maddelerin bulunduğu veya depolandığı binalar	1.5
BKS=2	İnsanların kısa süreli ve yoğun olarak bulunduğu binalar Alışveriş merkezleri, spor tesisleri, sinema, tiyatro, konser salonları, ibadet haneler, vb.	1.2
BKS=3	Diğer binalar BKS=1ve BKS=2 için verilen tanımlara girmeyen diğer binalar (Konutlar,işyerleri,oteller,bina türü endüstri yapıları, vb.)	1.0

Tablo 3.1. Bina kullanım sınıfları ve bına önem katsayıları (BKS) tablosu.

3.1.2. Deprem tasarım sınıfları (DTS)

Bina Kullanım Sınıflarına ve DD-2 deprem yer hareketi düzeyi için Kısa Periyot Tasarım Spektral İvme Katsayısına bağlı olarak, Deprem Tasarım Sınıfları (DTS), belirlenecektir.

DD-2 Deprem Yer Hareketi Düzeyinde Kısa Periyot	Bina Kullanım Sınıfi	
Tasarım Spektral İvme Katsayısı (SDS)	BKS=1	BKS=2,3
<i>S</i> _{DS} <0.33	DTS=4a	DTS=4
$0.33 \le S_{DS} < 0.50$	DTS=3a	DTS=3
$0.50 \le S_{DS} < 0.75$	DTS=2a	DTS=2
$0.75 \leq S_{DS}$	DTS=1a	DTS=1

Tablo 3.2. Deprem tasarım sınıfları (DTS) tablosu.

3.1.3. Bina yüksekliği (H_N)

Bodrumlu binalarda, aşağıda belirtilen iki koşulu sağlayan durumlarda, bina tabanı bodrum perdelerinin üst kotundaki kat döşemesi seviyesinde tanımlanır:

(a) Rijit bodrum perdeleri, binayı her taraftan veya en az üç taraftan çevrelemelidir.

(b) Bina eksenlerinin her biri için, hakim titreşim modunda, bodrum katlar dahil tüm bina için hesaplanan doğal titreşim periyodu, aynı taşıyıcı sisteme sahip olmayan ve zemin kat döşemesi dahil tüm bodrum kütlelerini hesaba katmadan hesaplanan doğal titreşim periyodu ile karşılaştırıldığında, oranı 1.1'den küçük olmalıdır (Tp _{tüm} \leq 1.1 Tp _{üst}).

Bodrumlu binalarda bu iki koşulu sağlayan durumlarda, bina tabanı, kat döşemesi seviyesinde tanımlanır.

Bu koşullardan herhangi birini sağlamayan bodrumlu binalar ve bodrumsuz binalarda bina tabanı temel üst kotunda tanımlanır.

Deprem hesabı bakımından bina yüksekliği HN tabanından itibaren ölçülen yükseklik olarak tanımlanır.

Bu tanımda, çatı döşemesinin üzerinde yer alan asansör makine dairesi ve benzeri küçük kütleli uzantılar dikkate alınmayabilir.

3.1.4. Bina yükseklik sınıfları (BYS)

Binalar yükseklikleri bakımından sekiz Bina Yükseklik Sınıfı'na (BYS) ayrılmıştır. BYS=1 olarak belirtilen binalar yüksek binalar olarak sınıflandırılacaktır.

Bina Yükseklik Sınıfı	Bina Yükseklik Sınıfları ve DepremTasarım Sınıflarına Göre Tanımlanan Bina Yükseklik Aralıkları [m]		
	DTS=1,1a,2,2a	DTS=3,3a	DTS=4,4a
BYS=1	<i>H</i> _N >70	H _N >91	<i>H</i> _N >105
BYS=2	56< <i>H</i> №≦70	$70 < H_N \le 91$	$91 < H_N \le 105$
BYS=3	42< <i>H</i> _N ≤56	$56 < H_N \le 70$	56< <i>H</i> N≤91
BYS=4	28< <i>H</i> N≤42	42 <h< td=""><td>√≤56</td></h<>	√ ≤56
BYS=5	17.5< <i>H</i> N≤28	28 <h<sub>N</h<sub>	<u>1</u> ≤42
BYS=6	10.5< <i>H</i> _N ≤17.5	17.5 <h< td=""><td>N≤28</td></h<>	N≤28
BYS=7	$7 < H_{N} \le 10.5$	10.5 <h< td=""><td>J≤17.5</td></h<>	J≤17.5
BYS=8	$H_{N} \leq 7$	$H_{ m N}$	J ≤10.5

Tablo 3.3. Bina yükseklik sınıfları ve deprem tasarım sınıflarına göre tanımlanan bina yükseklik aralıkları.

3.1.5. Deprem yer hareketi düzeyleri

Bu Yönetmelik kapsamında aşağıda belirtilen dört farklı deprem yer hareketi düzeyi tanımlanmıştır.

Deprem Yer Hareketi Düzeyi-1 (DD-1)

DD-1 Deprem Yer Hareketi, spektral büyüklüklerin 50 yılda aşılma olasılığının %2 ve buna karşı gelen tekrarlanma periyodunun 2475 yıl olduğu çok seyrek deprem yer

hareketini nitelemektedir. Bu deprem yer hareketi, göz önüne alınan en büyük deprem yer hareketi olarak da adlandırılmaktadır.

Deprem Yer Hareketi Düzeyi-2 (DD-2)

DD-2 Deprem Yer Hareketi, spektral büyüklüklerin 50 yılda aşılma olasılığının %10 ve buna karşı gelen tekrarlanma periyodunun 475 yıl olduğu seyrek deprem yer hareketini nitelemektedir. Bu deprem yer hareketi, standart tasarım deprem yer hareketi olarak da adlandırılmaktadır.

Deprem Yer Hareketi Düzeyi-3 (DD-3)

DD-3 Deprem Yer Hareketi, spektral büyüklüklerin 50 yılda aşılma olasılığının %50 ve buna karşı gelen tekrarlanma periyodunun 72 yıl olduğu sık deprem yer hareketini nitelemektedir.

Deprem Yer Hareketi Düzeyi-4 (DD-4)

DD-4 Deprem Yer Hareketi, spektral büyüklüklerin 50 yılda aşılma olasılığının %68 (30 yılda aşılma olasılığı %50) ve buna karşı gelen tekrarlanma periyodunun 43 yıl olduğu çok sık deprem yer hareketini nitelemektedir. Bu deprem yer hareketi, servis deprem yer hareketi olarak da adlandırılmaktadır.

3.2. Bina Performans Düzeyleri

Bina performans düzeyleri, deprem etkisi altında bir binanın nasıl davranacağını tahmin etmek için kullanılan bir ölçektir. Performansa Göre Değerlendirme ve Tasarım kapsamında, Bina Performans Düzeyleri yapısal hasar düzeyleri ne göre 4 başlıkta tanımlanmıştır [35].

3.2.1. Kesintisiz kullanım (KK) performans düzeyi

Bu performans düzeyi, bina taşıyıcı sistem elemanlarında yapısal hasarın meydana gelmediği veya hasarın ihmal edilebilir ölçüde kaldığı duruma karşı gelmektedir.

Kesintisiz Kullanım (KK) Performans Düzeyi, bir binanın deprem etkisi altında en az hasarla en az kesintiyle kullanıma devam edebilmesi için tasarlandığı performans seviyesidir. KK en yüksek performans düzeyidir ve özellikle hayati öneme sahip binalar, hastaneler, acil durum merkezleri, itfaiye istasyonları gibi kritik yapılar için gereklidir.

Bir binanın KK Performans Düzeyine uygun olarak tasarlanması için, yapısal sistemlerin ve malzemelerin yeterince güçlü olması, binanın sismik etkilere dayanıklı hale getirilmesi ve binanın yer hareketleri ile uyumlu olması gerekmektedir. Ayrıca, binanın yapımında kullanılan malzemelerin kaliteli ve dayanıklı olması, yapılan işçiliğin kalitesinin yüksek olması, doğru proje ve inşaat yönetimi yapılması gerekmektedir. KK Performans Düzeyine uygun olarak tasarlanmış binalar, deprem sırasında sakinlerine güvenli bir sığınak sağlayabilir ve deprem sonrası işlevlerine hızlı bir şekilde devam edebilirler.

3.2.2. Sınırlı hasar (SH) performans düzeyi

Bina taşıyıcı sistem elemanlarında sınırlı düzeyde hasarın meydana geldiği, diğer deyişle doğrusal olmayan davranışın sınırlı kaldığı hasar düzeyine karşı gelmektedir.

Sınırlı Hasar (SH) Performans Düzeyi, deprem etkisi altında bir binanın, orta düzeyde hasar alarak ancak insanların tahliyesine gerek kalmadan kullanıma devam edebileceği performans seviyesidir. orta deprem riski taşıyan yerlerdeki binalar için tavsiye edilir.

Bir binanın SH Performans Düzeyine uygun olarak tasarlanması için, yapısal sistemlerin ve malzemelerin yeterince güçlü olması, binanın sismik etkilere dayanıklı hale getirilmesi ve binanın yer hareketleri ile uyumlu olması gerekmektedir. Ayrıca, binanın yapımında kullanılan malzemelerin kaliteli ve dayanıklı olması, yapılan işçiliğin kalitesinin yüksek olması, doğru proje ve inşaat yönetimi yapılması gerekmektedir. SH Performans Düzeyine uygun olarak tasarlanmış binalar, deprem sırasında insanların güvenli bir şekilde kalmasını sağlayabilir ve deprem sonrası hasarları daha az olacağından daha az maddi kayıp oluşabilir. Bu nedenle, SH Performans Düzeyine uygun olarak tasarlanın deprem riski taşıyan yerlerde inşa edilmesi önemlidir.

3.2.3. Kontrollü hasar (KH) performans düzeyi

Can güvenliğini sağlamak üzere bina taşıyıcı sistem elemanlarında çok ağır olmayan ve çoğunlukla onarılması mümkün olan kontrollü hasar düzeyine karşı gelmektedir.

Kontrollü Hasar (KH) Performans Düzeyi, deprem etkisi altında bir binanın kontrol altında hasar alarak insanların tahliye edilmesi ve yeniden kullanım için tamir edilmesi gerektiği performans seviyesidir. KH düşük deprem riski taşıyan yerlerdeki binalar için tavsiye edilir. KH Performans Düzeyine uygun olarak tasarlanmış binalar, deprem etkisi altında bazı hasarlar alabilirler ancak bu hasarların büyük ölçüde kontrol altında tutulması ve insanların tahliyesine gerek kalmaması sağlanır. Bu performans düzeyindeki binalar, yeniden kullanım için tamir edilebilirler. KH Performans Düzeyine uygun olarak tasarlanmış binaların, özellikle deprem riski düşük yerlerde inşa edilmesi önerilir. Bu performans düzeyindeki binaların tasarımında, yapısal sistemlerin ve malzemelerin uygun seçimi, binanın sismik etkilere dayanıklı hale getirilmesi ve binanın yer hareketleri ile uyumlu olması gerekmektedir. Ayrıca, binanın yapımında kullanılan malzemelerin kaliteli ve dayanıklı olması, yapılan işçiliğin kalitesinin yüksek olması, doğru proje ve inşaat yönetimi yapılması önemlidir.

3.2.4. Göçmenin önlenmesi (GÖ) performans düzeyi

Bina taşıyıcı sistem elemanlarında ileri düzeyde ağır hasarın meydana geldiği göçme öncesi duruma karşı gelmektedir. Binanın kısmen veya tamamen göçmesi önlenmiştir.

Göçmenin Önlenmesi (GÖ) Performans Düzeyi, deprem etkisi altında bir binanın, insanların tahliyesine gerek kalmadan, hiçbir hasar almadan kullanıma devam edebileceği performans seviyesidir. GÖ özel yapılar dışında tüm binalar için minimum gereklilik olarak belirlenmiştir.

GÖ Performans Düzeyine uygun olarak tasarlanmış binalar, deprem etkisi altında herhangi bir hasar almadan kullanıma devam edebilirler. Bu performans düzeyindeki binaların tasarımında, yapısal sistemlerin ve malzemelerin uygun seçimi, binanın sismik etkilere dayanıklı hale getirilmesi ve binanın yer hareketleri ile uyumlu olması gerekmektedir. Ayrıca, binanın yapımında kullanılan malzemelerin kaliteli ve dayanıklı olması, yapılan işçiliğin kalitesinin yüksek olması, doğru proje ve inşaat yönetimi yapılması önemlidir. GÖ Performans Düzeyine uygun olarak tasarlanmış binalar, deprem riski taşıyan bölgelerde insanların güvenliğini sağlamak için önemlidir. Bu performans düzeyindeki binaların yapımı ve denetimi, deprem öncesinde ve sonrasında alınacak önlemler arasında yer alır.

Şekil 3.1. Binanın performans düzeyleringrafiği ve göçme aşamaları TBDY 2018.

3.3. BinaDeprem Etkisi Altında Bina Performans Hedefleri ve Uygulanacak Tasarım Yaklaşımları

3.3.1. Bina performans hedefleri

Konutlar için Türkiye'de en uygun performans düzeyi, Kontrollü Hasar (KH) performans düzeyi olarak belirlenmiştir. KH performans düzeyine göre tasarlanmış binalar, deprem etkisi altında belli bir hasar alabilirler, ancak bu hasarların büyük bir kısmı kontrol altında tutulur ve insanların tahliyesine gerek kalmaz. Ayrıca, bu performans düzeyindeki binaların tamir edilerek yeniden kullanılması mümkündür. Bununla birlikte, binaların, bulundukları bölgenin deprem riskine göre belirlenen performans düzeylerine uygun olarak tasarlanması önemlidir.

Eğer bir bina, yüksek deprem riski taşıyan bir bölgede bulunuyorsa, Sınırlı Hasar (SH) performans düzeyi gibi daha yüksek bir performans düzeyi düşünülebilir. Ancak, konutların performans düzeyi belirlenirken, bina tipi, büyüklüğü, inşa edildiği bölgenin deprem riski, kullanım amacı gibi faktörler de dikkate alınmalıdır. Bu nedenle, bina tasarımı konusunda uzman bir mimar veya mühendisten danışmanlık almak önemlidir.

TBDY 2018 Yönetmeliği kapsamındaki binalar için dört deprem yer hareketi düzeyi için Normal Performans Hedefleri, Deprem Tasarım Sınıfı (DTS) = 1, 2, 3, 3a, 4, 4a için belirlenmiştir. Ayrıca, DTS = 1a, 2a için İleri Performans Hedefleri tanımlanmıştır. Yapı sahibinin tercihine bağlı olarak, daha ileri performans hedefleri deprem yer hareketi düzeylerine göre seçilebilir.

3.3.2. Uygulanacak değerlendirme ve tasarım yaklaşımları

TBDY2018 standartına göre, Dayanıma Göre Tasarım (DGT) yaklaşımının hesap esasları Bölüm 4'te belirtilmiştir. Aynı şekilde, Şekil Değiştirmeye Göre Değerlendirme ve Tasarım (ŞGDT) Yaklaşımı'nın hesap esasları ise Bölüm 5'te açıklanmıştır. Her iki yaklaşımın uygulama kapsamları da standartta belirtilmiştir.

Tablo 3.4. Deprem tasarım sınıflarına göre yeni yapılacak veya mevcut binalar içinperformans hedefleri ve uygulanacak değerlendirme/tasarım yaklaşımları.

(a) Yeni Yapılacak Yerinde Dökme Betonarme, Önüretimli Betonarme ve Çelik Binalar (Yüksek				
Binalaı	Dışında – BYS 2)			
Deprem	DTS=1,1a ⁽¹⁾ ,2,2a ⁽¹⁾ ,3,3a,4,4a		DTS= $1a^{(2)}, 2a^{(2)}$	
Yer H.	Normal	Değerlendirme/Tasarım	İleri Performans	Değerlendirme/Tasarım
Düzeyi	Performans Hedefi	Yaklaşımı	Hedefi	Yaklaşımı
DD-3			SH	ŞGDT
DD-2	KH	$DGT^{(5)}$	KH	$DGT^{(3,4)}$
DD-1			KH	ŞGDT
(b) Yeni Y	apılacak veya Mevcu	t Yüksek Binalar (BYS1)		
Deprem	DTS=1,	2, 3, 3a, 4, 4a	DTS=1a, 2a	
Yer H.	Normal	Değerlendirme/Tasarım	İleri Performans	Değerlendirme/Tasarım
Düzeyi	Performans Hedefi	Yaklaşımı	Hedefi	Yaklaşımı
DD-4	KK	DGT		
DD-3		—	SH	ŞGDT
DD-2	KH	$DGT^{(3)}$	KH	$DGT^{(3,4)}$
DD-1	GÖ	ŞGDT	KH	ŞGDT
(c) Mevcu	(c) Mevcut Yerinde Dökme Betonarme, Önüretiml iBetonarme ve ÇelikBinalar			
(Yüksek Binalar dışında–BYS2)				
Deprem	DTS=1,	1, 2, 3, 3a, 4, 4a DTS=1a, 2a		
Yer H.	Normal	Değerlendirme/Tasarım	İleri Performans	Değerlendirme/Tasarım
Düzeyi	Performans Hedefi	Yaklaşımı	Hedefi	Yaklaşımı
DD-3			SH	ŞGDT
DD-2	KH	ŞGDT		
DD-1		—	KH	ŞGDT
$(1)\mathbf{DVC} > 2$	alan hinalanda uwaul	ama aalitum		

 $^{(1)}BYS > 3$ olan binalarda uygulanacaktır.

⁽²⁾BYS=2,3 olan binalarda uygulanacaktır.

⁽³⁾Ön tasarım olarak yapılacaktır.

⁽⁴⁾*I*=1.5 alınarak uygulanacaktır.

3.3.2.1. Dayanıma göre tasarım (DGT) yaklaşımı

Dayanıma Göre Tasarım (DGT), yapıların deprem gibi doğal afetlere karşı dayanıklı hale getirilmesi için kullanılan bir yöntemdir. DGT, yapıların deprem sırasında göstermesi gereken dayanıklılığı belirlemeye ve buna uygun şekilde tasarlamaya odaklanır. Bu yaklaşım, malzeme seçiminden bağlantı detaylarına kadar bir dizi önlem alarak yapıların deprem etkilerine karşı dayanıklılığını artırmayı amaçlar.DGT, deprem bölgelerinde yeni yapıların inşası için kullanılan bir yöntemdir.

DGT'nin aşamaları şunlardır: (a) Azaltılmış deprem yükleri belirlenir, (b) Taşıyıcı sistemin doğrusal deprem hesabı yapılır ve iç kuvvetler elde edilir, (c) Dayanım talepleri dayanım kapasiteleriyle karşılaştırılır, (d) Göreli kat ötelemeleri sınırlarla karşılaştırılır, (e) Tasarım tamamlanır veya gerektiğinde tekrarlanır.

3.3.2.2. Şekildeğiştirmeye göre değerlendirme ve tasarım yaklaşımı

Şekil Değiştirmeye Göre Değerlendirme ve Tasarım (ŞGDT), yapıların deprem gibi doğal afetlere karşı dayanıklılığını artırmak için kullanılan bir yaklaşımdır. Bu yöntemde, yapıların belirli bir şekildeğiştirmeye uğraması ve hasar alması hedeflenir, böylece yapıların çökmesi önlenir. ŞGDT, malzeme seçimi, yapısal elemanların boyutlandırılması ve bağlantı detaylarının tasarımı gibi unsurları şekildeğiştirme kabiliyetine dayalı olarak ele alır. Deprem yönetmelikleri, ŞGDT yöntemini içeren performans tabanlı tasarımı öngörür. Bu yöntem, yapıların deprem etkilerine karşı daha dayanıklı hale getirilmesini sağlar. ŞGDT yaklaşımında, mevcut veya ön tasarıma dayalı taşıyıcı sistem elemanları için doğrusal olmayan modelleme kullanılarak iç kuvvet - şekildeğiştirme bağıntıları belirlenir. Ardından, belirlenen performans hedefleriyle uyumlu olarak taşıyıcı sistemin hesaplamaları yapılır ve şekildeğiştirme ile dayanım talepleri elde edilir. Bu talepler, belirlenen şekildeğiştirme ve dayanım kapasiteleriyle karşılaştırılır. Mevcut binalar için, şekildeğiştirme ve dayanım talepleri kapasiteleri altında veya üstünde ise değerlendirme tamamlanır. Yeni yapılacak veya güçlendirilecek binalar için ise talepler kapasitelerin altında ise tasarım tamamlanır. Aksi takdirde, eleman kesitleri değiştirilerek hesap tekrarlanır ve değerlendirme yapılır. Bu şekilde yapının şekildeğiştirmeye göre tasarımı tamamlanır.

3.4. Deprem Etkisi Altında Düzensiz Binalar

Deprem riskine karşı, düzensiz binaların tasarım ve inşasından kaçınılması gerektiği konusunda belirli durumların tanımlanması ile ilgili olarak, düzenli olmayan yapıların düşey ve yatay düzlemde oluşturduğu olumsuzluklar Tablo 3.5'te gösterilmektedir. Bu tablo, düzensiz binaların belirli özelliklerini ve bu özelliklerin potansiyel riskleri açıkça ortaya koymaktadır. Bu tür binalar, deprem etkilerine karşı daha hassas ve daha savunmasız olabilirler, bu nedenle tasarım ve inşaat aşamasında dikkatlice ele alınmaları gerekmektedir.

Tablo 3.5. Düzensiz binal	lar.
---------------------------	------

A–PLANDA DÜZENSİZLİK DURUMLARI	İlgili
	Maddeler
AI – Burulma Düzensızlığı: Birbirine dik iki deprem doğrultusunun herhangi biri	
için,herhangi bir katta en buyuk göreli kat ötelemesinin o katta ayni dögrultudaki	2 () 1
ortalama göreli ötelemeye oranını ifade eden Burulma Düzensizligi Katsayısi ybi	3.6.2.1
'nin 1.2'den buyuk olmasi durumu (Şekil 3.1).	
$[\eta = (\Delta^{(\Lambda)})/(\Delta^{(\Lambda)}) > 1.2]$. Göreli kat ötelemelerinin hesabi $\pm $	
01 1 IIIAX 1 011 dış markarlikatkilari da görönüna alınarak 4.7' va göra yapılaçaktır	
42 Döseme Sürekçizlikleri - Herbangi hir kattaki dösemede (Sakila 2):	
(Sekil3.2).	
I –Merdiyen ve asansör hoslukları dahil hosluk alanları tonlamının kat hrü	
talanının 1/3'ünden fazla olması durumu 1/3'ünden fazlaolmasıdurumu	3622
II – Deprem vüklerinin düsev tasıvıcı sistem elemanlarına güvenle	5.0.2.2
aktarılabilmesini güçlestiren verel döseme boşluklarının bulunmaşı durumu.	
III – Dösemenin düzlem içi rijitlik ve dayanımında ani azalmaların olması	
durumu.	
A3 – Planda Çıkıntılar Bulunması: Bina kat planlarında çıkıntı yapan kısımların	
birbirine dik iki doğrultudaki boyutlarının her ikisininde, binanın o katının aynı	3.6.2.2
doğrultulardaki toplam plan boyutlarının %20'sinden daha büyük olması durumu	
(Şekil 3.3).	
B–DÜŞEYDEDÜZENSİZLİKDURUMLARI	İlgili
	Maddeler
B1 – Komşu Katlar Arası Dayanım Düzensizliği (Zayıf Kat): Betonarme	
binalarda, birbirine dik iki deprem doğrultusunun herhangi birinde, herhangi bir	
kattaki <i>toplam etkili kesme alanı</i> 'nın, bir üst kattaki <i>toplam etkili kesme</i>	
<i>alanı'na</i> oranı olarak tanımlanan <i>Dayanım Düzensizliği Katsayısı</i> η _{ci} 'nin	
0.80'den küçük olması durumu.	2 (2 2
$[\eta_{ci} = (\sum A_e)_i / (\sum A_e)_{i+1} < 0.80]$	3.6.2.3
Herhangi bir katta etkili kesme alanın tanımı:	
$(\sum A_e)_i = (\sum A_w)_i + (\sum A_g)_i + (0.15 \sum A_k)_i$	
Not:4.9.1.3(b) 'de tanımlanan duvarlar için $A_{k}=0$ alınacaktır.	
B2 – Komsu Katlar Arası Rijitlik Düzensizliği (Yumusak Kat): Birbirine dik iki	
deprem doğrultusunun herhangi biri icin, bodrum katlar dısında, herhangi	
biri'inci kattaki ortalama göreli kat ötelemesi oranının bir üst veya bir alt kattaki	
ortalama göreli kat ötelemesi oranına bölünmesi ile tanımlanan Rijitlik	
Düzensizliği Katsayısı nki 'nin 2.0'den fazla olması durumu.	3.6.2.1
$[n=(\Delta^{(X)}/h)/(\Delta^{(X)}/h)>2.0$ veva	
ki i iort i+1 i+1ort	
$[\eta = (\Delta^{(X)}/h)/(\Delta^{(X)}/h) > 2.0]$	
ki i iort i-1 i-1ort	
Göreli kat ötelemelerinin hesabı, \pm %5 ek dış merkezliketkileride gözönüne	
alınarak 4.7'ye göre yapılacaktır.	
B3–Taşıyıcı Sistemin Düşey ElemanlarınınS üreksizliği:	
Taşıyıcı sistemin düşey elemanlarının (kolon veya perdelerin) bazı katlarda	3.6.2.4
kaldırılarak kirişlerin veya guseli kolonların üstüne veya ucuna oturtulması, ya	
da üst kattaki perdelerin altta kolonlara oturtulması durumu	

3.4.1. Çalışmada oluşan düzensizlikler

3.4.1.1. A1 – burulma düzensizliği

Türk Deprem Yönetmeliğinde yapıların deprem sırasında yerçekimi kuvvetlerine uygun olarak hareket etmemesi durumudur. Bu düzensiz hareket, yapının güvenliğini tehlikeye atabilir ve hasarların oluşmasına neden olabilir. Birbirine dik iki deprem doğrultusunun herhangi biri için, herhangi bir katta en büyük göreli kat ötelemesinin o katta aynı doğrultudaki ortalama göreli ötelemeye oranını ifade eden Burulma Düzensizliği Katsayısı ηbi 'nin 1.2'den büyük olması durumu ηbi = $\Delta i \max /\Delta ort >$ 1.2.

3.4.1.2. B2 – komşu katlar arası rijitlik düzensizliği (Yumuşak Kat)

Türk Deprem Yönetmeliğindeki yumuşak kat düzensizliği, yapıların deprem sırasında gösterdikleri dalgalanma veya titreşim şiddetinin belirli bir seviyenin üstünde olması durumudur. Bu düzensiz hareket, yapının güvenliğini tehlikeye atabilir ve hasarların oluşmasına neden olabilir. Yumuşak kat, yapının altındaki zemin tabanının yetersiz oluşu nedeniyle oluşan bir sorun olarak tanımlanabilir.

4. HESAP YÖNTEMLER

Binaların deprem hesabı yaparken yönetmelikler genellikle doğrusal (linear) ve doğrusal (linear) olmayan tasarım olmak üzere iki tür analiz yöntemi belirler.

Bu yöntemler, her biri kendi altında farklı hesap yöntemleri içeren alt kategorilere ayrılmıştır. Bu alt kategoriler, yapıların deprem etkilerine karşı nasıl tasarlandığını ve hesaplandığını belirlemek için kullanılır. İşte bu iki temel analiz yöntemi hakkında biraz daha detay:

Doğrusal (Linear) Analiz:

- Yapının davranışı doğrusal olarak kabul edilir.
- Deprem yükleri genellikle doğrusal elastik analiz ile değerlendirilir.
- Yapının rijitlik ve deformasyonları doğrusal olarak hesaplanır.
- Doğrusal analiz genellikle basitleştirilmiş durumları ele alır ve daha hızlı bir hesaplama süreci sunar.
- Ancak, özellikle büyük depremlerde gerçek yapı davranışını tam olarak yansıtmayabilir.

Doğrusal (Linear) Olmayan Analiz:

- Yapının davranışı doğrusal olmayan unsurları içerebilir.
- Bu analiz yöntemi, yapı elemanlarının büyük deformasyonları ve plastik davranışı gibi doğrusal olmayan etkileri hesaba katar.
- Yapının gerçekçi bir şekilde modellenmesine ve büyük depremlerdeki davranışının daha doğru bir şekilde tahmin edilmesine imkan tanır.
- Ancak, hesaplama süreci daha karmaşık ve zaman alıcıdır.

Ancak bu çalışmada deprem hesabında kullanılan yöntemler : mod birleştirme yöntemi, tepki spektrum ve itme (pushover) analizleridir.

4.1. ModBirleştirme Yöntemi ile Deprem Hesabı (Tepki Spektrumu)

Mod birleştirme yönteminde, yapının deprem davranışını analiz etmek için verilen bir deprem doğrultusunda yatay elastik tasarım spektrumunda yararlanılır. Yapı, farklı titreşim modlarına sahiptir ve her bir mod, belirli bir frekansta titreşen yapısal bir modeldir.

Mod birleştirme, bu farklı modlardan kaynaklanan etkileri bir araya getirerek toplam yapının deprem tepkisini elde etmek için kullanılır.

Diğer bir diyeşle modal hesap yöntemi, yapıyı bir dizi serbest titreşim modu olarak modellendirir ve her bir modun davranışını karakterize eden modal katılım faktörleri kullanılarak yapı davranışını analiz eder. Modal katılım faktörleri, her bir modun belirli bir titreşim modundaki önemini gösteren katsayılardır.

Bu yöntemde kullanılan kavramları bu şekilde tanımlanabilir:

- Mod Birleştirme Yöntemi'nde toplam deprem kuvvetinin bulunmasında diğer titreşim periyotları ve mod şekilleri hesaba katılır ve bu toplam kuvvetin katlara dağıtılmasında ilgili mod şekilleri esas alınır. Bu yöntem çok serbestlik dereceli sistemlerin davranışını veren ifadelerin her mod şekli için ayrı ayrı değerlendirilmesi olarak da görülebilir.
- Spektrum Kavramı: Deprem yer hareketi spektrumu (davranış spektrumu), bir deprem yer hareketi altında, belirli bir sönüm oranı (%5) için farklı periyotlara sahip tek serbestlik dereceli sistemlerin maksimum tepkilerinin bir fonksiyonu olarak tanımlanmaktadır.

Modal hesap işlemleri,sadece X yönünde gerçekleştirilecektir. Y yönündeki deprem hesaplamaları X yönündeki deprem hesaplamalarının benzeri bir sonuç vereceğinden bu çalışmada sadece X yönü dikkate alınmıştır.

Verilen (X) deprem doğrultusu için, n'inci tireşim moduna ait modal katkı çarpanı $\Gamma n^{(x)}$ ile binanın x ekseni doğrultusundaki taban kesme kuvveti modal etkin kütlesi (X).

$$\Gamma_{n}^{(x)} = \frac{\sum_{i=1}^{N} \min \phi_{i(x)n}}{\sum_{i=1}^{N} (\min \phi_{ixn}^{2} + \min \phi_{iyn}^{2} + \min \theta)}$$
(4.1)

(X) Deprem doğrultusu için tipik bir n'inci titreşim modunda, yapını serbestlik derecelerine ait kat modal etkin kütleleri Denklem (4.2) 'de belirtilmiştir.

$$m_{ixn}^{(x)} = m_i \phi_{ixn} \Gamma_n^{(x)} m_{iyn}^{(x)} = m_i \phi_{iyn} \Gamma_n^{(x)} m_{i\theta n}^{(x)} = m_{i\theta} \phi_{i\theta n} \Gamma_n^{(x)}$$
(4.2)

(X) Deprem doğrultusu için tipik bir n'inci titreşim modunda, yapını serbestlik derecelerine ait kat modal etkin kütleleri ise

$$m_{ixn}^{(x)} = m_i \phi_{ixn} \Gamma_n^{(x)} m_{iyn}^{(x)} = m_i \phi_{iyn} \Gamma_n^{(x)} m_{i\theta n}^{(x)} = m_{i\theta} \phi_{i\theta n} \Gamma_n^{(x)}$$
(4.3)

(X) deprem doğrultusu için tipik bir n'inci titreşim modunda, taşıyıcı sistemin x ekseni doğrultusunda en büyük modal taban kesme kuvveti $V_{txn,max}^{(x)}$ Denklem (4.4) ve buna karşı gelen en büyük taban devrilme momenti $M_{oxn,max}^{(x)}$ Denklem (4.5) ile hesaplanır.

$$V_{txn,max}^{(x)} = \sum_{i=1}^{N} f_{ixn,max}^{(x)} = m_{txn}^{(x)} S_{aR}(T_n)$$
(4.4)

$$M_{oxn,max}^{(x)} = \sum_{i=1}^{N} f_{ixn,max}^{(x)} H_i$$
(4.5)

Bu yöntemde maksimum iç kuvvetler ve yerdeğiştirmeler, binada yeterli sayıda doğal titreşim modunun her biri için hesaplanan maksimum katkıların istatiksel olarak birleştirilmesi ile elde edilir. Herhangi bir r'inci titreşim modunda göz önüne alınacak ivme spektrumu ordinatı belirlenecektir. Bu sebepten dolayı her bir periyoda karşılık gelen ivme değerleri bulunmuş ve Etabste "Response Spectrum function" kısmına bir fonksiyon halinde girilmiştir. Şekil 4.1 ve Şekil 4.2'dir.

$$S_{aR} (\mathrm{Tr}) = \frac{S_{ae} (T_r)}{R_a (T_r)}$$
(4.6)

Bu ifadede ;

- SaR(Tr) : r'inci titreşim modunda gözönüne alınacak ivme spektrum değeri.
- Sae(Tr) : r'inci titreșim moduna ait elastik spektral ivme.
- Ra(Tr) : r'inci titreşim modunda deprem yükü azaltma katsayısı olarak tanımlanmıştır.

r'inci moda ait spektral ivme değeri ile bulunacaktır.

Sae(Tr) = A(Tr).g

A(Tr) : r'inci titreşim moduna ait spektral ivme katsayısı olarak tanımlanmıştır.

g : Yerçekimi ivmesi

Şekil 4.1. Doğal titreşim periyoduna bağlı olarak yerçekimi ivmesi [G] cinsinden yatay elastik tasarım spektral ivmeleri.

Şekil 4.2. Doğal titreşim periyoduna bağlı olarak ivme spektrum değeri.

4.1.1. Hesaba katılacak yeterli titreşim modu sayısı

Hesaba katılması gereken yeterli titreşim modu sayısı, gözönüne alınan birbirine dik x ve y yatay deprem doğrultularının her birinde, her bir mod için hesaplanan etkin kütlelerin toplamının hiçbir zaman bina toplam kütlesinin % 95'ından daha az olmaması kuralına göre belirlenecektir.

Verilen bir deprem doğrultusunda deprem tasarım spektrumu'ndan yararlanılarak gözönüne alınan her bir titreşim modunda davranış büyüklüklerinin maksimum değerleri modal hesap yöntemi ile hesaplanır. Yeteri kadar titreşim modu için hesaplanan, maksimum modal davranış büyüklükleri daha sonra istatistiksel olarak birleştirilerek maksimum davranış büyüklükleri'nin değerleri elde edilir.

$$\beta tE = \frac{\gamma V(X)}{\sum_{E \to tE}} \ge 1(X)$$

$$Vtx(X) \qquad (4.7)$$

Burada:

VtEEşdeğer Deprem Yükü Yöntemi'ne göre hesaplanan toplam eşdeğer deprem yükünü (taban kesme kuvvetini), Vtx(X) ise mod birleştirme yöntemine göre x doğrultusu'nda elde edilen toplam deprem yükünü göstermektedir. γEçarpanı aşağıdaki şekilde alınacaktır:

- A1, B2 veya B3 türü düzensizliklerden en az birinin binada bulunması durumunda γ_E=0.90 alınacaktır.
- Düzensizliklerden hiçbirinin binada bulunmaması durumunda $\gamma_E=0.80$ alınacaktır.

Yapının mod birleştirme yöntemi kullanılarak yapılan depremli durum hesapları, sadece X doğrultusunda Etabs 2016 programı kullanılarak gerçekleştirilmiştir. Mod birleştirme yöntemi, statik bir deprem hesap yöntemi olmadığı için, Etabs 2016 programına azaltılmış ivme-tepki spektrumu tanıtarak mod birleştirme yöntemi uygulanmıştır. Bunu yapmak için Afad Türkiye Bina Deprem Haritasından verilen r'inci titreşim moduna ait elastik spektral ivme Şekil 4.1'inci titreşim modunda gözönüne alınacak ivme spektrum değeri Şekil 4.2 kullanılmıştır.

4.2. Statik İtme Analizi (Pushover Analysis)

Doğrusal olmayan analiz yöntemi ise malzemelerin ve yapısal elemanların doğrusal olmayan davranışlarını hesaba katar. Özellikle önemli deformasyonlar, malzeme akması veya büyük yer değiştirmeler meydana geldiğinde, gerçek dünyadaki yapısal tepkinin daha doğru bir şekilde temsil edilmesine olanak tanır. İtme analizi, yapıların plastik davranışını yakalama yeteneği nedeniyle doğrusal olmayan analiz yöntemleri kategorisine girmektedir. Malzemelerin akmasını ve plastik mafsalların gelişimini dikkate alarak yapısal tepkinin daha gerçekçi anlaşılmasını sağlar [36].

Yapıda itme analizi, yapıya uygulanan kalıcı düşey yükler ve kademeli olarak artan yanal yükler altında gerçekleştirilen doğrusal olmayan bir statik analiz yöntemidir. Bu yöntemde, yaklaşık olarak deprem kuvvetlerini temsil eden eşdeğer statik yanal yükler kullanılır.

İtme analizi, yapının hedef deplasmana ulaşılana kadar yanal kuvvetlerin yapının boyunca sabit kalması prensibine dayanır. Bu analiz yöntemi, yapıyı oluşturan elemanların taşıma kapasitelerini ve plastik deformasyon davranışlarını belirlemek için bir dizi elastik analizden oluşur.

Analiz süreci, üç boyutlu bir model oluşturarak başlar ve bu model, yerçekimi yüklerini içerir. Ardından, binanın yüksekliği boyunca dağıtılan yanal yük modeli uygulanır. Bu yanal yükler, yapısal elemanlar için bir yük senaryosu olarak kullanılır ve elemanların performansını değerlendirmeye yardımcı olur. Yapısal elemanlara yanal yük modeli uygulanırken, akma dayanımına ulaşana kadar devam edilir.

Yanal yük modeli, hedef deplasmana (yer değiştirme) ulaşılıncaya ve yapı kararsız hale gelene kadar uygulanmaya devam eder. Bu süreç sonucunda, çatı yer değiştirmesi ile taban kesme kuvveti arasındaki ilişkiyi gösteren bir kapasite eğrisi elde edilir. Bu eğri, yapısal performansı değerlendirmek ve tasarım kriterleriyle karşılaştırma yapmak için kullanılır.

Görsel olarak, kapasite eğrisi çatı yer değiştirmesi ile taban kesme kuvveti arasındaki ilişkiyi gösteren bir grafik şeklinde ifade edilebilir. Bu grafik, yapısal elemanların davranışını ve taşıma kapasitelerini anlamak için önemli bir araçtır.

Şekil 4.3. Çerçeve elemanının beklenen kapasite eğrisi.

İtme analizi, yapıda kuvvet kontrollü veya yer değiştirme kontrollü olarak gerçekleştirilebilir. Kuvvet kontrollü itme prosedürü, yük kombinasyonlarının tamamının uygulandığı bir yöntemdir ve bilinen yük durumlarında (örneğin, yerçekimi yüklemesi gibi) tercih edilir. Ancak, kuvvet kontrollü itme prosedürü, mekanizmaların gelişimi ve P-delta etkileri nedeniyle hedef yer değiştirme ile çok küçük bir pozitif veya hatta negatif yanal rijitlik arasında ilişkili olabilecek bazı sayısal problemlerin doğruluğunu etkileyebilir. Bu tür problemlerin üstesinden gelmek için genellikle yer değiştirme kontrollü itme analizi önerilir.

Yer değiştirme kontrollü itme analizi ise hedeflenen yer değiştirme değeri belirlenerek gerçekleştirilir ve yanal yükler bu hedef değeri elde etmek için uygulanır. Bu yöntem, daha doğru sonuçlar verir ve mekanizmaların gelişimini daha gerçekçi bir şekilde taklit eder.

İtme analizi, yapıların deprem, rüzgar veya diğer dinamik yüklemeler altındaki davranışını anlamak ve yapısal performanslarını değerlendirmek için önemli bir araçtır. Bu analiz yöntemi, yapıların taşıma kapasitelerini, deformasyon davranışlarını ve güvenlik seviyelerini belirlemeye yardımcı olur. Ayrıca, yapıların tasarımında ve güçlendirme çalışmalarında da sıklıkla kullanılır.

İtme analizi, yapının genel kapasite eğrisinin ilerlemesinin yanı sıra eleman ve yapısal seviyede akma ve göçme sırasının izlenmesine olanak tanır. İtme analizi, yapısal sistem ve elemanlerine uygulanan kritik tepki parametrelerini tahmin etmektir. İtme analizinden, yapısal sistem ve elemanların dayatılan kritik davranış parametrelerini, doğrusal olmayan dinamik analiz tarafından tahmin edilenlere mümkün olduğunca yakın tahmin etmektir. İtme analizi, elastik statik veya elastik dinamik analizden elde edilemeyen birçok davranış özelliği hakkında bilgi sağlar.

Matematiksel modelin genel tepkisini tanımlayan elde edilen kapasite eğrisi, eşdeğer tek serbestlik derecesi (SDOF) sistemine dönüştürülebilmesi için ikili doğrusallaştırma işlemine tabi tutulur. Bu ikili doğrusallaştırma adımı, TBDY-2018, **FEMA-356** veya ATC-40 tarafından belirtilen prosedürler kullanılarak gerçekleştirilebilir. Ardından, yukarıda bahsi geçen deprem kodları tarafından önerilen yöntemlerden biri kullanılarak SDOF sistemi için maksimum yer değiştirme talebi hesaplanır. Son olarak, çoklu serbestlik derecesi (MDOF) sisteminin çatı yer değiştirme talebi, SDOF sisteminin maksimum yer değiştirmesi dönüştürülerek hesaplanır. Pushover analizinin bu aşamasında, yapısal elemanların inelastik davranışını temsil eden bina yerel deprem talepleri, deformasyonlar ve kuvvetler hesaplanır. Bu hesaplamalar, yapısal analizde akademik ve estetik bir şekilde gerçekleştirilir.

İtme analizi, bir yapının aşağıdaki özelliklerini tahmin etmede çok faydalıdır.

- Çatı yer değiştirme grafiğine karşı taban kesme kuvveti ile (yapının kapasitesi)
- katlar arası ötelenme tahminleri ve yükseklik boyunca dağılımı
- Kritik eleman yükünün maksimum dönme ve sünekliğisünek elemanlar için deformasyon taleplerinin belirlenmesi
- yapıdaki zayıf noktaların (veya potansiyel göçme (failure) modlarının) konumunun belirlenmesi
- Elemanların tek davranışında mukavemeti azalmasında yapısal sistemin davranışı üzerindeki etkisi.
- İtme analizi, elastik analizde gizli kaldığı tasarım zayıflıklarını da ortaya çıkarır. Bunlar, kat mekanizmaları, aşırı deformasyon talepleri, mukavemet düzensizlikleri ve gevrek elemanlar üzerindeki aşırı yüklerdir.

4.2.1. Taban kesme kuvveti ile çatı kat yerdeğiştirmesi ilişkisi

Taban kesme kuvveti ile çatı kat yerdeğiştirmesi arasındaki ilişki, yapıların taşıma kapasitesini ve davranışını anlamak için önemlidir. Bu ilişki, itme analizi sırasında değerlendirilen bir parametredir.

Taban kesme kuvveti, yapıya yatay yönde etki eden kuvvetin bir bileşenidir. Bu kuvvet, deprem veya rüzgar gibi yatay yüklemelerin etkisi altında oluşur. Taban kesme kuvveti, yapıdaki elemanlar ve bağlantılar arasındaki kuvvet transferini belirler.

Çatı kat yerdeğiştirmesi ise yapıdaki yatay yer değiştirmenin bir ölçüsüdür. Yapı, yatay yüklemeler altında hareket ettiğinde, çatı katı ve diğer katlar arasında bir yer değiştirme meydana gelir. Bu yer değiştirmeler, yapıdaki deformasyon ve gerilmelerin bir sonucudur.

Taban kesme kuvveti ile çatı kat yerdeğiştirmesi arasındaki ilişki, yapısal sistemin rijitlik ve taşıma kapasitesi ile ilgilidir. Yüksek taban kesme kuvvetleri, yapıdaki yer değiştirmeleri artırabilir. Bu durum, yapının deformasyon kapasitesinin aşıldığını ve yapısal mukavemetin azalmaya başladığını gösterebilir.

İtme analizi sırasında, taban kesme kuvveti ve çatı kat yerdeğiştirmesi arasındaki ilişki incelenir. Yapısal sistemdeki elemanların ve bağlantıların rijitlikleri, malzeme özellikleri ve geometri gibi faktörler göz önünde bulundurularak, bu ilişki analitik veya sayısal yöntemlerle hesaplanır.

Bu analiz, yapısal sistemin davranışını anlamak ve yapısal performansı değerlendirmek için önemlidir. Taban kesme kuvveti ile çatı kat yerdeğiştirmesi arasındaki ilişki, yapısal iyileştirmelerin gerekip gerekmediğini belirlemek ve yapıya uygun güçlendirme önlemlerini almak için kullanılır.

Özetle, taban kesme kuvveti ile çatı kat yerdeğiştirmesi arasındaki ilişki, yapıların taşıma kapasitesini ve davranışını değerlendirmek için önemlidir. Bu ilişki, itme analizi sırasında incelenir ve yapısal sistemin güvenliği ve dayanıklılığı açısından kritik bir rol oynar.

4.2.2. Hedef yerdeğiştirmesi

Hedef yer değiştirmesi, itme analizi sırasında belirlenen bir noktanın, deprem yükleri altında hareket ettiği mesafeyi ifade eden önemli bir parametredir. Bu parametre, yapıların deprem davranışını anlamak ve performansını değerlendirmek için kullanılır.

İtme analizi, yapıya artan bir yük gradyanı ile yük uygulayan bir analiz yöntemidir. Bu analiz sırasında, yapının davranışını tahmin etmek için yapısal elemanların plastik mafsallarının devreye girdiği noktalar belirlenir. Hedef yer değiştirmesi, genellikle zemin seviyesindeki bir noktanın hareket mesafesi olarak tanımlanır ve yapıya uygulanan yükün artışıyla birlikte değişir.

Hedef yer değiştirmesi, yapısal elemanların plastik deformasyon gösterdiği ve enerji emildiği bölgelerde ölçülen bir parametredir. Bu değişim, yapıya uygulanan yükün artmasıyla birlikte meydana gelir ve yapısal sistemin elastik sınırlarını aştığında kalıcı deformasyonun belirgin hale geldiği noktalarda daha fazla gözlemlenir.

Bu parametre, yapıların deprem yükleri altında ne kadar yer değiştirebileceğini ve hasar potansiyelini belirlemek için kullanılır. Hedef yer değiştirmesi, yapıların taşıma kapasitesini ve dayanıklılığını değerlendirmek ve deprem güvenliği açısından kritik bölgeleri belirlemek için önemlidir.

Hedef yer değiştirmesi, yapısal tasarım sürecinde ve deprem risk analizlerinde dikkate alınan bir ölçüt olarak kabul edilir. Bu parametre, yapıların deprem performansını değerlendirmek ve tasarım iyileştirmeleri yapmak için kullanılan bir araçtır. Bu sayede, yapılar deprem yükleri altında daha iyi bir davranış sergileyebilir ve hasar riski azaltılabilir.

4.2.3. Yapısal elemanın plastik mafsallaşması

Yapısal elemanın plastik mafsallaşması, malzemenin elastik davranışından farklı olarak, belirli bir gerilme veya deformasyon düzeyine kadar elastik geri dönüşüm sağlayabilen malzemelerin özelliği değildir. Plastik mafsallaşma, bir malzemenin elastik sınırını aştığında meydana gelir ve malzeme artık geri dönüşümlü olmayan bir şekilde deforme olur. Bu aşamadan sonra, malzeme gerilme altında kaldığı sürece şekli ve boyutu kalıcı olarak değişir. Ancak, plastik mafsalların belirli bir noktaya kadar yanal dirence sahip olduğu ve gerçek bir mafsala benzemediği unutulmamalıdır, çünkü plastik mafsallar oluşurken büyük miktarda enerji tüketilir. Bu nedenle, deprem gibi yanal yük etkileriyle karşılaşan yapılar, bu enerjiyi bir şekilde sönümlemelidir. Yapısal elemanın plastik mafsallaşması, taşıyıcı kapasitesinin azalmasına ve dolayısıyla yapıya hasar vererek güvenliği tehdit etme potansiyeline sahiptir. Bu nedenle, deprem güvenliği açısından, binalarda plastik mafsalların kiriş-kolon birleşimlerinde meydana gelmesi istenir. Bu amaçla, deprem yönetmeliklerinde "Kolonların Kirişlerden Daha Güçlü Olması Koşulu" belirlenmiştir, yani her kolon-kiriş düğüm noktasına birleşen kirişlerin
kolon yüzündeki kesitlerindeki taşıma gücü momentlerinin toplamından en az %20 daha büyük olmalıdır (TBDY Madde 5.3.1.2).

Basit serbestlik derecesi, bir yapısal elemanın yalnızca bir yönde hareket edebilen ve diğer yönde sabitlenebilen bir serbestlik derecesidir. Örneğin, bir çubuk, bir kolon veya bir kiriş, basit serbestlik derecesine sahip yapısal elemanlardır. Plastik mafsallar ise, yapısal elemanın bir veya birden fazla yerinde belirlenmiş bir düzlemde, sınırlı bir momente dayanabilecek şekilde tasarlanmış mafsallardır. Bu mafsallar, malzemenin plastik mafsallaşma özelliğini kullanarak, yapısal elemanın yük altındayken deformasyonunu kontrol ederler. Plastik mafsallar, bir yapısal elemanın yük altındaki davranışını öngörmek için kullanılan en önemli parametrelerden biridir.

İtme analizi, bir yapının davranışını, deprem yükleri altında plastik mafsalların devreye girdiği yük seviyelerine kadar simüle etmek amacıyla kullanılan bir analiz yöntemidir. Bu nedenle, pushover analizinde plastik mafsalların doğru bir şekilde modellenmesi ve kullanılması önemlidir. Plastik mafsallar, belirli bir düzlemde sınırlı bir momente dayanabilen şekilde tasarlanmış mafsallar olup, malzemenin plastik mafsallaşma özelliğini kullanarak, yapısal elemanın yük altındayken deformasyonunu kontrol ederler. Pushover analizi, deprem yükleri altında bir yapının davranışını tahmin etmek için kullanılır ve yüksek seviyedeki deprem yüklerinde yapının plastik mafsallarla çalışarak yükü taşıyabilme kapasitesini belirler. Bu nedenle, pushover analizinde plastik mafsalların doğru bir şekilde modYapısal elemanın plastik mafsallaşması, malzeme davranışının elastik sınırlarını aşarak kalıcı deformasyon göstermesi durumunu ifade eder. Bu fenomen, yapısal elemanların belirli bir gerilme veya deformasyon düzeyini aştığında meydana gelir. Plastik mafsallaşma, malzemenin elastik geri dönüşüm yeteneğini kaybettiği ve deformasyonun kalıcı hale geldiği bir süreçtir.

Plastik mafsallar, yapısal elemanlarda belirli bölgelerde tasarlanan ve plastik mafsallaşmayı kontrol ederek deformasyonu sınırlayan bileşenlerdir. Bu mafsallar, malzemenin plastik davranışını kullanarak yapısal elemanın deformasyonunu yönlendirir ve taşıma kapasitesini artırır. Plastik mafsallar, belirli bir momente dayanabilecek şekilde tasarlanır ve gerilme altında kaldıklarında plastik deformasyon gösterirler. Bu mafsallar, yapısal elemanın belirli bir bölgesinde oluşur ve malzemenin plastik mafsallaşma özelliğini kullanarak enerji emilimini sağlar.

43

İtme analizi, bir yapının deprem yükleri altındaki davranışını anlamak için kullanılan bir analiz yöntemidir. Bu analiz yöntemi, yapının plastik mafsallarla çalışarak yükü taşıyabileceği durumları belirlemek için kullanılır. Pushover analizi, yapının deprem yükleri altında plastik mafsalların devreye girdiği yük seviyelerine kadar simüle edilir. Bu analizde, yapısal elemanların plastik mafsallarının doğru bir şekilde modellenmesi önemlidir. Plastik mafsalların doğru bir şekilde modellenmesi, yapısal elemanların gerçek davranışını yansıtacak ve analiz sonuçlarının güvenilir olmasını sağlayacaktır.

Plastik mafsalların kullanılması, yapıların deprem güvenliğini artırmak için önemlidir. Plastik mafsallar, yapısal elemanların plastik deformasyon kapasitesini artırarak enerji emilimini sağlar. Böylece, yapılar deprem yükleri altında daha iyi performans gösterebilir ve hasar riski azaltılabilir. Plastik mafsalların doğru bir şekilde yerleştirilmesi, yapısal tasarımda titizlik gerektiren bir konudur ve yapısal elemanların güvenli ve ekonomik bir şekilde davranmasını sağlar.

Şekil 4.4. Yapısal elemanın SDOF plastik mafsallaşması.

4.2.4. Binaların sismik performans değerlendirmesi

Binaların sismik performansı, belirli bir sismik tehlike düzeyi altında hasar durumu ile değerlendirilir. Hasar durumu, çatının ötelenmesi ve yapısal elemanların yer değiştirmesiyle ölçülür. İlk olarak, yerçekimi itmesi kuvvet kontrol yöntemi kullanılarak gerçekleştirilir. Bu adımı takiben, yer değiştirme kontrollü yanal itme analizi gerçekleştirilir. Yer değiştirme tabanlı itme analizi için hedef yer değiştirmenin tanımlanması gerekmektedir. İtme analizi, yapının dayanabileceği maksimum taban kesme kuvveti hakkında fikir verir.

Bina performansı, yapısal olmayan elemanların performans seviyeleriyle birlikte düşünülen bir kombinasyondur. Performans seviyesi, sınırlayıcı bir hasar durumunu tanımlar. Yapının performansı, mafsal oluşumuyla belirlenir. Plastik mafsallar, yapıda farklı konumlarda oluşur. Şekil 4.5 ve Şekil 4.6'da gösterildiği gibi plastik mafsallar oluşacaktır. Performans, FEMA-356'de tanımlanan kılavuza göre performans değerlendirmesi yapılır. Yanal kuvvet, A noktasından yüklemeye başlanır. Yapı, B noktasından önce doğrusal davranış gösterir ve B noktasından sonra bir veya birden fazla mafsal oluşumu başlar. Yazılım, mafsalları göstermek için belirli göstergeler kullanır.:

Şekil 4.5. Risk gösterge eğrisi

Şekil 4.6. FEMA 273/356 performans seviyeleri.

Performans seviyeleri şunlardır:

Hemen Kullanım (Immediate Occupancy - IO): Hasar nispeten sınırlıdır ve yapı, orijinal rijitliğinin büyük bir kısmını korur. Bu performans seviyesi, hafif hasarlarla

karşılaşıldığında binaların hızlı bir şekilde kullanılabilir hale getirilmesi gereken durumlar için belirlenir. IO, bina kullanıcılarına hızlı bir şekilde giriş izni verir ve yapının kullanımına devam edilmeden önce herhangi bir onarım veya güçlendirme yapılmasını gerektirmez. IO, pushover analizinde bir performans hedefi olarak kullanılabilir ve yapının bu hedefe ulaşılıp ulaşılmadığını belirlemek için belirli bir kriterdir.

Can Güvenliği (Life Safety - LS): Yapıda önemli bir hasar meydana gelmiş olabilir ve orijinal rijitliğinin bir kısmını kaybetmiş olabilir. Bu performans seviyesi, deprem sonrasında insanların yaşamlarını korumak için gereken minimum performans düzeyini belirtir. LS, pushover analizinde bir performans hedefi olarak kullanılır ve yapının bu hedefe ulaşılıp ulaşılmadığını belirlemek için belirli bir kriterdir. Yapısal tasarım ve güçlendirme çalışmalarında önemli bir faktördür ve depreme karşı direncin artırılması için tasarım ve güçlendirme kararlarında dikkate alınmalıdır.

Çökme Önleme (Collapse Prevention - CP): Bu seviyede, bir noktadan sonra yapı yanal olarak aşırı şekilde deforme olursa aşırı hasar görecektir ve çökebilir. Bu performans seviyesi, deprem sonrasında yapının çökmesini önlemek için gereken performans düzeyini belirtir. CP, pushover analizinde bir performans hedefi olarak kullanılır ve yapının bu hedefe ulaşılıp ulaşılmadığını belirlemek için belirli bir kriterdir. Yapının bu performans seviyesini karşılaması için tasarlanması ve güçlendirilmesi gerekmektedir. CP performans seviyesi, yapısal tasarım ve güçlendirme çalışmalarında önemli birfaktördür ve depreme karşı direncin artırılması için tasarım ve güçlendirme kararlarında dikkate alınmalıdır.

5. SAYISAL UYGULAMALAR

5.1. Giriş

Çalışmada modellenen Zemin ve 4 Normal katlı binanın taşıyıcı sistemi çerçeveli sistemde kolon-kirişten oluşturulmaktadır. TS500 ve TBDY-2018'e göre tasarımı yapılan konut binasının modal analizi ve itme (Pushover) analizi doğrusal (linear) olmayan analiz ETABSV16 yazılım programı kullanarak tüm medemeleri oluşturulmuştur.

5.2. Bina Modelleri Hakkında Bilgiler

Mevcut yapının genel bilgileri aşağıda sıralanmıştır.

- Kat Sayısı: Zemin + 4 Normal katdır.
- Yapının X doğrultusundaki toplam uzunluğu = 20m
- Yapının Y doğrultusundaki toplam uzunluğu = 20m
- Beton sınıfı: C25 beton kullanılmıştır. (28 gün sonra 25 Mpa).
- Donatı sınıfı: B420C betonarme donatı malzemesi kullanılmıştır.
- Kolon: Bina kolonları 50x50 cm boyutundadır.
- Kiriş: Bina kirişleri 25x50 cm boyutundadır.
- Döşeme Kalınlığı: Bina döşemelerinin kalınlığı 12 cm'dir.
- Dolgu Duvar Kalınlığı: Bina dolgu duvarlarının kalınlığı 19 cm'dir.
- Dış Duvar Yükü: Dış duvar üzerine etki eden yük 3.95 (KN/m²) olarak belirtilmiştir.
- İç Duvar Yükü: İç duvar üzerine etki eden yük 3.35 (KN/m²) olarak belirtilmiştir.
- Hareketli Yük- Normal Katlar: Normal katlarda hareketli yük (KN/m²) olarak belirtilmiştir.
- Hareketli Yük- Çatı: Çatıdaki hareketli yük 1 (KN/m²) olarak belirtilmiştir.
- Döşeme Kaplama: Döşeme üzerine eklenen kaplama, 1.5 (KN/m²) yük taşıyabilir.

Çalışmada kullanılan tüm çerçevenin ve geliştirilen modellerin modal analiz sonucunda elde edilen birinci doğal titreşim periyodu ve kütle katılım oranları en az %95 alınmıştır. Kat kütleleri, düşey yüklerle uyumlu bir şekilde belirlenmiştir (G+nQ).

Bu çerçeveler, konut amaçlı kullanılacak şekilde tasarlandığından dolayı hareketli yük katılım katsayısı n=0,3 olarak alınmıştır [31].

Kolon donatı oranı minimum 2513 mm² veya 8T20 olarak belirtilmiştir. Bu, kolon donatısının en az 2513 mm² kesit alanına veya 8 adet T20 çapında donatı çeliğine sahip olduğunu gösterir. Kiriş donatı oranı minimum 680 mm² veya 6T12 olarak belirtilmiştir. Bu, kiriş donatısının en az 680 mm² kesit alanına veya 6 adet T12 çapında donatı çeliğine sahip olduğunu gösterir. Şekil 5.1 kesitlerin detaylarını belirtılmiştir.

Şekil 5.1. Modellerde kullanılan kesitler ve donatıları A) Kiriş kesiti B) Kolon kesiti. Çalışma sürecinde farklı bina tipleri üzerinde yapılan analizler sonucunda 68 adet modeller oluşturulmuştur. Bu modellerin isimlendirirken, bina tipini, dolgu duvar durumunu, zemin kat yüksekliğini ve analiz yöntemini temsil eden sembollerle ifade edilmiştir. Bu ifadeleri Tablo 5.1'de gösterilmiştir.

- i. Bina tipleri A, B ve C olarak adlandırılmıştır. A bina tipi, asma kat içermeyen bir yapıyı temsil ederken, B ve C bina tipleri asma katları içeren yapıları ifade etmektedir.
- ii. Dolgu duvar durumu sembolleri, farklı dolgu duvar konumlarını belirtmektedir.
 "t" sembolü, dolgu duvarların iç ve dış aksanlarda basınç çubuğu yöntemiyle tanımlandığını ifade eder. "1" sembolü, zemin ve asma katlarda birinci durumda (t) modeldeki dolgu duvarların 1-1 aksındaki bölümlerinin kaldırıldığını (camekan olarak düşünüldüğünü) gösterir. "2" sembolü ise zemin ve asma katlarda birinci durumda (t) modeldeki dolgu duvarların A-A aksındaki bölümlerinin kaldırıldığını ifade eder. "3" sembolü ise dolgu duvarların sadece kiriş yüküne katılan düşey yük olarak tanımlandığını gösterir.
- iii. A bina tipi için farklı yükseklik tipleri ve toplam yükseklikler belirlenmiştir. "d" sembolü 3 metrelik yüksekliği, "e" sembolü 4.5 metrelik yüksekliği, "f" sembolü

5.5 metrelik yüksekliği, "g" sembolü 6.5 metrelik yüksekliği ve "h" sembolü 7.5 metrelik yüksekliği temsil etmektedir.

- iv. B ve C bina tipleri ise asma katları içermektedir. Bu bina tipleri için farklı zemin ve asma kat yükseklikleri ve toplam yükseklikler belirlenmiştir. "hz" sembolü zemin kat yüksekliğini, "ha" sembolü asma kat yüksekliğini, "h1" sembolü ise toplam yüksekliği ifade etmektedir. "a" sembolü 3 metre asma kat yüksekliği ve 5.5 metre toplam yüksekliği, "b" sembolü 4 metre asma kat yüksekliği ve 6.5 metre toplam yüksekliği, "c" sembolü ise 5 metre asma kat yüksekliği ve 7.5 metre toplam yüksekliği temsil etmektedir.
- v. Analiz yöntemini belirten semboller ise "M" ve "P" olarak kullanılmıştır. "M" sembolü, mod birleştirme yöntemini temsil ederken, "P" sembolü itme (pushover) analiz yöntemini ifade etmektedir.

5.1 tablodaki bilgiler, çalışmanın detaylı bir şekilde açıklanmasına olanak sağlayacak ve tezin temelini oluşturacaktır.

A A	Asma kat içermeyen bir yapı				
B A	Asma katı içeren bir yapı				
C A	Asma katı içeren bir yapı				
		DOLGU DUV	AR DURUMU		
t D	Oolgu duvarlar tüm eksenl	erde basınç ele	manları olarak	modellenmişti	r
1 D	Oolgu duvarları, (t) duru	ndan yalnızca	1-1 eksenlerind	e basınç elema	anları kaldırılmiştir
2 D	Oolgu duvarları, (t) durun	ndan yalnızca	A-A eksenlerine	de basınç elen	nanları kaldırılmiştir
3 D	Oolgu duvarları herhangi	bir eksende ba	sınç elemanları	olarak modelle	enmemiştir
		YÜKSEŀ	KLİKLER		
	A BİNA TİPİ B&C BİNA TİPİ				
comb ol	Toplmyükseklik	annhal	Zemin kat	Asma kat	Toplmyükseklik
sembol	(h1)	sembor	(hz)	(ha)	(h1)
d	3 m	а	3 m	2.5 m	5.5 m
e	4.5 m	b	4 m	2.5 m	6.5 m
f	5.5 m c 5 m 2.5 m 7.5 m				
g	6.5 m				
h	7.5 m				
sembol		A	naliz yöntemi		
М	mod birleştirme yönter	nini			
Р	itme (pushover) analiz	yöntemini			

 Tablo 5.1. Model isimlendirilmesinde kullanılan semboller ve açıklaması.

Şekil 5.2. Çalışmada modellenen A bina tipi. A) Dolgusuz duvar model B) Dolgulu duvar model C) a-a kesitii.

Şekil 5.3. Çalışmada modellenen B bina tipi. A) Dolgusuz duvar model B) Dolgulu duvar model C) b-b kesiti.

Şekil 5.4. Çalışmada modellenen C Bina tipi. A) Dolgusuz duvar model B) Dolgulu duvar model C) c-c kesiti.

Aşağıdaki tabloda bina tipi, duvar durumu, yükseklik ve analiz yöntemi olmak üzere dört değişkene göre olası tüm modeller oluşturulmuştur.

Toplam 68 adet model modellenmiştir bu modeller 34'ü doğrusal yöntemde ve kalan 34 modeli doğrusal olmayan yöntemde analiz edilmmiştir. Bu modellerin ismi Tablo 5.2 ve 5.3 sıralanmıştır.

1. Çalışma: dolgu duvarın sayısal modele basınç çubuk olarak yansıtılmasının yapısal dayranısa etkişi						
Model		1. Durum				
numarasi	Bina tipi	Bina tipi duvar durumu Yükseklik Analiz yöntemi				
1	А	3	d	М		
2	А	3	e	М		
3	А	3	f	М		
4	А	3	g	М		
5	А	3	ĥ	М		
6	А	3	d	Р		
7	А	3	e	Р		
8	А	3	f	Р		
9	А	3	g	Р		
10	А	3	h	Р		
		2.]	Durum			
11	А	t	d	М		
12	А	t	e	Μ		
13	А	t	f	М		
14	А	t	g	Μ		
15	А	t	h	Μ		
16	А	t	d	Р		
17	А	t	e	Р		
18	А	t	f	Р		
19	А	t	g	Р		
20	А	t	h	Р		

Tablo 5.2. Çalışma1: Tip A bina model isimleri.

Tablo 5.3. Çalışma1: Tip B ve C binaların model isimleri.

	2. Çalışma: asma kat etkisi (dolgu duvar etkisi ile)				
Model		1	. Durum		
numarasi	Bina tipi	duvar durumu	Yükseklik	Analiz yöntemi	
21	В	3	а	М	
22	В	3	b	М	
23	В	3	с	Μ	
24	В	3	а	Р	
25	В	3	b	Р	
26	В	3	с	Р	
27	С	3	а	Μ	
28	С	3	b	Μ	
29	С	3	с	М	
30	С	3	а	Р	
31	С	3	b	Р	
32	С	3	с	Р	
		2. Du	irum		
33	В	t	а	М	
34	В	t	b	Μ	
35	В	t	с	М	
36	В	t	а	Р	
37	В	t	b	Р	
38	В	t	с	Р	
39	С	t	а	Μ	
40	С	t	b	Μ	
41	С	t	с	Μ	
42	С	t	а	Р	
43	С	t	b	Р	
44	С	t	с	Р	

	2. Çalışma: asma kat etkisi (dolgu duvar etkisi ile)					
Model		1.	. Durum			
numarasi	Bina tipi	duvar durumu	Yükseklik	Analiz yöntemi		
	3. Durum					
45	В	1	а	М		
46	В	1	b	Μ		
47	В	1	с	Μ		
48	В	1	а	Р		
49	В	1	b	Р		
50	В	1	с	Р		
51	С	1	а	Μ		
52	С	1	b	Μ		
53	С	1	с	Μ		
54	С	1	а	Р		
55	С	1	b	Р		
56	С	1	с	Р		
		4. Durum	1			
57	В	2	а	М		
58	В	2	b	Μ		
59	В	2	с	Μ		
60	В	2	а	Р		
61	В	2	b	Р		
62	В	2	с	Р		
63	С	2	а	Μ		
64	С	2	b	Μ		
65	С	2	с	М		
66	С	2	а	Р		
67	С	2	b	Р		
68	С	2	с	Р		

Tablo 5.3. (Devamı). Çalışma1: Tip B ve C binaların model isimleri.

5.3. Yapısal Modelin Oluşturulması

ETABS V16 sonlu elemanlar programı kullanılarak kalıp aplikasyon planlarına uygun şekilde üç boyutlu bir model oluşturuldu. Analiz kolaylığı ve modelleme amacıyla, bazı idealize edici varsayımlar yapıldı. Döşeme elemanlarının serbestlik derecesini artırarak, döşeme elemanı yük olarak ve döşemelere gelen yüklemeler kirişlere yayılı bir yük olarak aktarıldı. Döşemelerin katlarda rijit diyafram etkisi oluşturarak, tüm katlara ayrı ayrı rijit diyafram ataması atandı. Temel sistemi kaldırılarak, kolon tabanlarına temel seviyesinde ankastre mesnet ataması yapıldı. Binanın yatay deprem doğrultusunda sadece X yönünden yapıldı ve bu deprem doğrultusunda dik olan düşünülen titreşim modları için hesaplanan etkin kütlelerin toplamı, bina toplam kütlesinin %95'ten fazla olacak şeklinde yeterli mod sayısı tanımlandı.

Şekil 5.5.Etabs yazılımı kullanarak oluşturlan 3d modelleri. A) Duvarsız modelleri B) Duvarlı modeller.

5.3.1. Malzeme ve kesitlerin tanımı

malzemeleri tanımlanmıştır. Yapı modelinin Çalışmada C25 ve B420C oluşturulmasında, C25 sınıfında beton ve B420C donatı çeliği özellikleri Tablo 5.4 ve 5.5'te gösterilmiştir. Malzeme modeli olarak TS500 ve TBDY2018'in belirttiği gerilme-şekil değiştirme sınırları beton ve donatı çeliği için kullanılmıştır.

Malzeme modelleri Etabs'te tanımlanması şekil 5.6'da gösterilmiş ve bu malzeme modelleri Şekil 5.7'de C25 beton sınıfı için ve Şekil 5.8'de B420C donatı çeliği için oluşturulmuş ve Etabs programında tanımlanmıştır [37].

Fablo 5.4.	Donati	çeliklerine	ait bilgiler.
------------	--------	-------------	---------------

Donatı Sınıfı	Akma dayanımı	Ağırlık birimi	Elastisite Modülü
B420C	420 MPa	78 kN /m3	200000 MPa

	Tabio 5.5. Kullanilan beton sinili ve dayanimi.					
Beton	Basınç Dayanımı	Ağırlık birimi	Elastisite Modülü			
Sınıfı						
C25	25 MPa	25 kN/m3	30 000 MPa			

Material Name Material Type Directional Symmetry Type Material Display Color Material Notes	Execution Concrete Isotropic Change Modify/Show Notes	Material Name E Material Type R Directional Symmetry Type U Material Display Color Material Notes	EBAR 420 ebar V hiaxial Change Modfy/Show Notes
Associate Weight Departure	Specify Marco Departy	Material Weight and Mass	
Weight per Unit Volume	25 kN/mJ	Specify Weight Density	O Specify Mass Density
Mass per Lipit Volume	2549.29 ka/m³	Weight per Unit Volume	78 kN/m³
Mass per onic volume	Loto Lo	Mass per Unit Volume	7953.786 kg/m³
Mechanical Property Data			
Modulus of Elasticity, E	30000 MPa	Mechanical Property Data	
Poisson's Ratio, U	0.2	Modulus of Elasticity, E	200000 MPa
Coefficient of Thermal Expansion,	A 0.00001 1/C	Coefficient of Thermal Expansion, A	0.0000117 1/C
Shear Modulus, G	12500 MPa		
Design Property Data Modify/Show	v Material Property Design Data	Design Property Data Modify/Show Mater Advanced Material Property Data	ial Property Design Data
Nonlinear Material Data	Material Damping Properties	Nonlinear Material Data Time Depen	Material Damping Properties
a)	Beton malzeme	b) Dona	tı çeliği malzeme

Şekil 5.6. Tanımlanan malzemelerin ve özellikleri A) Beton malzeme, B) Donatı çeliği malzeme.

Şekil 5.7. Etabs'te C25 beton sınıfı için malzeme modeli.

Şekil 5.8. Etabs'te B420C donatı çeliği için malzeme modeli.

Doğrusal (Linear) Olmayan Yöntemlerle performans değerlendirmesi yapıldığında sargılı ve sargısız beton için aşağıda belirtilen gerilme-şekil değiştirme ilişkileri tanımlanmıştır. TBDY2018'de ifade edildiği gibi, sargılı beton modeli oldukça çok değişkene bağlıdır. Sargı donatısının çapı, aralığı, dağılımı, hacimsel oranı, çekme dayanımı ve boyuna donatının dağılımı, hacimsel oranı, betonun basınç dayanımı gibi faktörler sargılı betonun gerilme-şekil değiştirme grafiklerini etkilemektedir. Şekil 5.9 [31].

Şekil 5.9. Etabs'te sargılı ve sargısız beton için gerilme-şekildeğiştirme grafikleri.

General Data			Design Type	Rebar	Material		
Property Name	COLUMN 50X50		P-M2-M3 Design	(Column) Lon	gitudinal Bars	REBAR 420	
Material	625/30	* 28	O M3 Design Only	Beam) Con	finement Bars (Ties)	REBAR 420	
Notional Size Data	Multi-Own Instand Own						
Dealer Calar	Plant (State Receive Sec.	3	Reinforcement Configura	tion Confine	ement Bars	Check/Design	
Unaprilay Color	.Chunge	1.000	Rectangular	(0)	Ties	Reinforcement t	o be Checker
Notes	Modify/Show Notes		C GroJar		Spirals	O Reinforcement t	b be Designe
Shane			Longitudinal Days				
Section Shape	Concesso Destance das		Clear Councilor Conth	nament Pare		56	
	Contractor rectangular		Number of Leastern	nt firm Name 2 de Fran			
Section Property Source			Number of Longsbor	a bars Along Stor Face		1	
Source: User Defined		Property Modifiers	Number of Longitude	al bars Along 2-dir hace		3	
		Modify/Show Modifiers.	Longitudinal Bar Size	and Area	20	314	
Section Dimensions		Currently User Specified	Corner Bar Size and	leea -	20	314	-
Depth	500 mm	Reinforcement					
Width	500 mm	Modify/Show Rebar	Confinement Bara				
		10-11-	Confinement Ray Star	and Area	10	79	
			Landadar C	of Conferenced Para (19	1. Auto)	100	
			Longtuanal Spacing	or consinement sars (Along	(1996)	150	
			Number of Confinem	ent Bars in 3-dir		3	
		010	Number of Confineme	int Bars in 2-dir		3	
	Show Section Properties	Cancel		OK.	Cance	el	
	Frame Section Property Data		a				
	Frame Section Property Data General Data Property Name Material Netional Size Data Display Color Notes	BEAM 25X50 C25/30 Modify/Show Notio Coh Modify/Show N	al Size ange	3	1		
	Frame Section Property Data General Data Property Name Material Netional Size Data Display Color Notes	BEAM 25X50 C25/30 Medify/Show Note Medify/Show N	nal Size ange	3	ţ		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape	BEAM 25×50 C25/30 Modfy/Show Notio Ch Modfy/Show N	nel Size ange lotes	3	1		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Shape	BEAM 25X50 C25/30 Modfy/Show Notic Concrete Rectangular	a nal Sze ange otes	3	Ţ		
	Frame Section Property Data General Data Property Name Material Notional Size Data Ditplay Color Notes Shape Section Shape Section Property Source	BEAM 25X50 C25530 Modify/Show Nato Modify/Show N Modify/Show N	ange	3	ţ		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Shape Section Shape Section Property Source Source: User Defined	BEAM 25X50 (255/30 Mody/Show Nation Mody/Show N Mody/Show N Concrete Rectangular	and Szen	Property Modifiers			
	Frame Section Property Data General Data Property Name Material Notional Size Data Disploy Color Notes Shape Section Property Source Source: User Defined Section Dimensions	BEAM 25x50 C25/30 Modify/Show Notio Modify/Show N Concrete Restangular	and Sze	Property Modifiers	w Modfiers		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Shape Section Property Source Source: User Defined Section Dimensions Depth	BEAM 25/50 C25/30 Modify/Show Nate Modify/Show Nate Centrese Rectangular	and Size	Property Modifiers Modify/Sho Currenty U	w Modfiers ser Specified		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Shape Section Shape Section Defined Section Defined Section Defined User Defined Vidah	BEAM 25X50 C25530 Modify/Show Nate Modify/Show N Concrete: Rectangular	and See	Property Modifiers Modify/Sho Currently U Bairforcement	w Modiliers ser Specified		
	Freme Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Shape Section Shape Section Defined Source Source User Defined Section Denensions Depth Width	BEAM 25×50 C25:00 Modify/Show Nate Modify/Show Nate Concrete Rectangular	and See	Property Modifiers Modify/SP Currently U Reinforcement Modify/SP	w Modflers ser Specified		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Property Source Source: User Defined Section Dimensions Death Weth Death De	BEAM 25x50 C2550 Modify/Show Noto Modify/Show N Concrete Rectangular 500 250 cement Data	Δ	Property Modifiers Modify/St Currently U Reinforcement Modify/St	w Modifers eer Specified tow Rebar		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Property Source Source: User Defined Section Dimension Depth Width Design Type De	BEAM 25X50 CC500 Modey/Show Note Modey/Show Note Concress Restangular Concress Restangular 500 250 250 250	and Sze	Property Modifiers Modify/Sho Currenty U Reinforcement Modify/Sho	w Modilers eer Specified		
	Freme Section Property Data General Data Property Name Material Notional Size Data Dittaja Color Notes State Section Shape Section Shape Section Defined Source: User Defined Section Denerations Desth Width Destyn Type O PM2/M3 Design (Column)	BEAM 25×50 C25:00 Modify/Show Natri Concrete Rectangular Concrete Rectangular 500 250 cement Data	and Sze	Property Modifiers Modify/Str Currently U Reinforcement Modify/Str	w Modifiers		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Super Section Property Source Source: User Defined Section Dimensions Depth Width Desth Width Desth Width Desth Width Desth Color Property Reinford Operative Source Operative	BEAM 25X50 C5500 Modify/Show Note Modify/Show Note Concress Rectangular 500 250 250 250 250 250 250 250 250 250	and Size	Property Modiflers Modifly/Sho Currenty U Reinforcementy Modifly/Sho	w Modflers eer Specified		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Shape Section Shape Section Defined Section Defined Section Defined General Data Prame Section Property Reinfor Design Type Prid2A3 Design (Column Or Machine) Coverto Longtudinal Rebar Groo	BEAM 25X50 C25530 Modify/Show Nate Cancress Restangular Concress Restangular 500 250 cement Data Rebar Material Longtudinal Conflowed	Ct	Property Modifiers Modify/Sis Currenty U Peirforcement Modify/Sis	w Modifiers		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Section Property Source Source: User Defined Section Property Source Source: User Defined Section Dimensiona Desth Widh Frame Section Property Reinfor Desth Widh Section Property Reinfor OHEMPT Data Section Property Reinfor Section P	BEAM 25X50 C25/00 Modify/Show Nation Modify/Show Nation Concesse Rectangular 500 250 250 250 Confinement Longitudinal Confinement ap Central m Mathematical Confinement Confine	A market for the second	Property Modifiers Modify/Sho Currenty I Reir/occement Modify/Sho For Ductile Beams 540	w Modflers eer Specified now Reber x		
	Frame Section Property Data General Data Property Name Material Noisonal Size Data Display Color Notes Shape Section Shape Section Shape Section Property Source Source: User Defined Section Property Reinfor Design Type O Mic Mal Design (Column O Ma Design (Column O	BEAM 25X50 C2500 Modify/Show Nation Concress Rectangular Concress Rectangular 500 250 cement Data Rebar Material Longitudinal Confinement ap Centroid mm	A market and see and s	Property Modifiers Modify/Sho Currenty U Peirforcement Modify/Sho Sho	w Modflers ser Specified		
	Freme Section Property Data General Data Property Name Material Notional Size Data Display Color Notes State Section Shape Section Property Source Source: User Defined Section Dimensions Desth Weath Desth Weath Destyn Type Pri2/M3 Design (Column @ M3 Design Co	BEAM 25x50 C25/30 Modify/Show Not Modify/Show Not Concrete Rectangular Concrete Rectangular Solo 280 cement Data Rebar Material Confinement ap Centrol mm R	CL	Property Modifiers Modify/Sho Currenty I Reinforcement Modify/Sho Sho Sho Sho Sho Sho Sho Sho Sho Sho	w Modflers w Modflers w Reber w Reber w Reber w Reber w Reber		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Shape Section Property Source Source: User Defined Section Property Reinford Despin Type Despin Type Despin Type Despin Type Despin Type Despin Type Colver to Longtudinal Rebar Groo Top Bars Bottom Bars <u>96 </u>	BEAM 25X50 CCB300 Modey/Show Nato Modey/Show Nato Consess Rectangular Sou 250 250 cement Data Rebar Material Longtudinal Confinement ap Centroid mm R	Ctes	Property Modiflers Modify/Sho Currently U Reinforcement Modify/Sho for Ductile Beams 340 340	w Modilers eer Specified		
	Frame Section Property Data General Data Property Name Material Notional Size Data Display Color Notes Section Shape Section Shape Section Shape Section Defined Section Defined Section Defined Cover to Longitudinal Refer Color Top Bars 56 Bottom Bars 56	BEAM 25X50 C2550 Modify/Show Nam Concrete Restangular Soc 250 cement Data Rebar Material Longtudinal Confinement ap Centroid mm R	A model and a mode	Property Modifiers Modify/Sho Currenty U Reinforcement Modify/Sh M	w Modflers er Specified how Rebar w		

Modelde tanımlanan kolon ve kiriş kesitleri Şekil 5.10'da gösterilmiştir;

Şekil 5.10. Etabs'te A) Kolon özellikleri tanımlanması, B) Kiriş özellikleri tanımlanması.

Kiriş, kolon etkin eğilme rijitlikleri TBDY2018'ye uygun olarak tüm elemanlara tanımlanmıştır. Etkin eğilme rijitliği katsayıları kolon elemanlarda 0.70 ve kirişlerde 0.35 olarak Şekil 5.11'de tanımlanmıştır.

Property/Stiffness Modifiers for Analysis		Property/Stiffness Modifiers for Analysis	
Cross-section (axial) Area	1	Cross-section (axial) Area	1
Shear Area in 2 direction	1	Shear Area in 2 direction	1
Shear Area in 3 direction	1	Shear Area in 3 direction	1
Torsional Constant	1	Torsional Constant	1
Moment of Inertia about 2 axis	0.7	Moment of Inertia about 2 axis	0.35
Moment of Inertia about 3 axis	0.7	Moment of Inertia about 3 axis	0.35
Mass	1	Mass	1
Weight	1	Weight	1
a		b	

Şekil 5.11. Yapısal elemanlarda etkin eğilme rijitliği katsayıları girilmesi. A) Kolonlarda B) Kirişlerde.

Dolgu duvar genişliği hesaplarken, bina modellerinden birinci kat yüksekliği ve asma kat içerdiği için birden fazla yükseklik için dolgu duvar genişliği hesaplandı. Eşdeğer basınç çubuğunun kalınlığı ve elastisite modülü dolgu duvarın kalınlığı ve elastisite modülüne eşit alınmalıdır. Mainstone formülleri kullanılarak elde edilen çubuk genişliği Tablo 5.6'da gösterilmiştir.

h (col)	L (inf)	h (inf)	r (inf)	Theta	2	Çubuk Kalınlığı (a)
(mm)	(mm)	(mm)	(mm)	(Derece)	λ	(mm)
2500	4500	2000	4924.4	23.96	5.80E-04	743
3000	4500	2500	5147.8	29.05	5.67E-04	728
4000	4500	3500	5700.9	37.87	5.39E-04	734
4500	4500	4000	6020.8	41.63	5.24E-04	748
5000	4500	4500	6364.0	45.00	5.10E-04	766
5500	4500	5000	6726.8	48.01	4.96E-04	788
6500	4500	6000	7500.0	53.13	4.70E-04	840
7500	4500	7000	8321.7	57.26	4.46E-04	899

Tablo 5.6.Eşdeğer basınç çubuğunun genişliği hesabı.

Şekil 5.12.Dolgu duvar genişliği temsil eden skeç.

Dolgu duvar malzeme özellikleri ve Etabs'te girilmesi Şekil 5.12'de gösterilmiştir. Modellerde kullanılacak olan eşdeğer basınç çubuklar kesitleri Şekil 5.13 ve 5.14'te gösterilmiştir.

General Data					
Material Name	Masonry				
Material Type	Masonry \vee				
Directional Symmetry Type	Isotropic 🗸				
Material Display Color	Change				
Material Notes	Modify/Show Notes				
Material Weight and Mass					
Specify Weight Density	O Specify Mass Density				
Weight per Unit Volume	0 kN/m³				
Mass per Unit Volume	0 kg/m³				
Mechanical Property Data					
Modulus of Elasticity, E	1000 MPa				
Poisson's Ratio, U	0.2				
Coefficient of Thermal Expansion, A	0.0000081 1/C				
Shear Modulus, G	416.67 MPa				
Design Property Data	Design Property Data				
Modify/Show Material Property Design Data					
Advanced Material Property Data					
Nonlinear Material Data	Material Damping Properties				
Time D	lependent Properties				

Şekil 5.13. Eşdeğer basınç çubuğu malzeme tanımı.

Filter Properties	s List		Click to:	General Data		
Туре	All	~	Import New Properties	Property Name	B250	
Filter		Clear	Add New Property	Base Material	Masonry ~	
Proportion			Add Copy of Property	Notional Size Data	Modify/Show Notional Size	
Find This Pro	martu		Modify/Show Property	Display Color	Change	
B250	perty			Notes	Modify/Show Notes	
B250 B300		E	Delete Property	Design Type		
B400 B450			Delete Multiple Properties	No Check/Design	O General Steel Section	
B500 B550				O Concrete Column	O Composite Column	
B650 B750			Convert to SD Section	- Concrete Column Check/Dr	asion	
BEAM 25×5 COLUMN 50	0 ×50		Copy to SD Section	Reinforcement to b	e Checked	
				Reinforcement to b	e Designed	
			Export to XML File		o o o o o grico	
				Define/Edit/Show Section		
					Section Designer	
			OK	Section Properties	Property Modifiers	
			Calice	Properties	Cat Madifiara	-

Şekil 5.14. Eşdeğer basınç çubuğu kesit tanımı.

Şekil 5.15. Section designer özelliği kullanarak eşdeğer basınç çubuğu kesitleri tanımı.

5.3.2. Doğrusal olmayan modelleri için kesitlerin plastik mafsallarının oluşturulması

Etabs programında plastik mafsal yük-deformasyon davranışını belirleyen A, B, C, D, E noktaları, her bir elemanın tipi, malzeme özellikleri, boyuna ve enine donatı içeriği ve eksenel yük seviyesine bağlı olarak değişkenlik göstermektedir. Başlangıç noktası olan A, sıfır deformasyonu temsil ederken, B noktası akma sınırını göstermekte ve plastik dönme değeri sıfır olduğundan dolayı plastik deformasyon meydana gelmemektedir. C noktası, maksimum kapasiteyi ifade ederken, dönme miktarının maksimum kapasiteye ulaşmasıyla D noktasına geçilir ve burada yük, mafsalda ani bir düşüşle boşalmaktadır. Son olarak, E noktası, kesit için güç tükenmesini simgeler.

Şekil 5.16. Etabs programında plastik mafsal yük-deformasyon davranışını belirleyen A, B, C, D, E noktaları.

Kiriş elemanlarında, normal kuvvet etkilerinin dikkate alınmaz sebebiyle plastik mafsal tanımı, program içinde M3 olarak belirlenmiştir. Kolon elemanlarda olduğu gibi, moment-plastik dönme ilişkileri kullanıcı tarafından tanımlanmaktadır. Kiriş kesitinde alt ve üst donatı oranları simetrik seçildiği için 'simetrik' olarak ayarlanmıştır. Rijit plastik kesit tanımı yapabilmek için 'Moment/SF' değerleri '1' olarak belirlenmiştir. Kesit üzerindeki hasar seviyelerini anlayabilmek ve dönme miktarlarını maksimum düzeyde tespit edebilmek amacıyla, 'Rotation/SF' kısmına '1' değeri girilmiştir. Şekil 5.17 ve 5.18'de gösterilmiştir [38].

BEAM	
Hinge Type	
Force Controlled (Brittle)	
Deformation Controlled (Duo	ctile)
Moment M3	~
Modify/Show Hinge Prop	perty
OK C	ancel

Şekil 5.17. Etabs'te kirişlerde plastik mafsal tanımlanması.

E-	monistru or	Potation/SE		Moment - R	otation
E-	0.0	0.05	· · · · · · · · · · · · · · · · · · ·	0	
	-0.2	-0.05		O Moment - C	urvature
0-	-0.2	-0.025		Hinge Le	ngth
B-	-1	0		Relat	ive Length
A	0	0	1		
В	1	0	1	Hysteresis Type	and Parameters
С	1	0.025		Hysteresis	Takeda 🗸
D	0.2	0.025	Symmetric		
E	0.2	0.05	_	No Para Hystory	Ineters Are Required For This
 Drops To Is Extrap icaling for Mon 	Zero olated nent and Rotation	-			
 Drops To Is Extrap Is caling for Mon 	Zero olated nent and Rotation	Positive	Negative		
 Drops To Is Extrap caling for Mon Use Yiek 	Zero olated nent and Rotation	Positive	Negative kN-m		
 Drops To Is Extrap caling for Mon Use Yiek Use Yiek 	Zero olated nent and Rotation 1 Moment Momen 1 Rotation Rotatio	Positive It SF	Negative KN-m		
 Drops To Is Extrap caling for Mon Use Yiek Use Yiek (Steel O) 	Zero olated nent and Rotation 1 Moment Momen 1 Rotation Rotatio ojects Only)	t SF 1	Negative KN-m		
Drops To Is Extrap caling for Mon Use Yiek Use Yiek (Steel Of cceptance Cr	Zero olated nent and Rotation I Moment Momen I Rotation Rotatio ojects Only) Iteria (Plastic Rotation/S	tt SF Positive in SF 1	Negative Idi-m		
Drops To Is Extrap caling for Mon Use Yiek Use Yiek (Steel Ol cceptance Cr	Zero olated nent and Rotation 1 Moment Momen 1 Rotation Rotatio ojects Only) teria (Plastic Rotation/S	t SF Positive	Negative kH-m		
Drops To Is Extrap caling for Mon Use Yiek Use Yiek (Steel Of cceptance Cr Immed	Zero olated anent and Rotation d Moment Momen f Rotation Rotatio bjects Only) teria (Plastic Rotation/S tiate Occupancy	rt SF Positive In SF 1 SF) Positive 0	Negative kli-m		
Drops To Is Extrap caling for Mon Use Yiek Use Yiek (Steel Of cceptance Cr Immed Life S	Zero olated Innent and Rotation I Rotation Rotatio J Rotation Rotatio jects Only) Iteria (Plastic Rotation/2 Itate Occupancy afety	Positive t SF Positive SF Positive 0 0.016	Negative IdL-m		

Şekil 5.18. Etabs'te kirişlerde plastik dönme ilişkisi tanımlanması.

Bu çalışmada, plastik mafsal özelliklerinin kolonlarda eksenel kuvvet altında çalışan bu elemanlar için P-M2-M3 mafsal özelliği uygulanmıştır. Şekil 5.19'da gösterilmiştir.

Hinge Property Relative Distance Auto 0.95 Auto P-M2-M3 0.05 Auto P-M2-M3 0.95 Auto P-M2-M3 0.95 Auto P-M2-M3 0.95 Auto P-M2-M3 0.95 Auto Hinge Type	Frame	e Hinge Assigr	iment Data					
Auto 0.95 Auto P-M2-M3 0.95 Add Auto P-M2-M3 0.95 Add Auto Hige Type Image: Auto P-M2-M3 Image: Auto P-M2-M3 Image: Auto P-M2-M3 Image: Auto P-M2-M3 Image: Auto P-M2 Image: Auto P-M2 Image: Auto P-M2 Image: Auto P-M2-M3 Image: Auto P-M2 Image: Auto P-M2-M3 Image: Auto P-M2 Image: Auto P-M2-M3 Image: Auto P-M2 Image: Auto P-M2-M3		Hinge F	Property	Relat	ive Distance			
Auto P-M2-M3 0.05 Auto P-M2-M3 0.95 Auto Hinge Type From Tables In ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) Degree of Freedom M2 P-M2 M3 P-M3 M2-M3 P-M3 Concrete Column Failue Condition Concrete Column Failue Condition Concrete Column Failue Condition Concrete Column Failue Condition Concrete Column Failue Condition Concrete Column Failue Condition Condition I: - Flexure/Shear Condition I: - Flexure/Shear Condition I: - Flexure/Shear Condition I: - Flexure/Shear Condition I: - Flexure/Shear Condition I: - Flexure/Shear Condition I: - Flexure/Shear Condition I: - Flexure/Shear	Au	to	~	0.95				
Auto P-M2-M3 0.95 Add Auto Hinge Type From Tables In ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) Degree of Freedom P-M2 Parametric P-M2-M3 M2 P-M2 Parametric P-M2-M3 M3 P-M3 User Value M2 P-M2-M3 Select a Hinge Table Concrete Column Failue Condition Condition iii - Shear Select Column Failue Condition iii - Shear © Condition ii - Flexure/Shear Condition iii - Shear © Condition ii - Flexure/Shear Condition iv - Development Deformation Controlled Hinge Load Carrying Capacity	Au	to P-M2-M3		0.05				
Auto Hinge Type From Tables In ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) Degree of Freedom M2 P-M2 M3 P-M3 M2-M3 P-M2-M3 Pand V Values From © Case/Combo Gravity User Value V2 NN V3 Shear Reinforcing Ratio p = Av / (bw * s) © Condition ii - Flexure © Condition ii - Flexure/Shear © Condition ii - Flexure/Shear	Au	to P-M2-M3		0.95		Ad	d	
Auto Hinge Type From Tables In ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) Degree of Freedom M2 P-M2 M3 P-M3 M2 P-M3 Outrete Column Failue Condition Concrete Column Failue Condition Condition ii - Flexure Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear								
Auto Hinge Type From Tables in ASCE 41-13 with ECB 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) Pand V Values From M2 P-M2 M3 P-M3 M2-M3 P-M2-M3 Condition ii - Flexure Condition iii - Shear © Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Shear © Drom Current Design User Value Wuser Value Shear Condition User Value Ouser Value © Shear Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © User Value © Drom Current Design © User Value © User Value © Drom Current Design © User Value © Drom Current Design © User Value								
From Tables in ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria From Tables in ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) Image: Part of the select a Hinge Table	ute Uleas The	_						
From Tables In ASCE 41-13 with EC8 2005, Part 3 Acceptance Criteria Select a Hinge Table Table 10-8 (Concrete Columns) legree of Freedom M2 P-M2 M3 P-M3 M2-M3 P-M2-M3 Concrete Column Failue Condition Concrete Column Failue Condition Concrete Column Failue Condition Concrete Column Failue Condition Condition ii - Flexure Condition iii - Shear Condition ii - Flexure/Shear Condition iv - Development eformation Controlled Hinge Load Carrying Capacity User Value	uto Hinge Typ	e						
Select a Hinge Table Table 10-8 (Concrete Columns) Degree of Freedom M2 P-M2 M3 P-M3 M2-M3 Image: P-M2-M3 Concrete Column Failue Condition User Value Concrete Column Failue Condition Condition iii - Shear Image: Condition ii - Flexure Condition iii - Shear Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition Ii - Flexure/Shear Condition iv - Development	From Tables	In ASCE 41-13 with E	C8 2005, Part 3 Acceptance	e Criteria				\sim
Pade 10-8 (Concrete Columns) Table 10-8 (Concrete Columns) Pade V Values From M2 P-M2 M3 P-M3 M2-M3 P-M2-M3 Concrete Column Failue Condition Concrete Column Failue Condition Condition ii - Flexure Condition ii - Flexure Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear Condition ii - Flexure/Shear								
Table 10-8 (Concrete Columns) Degree of Freedom M2 P-M2 Parametric P-M2-M3 M3 P-M3 © Case/Combo Gravity M2-M3 © P-M2-M3 © User Value V2 MN V3 MN Concrete Column Failue Condition © Condition iii - Shear © From Current Design © User Value © Condition ii - Flexure/Shear © Condition iv - Development © From Current Design © User Value	elect a Hinge							
Degree of Freedom M2 P-M2 Parametric P-M2-M3 M3 P-M3 User Value M2-M3 P-M2-M3 User Value V2 KN V3 Schortete Column Failue Condition Condition iii - Shear © Condition ii - Flexure/Shear Condition iv - Development Outer Value User Value V2 KN V3 W3 V3 KN Concrete Column Failue Condition Condition iii - Shear © Condition ii - Flexure/Shear Condition iv - Development Outer Value User Value		lable						
Degree of Freedom M2 P-M2 Parametric P-M2-M3 M3 P-M3 User Value M2-M3 P-M2-M3 User Value Concrete Column Failue Condition Condition iii - Shear © Condition ii - Flexure/Shear Condition iii - Shear © Condition ii - Flexure/Shear Condition iv - Development Deformation Controlled Hinge Load Carrying Capacity User Value	Table 10-8 (0	Concrete Columns)						~
M2 P-M2 Parametric P-M2-M3 M3 P-M3 M2-M3 P-M2-M3 Concrete Column Failue Condition User Value Concrete Column Failue Condition Shear Reinforcing Ratio p = Av / (bw * s) Condition i- Flexure Condition iii - Shear Condition ii - Flexure Condition iv - Development Deformation Controlled Hinge Load Carrying Capacity User Value	Table 10-8 (0	Concrete Columns)						~
M3 P-M3 M2-M3 P-M2-M3 Concrete Column Failue Condition User Value Concrete Column Failue Condition Shear Reinforcing Ratio p = Av / (bw * s) Condition i - Flexure Condition iii - Shear Condition ii - Flexure/Shear Condition iv - Development Deformation Controlled Hinge Load Carrying Capacity User Value	Table 10-8 (0	lable Concrete Columns) dom			P and V Values From			~
M2-M3 Image: P-M2-M3 Concrete Column Failue Condition V2 Condition i - Flexure Condition III - Shear Condition ii - Flexure Condition IV - Development Shear Reinforcing Ratio p = Av / (bw * s) From Current Design User Value	Table 10-8 (C	dom	O Parametric P-N	л2-M3	● Case/Combo	Gravity		~
V2 kN V3 kN Concrete Column Failue Condition Shear Reinforcing Ratio p = Av / (bw * s) Image: Shear Reinforcing Ratio p = Av / (bw * s) Image: Condition ii - Flexure Condition iii - Shear Image: Shear Reinforcing Ratio p = Av / (bw * s) Image: Condition ii - Flexure/Shear Condition iv - Development Image: Shear Value Image: Condition ii - Flexure/Shear Condition iv - Development Image: Value Deformation Controlled Hinge Load Carrying Capacity Image: Value Image: Value	Table 10-8 (C	dom P-M2 P-M3	O Parametric P-N	л2-M3	P and V Values From © Case/Combo	Gravity		~
Concrete Column Failue Condition Shear Reinforcing Ratio p = Av / (bw * s) O Condition i - Flexure Condition iii - Shear Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Image: Condition ii - Flexure/Shear Condition iv - Development Imag	Table 10-8 (0 Degree of Free O M2 O M3 O M2-M3	able Concrete Columns) dom	O Parametric P-N	И2-МЗ	P and V Values From © Case/Combo O User Value	Gravity		~
Condition i - Flexure Condition iii - Shear Condition ii - Flexure/Shear Condition iv - Development	Table 10-8 (f Degree of Free M2 M3 M2-M3	dom P-M2 P-M2 P-M2-	O Parametric P-N	Л2-M3	P and V Values From © Case/Combo O User Value V2	Gravity kN V;	3	~ ~
Condition ii - Flexure Condition iii - Shear Ordition ii - Flexure/Shear Condition iv - Development User Value	Table 10-8 (C	dom P-M2 P-M3 P-M2-	O Parametric P-1	И2-МЗ	P and V Values From Case/Combo User Value V2	Gravity kN V:	3	~ ~
Condition ii - Flexure/Shear O Condition iv - Development O User Value	Table 10-8 (C Degree of Free M2 M3 M2-M3 Concrete Colur	able Concrete Columns) dom O P-M2 O P-M3 @ P-M2- nn Failue Condition	O Parametric P-N	И2-МЗ	P and V Values From © Case/Combo O User Value V2 Shear Reinforcing Rat	Gravity kN V3 io p = Av / (bw * s)	3	~ ~ kN
Deformation Controlled Hinge Load Carrying Capacity	Table 10-8 (C Degree of Free M2 M3 M2-M3 Concrete Colur Condition	able Concrete Columns) dom O P-M2 O P-M3 @ P-M2- nn Failue Condition i - Flexure	O Parametric P-N M3 O Condition iii - Shear	A2-M3	P and V Values From © Case/Combo O User Value V2 Shear Reinforcing Rat @ From Current Do	Gravity kN V3 io p = Av / (bw * s) esign	3	~ ~
Deformation Controlled Hinge Load Carrying Capacity	Table 10-8 (()egree of Free () M2 () M3 () M2-M3 () M2-M3 () Oncrete Colum () Condition () Condition	dom Oncrete Columns) dom P-M2 P-M3 P-M2- P-M2- P-M2- P-M2- I - Flexure I - Flexure I - Flexure/Shear	 Parametric P-h M3 Condition iii - Shear Condition iv - Develo 	M2-M3	P and V Values From Case/Combo User Value V2 Shear Reinforcing Rat From Current Da User Value	Gravity kN V: io p = Av / (bw * s) esign	3	~ ~
Deformation Controlled Hinge Load Carrying Capacity	Table 10-8 (()) egree of Free () M2 () M3 () M2-M3 () M2-M3 () Condition () Condition	able Concrete Columns) dom O P-M2 P-M3 © P-M2- mn Failue Condition 1 i - Flexure ii - Flexure/Shear	Parametric P-M M3 Condition iii - Shear Condition iv - Develo	A2-M3	P and V Values From Case/Combo User Value V2 Shear Reinforcing Rat From Current De User Value	Gravity kN V; io p = Av / (bw * s) esign	3	~ ~
	Table 10-8 ((Degree of Free M2 M3 M2-M3 Concrete Colur Condition Condition	able Concrete Columns) dom O P-M2 P-M3 © P-M2- nn Failue Condition 1 i - Flexure ii - Flexure/Shear	Parametric P-M M3 Condition iii - Shear Condition iv - Develo	A2-M3	P and V Values From Case/Combo User Value V2 Shear Reinforcing Rat From Current Du User Value	Gravity kN V: io p = Av / (bw * s) esign	3	~ ~ kN
	Table 10-8 ((Degree of Free M2 M3 M2-M3 Concrete Colur Condition Condition	able Concrete Columns) dom P-M2 P-M3 P-M3 P-M2- nn Failue Condition i - Flexure ii - Flexure ii - Flexure load (Parametric P-I M3 Condition iii - Shear Condition iv - Develo	12-M3	P and V Values From © Case/Combo O User Value V2 Shear Reinforcing Rat © From Current De O User Value	Gravity kN V: io p = Av / (bw * s) — asign	3	~ ~ ~

Şekil 5.19. Kolonlarda otomatik P-M2-M3 mafsal özelliği tanımlanması.

5.3.3. Respons spectrum ve pushover yükleri tanımlamak

Afad Türkiye deprem tehlike haritaları kullanarak elde edilen DD2 deprem verileri Tablo 5.7 - 5.10 ve Şekil 5.20 ve 5.21 kullanarak r'inci titreşim moduna ait elastik spektral ivme grafiği, Şekil 5.22 r'inci titreşim modunda gözönüne alınacak ivme spektrum değeri grafiği Şekil 5.23 hazırlanmıştır. Durumunu incelediğimiz binanın konumuna göre gerekli tüm bilgiler aşağıda gösterilmiştir.

Parametra	Value
Zemin sınıfı	ZC
Kısa periyot harita spektral ivme katsayısı [boyutsuz]	Ss = 0.775
1 saniye periyot için harita spektral ivme katsayısı [boyutsuz]	S1 = 0.220
Kısa periyot tasarım spektral ivme katsayısı [boyutsuz]	Sds=0.930
1 saniye periyot için tasarım spektral ivme katsayısı [boyutsuz]	Sd1=0.330
En büyük yer ivmesi [g]	PGA=0.320

Tablo 5.7. DD2 deprem verileri.

AFAI)			TOP
Tür	·kive I	Depre	em Tehlike	Haritaları
	İnter	aktif	Web Uygul	aması
Kullanıcı (Girdileri			
Rapor Başlığı:	Istanbul			
Deprem Yer Hareketi Düzeyi	DD-2	50 yılda aşı hareketi düz	lma olasılığı %10 (tekrarlanma p zeyi	eriyodu 475 yıl) o l an deprem yer
Yerel Zemin Sınıfı	ZC	Çok sıkı kun	n, çakıl ve sert kil tabakaları veya	ayrışmış, çok çatlaklı zayıf kayala
Enlem:	41.049006°			
Boylam	29 . 118361°			
Çıktılar				
$S_{\rm S} = 0.775$	$S_1 = 0$.220	<i>PGA</i> =0.320	<i>PGV</i> =19,911
S _S ∶K∎sa periyot hari	ta spektra l ivme k	atsay ı sı (boyut	suz]	
S ₁ : 1.0 saniye periyo	ot için harita spekt	ral ivme katsay	visi [boyutsuz]	
PGA : En büyük yer i	/mesi [g]			
DOV - Ex Marthause	tot fom(on)			

Yerel	Zamin Cinci		Üst 30 metrede ortalama	
Sınıfı	Zemin Chisi	$(V_{\rm S})_{30} [{\rm m/s}]$	$(N_{60})_{30}$ [darbe/30 cm]	$(C_{\mathrm{u}})_{30}$ [kPa]
ZA	Sağlam, sert kayalar	> 1500	-	-
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250
ZD	Orta sıkı - sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 - 250
ZE	Gevşek kum, çakıl veya yumuşak - katı kil tabakaları veya $PI > 20$ ve $w >$ % 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($C_u < 25$ kPa) içeren profiller	< 180	< 15	< 70
ZF	Sahaya özel ar 1) Deprem etkisi altında çökme ve potansiyel killer, ş 2) Toplam kalınlığı 3 m 3) Toplam kalınlığı 8 ı 4) Çok ka	aştırma ve değerlendi göçeme riskine sahip göçebilir zayıf çiment etreden fazla turba ve metreden fazla olan y lın (> 35 m) yumuşal	irme gerektiren zeminler : zeminler (sıvılaşabilir zeminler, yük olu zeminler vb.), /veya organik içeriği yüksek killer, üksek plastisiteli (<i>PI</i> > 50) killer , < veya orta katı killer.	sek derecede hassas

Tablo 5.8. Türkiye deprem tehlike haritaları raporu 2/5.

	Kı	sa periyot bö	lgesi için <i>Yeı</i>	rel Zemin Etk	i Katsayısı F	s
erel Zemin Sınıfı	$S_{\rm S} \leq 0.25$	$S_{\rm S} = 0.50$	$S_{\rm S} = 0.75$	$S_{\rm S} = 1.00$	$S_{\rm S} = 1.25$	$S_{\rm S} \ge 1.50$
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.9	0.9	0.9	0.9	0.9	0.9
ZC	1.3	1.3	1.2	1.2	1.2	1.2
ZD	1.6	1.4	1.2	1.1	1.0	1.0
ZE	2.4	1.7	1.3	1.1	0.9	0.8
ZF		Sahaya özel	zemin davra	nış analizi ya	pılacaktır.	

Tablo 5.9. Türkiye deprem tehlike haritaları raporu 3/5.

Tablo 5.10.	Türkiye	deprem	tehlike	haritaları	raporu 4/5.
	2	1			-

	1	0 saniye peri	yot için <i>Yere</i>	el Zemin Etki	Katsayısı F	
Yerel Zemin Sınıfı	$S_1 \le 0.10$	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	$S_1 = 0.50$	$S_1 \ge 0.60$
ZA	0.8	0.8	0.8	0.8	0.8	0.8
ZB	0.8	0.8	0.8	0.8	0.8	0.8
ZC	1.5	1.5	1.5	1.5	1.5	1.4
ZD	2.4	2.2	2.0	1.9	1.8	1.7
ZE	4.2	3.3	2.8	2.4	2.2	2.0
ZF		Sahaya özel	zemin davra	nış analizi ya	ıpılacaktır.	

Yerel Zemin Sınıfı ZC ve S_1 =0.220 için F_1 =1.500

Tasarım Spektral İvme Katsayıları

- $S_{\rm DS} = S_{\rm S} F_{\rm S} = 0.775 \ {\rm x} \ 1.200 = 0.930$
- $S_{\text{D1}} = S_1 F_1 = 0.220 \text{ x } 1.500 = 0.330$
- $S_{\rm DS}$: Kisa periyot tasarim spektral ivme katsayısı (boyutsuz)
- S_{D1} : 1.0 saniye periyot için tasarım spektral ivme katsayısı [boyutsuz]

Şekil 5.21. Türkiye deprem tehlike haritaları raporu 5/5.

Şekil 5.22. R'inci titreşim moduna ait elastik spektral ivme.

Doğrusal analiz yönteminde tabi olan 34 adet modeli için afad deprem haritasından elde edilen deprem verileri Etabs'te 'Define > Functions > Response Spektrum' sekmesinden tanımlanır. Mod birleştirme yönteminde yapısal elemanlarda oluşacak iç kuvvetler azaltılmış ivme-tepki spektrumunda her bir periyoda, yani zamana karşı gelen spektrum katsayılarının etkili olduğu ve yapısal elemanların, modal kütle katılım oranları gözönüne alınarak her bir modda oluşacak iç kuvvetlerin belirli şekilde süperpoze edilmesi ile bulunur. Bu sebepten ötürü her bir periyoda karşılık gelen ivme değerleri bulunmuş ve Etabsa "Response Spectrum function" kısmına bir fonksiyon halinde girilmiştir.

Aşağıda Şekil 5.24'te Etabs'e girilen zaman-ivme fonksiyonu Çizelge halinde verilmiştir. Mod birleştirme Yöntemi'nde, depremin X yatay doğrultusunda

etkidiğinin gözönüne alınması durumunda, her bir titreşim moduna ait modal davranış büyüklükleri zaman tanım alanında modal hesap yöntemi ile hesaplanır. Yeteri kadar titreşim modu için hesaplanan eşzamanlı modal davranış büyüklükleri daha sonra zaman tanım alanında doğrudan toplanarak davranış büyüklüklerinin zamana göre değişimi ve tasarımda esas alınmak üzere enbüyük değerleri elde edilir.

unction Damping Ratio	Values are:
0.05	Frequency vs ValuePeriod vs Value
unction File	
File Name	Browse
C:\Users\user\Desktop\Calismal	a\6. Seismic\lstanbul.txt
Header Lines to Skip	0
Convert to User Defined	View File
unction Graph	
E-3	
280 -	
240 _	
200 -	
160	
120 -	
40	
10 -	
0 -	
0 0.00 0.80 1.60 2.40 3.20 4.00	4.80 5.60 6.40 7.20 8.00

Şekil 5.24. Tasarım spektrumu değerleri veri giriş.

Deprem doğrultularına süperpozisyon yöntemi olarak SRSS tercih edilmiştir. Mod birleştirme yöntemine ait süperpozisyon tipi ise tam karesel birleştirme (C.Q.C.) olarak belirlenmiştir. Tam karesel birleştirme yöntemi, daha yakınsak sonuçların elde edilmesi ve deprem yönetmeliğinde tavsiye edilmesi nedeniyle tercih edilmelidir. Şekil 5.25 de girilen scale factor mm/sn2 olduğu için 9810 mm/sn2 olarak girildi. Yükleme tipi olarak ivme (acceleration) seçilmelidir.

		RS_X		Design
Load Case Type		Response Spectre	ım	∨ Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MASS	SOURCE)	
oads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U1	Istanbul	9810	Add
ther Parameters		Madal		Delete
ther Parameters				Delete
ther Parameters Modal Load Case	-	Modal		Delete Advanced
ther Parameters Modal Load Case Modal Combination Meth	od	Modal CQC		Delete Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od	Modal CQC Rigid Frequency, f1		Delete Advanced
ther Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2		Delete Advanced
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	od	Model CQC Rigid Frequency, f1 Rigid Frequency, f2 Pertodic + Rigid Type		Delete Advanced V
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response	Modal COC Rigid Frequency, f1 Rigid Frequency, f2 Petiodic + Rigid Type		Delete Advancec
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response on, td Type	Modal CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Delete Advanced
her Parameters Model Load Case Model Combination Meth Include Rigd F Earthquarke Durati Directional Combination Absolute Direction	od Response on, td Type al Combination Scak	Modal CaC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS = Factor		Delete Advanced
her Parameters Modal Load Case Modal Combination Meth Indude Rigd F Earthquake Durati Directional Combination Absolute Direction Modal Damping	od Pesponse on, td Type al Combination Scale Constant at 0.05	Modal CoC Rigid Frequency, 11 Rigid Frequency, 12 Periodic + Rigid Type SRSS E Factor	Modfy/Show.	Delete Advanced

Şekil 5.25. Resonse spectrum load case tanımlanması.

TBDY2018'in gerekliliklerine göre, doğrusal olmayan statik itme analizi, yerçekimi yüklerinin sonundan başlamak için gereklidir. Bu nedenle, binalar ilk olarak düşey yükler (Q+0.3G) altında analiz edilir. Burada, G toplam ölü yükü (binanın kendi ağırlığı ve diğer sabit yükler) ve Qtoplam hareketli yükü temsil eder. Bu analizin sonucunda elde edilen değerler, itme analizi için başlangıç koşulu olarak belirlenir. Ayrıca, bu analiz sırasında yerçekimi yükleri sıfır başlangıç koşuluyla uygulanır ve elemanlarda plastik mafsallar oluşmaz [31].

Load Case Name	Gravity			Design			
Load Case Type		Nonline	ar Static		✓ Notes		
Exclude Objects in this G	ŝroup	Not Ap					
Mass Source			MASS SOURCE V				
itial Conditions							
Zero Initial Condition	s - Start from Unstres	sed State					
Continue from State	at End of Nonlinear (Taren (l oade at	End of Case Al	RE Included)			
Nonlinear Case	at this of Nonlinear C	Loads at	End of Case Af	ne iniciued)			
Nonimear Case							
oads Applied							
Load Type	Loa	ad Name	Sc	ale Factor	∧ ()		
Load Pattern	Live		0.3		Add		
Load Pattern	F.C		1		Delete		
Load Pattern	G2		1				
Load Pattern	wall		1		~		
ther Parameters							
Modal Load Case		Modal			\sim		
Geometric Nonlinearity (ontion	P Dolto					
Lead Application		T-Deita					
Load Application	Full Load			Modify/Show.			
	Final State Only			Modify/Show.			
Results Saved			Modify/Show				

Şekil 5.26. Düşey yükleri doğrusal olmayan olarak "gravity" load case tanımlanması.

Modal ve yerçekimi yük durumları belirlendikten sonra, yanal yükler (deprem eşdeğeri yükler), baskın mod şekline uygun bir biçimde uygulandı ve bu durumda 2. Mod şekline uygulanmıştır (X yönü).

Load Case Name Load Case Type Exclude Objects in this Group Mass Source			PushX			Design
			Nonlinear St	V Notes		
			Not Applical			
			MASS SOU	~		
itial Conditions						
 Zero Initial Condition 	ns - Start from Ur	nstressed S	itate			
Continue from State	at End of Nonlir	near Case	(Loads at End	of Case	ARE Included)	
Nonlinear Case			Gravity			\sim
anda Applied						
					0.1.5.	- 0
Load lype	2	Load N	ame Scale Factor			
						Maa
Mode	2					
Mode	2					Delete
Mode				·		Delete
Mode	-			•		Delete
Mode ther Parameters				•		Delete
Mode ther Parameters Modal Load Case			Modal	•		Delete
Mode ther Parameters Modal Load Case Geometric Nonlinearity (Option		Modal P-Delta	-		Delete
Mode ther Parameters Modal Load Case Geometric Nonlinearity (Load Application	2 Option Displacement	nt Control	Modal P-Detta		Modify/Show	Delete
Mode ther Parameters Modal Load Case Geometric Nonlinearity (Load Application Results Saved	Dption Displacement Multiple Stat	nt Control ies	Modal P-Delta		Modify/Show Modify/Show	Delete

Şekil 5.27. Pushover load case tanımlanması.

Yerdeğiştirme dayalı bir analiz yapılacağı için, son katın bir noktaya 'Joint' itme kuvvetleri uygulanıp yer değiştirmeleri elde edilecektir.

Load Application Co	ontrol				
Full Load					
Displacemen	t Control				
Quasi-Static	(run as time hi	story)			
Control Displaceme	nt				
🔿 Use Conjuga	te Displacemer	nt			
Use Monitore	d Displacemer	nt			
Load to a Monito	ored Displacem	ent Magnitude of		320	mm
Load to a Monito	ored Displacem	ent Magnitude of		320	mm
Load to a Monito	ment	ent Magnitude of		320	mm
Load to a Monito Monitored Displace ODF/Joint Generalized	ment U1 Displacement	v Story5		320	mm
Load to a Monitor Monitored Displace DOF/Joint Generalized Quasi-static Param	ment U1 Displacement eters	ent Magnitude of		320 ~ 25	mm
Load to a Monitor Monitored Displace DOF/Joint Generalized Quasi-static Param Time History Typ	ment U1 Displacement eters	ent Magnitude of	Nonlinear Dir	320 V 25 rect Integration History	mm
Load to a Monitor Monitored Displace DOF/Joint Generalized Quasi-static Param Time History Typ Output Time Ste	ment U1 Displacement eters pe p Size	ent Magnitude of	Nonlinear Dir	320 V 25 rect Integration History 1	mm
Load to a Monitored Displace Displace Displ	ment U1 Displacement eters be p Size al Damping	ent Magnitude of	Nonlinear Dir	220 v 25 rect Integration History 1 0	mm sec 1/set

Şekil 5.28. X Doğrultusu itme noktası ve yer değiştirme miktarının belirlenmesi.

Şekil 5.29. Tanımlanan itme yüklerinin model üzerindeki gösterilmesi.

5.4. Mod Birleştirme Yöntemi Modelleri ve Analiz Sonuçları

Etabs analiz programı kullanılarak gerçekleştirilen doğrusal elastik deprem hesabı sonucu yapılan modal analizler neticesinde, 1-10 binaların göreli kat ötelemesi, burulma ve yumuşak kat düzensizlikleri, titreşim periyotları ve V/W x Δ 5/h5 sonuçları detaylı bir şekilde Tablo 5. 11'de gösterilmiştir.

Şekil 5.30-5.34; binalara ait periyot, çatı kat öteleme, burulma ve yumuşak kat düzensizliklerin katsayıları ve V/W x Δ 5/h5 grafikleri temsil etmektedir.

					Mod Bir	leşrirme Yöntemi	Analiz Sonuçları					
Durum NO.	Model NO.	Model İsmi	(h1) zemin kat Yükekliği (m)	(H) Bina Yükekliği (m)	(T) Periyot (sn)	Çatı kat öteleme (X) yönü (mm)	5. Kata ait göreli kat ötelemesi oranı Δ5/h5	(V) Taban Kesme kuvveti (kN)	(W) Bina ağırlığı (KN)	V/W	ηbi	ηki
	1	A3dM	3,0	15,0	1,435	18,477	0,000554	591,846	21996,250	0,027	1,0000	1,4814
Calumna 1	2	A3eM	4,5	16,5	1,875	22,662	0,000380	466,258	22230,625	0,021	1,0000	1,9349
Çalışma I,	3	A3fM	5,5	17,5	2,229	26,072	0,000296	398,557	22386,875	0,018	1,0000	2,2571
Durum	4	A3gM	6,5	18,5	2,625	29,915	0,000252	342,882	22543,125	0,015	1,0000	2,5878
	5	A3hM	7,5	19,5	3,058	33,986	0,000230	295,712	22699,375	0,013	1,0000	2,9199
	6	AtdM	3,0	15,0	0,681	8,895	0,000242	1186,941	21996,250	0,054	1,0070	1,2637
Calumna 1	7	AteM	4,5	16,5	0,765	9,739	0,000212	1108,542	22230,625	0,050	1,0110	1,4014
Çalışma I,	8	AtfM	5,5	17,5	0,822	10,284	0,000195	1052,946	22386,875	0,047	1,0141	1,4837
Durum 2	9	AtgM	6,5	18,5	0,892	10,968	0,000178	987,707	22543,125	0,044	1,0168	1,6188
	10	AthM	7,5	19,5	0,970	11,684	0,000162	919,711	22699,375	0,041	1,0191	1,7697

Tablo 5.11. Mod birleştirme yöntemi ile modellenen 1-10 binalarına ait analiz sonuçları.

Şekil 5.30. Bina modelleri 1-10 ait ilk periyodun sonuçları.

Şekil 5.31. Bina modelleri 1-10 ait çatı kat öteleme (X) yönünde (Mm) sonuçları.

Şekil 5.32. Bina Modelleri 1-10 ait nki yumuşak düzensizliği sonuçları.

Şekil 5.33. Bina modelleri 1-10 ait Hbi burulma kat düzensizliği sonuçları.

Şekil 5.34. Bina modelleri 1-10 Ait V/W Vs. Δ 5/H5 grafiği sonuçları.

Etabs analiz programı kullanılarak gerçekleştirilen doğrusal elastik deprem hesabı sonucu yapılan modal analizler neticesinde, 11-22 modellerin göreli kat ötelemesi, burulma ve yumuşak kat düzensizlikleri, titreşim periyotları ve V/W x Δ 5/h5 sonuçları detaylı bir şekilde Tablo 5. 12'de gösterilmiştir.

Şekil 5.35-5.39 modellerine ait periyot, çatı kat öteleme, burulma ve yumuşak kat düzensizliklerin katsayıları ve V/W x Δ 5/h5 grafikleri temsil etmektedir.

Mod Birleşrirme Yöntemi Analiz Sonuçları												
Durum NO	Model NO.	Model İsmi	(h1) zemin kat Yükekliği (m)	(H) Bina Yükekliği (m)	(T) Periyot (sn)	Çatı kat öteleme (X) yönü (mm)	göreli kat ötelemesi oranı Δ5/h5	(V) Taban Kesme kuvveti (kN)	(W) Bina ağırlığı (KN)	V/W	ηbi	ηki
	11	B3aM	5,5	17,5	1,711	24,290	0,00044	507,420	25514,875	0,020	1,2935	1,5297
	12	B3bM	6,5	18,5	2,025	27,732	0,00036	438,387	25671,125	0,017	1,3595	1,8172
Çalışma 2,	13	B3cM	7,5	19,5	2,393	31,673	0,00030	376,082	25827,375	0,015	1,4184	2,1283
Durum 1	14	C3aM	5,5	17,5	1,874	22,472	0,00043	418,483	24492,750	0,017	1,1269	1,6255
	15	C3bM	6,5	18,5	2,219	25,607	0,00035	351,589	24649,000	0,014	1,1979	1,8616
	16	C3cM	7,5	19,5	2,610	29,274	0,00026	295,205	24805,250	0,012	1,2638	2,1180
	17	BtaM	5,5	17,5	0,784	10,588	0,00021	993,753	25514,875	0,039	1,1199	1,2363
	18	BtbM	6,5	18,5	0,840	11,318	0,00020	959,447	25671,125	0,037	1,1618	1,2846
Çalışma 2,	19	BtcM	7,5	19,5	0,906	12,092	0,00019	913,031	25827,375	0,035	1,2047	1,3552
Durum 2	20	CtaM	5,5	17,5	0,795	10,262	0,00023	671,302	24492,750	0,027	1,0835	1,2881
	21	CtbM	6,5	18,5	0,855	10,866	0,00021	648,737	24649,000	0,026	1,1122	1,3394
	22	CtcM	7,5	19,5	0,924	11,537	0,00019	614,966	24805,250	0,025	1,1470	1,4092

 Tablo 5.12. Mod birleştirme yöntemi ile modellenen 11-22 binalarına ait analiz sonuçları.

Şekil 5.35. Bina modelleri 11-22 ait ilk periyodun sonuçları.

Şekil 5.36. Bina modelleri 11-22 ait çatı kat öteleme (X) yönünde (Mm) sonuçları.

Şekil 5.37. Bina modelleri 11-22 ait Hki yumuşak düzensizliği sonuçları.

Şekil 5.38. Bina modelleri 11-22 ait Hbi burulma kat düzensizliği sonuçları.

Şekil 5.39. Bina modelleri 11-22 Ait V/W Vs. ∆5/H5 grafiği sonuçları.

Etabs analiz programı kullanılarak gerçekleştirilen doğrusal elastik deprem hesabı sonucu yapılan modal analizler neticesinde, 23-34 modellerin göreli kat ötelemesi, burulma ve yumuşak kat düzensizlikleri, titreşim periyotları ve V/W x Δ 5/h5 sonuçları detaylı bir şekilde Tablo 5. 13'de gösterilmiştir.

Şekil 5.40-5.44 modellerine ait periyot, çatı kat öteleme, burulma ve yumuşak kat düzensizliklerin katsayıları ve V/W x Δ 5/h5 grafikleri temsil etmektedir.
				Moo	d Birleşrirm	e Yöntemi Ar	aliz Sonuçları					
Durum NO	Model NO.	Model İsmi	(h1) zemin kat Yükekliği (m)	(H) Bina Yükekliği (m)	(T) Periyot (sn)	Çatı kat öteleme (X) yönü (mm)	göreli kat ötelemesi oranı Δ5/h5	(V) Taban Kesme kuvveti (kN)	(W) Bina ağırlığı (KN)	V/W	ηbi	ηki
	23	B1aM	5,5	17,5	0,847	12,786	0,00025	908,269	25514,875	0,036	1,3074	1,3657
	24	B1bM	6,5	18,5	0,922	13,733	0,00022	842,965	25671,125	0,033	1,3191	1,4698
Çalışma 2,	25	B1cM	7,5	19,5	1,008	14,711	0,00019	772,569	25827,375	0,030	1,3201	1,6001
Durum 3	26	C1aM	5,5	17,5	0,872	12,983	0,00023	577,067	24492,750	0,024	1,3763	1,5987
	27	C1bM	6,5	18,5	0,954	13,877	0,00020	531,118	24649,000	0,022	1,4041	1,7088
	28	C1cM	7,5	19,5	1,046	14,872	0,00018	485,301	24805,250	0,020	1,4319	1,8490
	29	B2aM	5,5	17,5	0,859	10,374	0,00020	989,826	25514,875	0,039	1,0983	1,2322
	30	B2bM	6,5	18,5	0,936	10,980	0,00019	955,476	25671,125	0,037	1,1309	1,2844
Çalışma 2,	31	B2cM	7,5	19,5	1,025	11,635	0,00017	908,187	25827,375	0,035	1,1668	1,3594
Durum 4	32	C2aM	5,5	17,5	0,881	10,143	0,00020	656,646	24492,750	0,027	1,0690	1,2791
	33	C2bM	6,5	18,5	0,961	10,738	0,00018	639,858	24649,000	0,026	1,0979	1,3366
	34	C2cM	7,5	19,5	1,051	11,416	0,00017	610,942	24805,250	0,025	1,1353	1,4095

 Tablo 5.13.Mod birleştirme yöntemi ile modellenen 23-34 binalarına ait analiz sonuçları.

Şekil 5.40. Bina modelleri 23-34 ait ilk periyodun sonuçları.

Şekil 5.41. Bina modelleri 23-34 ait çatı kat öteleme (X) yönünde (Mm) sonuçları.

Şekil 5.42. Bina modelleri 23-34 ait Hki yumuşak düzensizliği sonuçları.

Şekil 5.43. Bina modelleri 23-34 Ait Hbi burulma kat düzensizliği sonuçları.

Şekil 5.44. Bina modelleri 22-34 Ait V/W Vs. ∆5/H5 grafiği sonuçları.

5.5. Pushover Yöntemi Modelleri ve Analiz Sonuçları

Etabs analiz programı kullanılarak gerçekleştirilen doğrusal olmayan pushover hesabı sonucu elde edilen analizler neticesinde, 35-44 modellerin çatı kat ötelemesi ve taban kesmesonuçları detaylı bir şekilde Tablo 5. 14'de gösterilmiştir.

Şekil 5.45-5.46 modellerine ait çatı kat ötelemesi ve taban kesme grafikleri temsil etmektedir.

			Push	over Yöntemi Anali	z Sonuçları			
Durum NO.	Model NO.	Bina İsmi	(h1) zemin kat Yüksekliği (m)	(H) Bina Yüksekliği (m)	Çatı kat öteleme (X) yönü (mm)	(V) Taban Kesme kuvveti (kN)	Abs.Çatı kat öteleme (X) yönü (mm)	Abs.(V) Taban Kesme kuvveti (kN)
	35	A3dP	3	15	212,81	1367,10	212,81	1367,10
Caluma 1	36	A3eP	4,5	16,5	235,04	1111,02	235,04	1111,02
Çalişina 1,	37	A3fP	5,5	17,5	261,19	930,87	261,19	930,87
Durum	38	A3gP	6,5	18,5	-296,48	754,87	296,48	754,87
	39	A3hP	7,5	19,5	320,02	600,17	320,02	600,17
	40	AtdP	3	15	-133,77	14851,67	133,77	14851,67
Caluma 1	41	AteP	4,5	16,5	-113,43	12347,14	113,43	12347,14
Çalişina 1,	42	AtfP	5,5	17,5	103,70	11497,92	103,70	11497,92
Durum 2	43	AtgP	6,5	18,5	-87,72	8975,84	87,72	8975,84
	44	AthP	7,5	19,5	-114,18	10447,71	114,18	10447,71

Tablo 5.14. Pushover yöntemi ile modellenen 35-44 binalarına ait analiz sonuçları.

Şekil 5.45. Bina modelleri 35-44 ait maksimum çatı kat ötelemesi (Mm) sonuçları.

Şekil 5.46. Bina modelleri 35-44 ait maksimum taban kesme kuvveti (Kn) sonuçları.

Etabs analiz programı kullanılarak gerçekleştirilen doğrusal olmayan pushover hesabı sonucu elde edilen analizler neticesinde, 45-56 modellerin çatı kat ötelemesi ve taban kesmesonuçları detaylı bir şekilde Tablo 5. 15'de gösterilmiştir.

Şekil 5.47-5.48 modellerine ait çatı kat ötelemesi ve taban kesme grafikleri temsil etmektedir.

	Pushover Yöntemi Analiz Sonuçları											
Durum NO.	Model NO.	Bina İsmi	(h1) zemin kat Yüksekliği (m)	(H) Bina Yüksekliği (m)	Çatı kat öteleme (X) yönü (mm)	(V) Taban Kesme kuvveti (kN)	Abs.Çatı kat öteleme (X) yönü (mm)	Abs.(V) Taban Kesme kuvveti (kN)				
	45	B3aP	5,5	17,5	206,84	1474,20	206,84	1474,20				
Çalışma	46	B3bP	6,5	18,5	203,83	1250,28	203,83	1250,28				
2,	47	B3cP	7,5	19,5	-192,27	1037,94	192,27	1037,94				
Durum	48	C3aP	5,5	17,5	-244,64	894,09	244,64	894,09				
1	49	C3bP	6,5	18,5	-219,97	802,89	219,97	802,89				
	50	C3cP	7,5	19,5	241,40	665,36	241,40	665,36				
	51	BtaP	5,5	17,5	77,70	13543,06	77,70	13543,06				
Çalışma	52	BtbP	6,5	18,5	-72,27	11276,44	72,27	11276,44				
2,	53	BtcP	7,5	19,5	96,21	13624,68	96,21	13624,68				
Durum	54	CtaP	5,5	17,5	-65,35	11416,90	65,35	11416,90				
2	55	CtbP	6,5	18,5	89,52	16188,67	89,52	16188,67				
	56	CtcP	7,5	19,5	95,19	16561,94	95,19	16561,94				

Tablo 5.15. Pushover yöntemi ile modellenen 45-56 binalarına ait analiz sonuçları.

Şekil 5.47. Bina modelleri 45-56 ait maksimum çatı kat ötelemesi (Mm) sonuçları.

Etabs analiz programı kullanılarak gerçekleştirilen doğrusal olmayan pushover hesabı sonucu elde edilen analizler neticesinde, 57-68 modellerin çatı kat ötelemesi ve taban kesmesonuçları detaylı bir şekilde Tablo 5. 16'da gösterilmiştir.

Şekil 5.49-5.50 modellerine ait çatı kat ötelemesi ve taban kesme grafikleri temsil etmektedir.

	Pushover Yöntemi Analiz Sonuçları										
			(h1) zemin		Çatı kat	(V)	Abs.Çatı	Abs.(V)			
Durum	Model	Rina	kət	(H) Bina	öteleme	Taban	kat	Taban			
NO	NO	İsmi	Kai Viikeekliöi	Yüksekliği	(X)	Kesme	öteleme	Kesme			
NO.	NO.	151111	i uksekiigi	(m)	yönü	kuvveti	(X) yönü	kuvveti			
			(111)		(mm)	(kN)	(mm)	(kN)			
	57	B1aP	5.5	17.5	-21.25	18125.87	21.25	18125.87			
Çalışma	58	B1bP	6.5	18.5	-33.14	16985.01	33.14	16985.01			
2,	59	B1cP	7.5	19.5	28.88	11380.21	28.88	11380.21			
Durum	60	C1aP	5.5	17.5	-55.06	13887.71	55.06	13887.71			
3	61	C1bP	6.5	18.5	-84.49	14582.90	84.49	14582.90			
	62	C1cP	7.5	19.5	-103.12	13920.98	103.12	13920.98			
	63	B2aP	5.5	17.5	-185.75	17227.63	185.75	17227.63			
Çalışma	64	B2bP	6.5	18.5	154.03	13565.09	154.03	13565.09			
2,	65	B2cP	7.5	19.5	-206.84	15987.31	206.84	15987.31			
Durum	66	C2aP	5.5	17.5	112.15	11916.68	112.15	11916.68			
4	67	C2bP	6.5	18.5	-171.50	15607.33	171.50	15607.33			
	68	C2cP	7.5	19.5	-190.88	15636.84	190.88	15636.84			

 Tablo 5.16. Pushover yöntemi ile modellenen 57-68 binalarına ait analiz sonuçları.

Şekil 5.49. Bina modelleri 57-68 ait maksimum çatı kat ötelemesi (Mm) sonuçları.

Şekil 5.50. Bina modelleri 57-68 ait maksimum taban kesme kuvveti (Kn) sonuçları. Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti ilişkisi tablolarda sayısal olarak gösterirken, grafikler daha görsel bir temsil sunar. Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti arasında doğrusal olmayan bir ilişki olduğu görülmektedir. 35-39 binaların çatı kat deplasmanı ve taban kesme kuvveti ilişkisi Tablo 5.17 ve Şekil 5.51 grafiğinde görülmektedir.

35. A30	lP	36. A3e	P	37. A3fP		38. A3gP	39. A3hP		
Çatı yerdeğiştirme	Taban kesme	Çatı yerdeğiştirme	Taban kesme	Cate vanda čistima a (mam)	Taban kesme	Çatı yerdeğiştirme	Taban kesme	Çatı yerdeğiştirme	Taban kesme
(mm)	kuvveti (kN)	(mm)	kuvveti (kN)	Çati yerdeğiştirme (mm)	kuvveti (kN)	(mm)	kuvveti (kN)	(mm)	kuvveti (kN)
0,015	0,000	0,018	0,000	0,020	0,000	0,021	0,000	0,021	0,000
17,043	498,927	20,707	381,158	24,347	318,055	28,954	266,620	32,021	207,005
43,817	981,942	52,986	762,568	61,046	636,004	61,566	483,869	34,447	222,723
65,085	1158,181	73,805	891,822	88,878	763,334	96,376	619,029	68,212	384,796
97,547	1268,960	99,916	978,044	115,500	829,695	128,661	687,587	101,727	495,382
108,738	1293,085	138,351	1047,748	149,410	875,718	144,569	708,411	134,262	553,813
143,004	1341,827	151,065	1063,273	178,116	905,343	182,791	738,063	164,239	588,917
164,053	1364,638	200,963	1096,525	186,924	910,167	214,781	756,958	199,060	605,274
170,937	1368,848	225,512	1109,028	223,755	921,258	221,238	758,874	232,404	616,690
175,110	1370,211	228,808	1110,034	255,076	929,853	226,970	759,760	254,801	620,589
175,982	1370,247	232,784	1110,813	260,821	930,781	231,423	759,958	256,801	620,768
184,025	1369,797	234,562	1110,987	260,828	930,784	236,089	760,046	257,801	620,824
193,916	1369,671	234,574	1110,992	261,057	930,829	243,939	760,087	258,301	620,834
202,379	1369,218	235,032	1111,033	261,189	930,868	252,337	759,755	259,801	620,796
204,181	1369,042	235,035	1111,016			288,410	756,032	260,801	620,730
212,008	1367,279	235,036	1111,016			296,234	754,883	268,801	619,741
212,020	1367,281	235,042	1111,018			296,242	754,883	300,801	609,224
212,437	1367,263	235,042	1111,018			296,468	754,870	320,021	600,173
212,443	1367,264	235,043	1111,018			296,468	754,870		
212,637	1367,115	235,043	1111,018			296,477	754,870		
212,643	1367,115	235,043	1111,018			296,477	754,870		
212,788	1367,101	235,043	1111,018			296,478	754,870		
212,788	1367,101	235,043	1111,018			296,478	754,870		
212,804	1367,100	235,043	1111,018			296,478	754,870		
212,804	1367,100	235,043	1111,018			296,478	754,870		
212,806	1367,099	235,043	1111,018			296,478	754,870		
212,806	1367,099	235,043	1111,018			296,478	754,870		
212,806	1367,099	235,043	1111,018						
212,806	1367,099	235,043	1111,018						
212,806	1367,099	235,043	1111,018						
212,806	1367,099								
212,806	1367,099								

Tablo 5.17. 35-39 modellerin çatı kat deplasmanı ve taban kesme kuvveti.

Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti arasında doğrusal olmayan bir ilişki olduğu görülmektedir. 40-44 binaların çatı kat deplasmanı ve taban kesme kuvveti ilişkisi Tablo 5.18 ve Şekil 5.52 grafiğinde görülmektedir.

40. A	tdP	41. A	teP	42. A	AtfP	43. At	gP	44. A	thP
Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)
0,513	0,000	0,789	0,000	1,041	0,000	1,343	0,000	1,698	0,000
17,656	2279,809	21,552	2575,064	24,712	3083,790	27,880	2925,249	31,831	2978,955
49,823	6104,234	54,142	6274,312	56,823	6668,114	60,090	6262,133	64,030	6010,284
82,984	9644,136	86,787	9682,218	90,398	10174,158	82,583	8482,273	89,377	8297,627
115,025	12952,837	113,401	12344,447	103,700	11497,923	82,586	8482,527	89,381	8297,742
122,219	13676,468	113,404	12343,935			87,716	8975,845	114,182	10447,706
122,222	13676,157	113,431	12347,141						
133,773	14851,666								

Tablo 5.18. 40-44 modellerin çatı kat deplasmanı ve taban kesme kuvveti.

Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti arasında doğrusal olmayan bir ilişki olduğu görülmektedir. 45-50 binaların çatı kat deplasmanı ve taban kesme kuvveti ilişkisi Tablo 5.19 ve Şekil 5.53 grafiğinde görülmektedir.

45. B3a	Р	46. B3b	P	47. B3c	гР	48. C3aP		49. C3bP	I	50. C3cP	
Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)
0,007	0,000	0,016	0,000	0,025	0,000	0,019	0,000	0,041	0,000	0,064	0,000
16,220	576,591	17,996	477,298	21,065	403,478	15,526	331,332	17,704	276,095	20,505	226,624
38,031	1071,522	42,636	904,086	49,085	757,594	39,504	657,109	44,691	548,898	50,688	452,598
58,008	1271,138	68,882	1097,654	74,172	906,504	58,269	781,053	68,737	668,011	78,025	556,777
88,465	1387,868	106,547	1202,171	83,844	942,456	90,563	872,304	101,226	738,677	112,943	613,199
120,465	1440,305	110,547	1209,757	120,776	1014,194	122,866	912,145	114,039	757,044	136,725	640,615
144,465	1470,172	142,547	1239,350	136,776	1034,393	153,818	941,160	152,761	783,601	139,899	642,927
148,465	1473,299	166,547	1259,008	137,776	1035,068	155,116	941,791	186,275	802,124	172,322	652,775
148,715	1473,407	181,047	1265,178	169,276	1044,839	187,234	948,912	191,275	803,877	209,572	663,829
180,715	1481,751	181,297	1265,245	173,276	1045,493	203,234	952,458	192,275	804,080	213,937	664,701
182,965	1482,228	181,422	1265,261	181,276	1044,959	219,234	889,449	192,384	804,087	230,437	666,608
190,965	1482,416	181,547	1265,264	183,276	1044,497	239,234	893,734	192,415	804,088	230,562	666,615
194,965	1482,419	181,747	1265,268	191,026	1040,289	241,234	894,016	194,415	804,060	233,203	666,702
204,965	1478,844	182,543	1265,272	191,526	1039,874	241,609	894,047	219,969	802,890	233,265	666,703
206,840	1474,200	182,551	1265,272	192,026	1038,791	243,672	894,101	219,969	802,890	233,312	666,703
		182,555	1265,272	192,269	1037,940	243,703	894,102	219,969	802,890	235,344	666,635
		183,555	1265,269			243,719	894,102	219,969	802,890	235,844	666,597
		187,555	1264,661			243,750	894,102	219,969	802,890	236,094	666,566
		188,555	1264,407			244,638	894,095	219,969	802,890	241,394	665,357
		190,055	1263,754			244,639	894,094			241,394	665,357
		201,993	1254,497			244,640	894,094			241,396	665,356
		202,008	1254,459			244,640	894,094			241,396	665,356
		202,009	1254,458			244,640	894,094			241,397	665,356
		203,830	1250,279			244,640	894,094			241,397	665,356
						244,640	894,094			241,398	665,356
						244,640	894,094			241,398	665,356
						244,640	894,094			241,398	665,356
						244,640	894,094			241,398	665,356
						244,640	894,094			241,398	665,356
						244,640	894,094			241,398	665,356
						244,640	894,094			241,398	665,356
										241,398	665,356
										241,398	665,356

Tablo 5.19. 45-50 modellerin çatı kat deplasmanı ve taban kesme kuvveti.

Şekil 5.53. 45-50 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği.

Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti arasında doğrusal bir ilişki olduğu görülmektedir. 51-56 binaların çatı kat deplasmanı ve taban kesme kuvveti ilişkisi Tablo 5.20 ve Şekil 5.54 grafiğinde görülmektedir.

51. Bt	aP	52. Bt	bP	53. Bt	сP	54. Ct	aP	55. Ct	bP	56. Ct	сP
Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)
0,812	0,000	1,048	0,000	1,344	0,000	1,969	0,000	2,292	0,000	2,682	0,000
12,716	2585,848	18,807	3040,738	16,444	2692,634	12,320	2051,161	8,293	2068,846	8,477	2066,145
44,848	8287,824	51,280	8187,891	48,622	7335,741	44,439	7949,459	40,523	8082,854	40,512	7806,972
77,009	13437,375	72,268	11276,441	81,015	11665,750	65,345	11416,901	72,836	13525,578	74,970	13425,244
77,697	13543,059			96,206	13624,682			89,516	16188,674	95,188	16561,940

Tablo 5.20. 51-56 binaların çatı kat deplasmanı ve taban kesme kuvveti.

Şekil 5.54. 51-56 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği

Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti arasında doğrusal bir ilişki olduğu görülmektedir. 57-62 binaların çatı kat deplasmanı ve taban kesme kuvveti ilişkisi Tablo 5.21 ve Şekil 5.55 grafiğinde görülmektedir.

57. B1	aP	58. B1	bP	59. B1	lcP	60. CI	laP	61. CI	bP	62. C1	lcP
Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)
0,812	0,000	1,048	0,000	1,343	0,000	2,125	0,000	2,474	0,000	2,889	0,000
3,065	1966,986	4,717	1970,120	4,606	2321,030	9,097	1891,871	12,843	1950,958	16,060	1933,880
3,921	2695,455	8,627	4013,483	28,184	11125,897	42,454	10693,862	45,016	7792,223	48,171	6509,928
3,943	2729,326	12,870	6221,639	28,187	11118,069	55,063	13887,714	77,153	13343,703	81,693	11066,641
21,252	18125,865	16,997	8411,159	28,875	11380,212			84,492	14582,897	103,123	13920,985
		21,095	10585,610								
		25,208	12791,923								
		29,406	15025,391								
		33,140	16985,013								

Tablo 5.21. 57-62 binaların çatı kat deplasmanı ve taban kesme kuvveti.

Elde edilen sonuçlara göre, çatı kat deplasmanı ve taban kesme kuvveti arasında doğrusal bir ilişki olduğu görülmektedir. 63-68 binaların çatı kat deplasmanı ve taban kesme kuvveti ilişkisi Tablo 5.22 ve Şekil 5.56 grafiğinde görülmektedir.

Şekil 5.56. 63-68 binaların çatı kat deplasmanı ve taban kesme kuvveti grafiği.

63.	B2aP	64.	B2bP	65.	B2cP	66	. C2aP	67. C	2bP	68.0	C2cP
Çatı yerdeğiştir me (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştir me (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştir me (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştir me (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştirme (mm)	Taban kesme kuvveti (kN)	Çatı yerdeğiştir me (mm)	Taban kesme kuvveti (kN)
0,823	0,000	1,073	0,000	1,388	0,000	1,713	0,000	1,980	0,000	2,313	0,000
19,727	2075,987	21,661	2248,989	25,385	2116,870	15,854	2092,497	18,637	1775,997	21,046	1772,398
52,298	5344,491	54,817	5303,711	58,687	4875,765	48,593	5691,994	50,999	4993,403	54,425	4749,124
88,029	8630,890	87,498	8107,977	90,782	7376,195	82,375	9060,355	83,337	7947,807	87,779	7515,443
135,699	12844,546	119,877	10786,595	134,871	10682,219	112,153	11916,678	115,744	10790,967	121,104	10172,244
168,518	15725,215	154,030	13565,088	171,116	13362,093	112,153	11916,678	150,086	13762,446	156,679	12965,277
185,749	17227,238			203,284	15726,938			171,499	15607,334	189,913	15561,263
185,752	17227,630			206,841	15987,313			,	,	190,878	15636,839
185 752	17227 631			,	,					,	,

Tablo 5.22. 63-68 binaların çatı kat deplasmanı ve taban kesme kuvveti.

5.5.1. Yapısal elemanlarda oluşan mafsallar

Doğrusal olmayan itme analizi sonuçlarına dayanarak Etabs modelinde plastik mafsalların oluşumu ve bu mafsalların belirlenen yerdeğiştirmelerle ilişkili renk değişiklikleri, yapı üzerindeki riskleri görsel olarak gösterilmiştir.

Doğrusal olmayan analizi tabi olan modellerin oluşan plastik mafsallar sayısı ve risk göstergesi Tablo 5.23 ve Tablo 5.24'de gösterilmiştir.

	1.	Çalışma	
Durum no.	Model no.	Model ismi	Mafsalsayısı
	35	A3dP	650
	36	A3eP	650
1. Durum	37	A3fP	650
	38	A3gP	650
	39	A3hP	650
	40	AtdP	650
	41	AteP	650
2. Durum	42	AtfP	650
	43	AtgP	650
	44	AthP	650
	2.	Çalışma	
Durum no.	Model no.	Model ismi	Mafsalsayısı
	45	B3aP	756
	46	B3bP	756
1 Durum	47	B3cP	756
1. Durum	48	C3aP	724
	49	C3bP	724
	50	C3cP	724
	51	BtaP	756
	52	BtbP	756
2 Dumm	53	BtcP	756
2. Durum	54	CtaP	724
	55	CtbP	724
	56	CtcP	724
	57	B1aP	756
	58	B1bP	756
2 Dumm	59	B1cP	756
5. Durum	60	C1aP	724
	61	C1bP	724
	62	C1cP	724
	63	B2aP	756
	64	B2bP	756
1 Dumm	65	B2cP	756
4. Durum	66	C2aP	724
	67	C2bP	724
	68	C2cP	724

 Tablo 5.23.
 Modellerde oluşan mafsal sayısı.

				1. Çalışn	na			
Durum no.	Model no.	Model ismi	Step	A-IO	IO-LS	LS-CP	>CP	Total
	35	A3dP	31	250	336	43	21	650
1	36	A3eP	29	250	345	35	20	650
I. Dumm	37	A3fP	13	250	351	28	21	650
Durum	38	A3gP	26	250	360	19	21	650
	39	A3hP	17	250	361	23	16	650
	40	AtdP	7	248	400	0	2	650
2	41	AteP	6	248	400	0	2	650
Z.	42	AtfP	4	249	400	0	1	650
Durum	43	AtgP	5	250	400	0	0	650
	44	AthP	5	248	401	0	1	650
				2. Çalışn	na			
Durum no.	Model no.	Model ismi	Step	A-IO	IO-LS	LS-CP	>CP	Total
	45	B3aP	14	292	344	72	48	756
	46	B3bP	23	292	360	72	32	756
1.	47	B3cP	15	292	416	48	0	756
Durum	48	C3aP	30	280	372	32	40	724
	49	C3bP	18	280	404	27	13	724
	50	C3cP	32	280	404	27	13	724
	51	BtaP	4	291	464	1	0	756
	52	BtbP	3	291	465	0	0	756
2.	53	BtcP	4	291	464	0	1	756
Durum	54	CtaP	3	280	444	0	0	724
	55	CtbP	4	278	444	0	2	724
	56	CtcP	4	278	445	0	1	724
	57	B1aP	4	291	433	32	0	756
	58	B1bP	8	290	456	10	0	756
3.	59	B1cP	4	290	464	0	2	756
Durum	60	C1aP	3	279	444	0	1	724
	61	C1bP	4	280	444	0	0	724
	62	C1cP	4	279	445	0	0	724
	63	B2aP	8	289	451	14	2	756
	64	B2bP	5	291	464	0	1	756
4.	65	B2cP	7	290	462	4	0	756
Durum	66	C2aP	5	278	445	0	1	724
	67	C2bP	6	280	437	7	0	724
	68	C2cP	7	279	437	8	0	724

Tablo 5.24. Modellerde oluşan plastik mafsallar sayısı ve risk göstergesi.

Modellerinde oluşan plastik mafsallar şekil 5.57 ile şekil 5.90arasında gösterilmiştir.

Şekil 5.57. A3dp modellerinde oluşan plastik mafsallar.

Şekil 5.58. A3ep modellerinde oluşan plastik mafsallar.

Şekil 5.59. A3fp modellerinde oluşan plastik mafsallar.

Şekil 5.60. A3gp modellerinde oluşan plastik mafsallar.

Şekil 5.61. A3hp modellerinde oluşan plastik mafsallar.

Şekil 5.62. Atdp modellerinde oluşan plastik mafsallar.

Şekil 5.63. Atep modellerinde oluşan plastik mafsallar.

Şekil 5.64. Atfp modellerinde oluşan plastik mafsallar.

Şekil 5.65. Atgp modellerinde oluşan plastik mafsallar.

Şekil 5.66. Athp modellerinde oluşan plastik mafsallar.

Şekil 5.67. B3ap modellerinde oluşan plastik mafsallar.

Şekil 5.68. B3bp modellerinde oluşan plastik mafsallar.

Şekil 5.69. B3cp modellerinde oluşan plastik mafsallar.

Şekil 5.70. C3ap modellerinde oluşan plastik mafsallar.

Şekil 5.71. C3bp modellerinde oluşan plastik mafsallar.

Şekil 5.72. C3cp modellerinde oluşan plastik mafsallar.

Şekil 5.73. Btap modellerinde oluşan plastik mafsallar.

Şekil 5.74. Btbp modellerinde oluşan plastik mafsallar.

Şekil 5.75. Btcp modellerinde oluşan plastik mafsallar.

Şekil 5.76. Ctap modellerinde oluşan plastik mafsallar.

Şekil 5.77. Ctbp modellerinde oluşan plastik mafsallar.

Şekil 5.78. Ctcp modellerinde oluşan plastik mafsallar.

Şekil 5.79. B1ap modellerinde oluşan plastik mafsallar.

Şekil 5.80. B1bp modellerinde oluşan plastik mafsallar.

Şekil 5.81. B1cp modellerinde oluşan plastik mafsallar.

Şekil 5.82. C1ap modellerinde oluşan plastik mafsallar.

Şekil 5.83. C1bp modellerinde oluşan plastik mafsallar.

Şekil 5.84. C1cp modellerinde oluşan plastik mafsallar.

Şekil 5.85. B2ap modellerinde oluşan plastik mafsallar.

Şekil 5.86. B2bp modellerinde oluşan plastik mafsallar.

Şekil 5.87. B2cp modellerinde oluşan plastik mafsallar.

Şekil 5.88. C2ap modellerinde oluşan plastik mafsallar.

Şekil 5.89. C2bp modellerinde oluşan plastik mafsallar.

Şekil 5.90. C2cp modellerinde oluşan plastik mafsallar.

6. SONUÇLAR VE TARTIŞMA

6.1. Sonuçlar

6.1.1. A tipi bina

Bu çalışma, A tipindeki binalarda eşdeğer basınç çubuğu ve çubuksuz olarak modellenen dolgu duvarın doğrusal (linear) mod birleştirme analizi sonuçlarına ve doğrusal olmayan statik itme (pushover) analizi sonuçlarına odaklanmaktadır.

Elde edilen sonuçlar, her bir faktöre göre artış ve azalış yüzdelerini açıklayarak aşağıda puanlar halinde belirtilmiştir,

✤ Doğrusal (linear) analiz:

- Dolgu duvarın varlığı, yapı periyodunu (%53-68) oranında azaltmaktadır.
- Çubuklu ve çubuksuz modeller arasında, dolgu duvarın çatı kat öteleme miktarında (%52-66) oranında düşüşe neden olduğu gözlemlenmiştir.
- Dolgu duvarın varlığı, taban kesme kuvveti (%100-211) oranında artmaktadır.
- Dolgu duvar varlığı, burulma düzensizliği katsayısındakayda değer bir artış gözlenmemiştir.
- Yumuşak kat düzensizliği, çubuklu ve çubuksuz modellerde sırasıyla (%15-39) oranında azalmıştır.

Zemin kat yüksekliği arttıkça, doğrusal (linear) analiz sonuçlarında periyod, çatı katı öteleme miktarı, burulma düzensizliği ve yumuşak kat düzensizliği gibi faktörlerde değişen artışlar ve taban kesme kuvvetinde bir düşüş gözlemlenmiştir. Zemin kat yüksekliği 5.5 m olduğunda, yumuşak kat düzensizliği riski artmaya başlamıştır.

Bu değişimler, modellerin eşdeğer basınç çubuğu elemanları olmadığı durumlarda daha belirgin hale gelmiştir.

(Ramachandra vd., 2020)'ye göre, kat deplasmanı açısından, Dolgu duvarlı model ile dolgu duvarsız model karşılaştırıldığında, dolgu duvarlı model kat deplasmanında X yönünde %79, X yönünde %89 oranında azalmaya neden olmaktadır. , yapının Y yönünde. Kat kesme açısından ise dolgu duvarlı model ile dolgu duvarsız model karşılaştırıldığında, dolgu duvarlı model kat kesmesinde X yönünde %76, Y yönünde ise %74 oranında artışa neden olmaktadır. [15]. Önceki çalışmada ulaşılan sonuçlar, yapı ve özellik farklılıkları nedeniyle değişen yüzdelerde artış veya azalmayla, çalışmamızda elde ettiğimiz sonuçların aynısını göstermektedir.

Statik itme (pushover) analizi:

- Dolgu duvarın varlığında, çatı kat öteleme miktarını düşürme eğilimindedir (%35-65).
- Dolgu duvarın varlığında, Taban kesme kuvvetini artırma eğilimindedir (%90-95).

Zemin kat yüksekliği arttıkça, çatı katı öteleme oranında bir artış ve taban kesme kuvveti oranında ise bir düşüş gözlemlenir.

6.1.2. B ve C tipi bina

B ve C tipindeki binalar için dört farklı şekilde modellenen dolgu duvarların ve zemin kat yüksekliğinin doğrusal (linear) analizi sonuçlarına ve doğrusal olmayan statik itme (pushover) analizi sonuçlarına odaklanmaktadır.

Elde edilen sonuçlar, her bir faktöre göre artış ve azalış yüzdelerini açıklayarak aşağıda puanlar şeklinde sunulmuştur. Dolgu duvar durumlarının modelleri aşağıda gösterilmiştir.

Tablo 6.1. Dolgu duvarı isimlendirilmesinde kullanılan semboller ve açıklaması.

Sembol	Açıklama
t	Dolgu duvarlar tüm eksenlerde basınç elemanları olarak modellenmiştir
1	Dolgu duvarları ,(t) durumdan yalnızca 1-1 eksenlerinde kaldırılmiştir
2	Dolgu duvarları,(t) durumdan yalnızca A-A eksenlerinde kaldırılmiştir
3	Dolgu duvarları herhangi bir eksende basınç elemanları olarak modellenmemiştir

* Mod birleştirme analizi sonuçları şu şekildedir:

"3" Dolgu duvar durumu modellemesi:

- B tipi binanın periyodu C tipinden (%8) daha azdır.
- B tipi binanın çatı kat ötelemesi C tipinden (%7) daha fazladır.
- B tipi binanın taban kesme kuvveti C tipinden (%17-22) daha fazladır.
- B tipi binanın burulma düzensizliği C tipinden (%10-13) daha fazladır.
- B tipi binanın yumuşak kat düzensizliği C tipinden (%0,5-6) daha azdır.

"t" Dolgu duvar durumu modellemesi:

- B tipi binanın periyodu C tipinden (%1-2) daha azdır.
- B tipi binanın çatı kat ötelemesi C tipinden (%3-4) daha fazladır.
- B tipi binanın taban kesme kuvveti C tipinden (%32) daha fazladır.
- B tipi binanın burulma düzensizliği C tipinden (%3-5) daha fazladır.
- B tipi binanın yumuşak kat düzensizliği C tipinden (%3-5) daha azdır.

"1" Dolgu duvar durumu modellemesi:

- B tipi binanın periyodu C tipinden (%2-4) daha azdır.
- B tipi binanın çatı kat ötelemesi C tipinden (%1-1,5) dahaazdır.
- B tipi binanın taban kesme kuvveti C tipinden (%35-37) daha fazladır.
- B tipi binanın burulma düzensizliği C tipinden (%5-8) daha azdır.
- B tipi binanın yumuşak kat düzensizliği C tipinden(%13-15) daha azdır.

"2" Dolgu duvar durumu modellemesi:

- B tipi binanın periyodu C tipinden (%2,5) daha azdır.
- B tipi binanın çatı kat ötelemesi C tipinden (%1-3) daha fazladır.
- B tipi binanın taban kesme kuvveti C tipinden (%32-34) daha fazladır.
- B tipi binanın burulma düzensizliği C tipinden(%2-3) daha fazladır.
- B tipi binanın yumuşak kat düzensizliği C tipinden (%3-4) daha azdır.

Asma katın varlığı ve zemin kat yüksekliğinin değişmesiyle birlikte, modellerde periyod, çatı katı öteleme miktarı, burulma düzensizliği ve yumuşak kat düzensizliğinde artışlar ve taban kesme kuvvetinde düşüşler gözlemlenmiştir. Bu değişimler, modellerde çubuk elemanlarının olmadığı durumlarda daha belirgin hale gelmiştir.

* İtme (pushover) analiz sonuçları şu şekildedir:

"3" Dolgu duvar durumu modellemesi:

- B tipi binanın çatı kat ötelemesi C tipi binandan (%15-20) daha azdır.
- B tipi binanın taban kesme kuvveti C tipi binadan (%35-40) daha fazladır.

"t" Dolgu duvar durumu modellemesi:

- B tipi binanın çatı kat ötelemesi (%5-20), C tipi binadan daha az veya fazla, zemin kat yüksekliğine bağlı olarak değişmektedir.
- B tipi binanın taban kesme kuvveti (%15-30), C tipi binadan daha az veya fazla, zemin kat yüksekliğine bağlı olarak değişmektedir.

"1" Dolgu duvar durumu modellemesi:

- B tipi binanın çatı kat ötelemesi C tipi binadan (%60-70) daha azdır.
- B tipi binanın taban kesme kuvveti (%14-24), C tipi binadan daha az veya fazla asma kat yüksekliğine bağlı olarak değişmektedir.

"2" Dolgu duvar durumu modellemesi:

- B tipi binanın çatı kat ötelemesi (%10-40), C tipi binadan daha az veya fazla asma kat yüksekliğine bağlı olarak değişmektedir.
- B tipi binanın taban kesme kuvveti (%2-30), C tipi binadan daha az veya fazla asma kat yüksekliğine bağlı olarak değişmektedir.

Asma kat varlığı ve zemin kat yüksekliğinin değişmesiyle, doğrusal olmayan sonuçların homojen olmayan bir şekilde değiştiği gözlemlenmiştir.

6.2. Tartışma

Bu çalışma, dolgu duvarların basınç çubuğu elemanı olarak modellenmesinin yapı davranışına olan etkilerini inceleyerek, betonarme çerçeve binaların sismik davranışının anlaşılmasına önemli bir katkı sağlamaktadır. Çalışma kapsamında gerçekleştirilendoğrusal analizi ve doğrusal olmayan statik itme (pushover) analizi, çeşitli senaryolarda yapı tepkilerini değerlendirmek amacıyla kullanılmıştır.

• Dolgu Duvar modelemesi

Dolgu duvarlarının, basınç çubuğu elemanı olarakmodelemesinde binanın rijitliği artar ve bu durum diğer faktörleri farklı şekillerde etkiler.Bina periyodunun düştüğü gözlemlenmiştir, bu durum, yapıyı deprem yüklerine karşı daha dirençli hale getirebilir. Çatı katı öteleme miktarında bir düşüş gözlenmiştir, bu da yapıdaki stabiliteyi artırıcı bir etki gösterebilir. Taban kesme kuvveti genellikle artar, bu durum, yapıdaki deformasyonları sınırlar ve yapıyı daha rijit hale getirir. Burulma düzensizliği

katsayısında kayda değer bir artış gözlenmediğini göstermektedir, bu da yapıdaki burulma etkilerinin kontrol altında olduğunu ifade eder. Yumuşak kat düzensizliği katsayısında bir düşüş gözlenmiştir, bu durum, yapıdaki deformasyonların daha kontrol edilebilir olduğunu işaret etmektedir.

Dolgu duvarlarının, basınç çubuğu elemanı olarak modelemesi yapıya ek bir dayanıklılık katkısı sağladığını ve enerji emici bir rol üstlendiğini düşündürmektedir.

Dolgu duvarların basınç çubuğu elemanı olarak modellenmesini 1-1 numaralı eksenlerden kaldırılması durumunda, "1" Dolgu duvar durumu modellemesi gibi, yapının burkulma olasılığını çok net bir şekilde artırır, çünkü bu durumda yapıdaki yatay yüklerin dağılımı ve direnç kapasitesi değişir. Yapıdaki burkulma etkileri, dolgu duvarların olmadığı bölgelerde daha yoğunlaşabilir ve bu durum sismik performansı olumsuz yönde etkileyebilir. Genel olarak bu etkileri , yapının rijitliğini azaltır, bu da zaman periyodunun, Çatı katı ötelemesinin artmasına ve taban kesme kuvvetinin azalmasına neden olur ve yapıda yumuşak kat düzensizliği gibi durumları artırabilir.

Bu nedenle, yapı tasarımında dolgu duvarların etkileri ve doğru modellenmesi büyük önem taşır. Dolgu duvarların yapıya entegre edilmesi ve doğru bir şekilde modellenmesi, yapıya burkulmaya karşı dayanıklılık sağlar ve sismik performansı iyileştirir.

• Zemin kat yüksekliği

Araştırmalar, zemin kat yüksekliğinin artmasıyla doğrusal bir şekilde sonuçların değiştiğini ortaya koymaktadır. Bu durumun sismik performans üzerinde olumlu veya olumsuz bir etki yarattığı gözlemlenmiştir. Genellikle zemin kat yüksekliği arttıkça binanın rijitliği azalır ve bu durum diğer faktörleri farklı şekillerde etkiler.

Bina periyodu genellikle artar. Yani, yapıdaki titreşim süresi uzar. Çatı katındaki öteleme miktarı da genellikle artar. Bu, deprem yükleri altında çatı katının daha fazla yer değiştireceği anlamına gelir. Taban kesme kuvveti genellikle azalır. Bu, yapıya etki eden yatay kuvvetlerin tabanda daha az yoğun şekilde hissedileceği anlamına gelir. Burulma düzensizliği genellikle artar. Bu, yapıdaki burulma etkilerinin dengesiz bir şekilde dağıldığını ifade eder. Yumuşak kat düzensizliği genellikle artar.

Bu faktörler, zemin kat yüksekliğinin yapı tasarımı ve deprem güvenliği açısından önemli olduğunu göstermektedir. Tasarım sürecinde bu etkilerin dikkate alınması ve uygun önlemlerin alınması önemlidir.

• Asma kat varlığı ve farklı şekilleri

Asma katın varlığı, yanal yüklerin etkisi altında yapının davranışında önemli bir değişikliğe neden olur. Asma katın varlığı, yapının burkulma olasılığını belirgin bir şekilde artırır. Asma katlar, Rijitlik Dengelemesi: Asma kat, yapıdaki rijitlik dengesini değiştirebilir. Rijitlik farklılıkları, yanal yüklerin eşit şekilde dağılmasını engelleyebilir ve deformasyonları belirli bölgelere odaklayabilir. Asma katın olduğu bölgelerde deformasyonlar yoğunlaşabilir ve bu da burkulma olasılığını artırır. Yük Transferi: Asma kat, yüklerin yapı içerisinde farklı şekillerde transfer edilmesine neden olabilir. Asma katlar daha fazla mafsal gerektirebilir. Her bir kat seviyesindeki mafsal sayısı, katlar arasındaki yük aktarımını ve yapısal stabiliteyi sağlamak için önemlidir.

Farklı asma kat şekillerinin incelenmesi, periyotlarda minimal değişimler olduğunu göstermektedir. Bununla birlikte, B tipi bina C tipi binaya göre burulma düzensizliği üzerinde daha büyük bir olasılığa sahip olduğu, ve B tipi bir binada taban kesme kuvvetinin biraz daha arttığı gözlemlenmiştir. Bu sonuçlar, yapı tasarımında asma kat şeklinin dikkate alınması gerektiğini göstermektedir. Yapı tasarımcıları ve mühendisler, asma katların şeklini ve sayısını, burulma düzensizliği gibi faktörleri göz önünde bulundurarak yapısal performansı optimize etmelidir. Bu şekilde, daha güvenli ve dayanıklı binalar inşa etmek mümkün olabilir

• Doğrusal (Linear) olmayan ve doğrusal (Linear) analizi sonuçlarının farkları

Doğrusal Tepki Spektral Analizi: Bu yöntemde, yapıya yer ivmesi kaydı kullanılarak belirlenen bir yer ivmesi spektrumu uygulanır. bu çalışmada istanbulda yapıya yer ivmesi kaydı kullanılmıştır.

Doğrusal olmayan pushover analizi ise bu yöntemde, yapıya doğrusal olmayan bir yük-gevşeme modeli kullanılarak yavaşça artan yatay yükler uygulanır.Bu çalışmada, yapıların doğrusal olmayan davranışını değerlendirir ve sonuç olarak, yapıların plastik mukavemet kapasitesi, plastik deformasyon dağılımı ve hasar mekanizmaları gibi bilgilere erişim sağlamıştır.

• Sonuçların genel değerlendirmesi

Bu çalışma, dolgu duvarların çubuk elemanı olarak modellenmesinin betonarme çerçeve binaların sismik performansına olan etkilerini detaylı bir şekilde incelenmiştir. Elde edilen sonuçlar, yapı tasarımında dolgu duvarlarının deprem etkisi altında yapı davranışını iyileştirebileceğini göstermektedir. Ayrıca, zemin kat yüksekliği ve asma kat şekillerinin, yapıdaki deformasyonları kontrol etme yeteneği üzerinde önemli bir etkiye sahip olduğu görülmüştür.

Bu çalışmanın bulguları, mühendislik uygulamalarında sismik performansı artırmak amacıyla yapı tasarımında dikkate alınabilir. Gelecekteki araştırmalar, farklı parametrelerin etkileşimini daha ayrıntılı bir şekilde ve özelikle asma kat etkisi inceleyerek, yapıların daha güvenli hale getirilmesine yönelik daha spesifik önerilere ışık tutabilir.

KAYNAKÇA

- [1] Sezen, H., Whittaker, A.S., Elwood, K.J., Mosalam, K.M., Performance of reinforced concrete buildings during the August 17, 1999. Engineering Structures, 25, 103–114, 2003.
- [2] Smith, B.S., Lateral stiffness of infilled frames. Journal of the Structural A.S.C.E., 88, 1962.
- [3] Zarnic, R., Tomazevic, M., The behaviour of masonry infilled reinforced concrete frames subjected to cyclic lateral loding: References for data base of confined masonry walls. Proceeding of 8WCEE, 6, 863-870, 1984.
- [4] Baran M,, Dolgu Duvarların Betonarme Çerçeveli Yapıların Davranışı Üzerindeki Etkilerinin İncelenmesi, Kırıkkale Üniversitesi İnş. Müh. Böl., 71450, Kırıkkale., 2011.
- [5] Mert, S., Dolgu Duvarların Betonarme Taşıyıcı Sistem Performansına Etkisinin Belirlenmesi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 2015.
- [6] Öztürkoğlu, O., Kısmi Boşluklu Dolgu Duvarlı Betonarme Çerçevelerin Doğrusal Olmayan Davranışının İncelenmesi.Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Yüksek Lisans Tezi, 2016.
- [7] Durmazgezer, E., Dolgu Duvarlı Betonarme Çerçevelerin Deprem Etkileri Altındaki Davranışının İncelenmesi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Yüksek Lisans Tezi, 2013.
- [8] Tetik, D., Dolgu Duvarların Betonarme Yapıların Serbest Titreşimine Etkisi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2007.
- [9] Dowrick, D.J., Earthquake Resistant Design for Engineers and Architects. JohnWiley & Son, New York, 1987.
- [10] Durmuş, A., Öztürk, H., Depremlerde Göçen Binalardan Öğrenilenler: Kocaeli Örneği. 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, 25-27 Eylül, 2013.
- [11] Bob, C., Mărginean, S., Scurt, A., Theoretical/experimental study of reinforcedconcrete frame with masonry infill. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 169(11), 825-839, 2016.
- [12] Zhai, C.-H., Wang X.-M., Kong J.-C. and Wang X.-H., Finite-element analysis of out-of-plane behaviour of masonry infill. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 17(3), 203-215, 2018.
- [13] Wang, L., Qian, K., Fu, F., Deng, X.F., Experimental study on seismic behavior RC frames with different infilled masonry. Magazine of Concrete Research, 1-23, 2020.

- [14] Dautaj, A.D., Kabashi, N., Proposed analysis model for infilled reinforced concrete frames. Proceedings of the Institution of Civil Engineers Structures and Buildings, 172(2), 99-112, 2019.
- [15] Ramachandra, S., Ramakrishna, V. B., Vasantha, Vedant, V., The influence of infill masonry wall in RC frames subjected to seismic load for sustainable structure the influence of infill masonry wall in RC frames subjected to seismic load for sustainable structure. IOP Conference Series: Materials Science and Engineering, 955, 2020.
- [16] Dorji, J., Thambiratnam, D. P., Modelling and analysis of infilled frame structures under seismic loads. The Open Construction and Building Technology Journal, 3, 119-126, 2009.
- [17] Mahmud, K., Rashadul Islam, M., Al-Amin, M., Study the reinforced concrete frame with brick masonry infill due to lateral loads. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 10(4), 35-40, 2010.
- [18] Kodur, V. K. R., Erki, M. A., Quenneville, J. H. P., Seismic design and analysis of masonry-infilled frames. Canadian Journal of Civil Engineering, 22(3), 576-587, 1995.
- [19] Dolsek, M., Fajfar, P., The effect of masonry infills on the seismic response of a four storey reinforced concrete frame deterministic assessment. EngineeringStructures, 30(7), 1991-2001, 2008.
- [20] Yakut, A., Binici, B., Demirel, O.İ., Özcebe, G., Dolgu duvarların deprem davranışına etkisi. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Mustafa Kemal Üniversitesi, Hatay, 25-27 Eylül, 2013.
- [21] Meral, E., İnel, M., Düşük ve orta yükseklikteki betonarme binaların yapısal parametre özelliklerinin değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 468-477, 2016.
- [22] Furtado, A., Rodrigues, H., Arêde, A., Varum, H., Modal identification of infill masonry walls with different characteristics. Engineering Structures, 145, 118-134, 2017.
- [23] Morfidis, K., Kostinakis, K., The role of masonry infills on the damage response of R/C buildings subjected to seismic sequences. Engineering Structures, 131, 459-476, 2017.
- [24] Cavaleri, L., Trapani, F.D., Asteris, P.G., Sarhosis, V., Influence of column shear failure on pushover based assessment of masonry infilled reinforced concrete framed structures: A case study. Soil Dynamics and Earthquake Engineering, 100, 98-112, 2017.
- [25] Karasu, T.O., Erdem, R.T., Demir, A., Bağcı, M., Yumuşak kat düzensizliği bulunan betonarme bir binanın performansının incelenmesi. C.B.Ü. Fen Bilimleri Dergisi, 7(2), 61-69, 2011.
- [26] Sayın, B., Yıldızlar, B., Kaplan, S.A., Betonarme yapı analizlerinde dolgu duvarların modellenme teknikleri. IMO 17.Teknik Kongre ve Sergisi, İstanbul, 15-17 Nisan 2004.

- [27] Kaltakcı, M.Y., Arslan, M.H., Taşıyıcı olmayan tuğla dolgu duvarların yapı davranış katsayısına olan etkisinin incelenmesi. Deprem Sempozyumu, 598-605, Kocaeli, 2005.
- [28] Govindan, P., Santhakumar A. R., Ductility of infilled frames. ACI Journal, 86, 567-567, 1986.
- [29] Bayülke, N., Betonarme yapının dolgu duvarı. Türkiye Mühendislik Haberleri, 426, 85-98, 2003.
- [30] Akkuzu, A.V., Betonarme Çerçeveli Dolgu Duvarların Deprem Etkisi Altındaki Dinamik Davranışının İncelenmesi.İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 2007.
- [31] AFAD Başkanlığı, Türkiye Bina Deprem Yönetmeliği, Resmi Gazete, Sayı: 30364 (Mükerrer), 2018.
- [32] Gürel, M.A., Kargir Dolgu Duvarların Düzlemlerine Dik Deprem Etkileri Altında Davranışı.İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 2001.
- [33] Bayrak,O.F., Bikçe, M., Dolgu duvarın yapısal düzensizliklere ve performansa etkisinin mevcut bir yapı üzerinde incelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(3), 241-254, 2019.
- [34] Sönmez, S., Deprem Etkisinde Betonarme Binalarda Hasarın Oluşmasında Dolgu Duvarların Modellenmesi ve Taşıyıcı SistemeKatkısı. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 2005.
- [35] Applied Technology Council (ATC), "Guidelines for Performance-Based Seismic Design of Buildings," Redwood City, California, USA, FEMA P-58- 6, 2018.
- [36] Seismic Safety Commission, Seismic Evaluation and Retrofit of Existing Concrete Buildings. Applied Technology Council, Redwood City, ATC-40, SSC 96-01, 1996.
- [37] TS-500, Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara, 2000.
- [38] FEMA, Prestandard and Commentary for the Seismic Rehabilitation of Buildings. American Society of Civil Engineers, 356, 2000.

ÖZGEÇMİŞ

Ad-Soyad

: Vessam ALMANNAA

ÖĞRENİM DURUMU:

- Lisans : 2020, Anadolu Üniversitesi İnşaat Mühendisliği
- Yükseklisans : 2024, Sakarya Üniversitesi Fen Bilimleri Enstitüsü İnşaat mühendisliği Anabilim Dalı,

MESLEKİ DENEYİM VE ÖDÜLLER:

- 2020-2023 yılları arasında Tatweer firması'nda teknik ofis mühendisi olarak çalıştı.
- 2023 devam ediyor Suudi Arabistan Baytur firması'nda teknik ofis mühendisi olarak çalıştı.

TEZDEN TÜRETİLEN ESERLER:

• Effect of modelling the infill wall as a strut element on the structure behavior, Journal of Radiation Research and Applied Sciences 2024

DİĞER ESERLER: