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Abstract: In this study, the ruled developable surfaces with pointwise 1-type Gauss map of Frenet-
type framed base (Ftfb) curve are introduced in Euclidean 3-space. The tangent developable surfaces,
focal developable surfaces, and rectifying developable surfaces with singular points are considered.
Then the conditions for the Gauss map of these surfaces to be pointwise 1-type are obtained separately.
In order to form a basis for the study, first, the basic concepts related to the Ftfb curve and the Gauss
map of a surface are recalled. Later, the necessary and sufficient conditions are found for these surfaces
to be of the pointwise 1-type of the Gauss map. Finally, examples for each type of these surfaces are
given, and their graphics are illustrated.
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1. Introduction

In the late 1970s, the concept of finite-type submanifold was developed by Chen in Euclidean and
semi-Euclidean spaces and this finite-type concept was later extended to differentiable maps defined on
submanifolds. Thus, the finite-type Gauss map concept, which is very useful in classifying surfaces,
was developed [1–3]. Chen and Piccinni presented a general study on the submanifolds of Euclidean
spaces with finite-type Gauss map and formed the basis of the theory of submanifolds with finite-type
Gauss map and classified compact surfaces with a 1-type Gauss map [4]. The ruled surfaces with a
finite-type Gauss map have been studied by many researchers in Euclidean space [5–8]. In addition,
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pointwise 1-type Gauss maps of Darboux ruled surfaces, which are one of the special ruled surfaces,
were examined and classified in the study [9].

Although the moving frame of a regular space curve has been generally taken into consideration in
these studies on surfaces, it is known that an arbitrary curve can also have singular points. However,
the moving frame of a space curve cannot be defined at points where the first derivative of the curve is
zero. In other words, the Frenet frame cannot be defined at any singular point of a space curve. Due to
this reason, our study considers curves that may have some singular points to make a difference from
the previous research and present a wider perspective for new research.

Framed curves were introduced to generalize regular curves with the linear independent condition
and Legendre curves in the unit tangent bundle in [10]. The basic concepts related to the framed curves
and the existence and uniqueness conditions of the framed curve have been explored extensively in
studies [11–13]. Moreover, the framed surfaces were investigated using curves with singular points. A
framed surface in Euclidean space is a smooth surface with a moving frame. It is also a generalization
of not only regular surfaces but also frontals at least locally. So, the framed surfaces may have
singularities [14, 15]. In recent years, some of the latest connected studies can be seen in [16–32].
The Gauss maps of the ruled developable surfaces have been investigated in previous studies, but the
Gauss map of ruled developable surfaces with singular points has not been studied. For this reason,
unlike the above studies, we want to contribute to the scientific world by investigating the Gauss map
of ruled developable surfaces with singular points in our study and to form a basis for new research.

In this study, we investigate the tangent developable surface, the focal developable surface, and
the rectifying developable surface with a pointwise 1- type Gauss map of the Frenet-type framed base
(Ftfb) curve. Also, the graphs of some of these types of sample surfaces are drawn.

2. Geometric concepts associated with Gauss map and framed curve in Euclidean 3-space

Let σ : I → R3 be a smooth space curve with singular points in Euclidean 3-space and ∆2 be
a 3-dimensional smooth manifold, then ∆2 is denoted by

∆2 =
{
µ =

(
µ1,µ2

)
∈ R3 × R3 :

〈
µi,µ j

〉
= δi j, i, j = 1, 2

}
.

Let µ =
(
µ1,µ2

)
∈ ∆2 , then the unit vector υ is defined as υ = µ1 ∧ µ2 [10].

Definition 2.1. (σ, µ) : I → R3 × ∆2 is called framed curve if 〈σ′ (y) , µ1 (y)〉 = 〈σ′ (y) , µ2 (y)〉 = 0 for
each y ∈ I . Also, σ : I → R3 is a framed base curve if there exists µ : I → ∆2 such that (σ, µ) is a
framed curve [10].

Let (σ, µ1, µ2) : I → R3×∆2 be a framed curve and υ = µ1∧µ2 . Then we can write the Frenet-Serret
type formula of the framed curve as follows:

µ1
′ (y)

µ2
′ (y)

υ′ (y)

 =


0 l (y) m (y)
−l (y) 0 n (y)
−m (y) −n (y) 0



µ1 (y)
µ2 (y)
υ (y)

 ,
where l (y) =

〈
µ′1 (y) , µ2 (y)

〉
, m (y) =

〈
µ′1 (y) , υ (y)

〉
and n (y) =

〈
µ′2 (y) , υ (y)

〉
[10]. Also, there exists

a smooth mapping α : I → R such that

σ′ (y) = α (y) υ (y)
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and α (y0) = 0 if and only if y0 is a singular point of the curve σ. In addition, the functions
{l (y) ,m (y) , n (y) , α (y)} are called the curvatures of the framed curve σ. If m (y) = n (y) = 0, then
υ′ (y) = 0 . The case υ′ (y) , 0 is assumed in this article. If the curve σ has a singular point, then the
Frenet frame cannot be constructed along the curve σ. But under a certain condition, one can define
Frenet type frame along σ.

Definition 2.2. σ : I → R3 is called Frenet type framed base (Ftfb) curve, if there exists a regular
curve T : I → S 2 and a smooth function α : I → R such that σ′ (y) = α (y) T (y) for each y ∈ I . Then,
we call T (y) as the unit tangent vector and α (y) as a speed function of σ (y) [18].

T (y), N (y) =
T ′(y)
‖T ′(y)‖ and B (y) = T (y) ∧ N (y) are unit tangent vector, unit principal normal vector

and unit binormal vector of the curve σ (y) with singular point, respectively. Then there exists an
orthonormal frame {T (y) ,N (y) , B (y)}. This frame is called the Frenet type frame along σ and we can
give the Frenet type framed formula as follows:

T ′ (y)
N′ (y)
B′ (y)

 =


0 κ (y) 0
−κ (y) 0 τ (y)

0 −τ (y) 0




T (y)
N (y)
B (y)

 ,
where κ (y) = ‖T ′ (y)‖ and τ (y) =

det(T (y),T ′(y),T ′′(y))
‖T ′(y)‖2

are the curvature and the torsion of the Ftfb curve σ,
respectively. From here, we can say that σ is a framed base curve. Moreover, {σ,N, B} is a framed
curve with the curvature {τ (y) ,−κ (y) , 0, α (y)}.

Let M : X = X (y, u) be a surface in Euclidean 3-space. It is well-known that, the Gauss map of
a surface M carries the unit normal vector at any point p on the surface M to the center of S 2 which
denotes the unit sphere centered at the origin. Denoting the Gauss map of a surface M with Ω, then it
is defined as

Ω : M → S 2 ⊂ E3

p→ Ω (p) =
Xy∧Xu

‖Xy∧Xu‖
,

where “∧” denotes the cross product of two vectors, Xy = ∂X
∂y and Xu = ∂X

∂u are the first order partial
derivatives according to the parameters of X.

Let gi j =
〈
∂X
∂xi
, ∂X
∂x j

〉
, (1 ≤ i, j ≤ 2) be an induced metric on the surface M. Then the Laplacian

operator ∆ with respect to the induced metric on M is defined as

∆ = −
1
√

g

2∑
i, j=1

∂

∂xi

(
√

ggi j ∂

∂x j

)
,

where xi (1 ≤ i ≤ 2) are the local coordinates on M. Moreover, the matrices
(
gi j

)
and the inverse

matrix
(
gi j

)
of

(
gi j

)
are defined as gi j =

(
g11 g12

g21 g22

)
and gi j = 1

det(gi j)

(
g22 −g12

−g21 g11

)
, respectively.

Also, g = det
(
gi j

)
denotes the determinant of the matrix

(
gi j

)
.

Let M be a surface in Euclidean 3-space. The Gauss map Ω of M is 1–type Gauss map if and only if
the Gauss map Ω is to satisfy the equation ∆Ω = λ (Ω + C) for a non-zero real constant λ and constant
vector C [11] . With the studies carried out over time, it has been observed that the Gauss maps of
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some surfaces such as helicoids and catenoids in E3 provide this equality for a regular function f , not
for a constant λ. This situation led to the emergence of the concept called the Gauss map, which is
a pointwise 1-type. If the Gauss map Ω of a surface M in E3 satisfies the equation ∆Ω = f (Ω + C)
for a regular function f and a constant vector C. Then, this map is called the pointwise 1-type Gauss
map [7, 11]. If the constant vector C = 0, the pointwise 1-type Gauss map is called the first kind,
otherwise, the second kind. On the other hand, if ∆Ω = 0 it is called that the surface M has a harmonic
Gauss map, see details in [8].

3. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves

In this section, we study the tangent developable surface, focal developable surface, and rectifying
developable surface with the Ftfb curve. These surfaces are classified via their pointwise 1-type Gauss
maps and the examples of these surfaces are also illustrated.

Note that, the curvature of the Ftfb curve has to be non-zero, otherwise, at the construction of the
Frenet type frame along the Ftfb curve, the normal, accordingly, binormal vectors are undefined.

3.1. The tangent developable surface with pointwise 1- type Gauss map of Frenet type framed base
curves

Let M1 be a tangent developable surface associated with the Ftfb curve σ : I → R3 and {T,N, B} be
the Frenet type frame of σ such that σ′ (y) = α (y) T (y) and α (y) be the speed function of σ (y) for all
y ∈ I, then the parametric equation of the tangent developable surface associated with the Ftfb curve
can be written as follows:

M1 : X (y, u) = σ (y) + uT (y) . (3.1)

Here, the curve σ (y) and the vector field T (y) are called the base curve and the director curve or
director vector of the surface, respectively [14]. The first order partial derivatives with respect to
parameters y and u of the surface defined by (3.1) are found as

Xy = αT + uκN and Xu = T.

The Gauss map of the tangent developable surface M1 parameterized by (3.1) is given by

Ω = −B.

For the matrix
(
gi j

)
consisting of the components of the metric on the tangent developable surface M1,

we denote by g and
(
gi j

)
the determinant and the inverse matrix of the matrix

(
gi j

)
, respectively. In this

case, we can easily find that

gi j =


α2 + u2κ2 α

α 1

 , g = u2κ2 and gi j =


1

u2κ2 − α
u2κ2

− α
u2κ2 1 + α2

u2κ2

 .
Therefore, the formula of the Laplacian ∆ on the surface M1 is given in terms of y and u by

∆ = −
1

u2κ2

∂2

∂y2 −
u2κ2 + α2

u2κ2

∂2

∂u2 +
ακ − uκ′

u3κ3

∂

∂y
−
α2κ + u2κ3 − uακ′

u3κ3

∂

∂u
+

2α
u2κ2

∂2

∂y∂u
. (3.2)
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Now, let’s apply the Laplace operator ∆ to the Gauss map Ω. If the derivatives of the Gauss map Ωy,
Ωyy, Ωu, Ωuu and Ωyu are calculated and the derivatives of the Gauss map are substituted in Eq (3.2),
then we get

∆Ω =
τ2

u2κ2 Ω +
τ

u2κ
T +

τ2 (ακ − uκ′) − uκτ′

u3κ3 N.

From this last equation, we have τ = 0 if and only if ∆Ω = 0. In this case, we can give the following
Theorem.

Theorem 3.1. Let M1 be a tangent developable surface associated with the Ftfb curve, then the surface
M1 has a harmonic Gauss map if and only if the Ftfb curve σ is a plane curve.

Example 3.1. Let M1 be a tangent developable surface associated with the Ftfb curve σ : R → R3

defined by the parametric equation

σ (y) =
(
y2, y3, 0

)
.

The curve σ has a singular point at y = 0, so this curve is not a Frenet curve. The curve σ is a Ftfb
curve with the mapping (T, α) : R→ S 2 × R. Then

T (y) =
1√

4 + 9y2
(2, 3y, 0)

and

α (y) = y
√

4 + 9y2

are the unit tangent vector and the speed function of σ, respectively. By making the necessary
calculations, the normal, the binormal vectors, the curvature, and the torsion of the curve σ are found
as follows, respectively

N (y) =
1√

4 + 9y2
(−3y, 2, 0) , B (y) = (0, 0, 1) , κ =

6
4 + 9y2 and τ = 0.

Consequently, the tangent developable surface associated with the Ftfb curve is parametric by

X (y, u) =

y2 +
2u√

4 + 9y2
, y3 +

3yu√
4 + 9y2

, 0

 .
Hence,

Ω = (0, 0,−1) and ∆Ω = 0.

As the fact that, the tangent developable surface X (y, u) has harmonic Gauss map, see Figure 1.
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Figure 1. M1 (gray), σ (red) for y ∈ (−2, 2) and u ∈ (−10, 10), {T,N, B} (green, blue, cyan)
and Ω (black) at y = −2, 0, 2.

3.2. The focal developable surface with pointwise 1-type Gauss map of the Frenet type framed base
curves

Let M2 be a focal developable surface associated with the Ftfb curve and σ : I → R3 be a Ftfb curve
with Frenet type frame {T,N, B} such that σ′ (y) = α (y) T (y) and α (y) is the speed function of σ (y)
for all y ∈ I, then the parametric equation of the focal developable surface can be written as following:

M2 : X (y, u) = σ (y) +
α (y)
κ (y)

N (y) + uB (y) , (3.3)

where N and B are the principal normal vector and binormal vector of the curve σ, respectively [14].
The first order partial derivatives with respect to parameters y and u of the surface M2 are found as

Xy =
(
η′ − uτ

)
N + ητB and Xu = B,

where η (y) =
α(y)
κ(y) . The Gauss map of the focal developable surface M2 parameterized by (3.3) is given

by

G = T

at the points satisfying η′ − uτ , 0. Considering the matrix
(
gi j

)
consisting of the components of the

metric on the surface M2, we can express the matrix
(
gi j

)
, the determinant g and the inverse matrix

(
gi j

)
of the matrix

(
gi j

)
as

gi j =


η2τ2 + (η′ − uτ)2 ητ

ητ 1

 , g =
(
η′ − uτ

)2

and

gi j =


1

(η′−uτ)2 −
ητ

(η′−uτ)2

−
ητ

(η′−uτ)2 1 +
η2τ2

(η′−uτ)2

 , η′ − uτ , 0,
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respectively. Therefore, the formula of the Laplacian ∆ on the surface M2 is found as

∆ = −
1

(η′ − uτ)2

∂2

∂y2 −
(η′ − uτ)2 + η2τ2

(η′ − uτ)2

∂2

∂u2 +
uτ′ − ητ2 − η′′

(η′ − uτ)3

∂

∂y
(3.4)

+
τ
((

u2 + η2
)
τ2 − 2uτη′ + η′2 + η (−uτ′ + η′′)

)
(η′ − uτ)3

∂

∂u
+

2ητ
(η′ − uτ)2

∂2

∂y∂u
.

Now, let’s apply the Laplace operator ∆ to the Gauss map Ω. If the partial derivatives of the Gauss map
Ωy, Ωyy, Ωu, Ωuu and Ωyu are found and these are substituted in Eq (3.4), then we get

∆Ω =
κ2

(η′ − uτ)2 Ω −
κ′ (−uτ + η′) + κ

(
ητ2 − uτ′ + η′′

)
(η′ − uτ)3 N −

κτ

(η′ − uτ)2 B. (3.5)

Theorem 3.2. Let M2 be a focal developable surface associated with the Ftfb curve, then the surface
M2 has pointwise 1-type Gauss map of the first kind if and only if κη′ is constant and Ftfb curve is
planar.

Proof. Let M2 have pointwise 1-type Gauss map of the first kind, the following conditions are satisfied:

κ2

(η′ − uτ)2 , 0

and
κ′ (−uτ + η′) + κ

(
ητ2 − uτ′ + η′′

)
(η′ − uτ)3 N +

κτ

(η′ − uτ)2 B = 0.

The first condition is always true. For the second one, by considering N and B are linearly independent,
we obtain

κ′ (−uτ + η′) + κ
(
ητ2 − uτ′ + η′′

)
(η′ − uτ)3 = 0

and

κτ

(η′ − uτ)2 = 0.

Solving these equations, we get that κη′ is constant and τ = 0.
The sufficiency is obviously proven by substituting κη′ is constant and τ = 0 in Eq (3.5). �

As a result, we can give the following corollary.

Corollary 3.1. Let M2 be a focal developable surface with pointwise 1-type Gauss map of the first
kind, then the following equality is satisfied:

∆Ω =

(
κ

η′

)2

Ω.
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Example 3.2. Let M2 be a focal developable surface associated with the Ftfb curve σ : R → R3

defined by the parametric equation

σ (y) = ((y + 1) sin y + cos y,− (y + 1) cos y + sin y, 0) .

The curve σ has a singular point at y = −1, so this curve is not a Frenet curve. The curve σ is a Ftfb
curve with the mapping (T, α) : R→ S 2 × R;

T (y) = (cos y, sin y, 0) , α (y) = (y + 1) .

The normal and binormal vector of the curve σ are obtained as

N (y) = (− sin y, cos y, 0) , B (y) = (0, 0, 1) .

Also, the curvature and torsion of the curve σ are

κ = 1 and τ = 0.

Consequently, the focal developable surface associated with the Ftfb curve is parameterized as

X (y, u) = (cos y, sin y, u) .

Hence,

Ω = (cos y, sin y, 0) and ∆Ω = Ω.

Therefore, the Gauss map Ω has pointwise 1-type of the first kind, see Figure 2.

Figure 2. M2 (gray), σ (red) for y ∈ (−π, π) and u ∈ (−1, 1), {T,N, B} (green, blue, cyan)
and ∆Ω = Ω (black).
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3.3. The rectifying developable surface with pointwise 1- type Gauss map of Frenet type framed base
curves

Let M3 be a rectifying developable surface associated with the Ftfb curve and σ : I → R3 be a
Ftfb curve with Frenet type frame {T,N, B} such that σ′ (y) = α (y) T (y) and α (y) is a speed function
of σ (y) for all y ∈ I, then the parametric equation of the rectifying developable surface M3 can be
written as following:

M3 : X (y, u) = σ (y) + u
τ (y) T (y) + κ (y) B (y)√

τ(y)2 + κ(y)2
, (3.6)

where T and B are unit tangent vector and binormal vector of the Ftfb curve σ, respectively [14, 18].
The first order partial derivatives with respect to parameters y and u of the surface M3 are found as

Xy =

(
α −

uκρ
δ3

)
T +

uτρ
δ3 B and Xu =

τ

δ
T +

κ

δ
B,

where δ2 = κ2 + τ2 and ρ = τκ′ − κτ′.
At the points satisfying ακ

δ
+ u ρ

δ2 , 0, the Gauss map of the rectifying developable surface M3

parameterized by (3.6) is given by

Ω = −N.

Considering the matrix
(
gi j

)
consisting of the components of the metric on the surface M3, we can

easily find the matrix
(
gi j

)
, the determinant g and the inverse matrix

(
gi j

)
of the matrix

(
gi j

)
as

gi j =

(
h ατ

δ
ατ
δ

1

)
, g = h −

α2τ2

δ2 , δ , 0

and

gi j =


δ2

hδ2−α2τ2
−αδτ

hδ2−α2τ2

−αδτ
hδ2−α2τ2

hδ2

hδ2−α2τ2

 , hδ2 − α2τ2 , 0,

where h =
(
α − uκρ

δ3

)2
+

u2ρ2τ2

δ6 . Therefore, the formula of the Laplacian ∆ on the surface M3 is calculated
as

∆ = −
δ2

hδ2 − α2τ2

∂2

∂y2 −
hδ2

hδ2 − α2τ2

∂2

∂u2 +
αδτ

(
−2ατδ′ + 2δ (τα′ + ατ′) + δ2hu

)
− δ4hy

2
(
hδ2 − α2τ2)2

∂

∂y

(3.7)

+
−2α2δτ3α′ + 2α3τ2 (τδ′ − δτ′) − hδ4hu + αδ3τhy

2
(
hδ2 − α2τ2)2

∂

∂u
+

2αδτ
hδ2 − α2τ2

∂2

∂y∂u
,

where hy = ∂h
∂y and hu = ∂h

∂u are given by

hy =
2
δ7

(
u2τρ

(
−3ρτδ′ + δ(τρ)′

)
+

(
αδ3 − uκρ

) (
δ4α′ + 3uκρδ′ − uδ(ρκ)′

))
AIMS Mathematics Volume 8, Issue 1, 2226–2239.
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and

hu =
2ρ (−αδκ + uρ)

δ4 ,

respectively. Now, let’s apply the Laplace operator ∆ to the Gauss map of the surface M3. If the
partial derivatives of the Gauss map Ωy, Ωyy, Ωu, Ωuu and Ωyu are calculated and these are substituted
in Eq (3.7), then we get

∆Ω =
δ4

hδ2 − α2τ2 Ω −
2δ2κ′

(
hδ2 − α2τ2

)
− αδκτ

(
−2αδ′τ + 2δ (τα′ + ατ′) + δ2hu

)
+ κδ4hy

2
(
hδ2 − α2τ2)2 T

(3.8)

+
2δ2τ′

(
hδ2 − α2τ2

)
− αδτ2

(
−2αδ′τ + 2δ (τα′ + ατ′) + δ2hu

)
+ τδ4hy

2
(
hδ2 − α2τ2)2 B.

Theorem 3.3. Let M3 be a rectifying developable surface of the Ftfb curve with the Frenet type frame
{T,N, B}, then the surface M3 has pointwise 1-type Gauss map of the first kind if and only if the Ftfb
curve is a helix.

Proof. Let the Gauss map be pointwise 1-type map of the first kind, it requires the following conditions:

δ4

hδ2 − α2τ2 , 0,

which is obviously satisfied, and

−
2δ2κ′

(
hδ2 − α2τ2

)
− αδκτ

(
−2αδ′τ + 2δ (τα′ + ατ′) + δ2hu

)
+ κδ4hy

2
(
hδ2 − α2τ2)2 T

+
2δ2τ′

(
hδ2 − α2τ2

)
− αδτ2

(
−2αδ′τ + 2δ (τα′ + ατ′) + δ2hu

)
+ τδ4hy

2
(
hδ2 − α2τ2)2 B = 0.

Since T and B are linearly independent, we obtain

−
2δ2κ′

(
hδ2 − α2τ2

)
− αδκτ

(
−2αδ′τ + 2δ (τα′ + ατ′) + δ2hu

)
+ κδ4hy

2
(
hδ2 − α2τ2)2 = 0

and

2δ2τ′
(
hδ2 − α2τ2

)
− αδτ2

(
−2αδ′τ + 2δ (τα′ + ατ′) + δ2hu

)
+ τδ4hy

2
(
hδ2 − α2τ2)2 = 0.

If the first and second equations are multiplied by τ and κ, respectively, and then they are added, it is
found

−δ2 (κ′τ − κτ′)(
hδ2 − α2τ2) = 0.

Since δ , 0 and
(
hδ2 − α2τ2

)
, 0, we get κ

τ
is constant which means that the curve is framed helix.

For the sufficient condition, if the Ftfb curve is a framed helix, then κ
τ

is constant. Thus, κ′τ−κτ′ = 0
requires ρ to vanish, that is, h = α. From (3.8), we see that the Gauss map is pointwise 1-type map of
the first kind. �
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Equation (3.8) gives us the following corollary.

Corollary 3.2. Let M3 be a rectifying developable surface with pointwise 1-type Gauss map of the first
kind, then the following equality

∆Ω =
δ4

α2κ2 Ω

is satisfied at non-singular points where α , 0.

Example 3.3. Let’s investigate the Gauss map the rectifying developable surface associated with the
Ftfb curve σ : [0, 2π)→ R3 defined by the parametric equation

σ (y) =
(
cos3y, sin3y, cos 2y

)
.

The curve σ has singular points at y = 0, π2 , π,
3π
2 , so this curve is not a Frenet curve. The curve σ is a

Ftfb curve with the mapping (T, α) : R→ S 2 × R;

T (y) =
1
5

(−3 cos y, 3 sin y,−4) , α (y) = 5 cos y sin y.

By calculations, we get the normal, binormal vectors, the curvature and the torsion of the curve σ are,
respectively, obtained as

N (y) = (sin y, cos y, 0) , B (y) =
1
5

(4 cos y,−4 sin y,−3) , κ =
3
5

and τ =
4
5
.

Consequently, the rectifying developable surface associated with the Ftfb curve is parametric by

X (y, u) =
(
cos3y, sin3y,−u + cos2y

)
.

Hence, the Gauss map is found as

Ω = (− sin y,− cos y, 0) and ∆Ω =
4

9sin22y
Ω,

where y , 0, π2 , π,
3π
2 . Obviously, it is seen that the pointwise 1-type Gauss map is first kind, see

Figure 3.

AIMS Mathematics Volume 8, Issue 1, 2226–2239.
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Figure 3. M3 (gray), σ (red) for y ∈ [0, 2π) and u ∈ (−1, 1), {T,N, B} (green, blue, cyan) at
y = 0, π2 , π,

3π
2 , and Ω (black), ∆Ω (orange) at y = 3π

4 .

4. Conclusions

In this study, unlike other studies, we have examined developable surfaces with pointwise 1-type
Gauss map constructed by curves with singular points in Euclidean 3-space. The tangent, focal, and
rectifying developable surfaces of the Ftfb curve were studied in [14,16,18]. As a contribution to them,
we have studied these surfaces with a pointwise 1-type Gauss map. In addition, we have obtained
their characterizations to be the first kind or harmonic. The examples of obtained results have been
illustrated in detail for each type of surface.
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