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ABSTRACT Industrial machinery is a significant energy consumer, and its CO2 emissions have increased
dramatically in recent years. Therefore, energy efficiency is becoming crucial for businesses, governments,
as well as the planet. Estimating the power consumption of industrial machines with greater accuracy
assists management and optimizes machine operation parameters. Real-time industrial machine datasets
present several challenges, such as changes in the data over time, unknown running conditions, missing data,
etc. Most research publications focus on the accuracy of traditional static models of forecasting; however,
prediction performance deteriorates over time because data evolves. We implemented deep learning as a
prediction model for three distinct real-world industrial datasets. The proposed method, dynamic modeling
with memory (DMWM), improved overall prediction performance compared with conventional approaches
by identifying concept drifts and optimizing the number of requiredmodels in response to industrial datasets’
recurring machine energy consumption patterns.

INDEX TERMS Concept drift, deep learning, energy efficiency, energy consumption prediction, industrial
machines.

I. INTRODUCTION
Since the industrial revolution, the burning of fossil fuels
such as coal, oil, and gas has caused long-term changes to
the climate, including temperature and weather patterns [1].
The European Commission has set the goal of making Europe
‘‘climate-neutral’’ by 2050 as part of its European Green
Deal, and achieving this target will require a significant
reduction in greenhouse gas emissions [2]. In the U.S., the
industrial sector is the most significant consumer of power,
accounting for 33% of national energy consumption in 2021,
as shown in Figure 1 [3]. The industry also accounts for
roughly 30% of emissions, making it one of the substantial
sources of greenhouse gases [3]. Decreasing these emissions
is crucial, as their influences are irreversible from an environ-
mental perspective.

Due to recent difficulties such as the global coronavirus
pandemic, companies, governments, and the world have
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FIGURE 1. U.S. Energy usage percentages by sectors in 2021 [3].

faced a bottleneck in energy supplies. In addition, more
than a third of manufacturing enterprises do not set energy
efficiency targets, and most do not have a system to track
progress [4]. The combination of demand uncertainty, energy
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supply difficulties, and high production costs can signifi-
cantly impact the development of pricing schemes and invest-
ment strategies for most industries [5], [6].

There are some technological solutions. Smart grids can
help with electricity management by supplying valuable data
that can be used to make better decisions [7]. More profound
insights into energy consumption patterns are also opening
the path to new knowledge and innovation in hourly load
forecasting [8]. A power grid needs accurate short-term elec-
trical load forecasts to operate more efficiently [9]. Precise
short-term energy prediction is therefore critical to increasing
energy efficiency and minimizing blackouts [10].

Moreover, short-term projections are helpful for planning
and allocating energy loads since they predict energy usage
for any interval from one hour or less to one week [10].
An accurate short-term load forecasting model can improve
the reliability of the energy market by increasing efficiency,
decreasing production costs, and preventing overproduction
and underproduction. This, in turn, is useful for the control
of manufacturing and the supply chain [11]. Scheduled oper-
ators can be informed of accurate real-time consumption and
storage levels to optimize energy use in the industry [12].

It is difficult to explicitly observe or detect any specific
patterns or sudden shifts in machine energy consumption.
Uncertainties in streamed datasets may include variances
in the data known as concept drift [13] or model degrada-
tion [14]. While the allocation of the input variable may or
may not vary, concept drift is defined as a change in the
conditional distribution of the target variable [15]. Active
techniques are more concerned with identifying concept drift
up front and updating the model afterward [16]. By contrast,
passivemodels use learning algorithms that are updated under
the presumption that concept drift is present in continu-
ously changing data [16], [17]. However, passive techniques
demand significant processing work and can only adapt to
current data with constant updates, which increases the com-
putational load [17].

Energy prediction models based on physics have been
presented in the past to comprehend the energy use pattern
of a machine tool; nevertheless, uncertainties about both the
machine and its operating environment make it difficult to
predict energy consumption with certainty [18]. Furthermore,
many researchers use synthetic datasets, in which all concept
drift points are known in advance. However, working with
real-world industrial datasets is far more challenging as they
typically includemanymissing values or unrecorded features,
as well as unknown concept drifts and machine running con-
ditions [13], [19].

As a result, conventional machine-learning algorithms
struggle to handle changes in real-world streaming data [15].
Traditional electricity energy forecasting models are often
trained once and then not re-trained with new data; thus,
the prediction performance of the original model deteriorates
since industrial data generally changes over time [20]. Most
researchers traditionally split all available data into certain
parts for training and testing [12], [21], [22]. However, if there

is any degradation in the model prediction performance for
future data, it is not easy to accurately detect possible concept
drift points.

More research on detecting such drifts is essential because
few papers deal with regression settings with a concept drift
solution for real-world industrial datasets [14]. This paper
enhances the detection of change points for the real-time
energy consumption of industrial machines and improves
prediction performance by detecting concept drifts thanks
to a specially designed dynamic modeling for industrial
machines. The model solution developed here can be imple-
mented for similar regression problems with an evolving data
issue when a system has a complicated structure that includes
several unrecorded features. Moreover, instead of using com-
mon data-split approaches (standard fixed-size chunks, etc.),
the data is divided into dynamic portions based on machine
inactive conditions to detect possible changes more accu-
rately, known as the data-driven method. The proposed
model, named dynamic modeling with memory (DMWM),
actively reveals possible concept drift points and re-trains
the model based on the latest data samples after controlling
memorized models. Furthermore, DMWM detects repetitive
energy consumption regimes and utilizes old models to opti-
mize the total number of models with less computational cost.
As a result, the proposed method outperforms the traditional
approach and is designed to optimize the total number of
developed models with increased accuracy.

To test the proposed method, three different real-world
industrial machines’ energy consumption datasets are uti-
lized, and the results are evaluated. The rest of this paper is
organized as follows. Section 2 reviews works relevant to this
study. The methodology of analysis and dataset details are
shared in the third section. Section 4 covers the results and
discussion. Lastly, the conclusion and future recommenda-
tions are given in Section 5.

II. RELATED WORK
Many researchers have studied ways to predict energy con-
sumption using machine learning techniques. However, there
is minimal research into existing concept drift methods used
for real-world streamed industrial datasets [15]. Most of the
proposed methods prove that concept drift detection abides
by the ‘‘no-free-lunch’’ theory, which is a comprehensive
approach expressing it can be difficult to discover a method
that works for all machine learning problems [14]. To the best
of the authors’ knowledge, few research papers investigate
real-time industrial energy consumption datasets with a pos-
sible concept drift solution.

Energy is generally considered to be one of the essen-
tial factors for a country’s economic development. Nowa-
days, most countries have to deal with rising energy
demand because of their growing populations, and industrial
needs [21]. Demand response significantly impacts the power
system, easing the balance between production and usage;
furthermore, smart grids offer access to vast amounts of data,
significantly impacting power system monitoring [23], [24].
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Uncertainties in demand, generation, and costs can affect
an industry’s development of pricing schemes and investment
strategies [25], [26]. Most companies have started reducing
their energy expenses to ensure a better profit margin and
reduce emissions to minimize their environmental impacts.
Furthermore, load forecasting enables better energy manage-
ment, and thus lower costs [5], [13].

Several methods have been developed to improve these
forecasts, some more successful than others. Traditional
regressive approaches for multi-step time-series data, such
as autoregressive integrated moving average (ARIMA), fail
to capture non-linear patterns and features [27]. An alterna-
tive approach is to combine predicted hourly energy con-
sumption data to create a simulation that can highlight
correlations between manufacturing schedules and energy
consumption, especially for heating, ventilation, and air con-
ditioning (HVAC) system demands [4].

For example, Zhang et al. [28] constructed a model that
combines transformer and k-means techniques for every
23 hours of training data divided into clusters. At the same
time, the transformer model is trained to predict the next
hour’s power usage, with the predicted value being added to
the trained k-means cluster and the cluster’s centroid acting
as the final predicted value. Ramos et al. [5] further used an
artificial neural network (ANN) to re-train the model before
every forecasting day, resulting in an updated forecasting
model based on 16 months of data split into five-minute
increments from an industrial plant.

On a smaller scale, Bhinge et al. [18] have shown how to
anticipate the energy consumption of a machine tool using a
non-parametric regression model. According to their results,
this Gaussian process model can explain the complex interac-
tions between input machining parameters and output energy
consumption. On a larger scale, Li et al. [29] studied energy
consumption forecasts in the oil and gas industry with a
hybrid model artificial neural network and extreme learning
machine.

Rahman et al. [21] tried to solve the issue of data filtering
using non-predictive factors and feature ratings for a real-time
steel industrial dataset, with support vector machines (SVM)
providing the most accurate prediction results. Another sim-
ilar paper shows that the random forest (RF) model outper-
forms other regression models in predicting steel industrial
energy usage [22].

The best results for each machine learning model may vary
since differences in the data split ratio, tuning of hyperparam-
eters, feature selection, etc., can affect the results. To estimate
the energy consumption of grinding and milling machines
with numerous feature extraction techniques, a novel data-
driven energy prediction strategy with deep learning was
employed in [30] to remove extraneous features. Another
equivalent study was conducted to forecast the energy con-
sumption of electric arc furnaces, with the results showing
that deep neural networks (DNN) beat decision trees (DT),
linear regression (LR), and SVM in terms of forecast accu-
racy [31].

Other forecast studies focus on practical applications.
To estimate the cutting energy of machining, higher feed
rates, and greater spindle speeds require less energy accord-
ing to used ANN inputs [32]. Real-time operational data on
variable feed tonnage, bearing pressure, and spindle speed
from semi-autogenous grinding (SAG) mills was employed
by Avalos et al. [33]. They used several deep learning and
machine learning approaches to forecast the SAG mills’
energy needs. Their findings demonstrated that one of the
most outstanding prediction performances for SAG mill
energy consumption was achieved by neural networks.

Bermeo-Ayerbe et al. [34] used industrial testing data with
three artificially generated concept drifts. Compared with the
non-adaptive model, their proposed adaptive strategy out-
performed the conventional approaches in terms of energy
prediction performance. Mariano-Hernández et al. [20] uti-
lized active and passive concept drift detection approaches
in the DT and deep learning models. The results indicate
that constant re-training of the decision tree models, together
with change detection methods, can improve their ability
to adapt to changes in the total electrical consumption of
a building. Meanwhile, Jayaratne et al. [35] have proposed
an unsupervised machine learning algorithm for continuous
concept drift detection in a synthetic dataset; the proposed
model distinguishes between abrupt and reoccurring drifts.

Due to the time-varying data distribution in the concept-
drift context, it is impossible to pre-set the variance into
the typical surrogate gradient (SG) approach [36]. In order
to address the exponential degradation of long-term mem-
ory in LSTM, Zheng et al. [36] developed a novel adaptive
and hybrid spiking (AHS) module that worked in conjunc-
tion with two attention mechanisms adjusting the attention
score using the negative log-likelihood function to reduce the
effects of concept drift. Experiment findings demonstrate that
the suggested technique outperformed the latest models in the
literature.

You et al. [37] created a unique learning technique to
simulate concept drift during inference, which can aid the
model’s future generalization. Additionally, they suggest
enhancing the framework by utilizing related series in con-
cept drift modeling to reduce the effects of disturbances
and randomness in time series data. Extensive tests were
done on three real-world datasets confirming the suggested
approach’s efficiency. For instance, compared to cutting-
edge approaches, the proposed approach delivered a relative
improvement of 33% in stock price prediction.

In this research, instead of finding the best prediction
model, we mainly focus on enhancing overall prediction per-
formance by detecting concept drift points in order to more
accurately predict real-world short-term industrial energy
consumption over time.

III. METHODOLOGY
Accurately predicting the energy consumption of industrial
machines is a complex process even for experts in the
field [38]. The precision of a forecast degrades because any
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FIGURE 2. Designed framework for energy consumption analysis of industrial datasets.

system experiences unforeseen changes in machine running
conditions. Therefore, an adaptive method is necessary to
update the model [34]. According to the literature, con-
cept drift can be detected using active or passive meth-
ods, as described in Section 2 [14], [15], [35], [39]. Active
methods are primed to detect changes and are re-trained
when a trigger is recognized, while passive methods are
re-trained at regular intervals regardless of whether a change
has occurred [20]. Equations 1 and 2 identify the changes in
the distributions.

As an equation:

Pt (y|X ) 6= Pt+i(y|X ) (1)
Pt (X |y)× Pt (y)

Pt (X )
6=

Pt+i(X |y)× Pt+i(y)
Pt+i(X )

(2)

Concept drift is a change in the joint probability, Pt(y|X )
indicates the posterior probability distribution of the target
labels, and Pt(X |y) indicates the class-conditional probability
density distribution. While Pt(X ) is the probability distribu-
tion of the input data, Pt(y) indicates the prior probability
distribution of the target labels evolving, which is represented
with (t) and (t + i) [14].

Furthermore, most industrial datasets usually have an
excess of missing values and an absence of essential
attributes. Operator mistakes such as a lack of maintenance,
aggressive running of machines, poor quality of materials,
excessive speed, and high pressure can all have a significant
impact on machines’ power usage. However, most real-world
industrial streaming data do not include all these changes
in machine operations [38], [40]. In order to make a more

accurate prediction of energy usage, the issue of uncer-
tainty or unknown dynamics in streaming data must first be
addressed [8], [41]. As a result, it is necessary to develop a
method that can consider and ideally solve all those problems.

Most industrial machines work 24 hours a day, seven days
a week, creating massive amounts of data under different
running conditions. Modeling must also consider potential
concept drift cases over time since industrial machines gen-
erally do not have stable working conditions. Additionally,
it is important to check whether a different type of regime is
repeated or not.We developed a novel approach that can solve
all those problematic issues by using dynamic modeling for
real-time industrial energy consumption prediction.

The method developed for dynamic energy consumption
prediction with concept drift detection is illustrated in Fig-
ure 2. Each coming data portion is numbered according
to machine inactive points. The minimum duration of the
inactivity threshold value can be decided by a user based
on similar research papers or experimental results. Those
points identified as representing a potential concept drift and
upcoming data samples will be given a different chunk num-
ber. Each inactive point is considered a potential change point
when the machine is idle for more than a decided number of
consecutive hours. During these unused periods, the machine
may have significant maintenance or material changes that
will impact its future power usage. If the prediction error
rate for upcoming samples increases dramatically, the current
chunk will be considered a concept drift zone. A new model
will be trained based on the current data portion to adapt to
the machine’s new running conditions.

VOLUME 10, 2022 104625



A. Kahraman et al.: Dynamic Modeling With Integrated Concept Drift Detection

TABLE 1. Datasets’ features with units.

Since no detailed records are available about the machine’s
changing status, such as variations in running conditions,
operator mistakes, material changes, etc., this proposed
dynamic approach overcomes such unknown situations using
all available data. It resolves problems by re-training the
predictionmodel and adapting to new or developing operating
conditions. Furthermore, the suggested data-driven method
keeps similar running condition samples in the same chunk
instead of using fixed-size sampling. Thanks to this, each
chunk has a different sample size, but more relevant data
samples are in the same portion.

Deep learning techniques have been gaining prominence
due to their ability to learn feature representations, excellent
generalization abilities, and capacity tomodel the sort of intri-
cate relationships frequently found in massive datasets [8].
According to the [42], multi-layer perceptron (MLP) net-
works are superior for predicting energy consumption com-
pared with standard regression models. However, according
to the no-free-lunch theory, there are no specific models for
certain problems [13].

If the dataset has an unused period of at least 12 hours
or more marked as a potential new regime point, chunk
numbers are given according to these inactive points. While
energy consumption values are used as an output fea-
ture, the other available features are utilized as inputs
for deep learning models so that the model can predict
upcoming duration energy consumption based on previous
input values. The input features for each dataset are shown
in Table 1.

Various combinations were attempted to find the best
hyperparameter values for DNN prediction structures using
stochastic gradient descent (SGD) as an optimizer. Each train-
ing data chunk was split into 70% training, 15% validation,
and 15% testing for training purposes. Hyperparameters were
used in a variety of different combinations for DNN models
during the training, a process also known as a grid search.
Two layers, each containing 50 neurons, were selected as
they provided more accuracy for the neural network structure
than three layers. For activation function, tanh and rectifier
functions were used, and the best one was selected. Similarly,
different epoch sizes from 2 to 100 and learning rate varia-
tions in the range of 0.1 to 1 were used to find the optimum
values, with early stop criteria used to avoid overfitting. The

experiments were performed on a computer with an AMD
Ryzen 7 pro 4.20 GHz processor and 32 GB RAM.

A. DATASET DETAILS AND PREPROCESSING
All datasets were collected from industrial factories that work
seven days a week, 24 hours a day. They operate in an open
environment with no heaters or cooling facilities; therefore,
the outside temperature does not affect energy use [12], [22].
By looking for a unit root, an Augmented Dickey-Fuller
(ADF) test can tell if the series is stationary or not. The
series has a unit root and is non-stationary, which is the null
hypothesis for this test. The null hypothesis is rejected in the
ADF test for all three different datasets, indicating that they
are stationary.

The first dataset was gathered from a North American
mining company for a SAG mill. There are a total of 103,732
data samples for the three years of data with a 15-minute res-
olution, and there are a total of 67 different chunks according
to machine inactive points. The second dataset belongs to
a South Korean Steel Factory. The steel industry’s features
and energy usage (kWh) were recorded every 15 minutes for
365 days. There are 35,041 samples with 35 different chunks
for the selected threshold of minimum inactive duration.
The third dataset was collected from an underground mine
ventilation machine system from a TurkishMining Company.
There is a total of 28,153 hourly samples among the available
data for around three years, with 22 different chunks. Missing
values are replaced with the average of the corresponding
feature so that we can use each record as much as possible.

Table 1 lists the names of features with each dataset’s
data type and unit. For a neural network to map inputs to
outputs, the range of the feature values used to train the
model is critical and varies widely. Model convergence can
be ensured via data normalization, limiting the possibility of
exploding gradients and slower learning processes [4]. On the
time series, z-transformation is one of the most common
techniques.

By using:

(zi) =
(xi − Xm)

(s)
(3)

zi = z-transformed sample observations
xi = original values of the sample
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FIGURE 3. Framework of static modeling.

FIGURE 4. Framework of DMWOM.

Xm = sample mean
s = standard deviation of the sample
Only numerical time series are supported by this

standardization method. Furthermore, it only alters the dis-
tribution’s mean and standard deviation, not its shape. Addi-
tionally, energy usage is predicted using weather data, and
occupancy characteristics as predictors [22]. However, since
the industrial facilities are in an open environment with
no heaters or cooling equipment, outside weather factors
do not affect energy use for industrial machine working
conditions [12], [22].

B. PERFORMANCE METRICS
Feedback-based strategies are necessary to assess learners’
performance when dealing with concept drift [15]. For con-
tinuous variables, root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE) are the most commonly used performance metrics
for measuring accuracy and the average size of errors in a
prediction set [43]. However, because RMSE gives signifi-
cant errors a greater load, it is advantageous when such errors
should be avoided [4], [9].

The RMSE examines the discrepancies between real and
estimated values, which are calculated using Equation 3.
MAE determines how close estimations or expectations are to
actual outcomes. As indicated in Equation 4, this is calculated
by averaging the absolute divergences between the expected
and actual values. MAPE is a percentage-based measure of
the precision of estimated values compared with real values,
computed using Equation 5. The limitations of MAPE are
paired with theMAE, which displays howmuch inaccuracy is
expected from the forecast on average, assisting in determin-
ing which models are superior. Because the MAE has trouble
differentiating between significant andminor mistakes, it was
paired with the RMSE to be safe [9], [20].

RMSE =

√√√√ 1
m

m∑
i=1

(Yi − Ŷi)2 (4)

MAE =
1
m

m∑
i=1

|Yi − Ŷi| (5)

MAPE =
100
m

m∑
i=1

|
Yi − Ŷi
Yi
| (6)
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FIGURE 5. Framework of DMWM.

The test set contains m samples, with Yi representing the
sample’s actual value and Yi representing the sample’s antic-
ipated value. The lower the value of these error parameters,
the more accurate the model. MAPE was also utilized to
determine the threshold values and assess the model’s overall
performance since inference of MAPE is more straightfor-
ward than other error rates.

C. STATIC (TRADITIONAL) MODELING
Most researchers split the whole data into training and test-
ing parts. However, static modeling does not detect possi-
ble concept drifts for streamed data over time. Furthermore,
machine running conditions change over time, and a number
of unknown working conditions and other hidden features
may exist. Traditional static modeling is implemented so that
a comparison can be made for results with proposed dynamic
modeling.

Figure 3 shows the steps for the static (traditional) method.
It trains one model based on the earliest part of the data, and
the rest of the other upcoming chunks are used for testing.
When upcoming data evolve, the static modeling does not
solve the performance degradation problem.

D. DYNAMIC MODELING WITHOUT MEMORY (DMWOM)
In the best-known active drift detection systems, the user
determines the window size, which uses the most recent batch
of data with the most recent training instances [20]. However,
standard drift detectionmethods are not designed for complex
data streams from industrial machines. Using a fixed sample

size for training chunks might miss necessary samples since
the user decides the size [20]. Specific periods of inactivity
are considered the starting point for a new chunk. Thanks
to the proposed dynamic approach, each chunk might have
a different sample size and duration according to consecutive
inactive time durations.

The steps of the DMWOM method are illustrated in Fig-
ure 4. First, a counter is designed to give a chunk number
for each coming data part between two consecutive machine
inactive points. According to Chunk-1, the prediction model
is trained to be used over the upcoming chunks. A threshold
is set for the model performance error rate. When the model
error exceeds the threshold, a new model is trained based on
the current chunk data, such as Chunk-4 and Chunk-6 for
Figure 4. In other words, if the threshold value is exceeded n
times, n models will be developed. However, since the system
does not have a memory for old models, DMWOM only
develops one model based on the recent chunk. Compared
with a static model, DMWOM provides a better overall pre-
diction performance since it builds a new model when the
error rate exceeds the threshold chosen by the user.

E. DYNAMIC MODELING WITH MEMORY (DMWM)
Since DMWOM does not detect repetitive regimes, it builds
a new model when error rates pass the threshold. However,
optimizing the number of models is necessary for future
streaming data. This is where a DMWM model can be
applied. First, trained models will be stored in a memory,
and before developing a new model for required chunks, all
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FIGURE 6. Static modeling energy consumption prediction performances for a) SAG Mill, b) Steel industrial, and c) Ventilation
machine.

previous models stored will be used. If any of the former
trainedmodels provides an error rate lower than the threshold,
it will be used and a repetitive regime will be considered for
the machine running conditions as shown in Figure 5.

If old models cannot provide an error rate lower than
the threshold, a new model will be trained based on recent
chunk data. For Chunk-6, when the error rate passes the
threshold, before developing a new model, DMWM checks
the old models. If Model-1 gives an error rate lower than the
threshold, it will be used for future chunks. If older models
cannot provide an error rate lower than the threshold, then a
new model will be trained based on Chunk-6 data (Model-3
in Figure 5), and this new model will be used for upcoming
chunks. The identical approach will be repeated for future
chunks so that the old model can provide an error rate lower
than the threshold, which means recurring machine running
conditions.

IV. RESULTS AND DISCUSSION
Since each dataset has a different recorded period and var-
ious chunk sizes, based on a selected minimum of machine
inactive durations for the ‘‘SAG Mill,’’ ‘‘Steel Industrial,’’
and ‘‘Underground Mine Ventilation Machine’’ chunks, the
average sample sizes are 1236, 824, and 1279, respectively.
Energy consumption (EC) prediction performances will be
shown in this section for three different datasets.

A. RESULTS FOR STATIC APPROACH
First, we developed a DNN model based on Chunk-1, and
upcoming chunks were used for testing. The static approach
does not build new models when performance degrades over
time. All error rates for each chunk are illustrated in Fig-
ure 6. There are two vertical axes since MAPE values have
different ranges than RMSE and MAE. SAGMill EC predic-
tion performance is shown in Figure-6a; error rate increases
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FIGURE 7. DMWOM energy consumption prediction performances for a) SAG Mill, b) Steel industrial, and c) Ventilation machine.

are shown from Chunk-16 to Chunk-23, in Chunk-42, from
Chunk-49 to Chunk-58, and between Chunk-61 and Chunk-
64, with the dotted red lines demarking concept drift points.

Figure-6b for Steel Industrial EC shows forecast perfor-
mance accuracy diminishing between Chunk-15 and Chunk-
18, and between Chunk-20 and Chunk-27, because of data
changes. Lastly, the Ventilation machine EC prediction in
Figure-6c shows degradation fromChunk-5 to Chunk-10, and
in chunks 14, 15, 18, 20, and 22.

Static modeling does not provide solutions for potential
data changes within streaming data. Because of this issue,
dynamic modeling is necessary for an industrial dataset with
a concept drift problem. We split the dynamic modeling
process into two parts: without memory, and with memory.
The purpose of the memory approach is that if there are
any similar repetitive regimes, they will be detected. As a

result, it allows us to optimize the number of models and find
potential repetitive machine running conditions.

B. RESULTS FOR DYNAMIC MODELING WITHOUT
MEMORY (DMWOM)
Prediction performance degrades over time for upcoming
chunks, so it is necessary to build a new model based on
recent data to handle the concept drift problem. DMWOM
uses only one recently trained model for predicting upcoming
streaming data. According to the selected threshold error rate,
a new model will be developed for the current chunk. A new
model will be trained according to the last chunk when the
prediction error exceeds the decided threshold values. It is
selected as the static model prediction performance average
value for this paper, but users can select it differently.
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FIGURE 8. DMWM energy consumption prediction performances for a) SAG Mill, b) Steel industrial, and c) Ventilation machine.

TABLE 2. Performance metrics for models and datasets.

Error rates for DMWOM are shown in Figure 7 for
SAG Mill, Steel Industrial, and Ventilation Machine, and
DMWOM had 16, four, and seven different models, respec-
tively. Overall, DMWOM prediction performances were
4.45%, 4.74%, and 5.24%, respectively, while staticmodeling
general MAPE prediction performances were 7.42%, 7.06%,
and 8.63%, in that order. It can be seen that general EC predic-
tion performance precision increased thanks to the dynamic
approach. However, the number ofmodels has also risen since
DMWOM develops a new model when the error rate exceeds

the threshold. To decrease the total number of models without
decreasing prediction performance, DMWM is designed as a
solution that also detects possible machine repetitive energy
consumption regimes.

C. RESULTS FOR DYNAMIC MODELING WITH MEMORY
(DMWM)
In contrast to DMWOM applications, DMWM uses all pre-
viously trained models when MAPE exceeds the threshold
rather than creating a new model for the most recent chunk.
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FIGURE 9. Comparison of static modeling, DMWOM, and DMWM energy consumption prediction performance in MAPE for a)
SAG Mill, b) Steel industrial, and c) Ventilation machine.

A new model will be developed for the latest chunk of sam-
ples if any of the earlier models are unable to deliver an error
rate below the threshold. The number of models has been
optimized thanks to DMWM, which also determines whether
repeated regimes exist or not.

Figure 8 displays DMWM error rates for the SAG Mill,
Steel Industrial, and Ventilation Machine datasets. While
DMWOM used 16, four, and seven distinct models for the
available datasets, DMWM had five, four, and four models,
respectively. While DMWM decreased the total number of
models thanks to the repetitive regimes for SAG Mill and
Ventilation Machine, it did not find any repetitive regimes
for the Steel Industrial dataset. DMWM provided overall
error rates slightly higher than DMWOM. For SAG Mill,
Steel Industrial, and Ventilation Machine datasets, DMWM
overall MAPE prediction performances were 4.98%, 4.74%,
and 5.33%, and DMWOMoverall MAPE values were 4.45%,
4.74 %, and 5.24%, respectively. The absence of repetitive
models means no repetitive regimes in available Steel Indus-

trial data. However, the dataset has a limited time duration of
only one year, and further data might have repetitive regimes
that can be detected thanks to the DMWM.

D. COMPARISON OF STATIC MODELING, DMWOM, AND
DMWM
DMWOM and DMWM had a better performance due to
creating a newmodel for chunks that passes the threshold. In a
long runtime, DMWM can detect possible repetitive regimes
for industrial machines’ energy consumption and reduce the
total number of models. Figure 9 shows each chunk MAPE
rate for static modeling, DMWOM, and DMWM.

One of the distinctive chunks of prediction performance is
shown as a plot for each dataset in Figure 10, with x-axes
representing real EC values and y-axes illustrating prediction
values. Compared with the static approach, EC prediction
performance accuracies increased for specific chunks thanks
to the proposed model after detecting concept drift. SAG
Mill EC, Steel Industrial EC, and Ventilation Machine EC
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FIGURE 10. Comparison of static modeling, DMWOM, and DMWM energy consumption prediction performance plots for SAG Mill, steel industrial, and
ventilation machine.

FIGURE 11. Comparison of static modeling, DMWOM, and DMWM energy
consumption prediction performance in RMSE and MAE for SAG Mill,
steel industrial, and ventilation machine.

prediction plots are illustrated for Chunk-61, Chunk-20, and
Chunk-14, respectively.

It can be seen from Figure 10 that static modeling pre-
diction values deviated from the actual values, which indi-
cates concept drifts for streaming data over time for specific
chunks. As a result, the proposed dynamic modeling can
obtain a better prediction performance for real-world applica-

tions comparedwith traditional static modeling. Furthermore,
DMWM decreased the number of models thanks to detecting
repetitive machine running regimes.

Additionally, overall average RMSE and MAE values
are shown in Figure 11. Compared with static modeling,
DMWOMand DMWMhad lower error values. There are two
horizontal axes in Figure 11 since each dataset has different
EC value ranges.

Comparisons of the methods applied for the datasets in
terms of training time, error rates, and the total number of
developed models are shown in Table 2. The values are also
presented graphically in Figure 12. While dynamic modeling
has a lower error rate than static modeling for all datasets,
it needs a longer training time and a larger number of models.
Dynamic modeling with higher accuracy estimation provides
an advantage over the traditional approach in data analysis of
industrial machines. While DMWOM needed more models
and training time, DMWMwas able to achieve approximately
the same prediction performance with less model and training
time thanks to its ability to use old models.

V. CONCLUSION AND FUTURE WORK
Deep learning architectures have been widely deployed
for the forecasting of sensor-based electrical loads. Most
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FIGURE 12. Comparison of static modeling, DMWOM, and DMWM energy consumption prediction performance in MAPE for SAG Mill, steel industrial, and
ventilation machine.

methods use a model that has been trained only once and then
used to predict future loads. As a result, these strategies do
not benefit from the latest data, and the performance of the
models generally deteriorates over time.

Industrial datasets may contain several unknown features
which require a solutionwith amandatorymodification based
on available data and attributes. More integrative solutions
for complex systems are required to achieve better prediction
performances.

This research has proposed a data-driven dynamic tech-
nique with an adjusted concept drift detection method to
predict the energy consumption of three different real-world
industrial datasets. Compared with a static methodology, the
dynamic method maintains a better prediction performance
thanks to adaptive modeling. While DMWOM’s overall EC
prediction performances were 4.45 percent, 4.74 percent, and
5.24 percent, respectively, MAPE’s overall prediction perfor-
mances for static modeling were 7.42 percent, 7.06 percent,
and 8.63 percent for the SAG Mill, Steel Industrial, and
Ventilation Machine datasets used here. Moreover, DMWM
reduced computing complexity by requiring less training
while improving prediction accuracy. The proposed method
can be tested on various streamed datasets in future works.

In addition, this study has used deep learning as a predic-
tion method. Various machine learning models (SVM, RF,
etc.) can be integrated into the proposed method to compare
their predictive performance and runtime in future research.
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