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FLEXIGPT: ENGAGING WITH DOCUMENTS 

SUMMARY 

In the rapidly evolving domain of AI, the emergence of LLMs has catalyzed a shift 

across various sectors, fundamentally reshaping the dynamics of digital interaction. 

Amidst this technological renaissance, our FlexiGPT emerges as a groundbreaking 

application, leveraging the full potential of these advancements. Designed as a CLI 

program, FlexiGPT serves as a bridge between users and their digital files, enabling a 

high level of interactive engagement. 

At the heart of FlexiGPT's innovation is its ability to download and integrate any LLM 

or embedding model from the Hugging Face platform. This feature empowers users to 

tap into a diverse array of the latest language models, ensuring they remain at the 

forefront of linguistic technology. The integration process is streamlined and user-

friendly, making advanced AI tools accessible to a broader audience. 

FlexiGPT employs the RAG technique, a sophisticated approach that combines LLMs 

with advanced retrieval methods. This amalgamation allows the program to not only 

generate relevant responses but also to show the data sources that it used to answer the 

queries, enhancing the depth and accuracy of interactions.Users can query their digital 

files, receive insightful responses, and engage in a dialogue that was once the domain 

of science fiction. 

The flexibility of FlexiGPT extends beyond its model integration capabilities. Users 

can choose to load models in their full version for maximum performance or quantized 

forms and specialized formats like GPTQ or GGML, balancing performance with 

resource requirements. This adaptability makes FlexiGPT a versatile tool, suitable for 

various applications, from academic research to business analytics 

Another feature of FlexiGPT is its local execution capability. By running the program 

on local machines, users benefit from enhanced data privacy and security. This local 

approach also allows for faster response times and reduced reliance on cloud services, 

which is particularly advantageous in scenarios where internet connectivity is limited 

or unreliable. 

FlexiGPT's impact extends beyond its technical prowess. The application opens new 

avenues for how individuals and organizations interact with their digital data. From 

simplifying complex data analysis to enabling more natural and efficient file 

management, FlexiGPT stands as a testament to the practical applications of AI in 

everyday life. 

FlexiGPT represents a significant leap forward in the field of AI and digital interaction. 

By harnessing the power of the latest language models and embedding them within an 

accessible and versatile interface, FlexiGPT is not just a tool; it is a harbinger of a new 

era in digital communication and interaction. As technology continues to evolve, 

FlexiGPT is poised to adapt and grow, offering users an ever-expanding suite of 

capabilities to explore the full potential of AI-driven digital engagement.  
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FLEXIGPT: BELGELERLE ETKİLEŞİM 

ÖZET 

Yapay zekanın hızla gelişimi ile birlikte Büyük Dil Modelleri (LLM'ler) olarak 

adlandırılan teknolojiler ortaya çıkışmıştır. Bu teknolojiler bir çok sektörlerde  

değişimlere yol açmıştır. Ayrıca  mevcut dijital etkileşimin temel dinamiklerini önemli 

ölçüde değiştirmiştir. Bu teknolojik gelişmelere dayanarak bu çalışmada FlexiGPT 

adlı bir uygulama geliştirilmiştir. Bu uygulama, bu teknolojilerin potansiyelini 

koruyarak, komut satırı arayüzü (CLI) programı olarak tasarlanmıştır.  Geliştirilen 

program kullanıcılar ile dijital dosyaları arasında esnek bir etkileşim düzeyi 

sağlamaktadır. FlexiGPT, kullanıcıların dijital içeriklerle olan etkileşim kurma 

biçimine yeni bir yaklaşım getirirken aynı zamanda yapay zeka teknolojilerinin sahip 

olduğu geniş imkanları da kullanıcılara sunmaktadır. FlexiGPT, kullanıcılar ve verileri 

arasında güçlü bağlantı kurma yeteneği sayesinde büyük dil modellerinin kullanımı 

için yeni bir bakış açısı oluşturmaktadır. Bu program, kullanıcı deneyimini 

zenginleştirmenin yanı sıra, dijital dosyaların kullanılabilirliğini de maksimize etmeyi 

amaçlamaktadır. 

FlexiGPT'nin yenilikçilik merkezinde, Hugging Face platformundan herhangi bir 

LLM veya gömülü modeli indirme ve entegre etme kapasitesi yer almaktadır. Bu 

özellik, kullanıcılara, dil teknolojisi alanındaki en son gelişmelere erişim imkanı 

sunarak, onları bu alandaki yeniliklerin ön saflarında tutmaktadır. Entegrasyon süreci, 

son derece akıcı ve kullanıcı dostu olarak tasarlanmıştır. FlexiGPT bu özelliği ile, 

gelişmiş yapay zeka araçlarını daha geniş bir kitleye eriştirme imkanı vermektedir. Dil 

modellemesinin son yeniliklerini kullanarak, FlexiGPT, metin işleme, anlama ve 

etkileşimde yeni bir yaklaşım getirmektedir. Bu, çok yönlü ve gelişmiş dil modelleri 

arasından seçim yapabilme özgürlüğü ile birleştiğinde, kullanıcıların bireysel 

ihtiyaçlarına ve özel senaryolarına göre özelleştirilebilir bir ortam sunar. FlexiGPT, bu 

yenilikçi yaklaşımıyla, dil işleme teknolojilerinin kapsamını genişleterek, 

kullanıcıların dijital içerikle etkileşim şeklini yeniden tanımlamakta ve böylece yapay 

zekanın dil anlayışını ve üretimini, gerçek dünya uygulamalarıyla bütünleştirmektedir. 

FlexiGPT, geleneksel dil modellerini ileri düzey bilgi alma yöntemleriyle birleştiren 

sofistike bir yaklaşım olan RAG tekniğini kullanmaktadır. Bu entegrasyon, programın 

sadece ilgili yanıtlar üretmesini sağlamakla kalmaz, aynı zamanda sorgulara yanıt 

verirken kullandığı veri kaynaklarını göstererek etkileşimlerin derinliğini ve 

doğruluğunu artırır. Kullanıcılar, dijital dosyalarını sorgulayabilir, içgörülü yanıtlar 

alabilir ve bir zamanlar bilim kurgunun alanı olarak kabul edilen bir diyalog 

başlatabilirler. FlexiGPT'nin bu yeteneği, yapay zekanın sadece veri işleme ve yanıt 

üretme kabiliyetini değil, aynı zamanda anlamayı ve öğrenmeyi de içeren çok daha 

geniş bir potansiyeli ortaya koymaktadır. Bu teknik sayesinde, kullanıcılar sadece 

zengin ve katmanlı bilgiler elde etmekle kalmaz, aynı zamanda programın cevaplarını 

oluştururken hangi bilgi kaynaklarından yararlandığını anlama fırsatı bulurlar. Buda 

verilen yanıtların şeffaflığını ve güvenilirliğini artırmaktadır. 
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FlexiGPT'nin esnekliği, sadece model entegrasyon yetenekleri ile sınırlı değildir; aynı 

zamanda kullanıcıların özelleştirilmiş ihtiyaçlarına uygun çözümler sunma yeteneği 

ile de dikkat çeker. Kullanıcılar, FlexiGPT içinde sunulan geniş model yelpazesi 

arasından seçim yaparak, projelerinin gereksinimlerine en iyi şekilde uygun olan 

modeli seçme özgürlüğüne sahiptirler. Tam sürüm modeller, en yüksek performansı 

elde etmek isteyenler için idealdir, bu sayede karmaşık veri analizlerini veya büyük 

ölçekli iş analitiklerini sorunsuz bir şekilde gerçekleştirebilirler. Ancak, kaynak 

gereksinimlerini optimize etmek veya belirli senaryolara uyum sağlamak isteyenler 

için, kuantize edilmiş formlar veya özel GPTQ veya GGML formatları gibi alternatif 

seçenekler de mevcuttur. Bu uyumluluk, FlexiGPT'yi akademik araştırmalardan iş 

analitiklerine kadar geniş bir yelpazede uygulamalara uygun bir araç haline getirir. 

Kullanıcıların projelerine en iyi şekilde hizmet edebilmesi için özelleştirilebilir bir 

yapı sunarak, çeşitli performans ve kaynak gereksinimlerine mükemmel bir şekilde 

uyan çözümler sunar. Bu sayede, her türlü projenin gereksinimlerine uygun bir 

FlexiGPT konfigürasyonu oluşturmak, kullanıcıların elindedir. 

FlexiGPT'nin bir diğer önemli özelliği, yerel çalıştırma kapasitesidir. Programı yerel 

makinelerde çalıştırarak, kullanıcılar gelişmiş veri gizliliği ve güvenliğinden 

yararlanır. Bu yerel yaklaşım, aynı zamanda daha hızlı yanıt süreleri sağlar ve bulut 

hizmetlerine olan bağımlılığı azaltır. Bu yapı, özellikle internet bağlantısının sınırlı 

veya güvenilmez olduğu durumlarda büyük avantaj sağlar. Yerel çalıştırma yeteneği, 

kullanıcıların kendi donanımlarını kullanarak FlexiGPT'nin tüm özelliklerinden 

faydalanmalarını sağlar. Bu yetenek, özellikle veri hassasiyeti yüksek olan projelerde 

büyük önem taşır. Ayrıca, yerel çalıştırma, veri işleme ve analiz süreçlerinde daha 

fazla kontrol ve esneklik sunar, buda kullanıcıların özel gereksinimlerine ve çalışma 

koşullarına daha iyi uyum sağlamalarına olanak tanır. 

FlexiGPT, bireylerin ve kuruluşların dijital verilerle etkileşim kurma yöntemlerinde 

yeni kapılar aralamaktadır. Sadece karmaşık veri analizlerini basitleştirmekle kalmaz, 

aynı zamanda daha doğal ve verimli dosya yönetimine olanak tanır. Bu sayede yapay 

zekanın günlük yaşamdaki somut uygulamalarına dair çarpıcı bir örnek sunar. 

FlexiGPT'nin bu geniş kapsamlı etkisi, yapay zekanın yalnızca akademik ve 

profesyonel alanlarla sınırlı olmadığını, aynı zamanda günlük yaşamın her alanında 

değerli bir rol oynayabileceğini göstermektedir. Ayrıca, toplumda yapay zekanın 

yaygınlaşmasına büyük katkı sağlayan bir uygulama özelliği taşımaktadır. Yapay zeka 

teknolojilerinin yaygınlaşması, günlük yaşamımızı dönüştürerek, her seviyede 

kullanıcı için daha erişilebilir ve kullanıcı dostu hale getirir. FlexiGPT, bu değişimdeki 

öncü rolü ile, dijital etkileşim ve yapay zeka kullanımının geleceğini şekillendirmeye 

yardımcı oluyor. Bu sayede, iş dünyasından eğitime, sanat ve eğlenceden sağlık 

hizmetlerine kadar birçok farklı alanda çeşitli uygulamaların önünü açıyor ve 

kullanıcıların dijital dünyayı daha etkili bir şekilde deneyimlemesine olanak tanıyor. 

FlexiGPT, yapay zeka ve dijital etkileşim alanlarında kaydedilen ilerlemeler arasında 

önemli bir adımı temsil etmektedir. En son dil modellerinin gücünü kullanarak ve bu 

modelleri erişilebilir, çok yönlü bir arayüz içinde entegre ederek, FlexiGPT sadece bir 

araç olmanın dışında, dijital iletişim ve etkileşimde yeni bir bakış açısı getirmiştir. 

Teknoloji alanındaki sürekli gelişmelerle birlikte, FlexiGPT'nin de sürekli olarak 

adapte olması ve büyümesine ihtiyaç vardır. FlexiGPT, yapay zekanın sadece veri 

işleme ve dil anlama yeteneklerine dayanmayıp, bu teknolojileri kullanıcıların günlük 

etkileşimlerine entegre ederek, dijital dünyada daha zengin ve anlamlı deneyimler 

oluşturmak için yeni yollar açmaktadır. Bu gelişme, yapay zeka ve dil modellerinin, 

geniş bir kullanım alanına sahip pratik ve etkili araçlar olarak kullanımını 
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yaygınlaştırırken, dijital etkileşim alanında yeni standartlar belirlemekte ve geleceğin 

teknolojik manzarasını şekillendirmektedir. FlexiGPT'nin bu yenilikçi ve esnek yapısı, 

yapay zeka tabanlı dijital etkileşimin, hem iş dünyasında hem de günlük yaşamda nasıl 

bir dönüşüm yaratabileceğine dair önemli bir örnek teşkil etmektedir. 
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1. INTRODUCTION 

In this section, we lay the groundwork for our work by delving into the general 

concepts fundamental to understanding our study. This segment is designed to provide 

a comprehensive overview of the key principles, theories, and frameworks that form 

the basis of our research. It serves as a primer, equipping the reader with the necessary 

background and context to fully appreciate the nuances and intricacies of the topics 

discussed in subsequent chapters. This foundational knowledge is crucial for a holistic 

understanding of the advanced concepts and methodologies that will be examined in 

detail as we progress through the thesis. 

 Natural Language Processing 

In the ever-evolving landscape of Artificial Intelligence (AI), one area has emerged as 

a powerful catalyst for change: Natrual Language Processing (NLP). NLP is not 

merely a technological endeavor; it represents a profound shift in how machines 

understand and interact with human language, opening doors to unprecedented 

possibilities. At its core, NLP is the interdisciplinary field that bridges the intricacies 

of human language with the computational power of machines. It seeks to equip 

computers with the ability to comprehend, interpret, and generate human-like text, 

thereby facilitating meaningful communication between humans and machines. 

The essence of NLP lies in its capacity to unravel the complexity of language, 

encompassing not just the syntactic structure but also the semantics and pragmatics 

that give words and sentences their nuanced meaning. By delving into the subtle 

nuances of language, NLP enables machines to go beyond mere word recognition and 

engage in a more profound understanding of context, intent, and sentiment. This  

capability has profound implications across various domains, ranging from customer 

service interactions and virtual assistants to sentiment analysis in social media, 

advanced language translation and text generation. 

In its quest to bridge the gap between human language and machines, NLP draws upon 

a diverse array of techniques and methodologies, including machine learning, deep 
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learning, and linguistic theories. These tools empower algorithms to discern patterns, 

learn from vast datasets, and continuously refine their language-processing 

capabilities. Sentiment analysis, named entity recognition, and machine translation are 

just a few examples of the practical applications of NLP that have become integral 

parts of our daily lives. 

Furthermore, the advent of pre-trained language models, such as Generative Pre-

trained Transformer (GPT-3), has ushered in a new era in NLP, where models can 

understand and generate human-like text with remarkable fluency and coherence. 

These models, trained on massive datasets, have the ability to generalize their 

understanding across  a wide range of topics and contexts, enabling them to adapt to 

diverse language tasks with minimal fine-tuning. 

As NLP continues to advance, its impact on society is profound. Beyond enhancing 

the efficiency of human-computer interactions, NLP contributes to breaking down 

language barriers, fostering cross-cultural communication, and promoting inclusivity. 

It empowers applications to be more user-friendly, facilitating accessibility for 

individuals with diverse linguistic backgrounds. Moreover, the ethical dimensions of 

NLP, including concerns related to bias in language models and the responsible use of 

AI in decision-making processes, have sparked critical discussions within the scientific 

and societal realms. 

 Large Language Models 

Within the dynamic and swiftly evolving realm of NLP, the emergence and 

proliferation of Large Language Models (LLMs) stands as a turning point. These 

models, characterized by expansive neural architectures and formidable parameter 

counts, have become a focal point of attention, driving significant advancements in the 

capabilities of AI systems to understand and generate human-like text. 

The diffusion of LLMs across various domains is noteworthy, as their influence 

extends beyond the confines of traditional NLP research. These models, exemplified 

prominently by GPT-3, have found applications ranging from content creation and 

language translation to code generation and creative writing. Their widespread 

adoption underscores a paradigm shift in how machines interact with and process 
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natural language, permeating diverse sectors and reshaping the landscape of AI 

applications. 

 Quantization 

In the expansive domain of LLMs, where the execution of these models poses 

formidable computational challenges, the pursuit of computational efficiency and 

model deployment has given rise to a significant area of inquiry known as quantization. 

This technique, characterized by the process of reducing the precision of numerical 

representations within neural network parameters, holds paramount importance in the 

context of LLMs, particularly given the computational challenges inherent in their 

execution. Quantization is instrumental in addressing the formidable computational 

demands associated with the deployment of LLMs in real-world applications, offering 

a pathway towards enhanced efficiency without compromising the inherent linguistic 

capabilities of these models. 

The exploration of quantization within the realm of LLMs signifies a nuanced 

convergence of theoretical considerations and practical implications. As LLMs 

continue to gain prominence in various applications, from natural language 

understanding to generation tasks, the imperative to optimize their computational 

footprint becomes increasingly evident. Quantization, as a methodological approach, 

presents a compelling avenue to strike a delicate balance between model efficiency 

and linguistic prowess, crucial in mitigating the challenges posed by the computational 

intensity inherent in running LLMs. 

 Prompt Engineering 

Within the intricate domain of LLMs, the concept of prompt engineering emerges as a 

focal point of scholarly investigation. Prompt engineering, a nuanced and deliberate 

formulation of input queries or instructions, plays a crucial role in influencing the 

output and behavior of LLMs. This strategic approach stands as a response to the 

inherent challenges associated with effectively harnessing the vast linguistic 

capabilities of these models, thereby contributing to the enhacement of LLMs. 

The impetus behind the exploration of prompt engineering lies in the acknowledgment 

of the intricacies and potential biases embedded in LLMs. As these models exhibit 



4 

immense linguistic proficiency, they also possess the capacity to generate outputs that 

may inadvertently reflect or perpetuate existing societal biases. Prompt engineering, 

as a methodological intervention, seeks to refine and guide the language generation 

process, offering researchers and practitioners a means to shape the output of LLMs in 

a more controlled and intentional manner. 

 Embedding Models 

Embedding models in NLP transform textual data into embedding vectors, numerical 

representations that capture semantic relationships and syntactic structures within the 

language. These vectors represent words or phrases as points in a multidimensional 

space, allowing for the quantification of linguistic similarities and differences. The 

conversion to embedding vectors is crucial for a variety of NLP tasks, enabling 

machines to process and understand human language in a meaningful and 

computationally efficient manner. 

 Retrieval Augmented Generation 

In the expansive landscape of  LLMs, the emergence of the Retrieval-Augmented 

Generation (RAG) paradigm marks a significant innovation, introducing a nuanced 

and multifaceted framework to the field. RAG marries retrieval-based mechanisms 

with the sophisticated generative capacities inherent in modern language models. This 

approach not only enhances the capabilities of LLMs but also enriches the quality of 

generated content by integrating contextual data from a myriad of external sources. 

In the realms of AI and NLP, RAG signifies a cutting-edge frontier. It demonstrates 

an advanced amalgamation of computational techniques, which extends beyond basic 

language understanding and generation. By effectively sourcing and incorporating 

relevant external information, RAG-equipped LLMs achieve a higher level of 

accuracy and context-awareness in their responses. This is especially pivotal in tasks 

that demand nuanced understanding and up-to-date knowledge, such as answering 

complex queries, content creation, and dynamic text generation. 

RAG's potential in enhancing the interactivity and adaptability of LLMs is profound. 

It allows these models to transcend traditional boundaries, moving from static text 

generation to creating outputs that reflect current, real-world information and nuanced 
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understanding. This makes RAG an invaluable asset in applications where the 

synthesis of vast amounts of data is crucial, including in sectors like healthcare, 

finance, legal analysis, and customer service, where accurate and contextually rich 

responses are essential. The RAG framework, by bridging the gap between generative 

prowess and contextual relevance, is poised to redefine the standards of language 

models, pushing the envelope of what is achievable in the field of AI-driven language 

processing and interaction. 

 Semantic Search 

Leveraging advanced language models and text embeddings, has significantly 

transformed the landscape of information retrieval, particularly in the context of RAG 

techniques. This approach enables a markedly more precise and efficient method for 

document retrieval. By understanding the deeper meaning and context embedded 

within queries, semantic search transcends traditional keyword-based methods, 

offering results that are not just relevant, but contextually aligned with the user's intent. 

This evolution in search technology marks a substantial leap forward in our ability to 

access and utilize information effectively. 

The incorporation of Semantic Search within the purview of LLMs signifies a notable 

convergence of advanced computational techniques, reflecting a purposeful effort to 

transcend traditional keyword-based search methodologies. In the expansive landscape 

of natural language processing and artificial intelligence, LLMs have demonstrated 

unparalleled proficiency in understanding and generating coherent textual content. 

However, the integration of Semantic Search introduces an additional layer of 

sophistication, aiming to refine the search process by incorporating a deeper 

understanding of the meaning, context, and relationships embedded within textual 

data. 

At its core, Semantic Search epitomizes a distinctive paradigm in information retrieval. 

It departs from conventional keyword matching approaches and seeks to comprehend 

the underlying semantics of user queries, enabling a more contextually relevant 

exploration of large datasets. By harnessing the semantic understanding encapsulated 

within LLMs, Semantic Search aspires to bridge the gap between user intent and search 

results, offering a more nuanced and contextually rich retrieval experience. 
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 Hugging Face 

Hugging Face has emerged as a leading figure in the realm of AI, particularly in the 

field of NLP. Renowned for its open-source approach, Hugging Face has democratized 

access to state-of-the-art language models and AI tools, fostering a collaborative 

environment for researchers, developers, and organizations worldwide (Hugging Face, 

2023). Beyond providing access to these models, Hugging Face has developed an 

ecosystem that facilitates model training, sharing, and deployment, thus accelerating 

innovation and application in AI. 

 LangChain 

LangChain, a novel framework in the realm of computational linguistics and artificial 

intelligence, marks a significant advancement in the application and utilization of 

LLMs. Developed to streamline the integration and interaction of LLMs in complex 

applications, LangChain addresses the growing need for modular and flexible systems 

in the rapidly evolving field of NLP (LangChain, 2023). 

Fundamentally, LangChain is engineered to enable the construction of sophisticated 

language-based applications. It achieves this by providing a versatile framework that 

facilitates the orchestration of various components essential for advanced language 

processing tasks. These components include, but are not limited to, the LLMs 

themselves, retrieval mechanisms for sourcing information, reasoning modules, and 

intricate dialogue management systems. The framework is distinctively characterized 

by its modularity, allowing for seamless integration and interchange of different 

models and tools tailored to specific application requirements. 

 FlexiGPT Purpose and Importance 

The purpose and importance of FlexiGPT program center around its role in facilitating 

meaningful and interactive communication with documents, leveraging the Retrieval-

Augmented Generation (RAG) framework. This program is for enhancing the quality 

and relevance of generated answers while seamlessly integrating retrieval-based 

mechanisms and generative capabilities. Its significance lies in its ability to empower 

users to engage with textual content in a dynamic and contextually rich manner by 

utilizing AI-generated interactions, effectively bridging the gap between human intent 
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and information retrieval. FlexiGPT promotes effective interactions with documents, 

ultimately contributing to more efficient and impactful utilization of textual data in 

various senarios, thereby allowing users to have a better experience in dealing with 

their textual files. 
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2. LITERATURE OVERVIEW 

In this focused exploration of NLP, we aim to provide a succinct yet comprehensive 

view of its progression and breakthroughs, particularly through the lens of four key 

developments: the evolution of LLMs, the impact of quantization techniques, the 

advancements in embedding models, and the diverse applications of RAG, coupled 

with our research contributions. 

The evolution of NLP, particularly through the development of transformer-based 

models, is well-documented in a series of groundbreaking papers. Following the 

seminal "Attention Is All You Need" by Vaswani et al. (2017), which introduced the 

transformer model, there has been a surge in significant research contributing to this 

domain. The introduction of GPT by Radford et al. (2018), marked a pivotal moment 

in NLP, showcasing the model's ability to generate coherent and contextually relevant 

text. The subsequent iterations, notably GPT-2 and GPT-3 by (Radford et al. 2019; 

Brown et al. 2020) achieved  remarkable feats in advanced text generation. 

Bidirectional Encoder Representations from Transformers (BERT), introduced by 

Devlin et al. Devlin et al. (2018) represents another major advancement. BERT’s 

bidirectional training revolutionized the way models understand contextual 

relationships in text, setting new standards in a variety of language tasks. Following 

this line of thought, Raffel et al. (2020) introduction of the T5 (Text-To-Text Transfer 

Transformer) model represents a significant advancement in NLP. It reimagines 

various NLP tasks as uniform text-to-text conversions, offering a versatile and unified 

framework for addressing diverse NLP challenges. Large Language Models (LLMs) 

have shown remarkable proficiency in arithmetic and symbolic reasoning tasks using 

few-shot prompting methods, including the "chain-of-thought" technique, which 

leverages LLMs for problem decomposition and solution. In their study, Penedo et al. 

(2023) introduced 'Falcon', a Large Language Model, which challenges conventional 

training approaches. This model illustrates that models trained solely on carefully 

filtered and deduplicated web data can surpass the performance of those trained on 

established high-quality datasets like The Pile (Gao et al, 2020).
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Running LLMs presents significant challenges due to their high hardware costs and 

computational demands; the quantization technique in LLMs emerges as a strategy 

aimed at mitigating these issues, significantly enhancing model efficiency and 

scalability. Marking a breakthrough in the domain of LLMs, the Low-Rank Adaptation 

(LoRA) technique enables efficient fine-tuning of these models by introducing low-

rank matrices, significantly reducing the computational burden and resource 

requirements (Hu et al, 2021). Building on the foundation set by the LoRA technique, 

the Quantized Low-Rank Adaptation (QLORA) approach, introduced by Dettmers et 

al. (2023), takes this concept a step further. It allows for the fine-tuning of large 

models, such as those with 65B parameters, on a single 48GB Graphics Processing 

Unit (GPU), effectively balancing memory usage and performance. By combining 4-

bit quantized pretrained language models with LoRA, QLORA demonstrates its 

efficacy, outperforming existing models and offering significant innovations in 

memory management and model training efficiency. Addressing the substantial 

computational and storage demands of large-scale GPT models, Frantar (2023) 

developed Generative Pre-trained Transformers Quantization (GPTQ), a 

groundbreaking quantization approach. This method notably reduces model size by 

compressing to 3 or 4 bits per weight, effectively balancing the need for efficiency 

with minimal accuracy loss. In another study, Naveed et al. (2023) have meticulously 

compiled a comprehensive overview of recent advancements in LLMs, addressing a 

broad spectrum of topics including architectural innovations, efficiency 

improvements, and more. Their work not only provides detailed summaries and 

analyses of current models and datasets but also serves as an essential reference for the 

latest trends and insights in LLM research. 

In the sphere of NLP, embedding models have revolutionized how machines 

understand and interpret human language, serving as a cornerstone for various 

advanced applications and research. Efficiently creating vector representations of 

words that capture their contextual meanings within large text corpora was 

significantly advanced by the introduction of Word2Vec (Mikolov et al, 2013). This 

technique marked a substantial progression in the field by its ability to generate 

meaningful word embeddings. Building on the advancements made by Word2Vec, 

Global Vectors for Word Representation (GloVe) introduced by Pennington et al. 

(2014), further enriched the field of word embeddings. GloVe employed a unique 
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method that blends matrix factorization techniques with local context window 

approaches, capturing both global and local linguistic features in its embeddings. This 

development represented another significant step in the evolution of embedding 

models. The introduction of transformer models marked a significant advancement in 

the field of embedding models, leading to substantial improvements in their 

performance and capabilities. Addressing the limitations of both general-purpose and 

task-specific retrievers, the LLM-Embedder developed by Zhang et al. (2023) 

represents a significant advancement in retrieval augmentation for LLMs. Their 

innovative training strategies, such as LLM feedback-based optimization and multi-

task fine-tuning, have shown marked improvements in various retrieval scenarios. 

Asudandi et al. (2023) provide a thorough review of word embedding and deep 

learning models, focusing on their application in natural language processing tasks. 

Their study contrasts and compares various techniques, offering insights for selecting 

the most effective models for specific text analytics tasks. 

The RAG framework, introduced in the landmark paper "Retrieval-Augmented 

Generation for Knowledge-Intensive NLP Tasks" by Lewis et al. (2021), represents a 

development in NLP. This innovative framework integrates pre-trained parametric 

memory, such as seq2seq models, with non-parametric memory, notably a dense 

vector index of Wikipedia, thereby revolutionizing language generation tasks. RAG 

models excel in a variety of knowledge-intensive NLP tasks, especially in setting new 

benchmarks in open domain questioning-answering tasks, through their ability to 

generate specific, diverse, and factually accurate language. Building on this 

foundation, Melz (2023) further advanced the capabilities of RAG with the 

introduction of ARM-RAG, which enhances problem-solving in complex areas like 

grade-school math by efficiently using retrieval-augmented generation to store and 

access reasoning chains. 

Amidst these advancements, this thesis introcues FlexiGPT. FlexiGPT emerges as a 

program that adds flexibility to the RAG framework. It enables users to choose from 

a wide array of models on platforms like Hugging Face, thereby customizing the NLP 

experience to meet diverse needs and objectives (Alquaary et al,  2023; FlexiGPT, 

2023). FlexiGPT is a testament to the evolving synergy between user-centric design 

and cutting-edge NLP technologies, representing a significant leap forward in making 
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NLP frameworks more adaptable and aligned with the dynamic requirements of the 

field. 



 

3. METHODOLOGY 

In the methodology section of our study, we introduce FlexiGPT, an innovative 

Command Line Interface (CLI) program that incorporates the RAG framework to 

address the challenges of query-based information retrieval. A key feature of FlexiGPT 

is its user-driven design, which allows users to select both the embedding model and 

the LLM from the comprehensive range available on the Hugging Face platform. This 

unique capability offers unparalleled flexibility, enabling users to tailor the 

information retrieval process to their specific needs. FlexiGPT harnesses these chosen 

models to process and interpret complex queries across various file formats, thereby 

enhancing the precision and contextual relevance of the retrieved information. This 

approach represents a significant methodological shift in the application of NLP 

technologies, providing a more adaptable and efficient solution for extracting relevant 

information in response to diverse user queries. The integration of user-selected 

models in FlexiGPT not only demonstrates an advancement in NLP capabilities but 

also contributes a novel perspective to the field of intelligent information retrieval. 

Figure 3.1 presents a simplified overview of the RAG process. It begins with a 

repository of documents, which serves as a knowledge base. When a query is made, 

the RAG system first engages in the retrieval phase, where relevant information is 

sourced from the documents. This information then flows into the generation phase, 

where the retrieved data is synthesized into a coherent answer. The final output is 

delivered to the user, who interacts with the system, possibly through a computer 

interface. The flow from documents to a user's answer encapsulates the essence of 

RAG, blending retrieval of information with generative AI to provide informed and 

accurate responses. 
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Figure 3.1. RAG Framework 

 FlexiGPT Process 

The FlexiGPT program leverages the RAG technique, augmenting it with enhanced 

customization features that empower users to tailor the information retrieval and 

generation process. As depicted in the Figure 3.2, the FlexiGPT architecture begins 

with the extraction of data from a specified source, which is then segmented into 

discrete chunks. These chunks are processed through a user-selected embedding 

model, resulting in a series of embeddings that populate a vector database. Through 

semantic search, the most relevant embeddings are identified in response to a user-

generated query, which are then utilized by a chosen LLM to generate an accurate and 

contextually relevant answer. This figure encapsulates the FlexiGPT's workflow, 

illustrating its modular design that enables users to select different embedding models 

and LLMs for various purposes. 
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Figure 3.2. FlexiGPT Process 

3.1.1. Data source and extraction 

The FlexiGPT program initiates its process by sourcing documents, which may come 

in various formats such as TXT, DOCX, or PDF. Users can provide multiple files as 

input, facilitating a comprehensive knowledge base for the system to draw from. By 

default, FlexiGPT searches for these files within a 'docs' folder located in the program's 

directory. However, this pathway is not fixed; users have the flexibility to customize 

the file path, allowing them to direct FlexiGPT to alternative locations where their 

documents are stored. This adaptability ensures that the system can access the 

necessary information to address user queries from a diverse range of document 

repositories. 



16 

3.1.2. Chunking data 

Once the FlexiGPT program has gathered the data from the provided documents, it 

divides the data into smaller sections, or 'chunks', to accommodate the input size 

limitations of LLMs. Each chunk contains 1000 characters, with a 200-character 

overlap between consecutive chunks to ensure no contextual information is lost. This 

method maintains the integrity and continuity of the data. Furthermore, each chunk is 

associated with metadata identifying its source file, adding a layer of traceability. The 

open-source nature of FlexiGPT allows users to customize the chunk size by 

modifying the code, providing the flexibility to tailor the data segmentation to the 

specific requirements of their LLMs and the tasks at hand. This chunking technique is 

a strategic approach to efficiently process and utilize large volumes of text within the 

constraints of LLM input capacities. 

3.1.3. Embedding model selection 

A key feature of the FlexiGPT program is the capacity it offers users to actively choose 

an embedding model that aligns with the nuanced requirements of their tasks 

(Embedding Models, 2023). This selection process, which taps into the extensive 

repository on the Hugging Face platform, is not just an additional feature but a 

cornerstone of the FlexiGPT's design philosophy, emphasizing user control and 

customization. When a user decides on a particular model, the FlexiGPT system 

efficiently checks its local availability. If the model is already installed on the user's 

system, it is immediately utilized; if not, the program conveniently handles the 

download, ensuring the model is promptly ready for operation. 

This process is particularly user-friendly because it removes barriers to entry for those 

not familiar with manual model management. It also ensures that FlexiGPT remains 

accessible to a broader audience, ranging from seasoned developers to those just 

beginning their journey in machine learning and NLP. 

In scenarios where a user may not specify an embedding model, the program is 

designed to default to using 'BAAI/bge-base-en', a versatile and performant model that 

provides reliable semantic analysis for a wide range of texts. This default setting 

ensures that all users can get started with FlexiGPT without needing in-depth 

knowledge of the available models. 
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To guide users in their selection, Table 3.1. in the accompanying documentation offers 

a snapshot of the embedding models leading the field, as per the Hugging Face 

leaderboard. This table not only highlights the models' performance metrics but also 

provides insights into their specific strengths, allowing users to make informed 

decisions that best suit their project requirements. Whether a user needs a model that 

excels in understanding medical texts or one that is fine-tuned for legal documents, the 

FlexiGPT's integration with Hugging Face models presents a tailored solution, making 

it a powerful tool in the user's NLP toolkit. 

Table 3.1. Embedding Models Leaderboard in Hugging Face. 

Embedding Model Name Size Embedding 

Dimensions 

Sequence Length 

bge-large-en 1.34 1024 512 

bge-base-en 0.44 768 512 

gte-large 0.67 1024 512 

gte-base 0.22 768 512 

e5-large-v2 1.34 1024 512 

3.1.4. Embedding chunks 

Following the selection of an embedding model by the user, or the default one, the 

FlexiGPT program begins the process of converting each individual text chunk into 

embeddings. During this phase, the embedding model meticulously parses through 

each text segment, converting its semantic and syntactic attributes into dense, high-

dimensional numerical vectors. This intricate process of embedding is applied 

uniformly across all chunks, ensuring that every piece of text is translated into a vector 

form that captures its inherent meaning and linguistic structure. Upon the successful 

transformation of these text chunks into embeddings, they are systematically cataloged 

in a vector database. This repository becomes instrumental for semantic research, 

poised to support the retrieval of information that closely matches the nuances of user 

inquiries. With every chunk embedded and stored, the vector database is equipped to 

serve as the backbone for the efficient querying and retrieval of pertinent data, a step 
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that is essential for the accurate and context-sensitive responses that follow in the 

workflow of the FlexiGPT program. 

3.1.5. Vector database storage 

After the embedding process is complete, the resulting vectors are stored in Chroma, 

an open-source vector database specifically designed for handling embeddings and 

their associated metadata (Chroma, 2023). Chroma's capabilities are multifaceted—it 

not only stores the embeddings efficiently but also manages the embedding of 

documents and queries, facilitating a robust search functionality. Within the FlexiGPT 

program, Chroma plays a critical role as the knowledge repository, where embeddings 

are indexed and maintained ready for retrieval. When a user poses a question, 

FlexiGPT relies on Chroma to search through these embeddings to find the most 

relevant information. 

3.1.6. Semantic search 

After the program has embedded all the data and stored it in the vector database, it 

stands by for a user query to activate its semantic search capabilities. Upon receiving 

a question, the FlexiGPT transforms this query into an embedding, just like the data, 

and performs a semantic search. This search compares the query's embedding against 

the stored data embeddings to find the most relevant matches. The search yields a 

number of topically related chunks, known as 'K' results. By default, the program is 

set to return the top 5 most relevant chunks, but users have the option to adjust this 

number to their preference. This flexibility allows users to fine-tune the breadth of the 

search results, ensuring the response is as comprehensive or as focused as necessary 

for their specific inquiry. 

3.1.7. Prompt engineering 

In the workflow, once the top results from the semantic search are acquired, we move 

to a crucial step where both the retrieved chunks and the user's question are injected 

simultaneously into the prompt (Figure 3.3). This composite input, containing the 

question and the contextually relevant chunks, is then presented to the LLM. This 

method ensures that the LLM has all the necessary information at its disposal to 

generate an accurate and informed response. By integrating the context with the query, 

we direct the LLM to draw upon the specific knowledge embedded in the chunks, thus 
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enhancing the precision of the answer and maintaining the fidelity of the information 

provided. This step is instrumental in the process, as it ensures that the LLM's output 

is not only relevant but also deeply rooted in the data retrieved during the semantic 

search. 

 

Figure 3.3. The Default Prompt in FlexiGPT. 

3.1.8. LLM selection 

As part of the FlexiGPT's operational process, after the prompt has been prepared, 

FlexiGPT reaches a step: selecting an LLM for response generation (LLM 

Leaderboard, 2023). This choice is made at the start of the program, where the user 

can specify which LLM to use. If the chosen LLM isn’t locally available, the program 

automatically downloads it from Hugging Face, ensuring users have immediate access 

to the most advanced models available. The program offers a range of LLMs, including 

full-load models and quantized models like GPT-Generated Unified Format (GGML) 

or GPTQ for those seeking efficiency. 

For users who don’t select an LLM, FlexiGPT defaults to 'Llama-2-7b-chat-hf', a 

reliable model known for its robust performance (Llama-2-7b-chat-hf, 2023; Touvron 

et al, 2023). To assist users in selecting the most appropriate LLM for their needs, 

Table 3.2. in the documentation provides an overview of the top-performing LLMs on 

Hugging Face's leaderboard. This curated list highlights the versatility and capabilities 

of different models, ensuring users are well-informed to make a choice that aligns with 

their specific needs. 
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Table 3.2. LLM Leaderboard in Hugging Face. 

LLM Model Name Size MMLU TruthfulQA 

uni-tianyan/Uni-TianYan 73.81 69.91 65.81 

Riiid/sheep-duck-llama-2 73.69 70.82 63.8 

fangloveskari/ORCA_LLaMA_70B_QLoRA 73.4 70.23 63.37 

budecosystem/genz-70b 73.21 70.78 62.66 

garage-bAInd/Platypus2-70B-instruct 73.13 70.48 62.26 

The ability to select an LLM is an integral step in the FlexiGPT process, empowering 

users to tailor the system's responses to their specific queries. This choice is not merely 

about preference, but it's about harnessing the most current and effective technology 

to ensure that the responses are not only accurate and contextually relevant but also 

resonate with the depth and sophistication of the user's request. By providing this 

option, FlexiGPT places cutting-edge NLP technology at the user’s fingertips, offering 

them the flexibility to utilize an LLM that best fits their evolving needs. This 

adaptability keeps users at the forefront of NLP advancements, ensuring that as the 

technology progresses, so too does the capability of FlexiGPT to deliver state-of-the-

art responses. 

3.1.9. Providing answers to user 

In this phase, the tokenizer breaks down the combined input into smaller pieces, or 

tokens, which are the fundamental units LLM can process. This is a critical step to 

ensure that the language model understands and generates responses effectively. 

Following the generation of the response, the detokenization process reassembles these 

tokens back into a coherent and fluent answer. This reconstructed text is then presented 

to the user, completing the cycle from query to response. The seamless integration of 

tokenization and detokenization ensures that the final output is not only informative 

and relevant but also readable and naturally phrased, providing a satisfying user 

experience. 
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 FlexiGPT parameters 

The FlexiGPT program, employing the RAG technique, is innovatively designed to 

enhance NLP capabilities. This sophisticated program enables users to interact with 

and utilize LLMs for various applications, including text generation, analysis, and 

information retrieval. A significant feature of FlexiGPT is its range of customizable 

parameters, each playing a vital role in adapting the program's functionality to meet 

specific user requirements. These parameters, as outlined in Table 3.3., are crucial for 

understanding the diverse capabilities and configurations available within the 

FlexiGPT framework. Each of these parameters is integral to the FlexiGPT program, 

offering a high degree of customization to suit a wide array of NLP tasks and user 

preferences. 

By incorporating these diverse parameters, the FlexiGPT program offers users 

exceptional flexibility and the ability to engage with multiple files for various 

purposes, tailored to their specific needs. This versatility is largely dependent on the 

power of the chosen LLMs. Users can fine-tune the program’s capabilities, from the 

way it processes and understands language (through the “--llm_model” and "--

embeddings_model” parameters) to how it manages and interacts with data (“--

dir_path”, “--embedding_device”). The “--retriever_k” and “--loading_bit” 

parameters allow for optimization of information retrieval and computational 

efficiency, while “--source_documents” ensures transparency in the data processing. 

Collectively, these parameters empower users to harness the full potential of the 

FlexiGPT, making it adaptable for a wide range of tasks, from complex data analysis 

to nuanced language generation, all aligned with the strengths of the selected LLMs. 
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Table 3.3. Parameters of FlexiGPT Program. 

N Argument Description 

1 --llm_model 
Selects a Large Language Model from Hugging Face, defaulting to 'meta-

llama/Llama-2-7b-chat-hf'. This parameter determines the core language 

processing ability of the program. 

2 --embeddings_model 
Chooses an embeddings model from Hugging Face, with 'BAAI/bge-base-

en' as the default. This model converts textual data into numerical vectors, 

essential for language understanding and processing. 

3 --dir_path 
Sets the directory path for the user’s files, supporting formats like txt, 

docx, and pdf. This parameter specifies where the program will access and 

store relevant files. 

4 --embedding_device 
Specifies the device for running the embeddings, with options including 

'cpu', 'cuda', etc. This choice affects the performance and efficiency of the 

model. 

5 --retriever_k 
Determines the number of chunks retrieved by the program, with the 

default set to 5. This impacts the depth and breadth of the retrieval process 

in the RAG framework. 

6 --loading_bit 
Provides options for model quantization to optimize performance, choices 

being '4bit', '8bit', or None. This parameter is crucial for managing the 

computational load and efficiency. 

7 --source_documents 
Toggles the display of original documents found in the similarity search, 

aiding in reference and verification processes during information retrieval. 

 

 

 

 

 

  



 

4. EXPERIMENTAL RESULS 

In this section, we delve into the experimental results derived from the application of 

the FlexiGPT program, equipped with its diverse and robust parameters. These 

experiments were meticulously designed to evaluate the efficacy, versatility, and 

performance of the program across various scenarios, reflecting its capabilities in 

handling different language models, data formats, and computational settings. By 

systematically analyzing the outcomes, this section aims to provide a comprehensive 

understanding of how FlexiGPT performs under different configurations and use 

cases. The results not only underscore the program's adaptability and efficiency in 

processing and retrieving information but also highlight the practical implications and 

potential applications of this advanced natural language processing tool in real-world 

scenarios. Through a detailed examination of these findings, we aim to demonstrate 

the tangible impact and technological advancement that FlexiGPT brings to the field 

of NLP. 

 LLM Inference Challenges 

LLM inference challenges, particularly in the absence of intermediary systems like 

FlexiGPT, manifest prominently in two main areas: 'Lack of Knowledge' and 

'Hallucination'. The 'Lack of Knowledge' issue arises when LLMs are not equipped 

with the most recent information or specific details about a user's context. For example, 

an LLM might not have data on the latest scientific breakthroughs or may lack personal 

data to understand and respond to a user's unique needs. This leads to responses that 

might be generic or outdated, limiting the model's effectiveness in dynamic or 

personalized scenarios. On the other hand, 'Hallucination' refers to the tendency of 

LLMs to generate plausible but factually incorrect or misleading content. This problem 

stems from the model's design, which sometimes prioritizes linguistic fluency over 

factual accuracy. Such challenges significantly impair the practical use of LLMs in 

situations where precision and up-to-date knowledge are crucial. In our testing of these 
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two cases, we will utilize the 'Llama-2-7b-chat-hf' model to thoroughly evaluate how 

effectively it addresses the challenges of 'Lack of Knowledge' and 'Hallucination'. 

4.1.1. Lack of knowledge case 

The scenario depicted in Figure 4.1 illustrates a common challenge faced by LLMs 

such as the 'Llama-2-7b-chat-hf': the 'Lack of Knowledge'. When queried about an 

obscure or possibly non-existent algorithm, the model's response reveals its limitation 

in providing information on specific or cutting-edge topics. This example underscores 

a crucial aspect of LLMs. Their knowledge is finite, encapsulating only what has been 

included in their training data up to a certain point in time. Therefore, they may not 

possess updated information post their last training update or have details on niche, 

highly specialized, or newly-developed concepts. This inherent limitation necessitates 

the use of intermediary systems like FlexiGPT, which can augment the LLM's 

capabilities by providing updated information or by drawing on user-specific context 

to generate more informed and accurate responses. 

 

Figure 4.1. Inferencing Llama-2-7b Directly – Lack of Knowledge. 

4.1.2. Hallucination case 

The hallucination case, illustrated in Figure 4.2, typifies the 'Hallucination' challenge 

in LLMs. When inquired about the BERTopic algorithm, the LLM appears to 

acknowledge the term but conflates it with the BERT architecture, weaving in accurate 

details about BERT's functionality and applications. This reflects the tendency of 

LLMs to generate responses that seem credible but may blend true information with 

inaccuracies or fabrications. The 'Hallucination' problem arises from the model's 

capacity to confidently generate information without verifying its factual correctness, 

which in this instance, leads to a conflated understanding of the BERTopic algorithm 

with the well-known BERT model. This issue underscores the importance of 
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intermediary systems like FlexiGPT to discern and correct such inaccuracies, ensuring 

the reliability of the information provided by LLMs. 

 

Figure 4.2. Inferencing Llama-2-7b Directly – Hallucination. 

 FlexiGPT Demonstration 

FlexiGPT, designed for effortless user engagement, operates through a CLI with a 

straightforward start-up command "python flexiGPT.py" (Figure. 4.3). Upon 

execution without specific arguments, it conveniently defaults to downloading the pre-

set embedding model and LLM. Once initiated, the program is immediately ready to 

receive and process user queries. FlexiGPT extracts data from the provided documents 

and does the necessary processes to ensure responses are context-aware. After 

delivering an answer, the program stands by for the next query, maintaining an 

interactive session that seamlessly continues until the user decides to conclude. 

Subsequent queries can be posed directly, allowing for an uninterrupted question-and-

answer loop to persist (Figure. 4.4). To exit the program, simply type 'exit' instead of 

entering a query. 

 

Figure 4.3. FlexiGPT - Loading LLMs and Answering. 
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Figure 4.4. FlexiGPT - Second Question in a Loop. 

The command shown in Figure 4.5: 

$python flexiGPT.py --llm_model meta-llama/Llama-2-

13b-chat-hf --retriever_k 2 --loading_bit 4bit (4.1.) 

This command tailors the FlexiGPT environment to user specifications, utilizing the 

'meta-llama/Llama-2-13b-chat-hf' model (Llama-2-13b-chat-hf, 2023). If this specific 

model isn't already installed, FlexiGPT automatically downloads it, ensuring users can 

leverage the most current model available. The parameter “--retriever_k” is set to '2', 

which directs the system to retrieve information pertinent to two key topics, thus 

sharpening the focus and relevance of the information it provides. Setting “--

loading_bit” to '4bit' optimizes the model’s performance for systems with limited 

computational resources. This functionality demonstrates the flexibility of FlexiGPT, 

designed to merge user-centric convenience with robust NLP tools, enabling 

customized and resource-efficient operations, a process which is effectively illustrated 

in the workflow depicted in (Figure 4.5). 

 

Figure 4.5. FlexiGPT Downloads different LLM with Some Config. 

The correlation between the performance of the LLM and the quality of the output is 

evident in Figure 4.6, where we observe that the use of “Llama-2-13b” results in 

superior responses. This improvement highlights the principle that the more advanced 

the LLM, the more precise and contextually relevant the output. Such an observation 

underscores the importance of choosing a robust LLM for enhanced interaction 

quality, as clearly demonstrated by the results from “Llama-2-13b”. 
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Figure 4.6. Demo of Using Llama-2-13b. 

FlexiGPT enhances user transparency and comprehension by offering the “--

source_documents” flag, which reveals the specific document segments from which 

the answer was derived, (Figure. 4.7). By including this flag in the command line, 

users activate the feature that displays the retrieved chunks, or 'sources', directly 

associated with the generated response. This functionality is crucial for users who wish 

to delve deeper into the rationale behind the program's answers, allowing for an 

informed analysis of the information presented. It serves as a bridge between the 

model's output and the underlying data, fostering an environment of clarity and trust 

in the system's processes. 

 

Figure 4.7. Showing the Retrieved Chunks. 

Addressing the challenges of knowledge gaps and hallucinations in LLMs, we've 

engineered FlexiGPT with a refined prompt system that encourages the models to draw 

directly from provided contexts. As seen in Figure. 4.8 when queried about the 

weather, the LLM, without relevant information on the current weather conditions, 

correctly admits its lack of knowledge rather than fabricating a response. This is 

indicative of the prompt's efficacy, which is designed to constrain the LLM's responses 
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to information grounded in the available context—demonstrating a significant step 

towards mitigating hallucinations in LLM outputs. 

 

Figure 4.8. Showing the Retrieved Chunks. 

In another example, depicted in Figure. 4.9, when asked to define 'Statistics', the LLM 

again decides to give an honest admission of ignorance, "I don't know", due to the 

absence of related context in the sourced documents. This intentional design to prompt 

the LLM to concede ignorance when appropriate, rather than attempting to generate 

an unfounded answer, showcases FlexiGPT’s commitment to accuracy and reliability. 

By compelling the LLM to utilize only the context within the retrieved topics, 

FlexiGPT ensures that the responses are as informed and factual as possible, thereby 

enhancing the trustworthiness of the system. 

 

Figure 4.9. FlexiGPT Context Absent Response 2. 

 

  



 

5. DISCUSSION 

As we move into the discussion part of our analysis of FlexiGPT, a few important 

observations stand out that deserve further exploration. The behavior of LLMs when 

interfaced with FlexiGPT's framework is particularly noteworthy. The system's design 

to incorporate user-specific context raises crucial questions about the efficacy of LLMs 

in producing accurate and reliable information. The integration of FlexiGPT with 

various LLMs from the Hugging Face repository opens a discourse on the adaptability 

of these models to different domains and the robustness of their knowledge bases. 

Another point of discussion revolves around the mechanisms FlexiGPT employs to 

mitigate known issues associated with LLMs, such as the production of hallucinated 

content or responses that lack substantiation. The implementation of a prompt system 

that encourages honesty and admission of ignorance when out of context is a 

significant advancement in the field. It represents a deliberate move away from the 

tendency of LLMs to generate plausible but potentially incorrect information. This 

aspect of FlexiGPT's design not only enhances the reliability of the system but also 

introduces a new paradigm in user-LLM interactions, where the model’s limitations 

are acknowledged and managed effectively. 

The necessity for data appropriateness in the retrieval process is also a pivotal point of 

discussion. Semantic search, a key feature of FlexiGPT, depends on the congruence 

between the user's query and the available context. If the dataset that has been used in 

training the embedding model is not closely aligned with the anticipated range of 

queries, or if it lacks comprehensive coverage of relevant topics, the system may 

struggle to retrieve the most pertinent chunks of information.

 Conclusion 

FlexiGPT represents a significant advancement in the field of NLP, offering a highly 

customizable interface that allows users to engage with their data through a selection 

of sophisticated LLMs and embedding models. Its design addresses key challenges 

such as knowledge limitations and hallucination by prompting LLMs to rely on 
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contextually relevant data, thereby enhancing the accuracy and reliability of the output. 

While it excels in managing extensive datasets, the optimal performance of FlexiGPT's 

RAG technique is achieved through the careful curation of data and potential fine-

tuning of the model to suit specific user requirements. FlexiGPT thus stands as a 

testament to the potential of AI to adapt and respond to the complexities of human 

language, paving the way for more intuitive and effective data interaction. 

 Future Studies 

Future studies stemming from the work on FlexiGPT could take several promising 

directions to enhance usability and extend functionality. One immediate area for 

development is the creation of a Graphical User Interface (GUI). A GUI would make 

the program more accessible to a broader user base, reducing the barrier to entry by 

eliminating the need for command-line interactions. The visual interface would allow 

users to navigate options more intuitively, select models, and interact with their data 

in a more direct and user-friendly manner. 

Another significant advancement would involve fine-tuning the LLMs for multilingual 

support. Although current LLMs possess tokens for various languages, they are 

predominantly optimized for English. By fine-tuning these models to better understand 

and generate text in a wide array of languages, FlexiGPT could become a truly global 

tool, accessible and useful to users around the world. This would entail training the 

models on diverse language datasets to ensure they can accurately process and 

understand documents in different languages, thereby expanding the program's 

applicability to non-English datasets. 
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