

T.R.

SAKARYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

FLEXIGPT: ENGAGING WITH DOCUMENTS

Abdalrhman ALQUAARY

MSc THESIS

Information Systems Engineering Department

JANUARY 2024

T.R.

SAKARYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

JANUARY 2024

Thesis Advisor: Prof. Dr. Numan Çelebi

Information Systems Engineering Department

Abdalrhman ALQUAARY

MSc THESIS

FLEXIGPT: ENGAGING WITH DOCUMENTS

iii

The thesis work titled “FLEXIGPT: ENGAGING WITH DOCUMENTS”

prepared by Abdalrhman Alquaary was accepted by the following jury on

17/01/2024 by unanimously/majority of votes as a MSc THESIS in Sakarya

University Graduate School of Natural and Applied Sciences, Information Systems

Engineering department.

Thesis Jury

Head of Jury :

Jury Member :

Jury Member :

iv

v

STATEMENT OF COMPLIANCE WITH THE ETHICAL PRINCIPLES AND

RULES

I declare that the thesis work titled "FLEXIGPT: ENGAGING WITH

DOCUMENTS", which I have prepared in accordance with Sakarya University

Graduate School of Natural and Applied Sciences regulations and Higher Education

Institutions Scientific Research and Publication Ethics Directive, belongs to me, is an

original work, I have acted in accordance with the regulations and directives

mentioned above at all stages of my study, I did not get the innovations and results

contained in the thesis from anywhere else, I duly cited the references for the works I

used in my thesis, I did not submit this thesis to another scientific committee for

academic purposes and to obtain a title, in accordance with the articles 9/2 and 22/2 of

the Sakarya University Graduate Education and Training Regulation published in the

Official Gazette dated 20.04.2016, I accept all kinds of legal responsibility that may

arise in case of a situation contrary to this statement.

(04/12/2023)

(signature)

Abdalrhman ALQUAARY

vi

vii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my family, especially my parents, for

their unwavering support and encouragement throughout my academic journey. Their

love, understanding, and sacrifices have been the cornerstone of my achievements. I

am particularly indebted to my brother Alaa Aldean for his help and to my other

brothers, whose support and belief in me have been endless. I owe them a debt of

gratitude that words can scarcely express.

I am immensely grateful to my Thesis Advisor, Prof. Dr. Numan Çelebi, for his

invaluable guidance, patience, and expertise. His mentorship has been instrumental in

shaping not only this thesis but also my approach to scholarly inquiry and research.

His dedication to my academic growth has been a source of inspiration and motivation.

I would also like to extend my heartfelt thanks to the staff of the Information Systems

Engineering Department At Sakarya University. Their collective knowledge, support,

and encouragement have created an environment that is both challenging and

nurturing, fostering my intellectual growth and professional development.

This journey would not have been possible without the collective support of these

individuals and many others. I am deeply thankful to each one of them for their

contribution to my academic endeavor.

Abdalrhman ALQUAARY

viii

ix

CONTENTS

Page

ACKNOWLEDGEMENT ... vii
CONTENTS ... ix
ABBREVIATIONS ... xi
LIST OF FIGURES .. xiii
LIST OF TABLES ... xv
SUMMARY .. xvii
ÖZET xix
1. INTRODUCTION .. 1

 Natural Language Processing .. 1
 Large Language Models .. 2
 Quantization .. 3
 Prompt Engineering ... 3
 Embedding Models ... 4
 Retrieval Augmented Generation .. 4
 Semantic Search .. 5
 Hugging Face .. 6
 LangChain ... 6
 FlexiGPT Purpose and Importance ... 6

2. LITERATURE OVERVIEW .. 9
3. METHODOLOGY ... 13

 FlexiGPT Process .. 14
3.1.1. Data source and extraction ... 15
3.1.2. Chunking data .. 16
3.1.3. Embedding model selection ... 16
3.1.4. Embedding chunks ... 17
3.1.5. Vector database storage ... 18
3.1.6. Semantic search .. 18
3.1.7. Prompt engineering .. 18
3.1.8. LLM selection .. 19
3.1.9. Providing answers to user .. 20
 FlexiGPT parameters ... 21

4. EXPERIMENTAL RESULS .. 23
 LLM Inference Challenges .. 23

4.1.1. Lack of knowledge case ... 24
4.1.2. Hallucination case .. 24
 FlexiGPT Demonstration .. 25

5. DISCUSSION ... 29
 Conclusion ... 29
 Future Studies .. 30

REFERENCES ... 31
CURRICULUM VITAE .. 33

x

xi

ABBREVIATIONS

AI : Artificial Intelligence

BERT : Bidirectional Encoder Representations from Transformers

CPU : Central Processing Unit

CLI : Command Line Interface

GGML : GPT-Generated Model Language

GPT : Generative Pre-trained Transformer

GPTQ : Generative Pre-trained Transformers Quantization

GPU : Graphics Processing Unit

GUI : Graphical User Interface

LLM : Large Language Model

LoRA : Low-Rank Adaptation

NLP : Natural Language Processing

QLoRA : Quantized Low-Rank Adaptation

RAG : Retrieval-Augmented Generation

xii

xiii

LIST OF FIGURES

Page

Figure 3.1. RAG Framework .. 14
Figure 3.2. FlexiGPT Process ... 15
Figure 3.3. The Default Prompt in FlexiGPT. .. 19
Figure 4.1. Inferencing Llama-2-7b Directly – Lack of Knowledge. 24
Figure 4.2. Inferencing Llama-2-7b Directly – Hallucination. 25
Figure 4.3. FlexiGPT - Loading LLMs and Answering. ... 25
Figure 4.4. FlexiGPT - Second Question in a Loop. ... 26
Figure 4.5. FlexiGPT Downloads different LLM with Some Config. 26
Figure 4.6. Demo of Using Llama-2-13b. ... 27
Figure 4.7. Showing the Retrieved Chunks... 27
Figure 4.8. Showing the Retrieved Chunks... 28
Figure 4.9. FlexiGPT Context Absent Response 2. .. 28

xiv

xv

LIST OF TABLES

Page

Table 3.1. Embedding Models Leaderboard in Hugging Face. 17
Table 3.2. LLM Leaderboard in Hugging Face. .. 20
Table 3.3. Parameters of FlexiGPT Program. ... 22

xvi

xvii

FLEXIGPT: ENGAGING WITH DOCUMENTS

SUMMARY

In the rapidly evolving domain of AI, the emergence of LLMs has catalyzed a shift

across various sectors, fundamentally reshaping the dynamics of digital interaction.

Amidst this technological renaissance, our FlexiGPT emerges as a groundbreaking

application, leveraging the full potential of these advancements. Designed as a CLI

program, FlexiGPT serves as a bridge between users and their digital files, enabling a

high level of interactive engagement.

At the heart of FlexiGPT's innovation is its ability to download and integrate any LLM

or embedding model from the Hugging Face platform. This feature empowers users to

tap into a diverse array of the latest language models, ensuring they remain at the

forefront of linguistic technology. The integration process is streamlined and user-

friendly, making advanced AI tools accessible to a broader audience.

FlexiGPT employs the RAG technique, a sophisticated approach that combines LLMs

with advanced retrieval methods. This amalgamation allows the program to not only

generate relevant responses but also to show the data sources that it used to answer the

queries, enhancing the depth and accuracy of interactions.Users can query their digital

files, receive insightful responses, and engage in a dialogue that was once the domain

of science fiction.

The flexibility of FlexiGPT extends beyond its model integration capabilities. Users

can choose to load models in their full version for maximum performance or quantized

forms and specialized formats like GPTQ or GGML, balancing performance with

resource requirements. This adaptability makes FlexiGPT a versatile tool, suitable for

various applications, from academic research to business analytics

Another feature of FlexiGPT is its local execution capability. By running the program

on local machines, users benefit from enhanced data privacy and security. This local

approach also allows for faster response times and reduced reliance on cloud services,

which is particularly advantageous in scenarios where internet connectivity is limited

or unreliable.

FlexiGPT's impact extends beyond its technical prowess. The application opens new

avenues for how individuals and organizations interact with their digital data. From

simplifying complex data analysis to enabling more natural and efficient file

management, FlexiGPT stands as a testament to the practical applications of AI in

everyday life.

FlexiGPT represents a significant leap forward in the field of AI and digital interaction.

By harnessing the power of the latest language models and embedding them within an

accessible and versatile interface, FlexiGPT is not just a tool; it is a harbinger of a new

era in digital communication and interaction. As technology continues to evolve,

FlexiGPT is poised to adapt and grow, offering users an ever-expanding suite of

capabilities to explore the full potential of AI-driven digital engagement.

xviii

xix

FLEXIGPT: BELGELERLE ETKİLEŞİM

ÖZET

Yapay zekanın hızla gelişimi ile birlikte Büyük Dil Modelleri (LLM'ler) olarak

adlandırılan teknolojiler ortaya çıkışmıştır. Bu teknolojiler bir çok sektörlerde

değişimlere yol açmıştır. Ayrıca mevcut dijital etkileşimin temel dinamiklerini önemli

ölçüde değiştirmiştir. Bu teknolojik gelişmelere dayanarak bu çalışmada FlexiGPT

adlı bir uygulama geliştirilmiştir. Bu uygulama, bu teknolojilerin potansiyelini

koruyarak, komut satırı arayüzü (CLI) programı olarak tasarlanmıştır. Geliştirilen

program kullanıcılar ile dijital dosyaları arasında esnek bir etkileşim düzeyi

sağlamaktadır. FlexiGPT, kullanıcıların dijital içeriklerle olan etkileşim kurma

biçimine yeni bir yaklaşım getirirken aynı zamanda yapay zeka teknolojilerinin sahip

olduğu geniş imkanları da kullanıcılara sunmaktadır. FlexiGPT, kullanıcılar ve verileri

arasında güçlü bağlantı kurma yeteneği sayesinde büyük dil modellerinin kullanımı

için yeni bir bakış açısı oluşturmaktadır. Bu program, kullanıcı deneyimini

zenginleştirmenin yanı sıra, dijital dosyaların kullanılabilirliğini de maksimize etmeyi

amaçlamaktadır.

FlexiGPT'nin yenilikçilik merkezinde, Hugging Face platformundan herhangi bir

LLM veya gömülü modeli indirme ve entegre etme kapasitesi yer almaktadır. Bu

özellik, kullanıcılara, dil teknolojisi alanındaki en son gelişmelere erişim imkanı

sunarak, onları bu alandaki yeniliklerin ön saflarında tutmaktadır. Entegrasyon süreci,

son derece akıcı ve kullanıcı dostu olarak tasarlanmıştır. FlexiGPT bu özelliği ile,

gelişmiş yapay zeka araçlarını daha geniş bir kitleye eriştirme imkanı vermektedir. Dil

modellemesinin son yeniliklerini kullanarak, FlexiGPT, metin işleme, anlama ve

etkileşimde yeni bir yaklaşım getirmektedir. Bu, çok yönlü ve gelişmiş dil modelleri

arasından seçim yapabilme özgürlüğü ile birleştiğinde, kullanıcıların bireysel

ihtiyaçlarına ve özel senaryolarına göre özelleştirilebilir bir ortam sunar. FlexiGPT, bu

yenilikçi yaklaşımıyla, dil işleme teknolojilerinin kapsamını genişleterek,

kullanıcıların dijital içerikle etkileşim şeklini yeniden tanımlamakta ve böylece yapay

zekanın dil anlayışını ve üretimini, gerçek dünya uygulamalarıyla bütünleştirmektedir.

FlexiGPT, geleneksel dil modellerini ileri düzey bilgi alma yöntemleriyle birleştiren

sofistike bir yaklaşım olan RAG tekniğini kullanmaktadır. Bu entegrasyon, programın

sadece ilgili yanıtlar üretmesini sağlamakla kalmaz, aynı zamanda sorgulara yanıt

verirken kullandığı veri kaynaklarını göstererek etkileşimlerin derinliğini ve

doğruluğunu artırır. Kullanıcılar, dijital dosyalarını sorgulayabilir, içgörülü yanıtlar

alabilir ve bir zamanlar bilim kurgunun alanı olarak kabul edilen bir diyalog

başlatabilirler. FlexiGPT'nin bu yeteneği, yapay zekanın sadece veri işleme ve yanıt

üretme kabiliyetini değil, aynı zamanda anlamayı ve öğrenmeyi de içeren çok daha

geniş bir potansiyeli ortaya koymaktadır. Bu teknik sayesinde, kullanıcılar sadece

zengin ve katmanlı bilgiler elde etmekle kalmaz, aynı zamanda programın cevaplarını

oluştururken hangi bilgi kaynaklarından yararlandığını anlama fırsatı bulurlar. Buda

verilen yanıtların şeffaflığını ve güvenilirliğini artırmaktadır.

xx

FlexiGPT'nin esnekliği, sadece model entegrasyon yetenekleri ile sınırlı değildir; aynı

zamanda kullanıcıların özelleştirilmiş ihtiyaçlarına uygun çözümler sunma yeteneği

ile de dikkat çeker. Kullanıcılar, FlexiGPT içinde sunulan geniş model yelpazesi

arasından seçim yaparak, projelerinin gereksinimlerine en iyi şekilde uygun olan

modeli seçme özgürlüğüne sahiptirler. Tam sürüm modeller, en yüksek performansı

elde etmek isteyenler için idealdir, bu sayede karmaşık veri analizlerini veya büyük

ölçekli iş analitiklerini sorunsuz bir şekilde gerçekleştirebilirler. Ancak, kaynak

gereksinimlerini optimize etmek veya belirli senaryolara uyum sağlamak isteyenler

için, kuantize edilmiş formlar veya özel GPTQ veya GGML formatları gibi alternatif

seçenekler de mevcuttur. Bu uyumluluk, FlexiGPT'yi akademik araştırmalardan iş

analitiklerine kadar geniş bir yelpazede uygulamalara uygun bir araç haline getirir.

Kullanıcıların projelerine en iyi şekilde hizmet edebilmesi için özelleştirilebilir bir

yapı sunarak, çeşitli performans ve kaynak gereksinimlerine mükemmel bir şekilde

uyan çözümler sunar. Bu sayede, her türlü projenin gereksinimlerine uygun bir

FlexiGPT konfigürasyonu oluşturmak, kullanıcıların elindedir.

FlexiGPT'nin bir diğer önemli özelliği, yerel çalıştırma kapasitesidir. Programı yerel

makinelerde çalıştırarak, kullanıcılar gelişmiş veri gizliliği ve güvenliğinden

yararlanır. Bu yerel yaklaşım, aynı zamanda daha hızlı yanıt süreleri sağlar ve bulut

hizmetlerine olan bağımlılığı azaltır. Bu yapı, özellikle internet bağlantısının sınırlı

veya güvenilmez olduğu durumlarda büyük avantaj sağlar. Yerel çalıştırma yeteneği,

kullanıcıların kendi donanımlarını kullanarak FlexiGPT'nin tüm özelliklerinden

faydalanmalarını sağlar. Bu yetenek, özellikle veri hassasiyeti yüksek olan projelerde

büyük önem taşır. Ayrıca, yerel çalıştırma, veri işleme ve analiz süreçlerinde daha

fazla kontrol ve esneklik sunar, buda kullanıcıların özel gereksinimlerine ve çalışma

koşullarına daha iyi uyum sağlamalarına olanak tanır.

FlexiGPT, bireylerin ve kuruluşların dijital verilerle etkileşim kurma yöntemlerinde

yeni kapılar aralamaktadır. Sadece karmaşık veri analizlerini basitleştirmekle kalmaz,

aynı zamanda daha doğal ve verimli dosya yönetimine olanak tanır. Bu sayede yapay

zekanın günlük yaşamdaki somut uygulamalarına dair çarpıcı bir örnek sunar.

FlexiGPT'nin bu geniş kapsamlı etkisi, yapay zekanın yalnızca akademik ve

profesyonel alanlarla sınırlı olmadığını, aynı zamanda günlük yaşamın her alanında

değerli bir rol oynayabileceğini göstermektedir. Ayrıca, toplumda yapay zekanın

yaygınlaşmasına büyük katkı sağlayan bir uygulama özelliği taşımaktadır. Yapay zeka

teknolojilerinin yaygınlaşması, günlük yaşamımızı dönüştürerek, her seviyede

kullanıcı için daha erişilebilir ve kullanıcı dostu hale getirir. FlexiGPT, bu değişimdeki

öncü rolü ile, dijital etkileşim ve yapay zeka kullanımının geleceğini şekillendirmeye

yardımcı oluyor. Bu sayede, iş dünyasından eğitime, sanat ve eğlenceden sağlık

hizmetlerine kadar birçok farklı alanda çeşitli uygulamaların önünü açıyor ve

kullanıcıların dijital dünyayı daha etkili bir şekilde deneyimlemesine olanak tanıyor.

FlexiGPT, yapay zeka ve dijital etkileşim alanlarında kaydedilen ilerlemeler arasında

önemli bir adımı temsil etmektedir. En son dil modellerinin gücünü kullanarak ve bu

modelleri erişilebilir, çok yönlü bir arayüz içinde entegre ederek, FlexiGPT sadece bir

araç olmanın dışında, dijital iletişim ve etkileşimde yeni bir bakış açısı getirmiştir.

Teknoloji alanındaki sürekli gelişmelerle birlikte, FlexiGPT'nin de sürekli olarak

adapte olması ve büyümesine ihtiyaç vardır. FlexiGPT, yapay zekanın sadece veri

işleme ve dil anlama yeteneklerine dayanmayıp, bu teknolojileri kullanıcıların günlük

etkileşimlerine entegre ederek, dijital dünyada daha zengin ve anlamlı deneyimler

oluşturmak için yeni yollar açmaktadır. Bu gelişme, yapay zeka ve dil modellerinin,

geniş bir kullanım alanına sahip pratik ve etkili araçlar olarak kullanımını

xxi

yaygınlaştırırken, dijital etkileşim alanında yeni standartlar belirlemekte ve geleceğin

teknolojik manzarasını şekillendirmektedir. FlexiGPT'nin bu yenilikçi ve esnek yapısı,

yapay zeka tabanlı dijital etkileşimin, hem iş dünyasında hem de günlük yaşamda nasıl

bir dönüşüm yaratabileceğine dair önemli bir örnek teşkil etmektedir.

xxii

1. INTRODUCTION

In this section, we lay the groundwork for our work by delving into the general

concepts fundamental to understanding our study. This segment is designed to provide

a comprehensive overview of the key principles, theories, and frameworks that form

the basis of our research. It serves as a primer, equipping the reader with the necessary

background and context to fully appreciate the nuances and intricacies of the topics

discussed in subsequent chapters. This foundational knowledge is crucial for a holistic

understanding of the advanced concepts and methodologies that will be examined in

detail as we progress through the thesis.

 Natural Language Processing

In the ever-evolving landscape of Artificial Intelligence (AI), one area has emerged as

a powerful catalyst for change: Natrual Language Processing (NLP). NLP is not

merely a technological endeavor; it represents a profound shift in how machines

understand and interact with human language, opening doors to unprecedented

possibilities. At its core, NLP is the interdisciplinary field that bridges the intricacies

of human language with the computational power of machines. It seeks to equip

computers with the ability to comprehend, interpret, and generate human-like text,

thereby facilitating meaningful communication between humans and machines.

The essence of NLP lies in its capacity to unravel the complexity of language,

encompassing not just the syntactic structure but also the semantics and pragmatics

that give words and sentences their nuanced meaning. By delving into the subtle

nuances of language, NLP enables machines to go beyond mere word recognition and

engage in a more profound understanding of context, intent, and sentiment. This

capability has profound implications across various domains, ranging from customer

service interactions and virtual assistants to sentiment analysis in social media,

advanced language translation and text generation.

In its quest to bridge the gap between human language and machines, NLP draws upon

a diverse array of techniques and methodologies, including machine learning, deep

2

learning, and linguistic theories. These tools empower algorithms to discern patterns,

learn from vast datasets, and continuously refine their language-processing

capabilities. Sentiment analysis, named entity recognition, and machine translation are

just a few examples of the practical applications of NLP that have become integral

parts of our daily lives.

Furthermore, the advent of pre-trained language models, such as Generative Pre-

trained Transformer (GPT-3), has ushered in a new era in NLP, where models can

understand and generate human-like text with remarkable fluency and coherence.

These models, trained on massive datasets, have the ability to generalize their

understanding across a wide range of topics and contexts, enabling them to adapt to

diverse language tasks with minimal fine-tuning.

As NLP continues to advance, its impact on society is profound. Beyond enhancing

the efficiency of human-computer interactions, NLP contributes to breaking down

language barriers, fostering cross-cultural communication, and promoting inclusivity.

It empowers applications to be more user-friendly, facilitating accessibility for

individuals with diverse linguistic backgrounds. Moreover, the ethical dimensions of

NLP, including concerns related to bias in language models and the responsible use of

AI in decision-making processes, have sparked critical discussions within the scientific

and societal realms.

 Large Language Models

Within the dynamic and swiftly evolving realm of NLP, the emergence and

proliferation of Large Language Models (LLMs) stands as a turning point. These

models, characterized by expansive neural architectures and formidable parameter

counts, have become a focal point of attention, driving significant advancements in the

capabilities of AI systems to understand and generate human-like text.

The diffusion of LLMs across various domains is noteworthy, as their influence

extends beyond the confines of traditional NLP research. These models, exemplified

prominently by GPT-3, have found applications ranging from content creation and

language translation to code generation and creative writing. Their widespread

adoption underscores a paradigm shift in how machines interact with and process

3

natural language, permeating diverse sectors and reshaping the landscape of AI

applications.

 Quantization

In the expansive domain of LLMs, where the execution of these models poses

formidable computational challenges, the pursuit of computational efficiency and

model deployment has given rise to a significant area of inquiry known as quantization.

This technique, characterized by the process of reducing the precision of numerical

representations within neural network parameters, holds paramount importance in the

context of LLMs, particularly given the computational challenges inherent in their

execution. Quantization is instrumental in addressing the formidable computational

demands associated with the deployment of LLMs in real-world applications, offering

a pathway towards enhanced efficiency without compromising the inherent linguistic

capabilities of these models.

The exploration of quantization within the realm of LLMs signifies a nuanced

convergence of theoretical considerations and practical implications. As LLMs

continue to gain prominence in various applications, from natural language

understanding to generation tasks, the imperative to optimize their computational

footprint becomes increasingly evident. Quantization, as a methodological approach,

presents a compelling avenue to strike a delicate balance between model efficiency

and linguistic prowess, crucial in mitigating the challenges posed by the computational

intensity inherent in running LLMs.

 Prompt Engineering

Within the intricate domain of LLMs, the concept of prompt engineering emerges as a

focal point of scholarly investigation. Prompt engineering, a nuanced and deliberate

formulation of input queries or instructions, plays a crucial role in influencing the

output and behavior of LLMs. This strategic approach stands as a response to the

inherent challenges associated with effectively harnessing the vast linguistic

capabilities of these models, thereby contributing to the enhacement of LLMs.

The impetus behind the exploration of prompt engineering lies in the acknowledgment

of the intricacies and potential biases embedded in LLMs. As these models exhibit

4

immense linguistic proficiency, they also possess the capacity to generate outputs that

may inadvertently reflect or perpetuate existing societal biases. Prompt engineering,

as a methodological intervention, seeks to refine and guide the language generation

process, offering researchers and practitioners a means to shape the output of LLMs in

a more controlled and intentional manner.

 Embedding Models

Embedding models in NLP transform textual data into embedding vectors, numerical

representations that capture semantic relationships and syntactic structures within the

language. These vectors represent words or phrases as points in a multidimensional

space, allowing for the quantification of linguistic similarities and differences. The

conversion to embedding vectors is crucial for a variety of NLP tasks, enabling

machines to process and understand human language in a meaningful and

computationally efficient manner.

 Retrieval Augmented Generation

In the expansive landscape of LLMs, the emergence of the Retrieval-Augmented

Generation (RAG) paradigm marks a significant innovation, introducing a nuanced

and multifaceted framework to the field. RAG marries retrieval-based mechanisms

with the sophisticated generative capacities inherent in modern language models. This

approach not only enhances the capabilities of LLMs but also enriches the quality of

generated content by integrating contextual data from a myriad of external sources.

In the realms of AI and NLP, RAG signifies a cutting-edge frontier. It demonstrates

an advanced amalgamation of computational techniques, which extends beyond basic

language understanding and generation. By effectively sourcing and incorporating

relevant external information, RAG-equipped LLMs achieve a higher level of

accuracy and context-awareness in their responses. This is especially pivotal in tasks

that demand nuanced understanding and up-to-date knowledge, such as answering

complex queries, content creation, and dynamic text generation.

RAG's potential in enhancing the interactivity and adaptability of LLMs is profound.

It allows these models to transcend traditional boundaries, moving from static text

generation to creating outputs that reflect current, real-world information and nuanced

5

understanding. This makes RAG an invaluable asset in applications where the

synthesis of vast amounts of data is crucial, including in sectors like healthcare,

finance, legal analysis, and customer service, where accurate and contextually rich

responses are essential. The RAG framework, by bridging the gap between generative

prowess and contextual relevance, is poised to redefine the standards of language

models, pushing the envelope of what is achievable in the field of AI-driven language

processing and interaction.

 Semantic Search

Leveraging advanced language models and text embeddings, has significantly

transformed the landscape of information retrieval, particularly in the context of RAG

techniques. This approach enables a markedly more precise and efficient method for

document retrieval. By understanding the deeper meaning and context embedded

within queries, semantic search transcends traditional keyword-based methods,

offering results that are not just relevant, but contextually aligned with the user's intent.

This evolution in search technology marks a substantial leap forward in our ability to

access and utilize information effectively.

The incorporation of Semantic Search within the purview of LLMs signifies a notable

convergence of advanced computational techniques, reflecting a purposeful effort to

transcend traditional keyword-based search methodologies. In the expansive landscape

of natural language processing and artificial intelligence, LLMs have demonstrated

unparalleled proficiency in understanding and generating coherent textual content.

However, the integration of Semantic Search introduces an additional layer of

sophistication, aiming to refine the search process by incorporating a deeper

understanding of the meaning, context, and relationships embedded within textual

data.

At its core, Semantic Search epitomizes a distinctive paradigm in information retrieval.

It departs from conventional keyword matching approaches and seeks to comprehend

the underlying semantics of user queries, enabling a more contextually relevant

exploration of large datasets. By harnessing the semantic understanding encapsulated

within LLMs, Semantic Search aspires to bridge the gap between user intent and search

results, offering a more nuanced and contextually rich retrieval experience.

6

 Hugging Face

Hugging Face has emerged as a leading figure in the realm of AI, particularly in the

field of NLP. Renowned for its open-source approach, Hugging Face has democratized

access to state-of-the-art language models and AI tools, fostering a collaborative

environment for researchers, developers, and organizations worldwide (Hugging Face,

2023). Beyond providing access to these models, Hugging Face has developed an

ecosystem that facilitates model training, sharing, and deployment, thus accelerating

innovation and application in AI.

 LangChain

LangChain, a novel framework in the realm of computational linguistics and artificial

intelligence, marks a significant advancement in the application and utilization of

LLMs. Developed to streamline the integration and interaction of LLMs in complex

applications, LangChain addresses the growing need for modular and flexible systems

in the rapidly evolving field of NLP (LangChain, 2023).

Fundamentally, LangChain is engineered to enable the construction of sophisticated

language-based applications. It achieves this by providing a versatile framework that

facilitates the orchestration of various components essential for advanced language

processing tasks. These components include, but are not limited to, the LLMs

themselves, retrieval mechanisms for sourcing information, reasoning modules, and

intricate dialogue management systems. The framework is distinctively characterized

by its modularity, allowing for seamless integration and interchange of different

models and tools tailored to specific application requirements.

 FlexiGPT Purpose and Importance

The purpose and importance of FlexiGPT program center around its role in facilitating

meaningful and interactive communication with documents, leveraging the Retrieval-

Augmented Generation (RAG) framework. This program is for enhancing the quality

and relevance of generated answers while seamlessly integrating retrieval-based

mechanisms and generative capabilities. Its significance lies in its ability to empower

users to engage with textual content in a dynamic and contextually rich manner by

utilizing AI-generated interactions, effectively bridging the gap between human intent

7

and information retrieval. FlexiGPT promotes effective interactions with documents,

ultimately contributing to more efficient and impactful utilization of textual data in

various senarios, thereby allowing users to have a better experience in dealing with

their textual files.

8

2. LITERATURE OVERVIEW

In this focused exploration of NLP, we aim to provide a succinct yet comprehensive

view of its progression and breakthroughs, particularly through the lens of four key

developments: the evolution of LLMs, the impact of quantization techniques, the

advancements in embedding models, and the diverse applications of RAG, coupled

with our research contributions.

The evolution of NLP, particularly through the development of transformer-based

models, is well-documented in a series of groundbreaking papers. Following the

seminal "Attention Is All You Need" by Vaswani et al. (2017), which introduced the

transformer model, there has been a surge in significant research contributing to this

domain. The introduction of GPT by Radford et al. (2018), marked a pivotal moment

in NLP, showcasing the model's ability to generate coherent and contextually relevant

text. The subsequent iterations, notably GPT-2 and GPT-3 by (Radford et al. 2019;

Brown et al. 2020) achieved remarkable feats in advanced text generation.

Bidirectional Encoder Representations from Transformers (BERT), introduced by

Devlin et al. Devlin et al. (2018) represents another major advancement. BERT’s

bidirectional training revolutionized the way models understand contextual

relationships in text, setting new standards in a variety of language tasks. Following

this line of thought, Raffel et al. (2020) introduction of the T5 (Text-To-Text Transfer

Transformer) model represents a significant advancement in NLP. It reimagines

various NLP tasks as uniform text-to-text conversions, offering a versatile and unified

framework for addressing diverse NLP challenges. Large Language Models (LLMs)

have shown remarkable proficiency in arithmetic and symbolic reasoning tasks using

few-shot prompting methods, including the "chain-of-thought" technique, which

leverages LLMs for problem decomposition and solution. In their study, Penedo et al.

(2023) introduced 'Falcon', a Large Language Model, which challenges conventional

training approaches. This model illustrates that models trained solely on carefully

filtered and deduplicated web data can surpass the performance of those trained on

established high-quality datasets like The Pile (Gao et al, 2020).

10

Running LLMs presents significant challenges due to their high hardware costs and

computational demands; the quantization technique in LLMs emerges as a strategy

aimed at mitigating these issues, significantly enhancing model efficiency and

scalability. Marking a breakthrough in the domain of LLMs, the Low-Rank Adaptation

(LoRA) technique enables efficient fine-tuning of these models by introducing low-

rank matrices, significantly reducing the computational burden and resource

requirements (Hu et al, 2021). Building on the foundation set by the LoRA technique,

the Quantized Low-Rank Adaptation (QLORA) approach, introduced by Dettmers et

al. (2023), takes this concept a step further. It allows for the fine-tuning of large

models, such as those with 65B parameters, on a single 48GB Graphics Processing

Unit (GPU), effectively balancing memory usage and performance. By combining 4-

bit quantized pretrained language models with LoRA, QLORA demonstrates its

efficacy, outperforming existing models and offering significant innovations in

memory management and model training efficiency. Addressing the substantial

computational and storage demands of large-scale GPT models, Frantar (2023)

developed Generative Pre-trained Transformers Quantization (GPTQ), a

groundbreaking quantization approach. This method notably reduces model size by

compressing to 3 or 4 bits per weight, effectively balancing the need for efficiency

with minimal accuracy loss. In another study, Naveed et al. (2023) have meticulously

compiled a comprehensive overview of recent advancements in LLMs, addressing a

broad spectrum of topics including architectural innovations, efficiency

improvements, and more. Their work not only provides detailed summaries and

analyses of current models and datasets but also serves as an essential reference for the

latest trends and insights in LLM research.

In the sphere of NLP, embedding models have revolutionized how machines

understand and interpret human language, serving as a cornerstone for various

advanced applications and research. Efficiently creating vector representations of

words that capture their contextual meanings within large text corpora was

significantly advanced by the introduction of Word2Vec (Mikolov et al, 2013). This

technique marked a substantial progression in the field by its ability to generate

meaningful word embeddings. Building on the advancements made by Word2Vec,

Global Vectors for Word Representation (GloVe) introduced by Pennington et al.

(2014), further enriched the field of word embeddings. GloVe employed a unique

11

method that blends matrix factorization techniques with local context window

approaches, capturing both global and local linguistic features in its embeddings. This

development represented another significant step in the evolution of embedding

models. The introduction of transformer models marked a significant advancement in

the field of embedding models, leading to substantial improvements in their

performance and capabilities. Addressing the limitations of both general-purpose and

task-specific retrievers, the LLM-Embedder developed by Zhang et al. (2023)

represents a significant advancement in retrieval augmentation for LLMs. Their

innovative training strategies, such as LLM feedback-based optimization and multi-

task fine-tuning, have shown marked improvements in various retrieval scenarios.

Asudandi et al. (2023) provide a thorough review of word embedding and deep

learning models, focusing on their application in natural language processing tasks.

Their study contrasts and compares various techniques, offering insights for selecting

the most effective models for specific text analytics tasks.

The RAG framework, introduced in the landmark paper "Retrieval-Augmented

Generation for Knowledge-Intensive NLP Tasks" by Lewis et al. (2021), represents a

development in NLP. This innovative framework integrates pre-trained parametric

memory, such as seq2seq models, with non-parametric memory, notably a dense

vector index of Wikipedia, thereby revolutionizing language generation tasks. RAG

models excel in a variety of knowledge-intensive NLP tasks, especially in setting new

benchmarks in open domain questioning-answering tasks, through their ability to

generate specific, diverse, and factually accurate language. Building on this

foundation, Melz (2023) further advanced the capabilities of RAG with the

introduction of ARM-RAG, which enhances problem-solving in complex areas like

grade-school math by efficiently using retrieval-augmented generation to store and

access reasoning chains.

Amidst these advancements, this thesis introcues FlexiGPT. FlexiGPT emerges as a

program that adds flexibility to the RAG framework. It enables users to choose from

a wide array of models on platforms like Hugging Face, thereby customizing the NLP

experience to meet diverse needs and objectives (Alquaary et al, 2023; FlexiGPT,

2023). FlexiGPT is a testament to the evolving synergy between user-centric design

and cutting-edge NLP technologies, representing a significant leap forward in making

12

NLP frameworks more adaptable and aligned with the dynamic requirements of the

field.

3. METHODOLOGY

In the methodology section of our study, we introduce FlexiGPT, an innovative

Command Line Interface (CLI) program that incorporates the RAG framework to

address the challenges of query-based information retrieval. A key feature of FlexiGPT

is its user-driven design, which allows users to select both the embedding model and

the LLM from the comprehensive range available on the Hugging Face platform. This

unique capability offers unparalleled flexibility, enabling users to tailor the

information retrieval process to their specific needs. FlexiGPT harnesses these chosen

models to process and interpret complex queries across various file formats, thereby

enhancing the precision and contextual relevance of the retrieved information. This

approach represents a significant methodological shift in the application of NLP

technologies, providing a more adaptable and efficient solution for extracting relevant

information in response to diverse user queries. The integration of user-selected

models in FlexiGPT not only demonstrates an advancement in NLP capabilities but

also contributes a novel perspective to the field of intelligent information retrieval.

Figure 3.1 presents a simplified overview of the RAG process. It begins with a

repository of documents, which serves as a knowledge base. When a query is made,

the RAG system first engages in the retrieval phase, where relevant information is

sourced from the documents. This information then flows into the generation phase,

where the retrieved data is synthesized into a coherent answer. The final output is

delivered to the user, who interacts with the system, possibly through a computer

interface. The flow from documents to a user's answer encapsulates the essence of

RAG, blending retrieval of information with generative AI to provide informed and

accurate responses.

14

Figure 3.1. RAG Framework

 FlexiGPT Process

The FlexiGPT program leverages the RAG technique, augmenting it with enhanced

customization features that empower users to tailor the information retrieval and

generation process. As depicted in the Figure 3.2, the FlexiGPT architecture begins

with the extraction of data from a specified source, which is then segmented into

discrete chunks. These chunks are processed through a user-selected embedding

model, resulting in a series of embeddings that populate a vector database. Through

semantic search, the most relevant embeddings are identified in response to a user-

generated query, which are then utilized by a chosen LLM to generate an accurate and

contextually relevant answer. This figure encapsulates the FlexiGPT's workflow,

illustrating its modular design that enables users to select different embedding models

and LLMs for various purposes.

15

Figure 3.2. FlexiGPT Process

3.1.1. Data source and extraction

The FlexiGPT program initiates its process by sourcing documents, which may come

in various formats such as TXT, DOCX, or PDF. Users can provide multiple files as

input, facilitating a comprehensive knowledge base for the system to draw from. By

default, FlexiGPT searches for these files within a 'docs' folder located in the program's

directory. However, this pathway is not fixed; users have the flexibility to customize

the file path, allowing them to direct FlexiGPT to alternative locations where their

documents are stored. This adaptability ensures that the system can access the

necessary information to address user queries from a diverse range of document

repositories.

16

3.1.2. Chunking data

Once the FlexiGPT program has gathered the data from the provided documents, it

divides the data into smaller sections, or 'chunks', to accommodate the input size

limitations of LLMs. Each chunk contains 1000 characters, with a 200-character

overlap between consecutive chunks to ensure no contextual information is lost. This

method maintains the integrity and continuity of the data. Furthermore, each chunk is

associated with metadata identifying its source file, adding a layer of traceability. The

open-source nature of FlexiGPT allows users to customize the chunk size by

modifying the code, providing the flexibility to tailor the data segmentation to the

specific requirements of their LLMs and the tasks at hand. This chunking technique is

a strategic approach to efficiently process and utilize large volumes of text within the

constraints of LLM input capacities.

3.1.3. Embedding model selection

A key feature of the FlexiGPT program is the capacity it offers users to actively choose

an embedding model that aligns with the nuanced requirements of their tasks

(Embedding Models, 2023). This selection process, which taps into the extensive

repository on the Hugging Face platform, is not just an additional feature but a

cornerstone of the FlexiGPT's design philosophy, emphasizing user control and

customization. When a user decides on a particular model, the FlexiGPT system

efficiently checks its local availability. If the model is already installed on the user's

system, it is immediately utilized; if not, the program conveniently handles the

download, ensuring the model is promptly ready for operation.

This process is particularly user-friendly because it removes barriers to entry for those

not familiar with manual model management. It also ensures that FlexiGPT remains

accessible to a broader audience, ranging from seasoned developers to those just

beginning their journey in machine learning and NLP.

In scenarios where a user may not specify an embedding model, the program is

designed to default to using 'BAAI/bge-base-en', a versatile and performant model that

provides reliable semantic analysis for a wide range of texts. This default setting

ensures that all users can get started with FlexiGPT without needing in-depth

knowledge of the available models.

17

To guide users in their selection, Table 3.1. in the accompanying documentation offers

a snapshot of the embedding models leading the field, as per the Hugging Face

leaderboard. This table not only highlights the models' performance metrics but also

provides insights into their specific strengths, allowing users to make informed

decisions that best suit their project requirements. Whether a user needs a model that

excels in understanding medical texts or one that is fine-tuned for legal documents, the

FlexiGPT's integration with Hugging Face models presents a tailored solution, making

it a powerful tool in the user's NLP toolkit.

Table 3.1. Embedding Models Leaderboard in Hugging Face.

Embedding Model Name Size Embedding

Dimensions

Sequence Length

bge-large-en 1.34 1024 512

bge-base-en 0.44 768 512

gte-large 0.67 1024 512

gte-base 0.22 768 512

e5-large-v2 1.34 1024 512

3.1.4. Embedding chunks

Following the selection of an embedding model by the user, or the default one, the

FlexiGPT program begins the process of converting each individual text chunk into

embeddings. During this phase, the embedding model meticulously parses through

each text segment, converting its semantic and syntactic attributes into dense, high-

dimensional numerical vectors. This intricate process of embedding is applied

uniformly across all chunks, ensuring that every piece of text is translated into a vector

form that captures its inherent meaning and linguistic structure. Upon the successful

transformation of these text chunks into embeddings, they are systematically cataloged

in a vector database. This repository becomes instrumental for semantic research,

poised to support the retrieval of information that closely matches the nuances of user

inquiries. With every chunk embedded and stored, the vector database is equipped to

serve as the backbone for the efficient querying and retrieval of pertinent data, a step

18

that is essential for the accurate and context-sensitive responses that follow in the

workflow of the FlexiGPT program.

3.1.5. Vector database storage

After the embedding process is complete, the resulting vectors are stored in Chroma,

an open-source vector database specifically designed for handling embeddings and

their associated metadata (Chroma, 2023). Chroma's capabilities are multifaceted—it

not only stores the embeddings efficiently but also manages the embedding of

documents and queries, facilitating a robust search functionality. Within the FlexiGPT

program, Chroma plays a critical role as the knowledge repository, where embeddings

are indexed and maintained ready for retrieval. When a user poses a question,

FlexiGPT relies on Chroma to search through these embeddings to find the most

relevant information.

3.1.6. Semantic search

After the program has embedded all the data and stored it in the vector database, it

stands by for a user query to activate its semantic search capabilities. Upon receiving

a question, the FlexiGPT transforms this query into an embedding, just like the data,

and performs a semantic search. This search compares the query's embedding against

the stored data embeddings to find the most relevant matches. The search yields a

number of topically related chunks, known as 'K' results. By default, the program is

set to return the top 5 most relevant chunks, but users have the option to adjust this

number to their preference. This flexibility allows users to fine-tune the breadth of the

search results, ensuring the response is as comprehensive or as focused as necessary

for their specific inquiry.

3.1.7. Prompt engineering

In the workflow, once the top results from the semantic search are acquired, we move

to a crucial step where both the retrieved chunks and the user's question are injected

simultaneously into the prompt (Figure 3.3). This composite input, containing the

question and the contextually relevant chunks, is then presented to the LLM. This

method ensures that the LLM has all the necessary information at its disposal to

generate an accurate and informed response. By integrating the context with the query,

we direct the LLM to draw upon the specific knowledge embedded in the chunks, thus

19

enhancing the precision of the answer and maintaining the fidelity of the information

provided. This step is instrumental in the process, as it ensures that the LLM's output

is not only relevant but also deeply rooted in the data retrieved during the semantic

search.

Figure 3.3. The Default Prompt in FlexiGPT.

3.1.8. LLM selection

As part of the FlexiGPT's operational process, after the prompt has been prepared,

FlexiGPT reaches a step: selecting an LLM for response generation (LLM

Leaderboard, 2023). This choice is made at the start of the program, where the user

can specify which LLM to use. If the chosen LLM isn’t locally available, the program

automatically downloads it from Hugging Face, ensuring users have immediate access

to the most advanced models available. The program offers a range of LLMs, including

full-load models and quantized models like GPT-Generated Unified Format (GGML)

or GPTQ for those seeking efficiency.

For users who don’t select an LLM, FlexiGPT defaults to 'Llama-2-7b-chat-hf', a

reliable model known for its robust performance (Llama-2-7b-chat-hf, 2023; Touvron

et al, 2023). To assist users in selecting the most appropriate LLM for their needs,

Table 3.2. in the documentation provides an overview of the top-performing LLMs on

Hugging Face's leaderboard. This curated list highlights the versatility and capabilities

of different models, ensuring users are well-informed to make a choice that aligns with

their specific needs.

20

Table 3.2. LLM Leaderboard in Hugging Face.

LLM Model Name Size MMLU TruthfulQA

uni-tianyan/Uni-TianYan 73.81 69.91 65.81

Riiid/sheep-duck-llama-2 73.69 70.82 63.8

fangloveskari/ORCA_LLaMA_70B_QLoRA 73.4 70.23 63.37

budecosystem/genz-70b 73.21 70.78 62.66

garage-bAInd/Platypus2-70B-instruct 73.13 70.48 62.26

The ability to select an LLM is an integral step in the FlexiGPT process, empowering

users to tailor the system's responses to their specific queries. This choice is not merely

about preference, but it's about harnessing the most current and effective technology

to ensure that the responses are not only accurate and contextually relevant but also

resonate with the depth and sophistication of the user's request. By providing this

option, FlexiGPT places cutting-edge NLP technology at the user’s fingertips, offering

them the flexibility to utilize an LLM that best fits their evolving needs. This

adaptability keeps users at the forefront of NLP advancements, ensuring that as the

technology progresses, so too does the capability of FlexiGPT to deliver state-of-the-

art responses.

3.1.9. Providing answers to user

In this phase, the tokenizer breaks down the combined input into smaller pieces, or

tokens, which are the fundamental units LLM can process. This is a critical step to

ensure that the language model understands and generates responses effectively.

Following the generation of the response, the detokenization process reassembles these

tokens back into a coherent and fluent answer. This reconstructed text is then presented

to the user, completing the cycle from query to response. The seamless integration of

tokenization and detokenization ensures that the final output is not only informative

and relevant but also readable and naturally phrased, providing a satisfying user

experience.

21

 FlexiGPT parameters

The FlexiGPT program, employing the RAG technique, is innovatively designed to

enhance NLP capabilities. This sophisticated program enables users to interact with

and utilize LLMs for various applications, including text generation, analysis, and

information retrieval. A significant feature of FlexiGPT is its range of customizable

parameters, each playing a vital role in adapting the program's functionality to meet

specific user requirements. These parameters, as outlined in Table 3.3., are crucial for

understanding the diverse capabilities and configurations available within the

FlexiGPT framework. Each of these parameters is integral to the FlexiGPT program,

offering a high degree of customization to suit a wide array of NLP tasks and user

preferences.

By incorporating these diverse parameters, the FlexiGPT program offers users

exceptional flexibility and the ability to engage with multiple files for various

purposes, tailored to their specific needs. This versatility is largely dependent on the

power of the chosen LLMs. Users can fine-tune the program’s capabilities, from the

way it processes and understands language (through the “--llm_model” and "--

embeddings_model” parameters) to how it manages and interacts with data (“--

dir_path”, “--embedding_device”). The “--retriever_k” and “--loading_bit”

parameters allow for optimization of information retrieval and computational

efficiency, while “--source_documents” ensures transparency in the data processing.

Collectively, these parameters empower users to harness the full potential of the

FlexiGPT, making it adaptable for a wide range of tasks, from complex data analysis

to nuanced language generation, all aligned with the strengths of the selected LLMs.

22

Table 3.3. Parameters of FlexiGPT Program.

N Argument Description

1 --llm_model
Selects a Large Language Model from Hugging Face, defaulting to 'meta-

llama/Llama-2-7b-chat-hf'. This parameter determines the core language

processing ability of the program.

2 --embeddings_model
Chooses an embeddings model from Hugging Face, with 'BAAI/bge-base-

en' as the default. This model converts textual data into numerical vectors,

essential for language understanding and processing.

3 --dir_path
Sets the directory path for the user’s files, supporting formats like txt,

docx, and pdf. This parameter specifies where the program will access and

store relevant files.

4 --embedding_device
Specifies the device for running the embeddings, with options including

'cpu', 'cuda', etc. This choice affects the performance and efficiency of the

model.

5 --retriever_k
Determines the number of chunks retrieved by the program, with the

default set to 5. This impacts the depth and breadth of the retrieval process

in the RAG framework.

6 --loading_bit
Provides options for model quantization to optimize performance, choices

being '4bit', '8bit', or None. This parameter is crucial for managing the

computational load and efficiency.

7 --source_documents
Toggles the display of original documents found in the similarity search,

aiding in reference and verification processes during information retrieval.

4. EXPERIMENTAL RESULS

In this section, we delve into the experimental results derived from the application of

the FlexiGPT program, equipped with its diverse and robust parameters. These

experiments were meticulously designed to evaluate the efficacy, versatility, and

performance of the program across various scenarios, reflecting its capabilities in

handling different language models, data formats, and computational settings. By

systematically analyzing the outcomes, this section aims to provide a comprehensive

understanding of how FlexiGPT performs under different configurations and use

cases. The results not only underscore the program's adaptability and efficiency in

processing and retrieving information but also highlight the practical implications and

potential applications of this advanced natural language processing tool in real-world

scenarios. Through a detailed examination of these findings, we aim to demonstrate

the tangible impact and technological advancement that FlexiGPT brings to the field

of NLP.

 LLM Inference Challenges

LLM inference challenges, particularly in the absence of intermediary systems like

FlexiGPT, manifest prominently in two main areas: 'Lack of Knowledge' and

'Hallucination'. The 'Lack of Knowledge' issue arises when LLMs are not equipped

with the most recent information or specific details about a user's context. For example,

an LLM might not have data on the latest scientific breakthroughs or may lack personal

data to understand and respond to a user's unique needs. This leads to responses that

might be generic or outdated, limiting the model's effectiveness in dynamic or

personalized scenarios. On the other hand, 'Hallucination' refers to the tendency of

LLMs to generate plausible but factually incorrect or misleading content. This problem

stems from the model's design, which sometimes prioritizes linguistic fluency over

factual accuracy. Such challenges significantly impair the practical use of LLMs in

situations where precision and up-to-date knowledge are crucial. In our testing of these

24

two cases, we will utilize the 'Llama-2-7b-chat-hf' model to thoroughly evaluate how

effectively it addresses the challenges of 'Lack of Knowledge' and 'Hallucination'.

4.1.1. Lack of knowledge case

The scenario depicted in Figure 4.1 illustrates a common challenge faced by LLMs

such as the 'Llama-2-7b-chat-hf': the 'Lack of Knowledge'. When queried about an

obscure or possibly non-existent algorithm, the model's response reveals its limitation

in providing information on specific or cutting-edge topics. This example underscores

a crucial aspect of LLMs. Their knowledge is finite, encapsulating only what has been

included in their training data up to a certain point in time. Therefore, they may not

possess updated information post their last training update or have details on niche,

highly specialized, or newly-developed concepts. This inherent limitation necessitates

the use of intermediary systems like FlexiGPT, which can augment the LLM's

capabilities by providing updated information or by drawing on user-specific context

to generate more informed and accurate responses.

Figure 4.1. Inferencing Llama-2-7b Directly – Lack of Knowledge.

4.1.2. Hallucination case

The hallucination case, illustrated in Figure 4.2, typifies the 'Hallucination' challenge

in LLMs. When inquired about the BERTopic algorithm, the LLM appears to

acknowledge the term but conflates it with the BERT architecture, weaving in accurate

details about BERT's functionality and applications. This reflects the tendency of

LLMs to generate responses that seem credible but may blend true information with

inaccuracies or fabrications. The 'Hallucination' problem arises from the model's

capacity to confidently generate information without verifying its factual correctness,

which in this instance, leads to a conflated understanding of the BERTopic algorithm

with the well-known BERT model. This issue underscores the importance of

25

intermediary systems like FlexiGPT to discern and correct such inaccuracies, ensuring

the reliability of the information provided by LLMs.

Figure 4.2. Inferencing Llama-2-7b Directly – Hallucination.

 FlexiGPT Demonstration

FlexiGPT, designed for effortless user engagement, operates through a CLI with a

straightforward start-up command "python flexiGPT.py" (Figure. 4.3). Upon

execution without specific arguments, it conveniently defaults to downloading the pre-

set embedding model and LLM. Once initiated, the program is immediately ready to

receive and process user queries. FlexiGPT extracts data from the provided documents

and does the necessary processes to ensure responses are context-aware. After

delivering an answer, the program stands by for the next query, maintaining an

interactive session that seamlessly continues until the user decides to conclude.

Subsequent queries can be posed directly, allowing for an uninterrupted question-and-

answer loop to persist (Figure. 4.4). To exit the program, simply type 'exit' instead of

entering a query.

Figure 4.3. FlexiGPT - Loading LLMs and Answering.

26

Figure 4.4. FlexiGPT - Second Question in a Loop.

The command shown in Figure 4.5:

$python flexiGPT.py --llm_model meta-llama/Llama-2-

13b-chat-hf --retriever_k 2 --loading_bit 4bit (4.1.)

This command tailors the FlexiGPT environment to user specifications, utilizing the

'meta-llama/Llama-2-13b-chat-hf' model (Llama-2-13b-chat-hf, 2023). If this specific

model isn't already installed, FlexiGPT automatically downloads it, ensuring users can

leverage the most current model available. The parameter “--retriever_k” is set to '2',

which directs the system to retrieve information pertinent to two key topics, thus

sharpening the focus and relevance of the information it provides. Setting “--

loading_bit” to '4bit' optimizes the model’s performance for systems with limited

computational resources. This functionality demonstrates the flexibility of FlexiGPT,

designed to merge user-centric convenience with robust NLP tools, enabling

customized and resource-efficient operations, a process which is effectively illustrated

in the workflow depicted in (Figure 4.5).

Figure 4.5. FlexiGPT Downloads different LLM with Some Config.

The correlation between the performance of the LLM and the quality of the output is

evident in Figure 4.6, where we observe that the use of “Llama-2-13b” results in

superior responses. This improvement highlights the principle that the more advanced

the LLM, the more precise and contextually relevant the output. Such an observation

underscores the importance of choosing a robust LLM for enhanced interaction

quality, as clearly demonstrated by the results from “Llama-2-13b”.

27

Figure 4.6. Demo of Using Llama-2-13b.

FlexiGPT enhances user transparency and comprehension by offering the “--

source_documents” flag, which reveals the specific document segments from which

the answer was derived, (Figure. 4.7). By including this flag in the command line,

users activate the feature that displays the retrieved chunks, or 'sources', directly

associated with the generated response. This functionality is crucial for users who wish

to delve deeper into the rationale behind the program's answers, allowing for an

informed analysis of the information presented. It serves as a bridge between the

model's output and the underlying data, fostering an environment of clarity and trust

in the system's processes.

Figure 4.7. Showing the Retrieved Chunks.

Addressing the challenges of knowledge gaps and hallucinations in LLMs, we've

engineered FlexiGPT with a refined prompt system that encourages the models to draw

directly from provided contexts. As seen in Figure. 4.8 when queried about the

weather, the LLM, without relevant information on the current weather conditions,

correctly admits its lack of knowledge rather than fabricating a response. This is

indicative of the prompt's efficacy, which is designed to constrain the LLM's responses

28

to information grounded in the available context—demonstrating a significant step

towards mitigating hallucinations in LLM outputs.

Figure 4.8. Showing the Retrieved Chunks.

In another example, depicted in Figure. 4.9, when asked to define 'Statistics', the LLM

again decides to give an honest admission of ignorance, "I don't know", due to the

absence of related context in the sourced documents. This intentional design to prompt

the LLM to concede ignorance when appropriate, rather than attempting to generate

an unfounded answer, showcases FlexiGPT’s commitment to accuracy and reliability.

By compelling the LLM to utilize only the context within the retrieved topics,

FlexiGPT ensures that the responses are as informed and factual as possible, thereby

enhancing the trustworthiness of the system.

Figure 4.9. FlexiGPT Context Absent Response 2.

5. DISCUSSION

As we move into the discussion part of our analysis of FlexiGPT, a few important

observations stand out that deserve further exploration. The behavior of LLMs when

interfaced with FlexiGPT's framework is particularly noteworthy. The system's design

to incorporate user-specific context raises crucial questions about the efficacy of LLMs

in producing accurate and reliable information. The integration of FlexiGPT with

various LLMs from the Hugging Face repository opens a discourse on the adaptability

of these models to different domains and the robustness of their knowledge bases.

Another point of discussion revolves around the mechanisms FlexiGPT employs to

mitigate known issues associated with LLMs, such as the production of hallucinated

content or responses that lack substantiation. The implementation of a prompt system

that encourages honesty and admission of ignorance when out of context is a

significant advancement in the field. It represents a deliberate move away from the

tendency of LLMs to generate plausible but potentially incorrect information. This

aspect of FlexiGPT's design not only enhances the reliability of the system but also

introduces a new paradigm in user-LLM interactions, where the model’s limitations

are acknowledged and managed effectively.

The necessity for data appropriateness in the retrieval process is also a pivotal point of

discussion. Semantic search, a key feature of FlexiGPT, depends on the congruence

between the user's query and the available context. If the dataset that has been used in

training the embedding model is not closely aligned with the anticipated range of

queries, or if it lacks comprehensive coverage of relevant topics, the system may

struggle to retrieve the most pertinent chunks of information.

 Conclusion

FlexiGPT represents a significant advancement in the field of NLP, offering a highly

customizable interface that allows users to engage with their data through a selection

of sophisticated LLMs and embedding models. Its design addresses key challenges

such as knowledge limitations and hallucination by prompting LLMs to rely on

30

contextually relevant data, thereby enhancing the accuracy and reliability of the output.

While it excels in managing extensive datasets, the optimal performance of FlexiGPT's

RAG technique is achieved through the careful curation of data and potential fine-

tuning of the model to suit specific user requirements. FlexiGPT thus stands as a

testament to the potential of AI to adapt and respond to the complexities of human

language, paving the way for more intuitive and effective data interaction.

 Future Studies

Future studies stemming from the work on FlexiGPT could take several promising

directions to enhance usability and extend functionality. One immediate area for

development is the creation of a Graphical User Interface (GUI). A GUI would make

the program more accessible to a broader user base, reducing the barrier to entry by

eliminating the need for command-line interactions. The visual interface would allow

users to navigate options more intuitively, select models, and interact with their data

in a more direct and user-friendly manner.

Another significant advancement would involve fine-tuning the LLMs for multilingual

support. Although current LLMs possess tokens for various languages, they are

predominantly optimized for English. By fine-tuning these models to better understand

and generate text in a wide array of languages, FlexiGPT could become a truly global

tool, accessible and useful to users around the world. This would entail training the

models on diverse language datasets to ensure they can accurately process and

understand documents in different languages, thereby expanding the program's

applicability to non-English datasets.

REFERENCES

FlexiGPT (2023, 30 October). https://github.com/apoalquaary/FlexiGPT.

Hugging Face (2023, 27 October). https://huggingface.co.

LangChain (2023, 27 October).

https://python.langchain.com/docs/get_started/introduction.

Vaswani, A., Shazeer, N., Parmar, N., et al. 2017. Attention Is All You Need. NIPS.

arXiv:1706.03762v5.

Radford, A., Narasimhan, K., Salimans, T., et al. (2018). Improving Language

Understanding by Generative Pre-Training.

Radford, A., Wu, J., Child, R., et al. (2019). Language Models are Unsupervised

Multitask Learners.

Brown, T. B., Mann B. and Ryder, N. (2020). Language Models are Few-Shot

Learners. arXiv:2005.14165v4.

Devlin, J., Chang, M., Lee, K., et al. (2018). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. arXiv:1810.04805v2.

Raffel, C., Shazeer, N., and Roberts, A. (2020). Exploring the Limits of Transfer

Learning with a Unified Text-to-Text Transformer. Journal of Machine

Learning Research.

Penedo, G., Malartic, Q., Hesslow, D., et al (2023). The RefinedWeb Dataset for

Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data

Only. LightOn Technology Innovation Institute, 9639 Masdar City, Abu Dhabi,

United Arab Emirates.

Gao, L., Biderman, S. and Black, S., (2020). The Pile: An 800GB Dataset of Diverse

Text for Language Modeling. arXiv:2101.00027v1.

Frantar, E., Ashkboos, S., Hoefler, T., et al. (2023). GPTQ: ACCURATE POST-

TRAINING QUANTIZATION FOR GENERATIVE PRE-TRAINED

TRANSFORMERS. Published as a conference paper at ICLR.

Naveed, H., Khan, A. U., Qiu, S., et al. (2023). A Comprehensive Overview of Large

Language Models. arXiv:2307.06435v5.

Hu, E., Shen, Y., Wallis, P. (2021). LORA: LOW-RANK ADAPTATION OF LARGE

LANGUAGE MODELS. arXiv:2106.09685v2.

Dettmers, T., Pagnoni, A. and Holtzman, A. (2023). QLORA: Efficient Finetuning of

Quantized LLMs. arXiv:2305.14314v1.

Mikolov, T., Chen, K., Corrado, G., et al., (2013). Efficient Estimation of Word

Representations in Vector Space. arXiv:1301.3781v3.

https://github.com/apoalquaary/FlexiGPT
https://huggingface.co/

32

Pennington, J., Scdher, R. and Manning, C. D., (2014). GloVe: Global Vectors for

Word Representation. Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing.

Zhang, P., Xiao, S. and Liu, Z., (2023). Retrieve Anything To Augment Large

Language Models. arXiv:2310.07554v2.

Asudani, D., S., Nagwani, N. K. and Singh, P. (2023). Impact of word embedding

models on text analytics in deep learning environment: a review. Artifcial

Intelligence Review.

Lewis, P., Perez, E., Piktus, A., et al. (2021). Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks. arXiv:2005.11401v4.

Melz, E. (2023). Enhancing LLM Intelligence with ARM-RAG: Auxiliary Rationale

Memory for Retrieval Augmented Generation. arXiv:2311.04177v1.

Alquaary, A. and Çelebi, N. (2023). FlexiGPT: Engaging with Documents. Cognitive

Models and Artificial Intelligence Conference.

Embedding Models LeaderBoard (2023, 13 October).

https://huggingface.co/spaces/mteb/leaderboard.

Chroma (2023, 02 October). https://github.com/chroma-core/chroma.

Touvron, H., Martin, L. and Stone, K. (2023). Llama 2: Open Foundation and Fine-

Tuned Chat Models. arXiv:2307.09288v2.

Llama-2-7b-chat-hf (2023, 26 October). https://huggingface.co/meta-llama/Llama-2-

7b-chat-hf.

LLM Leaderboard (2023, 13 October).

https://huggingface.co/spaces/HuggingFaceH4/open_llm_lead erboard.

Llama-2-13b-chat-hf (2023, 27 October). https://huggingface.co/meta-llama/Llama-

2-13b-chat-hf.

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

CURRICULUM VITAE

Abdalrhman Alquaary :

EDUCATION:

• Undergraduate : 2022, Muğla Sıtkı Koçman University, Technology Faculty,

Information Systems Engineering

• Graduate : 2023, Sakarya University, Information Systems Engineering,

Institute of Science/Information Systems Engineering

PROFESSIONAL EXPERIENCE AND AWARDS

• He was a data engineer at Optimak STU 2020 - 2021.

• He worked on Embedded systems at Inovar/Bayhanelektroteknik in 2021-2022.

• He is the CEO of ALQUANIX and has data scientist title in 2022-2023.

PUBLICATIONS:

• Alquaary, A. and Çelebi, N. 2023. FlexiGPT: Engaging with Documents,

Cognitive Models and Artificial Intelligence Conference, 6 (1), 81-85.

https://doi.org/10.36287/setsci.6.1.029.

• Alquaary, A., Gürven, B., Eğri, S. et al. (2022). Yolo V4 ile Sahadaki Personelin

Yelek Tespiti. Bütün Yayın Hakları Saklıdır Kaynak gösterilerek tanıtım için

yapılacak kısa alıntılar dışında yayıncının ve editörün yazılı izni olmaksızın hiçbir

yolla çoğaltılamaz.

https://doi.org/10.36287/setsci.6.1.029

