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DYNAMİC HEURİSTİC APPROACH TO ENHANCE THE PERFORMANCE 

OF FEW-SHOT META-LEARNİNG 

SUMMARY 

Meta-learning has recently become an interesting topic for researchers, particularly in 

supervised learning problems with a lack of training data. Meta-learning has shown 

effectiveness in generalization and adapting to solve new tasks with only a few data 

points. To train a deep learning model in general or meta-learning specifically, an 

optimization function should be used to update parameters during each training cycle 

according to the calculated loss. The popular meta-learning models have used one of 

the traditional gradient-based optimizers. However, challenges introduced by meta-

learning, such as performance considerations during the meta-training and the need for 

faster adaptation, might not be handled efficiently by those optimizers. 

In this research, we propose a custom optimizer to train meta-learning models. Our 

proposal is a new optimizer based on combining a metaheuristic algorithm with 

traditional gradient-based techniques. The heuristic algorithm starts searching for the 

optimized values for the model’s weights using some random initial candidate 

solutions. Then iteratively, according to the performance of each individual, dynamic 

population strategy will be applied to population members by either reproducing or 

eliminating members from the population. The learning process will then continue 

using classic gradient optimization starting with the optimal solution found via the 

heuristic algorithm. 

The custom optimizer we have developed was first tested and tuned on five 

classification benchmark datasets and showed higher accuracy and faster convergence. 

Then the same approach -with slight enhancements- was applied in order to solve the 

meta-learning problem. Our experimental analysis shows that our optimizer could 

enhance the performance of training meta-learning models and enable the efficient 

finding of optimal parameters due to the dynamic characteristics of our proposed 

strategy. 
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AZ ÖRNEKLE META-ÖĞRENME'NİN PERFORMANSINI ARTIRMAK 

İÇİN DİNAMİK HEURİSTİK BIR YAKLAŞIM  

ÖZET 

Meta-öğrenme, öğrenmeyi öğrenme olarak da bilinen, derin öğrenme altında göreceli 

olarak yeni bir alt alan, özellikle sınırlı eğitim verileri ile karşılaşılan denetimli 

öğrenme senaryolarının zorluklarına çözüm olarak araştırmacılar arasında önemli bir 

ilgi kazanmıştır. Meta-öğrenmenin merkezi odak noktası, bir modelin genelleme 

kapasitesini artırmak ve görülmemiş görevlere uyum sağlamak üzerinedir. Bu, derin 

öğrenme modelinin, yinelemeli optimizasyon döngüleri geçirerek ve modele ait 

parametreleri buna göre güncelleyerek sezgisel bir eğitim platformu aracılığıyla elde 

edilir. Meta-öğrenme alanında, eğitim süreci, her meta-eğitim döngüsü sırasında elde 

edilen hesaplanmış kayıplara dayanarak modelin parametrelerini ince ayarlamayı 

içerir. Klasik yaklaşım, klasik gradyan tabanlı optimize edicileri kullanırken, bu 

yöntemleri meta-öğrenme problemleri tarafından tanıtılan ayırt edici zorluklara 

uyarlamak bazı verimsizliklere neden olur. 

Bir anahtar zorluk, meta-eğitim sırasında, modelin sınırlı veri noktalarıyla çeşitli 

görevlerden öğrenme gerekliliğidir. Meta-öğrenmenin karmaşıklığı, genellikle mevcut 

veriden bilgi çıkarma ve görevler arasında öğrenme için yeni stratejileri keşfetme 

arasında doğru bir denge gerektirir. Bu denge, özellikle meta-öğrenme senaryolarının 

sınırlı veri karakteristiği ile karşılaşıldığında, mevcut veriden bilgi çıkarmak ve 

görevler arasında öğrenme için yeni stratejileri keşfetmek arasında doğru bir denge 

gerektirir. Özellikle kritik hale gelir. Ayrıca, görülmemiş görevlere hızlı uyum 

sağlama ihtiyacı, optimizasyon sürecini daha da karmaşık hale getirir. Klasik gradyan 

tabanlı optimize ediciler, özellikle sınırlı görev özgü veri ile karşılaşıldığında, model 

parametrelerini hızlı bir şekilde yeni bir görevin benzersiz özelliklerine uyum 

sağlamakta zorlanabilir. Bu, modelin hızlı bir şekilde adapte olması ve orijinal eğitim 

setinin bir parçası olmayan görevlerde iyi performans göstermesi beklenen 

uygulamalarda kritik bir düşünce noktasıdır. 

Meta-öğrenme alanındaki araştırmacılar, bu zorlukları ele almak için alternatif 

optimizasyon stratejilerini aktif bir şekilde keşfetmektedirler. Model güncellemeleri, 

düzenleme ve optimizasyon fonksiyonlarına yenilikçi yaklaşımlar önererek, meta-

öğrenme modellerinin verimliliğini ve etkinliğini artırmayı hedeflemektedirler. Bu 

ilerlemeler, sınırlı etiketli veri örnekleri ile elde edilebileceklerin sınırlarını zorlamak 

için kritiktir, bu da meta-öğrenmeyi klasik denetimli öğrenmenin gerçek dünya 

uygulamalarındaki kısıtlamaları aşma konusunda umut vadeden bir yol haline 

getirebilir. 

Sezgisel algoritmalar, kesin bir çözüm elde etmek zor veya hesaplama maliyeti yüksek 

olduğunda karmaşık problemler için yaklaşık çözümler bulmak için kullanılan 

problem çözme yaklaşımlarıdır. Sezgisel algoritmalar, büyük çözüm alanlarında 

çözümleri bulmak için kuralcıklar, deneyim veya sezgiyi kullanır. Yapay Sinir 

Ağları'nı (YSA) eğitirken, sezgisel algoritmalar, gradyan tabanlı tekniklere alternatif 
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olarak değerli birer seçenek olarak hizmet eder. Her parametre ayarlaması için 

gradyanları hesaplamaya dayanan klasik yöntemlerin aksine, genetik algoritmalar, 

sürü zekâsı veya simüle edilmiş tavlama gibi sezgisel algoritmalar, çözüm alanlarını 

daha geniş bir şekilde keşfeder. Bu keşif, YSA'lerin yerel minimumlardan kaçınmasına 

yardımcı olur ve çeşitli ve potansiyel olarak üstün model konfigürasyonlarını keşfetme 

yeteneklerini artırır. Sezgisel algoritmalar, özellikle gradyan tabanlı yöntemlerin 

mücadele ettiği karmaşık optimizasyon alanlarında YSA'leri eğitmek için çok yönlü 

ve hesaplama açısından verimli bir yol sunar. 

Bu çalışmada, meta-öğrenme modellerinin eğitimini artırmak amacıyla tasarlanmış 

yeni bir özel optimize ediciyi tanıtıyoruz. Optimize edicimiz, bir dinamik popülasyon 

tabanlı sezgisel algoritmayı klasik gradyan tabanlı tekniklerle sorunsuz bir şekilde 

entegre ederek, meta-öğrenme problemlerinin ortaya çıkardığı zorluklara dinamik ve 

verimli bir yaklaşım sunar. Metaheuristik algoritma, optimal model parametre 

değerlerini aramaya başlamak için arama alanında rastgele dağıtılan başlangıç aday 

çözümler üreterek başlar. Ardından, dinamik bir popülasyon stratejisi uygulanır ve bu, 

bireysel performansa dayalı olarak popülasyon üyelerinin üretilmesini veya 

elenmesini içerir. 

Dinamik popülasyon stratejisi, her eğitim döngüsünün sonunda popülasyon üyelerinin 

performansını değerlendirmeyi içerir. İyi performans gösterenler çoğaltılır ve umut 

veren alanları keşfetmelerini simgelerken, en az performans gösteren bireyler elenir. 

Bu sürekli çoğaltma ve elenme süreci, umut veren bölgelerde aramayı yoğunlaştırmayı 

ve daha az verimli alanlarda daha fazla keşif yapmamayı amaçlar. Heuristik keşif 

aşamasının ardından, öğrenme süreci, metaheuristik algoritma tarafından belirlenen en 

iyi çözümü kullanarak klasik gradyan optimizasyonuna sorunsuz bir şekilde geçer. İki 

aşama arasındaki eğitim döngülerinin dağılımı, kritik bir giriş parametresi olan 

Heuristik Oranı tarafından kontrol edilir, bu da heuristik keşif aşamasına ayrılan 

döngülerin yüzdesini belirtir. 

Özel optimize edicimizin performansını değerlendirmek amacıyla geniş kapsamlı test 

ve ayarlamalar gerçekleştirdik ve çeşitli ölçüm veri setlerinde bunları gerçekleştirdik. 

Bu veri setleri, Iris, MNIST, CIFAR-10, CIFAR-100 ve Fashion gibi klasik 

sınıflandırma görevlerini içermekte olup, görüntü ve desen tanıma alanında çeşitli 

karmaşıklıkları temsil etmektedir. 

Klasik veri setlerinde elde edilen umut verici sonuçlar tarafından teşvik edilen, 

yaklaşımımızı meta-öğrenmenin zorluklarına çözüm üretecek şekilde genişlettik. Özel 

optimize ediciyi, Omniglot ve MiniImageNet gibi iki iyi kurulmuş meta-öğrenme veri 

setine uyguladık. Bu veri setleri, her sınıfta sınırlı örnek içermeleriyle karakterize 

edilir ve bu da onları bir modelin minimal veri ile yeni görevlere adapte olma 

yeteneğini değerlendirmek için özellikle uygun kılar. 

Deneylerimiz, özel optimize edicinin üç önemli meta-öğrenme çerçevesine 

uygulanmasını içerdi: MAML, Reptile ve Meta-SGD. Bu çerçeveler, bir modelin 

meta-öğrenme senaryolarındaki genelleme ve uyum yeteneklerini değerlendirmek için 

yaygın bir şekilde kullanılmaktadır. 

Hem MAML hem de Meta-SGD'nin elde edilen doğruluğu, Omniglot ve 

MiniImageNet veri kümelerinde %2-2,5 oranında iyileşme gördü. Ancak Reptile, hem 

veri kümelerinde hem de aynı sayıda dönemde %1'lik bir doğruluk artışı gösterdi. Hem 

MAML hem de Meta-SGD, ilgili meta eğitim aşamaları sırasında iki adımlı bir 

optimizasyon sürecini içerir. MAML ve Meta-SGD tarafından kullanılan iki aşamalı 

optimizasyon sürecinin aksine Reptile, daha hızlı yakınsamayı vurgulayan daha basit 
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bir yaklaşımı benimser. Eğitim sırasında Reptile, bir iç döngü içindeki belirli bir görev 

üzerinde yalnızca birkaç kademeli adım gerçekleştirir. 

Genel olarak, deneylerimizden elde ettiğimiz sonuçlar, özel optimize edicimizin 

sadece meta-öğrenme modellerinin eğitim performansını artırmakla kalmadığını, aynı 

zamanda verimli parametre keşfini kolaylaştırdığını gösterdi. Önerdiğimiz stratejinin 

dinamik özellikleri, daha yüksek doğruluk, daha hızlı yakınsama ve görünmeyen 

görevlere hızlı uyum sağlama yeteneğine katkıda bulunarak, yenilikçi yaklaşımımızın 

meta-öğrenme optimizasyon alanındaki potansiyelini sergilemektedir. 
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1. INTRODUCTION 

This thesis investigates how using heuristic algorithms can make few-shot meta 

learning work better. Through this study, we aim to make meaningful contributions to 

the field of meta learning optimization process.  

1.1. Overview 

Artificial Intelligence (AI) is a broad field dedicated to creating intelligent agents 

capable of replicating human-like cognitive functions. Under the umbrella of AI, 

Machine Learning (ML) focuses on developing algorithms that enable systems to learn 

from data, categorized into supervised, unsupervised, and reinforcement learning. 

Neural Networks (NNs), or Artificial Neural Networks (ANNs), the backbone of 

machine learning, simulating the complexity of the human brain. Built from layers, 

neurons, weights, and biases, these elements collaborate to process information, 

recognize patterns, and make predictions [1]. The network is organized into layers, 

including the input layer, hidden layers, and output layer. Neurons, the basic 

computational units, exist in each layer, with those in the input layer representing raw 

data features. This information will then processed by hidden layers this through 

connections, while the output layer generates the last prediction or classification [2]. 

Deep Learning (DL), a subset of machine learning, Figure 1.1, employs deep neural 

networks with multiple hidden layers. This depth allows automatic learning of 

hierarchical features from data, resulting in more sophisticated representations. The 

advancement of deep learning is evident in many areas such as image recognition 

(utilizing Convolutional Neural Networks), Natural Language Processing (leveraging 

Recurrent Neural Networks and Transformers), healthcare (for medical image analysis 

and diagnosis), and autonomous vehicles (interpreting environments for safe 

navigation) [3]. One fundamental aspect of training neural networks is optimization, 

often achieved through Gradient Descent. This iterative algorithm minimizes the error 

or loss function by adjusting the weight vector that reduces the error [4]. Stochastic 

Gradient Descent (SGD) is a usually utilized variant, randomly selecting subsets of 

training data for efficiency.
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The learning rate is a critical hyperparameter in Gradient Descent, influencing the size 

of steps taken during optimization. Selecting an appropriate learning rate is crucial for 

convergence and stability during training. While standard gradient-based optimizers 

like SGD are common, modern optimizers like Adam, RMSprop, and Adagrad are 

developed to address specific challenges in training deep neural networks. 

 

Figure 1.1. Deep learning family. 

Innovations in optimization also explore the combination of traditional gradient-based 

techniques with metaheuristic algorithms. Metaheuristics, such as genetic algorithms 

or simulated annealing, introduce randomness and global search strategies, enhancing 

the exploration of the parameter space [5]. 

Traditional machine learning techniques usually solve problems by undergoing 

intensive training cycles to learn from scratch. However, this often requires a massive 

amount of training data, which might not always be available or may come at a high 

cost. Human brains have the ability to use accumulated knowledge to quickly learn 
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new things. For example, let's assume that a child has never seen a zebra before. By 

showing the child a few pictures of a zebra, they will be able to recognize zebras easily. 

In this case, we cannot assume that the child learned from scratch and performed the 

recognition process by looking at just a few examples. Instead, they used their 

previously accumulated knowledge and their ability to recognize animals they were 

familiar with, such as dogs or cats, to quickly identify a new kind of animal by only 

seeing few samples. This is exactly how meta-learning works: we first train the model 

on various tasks to create a generic model. Then, to solve new tasks, only a few data 

points are needed to fine-tune the model’s parameters [6]. 

Meta-learning, also known as learning to learn, is a powerful framework within the 

field of deep learning that focuses on enabling models to learn how to learn from 

limited data [6]. Unlike traditional machine learning approaches that rely on large 

datasets for training, meta-learning aims to create models that can adapt and generalize 

to unseen tasks with the need for only few data points. At its core, meta-learning 

involves training a model on a variety of tasks in such a way that it becomes adept at 

quickly adapting to new, unseen tasks [7]. This is achieved by exposing the model to 

a diverse set of tasks during its training phase. Each task consists of a small dataset, 

and the model learns not only the specifics of each task but also a more general set of 

parameters or initial conditions that facilitate rapid adaptation [8].  

Heuristic algorithms are smart problem-solving methods that focus on being practical 

and efficient rather than aiming for the best possible solution. Unlike exact algorithms 

that guarantee the best solution, heuristics aim to find a good enough solution within 

a reasonable amount of time, making them particularly useful for solving complicated 

problems where finding an best solution is computationally infeasible [9]. Swarm 

Intelligence, including algorithms like Particle Swarm Optimization PSO [10], mimics 

the collective behavior of groups of entities to find solutions. In Particle Swarm 

Optimization, a population of particles iteratively adjusts its position in a search space 

based on its own experience and that of its neighbors [10]. In population-based 

heuristic algorithms, the population size remains constant throughout the optimization 

process. Each member of the population, often represented as a solution candidate or 

individual, is granted equal importance and opportunity to influence the search for the 

optimal solution, regardless of an individual's past performance or fitness score, it 

continues to participate in the search process [11]. In simpler terms, objects that excel 
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and are near a good solution will receive equal opportunities as those exploring areas 

distant from a good solution. In contrast, the heuristic algorithm we have developed is 

based on a dynamic members where the performance of each individual will be 

evaluated at the end of each training cycle, then new members might join the next 

cycles or individuals with unsatisfactory performance will be dismissed from the 

population. 

1.2. Problem Statement 

Although the advancements in meta-learning and its proven efficacy in few-shot 

scenarios, a critical bottleneck remains—the optimization process. Standard gradient-

based optimizers, which have shown success in conventional machine learning 

settings, may underperform in addressing the unique challenges raised by meta-

learning. 

The core problem lies in the necessity for meta-learning models to rapidly adapt to 

new tasks with limited data. Traditional optimizers, designed for smooth and 

continuous optimization landscapes, may struggle in the dynamic environment 

characteristic of meta-learning. Moreover, the importance of task-specific adaptation 

often demands a more focusing approach to parameter updates. 

This research identifies the limitations of existing optimizers in the meta-learning 

context and aims to address them through the development of a heuristic based 

optimizer. 

1.3. Objectives of the Research 

This research aims to address the identified challenges within the platform of meta-

learning optimization. The overall goal is to develop a custom optimizer that optimally 

balances the exploration of novel solutions and the exploitation of known information, 

specifically tailored to the few-shot nature of meta-learning. The objectives can be 

outlined as follows: 

1. Custom Optimizer Development: Design and implement a novel custom 

optimizer that integrates metaheuristic algorithms with traditional gradient-

based optimization techniques. Also, empirically ensure the optimizer's 

adaptability to the nature of meta-learning tasks, focusing on efficient 

parameter updates and fast convergence. 
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2. Efficiency Enhancement for Benchmark Datasets: Firstly, the performance of 

the developed custom optimizer on standard classification benchmark datasets 

will be evaluated by comparing the accuracy and convergence speed of the 

custom optimizer against traditional gradient-based optimizers, demonstrating 

its efficacy in conventional machine learning scenarios. 

3. Meta-Learning Model Optimization: Apply the custom optimizer to few-shot 

meta-learning scenarios, where adaptation to new tasks with limited data is 

crucial. Then assess the performance of meta-learning models trained with the 

custom optimizer in terms of accuracy, convergence speed. 

4. Empirical Validation and Analysis: Perform a comprehensive empirical 

examination of the experimental outcomes, addressing both the strengths and 

limitations of our approach. Additionally, compare our approach with four 

state-of-the-art meta-learning models through statistical analysis and 

visualizations, ensuring its effectiveness in enhancing meta-learning 

performance. 

1.4. Thesis Organization 

We have organized this thesis as follows:  

− Chapter 2: Background and Literature Review: This chapter provides a 

comprehensive overview of the foundational aspects relevant to the study. It 

begins by delving into the fundamentals of deep learning, establishing a 

theoretical background for subsequent discussions. Following this, the chapter 

shifts its focus to meta-learning, offering an in-depth exploration of its 

theoretical foundations, applications, and the challenges it faces. The 

discussion then extends to heuristic algorithms, where a detailed examination 

of principles and methodologies behind heuristic approaches is presented. 

− Chapter 3: Proposed Model: This pivotal chapter introduces the novel hybrid 

optimizer designed for meta-learning. The chapter outlines the conceptual 

framework, detailing how the metaheuristic algorithm is combined with 

traditional gradient-based techniques. It also elaborates on the optimization 

process and the rationale behind the design choices made in building the 

proposed model. 
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− Chapter 4: Empirical Analysis: Present the empirical analysis of the custom 

optimizer. Initial testing on classification benchmark datasets is discussed, 

highlighting the achieved higher accuracy and faster convergence. The 

application of the proposed model to solve the meta-learning problem is 

thoroughly examined through experimental analysis. 

− Chapter 5: Conclusion and Outlook: The final chapter provides a 

comprehensive conclusion of the research findings, summarizes key 

contributions, and discusses implications. Additionally, the chapter outlines 

potential avenues for future research, highlighting areas where further 

exploration and refinement of the proposed approach could be undertaken. 



 

2. BACKGROUND AND LITERATURE REVIEW 

This chapter navigates the foundational landscapes of deep learning, meta-learning, 

and heuristic algorithms, providing the essential background to contextualize our novel 

approach to enhancing meta-learning performance. The evolution of these domains 

sets the stage for understanding the difficulties and challenges that our proposed 

approach aims to address. 

2.1. Deep Learning: A Brief Summary 

The field of deep learning, illustrated in Figure 2.1 [1], characterized by its neural 

network architectures and sophisticated training methodologies, forms the cornerstone 

of modern machine learning applications. This section offers a brief synthesis, 

emphasizing advanced concepts that directly influence the development and 

performance of deep-learning models. By identifying key components and recent 

trends and advances, we establish a baseline understanding for the subsequent 

exploration of deep learning. 

 

Figure 2.1. Traditional machine learning vs. deep learning. 

2.1.1. Categories of deep learning approaches 

Deep learning methodologies can be classified into three primary categories: 

supervised learning, unsupervised learning, and reinforcement learning, Figure 2.2.
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Supervised Learning:  In this category of deep learning, the model undergoes training 

using a labeled dataset, in which every input is matched with a corresponding output 

or target. The objective is to grasp a relationship between inputs and outputs, enabling 

the algorithm to predict outcomes for fresh data that the model did not see during the 

training process [12], [13]. Classification and regression problems are common in 

supervised learning. For example, checking whether an message is spam or not 

(classification) or forecasting of the price of a house based on its features (regression).  

The algorithm undergoes training using a labeled dataset, during that the model fine-

tunes weights to minimize the distance between its predictions and the actual data [14]. 

Unsupervised Learning: Handling unlabeled data, unsupervised learning involves 

the algorithm in the exploration of patterns, relationships, or structures within the data 

without explicit instructions on what to do with data [15]. Unsupervised learning 

involves two key tasks: clustering and dimensionality reduction. Clustering is about 

grouping similar data points together, while dimensionality reduction aims to preserve 

important data while decreasing the total number of attributes. These techniques play 

vital roles in data analysis and pattern recognition. Clustering helps in identifying 

natural groupings within data, while dimensionality reduction simplifies complex 

datasets for easier analysis. Both are essential tools in uncovering insights and patterns 

hidden within large datasets [12]. The algorithm explores the input data to identify 

inherent structures or patterns, with no exact target labels to guide the learning [16]. 

 

Figure 2.2. Classification of deep learning models. 
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Reinforcement Learning: Reinforcement learning involves an agent that will develop 

its decision-making skills through iterative interactions with its environment [1]. The 

agent's learning process involves obtained feedback, either a kind of rewards for 

favorable actions or penalties for unfavorable ones. Its primary aim is to develop a 

policy that increase the total reward accumulated over time as much as possible. This 

process is fundamental in reinforcement learning, where the agent learns through trial 

and error to achieve its objectives efficiently. [17]. Playing games, robotics control, 

and autonomous systems are common applications of reinforcement learning [12]. The 

agent learns by trial and error, adjusting its actions to reach the maximum possible 

awards. The agent learns through exploration and exploitation, receiving feedback 

from the environment in the form of rewards or penalties. The learning process 

involves finding a balance between exploring new actions and exploiting known 

actions that lead to positive outcomes [18]. 

2.1.2. Neural networks structure 

Neural networks can be considered as the cornerstone in the field of artificial 

intelligence (AI) and machine learning. These computational models draw inspiration 

from the functioning of biological neural networks within the human brain [2]. 

A typical neural network consists of layers of interconnected nodes, also known as 

artificial neurons. These layers usually include the input layer, hidden layer(s), and 

output layer, forming the three primary types of layers in a neural network. [19]. 

The input layer's role is to receive the initial data into the neural network. Each node 

within the input layer is connected to an attribute or input variable. The quantity of 

nodes in the input layer is determined by the number of dimensions of the input data. 

Between the input and output layers, the network might include also one or multiple 

hidden layers. The nodes in the middle layers operate the input data by utilizing 

weighted connections and activation functions. The term "hidden" comes from the fact 

that the outputs of these nodes are not explicitly seen in the training samples. The 

output layer generates the final outcomes of the neural network's computation. The 

quantity of nodes within the output layer varies depending on the nature of the problem 

at hand [20]. 
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Figure 2.3. Feedforward neural network structure. 

The structure of a neural network can vary based on the specific task and architecture 

chosen. However, here are the common neural network architectures: 

− Feedforward Neural Networks (FNN): Information flows in one direction, 

from input to output, with no feedback loops, Figure 2.3 is a sample structure 

[20]. 

− Recurrent Neural Networks (RNN): Accommodates sequential data by 

incorporating feedback loops, allowing information persistence [20]. 

− Convolutional Neural Networks (CNN): Specialized for image processing, 

utilizing convolutional layers for feature extraction [13, 21]. 

2.1.3. Connections and weights 

Every connection between nodes in adjacent layers is accompanied by a weight, 

signifying the connection's strength. These weights are fine-tuned during the training 

phase to enhance the network's performance [20]. The weighted total of input data, 

coupled with a bias, undergoes evaluation through an activation function to ascertain 

the output of each node. Normally, each node within a layer is associated with a bias 

term—a constant that's incorporated into the weighted sum before applying the 
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activation function. The inclusion of bias enables the network to adapt and modulate 

its output [2]. 

For a multi-layer neural network with L layers (which includes the input and output 

layers) and 𝑁𝑙 neurons in each layer 𝑙, the output equation for a neuron in layer 𝑙 can 

be expressed as follows [20]: 

𝑦𝑖
(𝑙) = 𝑓 ( ∑ 𝑊𝑖,𝑗

(𝑙)

𝑁(𝑙−1)

𝑗=1

⋅ 𝑦𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)) (2.1) 

Where 𝑦𝑖
(𝑙)

 is the result of the 𝑖 − 𝑡ℎ node in layer 𝑙, f is the applied activation function 

to the weighted sum. 𝑁(𝑙−1) is the number of neurons in the previous layer (𝑙 − 1). 

𝑊𝑖,𝑗
(𝑙)

 is the value associated with the connection between the 𝑗 − 𝑡ℎ node in layer 𝑙 -1 

and 𝑖 − 𝑡ℎ node in layer 𝑙. 𝑏𝑖
(𝑙)

 is the bias value for the 𝑖 − 𝑡ℎ node in layer 𝑙. 

2.1.4. Activation function 

An activation function injects non-linearity into the network, empowering it to grasp 

complex patterns. Typical activation functions comprise:: 

− Sigmoid: S-shaped function, often used in the output layer for binary 

classification, illustrated in Figure 2.4. 

σ(𝑥) =
1

1 + 𝑒−𝑥
 (2.2) 

− Hyperbolic Tangent (tanh): Similar to the sigmoid but ranging from -1 to 1. 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.3) 
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Figure 2.4. Common activation functions. 

− Rectified Linear Unit (ReLU): Commonly used in hidden layers, allowing only 

positive values. Figure 2.4. 

ReLU(𝑥) = max(0, 𝑥)       (2.4) 

2.1.5. Loss function 

The loss function measures the discrepancy between the predicted output and the 

actual one. Throughout training, the objective is to diminish this loss as much as 

possible [2]. 

− Mean Squared Error (MSE): Usually utilized for regression problems, 

quantifying the disparity between generated and actual values. The MSE is 

calculated using the this formual [23]: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2

𝑛

𝑖=1

       (2.5) 

Where n is the number of sample data, 𝑦𝑖 is the real (observed) value for the i-th sample 

point, 𝑦𝑖 is the calculated value for the i-th sample point. 

− Cross-Entropy Loss: Prevalent in classification tasks, calculating the 

divergence between calculated and true probability distributions [24]. 

𝐻(𝑦, 𝑦̂) = −
1

𝑛
∑∑𝑦𝑖𝑗

𝐾

𝑗=1

log(𝑦𝑖𝑗̂)

𝑛

𝑖=1

        (2.6) 
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Where K is the total of output classes in multi-class classification. 

2.1.6. Network training 

Training involves adjusting the values of nodes according to the difference between 

the calculated output and the actual output. Backpropagation is the algorithm used to 

propagate this error backward through the network, updating the weights and biases 

[2]. 

2.1.7. Optimization function 

Optimizing an Artificial Neural Network involves adjusting the model's parameters to 

minimize a certain cost or loss function. The optimization function holds significant 

importance in training and fine-tuning the model to achieve optimal performance. It 

serves as a guide for turning the model's weights in the course of the learning process, 

helping the network converge to a solution that minimizes the distance between 

calculated and desired outputs. Here are some details about optimizing ANNs, 

including popular optimization algorithms and alternative approaches [25]: 

− Gradient Descent (GD): The basic optimization algorithm that adjusts model 

parameters in the direction opposite to the gradient of the cost function. The 

concept of gradient descent dates back to the early days of optimization and is 

a fundamental building block for many optimization algorithms [26]. 

θ𝑖+1 = θ𝑖 − α∇𝐽(θ𝑖)        (2.7) 

Where 𝜃𝑖+1 is the updated parameter values. 𝜃𝑖 is the current parameter values. α is 

the learning rate, determining the size of the step taken in each iteration. α∇𝐽(θ𝑖) is 

the derivation of the loss function 𝐽 with respect to the parameters 𝜃𝑖. 

− Stochastic Gradient Descent (SGD): Optimizes parameters using the 

gradient computed from a single training example, leading to faster updates. 

SGD is commonly employed in training large-scale neural networks and has 

been a key optimization method in machine learning [27]. 

θ𝑗+1 = θ𝑗 − α∇𝐽𝑖(θ𝑗)        (2.8) 
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Where the derivation of the cost function is computed for one training sample 𝑖. In 

practice, SGD is often used with mini-batches, which are small groups of training 

examples. This can further improve the efficiency of the algorithm.  

− Mini-Batch Gradient Descent: An intermediate approach between Gradient 

Descent (GD) and Stochastic Gradient Descent (SGD) entails updating 

parameters based on a small batch of training examples. Mini-batch gradient 

descent is a standard optimization approach in deep learning due to its 

efficiency in utilizing both parallelism and stochasticity [27, 3]. 

θ𝑖+1 = θ𝑖 − α ⋅
1

𝑚
∑∇θ

𝑚

𝑗=1

𝐽(θ; 𝑥(𝑖𝑗), 𝑦(𝑖𝑗))        (2.9) 

Where 𝑚 is the batch size and ∇θ𝐽(θ; 𝑥(𝑖𝑗), 𝑦(𝑖𝑗)) is the gradient of the cost function 

computed on the mini-batch (𝑥(𝑖𝑗), 𝑦(𝑖𝑗)). 

− Momentum: Momentum was introduced to address the issue of high variance 

in Stochastic Gradient Descent (SGD) and to smooth the convergence process. 

It speeds up convergence in the pertinent direction while dampening 

fluctuations in irrelevant directions [28]. 

− RMSprop: An adaptive learning rate method that normalizes the gradient 

using a moving average of squared gradients. Introduced by Hinton in lecture 

notes, RMSprop is designed to address the sensitivity of learning rates in 

different dimensions [29]. 

− Adam (Adaptive Moment Estimation): An adaptive learning rate 

optimization algorithm that integrates concepts from both momentum and 

RMSprop. Introduced by Kingma and Ba in 2014, Adam has become a popular 

optimization choice due to its robustness and efficiency across various tasks 

[30]. 

− Adagrad: Modifies the learning rates of each parameter independently by 

considering historical gradient details. Proposed by Duchi et al. in 2011, 

Adagrad is suitable for sparse data and has been influential in optimization 

research [31]. 
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− Nadam: An extension of Adam that incorporates Nesterov momentum. 

Nadam, introduced by Dozat in 2016, combines the strengths of Adam and 

Nesterov accelerated gradient, offering improved convergence properties [32]. 

The Adam optimizer showcases exceptional adaptability across a wide range of tasks, 

owing to its dynamic learning rates and momentum. This flexibility enables efficient 

navigation through various loss function landscapes. A standout feature of Adam is its 

effective management of sparse gradients, particularly beneficial in situations with 

high-dimensional and sparse data. The integration of momentum and adaptive learning 

rates in Adam plays a pivotal role in achieving rapid convergence, enabling neural 

networks to swiftly attain satisfactory solutions and outperform traditional 

optimization methods. Numerous studies, consistently demonstrate Adam's superiority 

over other adaptive learning rate mechanisms. 

2.1.8. Challenges of training algorithms 

Several issues arise during the training of neural networks. Here, we will outline the 

key challenges: 

Local Minima: Gradient-based optimization methods may get stuck in local minima, 

demonstrated in Figure 2.5. preventing them from finding the global minimum of the 

loss function, resulting in suboptimal solutions and slower convergence in complex, 

non-convex landscapes. 

 

Figure 2.5. Global vs. local minima.  
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As descripted in [33], local minima is mathematically outlined as the following: 

− Assume 𝑐𝑓: S  → 𝑅≥0, with S  ⊂  𝑅𝑛 is compact and nonempty [41]. 

− A solution 𝑤∗ ∈ 𝑆 is named global optima when 𝑐𝑓(𝑤
∗)  ≤  𝑐𝑓(𝑤) at any w ∈

𝑆 exists.  

− A solution 𝑤∗ ∈ 𝑆 is named local optima if there exists ε > 0, and ε-

neighborhood 𝐵ε(𝑤
∗, ε) near 𝑤∗ where exists 𝑐𝑓(𝑤

∗)  ≤  𝑐𝑓(𝑤)  for any w ∈

𝑆 ∩ 𝐵ε(𝑤
∗, ε). 

Vanishing and Exploding Gradients: Gradients can be extremely tiny (vanishing) or 

too big (exploding) within the backpropagation, affecting the training stability. Result 

can be difficulty in learning long-term dependencies (vanishing gradients) or unstable 

training (exploding gradients) [1, 34]. 

Overfitting: Models may memorize the training samples instead of being able to 

generalize to new data, unseen samples. This might reduce the performance on new 

data, limiting the model's capability for generalization. Figure 2.6 [1, 35, 36]. 

 

Figure 2.6. Over-fitting and under-fitting issues.  

Computational Complexity: Deep neural networks with numerous parameters can 

be computationally expensive to train. Increasing training time, resource requirements, 

and potential limitations on deployment in resource-constrained environments. [1] 

Limited Transferability: Models trained on one task may not generalize well to 

related tasks. Requiring extensive retraining for new tasks, limiting the transferability 

of learned features [1, 37]. 
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2.2. Meta Learning 

Meta-learning, often regarded as learning to learn, was initially introduced by [38] and 

then has garnered substantial attention in recent years for its capacity to address 

challenges posed by limited training data. This section delves into the meta-learning 

landscape, delineating its types, applications, and notable models. A concise review 

lays the groundwork for understanding the complications of meta-learning, setting the 

scene for the exploration of our novel dynamic heuristic approach. 

Meta-learning includes training a network to learn how to learn, enabling it to adapt 

quickly to unseen tasks with few data points, Figure 2.7. [40] It employs a two-step 

process: in the first step, the model learns from a diverse set of tasks to acquire general 

knowledge or "meta-knowledge." In the second step, this meta-knowledge is used to 

rapidly adapt to new tasks.[6] The model typically leverages a meta-learning 

algorithm, such as MAML (Model-Agnostic Meta-Learning) [39], to update its 

parameters in a way that facilitates quick adaptation. Meta-learning is beneficial in 

scenarios where limited data is available for new tasks, as it enables models to 

generalize effectively and perform well with fewer examples [7]. 

 

Figure 2.7. Classic gradient update vs. MAML update. 

Meta-learning, transfer learning and multitask learning are unique methodologies 

crafted to facilitate learning across a spectrum of tasks. [37]. Multitask learning seeks 

to enhance generalization against a group of tasks by simultaneously learning them. 

Transfer learning involves refining a pre-trained model for a unseen task using limited 
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data. In contrast, meta-learning involves extracting valuable insights from prior tasks 

and utilizing them to efficiently learn new tasks [7, 41]. 

Meta-learning strives to overcome the constraints of conventional transfer learning by 

embracing a more advanced strategy that explicitly prioritizes transferability. Unlike 

traditional transfer learning, which entails pre-training a model on source tasks and 

fine-tuning it for a new task, meta-learning involves training a network to adeptly learn 

or adapt to new tasks with minimal examples [7, 42]. During meta-training, the focus 

is on acquiring the ability to learn various tasks, while at meta-test time, the emphasis 

is on efficiently mastering a new task. 

2.2.1. Meta-learning: task-distribution view 

In meta-learning, we often have a meta-training phase where the model learns a good 

initialization from a set of tasks. The model can then quickly adapt to new tasks during 

the meta-testing phase [7]. Here's a generic representation: 

Meta-Training Objective: The meta-training objective aims to find model parameters 

that generalize well across different tasks. Given a set of tasks 𝒯, the target is to reduce 

the total loss across all tasks [8]:  

min
θ

∑ 𝐿𝑇(θ)

𝑇∈𝒯

      (2.10) 

Where 𝐿𝑇(θ) is the loss on a task 𝑇 calculated for the model parameters θ. This 

objective guides a model to learn a set of parameters which perform good on a several 

number of tasks. 

Gradient Descent Updates (First Order): During meta-training, the model 

parameters are updated using gradient descent. The first-order meta-training update is 

expressed as [7]: 

θ′ = θ − α∇θ ∑ 𝐿𝑇(θ)

𝑇∈𝑇

      (2.11) 

Here, α represents the meta-training learning rate, while the gradient term represents 

the sum of gradients of the losses on all tasks calculated against the model parameters. 
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Meta-Testing Objective: In the meta-testing phase, the model parameters 𝜃′ are 

adapted to a new task. The target is to reduce the loss on the new task 𝐿new with respect 

to the adapted parameters [7]: 

θ′′ = θ′ − β∇θ𝐿new(θ′)      (2.12) 

Where 𝛽 is the meta-testing learning rate. This equation captures the idea of quick 

adaptation to a new task using a few additional gradient steps. 

Higher-Order Gradients: In certain meta-learning algorithms, higher-order gradients 

are computed to facilitate faster adaptation. For instance, in MAML framework, the 

second-order update is given by [39]: 

θ′′ = θ − β∇θ (∑ 𝐿𝑇(θ − α∇θ𝐿𝑇(θ))

𝑇∈𝑇

)      (2.13) 

This involves calculating the derivative of the meta-objective with regard to the model 

parameters and is particularly useful where the network needs to adapt fast with 

minimal data. 

2.2.2. Meta learning approaches 

In meta-learning, various learning strategies can be organized into three types: metric-

based, model-based, and optimization-based techniques, These categories represent 

distinct strategies for enabling models to learn how to learn efficiently across diverse 

tasks [7]. 

Metric-based meta-learning:  

Also known as distance-based or similarity-based meta-learning, aims to is to enable 

a model to quickly adapt to new tasks by learning a metric or loss function that 

calculates the similarity or dissimilarity between examples [42]. In metric-based meta-

learning, the idea is often to embed examples into a metric space in such a way that 

examples from the same task are close to each other, and examples from different tasks 

are far apart. This learned metric is then used during the adaptation phase to quickly 

identify relationships between examples in a new task. 

Siamese networks, a groundbreaking contribution by Koch et al. in 2015 [43], 

represent the base of this category of meta-learning strategies within few-shot learning 
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domains. This pioneering approach involves estimating classes by matching inputs of 

both support and query sets. The significance of Siamese networks lies in their 

introduction of the fundamental idea that subsequently evolved in various directions 

summarized in Figure 2.8 [7]. 

Graph neural networks (GNNs), as advanced by Hamilton et al. in 2017 [44] and 

Garcia and Bruna in 2017 [45], expanded upon the Siamese network concept. GNNs 

introduced a parametric information flow between support and query inputs, offering 

a more flexible framework for metric-based meta-learning techniques. 

Matching networks, a direct offshoot inspired by Siamese networks, were introduced 

by Vinyals et al. in 2016 [46]. While retaining the core idea of comparing inputs for 

predictions, matching networks departed by training directly in the few-shot setting. 

Notably, they employed cosine similarity as a metric, omitting the auxiliary binary 

classification task utilized by Siamese networks. 

 

Figure 2.8. The evolution of covered metric-based meta-learning strategies. 

Prototypical networks, proposed by Snell et al. in 2017 [47], further refined the 

methodology of input matching. Rather than matching each query set data point into 

individual support set examples, prototypical networks introduced the innovative 

concept of comparing with a class prototype. This strategic adjustment reduced the 

number of necessary input comparisons. 

Relation networks, as detailed by Sung et al. in 2018 [48], marked a notable evolution 

by replacing fixed, predefined similarity metrics. Instead, Relation networks 

substituted these metrics with a neural network, allowing to the learning of domain-

specific similarity functions. This adaptation enhanced the adaptability and 

performance of the model. 
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Attentive Recurrent Comparators (ARCs), a distinctive approach introduced by Shyam 

et al. in 2017 [49], took a biologically plausible perspective. ARCs focused on several 

interleaved glimpses at different sections of the inputs during the comparison process, 

departing from the conventional practice of comparing entire inputs. This nuanced 

approach in ARCs offered a detailed and sophisticated assessment during the meta-

learning process. 

The main benefits of employing metric-based techniques include the simplicity of the 

underlying concept in similarity-based predictions and the potential for fast test-time 

execution in small tasks, as the network does not require task-specific tuning. 

Nevertheless, as tasks at meta-test time deviate further from those used during meta-

training, metric-learning techniques struggle to assimilate new task information into 

the network weights. Consequently, this limitation sometimes results in performance 

drop. 

Model-based meta-learning:  

Model-based meta-learning is a technique within the broader field of meta-learning 

that involves learning a model's internal representations or dynamics during meta-

training in order to facilitate rapid adaptation to new tasks during meta-testing [7]. 

In model-based meta-learning, the focus is on learning how to update a model's 

parameters quickly for a new task. Instead of directly learning the parameters that 

make the model effective for adaptation, the algorithm learns a model that can predict 

how the parameters should be updated based on a few examples from a new task.  

Memory-augmented neural networks (MANN), introduced by Santoro et al. in 2016 

[50], represent a significant advancement in the field of deep model-based meta-

learning techniques. This pioneering approach involves sequentially feeding the entire 

support set into the model, leveraging its internal state to make predictions for the 

query set inputs. Several research extended MANN summarized in Figure 2.9: 

The model-based paradigm, characterized by the sequential entry of inputs, found 

resonance in recurrent meta-learners (RMLs), a concept explored by Duan et al. [51] 

in 2016 and Wang et al. [52] in the same year, particularly in the context of 

reinforcement learning. RMLs share a similar strategy of processing inputs in a 

sequential manner. 
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Figure 2.9. The history of model-based meta-learning techniques[7]. 

Meta networks, proposed by Munkhdalai and Yu in 2017 [53], marked another 

evolution in model-based meta-learning. In contrast to memory-augmented neural 

networks, meta networks employed a big black-box technique but innovatively 

generated task-specific values for each encountered task, showcasing the adaptability 

of model-based techniques. 

SNAIL (Mishra et al. 2018) [54] emerged as a distinctive effort to augment memory 

capacity and refine the ability to pinpoint memories, addressing inherent limitations in 

recurrent neural networks. This improvement was achieved through the incorporation 

of attention mechanisms coupled with special temporal layers, representing a 

noteworthy refinement in the model-based meta-learning approach. 

Furthermore, the neural statistician and conditional neural processes introduced two 

innovative techniques aiming to learn meta-features of datasets in an end-to-end 

fashion. The neural statistician, relying on the distance between meta-features, made 

class predictions, while the conditional neural process conditioned classifiers on these 

features, showcasing the versatility within the model-based meta-learning landscape 

[7]. 

While model-based approaches offer advantages such as flexibility in internal system 

dynamics and broader applicability, it is important to note their comparative 

performance. Garcia and Bruna (2017) [45] demonstrated that metric-based 

techniques, specifically in supervised settings, often outperform model-based 

approaches, as exemplified by graph neural networks. Additionally, challenges such 

as suboptimal performance with larger datasets, as highlighted by Hospedales et al. in 
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2020 [6], and a reduced ability to generalize to several variant tasks compared to 

optimization-based techniques, will be discussed in the subsequent section. 

Optimization-based meta-learning: 

Optimization-based meta-learning is a category of meta-learning algorithms that 

focuses on training a model to adapt fast to unseen tasks through optimization 

procedures. The key idea is to learn a set of model parameters that can be efficiently 

fine-tuned for a unseen tasks with a limited amount of data points [7]. The 

optimization-based meta-learning approach is versatile and can be applied to various 

types of models and tasks. It provides a framework for learning an initialization that 

guarantees a quick adaptation to new and unseen tasks, making it particularly useful 

in scenarios where data for new tasks is limited [39]. 

The LSTM optimizer, introduced by Andrychowicz et al. in 2016 [55], serves as the 

foundational concept for optimization-based meta-learning techniques. This 

pioneering approach replaces handcrafted optimization procedures, such as gradient 

descent, with a trainable LSTM network. The LSTM meta-learner, as proposed by 

Ravi and Larochelle in 2017 [56], extends this paradigm into the few-shot learning 

setting. Beyond learning the optimization procedure, this meta-learner also acquires a 

set of initial weights, enabling its versatile application across various tasks. 

MAML (Finn et al. 2017) [39] simplifies the LSTM meta-learner by replacing the 

trainable LSTM optimizer with handcrafted gradient descent, Figure 2.10. Widely 

recognized in the deep meta-learning field, MAML has inspired numerous subsequent 

works, showcasing its impact and relevance in the research community. 

 

Figure 2.10. MAML diagram. 
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MAML has garnered significant interest in the domain of Deep Meta-Learning, Figure 

2.11, likely attributed to its: (i) simplicity, requiring just two parameters, (ii) broad 

implementations, and (iii) robust performance [39, 7]. However, a drawback of 

MAML, as noted earlier, is its potential computational expense, both in with regard to 

performance represented in memory utilization and total running time needed, 

particularly when optimizing a base-learner for each task and computing higher-order 

derivatives shaping the optimization paths. [7, 8] 

Meta-SGD [57], an enhancement of MAML introduced by Li et al. in 2017, takes a 

step further by incorporating the learning rates into the optimization process. This 

refinement demonstrates an additional layer of sophistication in fine-tuning the 

optimization-based meta-learning approach. 

 

Figure 2.11. The covered optimization-based meta-learning techniques. 

LLAMA (Grant et al. 2018) [58], PLATIPUS (Finn et al. 2018), and online MAML 

(Finn et al. 2019) [59] extend MAML's applicability to active and online learning 

settings. LLAMA and PLATIPUS introduce probabilistic interpretations of MAML, 

allowing for the sampling of several solutions for a specific task and quantifying 

uncertainty. These extensions contribute to a more nuanced understanding and 

utilization of MAML in diverse learning scenarios [7]. 
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BMAML (Yoon et al. 2018) [60] takes a distinctive approach by jointly optimizing a 

discrete set of M initializations. This discrete optimization strategy represents a 

departure from traditional continuous optimization, demonstrating the diversity and 

creativity within optimization-based meta-learning research. 

iMAML (Rajeswaran et al. 2019) [61] addresses the computational challenges 

associated with the computation of second-order derivatives needed by MAML. 

Through implicit differentiation, iMAML not only overcomes computational expenses 

but also enables the utilization of derivation-free inner loop optimization cycle. This 

innovative solution opens avenues for more efficient and versatile optimization-based 

meta-learning techniques. 

Reptile (Nichol et al. 2018) [62] presents an elegant first-order meta-learning 

algorithm that finds a set of initial parameters without the need for computing higher-

order derivatives. This streamlined approach contributes to the efficiency and 

scalability of optimization-based meta-learning. 

LEO (Rusu et al. 2018) [63] seeks to enhance the performance of MAML by making 

improvements in a lower-dimensional parameter domain using an encoder-decoder 

architecture. This architectural innovation showcases the exploration of novel design 

principles within the optimization-based meta-learning framework. 

Lastly, (Bertinetto et al. 2019) [64], and Lee et al. (2019) [65] leverage traditional deep 

learning techniques (ridge regression, logistic regression, SVM, respectively) as 

classifiers on top of a learned feature extractor. These approaches integrate classical 

methods into the meta-learning framework, demonstrating the adaptability and fusion 

of traditional techniques with contemporary meta-learning concepts [7]. 

The main benefit of optimization-based techniques, highlighted by Finn and Levine in 

2018 [58, 66], is their ability to achieve superior performance on wider task 

distributions compared to model-based approaches. However, it is essential to 

acknowledge the computational expenses associated with optimization-based 

techniques, as emphasized by Hospedales et al. in 2020 [6], particularly in optimizing 

a base-learner for each task and learning the optimization procedure. 

When the target is to implement heuristic approach to optimize the meta learning 

model, it will be more efficient to apply on optimizer-based meta-learning approaches 

rather than the other two, due to their ability to efficiently explore solution spaces, 
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adapt to diverse tasks, and incorporate prior knowledge. Unlike metric-based 

approaches, which rely heavily on similarity measures and may struggle with diverse 

tasks, and model-based approaches, which require explicit modeling of the underlying 

process and may lack flexibility, optimizer-based methods directly optimize the search 

process, allowing for robust adaptation and effective exploration of solution spaces, 

thus offering superior performance and applicability across various domains. 

2.2.3. Meta learning challenges 

While meta-learning has demonstrated its potential to revolutionize learning processes 

across diverse domains, unlocking the ability to rapidly adapt to new tasks and acquire 

generalized knowledge, it also comes with its set of challenges. Some of the key 

challenges in meta-learning include: 

− Time Complexity: There is often a trade-off between the performance of a 

meta-learning algorithm and its time complexity. Striking the right balance is 

crucial, especially in scenarios where quick adaptation is essential [6, 7]. Meta-

learning models often involve two phases: meta-training and task-specific 

adaptation. The time complexity of meta-learning includes the time required to 

train the meta-model and the adaptation time for new tasks [42]. 

− Model Complexity: The complexity of the meta-learning model itself can 

impact both performance and time complexity. More complex models may 

offer better performance but might require more time for training and 

adaptation [41]. 

− Algorithmic Innovations: Researchers continually work on developing new 

meta-learning algorithms that improve both performance and time complexity. 

Innovations in optimization techniques, model architectures, and training 

strategies contribute to advancements in this field [8]. 

2.3. Heuristic Algorithms 

Heuristic algorithms, rooted in optimization principles, play a pivotal role in our 

proposed methodology. This section provides a focused exploration of heuristic 

algorithms, emphasizing their relevance in addressing the characteristics of deep 

learning in general and meta-learning specifically. By examining how heuristic 

algorithms bridge the gap between optimization and learning, we go through their 
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importance in our explore of enhancing the adaptability and efficiency of meta-

learning models [11]. 

2.3.1. Characteristics of heuristics algorithms 

− Simplicity: Heuristic algorithms are designed to be straightforward and easy 

to apply. They provide quick decision-making without intricate calculations or 

exhaustive exploration of all possible solutions [9, 11]. 

− Efficiency: Heuristics prioritize speed in generating solutions. They aim to 

provide reasonably good outcomes within a limited amount of time, making 

them well-suited for scenarios where computational resources are constrained 

[67]. 

− Adaptability: Heuristics often present adaptability, allowing them to be 

applied across various problem domains. They rely on general problem-solving 

principles, making them important techniques in diverse contexts [67, 68]. 

− Approximate Solutions: Rather than the possibility of finding optimal 

solutions, heuristics offer approximate solutions that are often "good enough" 

for the specific problem at hand. This characteristic is particularly valuable in 

situations where exact solutions are computationally expensive or even 

infeasible [69]. 

These algorithms, designed to navigate complex problem spaces efficiently, present 

diverse strategies that can be systematically organized into distinct categories. 

Categorizing those algorithms by source of inspiration serves to encapsulate common 

principles and approaches shared by various heuristic methods, facilitating a clearer 

understanding of their operational frameworks, summarized in Figure 2.12. 

2.3.2. Evolutionary algorithms 

Darwinian principles, specifically the concepts of natural selection and survival of the 

fittest, serve as the foundation for Evolutionary Algorithms (EAs). These algorithms 

initiate with a group of individuals, orchestrating simulated processes of reproduction 

and mutation to generate a new offspring generation. This iterative approach ensures 

the preservation of genetic traits that enhance an individual's adaptability to a given 

environment, while concurrently eliminating characteristics that render it less resilient. 

The theories articulated by Charles Darwin, particularly those pertaining to natural 

evolution, serve as a driving force behind Genetic Algorithms (GAs) and Differential 
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Evolution (DE). Genetic Programming (GP), on the other hand, draws inspiration from 

the biological evolution paradigm. EAs encompass a diverse array of methodologies, 

such as Gene Expression Programming (GEP), Learning Classifier Systems (LCS), 

Neuroevolution (NE), and Evolution Strategy (ES), each reflecting the assimilation of 

evolutionary principles into computational frameworks [9, 11, 67, 68]. 

 

Figure 2.12. Classification of heuristic algorithms based on the source of inspiration 

with including popular algorithms under each class. 

Beni and Wang (1993) [71] introduced the term 'Swarm Intelligence' in 1989 within 

the realm of cellular robotic systems. Since then, Swarm Intelligence (SI) has garnered 

significant attention across various industries. SI entails the collective behavior of 

decentralized and self-organized systems. Key attributes of swarm systems include 

adaptability, characterized by learning through action, along with robust 

communication and knowledge-sharing capabilities [11]. In the wild, creatures take on 

tasks such as defending themselves against formidable predators or hunting for 

sustenance independently, yet they exhibit a strong reliance on swarming. Even in their 

search for food, they exhibit this swarming behavior. Swarm intelligence (SI) has 

served as inspiration for numerous methodologies. For instance, the intelligent social 

interactions observed in birds have motivated the development of algorithms like 

particle swarm optimization (PSO) [10]. The process of monkeys climbing trees in 
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search of food has inspired the development of the monkey search (MS) algorithm 

[72]. Moreover, grey wolf leadership hierarchy and hunting strategy motivates grey 

wolf optimizer (GWO), and so on. SI examples include, but are not limited to, ant lion 

optimizer (ALO) [73], bat algorithm (BA) [74], firefly algorithm (FA) [75], ant colony 

optimization (ACO) [76], cuckoo search (CS) [77], artificial bee colony (ABC) [78]. 

Polar Bear Optimization [79]. 

While the implementation details vary from one algorithm to another, we can provide 

a general formulation that highlights key concepts often found in swarm intelligence 

algorithms as summarized in [9, 11] and [67].  

Population: Let N be the number of agents in the swarm. The swarm population is 

represented by: 

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑁} where 𝑋𝑖 is the state of agent i, each 𝑋𝑖 typically represents a 

candidate solution in the search space. 

Distribution of Agents: The distribution of agents in the search space is governed by 

a probability density function 𝑃(𝑋) which describes the likelihood of finding an agent 

at a particular state. 

Objective Function: For optimization problems, there exists an objective function 𝑓 

that maps each agent's state to a real value:  

𝑓(𝑋𝑖) → 𝑅      (2.14) 

Local Search: Agents perform local search around their current positions to explore 

the neighborhood. Let 𝐿𝑖 denote the local search space for agent i, and 𝑓local(𝑋𝑖) be the 

local objective function: 

𝑋𝑖(𝑡 + 1) = argmin𝑋∈𝐿𝑖
𝑓local(𝑋)      (2.15) 

Global Search: Agents share information to perform a global search. The global 

search space is denoted as G, and 𝑓global(𝑋) is the global objective function: 

𝑋𝑖(𝑡 + 1) = argmin𝑋∈𝐺𝑓global(𝑋)      (2.16) 
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Update Equations: Agents update their positions based on their local search, global 

search, and possibly historical information: 

𝑋𝑖(𝑡 + 1) = 𝐴(𝑋𝑖(𝑡),local info, global info, historical info)      (2.17) 

2.2.3. Physical law‑based algorithms 

Algorithms that draw inspiration from principles rooted in the physical and chemical 

realms belong to this specific category. Furthermore, they can be categorized as 

follows: 

(i) Physics-based algorithms [11]:  

This subcategory draws inspiration from key cosmic phenomena such as gravitation, 

the big bang, black holes, galaxies, and fields. Concepts underlying this category stem 

from phenomena like the devouring of stars by black holes and the genesis of new 

beginnings, which have inspired algorithms like the Black Hole Algorithm (BH). 

Harmony Search (HS) [80], on the other hand, is crafted from the improvisational 

methods employed by musicians. Simulated Annealing (SA) [81] is grounded in the 

metallurgical annealing process, where metal is rapidly heated and then slowly cooled, 

enhancing strength and facilitating ease of manipulation.  

(ii) Chemistry-based algorithms: 

Metaheuristic Algorithms (MAs) inspired by the principles of chemical reactions, 

including molecular reaction, Brownian motion [82] falls into this category.  

2.3.4. Miscellaneous algorithms 

This category encompasses algorithms rooted in a wide array of concepts including 

human behaviors, game strategies, mathematical theorems, politics, artificial thoughts, 

and various other topics. For instance, the movement and propagation of clouds have 

inspired the development of the Atmosphere Clouds Model Optimization Algorithm 

(ACMO) [83], while activities in the stock market, particularly the trading of shares, 

drive the Exchange Market Algorithm (EMA) [84].  

2.4. Heuristic Algorithms and Deep Learning 

Neural network optimization is a multifaceted challenge involving various aspects 

such as weight optimization, hyperparameter tuning, and architecture design. This 
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literature review categorizes heuristic algorithms based on specific optimization areas, 

providing insights into their applications and effectiveness in addressing distinct 

challenges within neural network optimization [70, 5]. 

More and more researchers are leaning towards crafting novel hybrid optimization 

tools. These tools combine two or more metaheuristic algorithms to fine-tune the 

training parameters of artificial neural networks. With the introduction of numerous 

metaheuristic algorithms, the choice of an appropriate algorithm for hybridization 

emerges as a crucial factor in crafting superior algorithms. The performance of 

optimization tools is generally contingent on two essential components: exploitation 

and exploration, synonymous with intensification and diversification [70]. 

The search process efficiently traverses the search domain, conducting a global search 

to evade local optima but may encounter slow convergence. Conversely, the 

exploitation process tends to yield very high convergence rates but risks being 

confined to a local optimum. Achieving an optimal algorithm performance necessitates 

striking a delicate balance between these two components. Currently, no algorithm can 

assert having attained such equilibrium in the existing literature [5]. 

Among the developed metaheuristic algorithms, certain algorithms excel in 

convergence rates, while others prove adept at avoiding local minima. For instance, 

Particle Swarm Optimization (PSO) achieves faster convergence in optimizing ANN 

models [85], yet for multimodal functions, both Differential Evolution (DE) and 

Harmony Search (HS) exhibit superior convergence rates compared to PSO [86, 87]. 

Furthermore, Artificial Bee Colony (ABC) demonstrate faster convergence than 

Genetic Algorithms (GA) for several benchmarks in training Feedforward Neural 

Networks (FNN) for classification purposes [88]. 

Generalized Simulated Annealing (GSA) may suffer from a slow convergence 

behavior in the final cycles but has been proven to converge much quicker than GA in 

dynamic neural network identification [70]. Conversely, Simulated Annealing (SA) 

exhibits slower convergence in solving machining optimization problems [89]. Tabu 

Search (TS) is demonstrated to converge quicker than GA in resolving both quadratic 

kind of tasks and vehicle routing problems [5]. 

Cuckoo Search (CS) and GSA are widely employed due to their proficiency in finding 

the global optimum. CS outperforms FA and PSO in optimizing retaining wall design 
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and is efficient in achieving global optima with higher success rates than PSO and GA 

for solving optimization problems [70]. Additionally, both PSO and ABC achieve 

higher accuracy compared to FA in optimizing ANN models. However, FA shows a 

higher tendency to be trapped in local minima compared with ABC in training FNN 

for classification problems [5]. 

ABC's strong exploration ability results in a lower tendency to be trapped in local 

optima compared to PSO, which exhibits a weaker exploration ability [88]. In stock 

price prediction, both PSO and DE can avoid local minima, but DE provides better 

accuracy, particularly in fluctuated time series [5]. DE also showed better performance 

than GA, PSO, and SA methods in solving various problems. For multimodal 

functions, both HS and DE exhibit higher performance than PSO, while HS proves 

more efficient in finding optimal solutions than PSO. TS is commonly used for 

hybridization with other algorithms to overcome their weakness of being trapped in 

local optima [70]. 

2.5. Current Landscape and Gaps in the Literature 

Meta-learning has emerged as a compelling area of study, particularly in addressing 

challenges that come with supervised learning problems characterized by limited 

training data. A substantial body of research attests to the effectiveness of meta-

learning in facilitating generalization and rapid adaptation to new tasks with minimal 

data points. To train these meta-learning models, conventional practice involves the 

use of gradient-based optimizers. However, the unique challenges presented by meta-

learning, such as the demand for swift adaptation and the necessity of task-specific 

adjustments, suggest that standard optimizers may not be optimally suited to address 

these issues due to the need of intensive training cycle in order to achieve the desired 

accuracies. 

Despite the promising experiments made in the field of meta-learning, a critical 

examination of the existing literature reveals significant performance issues that 

persist. The reported shortcomings encompass challenges related to the convergence 

speed, accuracy, and adaptability of meta-learning models, particularly in scenarios 

with lack of training data. These limitations underscore the need for innovative 

approaches to enhance the efficiency of meta-learning. 
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A comprehensive review of the literature results a common trend in the use of 

heuristics and traditional gradient-based optimizers in the training of deep learning 

models. However, it is noteworthy that existing studies generally focus on general deep 

learning models, and there is a conspicuous dearth of attention directed specifically at 

optimizing meta-learning models. While heuristics have demonstrated efficacy in 

certain contexts, their application has not been systematically explored in the realm of 

meta-learning, leaving a significant gap in the literature. 

This research seeks to address these gaps by proposing a novel hybrid optimizer 

tailored explicitly for meta-learning models. Recognizing that standard optimizers 

may not efficiently handle the unique demands of meta-learning, we introduce an 

innovative approach. Our custom optimizer combines a metaheuristic algorithm with 

traditional gradient-based techniques. This hybrid approach involves an initial search 

for optimal model parameters using random candidate solutions, followed by iterative 

adjustments based on individual performance within the population. The subsequent 

learning process incorporates classic gradient optimization, to continue with the most 

promising solution identified by the heuristic algorithm. 

To prove the efficacy of our proposed custom optimizer, we first conducted 

experiments on five classification benchmark datasets. The results demonstrated 

superior accuracy and faster convergence compared to conventional approaches. 

Moreover, we extended our methodology to address the meta-learning problem, 

illustrating how our custom optimizer enhances the training of meta-learning models 

and facilitates the efficient identification of optimal parameters. Our experimental 

analysis focuses on the dynamic characteristics of our proposed strategy, emphasizing 

its potential to overcome the performance issues observed in traditional meta-learning 

models. 
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3. DYNAMIC POPULATION OPTIMIZATION 

In this section, we present the proposed methodology for our research, providing a 

comprehensive framework for the design details of our hybrid algorithm. 

3.1. Introduction 

We will explain the fundamentals of our Dynamic Population Optimization (DPO) 

algorithm. DPO represents a combination of metaheuristic algorithms and gradient 

descent optimization, summarized in Figure 3.1, which was specifically developed for 

training neural networks in the context of classification problems. 

 

Figure 3.1. Research Framework. 

In the ever-evolving landscape of machine learning, finding an efficient and adaptable 

optimization strategies has become essential, especially as we deal with the complexity 

of meta learning explained in the previous chapter. 
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Meta learning, characterized by its ability to enable models to learn and adapt across 

various tasks, introduces a level of complexity that demands a strategic and systematic 

approach. 

Recognizing the challenges posed by meta learning, we propose a two-phase strategy 

for the development and evaluation of an optimization function based on heuristic 

principles. The significance of this approach lies in the acknowledgment of the 

complexity posed by meta learning and the performance constraints of our optimizer 

before navigating the complexities of meta-learning scenarios. 

However, given the complexity of meta learning extends beyond the diversity of tasks. 

Meta learning often involves handling limited labeled data, requiring innovative 

solutions. These difficulties emphasize the need for a robust optimization framework 

capable of navigating the details of meta learning scenarios. 

The Rationality of Two Phases Development: Given the increased challenges 

associated with meta learning, we propose a that begins with applying the optimization 

of our framework on traditional classification problems. This initial phase serves as a 

basic test, ensuring that the optimizer is not only effective but also adaptable across a 

spectrum of benchmark classification datasets. By validating and fine-tuning the 

optimization function in traditional classification scenarios, we allow smooth 

transition into the complex realm of meta learning with the need only for minor tweaks. 

This phased methodology aligns with a wise strategy of "mastering the basics before 

tackling the complexities." 

Ensuring Improved Performance: Before delving into the challenges of meta 

learning, it is imperative to establish a solid foundation. The first phase allows us to 

gauge the optimizer's efficacy in handling diverse classification tasks, providing 

insights into its adaptability and robustness. Only once the optimizer demonstrates 

consistent and stable performance across various datasets can we confidently transition 

to the nuanced domain of meta learning. 

In effect, this two-phased approach aligns with a principle of cautious progression, 

ensuring that our optimization function is not only sophisticated but also reliable. By 

doing so, we aim to contribute a solution that stands resilient against the multifaceted 

challenges of meta learning, ultimately advancing the frontier of machine learning 

optimization strategies. 
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3.2. General Classification Perspective 

In the effort of refining the classification process within supervised learning problems, 

our objective is to locate the optimum values for the network parameters (weights 

vector). To accomplish this, we introduce a novel approach, a hybrid model that 

integrates a heuristic derivative-free heuristic technique with traditional gradient 

descent-based optimization. In the landscape of supervised learning, where the model 

relies on labeled training data to make predictions, the significance of parameter 

optimization is the core function of the training process. The proposed technique 

enrich the reliance on gradient information, allowing our model to navigate the 

parameter space with agility and adaptability. Concurrently, the incorporation of 

dynamic population optimization adds a layer of intelligence, enabling the model to 

dynamically adjust its parameters based on evolving patterns within the training data. 

Integrating heuristic approaches with traditional gradient-based training offers a 

solution to the optimization challenges in high-dimensional search domains. By 

combining the global exploration capabilities of heuristics with the local search 

proficiency of gradient-based methods, this hybrid approach aims to overcome the 

limitations inherent in each technique. Heuristic algorithms excel in navigating 

complex and expansive search spaces but may struggle to find precise solutions, while 

gradient-based methods are adept at fine-tuning solutions in local regions but can be 

trapped in local optima. By leveraging the strengths of both paradigms, hybrid 

optimization strategies can be designed that strike a balance between exploration and 

exploitation, leading to more robust and effective optimization outcomes across a wide 

range of complex problems. 

Gradient-based optimization techniques proceed iteratively, sequentially refining the 

solution from an initial point within the search space. However, the efficacy of these 

techniques hinges greatly on the selection of the starting point, as it can determine 

whether the algorithm converges to a global optimum or gets stuck in a local optimum 

[3, 4]. Recognizing this, a comprehensive exploration of the search domain is 

conducted initially to identify a promising starting point. This exploration involves 

systematically traversing the search space to evaluate various starting points, assessing 

their potential to lead to optimal solutions. By doing so, the optimization process aims 

to mitigate the risk of being confined to suboptimal solutions and enhance the chances 

of achieving a globally optimal outcome. 
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During the initialization phase, a heuristic algorithm efficiently navigates the search 

space to identify a promising starting point for the subsequent training phase. This 

process involves systematically evaluating candidate points within the space, 

leveraging heuristic techniques to prioritize regions likely to contain optimal solutions. 

By swiftly exploring the search space in this manner, the initialization phase aims to 

expedite the convergence towards a high-quality solution in the subsequent stages of 

training. 

Every individual in the population 𝑃 holds values of the weight vector of a neural 

network: 

𝑃 = 𝑝1, 𝑝2, 𝑝3,… , 𝑝𝑛              (3.1) 

𝜃 =  (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑚)              (3.2) 

Where 𝑛 and 𝑚 represent the number of individuals and the total number of parameters 

–weights- that should be optimized respectively. The first stage within our algorithm 

is starting by dispersing randomly the members of population 𝑃 within the search 

domain, subsequently, each object will have the opportunity to explore its surrounding 

area in search of an improved solution. Evaluations will be conducted based on 

Equation 3.3. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑖) =
1

1 + 𝐶𝑖
 

            (3.3) 

Since this fitness will represent the performance of one individual -absolute 

performance-, however, to guarantee fair comparison with other members of the 

population we will be calculating the normalized fitness [70]: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑖) =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑖)

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑗)
𝑛
𝑗=1

 
             (3.4) 

The population after calculating the fitness for each member will be represented as 

following matrix: 



39 

𝑃 =  

[
 
 
 
 
𝜃1 𝑓1
𝜃2 𝑓2
𝜃3 𝑓3
⋮ ⋮

𝜃𝑛 𝑓𝑛]
 
 
 
 

 

             (3.5) 

Where 𝑓𝑖 represents the normalized fitness value of the  𝑖𝑡ℎ individual. 

Selecting a good local search function is crucial when designing a heuristic algorithm, 

because it directly influences the algorithm's ability to efficiently explore the solution 

space and find the desired solutions. Local search functions guide the exploration of 

the solution space by focusing on promising regions. A good local search function 

helps the algorithm navigate through the solution space more efficiently, reducing the 

computational effort required to find solutions. 

Based on that and after evaluating several local search strategies reported in [69] we 

empirically noticed that the local search strategy introduced by [79] showed good 

performance in optimizing the parameters of the network. Thus, in every cycle, values 

of all parameters will be adjusted as mentioned in Equations 3.6 and 3.7 which was  

introduced by [79] a local search method initiated from the existing solution, which 

involves navigating the surrounding reagon: 

𝑟 = 4𝑎 𝑐𝑜𝑠 𝜙0  𝑠𝑖𝑛 𝜙0 
            (3.6) 

𝑊𝑛𝑒𝑤 = 𝑊𝑎𝑐𝑡𝑢𝑎𝑙 ± [𝑟 𝑠𝑖𝑛(𝜙𝑘) + 𝑟𝑐𝑜𝑠 (𝜙𝑛)] 
            (3.7) 

Here 𝑎 ∈  {0, 0.3} represents a randomly determined number that governs the 

diference over which an object can perceive its surroundings, while 𝜙 ∈  {0,
𝜋

2
} the 

angle of moving direction. 𝑘 and 𝑛 are the angular values selected randomly for each 

point withing the range ∈  {0, 2𝜋}. 

In the Polar Bear Optimization (PBO) algorithm [79], local search is performed by 

adjusting the coordinates of the bear's position. The algorithm uses local search 

strategies to explore the solution space effectively.  

− Adjusting Angle (𝜙): The angle component of the coordinates represents the 

direction in which the search agent is moving. During local search, the 
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algorithm may make small adjustments to this angle, allowing the agent to 

explore the nearby regions in the solution space. 

− Adjusting Distance (r): The distance component of the coordinates represents 

the distance from the origin. Local search may involve small variations in this 

distance, enabling the individual solutions to explore other solutions that are 

close to its current position. 

By adjusting both the angle and distance, solutions can navigate the solution space 

more finely, exploring local regions around its current position. These local search 

operations aim to refining the solutions in the population and potentially converging 

to a better optimum. 

Following the completion of each cycle, during which every object has taken a step, 

or attempted to do so, towards the target, we enact a dynamic population strategy 

inspired by the methodology described in [79]. Subsequent to each cycle, a 

comprehensive evaluation of the entire population occurs. According to a random 

parameter generated at each cycle, a decision regarding if to remove an object from 

the population or introduce a new one is made. In instances where the decision leans 

towards removal, the poorest-performing solution within the population is selectively 

eliminated. This approach aims to mitigate the exploration of futile regions within the 

search domain, thus enhancing the efficiency of the optimization process. Otherwise, 

when creating a new object, we select the best object and we clone it. We assume here 

that the best object is searching in a promising area and having more objects searching 

in that area will result in faster convergence. Figure 3.2 illustrates a depiction of 

solutions represented by white dots within the search space, with the objective being 

to locate the optimal solution represented by the dark blue point. According to our 

dynamic strategy, the object situated on the most far left should be discarded, given its 

considerable distance from the target. Conversely, the object positioned near the best 

solution should be replicated. The rationale behind the dynamic approach stems from 

grappling with a high-dimensional search space, where achieving comprehensive 

coverage with objects is exceedingly challenging. Consequently, this strategy 

facilitates the exploration of a broader spectrum of areas within the search space, 

leveraging a smaller number of search agents. Additional elaboration on this strategy 

will be thoroughly discussed in the experimental analysis chapter, providing 

comprehensive insights and details. 
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Figure 3.2. Dynamic population strategy. 

To prevent getting stuck in local optima, we won't duplicate the object with higher 

accuacy and remove the lowest one at each cycle. But, we introduce a new variable 

𝑘 ∈ {0, 1} generated randomly at the end if every loop. When the generated random 

variable's value is below 0.75, then we will be reproduce a new solution; otherwise, 

worst solution will be dismissed.  

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛      𝑖𝑓 0 ≤ 𝑘 ≤ 0.75          (3.8-a) 

𝑅𝑒𝑚𝑜𝑣𝑒                  𝑖𝑓 0.75 < 𝑘 ≤ 1          (3.8-b) 

In simpler terms, the strategy of being three times more likely to duplicate than to 

remove also offers members that are not performing well the opportunity to find better 

solutions, as they are not immediately removed at each cycle. In essence, we can 

approximate that even the poorest solution will likely have three opportunities to 

improve itself before being removed. 

When the initialization phase concludes, we choose the best solution, typically the one 

with the maximum accuracy, to serve as the initialization point for the next training 

phase, which will utilize classic backprobagation methods. The accuracy is calculated 

according to Equation 3.4. However, given the very high number of dimensions of 

search domain. Here we do not anticipate the heuristic algorithm to reach the optimal 

values for the weight vector by itself, unlike various studies aiming to entirely 

substitute gradient-based optimizers with heuristic approaches. Instead, our 

proposition is that the heuristic algorithm swiftly navigates the search space, offering 
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a robust initial position for the gradient-based optimizer to proceed with the rest of the 

neural network training. Additionally, we expect, supported by our upcoming 

experiments, that the dynamic population strategy will enable the exploration of an 

extensive search space with a restricted number of individuals. 

In addition to specifying the model for optimization, the algorithm needs three key 

input parameters: population size, cycle count (epochs), and heuristic ratio. The 

heuristic ratio governs the allocation of training cycles among heuristic and gradient-

based techniques. Employing a larger number of objects enhances the likelihood of 

discovering optimal values for the weight vector but may potentially lead to decreased 

performance. After initialization, the algorithm proceeds through a specified number 

of iterations for each potential solution. The number of iterations constitutes another 

critical input parameter that warrants careful selection. Increasing the number of 

iterations boosts the probability of converging closer to the optimal solution through 

local search. However, this enhancement comes with the trade-off of prolonged 

runtime for the algorithm. In every cycle, every object explores by taking steps while 

considering both the positive and negative sides, represented by positive and negative 

values respectively in Equation 3.7. Subsequently, both generated potential solutions 

are evaluated, and will move only if a superior solution is generated.Our dynamic 

population optimization approach is summarized by Algorithm-1 and Figure 3.4. 

 

Figure 3.3. Dynamic population optimization – DPO. 
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Following the completion of a iteration when individuals of the population have the 

opportunity to improve their current values of weight vector, the dynamic population 

strategy comes into play. As outlined in lines 7-11 of Algorithm 1, a decision is made 

based on a randomly generated variable regarding either to duplicate or eliminate an 

individual from the population. If the value of the randomly generated variable is 

below 0.75, reproduction is chosen; else, removal occurs. In this context, the value 

0.75 indicates that the re-production possibility is almost three times than the removal 

decision. While this ratio remains fixed in this study, it could optionally be set as an 

input parameter. When the decision is reproduction, we select the best solution and we 

create an identical one, this allows more intensive search in that area. In other words, 

we suppose that the optimal solution -so far- is close to the optimal solution we are 

looking for and that area is worth more agents to search for. However, when the choice 

is to remove, we select the worst solution in the solution domain, and we dismiss 

assuming that the solution is searching in a wrong region and to continue searching in 

that area is a waste of time.  

The final parameter is the Heuristic Ratio, responsible for allocating number of 

iterations among the heuristic phase 𝐻 and the gradient phase approach 𝐺. 

𝐻 =
ℎ𝑟𝑎𝑡𝑖𝑜

100
∗ 𝑁 

            (3.9) 

𝐺 = 𝑁 − 𝐻           (3.10) 

In simpler terms, this parameter determines the proportion of time dedicated to 

initialization. Setting this parameter to zero implies that no initialization will be 

performed, and the optimization process will rely solely on gradient descent. 

Conversely, setting it to 100 indicates that the entire training process will be conducted 

using heuristic methods without traditional gradient descent. Intermediate values 

represent a combination of both approaches, with a portion of the training time 

allocated to initialization and the remaining time devoted to gradient descent. 

Adjusting this parameter allows for fine-tuning the tradeoff between exploration 

(through heuristic initialization) and exploitation (through gradient descent) during the 

training process. 
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Gradient-based techniques iteratively update the weights of a neural network 

according to the computed loss, aiming to reduce this loss over successive iterations. 

By iteratively modifying the parameters in the direction that reduces the error, these 

techniques gradually converge towards optimal solutions. The error represents the 

disparity among the calculated value and the netowrk actual output. This difference 

quantifies how well the model's predictions align with the ground truth or target values. 

To compute this error, various cost functions, or loss functions, can be employed. One 

commonly used cost function is the mean squared error (MSE), which calculates the 

average squared difference between the predicted and actual values across all samples. 

Mathematically, the MSE cost function is defined as: 

𝑐 =  
1

𝑛
∑∑(𝑦𝑝𝑘̂ − 𝑦𝑝𝑘)

2
𝑚

𝑘

𝑛

𝑝

 

          (3.11) 

Once the loss is computed, the parameners will be adjusted by calcualtuing the gradient 

for all weights in the network. In this context, 𝑛 is the total number of training data 

points, while 𝑚 signifies the count of output parameters. The derivation of the loss 

with respect to each node in the model is calcuated to determine the direction and 

magnitude of weight adjustments during the optimization process.  

∆𝜃= −𝜂
𝑑𝐶

𝑑𝜃
            (3.12) 

Here 𝜃 is the weight vector and 𝜂 denotes the learning rate. 
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Figure 3.4. Procedure of DPO. 

3.3. Meta Learning Perspective 

Optimizers reliant on gradients, like stochastic gradient descent (SGD) or adaptations 

such as Adam, are designed to update the model’s parameters in a way that minimizes 
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a given loss function for a specific task. However, in the realm of meta-learning, since 

the goal is to let a network learn how to learn across a wide range of tasks, standard 

optimizers may not be sufficient, and custom optimizers or meta-optimization 

techniques become essential. 

In meta-learning, the model is trained on a distribution of tasks, and each task might 

require a different optimization strategy. Standard optimizers have fixed 

hyperparameters and update rules that may not adapt well to the varying requirements 

of different tasks. Custom optimizers can be tailored to the specific needs of each task, 

allowing for faster adaptation. 

Neural networks used to train meta-learning models are usually high dimensional 

networks, gradient based techniques might need a lot of gradient steps to reach the 

minima or might even stuck in local minima [2].  We propose a hybrid model of meta-

heuristic algorithm consists of dynamic population heursitic approac followed by 

gradient descent to be used as an optimization function while training the meta-

learning models. In this research we have applied our proposed optimization function, 

Algorithm-1, using  benchmark datasets Omniglot and MiniImage which can be 

considered as the most popular datasets for meta-learning problems due to high 

number of classes with limited number of samples for each. 

Meta-learning, a paradigm where models learn to rapidly adapt to new tasks with 

minimal data, has witnessed significant advancements with the emergence of recently 

developed algorithms. Among these, Model-Agnostic Meta-Learning (MAML), 

Reptile, and Meta-SGD have established themselves as powerful platforms across 

diverse domains. MAML and Reptile excel in learning versatile initializations for 

quick adaptation, Meta-SGD dynamically adjusts learning rates for fine-tuning. Their 

collective contributions have moved the field of meta learning forward, demonstrating 

efficacy and versatility in addressing a wide range of meta-learning challenges across 

several real world problems. 
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Table 3.1. Meta-learning algorithms comparison. 

Aspect MAML Reptile Meta-SGD 

Key Idea 
Learns model initialization 

for fast adaptation 

Finds a good 

initialization for 

fast adaptation 

Adapts learning 

rates for task-

specific fine-

tuning 

Training 

Procedure 

Meta-optimization over a 

distribution of tasks 

Closest-to-

initialization 

optimization 

Meta-

optimization of 

learning rates 

across tasks 

Flexibility 

Model-agnostic, applicable 

to various neural network 

architectures 

Model-agnostic, 

emphasizes a 

straightforward 

update rule 

Adapts learning 

rates, providing 

flexibility to 

existing models 

Main 

Emphasis 

Initialization of model 

parameters for efficient task 

adaptation 

Iterative updates 

that bring the 

model closer to 

task initialization 

Dynamic 

adaptation of 

learning rates 

for optimal 

fine-tuning 

Training 

Scenario 

Meta-optimization over a 

distribution of diverse tasks 

Closest-to-

initialization 

updates for rapid 

task adaptation 

Optimization of 

learning rate 

dynamics 

across a variety 

of tasks 

3.3.1. DPO – MAML adaptation 

Model-Agnostic Meta-Learning (MAML) can be considered as a cornerstone in the 

field of meta-learning, playing a pivotal role in shaping the landscape of adaptive 

machine learning algorithms. At its core, MAML optimizes a model's parameters in a 

way which will result in a quickly adapt to a diverse array of tasks, making it agnostic 

to the specifics of the underlying neural network architecture. This model-agnostic 

approach, not tied to any specific model, has sparked numerous expansions and 

modifications in diverse fields, spanning from computer vision to voice recognition 

and natural language processing. In essence, MAML's influence has transcended its 

initial introduction, producing a flow in research efforts dedicated to refining and 

extending meta-learning methodologies. The importance of MAML in meta-learning 

resides in its capacity to facilitate quick adaptation to new tasks through a gradient-

based optimization process. MAML allows a model to quickly adapt to new tasks with 

only a few examples. It achieves this by training the model's parameters in a way that 

they are more conducive to fast adaptation during the fine-tuning phase on new tasks.  
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MAML can be used to solve regression, supervised learning and reinforcement 

learning problems, however, in the below section we will only discuss the supervised 

learning part and how we adopt our optimizer into MAML: 

− Initialization: The model is initialized with random parameters. A meta-batch 

of tasks is sampled, each consisting of a support set and a query set. 

− Inner Loop (Adaptation): The model is trained on the support set of each task 

for a few iterations to adapt its parameters. The calcualted error on the support 

set is used to adjust the network's parameters through backpropagation. 

− Outer Loop (Meta-Training): The model's parameters are updated based on 

the aggregated performance on the query sets of all tasks. This involves 

computing the meta-gradient, which represents the overall performance across 

tasks, and updating the model's parameters to improve its generalization. 

θ0𝑖
= θ − α∇θ𝐿𝑇𝑖

(𝑓θ) 
 (3.13) 

− Meta-Testing (Adaptation to New Tasks): During meta-testing, the model is 

fine-tuned on new tasks using a few examples from the support set, 

demonstrating its ability to quickly adapt to unseen tasks. 

 

Figure 3.5. MAML + DPO. 

3.3.2. DPO – Reptile adaptation 

Reptile is designed to improve the model's ability to generalize across tasks by 

repeatedly exposing it to different tasks and updating its parameters in a specific 

manner. The training procedure can be summarized as follows: 
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− Initialization: The model starts with random parameters. In Reptile, there's no 

explicit separation between support and query sets during meta-training. 

− Inner Loop (Adaptation): The model is trained on a task for a fixed number 

of iterations. Unlike MAML, Reptile focuses on updating the network's 

weights towards the end of the inner loop, emphasizing faster adaptation. 

− Outer Loop (Meta-Training): The network's weights are adjusted based on 

the accumulated changes made within the adaptation phase across multiple 

tasks. Reptile aims to find a set of parameters that allows the model to quickly 

adapt to various tasks. 

𝜙 ← 𝜙 +
𝜀

𝑛
∑(𝜙𝑒𝑖 − 𝜙)

𝑛

𝑖=1

 
  (3.14) 

− Meta-Testing (Adaptation to New Tasks): During meta-testing, the model is 

fine-tuned on new tasks using a few examples, showcasing its ability to rapidly 

adapt to novel tasks based on the learned meta-knowledge. 

After iterating through multiple tasks, the model is expected to have learned a more 

generalized set of parameters that enable it to quickly adapt to new tasks. 

 

Figure 3.6. Reptile + DPO. 

The key idea behind Reptile is that by iteratively exposing the model to different tasks 

and updating its parameters based on the observed task-specific losses, the model 

becomes more capable of rapid adaptation to unseen tasks with limited number of 

training samples. This meta-learning approach helps enhance the network's capacity 

to generalize across a wide range of tasks. 



50 

3.3.3. DPO – Meta-SGD adaptation 

Meta-SGD focuses on adapting the learning algorithm itself, specifically the update 

rule or optimization strategy, rather than just the model parameters. The goal is to train 

a meta-learner that can quickly adapt to new tasks by learning an effective update rule 

during meta-training. 

Here's a brief overview of the Meta-SGD algorithm: 

− Initialization: The model begins with random parameters. Similar to Reptile, 

Meta-SGD doesn't explicitly distinguish between support and query sets during 

meta-training. 

− Inner Loop (Adaptation): The model is trained on a task for a fixed number 

of iterations. During this adaptation phase, the model's parameters are updated 

to better fit the specific task using standard gradient descent. 

− Outer Loop (Meta-Training): Meta-SGD introduces a meta-optimizer, which 

is itself optimized during the outer loop. The meta-optimizer adapts the 

learning rate or other parameters of the base optimizer (e.g., SGD) enhancing 

the model's capacity for rapid adaptation to unseen tasks during the training 

phase.  

θ0 = θ − α ∘ ∇𝐿𝑇(θ) 
  (3.15) 

− Meta-Testing (Adaptation to New Tasks): In meta-testing, the meta-trained 

optimizer is used to fine-tune the model on new tasks. The goal is to 

demonstrate the effectiveness of the learned meta-optimizer in facilitating fast 

adaptation across a variety of tasks. 

The idea behind Meta-SGD is to learn a set of meta-parameters that guide the 

optimization process, making the algorithm more adaptive and capable of efficient 

learning on a wide range of tasks. 
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Figure 3.7. Meta-SGD + DPO. 

By explicitly considering the learning algorithm itself as a parameterized entity, Meta-

SGD contributes to the field of meta-learning, enabling models to learn not only what 

to learn but also how to learn. 
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4. EXPERIMENTAL ANALYSIS 

Within this chapter, our evaluation of the Dynamic Population Optimization (DPO) 

algorithm will be divided into two distinct sections. The first section will explore 

experiments conducted on benchmark classification datasets, providing insights into 

the algorithm's performance with traditional deep learning classification. Here, we 

assess its efficiency in handling traditional classification tasks -not meta learning- and 

establish a baseline for comparison. 

The second section of the chapter will go into detailed exploration of the DPO 

algorithm optimizing of meta learning problems. This section aims to evaluate the 

algorithm's behavior and adaptability in the face of meta-learning scenarios, where the 

complexity extends beyond conventional classification tasks. 

4.1. Experimental Analysis on Classification Datasets 

Evaluating our proposed approach, we've chosen five benchmark datasets detailed in 

Table 4.1. Each dataset includes information on the total layers count in addition to 

the count of model’s parameters to be adjusted. The count of those parameters holds 

significant importance in terms of performance, serving as a metric for the size of the 

solution space, as it signifies the size of the weight vector and eventually number of 

dimensions. This parameter greatly influences the complexity and search space of the 

optimization problem, thus affecting the algorithm's efficiency and effectiveness in 

finding optimal solutions. Details of ANN model used for each dataset are listed in 

Table 4.1., However, our algorithm, as detailed in Algorithm-1, is not confined to any 

particular architecture. It's designed to be versatile and adaptable, capable of being 

applied across various neural network architectures. This flexibility enables its 

utilization in a diverse range of scenarios, accommodating different model 

complexities and requirements. By being architecture-agnostic, our approach can 

address a wide array of optimization challenges encountered in neural network 

training, providing a scalable and robust solution. 
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The algorithm accepts the network that should be optimized as an input parameter 

without any restriction or pre-assumption on the structure of the model such as the 

number of layers nor number of trainable parameters Figure 4.1. presents an overview 

of the model structure for Cifar100.  All datasets are divided into two sets training and 

test, with the count of data points used during testing specified in Table 4.1. The chosen 

train/test rates are commonly accepted by the deep learning community in several 

implementations and have been employed in a lot of studies. These ratios were deemed 

logical as they achieve a balance among having a sizable dataset for training and 

ensuring the test dataset remains representative. This ensures that the model is 

adequately trained on diverse data while also being rigorously evaluated on unseen 

samples, facilitating robust performance assessment. 

To ensure fair comparison among outcomes, it's essential to address potential 

influences from several random variables, such as the starting weight settings and the 

production of random values during solution creation. To mitigate these effects, we've 

adopted consistent practices across all experiments on the same model. Specifically, 

we've utilized identical startup weights for all tests considering the same network and 

maintained uniformity by using the same seed when generating random values. This 

approach helps to minimize variability stemming from random factors, thereby 

enhancing the reliability and validity of our comparisons. 

In our experimental analysis, we conducted training processes for all models by 

recording the obtained accuracy at epochs (20, 30, and 40). The Heuristic Ratio 

parameter allows for adjustment between traditional gradient descent, heuristic 

approaches, or a hybrid one. In our evaluation, we considered the values of 0, 20, 50, 

70, and 100 for this parameter. A setting of 0 implies no heuristic initialization, relying 

solely on gradient optimization, while 100 indicates exclusive use of the heuristic 

approach for to optimize the model. Intermediate rates at (20, 50, and 70) denote a 

hybrid model, starting the optimization by heuristic approach with subsequent gradient 

descent training. For example, when running 400 epochs with a heuristic ratio of 20, 

this signifies that 80 cycles are allocated to the heuristic algorithm for initialization, 

with the remaining 320 cycles utilized by traditional training. We utilized the Adam 

optimizer [30] to represent the backpropagation-based training, as it has demonstrated 

superior performance compared to similar gradient-based optimizers [3, 30]. However, 

in our subsequent analysis and discussions, we will refer to SGD as the base of 
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gradient-based optimizers, recognizing that any other gradient-based algorithm could 

be used instead of Adam in our approach. 

Table 4.1. List of classification datasets. 

Dataset 
Layers

# 

Trainable 

Parameters 

Attributes

# 

Instance

# 
Test# Output 

FASTION 7 1,163,330 784 70,000 10,000 10 

IRIS 3 55 5 150 30 3 

CIFAR-10 7 1,632,080 1,024 60,000 10,000 10 

MNIST 7 1,256,080 784 60,000 10,000 10 

CIFAR-100 8 3,042,546 1,024 60,000 10,000 100 

From Table 4.2. and graphs in Figure 4.2, it's evident from our findings that our 

algorithm excelled consistently among all of the models and nearly all stages of 

training cycles when the heuristic rate was set to 20. However, when this rate was 

increased to 50 and more, this count not yield improved results. When drawing a 

comparison between the outcomes obtained from heuristic ratios of 0 and 20 indicates 

that swiftly navigating the search space and subsequently proceeding with gradient-

based technique indeed produces best outcomes. This suggests that a balanced 

approach, combining exploration and exploitation, is crucial for achieving superior 

performance in neural network training.  

 

Figure 4.1. Summary of Cifar100 model. 
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Because regular methods that use Stochastic Gradient Descent (SGD) initiates the 

search processes from a random point, our experiments showed that spending a few 

rounds to find a good starting point gives us enhanced outcomes. This highlights the 

importance of taking some time in the beginning to get higher accuracy at the end. 

Table 4.2.  Accuracy per heuristic ratio. 

 Heuristic Ratio 

Epoch Dataset 0 20 50 70 100 

20 FASHION 0.8583 0.8941 0.8796 0.7589 0.4045 

30 FASHION 0.9144 0.9370 0.8855 0.7740 0.4237 

40 FASHION 0.9255 0.9317 0.9139 0.8514 0.4745 

20 IRIS 0.6187 0.6203 0.6537 0.6474 0.7213 

30 IRIS 0.7378 0.7207 0.7348 0.7512 0.7691 

40 IRIS 0.8237 0.8486 0.8570 0.8602 0.8680 

20 CIFAR10 0.7145 0.7594 0.7479 0.6605 0.4139 

30 CIFAR10 0.8073 0.8482 0.7484 0.6943 0.5186 

40 CIFAR10 0.8598 0.8977 0.8847 0.8377 0.6498 

20 MNIST 0.9530 0.9744 0.9673 0.8934 0.8064 

30 MNIST 0.9677 0.9843 0.9797 0.9147 0.8605 

40 MNIST 0.9942 0.9959 0.9953 0.9533 0.8944 

20 CIFAR100 0.6181 0.6546 0.5427 0.4946 0.4536 

30 CIFAR100 0.7375 0.7772 0.6980 0.6404 0.5823 

40 CIFAR100 0.9243 0.9536 0.8155 0.8685 0.6282 

Based on our experiments, it's evident that our algorithm effectively initializes the 

training process of a neural network. Allocating approximately 20% from the total 

training cycles prior to commencing gradient training leads to enhanced accuracy and 

faster convergence. This conclusion underscores the efficacy of our approach in 

optimizing the training process and improving overall performance.  
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Gradient-based optimizers leverage derivatives of the loss function to determine the 

direction of movement, making them potent tools for local search. However, they can 

encounter challenges, particularly when starting from suboptimal solutions, potentially 

converging to local optima. Despite advancements in stochastic gradient descent 

(SGD) algorithms that mitigate this issue [4], achieving high accuracy still often 

necessitates lengthy training cycles. Moreover, employing a heuristic ratio of 100 

yielded unsatisfactory outcomes across most datasets, except for Iris. This discrepancy 

may stem from the complexity of the models utilized, which comprise a substantial 

number of parameters to optimize. Consequently, the sheer volume of combinations 

becomes insurmountable for stochastic methods to traverse effectively. 

 

 

Figure 4.2. Accuracy per dataset according to heuristic ratio. 
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Figure 4.2. (Continued) Accuracy per dataset according to heuristic ratio. 
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As per [90], the time complexity of model training depends primarily on the total count 

of training cycles, number of training samples, and number of trainable parameters. 

Since our tests listed in Table 4.2 are conducted on the same model and dataset, 

achieving identical performance by running the exact number of training iterations 

using our hybrid approach would indicate greater efficiency with respect to time 

complexity. This is because the count of trainable parameters and training samples can 

be assumed as a fixed constant across all experiments. 

Although the evaluations were conducted with a population size set to 20, however, 

the parameter is crucial and should be selected judiciously as it impacts both runtime 

and accuracy. The selection of population size should align with the total number of 

weights in the network. While rising the size of the weight vector will eventually 

expand the search space, necessitating more agents to explore effectively. Further 

detailed experiments are required to validate this relationship. 

Table 4.3. Obtained accuracy by population size. 

 Population size 

Model 10 20 40 60 80 

FASHION 0.8423 0.8428 0.9312 0.9374 0.9438 

IRIS 0.8155 0.8415 0.8487 0.8515 0.8537 

CIFAR10 0.7560 0.8507 0.8977 0.9026 0.9070 

MNIST 0.8847 0.9012 0.9656 0.9850 0.9942 

CIFAR100 0.8277 0.9036 0.9530 0.9837 0.9941 

In this experiment it was implemented the optimal heuristic ratio 20 from prior tests 

and assessed the approach across various population sizes: 10, 20, 40, 60, and 80. 

Outcomes are summarized within Table 4.3 and illustrated in Figure 4.3. The accuracy 

achieved for all datasets and population size is recorded, with the heuristic rate held 

constant as 20. 
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Figure 4.3. Obtained accuracy according to population size. 
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Figure 4.3. (Continued) Obtained accuracy by population size. 

This approach aims to locate a better starting point within a vast search space rather 

than starting from random point, despite constraints on iterations and search agents. 

We assume that the improved performance compared with similar heuristic 

approaches is connected to the dynamic population strategy applied at the end of each 

iteration that is efficiently exploring the search domain by concentrating on promising 

regions and avoiding futile ones. To validate this, we conducted another experiment. 

We selected optimal input parameters based on prior experiments and ran the 



62 

algorithm without the dynamic population component (lines 7, 8, 9, 10 and 11 of 

Algorithm-1). Outcomes, as presented in Table 4.4, indicated that removing the 

dynamic behavior led to reduced accuracy, highlighting its crucial role in exploring 

the expansive search domain effectively. 

Table 4.4. Effects of dynamic strategy on obtained performance. 

Model 
Dynamic Strategy 

With Without 

FASHION 0.9312 0.9250 

IRIS 0.8484 0.8437 

CIFAR10 0.8977 0.8593 

MNIST 0.9954 0.9946 

CIFAR100 0.9531 0.9245 

The outcomes closely resemble those in the initial field of Table 4.2, which the 

heuristic rate considered as zero. Using simpler terms, our recent experiments tell us 

that when dealing with complicated and big search spaces, like those found in complex 

models, the dynamic population strategy does a great job of finding the best starting 

points. On the other hand, for simpler models, the traditional heuristic search 

approaches work well in achieving the same result. 

4.2. Experimental Analysis – Meta Learning 

As we transition from traditional classification tasks to the complex domain of meta 

learning, the second section of this chapter explains a detailed exploration of the 

Dynamic Population Optimization (DPO) algorithm's ability in addressing challenges 

that extend beyond conventional classification boundaries. Meta learning, 

distinguished by its ability to enable model adaptation across a spectrum of diverse 

tasks, introduces a layer of complexity that demands innovative approaches. 

In this section, we start through the application of the DPO algorithm to optimize meta 

learning problems. Meta learning address the limitations of standard classification 

scenarios, requiring algorithms to show a increased level of adaptability and flexibility. 

The challenges posed by meta learning involve not only understanding individual tasks 

but also efficiently leveraging acquired knowledge to excel in new and unseen tasks. 
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In the coming experiments, our goal is to show how the DPO algorithm can handle the 

difficulties of meta learning, offering insights into its performance, adaptability, and 

effectiveness. By evaluating its behavior under these more complicated scenarios, we 

aim to contribute valuable observations that extend beyond the conventional 

classification, focusing on the algorithm's potential to address the evolving landscape 

of machine learning challenges. 

4.2.1. Datasets description 

In our performance evaluation, we have applied our optimizer on two popular datasets 

within the field of meta-learning. The first dataset, Omniglot, is thoughtfully 

summarized in Table 4.5, encapsulating key metrics and outcomes. The second 

dataset, MiniImageNet, is thoroughly documented in Table 4.6, providing an in-depth 

analysis of the algorithm's performance across various parameters. This detailed 

examination ensures a complete understanding of our algorithm's adaptability and 

effectiveness in handling diverse datasets. 

Omniglot and MiniImagenet are highly regarded datasets in meta-learning research. 

They offer diverse sets of classes and tasks, crucial for evaluating the adaptability of 

meta-learning algorithms [6]. With a small number of instances per class, these 

datasets mirror real-world scenarios where learning from limited data is essential. The 

challenges they pose in generalization make them ideal for assessing the performance 

of meta-learning models [8]. Moreover, their popularity has made them standard 

benchmarks in the field [7]. Popular meta learning models such as MAML, Reptile 

and Meta-SGD, have been extensively tested on these datasets. By evaluating on 

Omniglot and MiniImagenet, researchers can gauge the algorithms' capacity to rapidly 

adapt and generalize effectively. These datasets serve as foundational tools for 

advancing the understanding and development of meta-learning techniques. 

Omniglot: This Omniglot dataset contains 1,623 different handwritten characters 

from 30 different scripts, Figure 4.4, covering a wide range of languages and writing 

systems. This diversity challenges meta-learning models to adapt quickly to new and 

unfamiliar characters, making it an excellent choice for few-shot and one-shot learning 

scenarios, which are common in meta-learning. 
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Table 4.5. Specification of Omniglot dataset. 

Specification Value 

Dataset Type Character Recognition 

Total Characters 1,000 

Characters per Writing System 20 

Writing Systems 50 

Total Examples 20,000 

Image Size 105x105 pixels 

Moreover, The Omniglot dataset is relatively small with only 50 examples per class, 

making it a challenging benchmark for meta-learning. Meta-learning algorithms are 

designed to learn from a limited amount of data, and Omniglot's small size reflects 

real-world scenarios where adapting to new tasks with limited examples is important. 

 

Figure 4.4. Omniglot dataset sample characters. 

MiniImageNet: Serving as a subset representation of the widely-used ImageNet 

dataset, MiniImageNet is oriented specifically for the evaluation of meta-learning 

algorithms. Comprising 60,000 high-resolution color images, each measuring 84x84 

pixels, Figure 4.5, the dataset spans across 100 distinct classes. These classes include 

a rich variety of objects, animals, and scenes, contributing to the dataset's diversity. 
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Table 4.6. Specification of MiniImageNet dataset. 

Specification Value 

Dataset Type Object Recognition 

Total Classes 100 

Images per Class 600 

Total Examples 60,000 

Image Size 84x84 pixels 

The dataset simulates few-shot learning scenarios by providing a limited number of 

examples per class (600 images). This mirrors real-world situations where adapting to 

novel tasks with only a small set of examples is crucial. Meta-learning algorithms, 

designed to give insights from restricted data, are put to the test in the challenging 

landscape presented by MiniImageNet. 

 

Figure 4.5. MiniImageNet dataset sample classes. 

Researchers treat MiniImageNet as a benchmark to assess the robustness, adaptability, 

and generalization capabilities of meta-learning models. The varied and 

comprehensive nature of the dataset's classes ensures that models trained on 
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MiniImageNet are well-equipped to handle a wide array of visual recognition tasks, 

making it an invaluable resource in the field of meta-learning research. 

4.2.2. Experimental details 

As meta learning algorithms, we have selected three popular meta learning algorithms, 

MAML [39], Reptile [62] and Meta-SGD [57] to measure the convergence of our 

optimizer compared to training the same algorithms using traditional gradient based 

optimizers. All three mentioned algorithms provide a powerful framework for meta-

learning without requiring complex architecture modifications or specialized network 

designs. MAML, Reptile and Meta-SGD are relatively simple algorithms to implement 

and conceptually intuitive.  

Table 4.7. Obtained accuracy for MAML at different iterations. 

Dataset Omniglot MiniImageNet 

Epoch ADAM DPO ADAM DPO 

10 0.1526 0.1136 0.0965 0.0765 

20 0.1832 0.1668 0.1257 0.1035 

50 0.3044 0.2954 0.1824 0.1737 

100 0.3732 0.3865 0.2435 0.2565 

200 0.5532 0.5865 0.3317 0.3565 

500 0.7115 0.7421 0.4625 0.5045 

1000 0.8803 0.8994 0.5621 0.5781 

We begin by examining the performance of the models on the Omniglot dataset, a 

widely used benchmark for few-shot classification tasks. The comparison is made 

between the traditional ADAM optimizer and our proposed DPO across different 

meta-learning approaches and obtained accuracy is captured at different epochs. 
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Figure 4.6. Accuracy comparison for MAML. 

The training accuracy, as computed using Formula 3.4, was recorded at various 

training epochs. Table 4.8 presents a summary of the recorded results, first utilizing 

the traditional gradient-based optimizer (Adam), followed by running the same 

algorithm with the DPO optimizer. 
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Table 4.8. Obtained accuracy for Reptile at different iterations. 

Dataset Omniglot MiniImageNet 

Epoch ADAM DPO ADAM DPO 

10 0.1354 0.1265 0.0832 0.0658 

20 0.1654 0.1458 0.1187 0.1178 

50 0.3114 0.2899 0.1792 0.1698 

100 0.3827 0.3987 0.2387 0.2435 

200 0.5708 0.5961 0.3267 0.3468 

500 0.7439 0.7632 0.4798 0.5212 

1000 0.8852 0.8993 0.5705 0.5791 

When examining the results presented in Figure 4.6, we can draw a clear and 

significant conclusion regarding the performance of our algorithm in our experiments. 

It's apparent that our algorithm is demonstrating markedly improved performance 

when compared to our baseline or other existing methods. This improvement is notably 

reflected in the accuracy metric, which quantifies the correctness of predictions made 

by our model. 

 

Figure 4.7. Accuracy comparison for Reptile. 
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Figure 4.7. (Continued) Accuracy comparison for Reptile. 

What's particularly noteworthy is that this enhanced performance is achieved without 

the need for additional training cycles. In both Figure 4.6, 4.7 and 4.8, we've 

maintained an equal number of training cycles for our algorithm and the baseline. This 

controlled experimental setup ensures a fair comparison between the two approaches.  

Table 4.9. Obtained accuracy for Meta-SGD at different iterations. 

Dataset Omniglot MiniImageNet 

Epoch ADAM DPO ADAM DPO 

10 0.1723 0.1468 0.0624 0.0527 

20 0.1967 0.1765 0.0947 0.0911 

50 0.3354 0.3054 0.1684 0.1724 

100 0.3967 0.4154 0.2209 0.2255 

200 0.5806 0.6032 0.2965 0.321 

500 0.7536 0.7824 0.4601 0.4967 

1000 0.8612 0.8844 0.5587 0.5751 
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The fact that our algorithm consistently produces higher accuracy within the same 

number of training cycles highlights its efficiency and effectiveness in learning and 

making predictions. 

 

 

Figure 4.8. Accuracy comparison for Meta-SGD. 
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In simpler terms, our algorithm proves to be more adept at the given task, consistently 

delivering superior results compared to the baseline while expending the same training 

resources. This outcome underscores the value and promise of our approach in 

achieving better results in a resource-efficient manner. 

4.3. Discussion 

After reviewing the experimental results presented in Tables 4.7 to 4.9 and Figures 4.6 

to 4.8, we can conclude our observations as follows: 

− For MAML, at earlier epochs (e.g., 10 and 20), DPO shows a lower accuracy 

than ADAM. However, as the training progresses, DPO catches up and even 

surpasses ADAM at epoch 200 and onward, where DPO achieves an accuracy 

of 0.8994 compared to ADAM's 0.8803 at epoch 1000 for Omniglot and 

0.5621, 0.5781 respectively for MiniImageNet.  

− This suggests that while ADAM may initially lead in performance, DPO 

gradually converges to higher accuracies, showcasing its potential for 

improved long-term learning which resulted in approximately 2% 

improvement when applied on MAML on both datasets. 

− Similar trends were observed in the Meta-SGD meta-learning approach. While 

ADAM starts with a higher accuracy in the initial stages, DPO consistently 

improves its performance and surpasses ADAM at the final iteration. At the 

concluding step, DPO achieves an accuracy of 0.8844, outperforming ADAM, 

which attains 0.8612 for Omniglot and 0.5587, 0.5751 respectively for 

MiniImageNet also here talking about 2% accuracy improvement by running 

1000 iterations. This reversal in accuracy trends highlights the effectiveness of 

DPO in adapting and learning over the course of the meta-training process. 

− However, for Reptile, the improvement of performance is lower than what we 

observed for MAML and Meta-SGD, when running on Omniglot we got 

0.8852 for ADAM and 0.8993 for DPO, and 0.5705, 0.5791 for MiniImageNet, 

both experiments showed almost 1% accuracy improvement on Reptile 

compared to 2-2.5% for MAML and Meta-SGD. 

To summarize, after conducting 1000 training cycles, the accuracy of both MAML and 

Meta-SGD saw improvements of 2-2.5% across Omniglot and MiniImageNet datasets. 

However, Reptile showed a 1% accuracy enhancement on both datasets and same 



72 

number of epochs. To comprehend the rationale behind these findings, it is essential 

to revisit Chapter 2 and delve into the intricacies of how each algorithm operates. This 

exploration will shed light on why employing the heuristic approach proved more 

effective for MAML and Meta-SGD compared to Reptile.  

Both MAML (Model-Agnostic Meta-Learning) and Meta-SGD incorporate a two-step 

optimization process during their respective meta-training phases. This shared 

characteristic involves an inner loop and an outer loop. In the inner loop, the model 

undergoes task-specific adaptation with a limited dataset, allowing it to quickly adjust 

its parameters to the specifics of a given task. The outer loop then updates the model's 

parameters based on the aggregated experience across multiple tasks, aiming to find a 

set of parameters that generalize well and facilitate rapid adaptation. This dual-step 

optimization framework is a fundamental aspect of both methodologies, reflecting 

their commonality in addressing the challenges of meta-learning and few-shot learning 

scenarios. 

However, in contrast to the two-step optimization process employed by MAML and 

Meta-SGD, Reptile adopts a simpler approach that emphasizes faster convergence. 

During training, Reptile performs only a few gradient steps on a given task within an 

inner loop. These steps allow the model to quickly adjust its parameters to better suit 

the characteristics of the specific task at hand. Importantly, instead of fine-tuning the 

model extensively for each individual task, Reptile accumulates the updates obtained 

from these short optimization steps across multiple tasks in the outer loop. This 

strategy promotes a more generalized adaptation, as the accumulated updates influence 

the model's parameters to be more broadly applicable across a range of tasks. By 

prioritizing simplicity and efficiency, Reptile aims to strike a balance between 

adaptation to specific tasks and achieving faster convergence during meta-training. 

The superior performance of a heuristic-based optimizer on MAML and Meta-SGD 

compared to Reptile could be attributed to the distinct optimization strategies 

employed by each meta-learning algorithm. MAML and Meta-SGD involve a two-

step optimization process with inner and outer loops, which allows for more detailed 

adjustments to model parameters. The heuristic approach, tailored to capture these 

challenges, might complement the iterative adaptation process of MAML and Meta-

SGD, thereby enhancing their overall efficiency. In contrast, Reptile's simpler 

approach, relying on only a few gradient steps, might be less responsive to the nuanced 
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adjustments that a heuristic optimizer provides, resulting in relatively smaller 

performance gains. The effectiveness of the heuristic approach may align more closely 

with the optimization needs of MAML and Meta-SGD, leading to improved 

performance on these specific meta-learning algorithms. 
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5. CONCLUSION  

In this study, we introduced a novel approach that combines a heuristic algorithm with 

dynamic population-based feature followed by backpropagation derivative-based 

algorithm to train a neural network. The hybrid model demonstrated strong initial 

performance across five benchmark datasets (Iris, MNIST, CIFAR-10, CIFAR-100, 

and Fashion) including a substantial number of trainable parameters. Notably, our 

approach yielded favorable outcomes when the heuristic ratio was set to 20%, 

emphasizing its effectiveness in initializing the training process. Moreover, 

experimental analysis confirmed that the reason behind this accuracy improvement is 

the dynamic nature of our heuristic algorithm. We conducted the same experiments 

with the dynamic population flag is On then Off, observing that enabling the dynamic 

population resulted in higher accuracy across all the used datasets. 

While our application primarily targeted fixed neural network models, the encouraging 

results prompt us to consider extending this approach beyond fine-tuning weight 

vectors. There is potential to apply this methodology to generate complete neural 

network architectures. Additionally, the parallelization of the initialization process, 

facilitated by employing multiple agents, offers avenues for exploring efficient 

parallelization strategies. 

In a parallel effort, our research tackled meta-learning challenges by employing the 

same hybrid optimizer that utilizes the heuristic algorithm -dynamic population- in 

addition to backpropagation optimization. The effectiveness of this approach was 

evaluated using two widely recognized datasets in the field of meta-learning: Omniglot 

and MiniImageNet. As a meta-learning platform, we seamlessly integrated our 

optimization function into leading meta-learning frameworks, namely MAML, 

Reptile, and Meta-SGD. Remarkably, even with fewer training cycles, our approach 

demonstrated superior accuracy, achieving 2-2.5% when applied to both MAML and 

Meta-SGD. In contrast, we observed an enhanced accuracy of approximately 1% for 

Reptile compared to relying solely on gradient-based methods. 
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It's worth noting that the variance in results is attributed to the implementation details 

of each meta-learning platform used.  

Nevertheless, it is crucial to highlight that our investigation was limited to the 

Omniglot and MiniImageNet datasets and applied specifically to the mentioned meta-

learning algorithms. To ensure the broader applicability of our proposed algorithm, 

further exploration across a diverse range of datasets and meta-learning algorithms is 

necessary. This expanded examination will serve to validate the algorithm's robustness 

and confirm its independence from specific datasets or neural network models. 

Furthermore, extending our testing to real-world problems is imperative to assess the 

algorithm's performance in practical scenarios and enhance its relevance beyond 

controlled experimental conditions.
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